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Abstract

The aim of the project is to investigate the feasibility of integrating the
GEANT4 geometry facilitieswith FLUKA physicstreatment, and eventua ly
release a production application. Thiswill alow to perform cross-checking
of physicsresults, using compl etely independent physics packages (GEANT4
and FLUKA) tracking in the same geometry. This note summarises the basic
requirementsof MultipleLanguage Programming (withaspecia focusonthe
problemsinvolvedin integrating C++ and FORTRAN code). It aso outlines
the structure of the new application, and some positive results.

1 MLP: Multiple Language Programming

Reusing components means integrating in the same application components already
coded, possibly in different programming languages. Thismay beagooddternative
among recreating components or translating old ones. The following observations
show the advantages ([1]).

¢ Components may be best coded in a particular language, depending on the
task; indeed every languageis created for a particular environment (e.g. Java
for the network).

¢ Trandating existing codeis not straightforward, in particular:

— due to the different characteristics of each language, a particular task
may be ill suited to a particular language;
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— when viable, trandating is difficult, and it easily introduces bugs;

— the users and developers background have to change radicaly.
Reusing components alows a parallelism between the introduction
and acquisition of different technologies, the development and mainte-
nance of the whole of the code;

— the source code of the component may not be available.

1.1 Problemsof Multiple Language Programming

The integration of components written in different languages cannot refer to any
standard, and generally isnot supported. The problemsinvolvedin integrating for-
eign routines ([1]) concern at |east the foll owing aspects:

¢ the name of the component is not obvious;
e passing input and output data may be complex;

¢ any component side-effect potentially causes environment troubles (anyway,
isagood programming practice to avoid side-effects by encapsulation: e.g.
substituting error messages with flags,etc.).

1.2 Typesof Multiple Language Programming

Multiple Language Programming could be performed at different levels. The most
common types of MLP are:

¢ coarse-grained: different executables (each coming from a component writ-
ten in a particular language) work on aintermediate file of data;

¢ CORBA = Common Object Request Broker Architecture: communica
tion between components (either on the same or between different platforms)
is performed by the Interface Definition Language (IDL);

¢ MLX =MultipleLanguagesExecutables: thisisthemost common form of
MLP, evenif, except for C++, few programming languages provide standard
support ([2]). There are different types of MLX:

1. direct MLX: for each foreign routinethereisaroutine-dependent call in
the main code (thisis platform-dependent!);

2. wrapper: it provides a native interface to the foreign routine (but the
use of the foreign routine via the wrapper isn’t always platform-inde-
pendent!). A wrapper scheme isshown in Figure 1.
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Figure 1. Wrapper scheme.

1.3 Wrappersfor FORTRAN and C++

Mixing moduleswrittenin C++ with moduleswrittenin FORTRAN is not straight-
forward, duetotheformal differencesbetween thetwolanguages([3] and[4]). Such
formal differences depend on the platform too. In particular for HP-UX these dif-
ferences comprise the following points:

¢ Routinenames: when compiling FORTRAN codewiththe+ppu option, an
underscoreis appended to the routine name. So, on HP platform, it is neces-
sary to redefine, in C++ code, all routines called from FORTRAN code. For
example:
#i f ndef glwr
#define glw glw _

¢ FORTRAN is not case sensitive, while the C++ compiler is. Therefore, al
C++ global names accessed by FORTRAN routines must be lowercase. All
FORTRAN externa names are down-shifted by default on HP platform.

¢ Function arguments: there are two main methods of passing arguments: by
reference or by value. Passing by reference means that the routine passesthe
argument address rather than the argument value. It's imperative to ensure



that both caller and called functions use the same method of argument pass-
ing for each individual argument. Furthermore, the calling conventionfor the
order of arguments must be known. For maximum compatibility and porta-
bility, only simple data types should be passed to routines.

