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Abstract. We review our recent investigations on vortex type-solutions in ABJM theory
without and with mass deformation. By imposing suitable supersymmetric conditions, we obtain
vortex-type half-BPS equations and also its energy bound. For the undeformed ABJM theory,
the resulting half-BPS equation is the same as that in SYM theory. For the mass-deformed
ABJM theory, the half-BPS equations for U(2)×U(2) case reduce to the vortex equation in
Maxwell-Higgs theory, which supports static regular multi-vortex solutions. In U(N)×U(N)
case with N > 2 we obtain the nonabelian vortex equation of Yang-Mills-Higgs theory with a
suitable ansatz. We also discuss less supersymmetric cases.

1. Introduction
The Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [1] is known to be the low-energy
limit of world-volume theory of multiple M2-branes. The ABJM theory is given in the basis of
brane constructions and is described by (1+2)-dimensional N=6 supersymmetric Chern-Simons-
matter theories with U(N)×U(N) or SU(N)×SU(N) gauge group and a sextic scalar potential.
In large N limit, the ABJM theory is dual to M-theory on AdS4 × S7/Zk, where k is related
with the discrete level of Chern-Simons term.

Chern-Simons-Higgs theory with a sextic scalar potential has been first introduced in order
to saturate the BPS bound for the static multi-BPS vortex solutions [2]. It also arises in the
supersymmetric abelian Chern-Simons-Higgs theories [3]. The sextic potential of the theory
has both the symmetric and broken vacua, which allows a rich spectrum of solition solutions.
In addition to the topologically stable multi-BPS vortices and domain walls, marginally stable
nontopological solitons (or Q-balls) and nontopological vortices (or Q-vortices) also exist [4].
Extension to U(1)×U(1) gauge group [5] and nonabelian gauge group [6] has also been made.
Therefore, in the scheme of (1+2)-dimensional quantum field theories, the mass-deformed
ABJM theories may be understood as complicated Chern-Simons-Higgs theories with extended
supersymmetries and the undeformed ABJM theories as their superconformal limit.

In this paper, we review our recent works on vortex-type solutions in ABJM theory [7, 8]. We
will first consider the simplest N = 2 U(1) Chern-Simons-Higgs theory by focusing on obtaining
BPS bound and the Bogomoln’yi equation. This will serve as a prototype of later analysis.
Then we discuss the vortex-type half-BPS objects of the ABJM theory without and with mass
deformation. We also comment on less sypersymmetric BPS cases.
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2. Brief review of U(1) Chern-Simons-Higgs theory
In this section we will briefly review U(1) Chern-Simons-Higgs theory and its generalization to
N = 2 supersymmetric theory. The result will be used later when analyzing the ABJM theory.
The pure Chern-Simons Higgs theory is described by the Lagrangian

LB = −|Dµφ|2 +
κ

2
εµνρAµ∂νAρ − V (φ) , (1)

where Dµφ = (∂µ + iqAµ)φ. A characteristic feature of the Chern-Simons theory is that
any excitations with the electric charge must also carry magnetic flux. This can be seen by
considering the Gauss constraint,

−κB = −κ(∂1A2 − ∂2A1) = qJ0, (2)

where Jµ is the conserved current Jµ = i(φ∗Dµφ− φDµφ
∗).

The energy functional is given by

E =

∫
d2x

[
|D0φ|2 + |Diφ|2 + V (φ)

]
. (3)

After some reshuffling, we can rewrite the energy as

E =

∫
d2x

{
(∂0|φ|)2 + |(D1 ± iD2)φ|2 +

∣∣∣∣ κB2qφ
± q2

κ
φ∗(v2 − |φ|2)

∣∣∣∣2
+

[
V − q4

κ2
|φ|2(|φ|2 − v2)2

]}
± qv2Φ , (4)

where Φ is the magnetic flux and we have eliminated A0 by use of the Gauss law. Hence with
the choice,

V (φ) =
q4

κ2
|φ|2(v2 − |φ|2)2 , (5)

we have a lower bound on the energy,

E ≥ qv2|Φ|. (6)

The equality is saturated by the static fields obeying the Bogomoln’yi equations [2],

(D1 ± iD2)φ = 0 ,

qB = ±
m2
H

2

|φ|2

v2

(
1− |φ|

2

v2

)
, (7)

where mH = 2q2v2/|κ| is the mass of the Higgs field and the upper (lower) sign corresponds
to positive (negative) values of Φ. Note that the right hand side of the second equation has
additional multiplicative |φ|2 factor compared with that of Maxwell-Higgs case. A consequence
of this difference is that the magnetic field vanishes at vortex points and hence the magnetic
field is ring-shaped for n 6= 0.

