
A
T

L
-S

O
FT

-9
8-

03
9

26
 O

ct
 1

99
8

Reusing Code from FLUKA and GEANT4
Geometry �

M.Campanella, A.Ferrari, P.R.Sala, S.Vanini
INFN sez. di Milano, via Celoria 16, I-20133 Milano, Italy.

October 13, 1998

Abstract

The aim of the project is to investigate the feasibility of integrating the
GEANT4 geometry facilities with FLUKA physics treatment, and eventually
release a production application. This will allow to perform cross-checking
of physics results, using completely independent physics packages (GEANT4
and FLUKA) tracking in the same geometry. This note summarises the basic
requirements of MultipleLanguage Programming (with a special focus on the
problems involved in integrating C++ and FORTRAN code). It also outlines
the structure of the new application, and some positive results.

1 MLP: Multiple Language Programming

Reusing components means integrating in the same application components already
coded, possibly in different programming languages. This may be a good alternative
among recreating components or translating old ones. The following observations
show the advantages ([1]).

� Components may be best coded in a particular language, depending on the
task; indeed every language is created for a particular environment (e.g. Java
for the network).

� Translating existing code is not straightforward, in particular:

– due to the different characteristics of each language, a particular task
may be ill suited to a particular language;

�Talk given at the “II Workshop INFN sul Software e Calcolo moderno”, Perugia: 15-17 June
1998

1

– when viable, translating is difficult, and it easily introduces bugs;

– the users’ and developers’ background have to change radically.
Reusing components allows a parallelism between the introduction
and acquisition of different technologies, the development and mainte-
nance of the whole of the code;

– the source code of the component may not be available.

1.1 Problems of Multiple Language Programming

The integration of components written in different languages cannot refer to any
standard, and generally is not supported. The problems involved in integrating for-
eign routines ([1]) concern at least the following aspects:

� the name of the component is not obvious;

� passing input and output data may be complex;

� any component side-effect potentially causes environment troubles (anyway,
is a good programming practice to avoid side-effects by encapsulation: e.g.
substituting error messages with flags,etc.).

1.2 Types of Multiple Language Programming

Multiple Language Programming could be performed at different levels. The most
common types of MLP are:

� coarse-grained: different executables (each coming from a component writ-
ten in a particular language) work on a intermediate file of data;

� CORBA = Common Object Request Broker Architecture: communica-
tion between components (either on the same or between different platforms)
is performed by the Interface Definition Language (IDL);

� MLX = Multiple Languages Executables: this is the most common form of
MLP, even if, except for C++, few programming languages provide standard
support ([2]). There are different types of MLX:

1. direct MLX: for each foreign routine there is a routine-dependent call in
the main code (this is platform-dependent!);

2. wrapper: it provides a native interface to the foreign routine (but the
use of the foreign routine via the wrapper isn’t always platform-inde-
pendent!). A wrapper scheme is shown in Figure 1.

2

Figure 1: Wrapper scheme.

1.3 Wrappers for FORTRAN and C++

Mixing modules written in C++ with modules written in FORTRAN is not straight-
forward, due to the formal differences between the two languages ([3] and [4]). Such
formal differences depend on the platform too. In particular for HP-UX these dif-
ferences comprise the following points:

� Routine names: when compiling FORTRAN code with the+ppu option, an
underscore is appended to the routine name. So, on HP platform, it is neces-
sary to redefine, in C++ code, all routines called from FORTRAN code. For
example:
#ifndef g1wr
#define g1wr g1wr

� FORTRAN is not case sensitive, while the C++ compiler is. Therefore, all
C++ global names accessed by FORTRAN routines must be lowercase. All
FORTRAN external names are down-shifted by default on HP platform.

� Function arguments: there are two main methods of passing arguments: by
reference or by value. Passing by reference means that the routine passes the
argument address rather than the argument value. It’s imperative to ensure

3

that both caller and called functions use the same method of argument pass-
ing for each individual argument. Furthermore, the calling convention for the
order of arguments must be known. For maximum compatibility and porta-
bility, only simple data types should be passed to routines.