All C++ parameters are passed by value, except arrays and functions, which
are passed as pointers (so they are actually passed by reference). FORTRAN
passes al arguments by reference. So, the simplest way to reconcile these
differences in argument-passing conventionsis to use reference variablesin
C++ code, declaring all non-array forma arguments to be passed by refer-
ence; array arguments could be declared as arrays- or pointers(C++ converts
ause of an array to a pointer to the array first element).

Arrays. C++ stores arraysin row wise, whereas FORTRAN storesarraysin
column wise (so matrixes are the transposed one to the other).

Array indexing: The lower bound for C++ arraysis 0. The default lower
bound for FORTRAN is 1. It's necessary to shift thearray index going from
alanguage to the other.

Strings. C++ strings are not the same as FORTRAN strings. In FORTRAN
the stringsare not null terminated. Moreover, stringsare passed as string de-
scriptorsin FORTRAN .

Booleantype: C++and FORTRAN do not aways share acommon definition
of TRUE or FALSE. Sometimes C++ compiler does not have a FORTRAN
LOGICAL type. Instead, C++ uses integers: any nonzero value is used to
represent TRUE and O is used to represent FAL SE.

Fileaccess: FORTRAN 1/O routinesrequire alogical unit number to access
afile, whereas C++ accesses files using subroutines and intrinsic functions,
and requiresastream pointer. A FORTRAN logical unit cannot bepassedtoa
C++ routineto perform 1/0O on the associated file. Nor can a C++ file pointer
be used by a FORTRAN routine.

Interfacing FLUKA and GEANT4

Keeping in mind that reusing componentsisasimple and fast way to build new ap-
plications, an interface is being devel oped to alow the FLUKA MonteCarlo (writ-
ten in FORTRAN) to call the geometry routines of the al pha version of the object-
oriented HEP simul ation software GEANT4 (writtenin C++). Thisnew application
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uses FLUKA to generate physical events and GEANT4 to handle geometry propa-
gation of particlesin the detector geometry. The key features of this operation are
listed below.

¢ Tosimulate particles behaviour using all FLUKA physicstreatment (likein-
teraction models, charged particlestracking, biasing, etc.).

¢ Toalow thetransport code FLUKA to describe complex detector geometry,
and to compute particle steps and particle location in the detector, by means
of GEANT4 routines ([5]). Thiswill allow to exploit a broad-range of facili-
tiesavailablein GEANT4 (like complex geometry handling, exchanging de-
tector geometries with Computer Aided Design - CAD, detector and tracks
visuaisation, etc. ; see[6], [7]).

¢ To have two MonteCarlo simulations (FLUKA and GEANT4) within the
same geometry description (built in GEANT4), in order to the cross - check
simulation results, using completely independent physics packages.

21 FLUKA

FLUKA ([8]) isan interaction and tracking MonteCarlo simulation. It'safully in-
tegrated code: it's an homogeneous code, developed as awhole and not an assem-
bly of various programs. 1t's a multipurpose code: it can be used in different fields
such as shielding, dosimetry, high energy experimental physics and engineering,
cosmic ray studies, medical physics, etc., allowing analogue and biased transport.
The physics capability include:

¢ hadron-hadron and hadron-nucleus 0-10 TeV interactions;
e 0-100 TeV pu and electro-magnetic interactions;

¢ charged particlestracking and energy loss by ionization, pair productionand
bremsstrahlung;

¢ multi-group neutrons interactionsin the 0-20 MeV range;

22 GEANT4

GEANT4([9], [10]) isaObject-Oriented Toolkit for HEP simulation, now initsbeta
version. The use of Object Oriented design was employed to achieve the required
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level of flexibility and extensibility for the user, and the necessary transparency of
the physics processes in the simulation. The description of detector geometriesin
GEANT4 is based on an 1SO STEP compliant solid modeller. Logical volumes,
physical volumes, and solids, are used to describe the properties of the geometrical
structures of the detector. The class category diagram shownin Figure 2 istheresult
of the problem domain analysisfor GEANT4. The physics capability of GEANT4
are not addresses here as they are outside the aim of this project.
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Figure 3: GEANT4 geometry classes.