The theory (1) with the potential (5) is actually a bosonic part of the N = 2 supersymmetric
theory

L = LB + iψ̄γµDµψ +
q2

κ
(3|φ|2 − v2)ψ̄ψ, (8)
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which is invariant under the supersymmetric variation

δφ = η̄ψ,

δAµ = i
q

κ
(ψ̄γµηφ+ η̄γµψφ

∗),

δψ = γµηDµφ+
q2

κ
ηφ(|φ|2 − v2), (9)

where η is a complex spinor.
It is not difficult to show that requiring δψ = 0 with the supersymmetric condition

γ0η = ∓iη, (10)

reproduces (7). Note that (10) breaks half of the supersymmetry. Therefore the solutions of (7)
are half-BPS objects.

On substituting the first equation of (7) into the second equation, we obtain a single second
order nonlinear differential equation,

∇2 ln
|φ|2

v2
= −m2

H

|φ|2

v2

(
1− |φ|

2

v2

)
+ 4π

n∑
p=1

δ(x− xp) , (11)

where xp’s are zeros of φ and n, the number of zeros, is the vorticity. The boundary condition
at infinity is determined from the finite energy condition, i.e.,

|φ| −→ 0 or v, as r −→∞. (12)

Therefore both the topological (|φ(∞)| = v) and the nontopological (|φ(∞)| = 0) soliton
solutions are possible. A characteristic feature of the solutions is that, unlike those in the
Maxwell-Higgs theory, they carry nonzero angular momenta. Suppose that the scalar field
behaves φ ∼ 1

rα as r → ∞ (α = 0 for topological solitons). In the rotationally symmetric case,
the angular momentum is calculated as J = πκ

q2
(α2 − n2). Thus the vortex solutions behave as

anyons obeying fractional statistics.

3. ABJM theory and its vortex-type BPS solutions
The ABJM theory is an N = 6 superconformal U(N) × U(N) Chern-Simons gauge theory
with level (k,−k), coupled to four complex scalars and four fermions in the bifundamental
representation,

SABJM =

∫
d3x

{
k

4π
εµνλtr

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
− tr

(
DµY

†
AD

µY A
)

+ tr
(
ψA†iγµDµψA

)
− Vferm − V0

}
, (13)

where A = 1, . . . , 4 and
DµY

A = ∂µY
A + iAµY

A − iY AÂµ. (14)

In the ABJM action (13), Vferm is the Yukawa-type quartic-interaction term,

Vferm =
2iπ

k
tr
(
Y †AY

AψB†ψB − Y AY †AψBψ
B† + 2Y AY †BψAψ

B† − 2Y †AY
BψA†ψB

− εABCDY †AψBY
†
CψD + εABCDY

AψB†Y CψD†
)
, (15)
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and V0 is the sixth-order scalar potential,

V0 = −4π2

3k2
tr
(
Y AY †AY

BY †BY
CY †C + Y †AY

AY †BY
BY †CY

C

+ 4Y AY †BY
CY †AY

BY †C − 6Y AY †BY
BY †AY

CY †C
)
. (16)

The action (13) is invariant under the N = 6 supersymmetry transformation [1, 9, 10, 11],

δY A = iωABψB,

δψA = γµωABDµY
B + ωBC

(
βBCA + δ

[B
A β

C]D
D

)
,

δAµ = −2π

k

(
Y AψB†γµωAB + ωABγµψAY

†
B

)
,

δÂµ =
2π

k

(
ψA†Y BγµωAB + ωABγµY

†
AψB

)
, (17)

where ωAB are supersymmetry transformation parameters with

ωAB = ω∗AB =
1

2
εABCDωCD, (18)

and

βABC =
4π

k
Y [AY †CY

B]. (19)

There exists a unique mass deformation of the ABJM theory which respects the full N = 6
supersymmetry [9]. For the mass-deformed theory, the transformations (17) remain unchanged
except the fermion fields for which there is an additional transformation,

δmψA = µM B
A ωBCY

C , (20)

where µ is the mass deformation parameter and MB
A = diag(1, 1,−1,−1). The modified

supersymmetry transformation leads to the following additional terms to the Lagrangian,

