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ABSTRACT

We reanalyse the recent compilation of distance measurements to M87 by collecting the data from published literature. Different
from the traditional statistical methods, based on the principle of minimum information loss, we use a robust most frequent value
(MFV) procedure to estimate the distance to M87, irrespective of the Gaussian or non-Gaussian distributions. The MFV-based
robust estimate for the M87 distance modulus is given by 31.09700 (statistical) T3 (systematic) mag corresponding to a 68.27
per cent confidence interval, whereas the result of combining the two uncertainties in quadrature is 31.097)0% mag. We also
construct the error distributions of M87 distance moduli values according to the weighted mean, median, and MFV, which

is non-Gaussian. This demonstrates that the MFV method offers a more accurate and robust estimate of the distance to M87

compared to methods that depend on the unfulfilled assumption of Gaussianity.
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1 INTRODUCTION

It is well known that the Virgo cluster, along with its giant elliptical
galaxy M87, plays an important role in establishing the extragalactic
distance ladder to more remote astronomical objects like the Fornax
and Coma clusters. As an ideal candidate for the remote distance
determination, M87 and its distance have been one of hot spots in a lot
of research fields, from Hubble constant to black hole imaging (Event
Horizon Telescope Collaboration 2019; Kim et al. 2020). Obviously,
a more accurate value for the distance measurements to M87 will
also improve our understanding of fundamental astrophysics and
cosmology (de Grijs & Bono 2020; Mohan et al. 2024).

Because of the significant impact of the distance measurements to
M&7, there have been many distinct observational methods used to
measure its value over the last several decades. After an extensive
data mining effort, de Grijs and Bono (de Grijs & Bono 2020)
(referred to as D20 hereafter) had compiled a data base of 211
distance measurements to M87/the Virgo cluster, whose result was
(m — M)o = 31.03 £ 0.14 mag corresponding to 16.07 & 1.03 Mpc.
In recent decades, there has been a notable increase in the accuracy
of astronomical distance measurements, leading to a renewed focus
on physical data research. None the less, the significant difference
in distance measurements among the different methods remains a
puzzling problem that has confounded researchers in the realms
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of physics and astrophysics. This has become a topic of much
controversy (Ramakrishnan & Desai 2023).

The classical median method is widely used in statistical analysis
to evaluate the characteristics of various observational quantities
in a wide range of applications, as it is not influenced by outliers
(Gott et al. 2001; Podariu et al. 2001; Chen & Ratra 2003; Chen,
Gott & Ratra 2003; Chen & Ratra 2011; Crandall & Ratra 2014,
2015; Crandall, Houston & Ratra 2015; Bethapudi & Desai 2017;
Camarillo et al. 2018a; Penton et al. 2018; Rajan & Desai 2018;
Zhang 2018; Yu et al. 2020; Zhang et al. 2022; Ramakrishnan &
Desai 2023; Rackers, Splawska & Ratra 2024). Several known
examples of non-Gaussian error data have been used to apply
median statistics concerning the Hubble constant (Chen et al.
2003; Chen & Ratra 2011), 7Li abundance (Crandall et al. 2015;
Zhang 2017), LMC and SMC distances (Crandall & Ratra 2015),
deuterium abundance and spatial curvature constraints (Penton et al.
2018), the distance to the Galactic Centre (Camarillo et al. 2018a),
galactic rotational velocity (Camarillo, Dredger & Ratra 2018b), and
neutron lifetime (Rajan & Desai 2020). Likewise, another alternative
approach is that of Bayesian statistics, as this is commonly utilized
in astrophysics and particle physics (Von der Linden, Dose & Von
Toussaint 2014; Sharma 2017; Rallapalli & Desai 2023; Rinaldi
et al. 2023).

In particular, recently, the distance measurements to M87 have
been thoroughly analysed using median statistics (Rackers et al.
2024). Besides, a similar meta-analysis has also been done (Ramakr-
ishnan & Desai 2023). From the perspective of robust statistics,
it is crucial to accurately estimate the distance to MS87, taking
into account the comprehensive nature of all observations. Even
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Figure 1. Histogram and probability density (red line) of the distance measurements to M87. [A colour version of this figure is available in the online version.]

though there has been extensive research on data analysis and
uncertainty in physics and technology in recent decades, the ex-
isting discrepancies among different measurements still require new
robust statistical methods to strengthen the robustness of the model.
This has led us to utilize the MFV procedure to reanalyse this
issue.