2.3 Geometry Calls

The first step of the project was to find out the feasibility of decoupling physics
and geometry in both FLUKA and GEANT4 packages. To achieve this goal, we
identified and anal ysed each different FLUKA call to geometry subroutines, and we
found that these are compl etely digjoin-ed from physical problems. Thenwelooked



for analogousgeometry routinesin GEANT4 and wediscovered that these belong to
G4Navigator class, and they are independent from physicstoo ([5]). So we decided
to interface the programs at this very low level, wrapping into FLUKA code only
GEANT4 classes dealing with the geometry tracking (these are shownin Figure 3).

The relevant FLUKA geometry calls are few, summarised in the following, to-
gether with their GEANT4 equivalent:

e Tracking call: it is the call for the control routine for combinatorial ge-
ometry named G1FLU, that calculates the distance travelled in the present
zone/region and the number of the next zone/region to be entered by the par-
ticle. Theanalogous GEANTA4 functionis ComputeStep. G1FLU returnsthe
important parameter DSNEAR, itsvalueis|essthan or equal to the minimum
of the distances between the particle and each boundary. Calculating such a
parameter isvery useful, because as long as the subsequent steps are shorter
than DSNEAR, the program does not call the geometry at all, keeping all the
information computed for the previous step. It is very important that Com-
puteStep returns a parameter that performs the same action (safety).

e Look for region number calls. various cals for geometry routines
(LOOK*) which return the index of the region to which the particle be-
longs, according to the current position and direction, in particul ar situations
(starting new track, error conditions, magnetic field, etc.). GEANT4 func-
tion L ocateGlobal PointAndSetup performs similar actions.

¢ Computing the normal to a boundary call: thisisacal for the NORML
routine that returns the unit vector at the previous point of the tracking (in
case aboundary crossing occurred), that istheintersection point between the
path and the preceding boundary. The analogous GEANT4 function is get-
Loca ExitNormal.

Obviously the input/output of GEANT4 member functions doesn't exactly
match FLUKA routine input-outputs. A set of "wrappers’ takes care of the prob-
lem.

24 Wrappers

When mixing C++ moduleswith FORTRAN modules, extern " C” linkage must be
used to declare any C++ functions that is called from a non-C++ module and to
declare the FORTRAN ones. So the wrappers must be defined like this:



extern "C'" void glw(...);

Wrapperssolvetheformal differences between languages (arrays are translated,
routine names redefined, etc.), and they adapt inputsand outputsof GEANT4 func-
tionsto make them match the FLUKA ones exactly. We could summarise wrapper
functions as follows:

¢ adaptation of input and output:

— physics units must be the same;

— datatypesin the different languages must correspond (e.g. we had to
convert double x[3] to GAThreeVector pos(x,y,2);

— variableform: the output datapassed to FLUKA must match the exact
request (e.g. FLUKA requires the number indicating aregion, whereas
GEANT4 employs volume pointers...)

¢ achieve formal compatibility between languages.

25 Main Program

In general, when mixing C++ moduleswith modulesin FORTRAN the overall con-
trol of theprogram must bewrittenin C++. In other words, the main() function must
appear in some C++ module and no other outer block should be present. We wrote
the C++ main, where:

e FLUKA isdeclared as an externa routine with “external linkage”:
extern "C' void flukamconst 4int & CGeoFl ag);

e instances are made of those classes whose member functionsare called from
FLUKA (calling member functions of the class FGeometry - written for this
purpose).

o FLUKA iscalled asasubroutine.

The executablefile is created through a makefile. In this makefile, objects are
created for GEANTA4 classes used by FLUKA, and the FLUKA library isincluded.
All these objects must be linked with the lisamstub library.

CC -lisanmstub prog.CC. o prog_FORTRAN. o
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Figure 4: Application diagram.
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Vacuum

Al
Pb

Figure 5: A simple geometry for testing the application.

3 Preliminary Results

3.1 Testing theapplication

After concluding thefirst draft of the application (its scheme is shown in Figure 4,
we began testing the program, starting from the simplest cases.

