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ABSTRACT

Testing gravity and the concordance model of cosmology, ACDM, at large scales is a key goal of this decade’s largest galaxy
surveys. Here we present a comparative study of dark matter power spectrum predictions from different numerical codes in the
context of three popular theories of gravity that induce scale-independent modifications to the linear growth of structure: nDGP,
Cubic Galileon, and K-mouflage. In particular, we compare the predictions from N-body simulations solving the full scalar
field equation, two N-body codes with approximate time integration schemes, a parametrized modified N-body implementation,
and the analytic halo model reaction approach. We find the modification to the ACDM spectrum is in 2 per cent agreement at
z<1andk < 1hMpc~! over all gravitational models and codes, in accordance with many previous studies, indicating these
modelling approaches are robust enough to be used in forthcoming survey analyses under appropriate scale cuts. We further
make public the new code implementations presented, specifically the halo model reaction K-mouflage implementation and the

relativistic Cubic Galileon implementation.

Key words: methods: numerical — cosmology: large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

Observations of cosmological large-scale structure (LSS) offer a
unique laboratory in which to test the concordance cosmological
model, ACDM, which assumes General Relativity (GR). Such exper-
iments are highly motivated. Indeed, the nature of the cold dark matter
(CDM) and the constant dark energy (A) components, constituting
95 per cent of the Universe’s total energy density (see for example
Riess et al. 1998; Perlmutter et al. 1999; Aghanim et al. 2020;
Alam et al. 2021), remains elusive. Moreover, ACDM’s inability
to reconcile principles of GR with quantum mechanics points to the
need for a more unified theory (see Bernardo et al. 2022, for a recent
review on gravitational approaches to the cosmological constant
problem). These gaps in our understanding motivate the investigation
into alternative theories beyond ACDM. By exploring these new
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frontiers, we hope to uncover a more comprehensive picture of
the Universe, potentially leading to groundbreaking insights into
its origin, evolution, and ultimate fate.

This decade will provide an immense opportunity for such insights
through the efforts of some of the biggest scientific collaborations to
date. These include the European Space Agency’s Euclid mission
(Barroso et al. 2024), the Vera Rubin Observatory (LSST Dark
Energy Science Collaboration 2012, ; Ivezié et al. 2019) (LSST),!
the Dark Energy Survey (Albrecht et al. 2006; Abbott et al. 2016),
the Nancy Grace Roman Space Telescope (Akeson et al. 2019), and
the Dark Energy Spectroscopic Instrument (Levi et al. 2019,). For
instance, Euclid and LSST will be measuring up to order 1 billion
galaxy shapes (Ivezi¢ et al. 2019; Barroso et al. 2024), 2 orders of
magnitude more than previous surveys (see for example Hildebrandt
et al. 2017). This means the statistical precision of its resulting weak

!'Vera Rubin was formerly known as the Large Synoptic Survey Telescope.
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lensing measurements, such as cosmic shear, will be roughly the
same order of magnitude better than previous observations, providing
a potentially brilliant probe for new physics.

Consistency tests of ACDM are a primary goal, but these missions
are also charged with investigating if there is any statistical preference
for new physics. Such beyond-consistency tests require theoretical
modelling of any new physics we wish to test. In particular, a key task
is to theoretically model key statistical cosmological quantities over a
very wide range of physical scales. The 2-point correlation function,
or its Fourier analogue, the power spectrum, of the cosmological
matter distribution is one such summary statistic. At small physical
scales, where we have many more galaxy pairs, the measured
statistics will be far more precise, potentially providing a heightened
signal of any new physics. It is thus imperative to model these scales
accurately. It should be kept in mind that this work only considers the
matter power spectrum, which is a key ingredient for cosmic shear
weak lensing analyses.

The small scale precision measurements of forthcoming surveys
has forced ambitious accuracy demands on such theoretical pre-
dictions (for example O(1 per cent) accuracy on the matter power
spectrum; Hearin, Zentner & Ma 2012; Ivezic et al. 2019; Martinelli
et al. 2021). These accuracy demands are tied to the imposition of
scale cuts, which limit the non-linear data that can be used in analyses.
Most Euclid forecasts (Blanchard et al. 2020; Bonici et al. 2023;
Casas et al. 2023; Frusciante et al. 2024) consider a ‘pessimistic’
and ‘optimistic’ scale cut in harmonic space, corresponding to a
maximum angular multipole of £ = 1500 and ¢ = 5000, with the
precise value of these cuts in Fourier mode, or k-space, varying
with redshift. In contrast, LSST applies scale cuts in real space. In
practice such cuts should be inferred by performing extensive mock
parameter inference analyses and quantifying the bias accrued by
using increasingly non-linear data. In this way, accuracy demands in
k-space say, serve as a rough guide to ensure the safe usage of the
data up to a given scale in forthcoming analyses.

For these reasons, the community has sought to accurately model
these small, non-linear scales in the matter power spectrum, for
beyond-ACDM scenarios. To this end, many methods have been de-
veloped to provide such predictions. N-body simulations provide our
most accurate predictions, and have been extended to many models
beyond-ACDM (see for example Li et al. 2012; Puchwein, Baldi &
Springel 2013; Li, Zhao & Koyama 2013a; Li et al. 2013b; Llinares,
Mota & Winther 2014; Hassani et al. 2019, 2020; Hernandez-
Aguayo et al. 2022; Ruan et al. 2022; Christiansen et al. 2023).
This accuracy comes at a large computational cost, making this
method inappropriate for expensive data-theory comparisons where
we wish to sample a large cosmological and gravitational parameter
space. One can alleviate this cost to some extent through approximate
methods. For example, Comoving Lagrangian Acceleration (COLA)
(Tassev, Zaldarriaga & Eisenstein 2013; Howlett, Manera & Percival
2015) is an N-body method that provides a balance between accuracy
and speed by reducing the time-steps in particle evolution through
the perturbative modelling of large-scale physics. This method has
also been extended to many alternatives to ACDM (Winther et al.
2017; Brando, Koyama & Winther 2023; Wright et al. 2023).

While being faster, COLA methods are still too slow to use directly
in data analyses. Despite the computational cost, simulation methods
are essential in bench-marking or constructing faster predictive
pipelines, such as emulators (Ramachandra et al. 2021; Arnold et al.
2022; Harnois-Déraps et al. 2023; Fiorini, Koyama & Baker 2023;
Nouri-Zonoz, Hassani and Kunz 2024) or analytic models (Zhao
2014; Mead et al. 2016). The halo model reaction (Cataneo et al.
2019) is one such analytic method, which can provide a high accuracy
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at a fraction of the time cost and is theoretically general, allowing its
extension to many models of cosmology.

This paper is dedicated to assessing the consistency of these
different methods for a few representative beyond-ACDM models
of cosmological relevance. The models we consider are the DGP
braneworld model (Dvali, Gabadadze & Porrati 2000), the Cubic
Galileon model (Nicolis, Rattazzi & Trincherini 2009), and the K-
mouflage model (Babichev, Deffayet & Ziour 2009). This work
runs in a similar vein to the code comparison projects of Ref.
Winther et al. (2015), updating the exercise, nearly a decade later,
to account for improvements in the codes and methods, as well as
approximations and new theoretical models and phenomenology.”
Such an assessment is vital in modelling the theoretical uncertainty
or delimiting the scales of validity of the method under consideration,
which will play an important role in forthcoming surveys (Audren
et al. 2013; Baldauf et al. 2016). We also present an extension of
the halo model reaction code, react, which includes the specific
K-mouflage model of gravity considered in this paper.

We outline the paper as follows: In Section 2 we briefly introduce
the different beyond-ACDM models we consider. In Section 3
we outline the different methods we will compare, highlighting
the key differences between them and the various approximations
they employ. In Section 4 we present matter power spectrum boost
comparisons of the different methods. We present our conclusions in
Section 5.

1.1 Notation and conventions
In this work we will use the following definitions and conventions:

(i) We use a metric signature of (—, +, +, +).

(i) We work in units where c = h = 1.

(iii) Jordan frame quantities appear with a hat, e.g. §.

(iv) The Planck mass is denoted as My = (87 Gn)~', where Gy
is Newton’s constant.

(v) Overdots denote derivatives with respect to cosmic time ¢.

(vi) Primes denote derivatives with respect to the natural logarithm
of the scale factor, In a, unless otherwise stated.

(vii) Quantities with a ‘0’ subscript denote their value at z = 0.

(viii) The canonical scalar field kinetic energy is X = —(3¢)?/2.

2 GRAVITY BEYOND GENERAL RELATIVITY

The simplest, viable class of alternatives to ACDM can be found by
adding a single extra scalar degree of freedom, ¢, to GR. Under some
basic constraints, such as second-order equations of motion (a generic
condition to avoid unbounded negative energies) and four space—time
dimensions, the well-studied Horndeski Lagrangian encompasses
all possible scalar—tensor theories with minimally coupled matter
(Horndeski 1974; Deffayet et al. 2011; Kobayashi 2019). If we accept
the speed of light to be the same as gravitational wave propagation, in
accordance with the observation of gamma-ray burst GRB 170817A
(Goldstein et al. 2017) and merger signal of GW 170817 (Abbott et al.
2017), the Horndeski Lagrangian reduces to,” (Lombriser & Taylor

2For a similar recent exercise see Ref. Adamek et al. (2024).

3This condition may not hold below the frequency band of terrestrial
gravitational wave detectors (de Rham & Melville 2018; de Rham, Melville &
Noller 2021; Baker et al. 2022; Harry & Noller 2022; Baker et al. 2023).
Further, it should be noted that equation (1) is not the most general action
describing theories that do not violate the results of GW170817. Some Gauss—
Bonet theories are excluded, for example; see Ref. Clifton et al. (2020).
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2016; Baker et al. 2017; Creminelli & Vernizzi 2017; Ezquiaga &
Zumalacdrregui 2017; Lombriser & Lima 2017; Sakstein & Jain
2017; Battye, Pace & Trinh 2018; Creminelli et al. 2018; Rham &
Melville 2018; Quartin et al. 2023)

Ly = G4(9) R + G2(9, X) — G3(¢, X)O¢, )

where R is the Ricci curvature scalar, O is the D’ Alembert operator,
and each G;(¢, X), i =2, 3,4 is a free function of the scalar field
¢ and its canonical kinetic term X. Note that the G4 operator is a
function of ¢ only.