In this paper, we apply the MFV method (Steiner 1988, 1991,
1997; Steiner & Hajagos 2001; Kemp 2006; Szucs, Civan & Virag
2006; Szegedi 2013; Szegedi & Dobroka 2014; Szabd, Balogh &
Stickel 2018; Zhang et al. 2022; Golovko 2023; Golovko, Ka-
maev & Sun 2023) to analyse the distance measurements to M87.
The MFV method has been proposed to address the problems of
lithium abundance, Hubble constant tension, and the neutron lifetime
anomaly (Zhang 2017, 2018; Zhang et al. 2022). In particular, we
aim to determine the robust best-fit estimate of distance to M87
given in D20. This work is organized as follows: In Section 2,
we briefly summarize the data and descriptive statistics. Then,
in Section 3, we analyse the methodology of MFV. Section 4 is
dedicated to the description of the calculated results. By enhancing
previous findings, we also computed the confidence intervals and
demonstrated their superiority over traditional statistics using the
most recent D20 compilation of the distance measurements to M87.
Section 5 discusses the error distribution for distance measure-
ments to M87. Furthermore, we show the comparison between
theoretical MFV predictions and other statistical methods such as
weighted mean and median. Eventually, our conclusions are given in
Section 6.

2 DATA

Up to now, numerous observed values of the distance measurements
to M87 using different techniques have been published. In our
analysis, we use the D20 compilation including 15 tracers, such
as Cepheids, planetary nebulae luminosity function (PNLF), surface
brightness fluctuations (SBF), tip of the red giant branch (TRGB)
magnitude, and novae (de Grijs & Bono 2020) (The original mea-
surements data set sorted by tracer type can be seen at http://astro-
expat.info/Data/pubbias.html). Further details of D20 data set had
been discussed in the recent literature, e.g. Refs. (Ramakrishnan &
Desai 2023; Rackers et al. 2024). Ultimately, in this paper, we use
211 independent measurements of the distance to M87 to analyse
following Rackers et al. (2024).

We adopt descriptive statistics methods to analyse the data of the
distance measurements to M87 and plot histograms of the number
of data values, as shown in Fig. 1. Using ggplot2, 30 bins were
chosen. Based on the grammar of graphics elucidating the essential
elements that form the basis of all statistical graphics, the histogram
figure describes a mapping from the data to the aesthetic feature
of geometric objects (Wilkinson 2005; Wickham 2010). When the
number of bins is different, the bars will start from a bin with the
specified bin width. Despite the changes in the numerical values of
the histogram bins, the holistic trend of the graph remains unchanged
(Podariu et al. 2001; Wickham 2016). Also, the measurements are
illustrated in a boxplot in the upper row, and the median is represented
by the line in the middle of the boxplot. Extending from the edges
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Figure 2. Published distance measurements to M87 as a function of publication date. The taxonomic approach of the distance measurements to M87 for analysis
is similar to that of D20. [A colour version of this figure is available in the online version.]

of the boxplot are the whiskers corresponding to the 25 and 75
per cent quantiles of the distribution. Apart from the whiskers, there
are individual outliers present, which are points that are deemed to
be significantly distinct from the rest of the sample.

Fig. 2 illustrates publication years with the distance measurements
to M87 used for analysis since 1929, including tracers listed in D20
following the taxonomic approach of D20 (de Grijs & Bono 2020).
Moreover, the marginal panels associated with the main panel show
the marginal distribution of the distance measurements to M87 as
the function of the distance or publication data. The points represent
the overall data set in different colours corresponding to different
individual tracers. With the view of vertical comparison, Fig. 3 shows
a ridge graphical representation of the distance measurements to
M&87 based on different methods from different tracers. As depicted
in the plots above, we can see some apparent relationships between
our quantitative variables. In short, for the purpose of a holistic
comparison from multiple perspectives, these figures display the
comprehensive graphical representation of the distance measure-
ments to M87 based on different methods from various individual
tracers.

It is worthwhile to investigate the different deviations of the
distance measurements to M87 mentioned in D20 from the het-
eroscedasticity. When dealing with all of the collected data, it is
essential to address zero error and asymmetric systematic uncertain-
ties in a clear and consistent manner. However, accurately evaluating
the impact of zero error and asymmetric uncertainties remains a
challenging task (Barlow 2003; Audi et al. 2017; Barlow 2021).