1. Ray, neutrons, muonsand el ectronstracking in asimplegeometry with boxes
of Pb, Al, air (Figure5).
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2. Electronstracking in a more complex geometry: aseries of slab of different
elements (Al, Au, Al), which total thicknessis of the order of the electron
range. Asshown in Figure 6, electrons scattersin all directions. In this case
the problem to face with concerns multiple scattering at boundaries, where a
very good interface between geometry and transport is needed to handle del -
icate situations such as grazing angles, backscattering, deflections at bound-
aries.

Fluence ( e”/cm?/primary) , 1 MeV incident electrons

0.25

0.1

0.05

-0.05 0 0.05 0.1 0.15 0.2 0.25
Z(cm)

Figure6: Electronflow inthe detector - the* colour” isproportional to el ectron flux.
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3. 500 MeV protons on athick Cu target: the generated neutrons propagate in
aconcrete shield. In this case biasing techniquesare applied to achieve vari-
ancereduction: particlesare randomly splitted (cloned) at region boundaries
according to user defined parameters in order to maintain a constant num-
ber of particles throughout the shield. To ensure the conservation of observ-
able, theweight of splitted particlesis reduced. From the geometry side, this
requires continuous relocalization of particles sitting exactly on boundaries.
An example of splitting at boundary is shownin Figure 7. It should be noted
that the variance reduction isavailablein FLUKA, but not (yet) in the apha
version of GEANT4. Asthefigures 8 and 9 show, when simulating with bi-
asing the percentage error on the neutron dose is constant through the shield
depth. Without biasing, the percentage error grows exponentialy with the
thickness of the shield.

Figure 7: Particle tracksin concrete shield.
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32 CPU

We made afirst comparison between the CPU time used running both FLUKA and
the new application FLUKA+GEANTA4. We tracked 100 primary particlesin the
simple geometries described before, and we obtained in the two cases identical
events, i.e. eventsthat start and end with the same random number and which are
step by step equivaent in al quantities. Furthermore, as shownin thetable, the av-
erage cpu time for each beam particle (in seconds) isamost the same for both runs
(program initialisation and ending times are not taken into account in the computa-
tion of the time per event)!

FLUKA FLUKA+
GEANT4
“ray” 3.100-10~% | 3.100-103
(boxes)
n 1.124-107! | 1.053-107!
(boxes)
7} 6.980-1072 | 7.100-10~2
(boxes)
e~ 9.360-1072 | 7.880-10~2
(boxes)
e~ 9.520-10% | 8.710-102
(Al-Au-Al)
n 3.991-1071 | 4.497-1071
(concrete)

4 Future Developments
The activitiesfor the coming months concern:

1. testingthe code in more complex and critical cases (e.g. complex geometries
with “replicated” and “parameterised” volumes, tracking in magnetic field,
etc.);

2. visualisingdetector geometry and trackswith GEANT4 visualisationdrivers,
3. installingthe GEANT4 geometry debugger (DAVID);
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4. storingin FLUKA stack history information (the position in geometry hier-
archy) with created secondary particles. Givingthe history back to GEANT4
Navigator on starting tracking of secondaries, will avoid recalculating it ev-
ery time.

5. trandating GEANT4 exceptionsin FLUKA error flags;
6. mingling the materia specification from FLUKA and GEANT4 input;

7. allowing the application to use some of the facilities of GEANT4 user inter-
face (e.g. set visualisation parameters, etc.);

8. improving the application, for example by creating a C++ class (a sort of
wrapper manager) with the wrappers as member functions, that instantiates
all the classes needed.

9. adapting the application to run on severa platforms.

5 Conclusions

We have shown that the project is feasible, and we built afirst version of an ap-
plication including FLUKA physics and the alpha version of GEANT4 geometry,
with wrappers that encapsulate GEANT4 functionsfor making them callable from
FLUKA physicsroutines. The first tests with simple geometries, and the compar-
ison of CPU times are really encouraging. The project is therefore continuing in
these months using the beta release of GEANT4 and improving the application as
described in section §4.
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