Besides modifying the expansion history of the Universe, modified
gravity theories also leave an impact on the growth of structure (see
Hou et al. 2023, for a review). This is generally understood by con-
sidering linear perturbations on top of a homogeneous and isotropic
Friedmann-Lemaitre—Robertson—Walker background given by the
following line element

ds* = — (1 +2W)dt? + a*(t) (1 — 2®) §;;dx"dx, 2)

where @ is the usual Poisson potential in Newtonian gravity that
captures perturbations in the spatial sector of the metric, while W is a
gravitational potential corresponding to perturbations in the time-like
sector of the line element.

The linear evolution of perturbations of modified gravity theo-
ries given by equation (1) has been thoroughly studied by many
different works in the literature (see for example Hu et al. 2014;
Zumalacarregui et al. 2017; Frusciante & Perenon 2020). Within
the quasi-static approximation (Sawicki & Bellini 2015; Winther &
Ferreira 2015b; Pace et al. 2021), the effects of modified gravity on
the linear growth of structure in the Universe are encoded in a time-
and scale-dependent effective gravitational constant
Gurs k. @) = Gy |1 4 2Zt b D] 3

Gy
where k is the Fourier mode. In this work, we only consider theories
where the linear modification is scale-independent and so we drop
the dependence on k for Geg 1, where L refers to a linear theory
prediction. The Poisson equation at large scales is then written in
Fourier space as

K@k, a) = 47 Gegr L(@)a” pn(a@)Sm(k, a), )

where py, is the background matter density, and &, is the correspond-
ing linear matter perturbation.

Another requirement for this class of theories is the inclusion
of a theoretical mechanism that prevents large modifications in
environments where GR-like physics has been well confirmed by
experiment (see Will 2014; Belgacem et al. 2019, for example).
Such mechanisms are known as screening mechanisms (see Brax
et al. 2021, for a recent review and experimental tests). The screened
environments are small scale, dense environments. This means that
the modification to Newton’s constant, more generally written as

AG(k, a)
Gy ’

requires the condition that limy_, o, Gegr(k, a) = Gn. In this case
G.ir(k, a) is the effective gravitational constant valid at all scales —
both linear and non-linear — and it necessarily depends on scale
as well as time. In this work we will meet two such screening
mechanisms which satisty this condition: the Vainshtein mechanism
and K-mouflage screening.

Returning to equation (1), we will consider three choices for the
Lagrangian functions, each having very particular phenomenological
features, including different screening mechanisms and cosmological

Geir(k,a) = Gn {1 + (&)
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backgrounds. Where a choice exists, we will give their Lagrangians
in the Einstein frame where G4(¢p) = le] /2, with metric g, . In this
frame the ‘pure gravity’ part of the action resembles the Einstein—
Hilbert action for GR, simplifying some computations. However, this
frame choice also results in non-minimal coupling of matter to the
metric, ensuring the theory behaves very differently to GR.

The Einstein frame is obtained by performing a conformal trans-
formation of the Jordan frame. The Jordan frame prioritizes use
of a metric, g,,, which couples minimally to the matter fields but
contains the non-trivial G4 function, departing from the the Einstein—
Hilbert action. The Jordan-frame metric is related to the Einstein-
frame metric, g, via a conformal factor A that is a function of the
Horndeski scalar:

&u = AXP)g - (©6)

In what follows, specifically in the case of K-mouflage theories,
we will see that some quantities differ between the Jordan and
Einstein frame. Though these quantities may be ‘physical’ in nature,
they are not directly observable. General coordinate invariance —
a key property shared with GR by nearly all modified gravity
theories — ensures that observable quantities must be independent
of frame choices (see for example Catena, Pietroni & Scarabello
2007; Chiba & Yamaguchi 2013; Francfort, Ghosh & Durrer 2019).
‘We summarize the models considered in this paper, their associated
additional parameters, and some selected constraints in Table 1.

2.1 nDGP

The first model we consider is the Dvali-Gabadadze—Porrati model
(Dvali et al. 2000), which does not strictly fall into the Horndeski
class, being a 5D braneworld model. It is given by the following
action

1
" 167Gs

)

MZ
/ dsxa/—yRs +/ d4x./—g —le—l—llm
M oM 2

@)

where y is the 5D metric and Rjs its Ricci curvature scalar. Gs is the
5D gravitational constant. The matter Lagrangian is restricted to a
4D brane in a 5D Minkowski space—time. The induced gravity given
by the 4D Einstein—Hilbert action is responsible for the recovery of
4D gravity on the brane. The parameter r. = Gs5/(2Gy) is called the
cross-over scale and is the only free parameter of the model, with its
GR limit being r. — o0.

DGP also exhibits screening coming from higher order derivative
terms in the effective 4D action. Such screening is known as
Vainshtein screening (Vainshtein 1972; Babichev & Deffayet 2013).
The so-called decoupling limit of DGP has the effective action given
by (Luty, Porrati & Rattazzi 2003; Gabadadze & Iglesias 2006; Jain &
Khoury 2010)

c —M§1R+ 36— (9 ) 0p + —¢T ®)
DGP = Ao > M§1 )
where T is the trace of the energy momentum tensor and Adgp =
lel /r2. Note that although equation (7) is not a Horndeski La-
grangian, equation (8) is (compare to equation 1). In this case we
have

2
G3(¢,X)=3¢+A37X, C)]
DGP

with G2(¢, X) = 0 and Ga4(¢) = M2/2.
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Table 1. Overview of gravity models considered in this work. Note the K-mouflage kinetic term in equation (14) does not pass Solar System
tests without running into fine-tuning issues (Barreira et al. 2015b). Note the CG has no free parameters with the tracker solution. We have
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included constraints for the more general GCCG (see Section 2.2).

Model Screening method  Free parameters Selected data constraints

nDGP Vainshtein {Qc} Qe < 0.235(20) (LSS) (Barreira, Sanchez & Schmidt 2016)

CG Vainshtein {s =2, =05} 5=0.05"00% g > 0.8(20) (Various LSS, GCCG) (Frusciante et al. 2020)
K-mouflage K-mouflage {n, Bk, Ko, A} Pk < 0.1 (Lunar laser ranging) (Barreira et al. 2015b)

The literature typically assumes a ACDM background expansion
for this model, which is accommodated by introducing an appropriate
dark energy contribution (see for example Schmidt 2009b; Bag,
Mishra & Sahni 2018) on the stable ‘normal’ branch solution of
the Friedmann equations. We follow this here (see Lue 2006, for
more details) and refer to this normal branch as nDGP. We also
parametrize the modification to gravity using the energy density
fraction Q. =1 /(4r02H02), where H, is the Hubble constant. The
GR-limit is then 2, — 0.

Although nDGP is now quite strongly constrained by observations
(see for example Lombriser et al. 2009; Barreira et al. 2016;
Piga et al. 2023), its appeal as a modified gravity model stems
from the simplicity of its 4D effective action relative to the new
phenomenology it introduces. It is one of the simplest examples of
a gravity model that produces Vainshtein screening effects, whilst
maintaining scale-independent growth of matter perturbations, and
having only one additional parameter relative to ACDM. This has
made it a favourite testbed for simulations (Khoury & Wyman 2009;
Schmidt 2009a; Li et al. 2013a; Winther et al. 2017) and analyses
with galaxy surveys (Barreira et al. 2016; Piga et al. 2023; Frusciante
etal. 2024). We refer the reader to Refs. Koyama & Maartens (2006);
Liet al. (2013a), and Section B for details on the modification to the
Poisson equation (equation 4) in linear and non-linear regimes.

2.2 Cubic Galileon

The Cubic Galileon (CG) model was first derived by Nicolis et al.
(2009) as a generalization of the effective DGP action in 4D. The
Lagrangian is given by (see for example Deffayet, Esposito-Farese &
Vikman 2009; Kobayashi, Yamaguchi & Yokoyama 2010)

Mg, 1
CCG:R7+62X+73C3XD¢, 10)
2 A3
where ¢, and c¢3 are dimension-less constants parametrizing the
modification to gravity, and the canonical choice for Aj being
A3 = My HE, made to give the scalar field non-trivial dynamics
on cosmological scales. Comparing with equation (1) we have
G, X) =X,

Gs(¢, X) = — X. an)

My Ho2 “
This model also exhibits the Vainshtein mechanism due to the
presence of the higher order derivative terms (see Barreira et al.
2013a, for a derivation in the case of spherical symmetry). In this
model, G4(¢) = A(¢)~2/2 =1, and hence there is no difference
between Jordan and Einstein frames (see equation 6). We note that
the absence of G4 and conformal coupling allows one to interpret
this model as a dark energy model with a non-trivial kinetic term.
The Cubic Galileon model is one member of a broader family,
the Galileons, which add further derivative terms to equation (10)
(Deffayet et al. 2009). The Galileon family received intense interest
from the theoretical physics community due to their shift symmetry

properties (the actions are invariant under a shift ¢(x) — ¢(x) +
¢+ b,x", c and b, constants); this leads to special properties of the
S-matrix. Cosmologically, their impact has been studied on the CMB
(for example Barreira et al. 2014; Peirone et al. 2019; Frusciante et al.
2020; Albuquerque, Frusciante & Martinelli 2022), linear matter
power spectrum (for example Barreira et al. 2012) and gravitational
lensing by voids (for example Baker et al. 2018). See also Refs. Renk
et al. (2017), Peirone et al. (2018), and Frusciante & Pace (2020) for
other observational implications.

The more complex Galileon siblings have been virtually elim-
inated by their inability to have gravitational waves propagate at
the speed of light, leaving behind only the CG (see for example
Baker et al. 2017; Ezquiaga & Zumalacarregui 2017). The CG model
can be constrained by considering the integrated Sachs—Wolfe effect
cross-correlated with a galaxy sample, as was done in Refs. Renk
etal. (2017) and Kable et al. (2022). The resulting cross-correlation,
however, is shown to be anticorrelated with the expected ACDM
signal, which severely constrains this model. It is worth noting,
nevertheless, that a broader class of cubic Horndeski theories does
not show this anticorrelation (Brando et al. 2019).

Similarly to nDGP, it remains a useful testbed displaying Vain-
shtein screening, with a larger degree of flexibility due to its addi-
tional parameters and energy scales. We also note that the non-zero
G, term makes this model phenomenologically distinct from nDGP.
Further, in this paper we do not assume a ACDM background as
with nDGP, but rather the solution to the Friedmann equations which
include the effects of the scalar field (see for example Barreira et al.
2013a). A cosmology with this background evolution but with no
further gravitational modification (so the Poisson equation remains
as in GR), will be referred to as QCDM as in Ref. Barreira et al.
(2013a).

