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§ I. Введение 

6 настоящее время существуют два пути исследованвш электро­
магнитных свойств скалярных и векторных бозонов, исходящих вз 
волнового уравнения второго порядка Клейна-Гордона • Прока в из 
ураввенкв первого порядка, выведенных впервые в работах ' ' и 
имеющих формально такой же вид, как и уравнения Дирака 

где у имеет 16 Компонент и 8 -четыре местнадцатврядные 
матрицы ( ^ = i 4 -0 ; /~Л'. f= "/ '/"=•**'*> 

Описание, основанное на уравнениях Дэффина-Кеммера, 
обладает следующий достоинствами: во-первых, линейные уравнения 
(I.I) описывают своИотва свободных частиц со спином, равным 
как нулю ( V имеет пвть компонент), как и единице K'f имеет 
десять компонент), причем в обоих случаях матрицы 0 удовлет-

JJV. 
ворявт одним и тем же соотноиенияи 

Во-вторых, поскольку матрицы В удовлетворяют одним и тем 
же соотноиенияи (1.2), то общие формулы для матричных элементов, 
определяющих различные процесса взаимодействия частиц оо спином 
О и I,имеют одинаковый вид. Вероятности этих процессов для 
частиц обоих видов, конечно, отличавтон, т.к. отличаются следы 
произведений пятлрядных и десягирядных матриц В "• 

Для пятирядных матриц 
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sfato-mh 9 „9 —9 +9 —9 9 вою И -четное число 

О, e c u % - нечетное число. 
Для десятирядных матриц: 

r^)fly^WT~d>fJiif7<sr <$fi>frri/tJL Щ^т-ffs- Apfartfxtr 

d<rrtp*?/<y Mf/^/ty) " 1 , д * 
В-третьих, исследование ряда теории возмущении для О -матрицы 
формально будет таким же,как и в спинорной эпектродивамике, 
и, следовательно, вычисление матричных элементов <$ -матрицы 
ноавт производиться с помощью фейаааиовских диаграмм и правил, 
с единстиеянш различием, что вместо пропагаторов электронов 
следует подставить пропагаторы заряженных бозонов. Кроме того, 
вермшши диаграмм соответствует теперь в , а не У . 
Более того, в этой схеме доказательство градиентной инвариант­
ности теории выглядит весьма просто. Построение, таким образом, 
<S -матрицы б;дет технически прояе, чем в вариантах, основанных 

на уравнениях второго порядка / 3 » * / . 
Итак, мы будем строить S -матрацу нелокальной теория 

электромагнитных взаимодействий частиц со спином 0 и I , на 
основе уравнений первого порядка ( I . I ) , 

§ 2 . Постановка задачи 

исходный лагранжиан, описывающий электромагнитной 
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взаимодействие скалярных и минорных частиц, выбирается в 
форме 

_ (2.1) 

здесь у/х) = у ф д ? £ = ^ - £ . 
Нелокальность в лагранжиан взаимодействия входит через 

пиля фотонов 

где принадлежит подходящему пространст­
ву, нелокальных обобщенных функций W, а параметр £ имеет 
смывл элементарной длины. 

Наша задача состоит в том, чтобы найти о -матрицу в виде 
ряда по теории возмущений. Формально S -м.чцмвд записшаетоя 
в виде 

5 = Te*p{i?fib $*)fi VPfyfaQy С2.2) 
Для получения ряда теории возмущений необходимо разложить 
эхьповент^ в, (2 .2) Б ряд я о . е а перейти к N -произведению, 
операторов.,доля .J^fjcjL Л4 Wfc) согласно теореме.Вика, 

По определению,будем «читать, чяо "хронрлргичеекая" --



юергса размазанного электромагнитного поля запмсьааетоя • 
виде:. 

(nrfij -лг г -<£ 
В соответствии с результатами / 5 « 6 / будем предполагать, что 
форкфакхор \/(-егКг)={Х((гКг)] удовлетворяв» условиям: 

1) \/(г) - целая функция в комплексное 2 -плоскости 
порядка роста %&Р*- °о • 

2) []far=V6*) , 
3) Wx)}0 ПР* веиественнмх X , 

5) fduVOty-oo для спина 5 =0, 
pu,^ut//k)< оо Д»я спина 5 =1 • 

Иропагаюры заряженных частиц спина 5 =0 к 5 =1 записываются 
> виде 1см. 

"' ri-p-ie, /if^-pi-is) > 
г д а P'Pr£=6i-?f-

Теми оврагом , мн подучат общим! ряд георн воимумвиИ 
с единивши* отшпием , ito пртпиииаи фикции JOIOIHOFS 
подя ашшюма фуихцхн (2,3). 