∆Vferm = trµψ†AM B
A ψB,

∆V0 = tr

(
4πµ

k
Y AY †AY

BM C
B Y †C −

4πµ

k
Y †AY

AY †BM
B
C Y C + µ2Y †AY

A

)
. (21)

The form of the potential is not manifestly positive-definite. As in U(1) case of the previous
section, however, it can be written in a positive-definite form [12, 13],

Vm = V0 + ∆V0 =
2

3

∣∣∣βBCA + δ
[B
A β

C]D
D + µM

[B
A Y C]

∣∣∣2 , (22)

where we have introduced the notation |O|2 ≡ trO†O.
From (22) the vacuum equation of the mass-deformed theory is

βBCA + δ
[B
A β

C]D
D + µM

[B
A Y C] = 0. (23)

There is essentially a unique irreducible solution [14]:

Y 1
mn = δmn

√
kµ

2π

√
m− 1 , Y 2

mn = δm,n+1

√
kµ

2π

√
N −m, Y 3 = Y 4 = 0. (24)

General vacuum configuration would be direct sums of these irreducible solutions or those with

the substitution Y 1, Y 2 ↔ Y †3 , Y
†
4 . See [15] for details.

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012057 doi:10.1088/1742-6596/343/1/012057

4



3.1. Half-BPS equations
In this paper, we are interested in half-BPS vortex-type equations. Considering (10) in U(1)
case, it is natural to impose the supersymmetric condition

γ0ωAB = isABωAB, sAB = sBA = ±1. (25)

After some algebra, we find that δψA = 0 gives

(D1 − isABD2)Y
B = 0,

δ
[B
A D0Y

C] − isBC
(
βBCA + δ

[B
A β

C]D
D + µM

[B
A Y C]

)
= 0, (no sum over B,C). (26)

The same equation can also be obtained from the bosonic part of the energy,

E =
1

3

∫
d2x tr

2
∑
A,B,C

∣∣∣δ[BA D0Y
C] − isBC

(
βBCA + δ

[B
A β

C]D
D + µM

[B
A Y C]

)∣∣∣2

+
∑
A6=B
|(D1 − isABD2)Y

A|2


+ is tr

∫
d2xεij∂i

(
Y †1DjY

1 − 1

3

4∑
A=2

Y †ADjY
A

)
− s

3
µ tr

∫
d2x(j0 + 2J0

12), (27)

where j0 and J0
12 are respectively the charge density associated with the overall U(1) rotation

and that for an SU(4) roration Y 1 → e−iαY 1, Y 2 → eiαY 2, i.e.,

jµ = i(Y ADµY
†
A −DµY

AY †A),

J12µ = i(Y 1DµY
†
1 −DµY

1Y †1 )− i(Y 2DµY
†
2 −DµY

2Y †2 ). (28)

For any well-behaved BPS configuration satisfying the Bogomolnyi equations (26), the energy
is bounded by both the U(1) charge Q = tr

∫
d2x j0 and the R-charge R12 = tr

∫
d2xJ0

12,

E ≥ 1

3
|µ(Q+ 2R12)|. (29)

Note that the energy bound is proportional to the mass-deformation parameter µ. Therefore, in
the undeformed theory, there would be no finite energy regular solution to the half-BPS equations
other than vacuum configurations. One can neverthless consider solutions with infinite enrgy,
which may be physically important in the context of string theory.

For the original ABJM theory without mass deformation (µ = 0), it can be shown that the
Bogomolnyi equation (26) is equivalent to [7]

(D1 − isD2)Y
1 = 0,

Y A = vAI, (A = 2, 3, 4),

B = B̂ = −s
2

(
2πv

k

)2

[Y 1, Y †1 ], (30)

where vA (A = 2, 3, 4) are constants and v2 =
∑4

A=2 |vA|2. The equation (30) is the same as
the half-BPS equation of super Yang-Mills theory with the identification gYM = 2πv

k which has
appeared in the contexed of the compactification of ABJM theory (from M2 to D2) [16, 17].
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Under a suitable ansatz [7], (30) is reduced to (affine-) Toda-type equation,

∂∂̄ ln |ya|2 = 4v

(
2π

k

)2 N−1∑
b=1

Kab

(
|yb|2 −

|G(z)|2

|cb|2
∏N−1
c=1 |yc|2

)
,

yM =
G(z)∏N−1
a=1 ya

, (31)

where G(z) is an arbitrary holomorphic function. For SU(2), this becomes Liouville-type
equation (with G = 0) or Sinh-Gordon-type equation (with G =const.).