The more general Generalized Covariant Cubic Galileon (GCCG)
was recently considered in Ref. Frusciante et al. (2020), which
promotes the G; functions to be power-law functions of X, i.e.
G; o X?i. This model permits a tracker solution at the background
level which is given by (De Felice & Tsujikawa 2012)

HA 1y = g2t (12)

where g = (p3 — p2) +1/2 and ¢ = ¢'/M. We also have the
parameter s = p,/q, leaving only two additional degrees of freedom
for this model over ACDM. The GCCG reverts to the CG model
when g = 0.5 and s = 2.

The GCCG model has not been ruled out by data, with CMB
experiments giving the 20 bounds of ¢ > 0 and s = O.6J_r(l):g, with
a slight preference for the model over ACDM (Frusciante et al.
2020). When combined with SN1a and redshift space distortion data
sets, the bounds improve to ¢ > 0.8 and s = 0.0ng:gg. We note that
theoretical stability conditions require both parameters to be positive.

In this paper we will only consider the CG limit of GCCG. We
note that we employ the GCCG patch to the react code (Atayde
et al. 2024) for those specific predictions. For details on how the

MNRAS 536, 664683 (2025)

G20Z UdJBIN 20 U0 158NB AQ 6GEE06./799/1/9€SG/3I01HE/SEIUW/WOD dNO"DILUSPEDE//:SARY WO} POPEOJUMOC]



668  B. Bose et al.

Poisson equation is modified in the CG limit, we refer the reader to
Refs. Barreira et al. (2013a) and Atayde et al. (2024).

2.3 K-mouflage

2.3.1 Lagrangian

The last model we consider is the K-mouflage model (Babichev et al.
2009). This model has the Lagrangian (in the Einstein frame)

MZ
Lx = RTPI + MK (X), (13)

where K (X) is a function of the canonical kinetic term, equivalent to
arestricted G»(¢), X), and M* is an energy scale of the theory.* We
will set M* = A% Hj M as in Ref. Herndndez-Aguayo et al. (2022),
A being an order 1 dimension-less constant which can be tuned to
give the current accelerated expansion of the Universe today. In
this work we will consider a form which has been well studied in
the literature (Brax & Valageas 2014a, b; Barreira et al. 2015a, b;
Hernandez-Aguayo et al. 2022)
1

X + K, X", (14)

KX)=-1+
( ) OHOZn)\angln

H(,2A2M§1

where K is another dimension-less model parameter and n > 2 is
an integer. For the conformal function, we assume an exponential
form

Bk¢
A(¢) = exp ( Mp1> , 15)
where Bk is another dimension-less model parameter. In total we
then have four parameters for this particular model: {A, Ko, n, Sx}.

Unlike the other two models considered, the Jordan and Einstein
frames are not set to be identical (A(¢) # 1) which distinguishes
this model from k-essence theories (Armendariz-Picon, Damour &
Mukhanov 1999) where a universal coupling to matter is not present.
In this work we will develop predictions for both frames. We provide
the transformations of key quantities in the next subsection.

This model exhibits a similar screening mechanism to Vainshtein
screening, although quantitatively different due to the absence of the
higher order G3(¢, X)O¢ term, giving it a unique phenomenology. In
particular, in dense environments of mass m, the K-mouflage radius
— the scale below which GR is recovered — goes as m'/?, whereas
in Vainshtein theories this screening occurs at smaller scales, with
a dependence of the Vainshtein radius on the environmental mass
being m'/3 (Brax & Valageas 2014a). Vainshtein is also capable of
screening large cosmological structures, while K-mouflage is not
(Brax, Rizzo & Valageas 2015).

K-mouflage has been confronted with a number of cosmological
data sets in Refs. Barreira et al. (2015b) and Benevento et al. (2019),
with a review of current constraints given in Ref. Brax et al. (2021)
and forecasts using spectroscopic and photometric primary probes
by Euclid given in Ref. Frusciante et al. (2024). In particular, in Ref.
Barreira et al. (2015b), the authors place a Solar System constraint
on the coupling parameter fx < 0.1, and argue that the power-law
form for K(X) as chosen here will necessarily require a degree
of fine tuning to avoid constraints. Despite this, this model is a
good test case for implementation as it has been well studied in the
literature and there are available N-body simulations with which

4Not to be confused with the manifold M in equation (7).
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to compare to (Herndndez-Aguayo et al. 2022). More viable non-
canonical kinetic terms can easily be implemented following the
current implementations.

We alert the reader that we have made public a Mathematica
notebook with some key Einstein frame quantities and derivations
for the model along with this work. This contains useful expressions
such as the exact solutions for the Einstein frame background H (a)
inthe n = 2 and n = 3 cases.

2.3.2 Transformation to Jordan frame

In this section we provide some basic translations between Einstein
and Jordan frames which will be useful for our comparisons of the
K-mouflage model. We follow Ref. Francfort et al. (2019) for these
expressions. We use subscripts ‘J° and ‘E’ to denote Jordan and
Einstein frame quantities, respectively.

The scale factor transforms as

ay = AHEV (16)

where A is the conformal factor evaluated at the background level
(see equation 15). The Hubble rate transforms as
Hg Bk d¢
J(a) A |: M, pl dln ag

an

The matter power spectrum transforms as (Francfort et al. 2019)

Q) splkr + k2) Py(ki) = (8(k1)8y(k2))
= (g(k1)3p(k2))

A
_ 474’(35(k1)8¢(k2))

Ad’
— 4528 kbe(k)

A 2
416 (f) (8p)Sp(k>)) (18)

where and we used &5 = §g — 489 A,/ A, with Ay = dA(¢)/de, §
is shorthand for the matter density field perturbation &, §¢ is the
scalar field perturbation, ¢ = @ + 8¢, and k is the comoving Fourier
mode in 4 Mpc™'. Angular brackets denote an ensemble average. The
linear order Klein—Gordon equation for the scalar field perturbation
in Fourier space under the quasi-static approximation is (Brax &
Valageas 2014b)

AﬂKaz

S (k), 19)

where Ky = d K(X)/dX. Substituting ¢ into equation (18) gives
us the following relationship between linear matter power spectra
predictions

PLy(k) = PLg(k) [1 +2T(k, a) + Tk, a)*] (20)

where

1244k Hi My Qm 0

T, @)= i, @1

where we have used the relation py, = 3H; MéQm.oa*. We see that
the linear matter power spectra in both frames are identical up to
corrections that are suppressed by powers of ~ HZ/k>.

It was argued in Ref. Francfort et al. (2019) that this correction
to the matter power spectrum at non-linear scales continues to go
as ~ H*/k*, and so becomes negligible on all sub-horizon scales.
This argument hinged on a number of assumptions, including A, ~
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—A(¢)/(2¢). We will show in Section 4 that the corrections are
indeed small at non-linear scales for the K-mouflage model, using
the conformal factor given in equation (15).

3 TOOLS AND METHODS

In this section we give an overview of the methods developed to
give predictions for the large-scale structure in all modified gravity
scenarios considered. After explaining details of how we compute
matter power spectra, we describe the methods we will compare in
this work. Most of these are N-body simulation-based approaches
with various degrees of approximation. The halo model reaction
(Cataneo et al. 2019) is also considered, which is an analytic method
based on the halo model and perturbation theory. Table 2 gives an
overview of these methods.

3.1 P(k) estimation

N-body simulations track the time-evolution of the matter distri-
bution in the simulation box (of side Lp,x) by means of a number
of N-body particles (Np). To estimate the matter power spectrum
from these sort of discrete distributions it is necessary to deal with
some subtleties. The number of particles used in N-body simulations
is often large (i.e. 108 — 10'?) so that it would be computationally
impractical to estimate the matter power spectrum by computing
the distances between each pair of particles. Hence, the particles
are normally interpolated on a regular grid using mass assignment
schemes (MAS). Then the matter power spectrum is estimated
exploiting the Fast Fourier Transform (FFT) algorithm. However,
the modes close to the Nyquist frequency of the FFT grid can be
significantly affected by aliasing (Jing 2005; Sefusatti et al. 2016).
To avoid this problem we use the interlacing technique with the
triangular-shaped-cloud MAS (Sefusatti et al. 2016) to compute the
matter power spectra from the simulations. Aiming to compare our
matter power spectra deep in the non-linear regime but mindful of
the limited mass-resolution of our simulations, we use an FFT grid
0f $iz€ Npesh,ip = Lpox/(dx) where dx is the domain grid resolution
of the simulation, and use a simple linear binning with kp;, = k¢/2
and Ak = k¢, where k; = % is the fundamental frequency of the
box.

3.2 Full-field solvers

Our reference predictions will come from numerical simulations
that solve the non-linear Klein—-Gordon equation, with multigrid
relaxation, to get the precise modified force law. They also employ
a large number of time-steps over which the particles are evolved,
ensuring the accuracy of the resulting predictions. We consider two
variants of these codes.

3.2.1 ECOSMOG

The ecosmog simulation code (Li et al. 2012; Li et al. 2013a) is a
modified gravity extension of the adaptive mesh refinement (AMR)
code RAMSES (Teyssier 2002). This code was used to simulate several
gravity models in the literature:

(i) f(R) (Li et al. 2012);

(ii) nDGP (Li et al. 2013a);

(iii) symmetron (Davis et al. 2012; Brax et al. 2013);
(iv) dilaton (Brax et al. 2011);
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(v) galileon (cubic, quartic, cubic vector) (Barreira et al. 2013a,
b; Becker et al. 2020).

The accuracy of this code for predictions of f(R) (Hu & Sawicki
2007) effects on the matter power spectrum has been estimated to be
of ~ 1 per cent up to k ~ 7hMpc~! in the code comparison paper
Ref. Winther et al. (2015). This code constitutes the highest precision
predictive tool to be considered in this work.

3.2.2 MG-GLAM

mg-glam (Hernidndez-Aguayo et al. 2022; Ruan et al. 2022)
extends the particle mesh (PM) code glam (Klypin & Prada
2018) to a general class of modified gravity theories (including
the K-mouflage model) by adding extra modules for solving the
Klein—Gordon equations, using the multigrid relaxation algorithm.
It uses a regularly spaced 3D mesh covering the cubic simulation
box, solves the Poisson equation for the Newtonian potential
using the Fast Fourier Transform (FFT) algorithm, and adopts
the Cloud-In-Cell (CIC) scheme to implement the matter density
assignment and force interpolation.

mg-glam has been tested with the results from other high-
precision modified gravity codes, such as ecosmog (Li et al.
2012, 2013a), mg-gadget (Puchwein et al. 2013), and mg-
arepo (Arnold, Leo & Li 2019; Hernandez-Aguayo et al. 2021).
For example, using 1024 particles in a box of size 512Mpch~!,
mg-glam simulations can accurately predict the matter power
boost, Pyc/Pacom at k S 3h Mpc_l, with about 1 per cent of the
computational costs of the high-fidelity code ecosmog. Being the
only code that has been used in the literature to simulate K-mouflage
cosmologies, an estimate of its accuracy for the K-mouflage boost
factor is not available. However it has been compared to the tree-
PM code mg-arepo for another derivative coupling model (nDGP)
where it showed an agreement of ~ 2 per centup to k = 3 h Mpc™!,
with deviations of ~ 1 percent from mg-arepo (and theory
predictions) already present on linear scales.

