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Abstract. We review our recent investigations on vortex type-solutions in ABJM theory
without and with mass deformation. By imposing suitable supersymmetric conditions, we obtain
vortex-type half-BPS equations and also its energy bound. For the undeformed ABJM theory,
the resulting half-BPS equation is the same as that in SYM theory. For the mass-deformed
ABJM theory, the half-BPS equations for U(2)xU(2) case reduce to the vortex equation in
Maxwell-Higgs theory, which supports static regular multi-vortex solutions. In U(N)xU(N)
case with N > 2 we obtain the nonabelian vortex equation of Yang-Mills-Higgs theory with a
suitable ansatz. We also discuss less supersymmetric cases.

1. Introduction

The Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [1] is known to be the low-energy
limit of world-volume theory of multiple M2-branes. The ABJM theory is given in the basis of
brane constructions and is described by (142)-dimensional A'=6 supersymmetric Chern-Simons-
matter theories with U(/N)xU(N) or SU(N)xSU(NV) gauge group and a sextic scalar potential.
In large N limit, the ABJM theory is dual to M-theory on AdS; x S7/Zj, where k is related
with the discrete level of Chern-Simons term.

Chern-Simons-Higgs theory with a sextic scalar potential has been first introduced in order
to saturate the BPS bound for the static multi-BPS vortex solutions [2]. It also arises in the
supersymmetric abelian Chern-Simons-Higgs theories [3]. The sextic potential of the theory
has both the symmetric and broken vacua, which allows a rich spectrum of solition solutions.
In addition to the topologically stable multi-BPS vortices and domain walls, marginally stable
nontopological solitons (or Q-balls) and nontopological vortices (or Q-vortices) also exist [4].
Extension to U(1)xU(1) gauge group [5] and nonabelian gauge group [6] has also been made.
Therefore, in the scheme of (142)-dimensional quantum field theories, the mass-deformed
ABJM theories may be understood as complicated Chern-Simons-Higgs theories with extended
supersymmetries and the undeformed ABJM theories as their superconformal limit.

In this paper, we review our recent works on vortex-type solutions in ABJM theory [7, 8]. We
will first consider the simplest N/ = 2 U(1) Chern-Simons-Higgs theory by focusing on obtaining
BPS bound and the Bogomoln’yi equation. This will serve as a prototype of later analysis.
Then we discuss the vortex-type half-BPS objects of the ABJM theory without and with mass
deformation. We also comment on less sypersymmetric BPS cases.
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2. Brief review of U(1) Chern-Simons-Higgs theory

In this section we will briefly review U(1) Chern-Simons-Higgs theory and its generalization to
N = 2 supersymmetric theory. The result will be used later when analyzing the ABJM theory.
The pure Chern-Simons Higgs theory is described by the Lagrangian

R

P A0, A, — V() , (1)

where D,¢ = (0, + iqA,)¢. A characteristic feature of the Chern-Simons theory is that
any excitations with the electric charge must also carry magnetic flux. This can be seen by
considering the Gauss constraint,

—kB = —k(0142 — 02 A1) = qJo, 2)

where J, is the conserved current J, = i(¢* Dy — ¢D,,0%).
The energy functional is given by

B~ [ @ [1Doof + Do + V(o) 3)
After some reshuffling, we can rewrite the energy as
kB ¢? 2
E= /d% {(80|¢>I)2 + (D1 £iD2)df* + | — & =" (v — [8])
@ K
q¢* 201412 2\2 2
|V = Gloor - 7] | £ e, (1

where & is the magnetic flux and we have eliminated Ay by use of the Gauss law. Hence with
the choice,

4
V(9) = 516l — |8, (5)

we have a lower bound on the energy,
E > quv?|®|. (6)
The equality is saturated by the static fields obeying the Bogomoln’yi equations [2],

(D1 +iDs)p =0,
o — 2 lof (1—W), )

2 o2 v2

where mpy = 2¢?v?/|x| is the mass of the Higgs field and the upper (lower) sign corresponds
to positive (negative) values of ®. Note that the right hand side of the second equation has
additional multiplicative |¢|? factor compared with that of Maxwell-Higgs case. A consequence
of this difference is that the magnetic field vanishes at vortex points and hence the magnetic
field is ring-shaped for n # 0.

The theory (1) with the potential (5) is actually a bosonic part of the N' = 2 supersymmetric
theory

— 2 —
£ = L+ i7" Do + - (3[0] — v)iv, ®)



7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012057 doi:10.1088/1742-6596/343/1/012057

which is invariant under the supersymmetric variation

o =y,
5Au = i%(@f_mﬂ?ﬁb + ﬁVu@ZJCZ)*)a

2
5% = 7"1Dud + L[] - v?), (9)

where 7 is a complex spinor.
It is not difficult to show that requiring 4% = 0 with the supersymmetric condition

' = Fin, (10)

reproduces (7). Note that (10) breaks half of the supersymmetry. Therefore the solutions of (7)
are half-BPS objects.