• * \ 
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§ 3. Регаляризационная процедив 
Как неоднократно подчеркивалось аамх ранее '*t~6', построе­

ние S -матрицы по теории возмущений возможно лишь в ранках 
опрелелевного математического аппарата, связанного с чведеннеи 
промежуточной регуляризации. 

Сформулируем теперь регуляризациовную процедуру, которой 
нн бздей пользоваться при вычислении матричных элементов в 
теории возмущений. 

В квантовое электродинамике.в ряд; теорий возмущений под­
лежат регуляризации, во-первых, нелокальные лропагаюры фотона, 
п,во-вторых, замкну не циклы, образованные пропагатораш заря­
женных частиц. 

Для нелокального формфектора У[(г^)ъ области Kz<0 
справедливо представление медлила 

где 0</<Л . Функция Т/~(?) : 
1) регулярна > полуплоскости fjT>-2:: в этой области 

при любых /t'V и некотором с>о ; 
2) в точке 5" =-I HMef нуль, по крайней мере, первого 

порядка; 
3) -ги>)--4, -
4) }vfX)f=W.:*). 



Представление (ЗЛ) справедливо при А'ч<7. Для перехода 
в область к- >0 иеобходшо перейти от интегрирования в 
Г-плоскости от контура L„ к контуру£д (о^е&я/я) , где 

как показано на рис. I 

Рис. I . 

Введен регуляризованную функцию 

?, &* 
w=i>^^-^> л-l 

я*,.. 

(3.2) 

Функция Ю (кг) при $>0 : 
5) определена во всей коиплексной иг -плоскости и регуляр­

на везде, кроне разреза вдолв луча [ о , +°°) ; 

v ) От. Z)S(KZ)— §>(К*). 

Для функции §) (кг) существует фурве-образ 

tfo&h " ^ -&*& w*n *>> 
• 



г д а s-i sr -X-i 

Легко видеть, что функция £> (х) ограмчева в точке 
X =0. В окисле обобщенных функций 

&>n.®SM = £>(x). 

Таким образом, яри S>0,3fx) является локально интегрируе­
мой, и произведение типа Hgffc-•*,) также локально интегрируемо. 

Если теперь в качестве форм|актора V(c**2) выбрать 
функции, удовлетворяющие условие V(<*x!)->0 , при К2-*±ое. 
например, ехр^-кФ)*} или expf-frv*)*"} , где /f=I,2,... , 
то вместо функции Vfe)/sinWS-a выражениях (3.1) и (3.2) сле­
дует подставить функцию 

Для снятия регуляризации в матричных элементах S -матри­
цы достаточно перейти к евклидовой метрике по всем внутренним 
импульсам в интегралах, соответствующих любым связнш диаграм­
мам Феанмааа, поскольку 3 (кг) регулярна в полуплоскости 
1т,кг£0. После этого можно перейти к пределу S-*o, поскольку 
функции ^Г/г^убьшают при «^-«(подробнее см. / 5 / ) . 

Опишем теперь процедуру регуляризации заряженных циклов. 
Интегралы, соответствующие замкнутым циклам: 

составленным только из яропагаторов заряженных полей скаджрных 
или векторных бозонов, будем регуляризовать с помощью 

t 



частично видоизмененной циклической регуляризации Лаудм-Виплерса 
(сы. , например, / 8 Л - Это означает, что причинные функции 
заряженных частиц регуляризуются не цо отдельности, а замкнуты­
ми циклами. Если цикл шеет П вершин, тогда регуляриэованное 
выражение равно: 

где проведены замены 
J к 

еч> с = ел . 
Здесь S - спин заряженной частицы, в нашей случае s =0 или I. 

А , { j =1,2,...а) - большие безразмерные параметры регуля­
ризации, мы их выберем в виде Л =/]+£., где/l^i, а £, «1 . 
Коэффициенты Са , С- ( ; =1,... 8) удовлетворяют системе урав­
нений 

8 

С +Lcrf=o, к=<ы,...,4 ?:ъ) 

° J., J J 

где й щ - произвольные постоянные, В рамках ею» регуирмзв-
ции сходятся интегралы от любых замкнутых циклов, • существует 
конечный предел при /1-+оо. 

Действительно, в случае скалярных заряженных частиц 
(£ =0) наибольшая степень импульса в числителе под адехом ин­
теграла 



ве кокет вревооходим поридга диаграммы, т.е. « е в 71 , 
так как 

в случае вяирядвых матриц для любых f и у , веха ж - нечет­
ное число. Поэтов;, максимальная расходимость будет вяадратт-
вой. 