3.3 Mg-evolution

We further consider the relativistic N-body code, mg-evolution
(github; Hassani & Lombriser 2020). This code is based on gevo-
lution (Adamek et al. 2016b), and integrates parametrized mod-
ifications of gravity. The parametrization framework includes both
linear and deeply non-linear scales, with the non-linear parametriza-
tion being based on modified spherical collapse computations and a
parametrized post-Friedmannian expression.

mg-evolution has been tested for a number of well-studied
modified gravity models encompassing f(R) and nDGP gravity that
include large-field value and derivative screening effects (Hassani &
Lombriser 2020). Unlike most modified gravity N-body implemen-
tations, mg-evolution is as fast as the ACDM simulations as it
does not need to deal with solving computationally expensive scalar
field equations.

In Section B we discuss the nDGP and CG implementations
in mg-evolution through a parametrization with one screening
transition, k., which is treated as a free parameter (see Section B).
The effective gravitational constant is expressed as

AGer(k.a) _ AGerL(@) Aok, @)
Gy Gy G '

(22)

where we recall equation  (5): Gegr(k,a) = GN[1 +
AGes(k, a)/Gn], Gegr, L denoting the linear regime parametrization
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Table 2. Overview of the numerical codes employed in this comparison (for more information on screening approximations see the main text).

Code Type Screening approximation

Reference(s)

ecosmog N-body (AMR) Full K-G solution

mg-glam N-body (uniform PM) Full K-G solution

mg-evolution  N-body (uniform PM) PPF with free parameter k.

hi-cola N-body (PM in the 2LPT frame) Screening factor

cola-fml N-body (PM in the 2LPT frame) Linear K-G equation in Fourier space
react Halo model and perturbation theory  Spherical collapse

Lietal. (2012)

Herndndez-Aguayo et al. (2022)

Adamek et al. (2016a, b); Hassani & Lombriser (2020)

Wright et al. (2023), Gupta, Fiorini & Baker (2024)
Scoccimarro (2009); Winther et al. (2017); Brando et al. (2023)
Bose et al. (2023); Atayde et al. (2024)

Note: PPF: parametrized post-Friedmannian; PM: particle mesh; AMR: adaptive mesh refinement; 2LPT: 2nd order Lagrangian perturbation theory; K-G:

Klein—-Gordon.

and G, N refers to the parametrization of the non-linear regime that
includes the screening or other suppression effects. The expressions
for G, N1 are given in Section B. mg-evolution solves the
modified Poisson equation (equation 4) based on G obtained
from equation (22). It is worth noting that this parametrization of
gravitational modification is done in Fourier space. As detailed
in Ref. Hassani & Lombriser (2020), this transformation yields
an effective screening wavenumber k,, which can be modelled
(Lombriser 2016) for different screening types. Currently, as
mentioned, we treat k, as a free parameter to be set by the user. In
this work we tune the values of k, in order to optimize the agreement
with the reference predictions in each model and at each redshift
considered. The resulting values of k. are presented in Section 4.

3.4 COmoving Lagrangian acceleration

The COmoving Lagrangian acceleration (COLA) method (Tassev
et al. 2013) is a hybrid N-body approach to performing dark matter
simulations to study the effects of gravity on the formation of large-
scale structure. It leverages the fact that the growth of structure
on large scales can be computed analytically through Lagrangian
perturbation theory (LPT). This informs the small-scale N-body part
of COLA codes, thereby allowing for a significant speedup in the
production of results at the cost of a modest loss of accuracy at small
scales. In short, the COLA approach is a method well-suited for
producing large-scale structure results on mildly non-linear scales
much faster than traditional N-body codes.

Since Tassev et al. (2013), implementations of COLA codes for
modified gravity theories have followed for specific theories, such
as f(R) and nDGP (Valogiannis & Bean 2017; Winther et al. 2017).
Below we describe two branches of work that extend the COLA
method to more general families of gravity models.

3.4.1 Hi-cola

Horndeski-in-COLA (hi-cola) (github; Wright et al. 2023) is
an implementation of the COLA methodology for a subset of the
Horndeski class (see equation 1). hi-cola aims not to carry hard-
coded theory-specific implementations, but instead receives as input
the Lagrangian functions for a given theory of interest, making it
generic. The action of the new scalar degree of freedom, ¢, is included
as a fifth force in the COLA simulation.

After receiving inputs for the forms of the Horndeski functions,
G,, G3, and G4, the symbolic manipulation modules of hi-
cola construct the appropriate background equations of motion
and background-dependent fifth force expressions and solves them.
These are used to handle the expansion of the simulation box,
compute second-order LPT factors (2LPT) and construct the total
force experienced by dark matter particles. This force can be
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schematically written as

Fiota = GeffFNy (23)
where
Gay
Gegr = ?{1 + Buc(2)Suc (2, 8m) }- (24)
N

Fyx is the regular Newtonian force which is present in GR, and the
multiplicative factor in braces represents the extra force contributions
from ¢. Gga is the effective gravitational constant, which can differ
from Gy in a time-dependent manner if G4 in equation (1) is non-
trivial. This term will play a role in the results of Section 4.2.3.

Buc is a background-dependent function known as the coupling
factor; it controls the total possible strength of the fifth force at
a given point in time. Syc is a background and density-dependent
function called the screening factor. On linear scales Syc — 1, whilst
in screened regimes Syc — 0. Hence this factor is responsible for
the suppression of the fifth force in on small scales, returning the
theory’s behaviour to GR.

Suc 1s derived under a quasi-linear perturbative treatment, where
the metric perturbations are considered to first order, whilst the scalar
field derivative perturbations are kept up to third order, following
Ref. Kimura, Kobayashi & Yamamoto (2012). Combined with the
assumptions that the quasi-static approximation holds and that the
matter overdensity is distributed spherically in space leads to the
analytic form of Syc (see equation 3.15 in Wright et al. 2023). These
assumptions in the derivation of Syc lead to a caveat: that in its current
public state, hi-cola is designed to work with theories that exhibit
Vainshtein screening. However, recent development of hi - cola has
focused on extending the formalism to other screening mechanisms
like K-mouflage, and these results are presented in Section 4.2.3. The
full details of K-mouflage in hi-cola are provided in Ref. Gupta
et al. (2024).

3.4.2 COLA-FML

In this subsection we describe another approximate simulation
method to modified gravity theories endowed with the Vainshtein
mechanism, such as nDGP and the Galileon theory family. This
method was initially proposed in Ref. Scoccimarro (2009), and later
revisited in Ref. Brando et al. (2023). It consists of linearizing
the Klein—Gordon equation in Fourier space, and implementing a
resummation scheme to find a function, G.g(k, a), defined in the
same way as equation (22), that approximately captures the non-
linear corrections introduced by the Vainshtein mechanism on small
scales. Specifically, this function transitions between an unscreened
regime at large scales, where Geg(k, a) = GegrL(a), to the small
scale regime where GR is recovered, G (k, a) — Gx.

In order to do so, in Refs. Scoccimarro (2009) and Brando
et al. (2023) the authors require the non-linear function,
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AGes NL(k, a)/ Gy’ has the screening property, i.e.

AG.s Lk, a)
Gn
AGes, Lk, @)
Gn

where k, is the wavenumber associated with the Vainshtein radius,
defined in equation (B3). The specifics behind the computation of
the function AGeg nL(k, @)/Gy is explicitly shown in Ref. Brando
etal. (2023). This screening approximation scheme has the advantage
of not introducing additional screening parameters used to tune
the approximate results with results from N-body simulations that
consistently solve the full Klein—-Gordon equation at each time-step
of the simulation. The whole dependence of the gravity theory is
encoded in the AGeg, N (k, @)/ Gx function.

The methodology of this approximate method for Vainshtein
screening is computed using an external python notebook, where
one can follow the steps outlined in Ref. Brando et al. (2023) to
compute Geg(k, a) externally. With the tabulated function computed,
the results are then implemented in the cola-£fml (github) N-body
solver, that implements the COLA method in a parallelized manner,
ideal for fast and approximate simulations. The cola-fml library
also has different screening approximations for theories other than the
ones considered here, and are presented in Ref. Winther & Ferreira
(2015a). Importantly for this paper, our results for the Gg(k, a)
screening case will be different than the ones of hi-cola at non-
linear scales, however, at linear scales the two codes are identical.

k/k. < 1) = 1,

(k/ky > 1) = 0, (25)

3.5 Halo model reaction

The halo model reaction (Cataneo et al. 2019) is a flexible, accurate,
and fast means to model the non-linear matter power spectrum
in beyond-ACDM scenarios. This model has been demonstrated
to align with N-body simulations at the 2 percent level down to
k=3 hMpc~!, with minor variations depending on redshift, the
extent of modification to GR, and the mass of neutrinos (Cataneo
et al. 2020; Bose et al. 2021). The method aims to model non-linear
corrections to the matter power spectrum resulting from modified
gravity through a reaction function R(k, z), which incorporates both
1-loop perturbation theory and the halo model (see Bernardeau et al.
2002; Cooray & Sheth 2002, for reviews). In this framework, the
non-linear matter power spectrum is expressed as the product

Paik, 2) = Rk, 2) PSS (k. 2) (26)

where the pseudo power spectrum is defined such that all non-linear
physics are modelled using GR but the initial conditions are adjusted
to mimic the modified linear clustering at the target redshift.

The halo model reaction without massive neutrinos, R(k, z), is
given as a corrected ratio of target-to-pseudo halo model spectra

{[1 = E@)1e™"@ 4 E2)} Pk, 2) + Pk, 2)

Rk, z) = pseudo - @7)
P (k,2)
The components are explicitly given as
Pk, 2) = Pan(k, 2) + Pl (k, 2), (28)
T Pryk,2)
S(Z) - llmk—>0 Plp'ieudo(k,z)v (29)
_ - -1
k@) =~k {In [ 252 - £@)] =1 - €@1} (30)

SWe note that in Ref. Brando et al. (2023) this function is called M (k, a).
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with

Pl—]oop(k7 7) + Pk, 2) Ppseudo
PPseudo(kyz)_’_ Pl;y:'leudo(k’z) hm

1—loop

Ak, z) = (k,z) — Piu(k, 2).