MNRAS 533, 2916-2926 (2024)

The main reason is that the anomalous deviation among different
measurement methods of M87 may be attributed to unidentified
systematic effects and uncertainties, potentially indicating the ne-
cessity of robust MFV statistics. On the other side, the physical
measurement is approximation for true value and cannot be with
zero error. Analogous statistical procedures have been discussed
using the more general Bayesian/frequentist framework to deal with
possible unknown systematic effects (Cowan 2019; Erler & Ferro-
Hernandez 2020). Therefore, in order to reduce the sensitivity to
outliers, we use the average value of the uncertainties to calculate
the error distribution for the weighted mean in the case of zero error
(Rackers et al. 2024).

3 ANALYSIS OF METHODOLOGY

From a distance ladder perspective, the estimation of the distance
measurements to M87 is one of the vital problems (de Grijs & Bono
2020). In order to obtain a more accurate estimate of measurements,
there has been a substantial application of statistical methods,
including median statistics, maximum likelihood estimation, and
Bayesian statistics (Feigelson & Babu 2012). Understandably, there
is no justification for researchers to perpetually suppose that the prior
distribution of a physical quantity is normal. Although Gaussian
distribution is commonly used based on the central limit theorem, it
is not always the most suitable choice, particularly when dealing with
special samples. For example, there are exceptions to the central limit

202 Joquiajdeg |z uo Jasn sjayjoliqiqleusz-AS3d Aq +28€€L /91 62/€/€EG/AI0IE/SeluL/WOod dno-dlWapede//:sd)y Wody papeojumod



MFYV analysis of distance measurements to M87

TRGB

2919

TFR

SNe

SBF

PNLF

Other

Novae

Tracer

Hubble

HIl

Group

GCLF

Faber

Color

Cepheids

Averages

20 25

Veditdeaee'

Distance

Figure 3. The ridge plot of the observed results used for the analysis from different tracers. [A colour version of this figure is available in the online version.]

theorem in the case of a random variable following a Cauchy distri-
bution. Another significant issue is the heavy-tailed problem shown
in the observed distributions. To be honest, it is extremely difficult
for anyone to accurately determine if the normality characteristic is
intrinsic to the measurement data (Chen et al. 2003; Crandall et al.
2015; Singh et al. 2016; Bailey 2017; Zhang 2017).

When analysing measurement data, x> analyses, the least squares
method (LSM; Kelly 2007; Zhang et al. 2012), and median statistics
are commonly given priority consideration to extract important
information (Gott et al. 2001). However, when the prior distributions
are non-Gaussian, it is necessary to consider more specific details of
the prior distributions in order to achieve more precise and robust
outcomes. On the other hand, as is known to all that every computa-
tional statistical model contains inevitable underlying assumptions.
Clearly, before performing any statistical computation, it is essential
to consider the normality of the distribution, which encompasses
the error distribution and the prior distribution (Zhang 2017; Zhang
etal. 2022). Moreover, dealing with heteroscedasticity is consistently
a major challenge for traditional methods. Therefore, it is important
to use a violin plot to reveal the significant details regarding the
distributions of the distance measurements to M87, as shown in
Fig. 4. The violin and kernel density plots for different methods are
shown in these subgraphs, which are particularly useful for evaluating
summary and descriptive statistics. Additionally, we can make a
direct comparison between the median and average values, allowing

us to intuitively observe the distributions of various subgroups and
the potential non-Gaussian errors in the distance measurements to
M87 from different approaches. In brief, these obstacles also inspire
us to utilize the novel MFV method for determining the distance to
MB&7.

On the basis of the central limit theorem, the distribution of
measurement data should be normal in most cases. Even so, the
error distributions of measurement data are still probably non-
Gaussian. For instance, it is possible that the measurement data
might not originate from a random sample of independent, identically
distributed random variables, which should be proven. Due to the
ideal conditions of pure mathematics, it is necessary to temporarily
accept some plausible hypotheses based on expediency. According
to the data of distance measurements to M87, physicists expect to
accurately estimate the real value from different prior distributions.
For the sake of a better implementation of this purpose, Steiner
(Steiner 1991, 1997) proposed a more robust statistical algorithm—
MFV method, based on the principle of minimizing information
loss. Regardless of whether the prior distribution is considered to
be Gaussian or not, the robust MFV procedure is not only highly
efficient but also eliminates shortcomings such as high sensitivity to
outliers in the data set for measurements (Zhang 2017, 2018).