All C++ parameters are passed by value, except arrays and functions, which
are passed as pointers (so they are actually passed by reference). FORTRAN
passes all arguments by reference. So, the simplest way to reconcile these
differences in argument-passing conventions is to use reference variables in
C++ code, declaring all non-array formal arguments to be passed by refer-
ence; array arguments could be declared as arrays - or pointers (C++ converts
a use of an array to a pointer to the array first element).

� Arrays: C++ stores arrays in row wise, whereas FORTRAN stores arrays in
column wise (so matrixes are the transposed one to the other).

� Array indexing: The lower bound for C++ arrays is 0. The default lower
bound for FORTRAN is 1. It’s necessary to shift the array index going from
a language to the other.

� Strings: C++ strings are not the same as FORTRAN strings. In FORTRAN
the strings are not null terminated. Moreover, strings are passed as string de-
scriptors in FORTRAN .

� Boolean type: C++ and FORTRAN do not always share a common definition
of TRUE or FALSE. Sometimes C++ compiler does not have a FORTRAN
LOGICAL type. Instead, C++ uses integers: any nonzero value is used to
represent TRUE and 0 is used to represent FALSE.

� File access: FORTRAN I/O routines require a logical unit number to access
a file, whereas C++ accesses files using subroutines and intrinsic functions,
and requires a stream pointer. A FORTRAN logical unit cannot be passed to a
C++ routine to perform I/O on the associated file. Nor can a C++ file pointer
be used by a FORTRAN routine.

2 Interfacing FLUKA and GEANT4

Keeping in mind that reusing components is a simple and fast way to build new ap-
plications, an interface is being developed to allow the FLUKA MonteCarlo (writ-
ten in FORTRAN) to call the geometry routines of the alpha version of the object-
oriented HEP simulation software GEANT4 (written in C++). This new application

4

uses FLUKA to generate physical events and GEANT4 to handle geometry propa-
gation of particles in the detector geometry. The key features of this operation are
listed below.

� To simulate particles behaviour using all FLUKA physics treatment (like in-
teraction models, charged particles tracking, biasing, etc.).

� To allow the transport code FLUKA to describe complex detector geometry,
and to compute particle steps and particle location in the detector, by means
of GEANT4 routines ([5]). This will allow to exploit a broad-range of facili-
ties available in GEANT4 (like complex geometry handling, exchanging de-
tector geometries with Computer Aided Design - CAD, detector and tracks
visualisation, etc. ; see [6], [7]).

� To have two MonteCarlo simulations (FLUKA and GEANT4) within the
same geometry description (built in GEANT4), in order to the cross - check
simulation results, using completely independent physics packages.

2.1 FLUKA

FLUKA ([8]) is an interaction and tracking MonteCarlo simulation. It’s a fully in-
tegrated code: it’s an homogeneous code, developed as a whole and not an assem-
bly of various programs. It’s a multipurpose code: it can be used in different fields
such as shielding, dosimetry, high energy experimental physics and engineering,
cosmic ray studies, medical physics, etc., allowing analogue and biased transport.
The physics capability include:

� hadron-hadron and hadron-nucleus 0-10 TeV interactions;

� 0-100 TeV � and electro-magnetic interactions;

� charged particles tracking and energy loss by ionization, pair production and
bremsstrahlung;

� multi-group neutrons interactions in the 0-20 MeV range;

2.2 GEANT4

GEANT4 ([9], [10]) is a Object-Oriented Toolkit for HEP simulation, now in its beta
version. The use of Object Oriented design was employed to achieve the required

5

GEANT4

Event

Manageme

UI_GUI

EventGenera
torTrack

Management

G4SteppingManager

G4TrackingManager

Digi

ParticleDefinition

G4DynamicParticle

G4ParticleDefinition

Hit

Geometry

G4Navigator

PhysicsProcess

G4Process

G4ProcessManager

MagneticFieldCAD_Interface Materials

OODBMS
_Interface

Visualisati
on

BaseClass

Track

G4Track

G4Step

G4ParticleChange

Figure 2: GEANT4 class category diagram.