On substituting the first equation of (7) into the second equation, we obtain a single second
order nonlinear differential equation,

VZIn |¢| mH|¢‘2 (1 - |¢|2) +4r Zé X —Xp), (11)

where x,’s are zeros of ¢ and n, the number of zeros, is the vorticity. The boundary condition
at infinity is determined from the finite energy condition, i.e.,

|| — 0 or v, asr— oc. (12)

Therefore both the topological (|¢(o0)| = v) and the nontopological (|¢(c0)| = 0) soliton
solutions are possible. A characteristic feature of the solutions is that, unlike those in the
Maxwell-Higgs theory, they carry nonzero angular momenta. Suppose that the scalar field
behaves ¢ ~ r% as 7 — 0o (o = 0 for topological solitons). In the rotationally symmetric case,
the angular momentum is calculated as J = Z—?(az —n?). Thus the vortex solutions behave as
anyons obeying fractional statistics.

3. ABJM theory and its vortex-type BPS solutions

The ABJM theory is an N/ = 6 superconformal U(N) x U(N) Chern-Simons gauge theory
with level (k,—k), coupled to four complex scalars and four fermions in the bifundamental
representation,

k 2 S 2%
SaBIM = / e {471_6’“’)“51‘ <A,@AA + 5%4,“%14A — A,0,4, — ;AMAVAA>
—tr(DYIDHYA) + tr (v Do 4) — Vierm — VO}, (13)
where A=1,...,4 and R
DYA =09, YA +iA, YA —ivAA, (14)

In the ABJM action (13), Vi is the Yukawa-type quartic-interaction term,
29

Ve = ==t (YAY 40 s = YAV g 4+ 2Y Ayt — 2y Y Pyt

— ABCPY T pYiwp + eapopY APy CypPt), (15)
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and Vj is the sixth-order scalar potential,
A7 2
Vo=—25 tr(YAYIYBY Ly OY) + vivAv iy By y©
H4YAYLYOYIY Byl — 6y AV Y BY v ey]). (16)
The action (13) is invariant under the N' = 6 supersymmetry transformation [1, 9, 10, 11],
YA = iwByp,

54 = VwapD,YP +wpe (5],340 + 51[5 %]D) ,

0A, = 2]: (YApPlywap + wABrypaY)),
5121# = 2% (wATYB%WAB + WABWYQW)? (17)
where wyp are supersymmetry transformation parameters with
WAB = o = %EABCDMCD7 (18)
and
paP = %Y[AYCTYB]. (19)

There exists a unique mass deformation of the ABJM theory which respects the full N' = 6
supersymmetry [9]. For the mass-deformed theory, the transformations (17) remain unchanged
except the fermion fields for which there is an additional transformation,

Smtpa = puM PwpcY©, (20)

where g is the mass deformation parameter and M f = diag(1,1,—1,—1). The modified
supersymmetry transformation leads to the following additional terms to the Lagrangian,

A‘/ferm =tr MwTAMAB¢B7

4 4
AV = tr <?YAYQYBMBCY5 7};“ YivAY MPYe + ,EY*YA) (21)

The form of the potential is not manifestly positive-definite. As in U(1) case of the previous
section, however, it can be written in a positive-definite form [12, 13],

2 2
Vi = Vo + AV = 5 |85 + 810857 + n (Y9, (22)
where we have introduced the notation |O|? = trOTO.
From (22) the vacuum equation of the mass-deformed theory is
B5C + 07807 + uh Pyl = o, (23)

There is essentially a unique irreducible solution [14]:

k
Yﬂl”m:(smn\/g m—1, mn: mn—&-l\/»\/i Y3:Y4:0. (24)

General vacuum configuration would be direct sums of these irreducible solutions or those with
the substitution Y1, Y? « Y3T, Y, . Sec [15] for details.
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3.1. Half-BPS equations
In this paper, we are interested in half-BPS vortex-type equations. Considering (10) in U(1)
case, it is natural to impose the supersymmetric condition

Ywap = isapwas, SAB = spa = *1. (25)
After some algebra, we find that 4 = 0 gives
(D1 - iSABDQ)YB = 0,

5L{3D0Yc} — iSBC (BBAC + (51[433%][) + MMABYC}) =0, (no sum over B, C). (26)