В случае векторных заряженных бозонов (s si) наибольшая 
степень кмвудьса в числителе в (3.7) равна in , так «то 
интегралы, соответствующие любым заряженным циклам векторных 
бозонов, расходятся ве бастрве четвертой егепен* во импульсу*'. 

Поэтому уравнения (3,5) обеспечивают сходимость «нтегралов 
от регулярмаованной $унвциж <3J). Уравнения (3.6) являются ус­
ловиям», при которых в пределе А-*• оо ве возникает никаких 
бессмысленных расходящихся выражений. Этот вопрос более подробно 
обсужден в работах/*»9^. 

§ 4, Ряд теории воамженкй 
Перейдем теперь к вычислению матричных элементов, соот­

ветствующих сведущий примитивный неприводимым диаграммам 

ju£!b-t 
Р+к . v К 
I Ж Ж Рио. -г> ..-

*̂  поэтому теория заряженном векторного поля во вкеанен электромагнитном поде отвоомтоя к классу перенормя-руемых /3/. 

J. „ 



I. диягряшщ собственной энергии 
Рассмотрим диаграмму собственной энергии, представленную 

на рис. 2(1)* Этой диаграмме соответствует матричный элемент 

где 
Z(*7) = ~le% ТС(*Щ г>(*-у). 

Переходя в импульсное представление и воспользовавшись нашей 
регуляризационной процедурой, получим: 

Воспользуемся далее представлением (3.2) для пропагатораV^ty/fr-ty 
= @ (к2) , тогда после некоторых вычислений получим 

-['«-*)£> £JU<*;gj-

_ -я*-*00 

Здесь 

гда fi -tioo 
a* 

a 



Подсчитаем электромагнитную поправку к массе частицы в ДВУХ 
пределах пЧг« L и M2€z^>{ .Имеем 

1).Для М*еК<1 

- 1 ЧЗГ МЧг ' 

2). Для /Ч2е*М>1 

Интересно подсчитать разность масс 3Tfn #""мезонов. Так как 
•//"-мезон электрически нейтрален, разность масс li f -Мже 
будет определяться только собственной электромагнитной энергией 
.Т^'-мезона. 

Будем грубо считать ЯГ*"-незон равномерно заряженным варом, 
радиус которого . / определяется 

где <^>MOv>^^eyo%Mf=^, 
согласно ' 1 0 ' . Для заряженного вара v'{-i)~9/2{wijlll}. 

Подставляя эти величины в (4 .2 ) , получим 

X* JT" 'Ж ЯГ2Q3Z ' ' 
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что находите» • rpj6oii соопетстмш с экспериментальным зна­
чением 4,6 Мэв. Ясно, что подбирая распредехевае заряда в 
ТТ'-веэоке соответствуваан образок, хегко добаться похяого 
соаваданвя с эксперииевтадьви! значением разное!» маоо. 

2. Вераинная диаграмма а статвческве харантерастава 
бОЗОНО! 

Рассмотрим теперь аераавн]ю диаграмму, представленную 

на рас. 2(D). Этой диаграмме соответствует матричный эхеменг 

где введена вершинная функция третьего порядка 

Переходя к импульсному представлению, согласно принято" нака 

регуаяркзавдонной процедуре, подучим 

Ms*.] ) r(t-r) jf) r(-z)Z ) (r*s)rft-s)W } 

J-/I«oo -f>,ic0 -ft/a* I 

где 



а функция / определяются следувчин вырахепмен: 

Здесь „ г 

v=*?-Y; #=&&. 

-(т-з)я=\ 6 для спина I 4 для спина 0. 

Легко проверить, что вершинная часть удовлетворяет 
условию градиентной инвариантности 

где И(р) и U-(F+f) - спиноры, описывающие бозон в начальной 
• КОНвЧИЛМ СОСТОЯНИЯХ. 

Это равенство ооновано на иеполмовавм тождества 
a fJL я * I * i— 

е е » /=/»-/> • 
Для того, чтобы получить статические величины, характеризу­

ющие электромагнитные свойства бозонов, ны должны вычислять 
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вершинную функцию на маосовой поверхности. Прв переходе х 
массовой ободочке {f~'f'=^if^° ) возвикает инфракрасная 
расходимость. Иы регуляризуем ее с помощью формального приема, 
который состоит в том, что В причинную функцию 9(кг) вводится 
отличная от нуля "иасса" фотона Л . При вычислении матричных 
элементов используем соотношения 

, .-- Г,)Г= о , ч7(/}'-М)=0 , 
а также 

или ь импульсном представлении 
'• • • /*i l ,*1 '*• f11 /ft' ' 

