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Abstract.

The generation of angular momentum in the fission fragments is the subject of a renewal of interest since new
experimental data [Wilson, et al.] shows that the magnitudes of the spins of the fragments are almost uncor-
related. In this proceeding, the collective potential perceived by the fission fragments is studied using static
frozen Hartree-Fock calculation and the dynamic Time-Dependent Hartree-Fock. The results are in qualitative
agreement with previous studies done in the case of the 2**Pu.

1 Introduction

Fission is the process in which one nucleus separates into
two nuclei of comparable mass. An important goal of the
nuclear theory [1] is to determine the properties of the fis-
sion fragments, mass, charge, energy, and spins. Experi-
mentally the fission fragments have a large spin between
5 and 10 7 [2]. The source of spin of the fission fragment
is still an open question with different possible explana-
tions, i) the build-up of stochastic fluctuation during the
descent of the potential from the saddle to scission [3—6]
ii) the quantum effect at scission [7-9] iii) the Coulomb
repulsion that creates a torque on the fragments [10-12].

The two fission reactions studied here are, 252Cf —
1328n + 12°Cd and 2Cf — *Ba + '®Mo. In the present
approach, It is assumed that the two fragments are already
formed and correspond to the ground state or a deformed
configuration of the corresponding nuclei.

2 Frozen Hartree-Fock

In the Frozen-Hartree-Fock (FHF) [13, 14] calculation, the
fission fragment are assumed rigid. Both fragments are put
in the lattice at a distance D between their center of mass.
The heavy and light fragments are oriented to form respec-
tively an angle 6y and 6y, with the fission axis. This calcu-
lation neglects more complicated shapes that are described
in dynamical models such as the time-dependent Hartree-
Fock plus BCS pairing model (TDHF+BCS) [15, 16] or
Time-Dependent Superfluid Local Density Approximation
(TDSLDA) [17]. In these models, a neck is present be-
tween the two fragments at the scission point. Never-
theless, these models respect symmetries, and so the de-
formed fragments at the scission are aligned with the fis-
sion axis. As we will observe with the FHF calculations,
this corresponds to the arrangement that minimizes the en-
ergy. That configuration is then expected to be the most
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probable but fluctuations due to thermal and/or quantum
effects should populate fission configurations where the
fragments principle axis deviates slightly from the fission
axis.

The fragments of the output channel are chosen to 1)
describe the main populated states ii) have different shapes
to study the impact of different types of deformation on
the potential. As can be seen in Table 1, the chosen fission
fragment have different shapes: spherical for the '32Sn,
quadrupole for the '?°Cd and '®Mo and an octupole '**Ba.
The %Mo also shows a hexadecapole deformation. These
two output channels belong to the channels that are enough
populated to be experimentally studied [18].

Table 1. The deformations and rigid moments of inertia of the

four nuclei examined in this study. The rigid moment of inertia

in unit of [4%/MeV] is obtained on an axis perpendicular to the

main deformation axis of the nucleus. The excitation energy of

the deformed state is also shown in the case of the ?°Cd which
is not in its ground state.

Nuc. | B B3 Bs | E [MeV] | IRigia
B328n 0. 0. 0. 0 50.0
120cd | 0.42 0. 0.08 4.4 51.5
144Ba | 022 | 0.16 | 0.15 0 63.1
108Mo | 0.58 0. 0.25 0 46.1

The calculations are done in a lattice with a mesh con-
stant dx = 0.8 fm. All calculations of the proceeding are
obtained with the Sly4d functional [19]. The fragments
are obtained with the Sky3d code [20] on a cubic lattice
with L, = L, = L,=24 fm. The fragments are then placed
on an extended lattice with Lx = 60 fm. The energy of the
total system is then computed, and the radial potential is
defined as,

V = Eppr(0,D) — Epgp(6 = 0, D). (D

In the present static study, the calculation are limited to
only one non-zero orientation angle at a time. The angle of

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 290, 02013 (2023)
EuNPC 2022

https://doi.org/10.1051/epjconf/202329002013

20 T T T T T T T T -
D=14 fm —e—
s | D=14.5 fin 252cf_, 120Cd+1328n_
D=15 fm —=*—
_ 10 | D:18 fm —— _
>
(]
2.
>

-10 i i i i i i i i
20 HD=16 fm —eo— 252 108 144 ]

D=17 fm Cf = '""°Mo+'*"Ba
15 =18 fm —=— 7

> 10 D720 fm ——
=
S

0

-5

0 10 20 30 40 50 60 70 80 90
6 [deg]

Figure 1. Frozen Hartree-Fock radial potential as a function of
the orientation angle of the light fragment for different separation
between the fission fragments. The heavy fragment is aligned
with the fission axis 6y=0.
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Figure 2. Same as Fig. 1 for the heavy fragment. This fragment
being pear-shaped deformed the x-axis of the figure vary from 0
(the heavy fragment point to the other fragment) to 180 degrees.
The light fragment is aligned with the fission axis 6, =0.

the other fragment is assumed to be zero. More complex
effects of the correlation between the angles have been
studied in Ref. [21] and show a small impact of the corre-
lations. At small angles, the principal impact of the orien-
tation on the energy is then the sum of each fragment con-
tribution. In Fig. 1, the angular potential is shown for the
heavy fragment. In both case, the potential show similar
behavior, at small distances the fragments can touch each
other, and the attractive nucleus-nucleus potential favors

the 6=0 configuration. When the distance increases, the
nuclear effect drop-off, and the Coulomb potential dom-
inates. The Coulomb energy favors configurations at 90
degrees, then the lowest configuration changes during the
scission process from 0 degrees to 90 degrees.