The same equation can also be obtained from the bosonic part of the energy,

1 ) 2
B=g [dar {2 Y Doy —isnc (357 + 065" + unt Py
A,B,C
+ Z ‘(Dl — iSABDQ)YA‘Q
A£B
1 o S
+is tr/d2$€z’j3i (YlTDle -3 YXDJ‘YA> -3 Mtr/dzw(jo +2J),  (27)
A=2

where j° and JY, are respectively the charge density associated with the overall U(1) rotation
and that for an SU(4) roration Y! — e~ @Y1 Y2 — ¢9Y?2 je.,

ju=i(YAD, Y — D, YAY]),
Jio, = i(Y'D,Y] — D, Y'Y —i(Y2D,Y, — D,Y?Y)). (28)

For any well-behaved BPS configuration satisfying the Bogomolnyi equations (26), the energy
is bounded by both the U(1) charge @ = tr [ d?z j° and the R-charge Ri2 = tr [ d?z JY,,

B> 2 |u(Q +2Rw)!. (29)

Note that the energy bound is proportional to the mass-deformation parameter p. Therefore, in
the undeformed theory, there would be no finite energy regular solution to the half-BPS equations
other than vacuum configurations. One can neverthless consider solutions with infinite enrgy,
which may be physically important in the context of string theory.

For the original ABJM theory without mass deformation (@ = 0), it can be shown that the
Bogomolnyi equation (26) is equivalent to [7]

(D1 —isDo)Y! =0,

YA =47, (A=23,4),
- s (20> 1t
B=B=- (= vy, (30)

where v (A = 2,3,4) are constants and v®> = 3% _, [v4|?. The equation (30) is the same as
2mv

the half-BPS equation of super Yang-Mills theory with the identification gyn = =% which has
appeared in the contexed of the compactification of ABJM theory (from M2 to D2) [16, 17].
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Under a suitable ansatz [7], (30) is reduced to (affine-) Toda-type equation,

2 N—-1 2
ooty =0 () X (rbe— Jae) 2>,
P I15 o

b=1
G(z)
YM = —n—1—> (31)
Hivzll Ya

where G(z) is an arbitrary holomorphic function. For SU(2), this becomes Liouville-type
equation (with G = 0) or Sinh-Gordon-type equation (with G =const.).

In the mass-deformed theory (u # 0), it is very difficult to anlyze the equations in the most
general way except N = 2,3. Here we content ourselves with discussing N = 2 case in detail.
Then we will briefly mention higher rank cases. See [7] for details. For N = 2, we can solve the
equations in (26) which do not contain derivatives and find that the scalar fields can be written

in the form
Yl — ki 0 f Y2 _ k‘i a 0
Vor\0 0/’ Vor\0 Va2+1)’

y3=v%=0, (32)

while the magnetic fields take the diagonal form

. a*(1+f]%) U
B—B——23u2< 0 (a2+1)(1—|f|2)>’

where a is a nonnegative constant. Combining these two using the first equation in (26) gives

(33)

801n |f? = p® [(2a> + 1)|f|> — +7TZ<5X Xp), (34)

This is nothing but the vortex equation appearing in Maxwell-Higgs theory. Comparing with
the vortex equation (11) in U(1) theory, we see that |¢|? term is missing in the right-hand side
of (34). The energy of the solution is a sum of two terms,

nku kp 2
2a2+1+'27r Or/ o

(35)

where By = —4su?a®(a? +1)/(2a® + 1) is the asymptotic value of the magnetic field in (33).
Therefore solutions with nonzero a may be interpreted as vortices in a constant magnetic field.

Since we have seen in section 2 that solutions in U(1) theory carry nonzero angular
momentum, one may wonder if this is also the case in the ABJM theory. One can however
show that the angular momentum here vanishes contrary to the U(1) theory. This is essentially
because fields do not carry both charge and vorticity, i.e., either DgY4 or D;Y4 vanishes in the
ABJM theory.

It would be worthwile to examine the origin of the Maxwell-Higgs vortex equation (34) in
the mass-deformed ABJM theory which is a Chern-Simons gauge theory. For this purpose we
consider the ansatz

Yl_,/];“<8 ‘5) Y2_,/§’“‘<8 2), Y3=Yv*=0, (36)
T T
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and calculate the form of the potential as a function of f and g. With g = 1 this reduces to (32)
with a = 0 so we would like to see how the potential changes as g changes. Plugging (36) into
(22), we have the following potential in the mass-deformed theory,

2
Valfi) = (52 ) WP = 0P + L1 - 17 (37)

Then Vi, vanishes at f = g = 0 and |f| = |g| = 1 as it should be. From this potential we
get the quartic potential (|f|?> — 1)? with ¢ = 1 which is the potential appearing in Maxwell-
Higgs theory. Note that the point f = 0, g = 1 is not a local maximum of the potential since
Vio(f = 0,9) ~ |g|?>. One may then wonder why the configuration does not roll down to the
origin. This is due to the special nature of the Gauss law in Chern-Simons gauge theory, namely
the magnetic field is proportional to the charge density as discussed in section 2. Replacing DY
by the magnetic field in the energy expression, we obtain an effective potential term |B/g|? (see
(4)) which acts as a barrier at the origin (¢ — 0). This can be interpreted as a centrifugal term
inversely proportional to 1/¢g? due to the rotation in Y2 plane. Along the direction f = g, (37)
becomes the sextic potential |f|?(|f|> — 1)® which appears in (5) of U(1) theory. It turns out
that this direction corresponds to a less supersymmetric BPS case [§].