где a.,., .-fir£ /уд . 
После элементарных, но длинных выкладок функция eyi/^-f-Cfyfjlf 
приводится к следующему виду 

х'де антисимметричные тензоры 

определяют, как мы увидим ниже, дилольвый и квадрупольяый моменты 
бозона со спином I . , соответственно, а функции/С^гД С =0,1,2) 
принимают вид 

1С 



здесь 

ио=l~*2('-*~x) tMff<''-*z)(f(i-x) + '-?*) f-A+jZfr-Hi)} t 

+ ^p'-'-xtft-xrfs-x*•?-**;t-x/xtл/г-ггося) -Я(/-*-£)-

•(*.(x-a.*l)+2x) -AYf+A)- Гхл-Ух-**-*:*.*} , 

Остальные члены, которые дают вклад в дипольный и кввдрулольный 
полеты, имев! более простой вид: 

% <=M3[(t-a*)l-(3a-i)-*x(t-a-x)] t gxf(i-a-x- j?} 

Выражение (4.3) имеет общую форму для-скалярных и векторных 
бозонов. Рассмотрим член, пропорциональный матрице в , при 

Для скалярной частицы 

и для векторной частица 
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Эти члены определяет перавормировх} заряда бозона 

Тогда, принимая во внимание тождество 

перепилен выражение (4 .3) i виде 

Джя обсуждения статических электромагнитных характеристик 
заряженных боэовов мы должны перевгм x статическом? преде*} 
> формула ( 4 . * ) . 

Рассмотрим овачаха случай слива воль. При этом 

к в статическом пределе получим 

We fw-fyfy-fy^, , zr - енороо» скалярной частицы я £ -' 
вхеятрлеекое лохе. 

Таким образом, магнитны» момент отсутствует у скалярных 
бозонов. 

Поив векторных частиц ф(х) имеет компоненты 

где tU&- соответствует частице, а4$?-автичастице. Положим £ffl= 
=0 , что означает отсутствие античастиц, а в статическом 

Is 



пределе ввкхор о / ^ имеет грв коипоневхы 

здесь CL=(af,aT,as)- вектор поляризации локоякейса мжторвой 
частицы, так что вектор спина равен 

а тензор квадрупольного момента 

В этом случае вы икеен 

а __ 

где ^ = ^ ^ - ^ < 5 « -
В статической пределе получим 

г. ̂ f ^ Щ 

—г 
здесь j£ -магнитное поле. 

Хашш образом, тензоры Э„„ и /За/ определяют диполыщй 
и ввадруполмыи моменты векторного бозона соответственно, мы 
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считаем, что rff^i и получим поправку о точном») до 
(If**): 

а при „У*** имеем ^ , 

3. Диагвамиа поляризации вакуума 
Рассмотри* диаграмму поляризация вакуума, представлению 

на рис. 2 № ) . Член матрицы рассеяния, соответствугаий этой 
диаграмме, представим в виде: 

где 

П^ф^^Гс^тЪ•*)]• 
Используя принятый вами метод регуляризации, получим в импульсном 
пространстве: 

Здесь 

1H S =0 ' * ' . I 2 спин S 
где (r = 

' I 6 спин j =1 
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Выполнив интегрирование по Ке , получки 

для скалярной частицы , 

Га 

для векторной частицы, где ё>= zx3" (1~^г) > if- = 7-2x:-
Согласно нашии дополнительный условиям (3.6),в пределе // •*^->to 

сушш по j в квадратных скобках равны ао и аг , либо исчезает, 
если а„=а,-0, и ыы получим (полагая a„=a,=c ) : 

Л,->Л-> 

Mf)=ibr&» az i . A** 

'""Г "&W 
Ф)=£]*[(*-Ф<™)-з(>-ж)г)Щ/-£*™))-

Окончательно после несложных преобразований второй член 
принимает вид: 

<р (х) = 2-3(/-2xf, <% (х) = -2х(*-х). 
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Итак, а репках принятой наш регуяярязацав полярязацяов-
нне операторы конечны пра снята» регухярвэацав а совпадаю о 
вереяоркароааввшя амраженвямв л обычной локально» теораа ' ''. 
Ова вормяроаавы уоловаем /7/а)=0. Эхо означает, что, по крайне» 
мере, ао второй порядке теорвв возиуаевя* вв проясходвт перв-
вормяроакв заряда, т.е. фазпескв* ааряд скалярной ж 
векторной эаряжевннх часткц совпадает с затравочным. 