6

level of flexibility and extensibility for the user, and the necessary transparency of
the physics processes in the simulation. The description of detector geometries in
GEANT4 is based on an ISO STEP compliant solid modeller. Logical volumes,
physical volumes, and solids, are used to describe the properties of the geometrical
structures of the detector. The class category diagram shown in Figure 2 is the result
of the problem domain analysis for GEANT4. The physics capability of GEANT4
are not addresses here as they are outside the aim of this project.

G4LogicalVolume

AddDaughter()
GetDaughter()

GetName()
GetNoDaughters()
GetVoxelHeader()
RemoveDaughter()

SetSolid()

G4Navigator

ComputeStep()
GetCurrentLocalCoordinate()
GetCurrentLocalDirection()

GetWorldVolume()
LocateGlobalPointAndSetup()
SetGeometricallyLimitedStep()

SetWorldVolume()

G4GeometryManager

CloseGeometry()
GetInstance()

OpenGeometry()
|| BuildOptimisations()

|| DeleteOptimisations()
{1}

Each physical volume
represents a positioned logical
volume, which in turn
represents a leaf node or
unpositioned subtree in the
geometrical database. In the
case of a subtree, the logical
volume will have from one to
many daughter volumes.

G4VPhysicalVolume

GetCopyNo()
GetLogicalVolume()

GetMother()
GetName()

GetParameterisation()
GetReplicationData()

IsMany()
IsReplicated()

Setup()

AA

ftopPhysical

1

G4VSolid

CalculateExtent()
ComputeDimensions()

DistanceToIn()
DistanceToOut()

G4VSolid()
Inside()

SurfaceNormal()
| ClipBetweenSections()

| ClipCrossSection()

AA

G4PVPlac
ement

single touchable

G4Box

G4Box()
| CalculateRotatedVertices()

G4Tubs

G4Tubs()
| CalculateRotatedVertices()

G4SmartVo
xelHeader

fdaughters

0..n

fsolid
1

fvoxel

0..1

G4LogicalVol
umeStore

G4Rotation
Matrix

G4RotationM
atrixStore

G4SolidStore

1

0..n

frotationMatrices
0..n

fsolids

0..n

fvolumes

0..n

G4ThreeV
ector

flogical
1

1

ftrans

1

Figure 3: GEANT4 geometry classes.

2.3 Geometry Calls

The first step of the project was to find out the feasibility of decoupling physics
and geometry in both FLUKA and GEANT4 packages. To achieve this goal, we
identified and analysed each different FLUKA call to geometry subroutines, and we
found that these are completely disjoin-ed from physical problems. Then we looked

7

for analogous geometry routines in GEANT4 and we discovered that these belong to
G4Navigator class, and they are independent from physics too ([5]). So we decided
to interface the programs at this very low level, wrapping into FLUKA code only
GEANT4 classes dealing with the geometry tracking (these are shown in Figure 3).

The relevant FLUKA geometry calls are few, summarised in the following, to-
gether with their GEANT4 equivalent:

� Tracking call: it is the call for the control routine for combinatorial ge-
ometry named G1FLU, that calculates the distance travelled in the present
zone/region and the number of the next zone/region to be entered by the par-
ticle. The analogous GEANT4 function is ComputeStep. G1FLU returns the
important parameter DSNEAR, its value is less than or equal to the minimum
of the distances between the particle and each boundary. Calculating such a
parameter is very useful, because as long as the subsequent steps are shorter
than DSNEAR, the program does not call the geometry at all, keeping all the
information computed for the previous step. It is very important that Com-
puteStep returns a parameter that performs the same action (safety).

� Look for region number calls: various calls for geometry routines
(LOOK*) which return the index of the region to which the particle be-
longs, according to the current position and direction, in particular situations
(starting new track, error conditions, magnetic field, etc.). GEANT4 func-
tion LocateGlobalPointAndSetup performs similar actions.

� Computing the normal to a boundary call: this is a call for the NORML
routine that returns the unit vector at the previous point of the tracking (in
case a boundary crossing occurred), that is the intersection point between the
path and the preceding boundary. The analogous GEANT4 function is get-
LocalExitNormal.