(31

Poy(k, z) is the 2-halo term which we approximate with the lin-
ear matter power spectrum, P_(k,z). Pk, z), and PEM(k, 2)
are the 1-halo terms as predicted by the halo model, with and
without modifications to the standard spherical collapse equations,
respectively. Recall that by definition, the pseudo cosmology has
no non-linear beyond- ACDM modifications. Similarly, P;_jy0p(k, 2)

and P,pielﬁi;(k, 7) are the standard perturbation theory 1-loop matter
power spectra with and without non-linear modifications to ACDM,
respectively. As in the literature, equation (29)’s limit is taken to be
at k = 0.01 A Mpc~! and , is computed using k = 0.06 s Mpc™"'.

The nDGP model was part of the initial release of the publicly
available halo model reaction code, React (Bose et al. 2020). This
code has been updated to include massive neutrinos in Ref. Bose
et al. (2021) and model-independent parametrizations in Ref. Bose
et al. (2023), which constituted version 2 of the code (github). The
GCCG model was recently implemented in this version of react
(Atayde et al. 2024), which is employed in Section 4 in the CG limit.
The K-mouflage patch is being made public with this work and we
give all the relevant expressions in Section A.

For the pseudo spectrum appearing in equation (26) we use
hmcode2020 (Mead et al. 2021). This is currently the most accurate
and flexible prescription for the pseudospectrum and has been tested
in a number of works (see for example Cataneo et al. 2019; Bose
et al. 2021, 2023). It is more accurate than the halofit prescription of
Ref. Takahashi et al. (2012), quoting a 2.5 — 5 per cent accuracy
for k <1 hMpc™'. It can also accommodate modifications that
induce an additional scale dependence in the linear matter power
spectrum. For modifications that only introduce a scale-independent
shift in the linear spectrum amplitude, more accurate emulators can
be used, such as the euclidemulator2 (Knabenhans et al. 2019),
which are quoted to be 1 per cent accurate when compared to high
fidelity N-body simulations down to k < 10 # Mpc™!. Despite this,
the reaction function R(k, z) is only expected to be 1 per cent accurate
fork <1h Mpc_l (Cataneo et al. 2019).

It is also worth noting that euclidemulator2’s internal accu-
racy is restricted to a hyperspheroidal region of their parameter space.
Points outside this region might have considerable degradation in
accuracy. This is considerably important in the context of beyond-
ACDM scenarios as we need tools that work in extreme regions
of the parameter space. For these reasons, work is currently being
undertaken to build a pseudospectrum emulator based on appropriate
numerical simulations (Giblin et al. 2019).

The choice of hmcode2020 keeps in line with the halo model re-
action’s claim of generality, while maintaining competitive accuracy
within the reaction’s per cent-level accuracy range, especially when
taking the ratio of modified to unmodified spectra, i.e. the matter
power spectrum boost (see equation 32).

4 RESULTS

Our main results are the comparisons of the non-linear matter power
spectrum between the different codes. Specifically, we consider the
models described in Table 3 for which we have N-body simulations
that solve the full scalar field equation of motion available to use
as benchmarks. We list the specifications of each simulation ran for
these comparisons below. These include: box size (Lpoyx), number
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Table 3. Models considered in this work. The ACDM og(z = 0) = 0.851, 0.805, 0.815 for nDGP, CG, and K-mouflage cosmologies,
respectively. We remind the reader that the values for {s, ¢} are fixed in CG, while adopting the tracker solution for the scalar field

imposes the values for ¢; and ¢3 quoted in the table.

Parameter nDGP-N1 nDGP-N5 CG QCDM K-mouflage — A K-mouflage — B K-mouflage — C

Qm.o 0.281 0.313 0.3089

Qb0 0.046 0.049 0.0486

Hy 69.7 67.32 67.74

ng 0.971 0.9655 0.9667

Ay 2.297 x 107° 2.010 x 1070 2.064 x 1070

og(z =0) 0.912 0.865 0.884 0.865 0.881 0.852 0.837

Qe 0.25 0.01 - - - - -

e/’ - - 5378 - - - -

c3 - - 10 - - - -

s - - 2.0 - - - -
- - 0.5 - - - -

n - - - - 2 2 2

A - - - - 1.475 1.460 1.452

Ko - - - - 1 10 1

Bk - - - - 0.2 0.2 0.1

of particles (Np), particle mass (mp), grid cells (N,), initial redshift
(zini), and force resolution.

(i) ecosmog runs: Ly = 1024 Mpch™!, Np = 10243, mp ~
7.8 x 10'° Mg h~"'. The initial conditions are generated at z;,; = 49
by mpgrafic (Prunet et al. 2008) using the Zel’dovich approxima-
tion. It uses a force resolution of ~ 15.6kpch~!.

(i) mg-glam runs: Lpox = 512Mpch™", Np = 1024°, N, =
2048, mp = 1.07 x 10'° Mg h™!, where N, is the number of grid
cells. Initial conditions are generated at zj,; = 100 using glam’s
own initial condition generator. It uses a fixed force resolution of
250kpc h~! with an adaptive time-stepping described in the original
glam paper (Klypin & Prada 2018).

(iii) mg-evolution runs: The nDGP simulation runs use
Liox = 1000 Mpc £~! with Ny =N, = 10243, The initial conditions
are generated at z;,; = 49. For the CG case, the initial conditions are
the same as in the cola runs. These runs use Lo, = 400 Mpch™',
Np = Ny = 5123,

(iv) cola runs: Lpg =400 Mpch~! and Np = 5123 with ini-
tial conditions generated using 2LPT for all simulations. For K-
mouflage: mp ~ 4.1 x 10!° Mg ~~'. Initial conditions are gen-
erated at zj,; = 19. For nDGP: mp ~ 3.7 x 10'© M h~'. Initial
conditions are generated at zj,; = 49. For CG and QCDM: mp =~
4.1 x 10" Mg h~!. Initial conditions are generated at zj,; = 49.

Before presenting the spectra comparisons, we take a look at how
each model presented in Section 2 modifies the standard ACDM
background evolution. This background evolution is adopted for
each of the different codes and so differences seen in the following
section only arise from how the perturbations are treated.

4.1 Background evolution

In Fig. 1 we show the modification to the standard ACDM back-
ground expansion for the models described in Table 3. We remind
the reader that we assume a ACDM expansion for the nDGP models
and so this is not shown. We see that the QCDM and CG cases
give a much larger modification at late times than any of the K-
mouflage models in the Einstein frame. In all models, we see a slower
expansion rate at roughly a > 0.2 which acts to enhance structure
formation. Indeed, the oy is larger for the QCDM model than for both

MNRAS 536, 664—683 (2025)

K-mouflage models B and C (see Table 3), despite having a lower A;
(although the QCDM cosmology has a slightly larger 25, 0). In all
cases, the maximum modification is ~ 8 per cent (QCDM), with the
K-mouflage models giving a maximum modification of 3 per cent
ata =0.5.

In the same figure we also show the modification in the Jordan
frame for the K-mouflage models (middle panel). We see here that
relative to ACDM, we have a significantly slower expansion at
a > 0.03, with a maximum modification of 11 percent at a ~ 0.4.
Further, the current day expansion is larger than the one expected
from ACDM by 5 per cent under the strongest modification consid-
ered here. We do remind the reader that the free parameter A has
been tuned to match the current day expansion rate in ACDM in the
Einstein frame. These panels show that relatively large differences
can be observed at the background level when switching frames,
which we will see in the next subsection are not evident at the level
of the perturbations (also see Section 2.3.2).

4.2 Matter power spectrum boost

Next we take a look at the perturbations, specifically how the matter
power spectrum is modified over ACDM. For this, we consider the
modified gravity boost, defined as

Pno(k, 2)

B2 = paeG )

(32)

4.2.1 nDGP

In Fig. 2 we show how the various predictions for the boost compare,
using the ecosmog measurements as a reference, for the nDGP
cosmologies found in Table 3. Boost comparisons for nDGP amongst
different codes have already been performed extensively in the
literature, and so this case is shown mainly as a consistency check,
but also to compare the hi - cola implementation which has not yet
been tested before.

We find that for the low modification case, NS5, all predictions
remain within 1 per cent of each other for k < 3 » Mpc™", including
the linear prediction, which at z = 0 gives a modification of B(k —
0,z =0) = 1.033. For N1, B(k — 0,z = 0) = 1.149 per cent. In
this case, all predictions except the linear remain within 2 per cent
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are defined in Section 2.3.
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Figure 2. Comparing boost factors for the various codes listed in Table 2 for nDGP at z = 0, 0.5, 1 (from left to right) with ecosmog as benchmark. The
upper panels show the results for the nDGP-N5 (low modification) model and the lower panels for the nDGP-N1 (high modification) model (see Table 3).

of the ecosmog reference for k < 1 hMpc~'. mg-evolution
performs the best as expected, having an additional free parameter
giving the screening transition, k,. We have found k, = 2 4 Mpc™!
and k, = 1 h Mpc~! give a good overall agreement with the ecos -
mog simulations for the N1 and N5 models respectively. Using these
values the mg-evolution boost remains within 1 percent up to
k < 3h Mpc! except for the largest modes at z = 1 where it worsens
to 2 percent, consistent with what was found in Ref. Hassani &
Lombriser (2020). Similarly, the halo model reaction remains within
2 percent for k < 3 h Mpc ™' except for the largest modes at z = 1,
where it worsens to 3 per cent agreement, in accordance with Ref.
Cataneo et al. (2019).

The two COLA methods show similar agreement, but deviate the
most on average from the reference boost measurements. cola-
fml performs slightly better at z = 0 while hi-cola does better at
higher z, with deviations up to 4 percent at k = 3 h Mpc~!. This is
very consistent with the results of Ref. Winther et al. (2017).

4.2.2 Cubic Galileon (CG)

Fig. 3 shows the boost comparisons between the various codes for the
CG and QCDM cases, again using ecosmog as a reference. These
ecosmog simulations were ran using the same code as presented in
Ref. Barreira et al. (2013a). We have changed the baseline cosmology
for these new runs, particularly lowering the value of A, and Hy. We
also run a ACDM counterpart with which to calculate equation (32).
Previous works have compared the boost ratio of the CG spectrum
to that in QCDM (Wright et al. 2023), or have performed direct
spectra comparisons (Atayde et al. 2024). Further, in Ref. Atayde
et al. (2024) the authors found significant disagreement when using
an hmcode2020 prescription, which was outperformed by the
halofit pseudospectrum prescription. This was being caused by the
og-dependent damping introduced into hmcode2020 (Mead et al.
2021), which was not calibrated for particularly high values of o}
as that of the simulations found in Ref. Barreira et al. (2013a). The
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Figure 3. Comparing boost factors for the various codes listed in Table 2 for the CG (upper) and QCDM (middle) and QCDM-based boost (bottom) at
z=0,0.5, 1 (from left to right) with ecosmog as the benchmark. Note cola-fml and hi-cola’s results for QCDM are identical and so we only show the

Hi-cola QCDM ratio in the middle panels.

lower value of oy in our simulations was found to greatly improve
the performance of hmcode2020 over halofit. For comparison with
previous work, we also show the comparisons for the ratio of CG to
QCDM power spectra, or QCDM-based boost, in the bottom panels
of Fig. 3.