4. Тождество Уорда 

В навей схеме оря <}=0 амеет место говдеотво Уорда 

Дав доказательства этого соотвовеняя расснотрвв тождество 
| Г Й = тсМ^тс(р). (4.5) 

Двффереяввруя Z{p)m Р в всиользуя тождество ( 4 . 5 ) , ваходмм 

Внбярая другие вшукышие переменные я полагайте , р-=о=р, 
шее* 

Сраввавая это равенство о выражением ( 4 . 6 ) , получаем тождество 
ЗГорда: 
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§ 5. Градхантяая инваохантность S -матипщ 

Разложение £ -катрхцы по норыадьнш прохзведевшш опера­
торов неваахмодейству«щих электромагнитного поля А , х поая Т/Г 

Требованхе градиентной инвариантности означает, что я раэложе-
нии (5.1) коэффициентные функции &,..*„(••) удовлетворяв* 
условиях: 

клхл fa -A • гуМ' ")=0-
Лрх этой надо иметь в виду, что каждое хэ условий (5.2) выпол­
няется, когда все остальные внпухьсн, от которых аахюн функция 
fjir.M„("y t лежат аа массовой оболочке. 

Itrxs и д е и , что похучеввая S -матрица будет градмвххо-
ввмривхка. дехстзитедыю, > рассматриваемой нами х м о х м ы о ! 
эиктродлвамвке частхц со свкаох 0 x 1 выполнено тоххаопо 
, 0 М а ! „ — ~> 

$pLtp)=-fcfaX ... 
восковые; охо являетои, как показало маю, схедотвхах гохдеотм 

••$тг?~ &£*=?• ( 5 , 3 ) 

Так как хаи не надо делать никаких вшхтаввй беоконечвнх контр­
членов, ю в ряду teopax воэиущеяхи хе могут возникну» никакие. 
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опасные члены, дагорне могли бы нарувать тождество ( 4 . ? ) , когда 
справедливо ( 5 . 3 ) . 

Доказательство градиентной инвариантности в форме (5.2) 
в ряду теоржи возмущений довольно просто и основано на исполь­
зовании тождества 

к /_L * JL J = -1 С , 
^{fi-pjf, л-§ J я-/> лs 

вся» * = ^ • 
Диаграмма поляризации вакуума градиентяо-инвариантна 

согласно выбранной нами регуляризационной процедуре. 

| 6 . Замечание о ймгмаакгорах порядка pooia f ~ l 

Используемые нами формфакторы порядка роста f><£ 
раотут при Kz->f*> как 

где <? - параметр, имеющий смысл "элементарной" длины. Это 
приводят к тому, что матричные элементы S -матрицы в теории 
возмущёнйГрастут с'ро'стЬм энергии как <bx/>'{<g*s)i'I ,"где 
6 - энергетическая переменная. Таким образом, при энергиях 
s~.f/(H рядом теории возмущений уже нельзя пользоваться. 

Если же в качестве фори§актора фотона выбрать целые 
функции, удовдетворяювде условию 

Vl'C4*)-»0, (6.2) 
при к г^>±сх>, то порядок таких целых функция будет больше или 
равен единице. В этом случае также существует промежуточная 
регулярнзащгонкая процедура," 'позволяющая перейти' к евяЭшдо'вой 
метрике. •' ' ' " " . • • • - . 
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Введение в теории формфакторов, удовлетворяющих условно 
(6.2), привод» к тону, что S -патрица также будет удовлетво­
рять всей общий требованиям, разложение теории возмущений бу­
дет свободно от ультрафиолетова! расходимостей, а добавки, свя­
занные с введенной нелокалЬЕОота в теории будут реально н а ш 
при любых энергиях. 

Чтобы не загромождать суть дела лниаиии выкладками, ин 
покажем это в случае квантовой электродинамики, а обобщение его 
на теорию скалярных и векторных бозонов очевидно. 

Диаграмма собственной энергии 
Для простоты выберем форнфактор вида ехр{-(к*(г)г\ , и 

тогда вместо функции (4.1), получим следующее выражение для 
Щр) в спинорной электродинамике (fr -><%*•) : 

ZM^faC&Uf&Z Ffrr), ( 6 .3) 
где функция у г т 2 у 

«*'>'*Ы«(*> ff'"s) *"•*> (6л) 
регулярна > полуплоскости /<?-?/>-/, a s^~ff-

Прн $>ъ1 вовникают следующие ситуации; под знаком ин­
теграла (6.3) появляется полюс первого порядка в то ..tax 
5" =1,2,3..., а в этих точках фазовый множитель вида esyfarir), 
возникающий из функции (6Л),нечеаает, 

Итак, запишем функции Ffcp) в виде: 
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