Obviously the input/output of GEANT4 member functions doesn’t exactly
match FLUKA routine input-outputs. A set of ”wrappers” takes care of the prob-
lem.

2.4 Wrappers

When mixing C++ modules with FORTRAN modules, extern ”C” linkage must be
used to declare any C++ functions that is called from a non-C++ module and to
declare the FORTRAN ones. So the wrappers must be defined like this:

8

extern "C" void g1wr(...);

Wrappers solve the formal differences between languages (arrays are translated,
routine names redefined, etc.), and they adapt inputs and outputs of GEANT4 func-
tions to make them match the FLUKA ones exactly. We could summarise wrapper
functions as follows:

� adaptation of input and output:

– physics units must be the same;

– data types in the different languages must correspond (e.g. we had to
convert double x[3] to G4ThreeVector pos(x,y,z);

– variable form: the output data passed to FLUKA must match the exact
request (e.g. FLUKA requires the number indicating a region, whereas
GEANT4 employs volume pointers...)

� achieve formal compatibility between languages.

2.5 Main Program

In general, when mixing C++ modules with modules in FORTRAN the overall con-
trol of the program must be written in C++. In other words, the main() function must
appear in some C++ module and no other outer block should be present. We wrote
the C++ main, where:

� FLUKA is declared as an external routine with “external linkage”:

extern "C" void flukam(const G4int & GeoFlag);

� instances are made of those classes whose member functions are called from
FLUKA (calling member functions of the class FGeometry - written for this
purpose).

� FLUKA is called as a subroutine.

The executable file is created through a makefile. In this makefile, objects are
created for GEANT4 classes used by FLUKA, and the FLUKA library is included.
All these objects must be linked with the lisamstub library.

CC -lisamstub prog CC.o prog FORTRAN.o

9

Figure 4: Application diagram.

10

Vacuum

Air

Al

Pb

Figure 5: A simple geometry for testing the application.

3 Preliminary Results

3.1 Testing the application

After concluding the first draft of the application (its scheme is shown in Figure 4,
we began testing the program, starting from the simplest cases.

1. Ray, neutrons, muons and electrons tracking in a simple geometry with boxes
of Pb, Al, air (Figure 5).

11

2. Electrons tracking in a more complex geometry: a series of slab of different
elements (Al, Au, Al), which total thickness is of the order of the electron
range. As shown in Figure 6, electrons scatters in all directions. In this case
the problem to face with concerns multiple scattering at boundaries, where a
very good interface between geometry and transport is needed to handle del-
icate situations such as grazing angles, backscattering, deflections at bound-
aries.

Z(cm)

R
(c

m
)

Figure 6: Electron flow in the detector - the “colour” is proportional to electron flux.

12

3. 500 MeV protons on a thick Cu target: the generated neutrons propagate in
a concrete shield. In this case biasing techniques are applied to achieve vari-
ance reduction: particles are randomly splitted (cloned) at region boundaries
according to user defined parameters in order to maintain a constant num-
ber of particles throughout the shield. To ensure the conservation of observ-
able, the weight of splitted particles is reduced. From the geometry side, this
requires continuous relocalization of particles sitting exactly on boundaries.
An example of splitting at boundary is shown in Figure 7. It should be noted
that the variance reduction is available in FLUKA, but not (yet) in the alpha
version of GEANT4. As the figures 8 and 9 show, when simulating with bi-
asing the percentage error on the neutron dose is constant through the shield
depth. Without biasing, the percentage error grows exponentially with the
thickness of the shield.

Figure 7: Particle tracks in concrete shield.

13

Figure 8: Neutron dose versus shield depth.

14

Figure 9: Percentage error on neutron dose.

15

3.2 CPU

We made a first comparison between the CPU time used running both FLUKA and
the new application FLUKA+GEANT4. We tracked 100 primary particles in the
simple geometries described before, and we obtained in the two cases identical
events, i.e. events that start and end with the same random number and which are
step by step equivalent in all quantities. Furthermore, as shown in the table, the av-
erage cpu time for each beam particle (in seconds) is almost the same for both runs
(program initialisation and ending times are not taken into account in the computa-
tion of the time per event)!