In order to elucidate the effect of prior distribution and error dis-
tributions, we utilize the MFV procedure to assess the characteristics
of the data set of distance measurements to M87. Unlike traditional
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Figure 4. Violin plots and nested box diagrams of distance measurements to M87. The MFV and average values from different methods are indicated by the
inverted triangle and circle, respectively, while the solid horizontal line in the box illustrates the median. [A colour version of this figure is available in the online

version. |

methods such as maximum likelihood estimation or LSM, Steiner
put forward the maximum reciprocals principle,

1
2 yrys = ®

i

where X; is the residuals and deviations, and S denotes the mea-
surement error. According to the minimization of the information
divergence (relative entropy) demonstrating the measure of infor-
mation loss (Huber 1981; Steiner 1991, 1997), Steiner suggested
the MFV method and the scaling factor ¢, i.e. dihesion, for the
sake of evaluating the parameter of scale to some extent to reduce
the information loss. Furthermore, we can calculate the MFV and
the dihesion via iterations. After the (j + 1)-th step of the MFV
procedure, the relative equation of iterations for the most frequent
value M is as follows:

En 5?-"1‘
i=1 24 (x;—M;)?
jT WM
Mi,W=—"-"7"75—, 2)

n £y
i=1 s?+()c,'—M,»)2

where x; is a series of the measurements and the dihesion &; can be
calculated by
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Where the iterative initial value M is chosen as the average value of
the measurements, and the initial value of ¢ is obtained as
NG

&y = T(Xmax - xmin)- (4)

Additionally, we utilize the fixed threshold criterion to control
precision during iterations. After a number of iterations, the most
frequent value M and dihesion ¢ can be determined when the
parameter uncertainty is below a certain threshold (e.g. 107°).
Evidently, the robust dihesion ¢ does not behave like the sensitive
standard deviation in LSM, which is easily affected by outliers
(Steiner 1991, 1997).

4 RESULTS

The outcome of these calculations is MFV = 31.09 mag, which
is in agreement with the recently published results (31.08 mag)
(Ramakrishnan & Desai 2023; Rackers et al. 2024). Because obser-
vational data reflect the essence of physical quantities, it is possible
to use robust statistics and data science, such as the MFV method,
to characterize the data. For estimating the uncertainty of physical
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Table 1. MFV and medians of distance measurements to M87 by tracer.

tracers Number MFV shifty, gy 95 per cent c.1. range Median shiftyeq 95 per cent c.1. range
All data 211 31.09 0 31.02-31.17 0.15 31.08 0 31.02-31.15 0.13
Averages 21 31.14 0.05 30.92-31.38 0.46 31.08 0 30.98-31.40 0.42
Cepheids 7 31.02 -0.07 30.86-31.20 0.34 31.02 —0.06 30.87-31.16 0.29
Colour-magnitude 11 30.83 —0.26 30.64-31.06 0.42 30.84 —-0.24 30.66-31.06 04
Faber—Jackson 11 31.24 0.15 30.8-31.70 0.9 31.14 0.06 30.81-31.69 0.88
GCLF 32 31.09 0.00 30.88-31.29 041 31.11 0.03 30.83-31.27 0.44
Group membership 5 30.50 —-0.59 30.37-30.87 0.5 30.5 —0.58 30.37-30.87 0.5
Hu 6 31.24 0.15 30.54-31.45 091 31.2 0.12 30.45-31.43 0.98
Hubble law 8 26.96 —4.13 26.38-31.12 4.74 27.3 —3.78 26.5-31.10 4.6
Novae 8 3141 0.32 31.3-31.47 0.17 314 0.32 31.3-31.46 0.16
Other methods 15 30.96 —0.13 30.71-31.18 0.47 30.9 —0.18 30.69-31.15 0.46
PNLF 12 30.87 —-0.22 30.82-30.90 0.08 30.865 —0.215 30.83-30.9 0.07
SBF 18 31.10 0.01 31.01-31.18 0.17 31.12 0.04 31.02-31.17 0.15
SNe 18 31.67 0.58 31.4-31.82 0.42 31.645 0.565 31.43-31.80 0.37
TFR 36 31.24 0.15 30.97-31.47 0.5 31.235 0.155 30.98-31.49 0.51
TRGB 3 31.06 -0.03 30.91-31.12 0.21 31.05 -0.03 30.91-31.12 0.21