Closing the subsection we briefly comment on the case of U(N)xU(N) theories. An
interesting nontrivial solution is obtained with the ansatz generalizing (32) with a = 0 to a
block matrix form,

[k (On wn: FNixN ku (On,xny Onyxav:
yi— /2 1xX Ny 1 X N2 7 v2— /22 1X Ny 1X N3 , 38
27 <0N2><N1 ONZXNQ 2 0N2><N1 GNQXNQ ( )
where Ni, No are positive integers satisfying Ny + No = N and the subscript denotes
the dimensionality of each block. This form of ansatz results in the nonabelian vortex
equation in U(N2) Yang-Mills theory with N; fundamental scalar fields and has been studied

extensively [18, 19]. Another interesting solution is obtained with a sort of irreducible
nondegenerate ansatz similar to (24),

ku ku
Yr#n = Om+1,n %fm’ Yrin = Omn %am, (39)
where
am =/a? +m—1. (40)
Here ay is a nonnegative constant and fi,..., fy_1 are functions to be determined. Then we
obtain N — 1 coupled differential equations,
d0n ‘fn’2 = —MQ[GiIfn—ﬂQ - (a721 + ai+1)’fn|2 + ai+1 +1]. (41)

(Here we omit the usual delta funtion term in the right-hand side.) This type of coupled
equations has appeared in U(1)¥~! gauge theories with N — 1 Higgs fields which couple to the
gauge fields [20].

3.2. Less supersymmetric cases

Imposing supersymmetric conditions in addition to (25) further breaks supersymmetry. In this
subsection, we will consider a few representative cases and see how the resulting BPS equation
and its energy bound change. Details will be published in [8].
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The condition wjs = 0 as well as (25) on the supersymmetry paramter wap reduces the
number of supersymmetries to four. With these conditions, d1p4 = 0 leads to the following set
of 1/3-BPS equations:

(D1 —isD9)Y =0, (D1 +isD9)Y? =0,
Dlyc = DQYC = 0, (C = 3,4),
DoY! +is(B% 4+ uYt) =0, DoY? —is(B2 4+ uY?) =0,
DoY® +is(6% — ) =0, (c=3,4),
=81 (a=12), BY —nY?=p% -yt =0,
=gl =g =gl =gl =Y = =5 =0 (42

The energy is then given by
E:|IMtI‘R12‘. (43)

Note the difference from the half-BPS case (29).
When two among the three supersymmetry parameters vanish, e.g., wi3 = wis = 0, the
Bogomolnyi equations of all four complex scalar fields become nontrivial,

(Dy —isDo)Y* =0, (a=1,2), (D1 +isDo)Y¢ =0, (c=3,4),
DoY?' +is(BY — 2% — p¥?) =0, DoY? +is(BF — 28 — uY?) =0,
DoY? —is(BG —28% + uY?) =0, DoY* —is(BG —28% + uy?*) =0,

3 g% = pl2=gl2_, (44)

In this case, only N/ = 1 supersymmetry is unbroken and the solutions are 1/6-BPS objects.
The energy turns out to be bounded by the U(1) charge,

E = uQ). (45)

As in the half-BPS case, one can assume various form of ansatz to find nontrivial vortex-type
solutions. In particular, when N = 2 the vortex equations are obtained which have appeared in
Maxwell-Higgs model with an independent Chern-Simons term [5]. The result will be reported
in the forthcoming publication [8].

4. Conclusion

In this paper we reviewed our recent investigations on vortex-type half-BPS equations in the
ABJM theory with or without mass deformation. We obtained the energy bound (29) which is
proportional to the mass-deformation parameter.

For the undeformed ABJM theory, we found that the BPS equation reduces to that in half-
BPS equation of supersymmetric Yang-Mills theory. It has no finite energy regular solution. In
the mass-deformed theory, we showed that the BPS equations for U(2)xU(2) case reduce to the
Maxwell-Higgs vortex equation which is known to have multi-vortex solutions. We explored the
origin of Maxwell-Higgs vortex in the Chern-Simons gauge theory. For U(NN)xU(N) case with
N > 2, we obtained the nonabelian vortex equation of Yang-Mills-Higgs theory and also more
general equations.

By imposing further supersymmetric conditions, we found 1/3-BPS and 1/6-BPS equations.
The detailed analysis as well as its physical implication will be reported in the forthcoming
publication.
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