The mg-evolution predictions again give the best agreement,
remaining within 1 percent in the CG case at z > 0.5 down to
k =3 hMpc~!. Atz = I, the linear implementation, or equivalently
k., — o0, provides the best match. However, in the figure, we have
plotted the case k.(z > 0.5) =6 hMpc™' as it appears to work
well given the resolution of the simulation. Adopting the value
k, = 6 hMpc ™! at z = O causes a quick divergence of the predictions,
with an 8 per cent disagreement at k = 1 h Mpc™'. This is expected
as k, controls the screening Fourier mode, which will be smaller at
low redshift when densities are larger. Adopting k, = 0.4 h Mpc™!
at z = 0 brings the predictions to within 2 per cent agreement in the
same range of scales.

Interestingly, in the QCDM-based boost case we can adopt the
same value of k, = 0.3 h Mpc_l for all redshifts considered while
keeping a good fit to the ecosmog measurements. In this case, the
predictions are consistent within 1 percent down tok = 1 2 Mpc™".
The disagreement for k > 1 h Mpc™" arises from resolution effects,
as supported by the agreement between mg-evolution and hi-
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cola, which both have the same resolution. This suggests that the
tuning of k, performed to match the reference boost factor in the
CG case is partially compensating for the resolution-induced loss of
boost.

The halo model reaction remains within 1 percent for k <
1 hMpc™! for both QCDM and CG cases, with the exception of
the CG case at z = 0. Here we find up to 4 percent disagree-
ment with ecosmog. This is an atypically large disagreement
given the similarity of CG to nDGP, for which the halo model
reaction performs significantly better. To investigate this, we have
tested different pseudo spectra prescriptions, specifically halofit and
euclidemulator2, neither offering significant improvement for
the matter power spectrum boost. We have also tried omitting
the 1-loop correction (see equation 31) with little change to the
predictions as found in Ref. Bose et al. (2023). The excellent
agreement in the QCDM case (middle panels) at z = 0, with 1
percent agreement beyond k = 3 hMpc~!, indicates no issue in
the background implementation. We have also checked the QCDM-
based boost (bottom panels), where the denominator in equation (32)
is now QCDM instead of ACDM. These comparisons show the
same disagreement at z = 0 as in the CG ACDM-based boost case,
but the same or better agreement at higher redshifts. The improved
agreement at z > 0.5 in the QCDM-based boost case is just a partial
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cancellation of inaccuracies in the QCDM and CG ACDM-based
boost cases.

Lastly, we also checked the behaviour of the reaction function
‘R for varying GCCG modification strengths by changing the value
of s. We compared these to corresponding nDGP predictions for R
such that the nDGP models gave the same linear enhancement of
structure as the GCCG cases, making their pseudo spectra identical.
We observed significantly more suppression coming from R in the
GCCG than nDGP, especially for large modifications (large s or
large 2,.). This added suppression of power may be due to the G,
term present in the GCCG. We do note that the CG has a very large
linear enhancement of clustering at z = 0, equivalent to a nDGP
model with Q. = 0.6. This may indicate a break down of the halo
model reaction’s assumptions, specifically the ACDM fits it assumes
for the halo mass function and virial concentration. The latter has
been shown to significantly impact its accuracy (Cataneo et al. 2019;
Srinivasan et al. 2021; Srinivasan, Thomas & Battye 2024), especially
when the modification to gravity is large. To further pin the z = 0 CG
disagreement down, we would need to run a CG pseudo cosmology
simulation which would make it clear whether or not the reaction
function modelling or ACDM-fits in the halo model components
are failing. GCCG simulations with a smaller modification will
also help illuminate the accuracy of the current reaction function
implementation. This will be the focus of future work.

Finally, both COLA implementations remain 2 per cent consistent
with ecosmog in the CG case at scales k < 1 hMpc™'. cola-
fml performs slightly better at low z while hi-cola shows better
agreement at higher z. The implementations differ only in their
approach to screening and so we only show the hi-cola results
for QCDM, where it is similarly consistent to ecosmog as in the
CG case. We note that all codes tend to underpredict the boost at
small scales. Part of this difference surely comes from the fact that
while the ecosmog code consistently solves the full Klein—-Gordon
equation, the other codes implement the screening mechanism in
an approximate way, making use of the spherical approximation in
one way or another. Therefore, at smaller scales these approximate
methods are not guaranteed to be valid. A better test of the accuracy
of screening is provided by the QCDM-based boost in the bottom
panels, where we see far better agreement between the COLA
methods and ecosmog.

On this note, we remark that both COLA and mg-evolution’s
disagreement with the benchmarks in both nDGP, CG, and QCDM
cases is also partially due to a low force resolution which can lead to
a loss of power on small scales (see Brando et al. 2022, for example).
By increasing the force resolution, and time-steps in the COLA cases,
we expect to find much better agreement above k = 1 hMpc™!,
particularly in the QCDM case which does not have screening. We
note that the limited force accuracy will affect all particle mesh codes,
including mg-glam, and the most efficient and sure way to go to
smaller scales would be to use Tree-particle mesh or AMR codes
like ecosmog.

4.2.3 K-mouflage

For K-mouflage, we restrict our comparisons to mg-glam, hi-
cola, and react with the mg-evolution implementation to be
the focus of an upcoming work. We expect the same level of accuracy
as exhibited in the CG and nDGP cases, especially given the freedom
imparted by k.

In Fig. 4 we show the results for the K-mouflage model. As a
reference we use the mg-glam simulations, ran for the purpose of
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this comparison. We compare the K-mouflage boost for the three
models listed in Table 3, all of which assume n = 2 in equation (14).
We begin by noting that the coupling of matter to the scalar field is
proportional to Bk /K, (see equation 81 of Brax & Valageas 2014b,
for example), and so large positive K decreases the fifth force while
large Bk increases it. We find the larger the modification, the worse
the agreement between react, hi-cola, and mg-glam. We can
see this by moving from top to bottom panels in Fig. 4. Further, we
note for the largest modification (top panels), there isa 1 per cent
offset between mg-glam and linear theory (as well as the other
codes). This was also seen in fig. 10 of Ref. Herndndez-Aguayo
et al. (2022) but not seen in the linearized simulations presented in
that reference, suggesting this is a consequence of the non-linear
treatment of mg-glam. We also note much smaller linear theory
offsets at large scales for the weaker modifications.

For the strongest modification, K-mouflage A in Table 3, at low
z, all codes are consistent within 2 per cent for k < 1 A Mpc ™. This
agreement improves for the halo model reaction to 1 per cent agree-
ment for k <3 h Mpc" at z = 1 and in the weakest modification
case, K-mouflage C (see Table 3). Overall, hi-cola does not show
significant improvement or degradation with redshift or modification
strength, consistently remaining within 2 per cent for k < 3 h Mpc™".
The exception is K-mouflage A at z = O (upper left panel), where
it degrades to 4 percent discrepancy at k =3 A Mpc~'. The hi-
cola predictions are all made in the Jordan frame while mg-glam
and react produce predictions in the Einstein frame. It is here we
note the consistency of the non-linear matter power spectrum in both
frames, supporting the claim of Ref. Francfort et al. (2019).

Before concluding we make some technical notes on the compar-
isons. In the case of the Jordan frame predictions from hi-cola,
the boost is taken with the K-mouflage spectrum measured at ay,
calculated using equation (16). The inclusion of K-mouflage theories
in hi-cola was presented in Ref. Gupta et al. (2024). Finally, we
note that react has the option to use the PPF screening formalism
for K-mouflage as derived in Ref. Lombriser (2016), and which we
present in Section B for completeness. This framework comes with
an additional degree of freedom and so we have chosen not to use
this in our comparisons.

5 CONCLUSIONS

High quality N-body codes for modified gravity are essential in order
to place reliable constraints on gravity using LSS observations. On-
going galaxy surveys such as Euclid or the Dark Energy Survey will
heighten their necessity by beating down the statistical uncertainty
on our measurements, making theoretical accuracy essential. Bench-
marking the accuracy of approximate but computationally efficient
numerical methods against these high-quality simulations is an im-
portant step towards reliable constraints from the forthcoming data.

In this paper we have performed comparisons of the matter
power spectrum modification induced by three distinct theories
of modified gravity, each of which induces a scale-independent
enhancement of the linear growth of structure: the normal branch
of the DGP braneworld model, the Cubic Galileon, and K-mouflage.
The former two employ the Vainshtein screening mechanism, while
the latter employs the K-mouflage screening mechanism. For similar
comparisons with scale-dependent modifications to the linear growth
and the chameleon (Khoury & Weltman 2004) or symmmetron
(Hinterbichler & Khoury 2010) screening mechanisms, we refer the
reader to Refs. Winther et al. (2015, 2017), Cataneo et al. (2019),
Hassani & Lombriser (2020), and Adamek et al. (2024).
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Figure4. Comparing boost factors for the various codes listed in Table 2 for the K-mouflage models listed in Table 3 with { K¢, fx} = {1, 0.2}, {10, 0.2}, {1, 0.1}
(from top to bottom) at z = 0, 0.5, 1 (from left to right) with mg-glam as the benchmark. All models assume n = 2.

We compare the matter power spectrum boost predicted by six
different numerical codes, each of which has a varying approach to
the non-linear gravitational coupling: full-field solvers (ecosmog
and mg-glam), COLA of which we compare two distinct codes,
hi-cola and cola-fml, the relativistic parametrized N-body
code, mg-evolution, and the semi-analytic halo model reaction
approach expressed by the react code. We summarize the distinc-
tions of each code below:

(i) ecosmog & mg-glam: Solve the Klein—Gordon equation ex-
actly to get the force applied to particles in a box. Serve as accuracy
benchmarks.

(ii) hi-cola: Includes a fifth force in the COLA formalism via
a screening factor, as well as consistently solving the modified
cosmological expansion history. Screening factors are derived using
a quasi-linear treatment of the metric and scalar field perturbations,
along with assuming the quasi-static approximation and spherically
distributed overdensities.