FLUKA FLUKA+
GEANT4

“ray”
(boxes)

3:100 � 10
�3

3:100 � 10
�3

n
(boxes)

1:124 � 10
�1

1:053 � 10
�1

�

(boxes)
6:980 � 10

�2
7:100 � 10

�2

e
�

(boxes)
9:360 � 10

�2
7:880 � 10

�2

e
�

(Al-Au-Al)
9:520 � 10

�2
8:710 � 10

�2

n
(concrete)

3:991 � 10
�1

4:497 � 10
�1

4 Future Developments

The activities for the coming months concern:

1. testing the code in more complex and critical cases (e.g. complex geometries
with “replicated” and “parameterised” volumes, tracking in magnetic field,
etc.);

2. visualisingdetector geometry and tracks with GEANT4 visualisationdrivers;

3. installing the GEANT4 geometry debugger (DAVID);

16

4. storing in FLUKA stack history information (the position in geometry hier-
archy) with created secondary particles. Giving the history back to GEANT4
Navigator on starting tracking of secondaries, will avoid recalculating it ev-
ery time.

5. translating GEANT4 exceptions in FLUKA error flags;

6. mingling the material specification from FLUKA and GEANT4 input;

7. allowing the application to use some of the facilities of GEANT4 user inter-
face (e.g. set visualisation parameters, etc.);

8. improving the application, for example by creating a C++ class (a sort of
wrapper manager) with the wrappers as member functions, that instantiates
all the classes needed.

9. adapting the application to run on several platforms.

5 Conclusions

We have shown that the project is feasible, and we built a first version of an ap-
plication including FLUKA physics and the alpha version of GEANT4 geometry,
with wrappers that encapsulate GEANT4 functions for making them callable from
FLUKA physics routines. The first tests with simple geometries, and the compar-
ison of CPU times are really encouraging. The project is therefore continuing in
these months using the beta release of GEANT4 and improving the application as
described in section x4.

6 Acknowledgements

We acknowledge the contribution of Laura Perini who participated in fruitful dis-
cussions and provided encouragement for this work.

References

[1] B.D.Burow, “Mixed Language Programming”, parallel paper CHEP 95

[2] J.J.Barton, and L.R.Nackman, “Scientific and Engineering C++ - an Introduc-
tion with Advanced Techniques and Examples”, Addison-Wesley Publishing
Co., 1995

17

[3] B.Stroustrup, “The C++ Programming Language”, Addison-Wesley Publish-
ing Co., 1997

[4] I.Pohl, “Object-Oriented Programming Using C++”, TheBenjamin/Cummings
Publishing Company, Inc., 1993

[5] P.Kent, “Pure Tracking and Geometry in GEANT4”, April 1995 (unpublished)

[6] J.Apostolakis, “An Overview of GEANT-4’s Geometry”, RD44 collaboration,
IT division, 28 April 1997

[7] P.Kent,S.Giani, “The GEANT4 Geometrical Model”, 23 April 1995

[8] A. Fassò, A. Ferrari, J. Ranft and P.R. Sala, Proceedings of the IV International
Conference on Calorimetry in High Energy Physics, La Biodola (Elba) 1993,
World Scientific, p. 493 (1994) ; A. Fassò, A. Ferrari, J. Ranft and P.R. Sala,
Proceedings of the 3rd workshop on “Simulating Accelerator Radiation En-
vironment”, SARE-3, KEK-Tsukuba, May 7–9 1997, H. Hirayama ed., KEK
report Proceedings 97-5, p. 32 (1997); A. Ferrari, and P.R .Sala, Proceed-
ings of the International Conference on Nuclear Data for Science and Technol-
ogy, NDST-97, International Centre for Theoretical Physics, Miramare-Trieste
1997, SIF Atti e Conferenze, p. 247, Vol. I (1998) , and references therein.

[9] CERN/LHCC/97-40 “GEANT4: an Object-Oriented Toolkit for Simulation in
HEP”, 1997

[10] CERN/LHCC/95-70 “GEANT4: an Object-Oriented Toolkit for Simulation
in HEP”, 18 October 1995

18