quantities, the bootstrap method is one of the most effective methods
and is essential for evaluating the rationality of the calculated results
(Efron & Tibshirani 1994; Davison & Hinkley 1997). In order to
calculate the confidence interval, the bootstrap method follows a
fundamental process. Assuming that the observed data set of distance
measurements to M87 is (dy, ..., d;) chosen from an independent
and identical distribution of true values of distance measurements
with the corresponding statistic 6(dj, ..., d;), i.e. the MFV. Once a
bootstrap sample (d;, ..., d;) has been generated from the initial
observed data with replacement, the next step is to calculate the
important statistic, MFV, for the bootstrap sample. By repeating this
process B times (usually 1000-3000 times), the distribution of the
MFYV is generated. As a result, these distributions can be employed
to assess confidence intervals (typically 68.27 or 95.45 per cent) of
the MFV for different distance measurement techniques. Finally, the
calculated 68.27 per cent confidence interval for all measurements is
[31.06, 31.13] mag, taking into account statistical bootstrap errors,
while the calculated 95.45 per cent confidence interval for all data is
[31.02, 31.17] mag.

Generally, there are three statistical central estimates: median,
weighted mean (Podariu et al. 2001), and MFV. As a comparison,
using median statistics is another way to estimate confidence intervals
for the distance measurements to M87 (Gott et al. 2001; Camarillo
et al. 2018a). From the order statistic perspective, according to the
binomial test and estimation in non-parametric statistics (Conover
1999), the probability of the median between values x and x is

p(x" < median < x®) = p(median < x®) — p(median < x®),

=3 (’f) /2", ®)

where x® is the order statistic. By application of this formula,
the median for all measurements is 31.08 and the calculated 68.27
per cent confidence interval is [31.03, 31.12] mag, while the 95.45
per cent confidence interval for all data is [31.02, 31.15] mag.

The calculated results and D20 data for the distance measurements
to M87 are listed in Table 1, which are used in our analysis. We
group the 211 measurements into 15 subgroups based on the tracer
type in the final D20 compilation. The number of each subgroup
and the corresponding MFV and median statistics results are shown
in Table 1. The shifts in the 4th and 8th columns of the table list
the systematic displacement of MFV and median between the total

data set and subsets. The ranges in the 6th and 10th columns are
calculated by finding the distance between the upper and lower
limits. From a theoretical perspective, the definition of this range
varies depending on the type of fundamental uncertainty. In the
case of measured or binned scales, the measurement space can be
described as the relative standing of the observed data sets, allowing
for the definition of limits through two specified percentile endpoints
or z-scores (Chakraborti & Li 2007; Mendenhall & Sincich 2016).
Thus, both the upper and lower limits correspond to the dispersion
of the data, which are determined as the difference between the
higher and lower percentiles of the 95 percent confidence level
(C.L.) under typical conditions (Chen & Ratra 2011; Ialongo 2019;
Zahedy et al. 2021). Furthermore, Fig. 5 shows histograms for all
tracer subgroups, demonstrating multiple panel plots in terms of the
individual tracer facets. The main goal is to explore the statistical
frequent characteristic as a function of subgroups.

There exist two primary categories of experimental errors: system-
atic and statistical. In fact, it is very difficult to reveal the presence
of systematic errors through the variability in measurements. No
theory or model exists that adequately handles uncertainties caused
by systematic errors in a consistent manner (D’agostini 2003; Barlow
2021). The only established principle regarding systematic errors
is that they must be recognized and mitigated to a degree well
below the required precision (Audi et al. 2012; Taylor 2022). Due
to the complexity involved in offering a rigorous proof, we estimate
systematic errors following Chen & Ratra (2011) and Rackers et al.
(2024). Inspired by the classic idea of generalization in statistical
learning (Hastie et al. 2009; James et al. 2023), our goal is to
strike a good balance between statistical methods and practical
measurement experience according to the principle of Occam’s
razor. Following Chen & Ratra (2011), with the ongoing debates
surrounding systematic errors in the error analysis field, we can
consider subgroup systematic uncertainties as pseudorandom errors
at the level of the entire list (Gott et al. 2001).

Statistical uncertainty exists within each tracer subgroup, leading
to measurement variability, while systematic errors may arise among
tracers due to variations in techniques and calibrations. We have
compiled a novel data set comprising the MFV values of individual
tracer subgroups. Similar to Chen & Ratra (2011) and Rackers et al.
(2024), a median statistical analysis is carried out on this new data
set to determine the median of MFVs and quantify its associated
uncertainty. In the scenario where we consider these medians to differ
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version of this figure is available in the online version.]

solely in a systematic manner, the resulting uncertainty corresponds
to the systematic uncertainty present in the entirety of the tracers
(Gott et al. 2001; Chen & Ratra 2011).