(iii) cola-fml: Introduces the Vainshtein mechanism by evaluating
afunction, G (k, a), that captures on average non-linear corrections
from the screening mechanism. This method is performed by
linearizing the Klein—-Gordon equation in Fourier space, and the
full function is found by an iterative process.

(iv) mg-evolution: Employs a parametrized ansatz for the non-
linear force law which comes with a screening parameter.

MNRAS 536, 664—683 (2025)

(v) react: Uses spherical collapse, the halo model, and 1-loop
perturbation theory to predict the matter power spectrum.

We summarize the overall accuracy exhibited by each approach
in Table 4 with respect to the full-field-solver benchmark. We
remark that N-body codes solving the full Klein—-Gordon equation in
modified gravity are 1 per cent consistent (Winther et al. 2015) for
k <7 hMpc™! in their prediction for the boost. These results are also
consistent with the recent Euclid Collaboration code comparison
project of Ref. Adamek et al. (2024), who also find 1 percent
consistency in the power spectrum boost in the nDGP and f(R)
gravity models among various codes that implement a full-field
solver. This work also extends the number of full-field solvers
considered, highlighting a great deal of consistency among the
growing number of beyond-ACDM codes on the market.

We find that all approaches considered here are overall 2 per cent
consistent with the benchmark N-body boost at scalesk < 1 Mpc™!
and at z < 1. The only exceptions are react for the strongest
modifications to ACDM and at z = 0. mg-evolution performs
the best, with a general accuracy of 1 per cent at all scales considered
(k <3 hMpc™"), but this accuracy comes at the cost of tuning the
screening parameter depending on the output redshift, modification
strength, or resolution of the simulation, which might undermine the
predictivity of the code. In Ref. Adamek et al. (2024) the authors
further find a 3 per cent consistency between the COLA methods and
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Table 4. Maximal per cent deviation of the non-linear matter power spectrum boost under various modelling approaches against benchmarks, at different redshifts for k < 1(3) h Mpc ™.

Hi-cola React

COLA-FML

Mg-evolution

z=1

z=0.5

z=1

z=0.5

z=1

z=0.5

z=1

z=0.5

Model

1(1) percent 1(2) percent 1(2) percent 1(4)percent 1(4)percent  2(4) per cent 1(4) percent 1(3) percent  2(2) percent  2(2) percent 2(3) per cent
1(1) per cent

1(1) per cent
1(1) per cent

NI

1(1) percent  1(1) per cent  1(1) per cent 1(1) per cent 1(1) per cent  1(1) per cent 1(1) per cent 1(1) per cent  1(1) per cent
1(5) percent  1(5) per cent 1(3) percent  4(8) per cent

1(1) per cent
1(2) per cent

N5

1(3) per cent

2(5) per cent

2(6) per cent

1(10) per cent

1(6) per cent

1(1) per cent
1(3) per cent

1(1) per cent
1(5) per cent

CG

1(3) per cent 1(1) per cent 1(4) per cent  1(5) per cent
2(17) per cent

1(3) per cent

2(6) per cent

1(2) per cent

QCDM

1(4) per cent

1(8) per cent

1(3) percent  1(3) per cent

1(4) per cent

K-mouflage A
K-mouflage B
K-mouflage C

1(1) per cent  2(10) percent  1(5) per cent  1(2) per cent
1(1) per cent

1(1) per cent

1(2) per cent

1(3) percent  1(1) per cent

1(4) per cent

1(1) per cent

1(1) per cent
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the full-field solvers which is fairly consistent with our findings for
nDGP, although we consider a slightly stronger modification which
exhibits slightly stronger deviations from the ecosmog predictions.

We thus can advocate the safe use of these codes, and any emulators
based upon them (see Carrion et al. 2024; Gordon et al. 2024; Tsedrik
et al. 2024, , for example),® at fairly non-linear scales for scale-
independent models. We note the caveat that emulation error should
be quantified and appropriately accounted for.

For a more concrete estimate on the validity of these methods,
we can consider a Euclid-like survey whose weak lensing analysis
will have a signal-to-noise peaking at (conservatively) z & 0.7 (see
Lepori et al. 2022, for example). Imposing a 2 percent accuracy
demand on the matter power spectrum model, and assuming a
ACDM fiducial background cosmology, we can arguably trust all
method predictions for £,,x < 1800. This roughly corresponds to
the pessimistic scenario described in Ref. Blanchard et al. (2020).

At scales k > 1 hMpc~! we find all codes begin to diverge by
more than 2 percent for the strongest modifications considered.
They should thus not be used to model the highly non-linear scales
of structure formation in the context of forthcoming LSS analyses
without considering an appropriate theoretical error contribution to
the error budget (see Audren et al. 2013, for example).

The goal of this work was to validate different methods to compute
the non-linear matter power spectrum boost (see equation 32).
This function inherently depends on the non-linear matter power
spectrum of ACDM. This boost must be applied to an accurate
ACDM spectrum prediction in order to get a non-linear modified
matter power spectrum prediction. Therefore, the final modified
gravity prescription inherits a dependence on predictions of ACDM.
While we now have state-of-the-art high resolution tools to evaluate
PACPM(k, 7), the region in which these tools have internal accuracy
within 1 per cent —2 per cent may not be as broad as we need
for extracting unbiased constraints on cosmological parameters
for Stage-IV LSS surveys (see Gordon et al. 2024, for a more
in depth discussion). Furthermore, it is expected that in beyond-
ACDM analyses, extreme regions of the parameter space need to
be sampled, which heightens the need for the development of more
comprehensive emulators in ACDM.

In a similar vein, a further investigation of the impact of baryons
in a full parameter inference scenario remains an imperative. It
has been shown that the interplay between baryonic physics and
cosmology exhibit some dependence at small scales (Elbers et al.
2024). However, it is unknown to what extent in the non-linear
regime we can still extract relevant cosmological information, i.e.
if we need to model baryonic physics deep inside the non-linear
regime, k ~ 10 hMpc~! or not. Alternatively to modelling baryonic
physics at the level of the power spectrum, it would be interesting to
investigate the performance of procedures that mitigate the impact of
baryons in the parameter constrains, such as the methods described
in Refs. Eifler et al. (2015) and Huang et al. (2019, 2021).

To conclude, let us highlight that the methods compared in this
work have been designed with an element of theoretical flexibility
in mind. There is a general shift to move beyond hard-coded codes
designed to be valid for only one gravity model, and instead build
more general tools that can be calibrated to a range of different

OThe results of this work do not directly apply to the emulator produced in
Ref. Fiorini et al. (2023), ndgpemu, as the screening approximation used to
produced their training set is different from the ones adopted in this work.
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models.” This is an essential step forward to streamline the testing
of new theoretical ideas with data from Stage IV surveys.
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APPENDIX A: K-MOUFLAGE REACT PATCH

Here we present the expressions needed to calculate the halo model
reaction (see equation 27) in the K-mouflage model. The halo model
reaction relies on both the halo model (see Cooray & Sheth 2002, for
areview) and 1-loop perturbation theory (see Bernardeau et al. 2002,
for a review). In particular, besides the background expansion H (a),
we require the modifications to the 1st, 2nd, 3rd order perturbative
and non-linear Poisson equations, as well as contributions to the
potential energy of haloes in order to solve the virial theorem
(see Cataneo et al. 2019; Bose et al. 2020, for more details). K-
mouflage also comes with a friction term correction to the Euler
equation (Brax & Valageas 2014b).

A1l Background

For the background expansion we must solve the Klein—-Gordon
and Friedmann equations simultaneously. We do this numerically
in react as done in Ref. Herndndez-Aguayo et al. (2022). The
Friedmann equations are
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2 72 A Qm 1
iz [1 - (/’7} _ A@)mo ~2%a?
H; 6 3
(2}’1 _ 1) 5 5 (p/2 n HZn
—1—73 A a“ Ky 2a? Hiozn’ (A1)
dH 1 A@) Qo 1.5, 1 ,H?
e L T | AL B
dt H? a3 T3
(}’l+1) . ( (/),2 )” H2n
———2aKo | =55 | o5 (A2)
3 20%a% ) H}
while the Klein—-Gordon equation is given as
= 2
(Kx +2XKxx) [%&‘P” + %Hig(ﬂ/]
H2AKx — XKxx) g + 3952 %20 = 0. (A3)

where Kyy = d’K/dX? and we recall primes denote derivatives
with respect to Ina. In these equations we have defined the nor-
malized scalar field ¢ = ¢/M,; and used the conformal Hubble
rate H(a) = H(a)a. t is conformal time. We indicate that a few
typographical errors did occur in Ref. Herndndez-Aguayo et al.
(2022) which have been corrected in the above equations.

To solve these equations we first find the analytic solutions to
equation (A1) for a given value of n.® For n = 2 this is a quadratic
equation in #?/H¢. Then, for a given value of a (or Ina) we can
substitute H and equation (A2) in equation (A3), enabling us to solve
for the entire evolution of ¢ (and ¢’), and consequently H(a).

A2 Perturbations

The linear modification to the Poisson equation is given by (Brax &
Valageas 2014b)

Gefr ﬁ
Gn = A(p) <1 + Ky > . (A4)

Here we have included the conformal factor A(g), that comes
along with p,, in the Poisson equation, equation (4). Note that
GerL/Gn = u(k, a)inthe react standard notation of Refs. Bose &
Koyama (2016), Cataneo et al. (2019), and Bose et al. (2020, 2023)
for example.

The second and third-order symmetrized modifications to the
Poisson equation, in the same notation of Ref. Bose & Koyama
(2016) and Bose et al. (2020), are (Brax & Valageas 2014b)

Vz(kl, ky,a) =0,
(oo k) — 2Ky (A€o0 Hi T\ H L
Jko ks, a) = —= _— — | 5—=
yalin 2, 8 2 a H? Kx) HE} a2
(12 + 2p13p03) (13 + 2p03412)
k1k2 k1k3
+2
+(M23 13/412) ’ (AS)
koks

where we have defined u;; = ki - 12]- and k; = |k;|.

Lastly, we also have a modification to the Euler equation in the
form of a friction term (Brax & Valageas 2014b). Similar terms have
been included in react in the context of interacting dark energy
models (Simpson 2010; Baldi & Simpson 2015; Bose, Baldi &

8We provide a Mathematica notebook which computes the solutions for
n = 2, 3 and checks consistency of the equations.
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Pourtsidou 2018; Carrilho et al. 2022). In the K-mouflage model
considered here, this term is given as

Afriction = ﬁK‘p/ . (A6)

This term enters the Euler equation as expressed in equation (2.10)
of Ref. Bose et al. (2018) for example.