In the mass-deformed theory (µ 6= 0), it is very difficult to anlyze the equations in the most
general way except N = 2, 3. Here we content ourselves with discussing N = 2 case in detail.
Then we will briefly mention higher rank cases. See [7] for details. For N = 2, we can solve the
equations in (26) which do not contain derivatives and find that the scalar fields can be written
in the form

Y 1 =

√
kµ

2π

(
0 f
0 0

)
, Y 2 =

√
kµ

2π

(
a 0

0
√
a2 + 1

)
,

Y 3 = Y 4 = 0, (32)

while the magnetic fields take the diagonal form

B = B̂ = −2sµ2
(
a2(1 + |f |2) 0

0 (a2 + 1)(1− |f |2)

)
, (33)

where a is a nonnegative constant. Combining these two using the first equation in (26) gives

∂∂̄ ln |f |2 = µ2
[
(2a2 + 1)|f |2 − 1

]
+ π

n∑
p=1

δ(x− xp), (34)

This is nothing but the vortex equation appearing in Maxwell-Higgs theory. Comparing with
the vortex equation (11) in U(1) theory, we see that |φ|2 term is missing in the right-hand side
of (34). The energy of the solution is a sum of two terms,

E =
nkµ

2a2 + 1
+

∣∣∣∣kµ2π
B0 tr

∫
d2x

∣∣∣∣ , (35)

where B0 = −4sµ2a2(a2 + 1)/(2a2 + 1) is the asymptotic value of the magnetic field in (33).
Therefore solutions with nonzero a may be interpreted as vortices in a constant magnetic field.

Since we have seen in section 2 that solutions in U(1) theory carry nonzero angular
momentum, one may wonder if this is also the case in the ABJM theory. One can however
show that the angular momentum here vanishes contrary to the U(1) theory. This is essentially
because fields do not carry both charge and vorticity, i.e., either D0Y

A or DiY
A vanishes in the

ABJM theory.
It would be worthwile to examine the origin of the Maxwell-Higgs vortex equation (34) in

the mass-deformed ABJM theory which is a Chern-Simons gauge theory. For this purpose we
consider the ansatz

Y 1 =

√
kµ

2π

(
0 f
0 0

)
, Y 2 =

√
kµ

2π

(
0 0
0 g

)
, Y 3 = Y 4 = 0, (36)
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and calculate the form of the potential as a function of f and g. With g = 1 this reduces to (32)
with a = 0 so we would like to see how the potential changes as g changes. Plugging (36) into
(22), we have the following potential in the mass-deformed theory,

Vm(f, g) =

(
k

2π

)2

µ3[|f |2(|g|2 − 1)2 + |g|2(|f |2 − 1)2]. (37)

Then Vm vanishes at f = g = 0 and |f | = |g| = 1 as it should be. From this potential we
get the quartic potential (|f |2 − 1)2 with g = 1 which is the potential appearing in Maxwell-
Higgs theory. Note that the point f = 0, g = 1 is not a local maximum of the potential since
Vm(f = 0, g) ∼ |g|2. One may then wonder why the configuration does not roll down to the
origin. This is due to the special nature of the Gauss law in Chern-Simons gauge theory, namely
the magnetic field is proportional to the charge density as discussed in section 2. Replacing D0Y

2

by the magnetic field in the energy expression, we obtain an effective potential term |B/g|2 (see
(4)) which acts as a barrier at the origin (g → 0). This can be interpreted as a centrifugal term
inversely proportional to 1/g2 due to the rotation in Y 2 plane. Along the direction f = g, (37)
becomes the sextic potential |f |2(|f |2 − 1)2 which appears in (5) of U(1) theory. It turns out
that this direction corresponds to a less supersymmetric BPS case [8].