From this static picture, we can estimate the evolution
of the system, the fragments are first oriented in the 0 de-
grees configuration. Beyond the classical approximation,
it is expected that statistical or quantum fluctuations will
make the fragments deviate from the exact 0 degrees con-
figuration. Then once the system passes the scission point,
the 0 degrees configuration become unstable. This lead to
a rotational acceleration of the fission fragments due to the
Coulomb torque.

3 Time-dependent Hartree-Fock

To describe microscopically that evolution, we solve the
TDHF equations with the initial configuration described
previously i.e the center of mass of the fragments are at
a distance D and oriented with an angle 6; g. The evolu-
tion of the one-body density is shown by a contour plot,
in Fig. 3 and 4 panel (a), (b), and (c). Initially oriented
at an angle of 25 degrees and at a distance for which there
is a nucleus-nucleus interaction (14 fm and 16 fm respec-
tively for the 22Cf — 1328n + 20Cd and *2Cf — '*Ba
+ %Mo channels). The static potential described in the
previous section and the additional contribution due to the
neck, makes the fragment rotate.

During the evolution, for each fragment, the local total
angular momentum is calculated as,

J) =1 ) (D] (F = Fom) X (p — Pem) +8) OFlD(r),
i,F

)

With r., and p.n, respectively the position and impulsion
of the fragments. The sum over i includes all occupied
protons and neutrons wave function |®;(r)). The Heavi-
side function Oy is the projector operator on the half-space
containing the fragment F. That operator reveals how the
angular momentum is distributed inside the fragment. The
distribution of a rigid rotor would behave as ro(r).

That quantity is shown on the three first panels of Fig.
3 and 4. It shows that the fragment deviates from the rigid
rotor model. The fragments being excited, different modes
of vibrations are populated.

The integral of J(r) leads to the total angular momen-
tum of the fragments. its evolution as well as the con-
tribution of the protons and neutrons are shown on panel
(d) of Fig. 3 and 4. The evolution is strongly dependent
on the shapes of the fragments. In the initially spheri-
cal '32Sn, the interaction with the other fragment breaks
the spherical symmetry and so enables the generation of a
small angular momentum. Both '2°Cd and '®Mo have a
large quadrupole deformation. They see their angular mo-
mentum increase rapidly due to the restoring torque. After
separation, the angular momentum decreases slightly due
to the Coulomb torque. The Coulomb torque can either
increase or decrease the angular momentum depending on



EPJ Web of Conferences 290, 02013 (2023)
EuNPC 2022

https://doi.org/10.1051/epjconf/202329002013

‘é Jy(x.2)[h fm™]
0.03
_ 0.02
) 0.01
»
0
_ -0.01
£
= -0.02
»
-0.03
D [fm]

14 15 20 25 30 35 40 45 50 55 60
T T

Figure 3. Panel (a-c) Snapshot of the contour density (solid
lines) as a function of time for the fission reaction 2>Cf — '32Sn
+ 12°Cd. The colors show the local angular momentum. The
calculation starts at 14 Fm. The light fragment is oriented at
an angle 6;,=25°. Panel (d) shows the evolution as a function
of time and as a function of the distance D the total spin of the
heavy (solid line) and light (dashed line) fragments. For both
fragments, the contribution of protons and neutrons are shown
respectively by blue squares and green crosses.

the orientation and direction of the angular momentum of
the fragments. The pear-shaped '“*Ba has the largest fi-
nal angular momentum. This result is coherent with the
static picture since the potential for the heavy fragment (
see Fig. 2) is stiffer than for the light fragment (See Fig.
1(b)). This confirms the finding in Ref. [22] that the oc-
tupole deformation increases substantially the generation
of angular momentum.

A surprising effect, already shown in Ref. [21], is the
large transfer of angular momentum between protons and
neutrons visible in panel (d) of Fig. 3 and 4. An extreme
case is found in the '*°Cd fragment. The angular momen-
tum is generated initially in the protons but at t = 500
fm/c the angular momentum is completely dominated by
the neutrons.

4 Conclusion

The present results concerning the fission of 232Cf are in
qualitative agreement with Ref. [21] which was done for
two 240Pu fission channels. A strong restoring force takes
place at scission, which creates an angular momentum in
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Figure 4. Same as Fig. 3 for the reaction 22Cf — '“Ba + '%Mo.
The calculation starts at a distance D=16 fm.

the fission fragments if the orientation deviates from 6=0.
The goal of the present study is not to obtain results that
can be compared to experimental results since the final an-
gular momentum in the fragment depends strongly on the
initial angle. Nevertheless, the present FHF results can be
used to determine the final angular momentum using the
collective hamiltonian model [22].
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