A3 Spherical collapse

The halo model reaction also requires us to solve for the spherical
top-hat overdensity. This involves solving the evolution equation for
the top-hat radius which requires specification of the non-linear
Poisson equation. The modification to this equation is to a good
approximation equal to the linear modification at extra galactic scales
given the smallness of the K-mouflage radius (Brax & Valageas
2014b)

Geir(k, a) _ Geir,L(a)
GnN GnN ’

We note in the notation of Ref. Cataneo et al. (2019), F =
Gef/GN — 1 = AGesr/Gn. In reactF appears as 1 + F in the
Poisson equation. This yields the correct conformal factor accounting
for the Einstein-frame transformation of the background density
in the non-linear Poisson equation, as it is already explicit in
equation (A4).

Lastly, we note that the top-hat radius evolution also must include
the friction term equation (A6).

(A7)

A4 Virial theorem

Here we present the potential energy contributions to the virial
theorem in the K-mouflage model considered. This is needed to
calculate the virial mass in the halo model reaction calculations. The
specific components we require are (Schmidt, Hu & Lima 2010;
Cataneo et al. 2019)

% = —Quo (1 4+ 6): (A8)
% — —QuoF 4y (A9)
v;eoff = —m(l + 3weff),5eff§y2§ (A10)
% = _2Africlion%§§ ¥y, (ALD

where y = RTTiH%i, Rty being the comoving top-hat radius, R; the
initial top-hat radius, and E| is a normalization. These represent the
Newtonian contribution, the scalar field contribution, the effective
dark energy contribution, and a frictional force contribution as
derived in Ref. Carrilho et al. (2022). In the K-mouflage model the
scalar field affects both force enhancement and acts as an effective
dark energy component.

We recall that F = Geg/Gn — 1 which does not account for the
correct conformal factor to appear in equation (A9) in the K-mouflage
model. In this case we should have

W¢ a_l 2
— = —Quo [GerrL/Gx — A(9)] — 378,
Eo ,0[ ir.L/GN ((P)] a12 y
2827 a~!
= —Qumo {A(w)—ﬂ “] — 8, (A12)
KX a;

where we used equation (A7) and equation (A4). Afiction 1S given by
equation (A6). Wer = Pefr/ Perr and Pegr are the equation of state and
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energy density of the effective dark energy fluid component, with
Pesr being the fluid’s pressure. These are given in the Einstein frame
by (Brax & Valageas 2014a, b):

Peit = =My Hi)*(K — MyH*$"*Kx); (A13)
Pett = My HGAK . (A14)
We then get

K
Weff = (A15)

K — MJH$Ky

We can simplify equation (A10) further by noting that when adopting
the model in equation (14) we have

1

1
= +K nX" .
HZ\> M

0 2n1 2 2n
Hg" 2" My

Kx (A16)
Substituting this into equation (A15), we find the effective dark
energy contribution to the potential energy is given by

Weff )LZ H2 (p/Z 2

a
=—" 2K+ "= (14 KpnX" )| =y*.
E, 3 +H§A2(+ on ) afy

(A17)

Finally, we should note that the Newtonian contribution also should
have a conformal factor along with €, o
W !

a5
- = _A(QU)Qm,O?y 1+4é).

B, (A18)

APPENDIX B: PARAMETRIZED
POST-FRIEDMANNIAN EXPRESSIONS

Here we review expressions for the general parametrization of the
effective gravitational constant appearing in the non-linear Poisson
equation as described in Ref. Lombriser (2016). This is based on
the parametrized post-Friedmannian framework and is the means of
modelling modifications to non-linear structure formation in the mg-
evolution code. This parametrization has also been implemented
in the react code (Bose et al. 2023).

mg-evolution adopts a generalized form of the Vainshtein
screening effect given by (Lombriser 2016)

Il‘ (1‘ l/h
S ORUS ONIS S

where NL stands for non-linear, and &, and b, respectively, char-
acterize the effective screening wavenumber and the interpolation
rate between the screened and unscreened regimes. This expression
augments the linear theory prediction as given in equation (22) to
give the full solution for G.¢. We shall briefly provide the particular
form of this expression for the three models considered in this work
and refer the reader to Ref. Lombriser (2016) for more details.

B1 nDGP

To parametrize nDGP gravity we consider (see Lombriser 2016)

CE
H_(k*)] -1, (B2)

where k, corresponds approximately to the Vainshtein radius:

AGpcp,NL _ 1 ks }
Gx 38(a) \ k

_ 16mGnSMr?

opr (B3)

Ty
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where M is the mass enclosed by a spherical region, r, is the
crossover scale in nDGP theories, and fB(a) is given below. The
Vainshtein radius effectively defines a region where the fifth force
introduced by the scalar field gets shielded. The effective screening
wavenumber k. can in principle be modelled. However, it is treated
as a free parameter in mg-evolution. The function S(a) reads as

H
=120 (145 ) B4
Bla)=1+2Hr(1+ 0 (B4)
and the linear effective gravitational constant in nDGP is given by
G 1
et L _ gy . (BS)
Gn 3B(a)

We remind the reader that a cosmological background that matches
that of ACDM is assumed.

B2 Cubic Galileon

To parametrize the Cubic Galileon we adopt equation (22), with the
nonlinear parametrization
1

AGcg L k)’ K\’

—— = — 1 — —15. B6
o ()3 (5 (B6)

To obtain the linear regime parametrization we use the effective

gravitational potential in Cubic Galileon theory in the linear regime,
which reads as (Barreira et al. 2013a)

AGegL _ 2 e3¢’

= B7

Gy 3 Mp1M3ﬂ2 (B7)
where ¢ is the Galileon scalar field. 8, and M? read,
py=22Nng, (BS)
M = MuH?, (B9)
where

1 .

=_— |—¢ 2H 2 4. B10
B 6cs - (¢+ é) + M2M6¢ (B10)
We consider ¢; = —1 and we use the tracker solution (Bellini et al.
2018),

hH
g= 21 ®B11)
Mleo

where £ is a constant and can be written in terms of ¢y, c3,
f=—2 o] (B12)

- 66‘3 66‘3 ’
As a result, we have the following solutions for ¢ and ¢
. EMpHF . EMuHGH

= =2 2 B13
p="—1 b= (B13)

Following the discussion presented in Ref. Barreira et al. (2013b) for
the background tracker solution, we can derive the Hubble expansion
rate as a function of scale factor

HZ

1
FOZ = 3 [ (Qm,oaf3 + Qr,oa%)

v/ (@uoa= + Quoa) +4 (1~ Qo — o) |, B1Y)

where H} = 8”36 inmg-evolution units and €2, is the radiation

energy density fraction today. Computing the cosmic time derivative
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results in,
H + Hz _ (anﬂ + 2Qr,0)
H? 4a?
(an o+ Qr 0)Bam,o + 4Qr 0)

40\ 41 = Qg — Qu) + “neiuo’?
2

aQmo + Qr0)?
F T4 = g = @) 4 CmO T

B3 K-mouflage

Here we derive the effective gravitational constant appearing in the
non-linear Poisson equation for the K-mouflage model described in
Section 2.3. We follow Ref. Lombriser (2016). We also note that
a conformal factor, A(gp), still needs to be applied to transform the
density appearing in the non-linear Poisson equation which is not
included in the G efr €xpressions below.

The effective modification assuming a spherically symmetric
matter distribution is given as (Brax & Valageas 2014b; Winther &
Ferreira 2015a)

AGgmerr 282
Gn KxHi\ M3y

(B15)

Using the Klein—Gordon equation for a spherically symmetric matter
distribution we can write Ky as

2p%

KiX=——15—
X Hix M2

FZ, (B16)

where the Newtonian force is just Fy = GyM(< r)/r?, r being the
physical radial coordinate and M (< r) being the mass enclosed in
radius r. Substituting for Ky in equation (B15) gives

AGgmerr  Px 1 JX
SURmett _ PR /oX . (B17)
G M, Fx

Now to solve for X we can adopt the model in equation (14). By
using equation (A16) to solve equation (B16) we get

_ HiPMG 1 - f)F

- , (B18)

6Ko fx)

where
1

flo) = (1—|—x+ x(x+2))3 , (B19)
and we have defined x = —C,/r*, C4 being a parameter propor-

tional to K, defined as

54BEGEM?

Ci=———"Kp. B20
A HA2 0 (B20)

We have written M = M (< r) for compactness. It should be pointed
out that x € (—2, 0) yields no solution for X which can be a problem
for very large r and Ky > 0. This will not generally be an issue as
we look for solutions in the non-linear regime.

Substituting equation (B18) into equation (B17) gives

AGgMm,eff 1—fx)
< _ ¢ , B21
Gn ENETIE) 21
where
Cp =3v282. (B22)

We note that in Ref. Lombriser (2016) there seems to be a missing
factorof 1/ (24/2)in equation (3.26) in order to have the identification
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Cy= C%. We allow here the case when x < 0 which can occur for
Ky > 0. Further, we note C; = —Cpg, C; and C; being the equivalent
quantities for C4 and Cp in Ref. Lombriser (2016). We include a
Mathematica notebook with our derivations.

We now derive the PPF expression from the limits of equa-
tion (B21):

AGgM.eft i
% - 282 for  |x| <1 @Ge.r*>|C4l),
N
(B23)
AGKM eff Cpr*?

for [x] > 1 (Ge.r* < |CalD),

Gy (—Co'7
(B24)
which are the same limits obtained by Ref. Lombriser (2016).

‘We now map these onto the (real space) PPF expression, equation
(5.3) of Ref. Lombriser (2016)

1
AGesr (1 +s4)m —1
- L B25
Cn pip2 a7 (B25)
where
P1
ar = P3, (B26)
! p1—1
and s = Ysr/yn- y is the normalized top-hat radius
R
y = Jm/a (B27)
Ri/a;
© 2024 The Author(s).
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Rry and R; are the comoving halo top-hat radius and g; the initial
scale factor. The dimensionless screening scale is given by

p7
Ysor = paa®s (2Gnx HyMyi)Pe (y—> (B28)

Yh
Yeny Tefers to the normalized radius of the environment and M,;; is
the virial mass of the halo.
Comparing equation (B25) and equation (B28) with equa-
tion (B23) and equation (B24) we find, for a choice of p,

26% 4p—1
P2=— 3= ,
D1 3 m
1
—V2KopiBE | " .t
Py = TIK 931.07
ps = —1, ps = 1/6, p7=0. (B29)

We note that whether there’s a p; in p3 depends on whether p; is
positive or negative (see equation 2.14 of Ref. Lombriser 2016). We
have also used My;; & 47 Q. 0 Perit Rey /3.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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