Closing the subsection we briefly comment on the case of U(N)×U(N) theories. An
interesting nontrivial solution is obtained with the ansatz generalizing (32) with a = 0 to a
block matrix form,

Y 1 =

√
kµ

2π

(
0N1×N1 FN1×N2

0N2×N1 0N2×N2

)
, Y 2 =

√
kµ

2π

(
0N1×N1 0N1×N2

0N2×N1 GN2×N2

)
, (38)

where N1, N2 are positive integers satisfying N1 + N2 = N and the subscript denotes
the dimensionality of each block. This form of ansatz results in the nonabelian vortex
equation in U(N2) Yang-Mills theory with N1 fundamental scalar fields and has been studied
extensively [18, 19]. Another interesting solution is obtained with a sort of irreducible
nondegenerate ansatz similar to (24),

Y 1
mn = δm+1,n

√
kµ

2π
fm, Y 2

mn = δmn

√
kµ

2π
am, (39)

where

am =
√
a21 +m− 1 . (40)

Here a1 is a nonnegative constant and f1, . . . , fN−1 are functions to be determined. Then we
obtain N − 1 coupled differential equations,

∂∂̄ ln |fn|2 = −µ2[a2n|fn−1|2 − (a2n + a2n+1)|fn|2 + a2n+1 + 1]. (41)

(Here we omit the usual delta funtion term in the right-hand side.) This type of coupled
equations has appeared in U(1)N−1 gauge theories with N − 1 Higgs fields which couple to the
gauge fields [20].

3.2. Less supersymmetric cases
Imposing supersymmetric conditions in addition to (25) further breaks supersymmetry. In this
subsection, we will consider a few representative cases and see how the resulting BPS equation
and its energy bound change. Details will be published in [8].
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The condition ω12 = 0 as well as (25) on the supersymmetry paramter ωAB reduces the
number of supersymmetries to four. With these conditions, δψA = 0 leads to the following set
of 1/3-BPS equations:

(D1 − isD2)Y
1 = 0, (D1 + isD2)Y

2 = 0,

D1Y
c = D2Y

c = 0, (c = 3, 4),

D0Y
1 + is(β212 + µY 1) = 0, D0Y

2 − is(β121 + µY 2) = 0,

D0Y
c + is(β2c2 − β1c1 ) = 0, (c = 3, 4),

β3a3 = β4a4 (a = 1, 2), β434 − µY 3 = β343 − µY 4 = 0,

β231 = β241 = β132 = β142 = β143 = β243 = β134 = β234 = 0. (42)

The energy is then given by
E = |µ trR12|. (43)

Note the difference from the half-BPS case (29).
When two among the three supersymmetry parameters vanish, e.g., ω13 = ω14 = 0, the

Bogomolnyi equations of all four complex scalar fields become nontrivial,

(D1 − isD2)Y
a = 0, (a = 1, 2), (D1 + isD2)Y

c = 0, (c = 3, 4),

D0Y
1 + is(βC1

C − 2β212 − µY 1) = 0, D0Y
2 + is(βC2

C − 2β121 − µY 2) = 0,

D0Y
3 − is(βC3

C − 2β434 + µY 3) = 0, D0Y
4 − is(βC4

C − 2β343 + µY 4) = 0,

β341 = β342 = β123 = β124 = 0. (44)

In this case, only N = 1 supersymmetry is unbroken and the solutions are 1/6-BPS objects.
The energy turns out to be bounded by the U(1) charge,

E = |µQ|. (45)

As in the half-BPS case, one can assume various form of ansatz to find nontrivial vortex-type
solutions. In particular, when N = 2 the vortex equations are obtained which have appeared in
Maxwell-Higgs model with an independent Chern-Simons term [5]. The result will be reported
in the forthcoming publication [8].

4. Conclusion
In this paper we reviewed our recent investigations on vortex-type half-BPS equations in the
ABJM theory with or without mass deformation. We obtained the energy bound (29) which is
proportional to the mass-deformation parameter.

For the undeformed ABJM theory, we found that the BPS equation reduces to that in half-
BPS equation of supersymmetric Yang-Mills theory. It has no finite energy regular solution. In
the mass-deformed theory, we showed that the BPS equations for U(2)×U(2) case reduce to the
Maxwell-Higgs vortex equation which is known to have multi-vortex solutions. We explored the
origin of Maxwell-Higgs vortex in the Chern-Simons gauge theory. For U(N)×U(N) case with
N > 2, we obtained the nonabelian vortex equation of Yang-Mills-Higgs theory and also more
general equations.

By imposing further supersymmetric conditions, we found 1/3-BPS and 1/6-BPS equations.
The detailed analysis as well as its physical implication will be reported in the forthcoming
publication.
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