Therefore, we can apply these 15 subgroup MFVs in Table 1 as a
new data set to estimate the systematic uncertainty of whole group of
tracers. For the sake of simplicity, we use median statistics to obtain
the median of these subgroup MFVs and its relevant uncertainty. The
result is 31.097005 (systematic) mag at 68.27 per cent significance.
We also combine the statistical and systematic errors in quadrature
to get 31.09700%, which is consistent with the results of recent
references (Ramakrishnan & Desai 2023; Rackers et al. 2024).
Besides, based on binomial distribution, we used median statistics to
analyse subgroup medians and our results are consistent with those
in recent references (Ramakrishnan & Desai 2023; Rackers et al.
2024)

5 DISCUSSION

It holds meaning to explore the distributions of deviations of the
distance measurements to M87 mentioned in D20 from the central
estimate. The present work outlines three strategies for statistical
central estimation: weighted mean (Podariu et al. 2001), median,
and MFV. The weighted mean is defined as

Zﬁl Di/"iz
Dy = =120
>in 1/01'2

where D; denotes the measurement of distance and o; is the one
standard deviation error, i.e. the quadrature sum of the statistical and

6
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systematic uncertainties. The weighted mean standard deviation is
1

Oym = —F————. (N
\V ZzN:1 /o
The goodness of fit x? is
L
1= 2 (Di = Dun)* /07 ®)
i=1

The number of standard deviations that y deviates from unity
(Farooq, Crandall & Ratra 2013; Crandall & Ratra 2014, 2015) is
described by

No =[x — 1|\/2(N = 1). ®

By utilizing the median as well as MFV statistics approaches,
we can construct the error distributions. Just like how median
statistics assume statistical independence of all measurements, the
MFYV statistics also do not take into account individual measurement
uncertainties. This results in a broader range of errors on the central
value compared to the weighted mean technique. In accordance
with the specified central estimate of all measurements, the error
distribution linked to standard deviations (Crandall & Ratra 2015;
Penton et al. 2018; Camarillo et al. 2018a) is described by
N, = D; — Dcg 7

o + o2,

(10)

where D¢ is the central estimate of distance measurements, either
the median Dy,eq or MFV Dypy, and o is the uncertainty of Dcg,
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Figure 6. Histograms of the number of standard deviations in half bins away from the weighted mean, median, and MFV listed in the top, middle, and bottom
rows. The left (right) column illustrates the signed (absolute) deviation, where the smooth curves in panels represent the best-fit Gaussian. The N, of positive
and negative cases indicate greater and less than the weighted mean, median, and MFV. [A colour version of this figure is available in the online version.]

either opeq Or ompy. Noteworthy, this formula presupposes that the
central estimate is uncorrelated with the data set, which is not fulfilled
in this scenario. Although there is an expression for Gaussianly
distributed data and for a weighted-mean central estimate (See the
Appendix of Camarillo et al. 2018a), the accurate expressions in
the case of non-Gaussian distributions still remain unresolved for
the important statistics such as median and MFV. When the central
estimate Dc¢g is the true value, this formula is always correct in
a frequentist framework. Taking into account, the statistic as an
approximation to the true value, from the consistency of comparison,
we use the derived equations to simplify the analysis, which provides
valuable holistic inferences. These various combinations of central
estimates and uncertainties are given by

Di - Dwm

-
\/ o’i2 + U\%m
Di - Dmed

/2 2’
i +6med

D;,—D
NMFV _ i MFV (13)

T Vot oy

de Grijs & Bono (2020) reported a distance modulus of (m —
M)} = 31.03 £ 0.14 mag. They only chosed a well-calibrated and
independently determined subset from the Cepheids, TRGB, and

A (11

NPt = (12)

SBF measurements. Similar to previous work in Ramakrishnan &
Desai (2023), for the weighted mean we used the measurements with
error bars and obtained (m — M)y, = 31.109 & 0.008 mag. Also,
we find x> = 6.57 and the number of standard deviations that x
deviates from unity is 28.83. Moreover, based on the procedure
outlined in Rackers et al. (2024), we use the full data set for
calculations by setting the measurements without errors to the
average value of the uncertainties for that tracer. The weighted mean
of all 15 tracers is (m — M)ym = 31.068 £ 0.008 mag. These results
are in good accord with previous work (Ramakrishnan & Desai 2023;
Rackers et al. 2024)

The MFV and median statistics procedures are advantageous
because they do not rely on the individual measurement errors.
As a result, a greater uncertainty will be observed in the central
estimate compared to the weighted mean scenario. When applying
median and MFV statistics to construct the confidence interval via
the above equations, the central estimate for Dyeq is 31 .08f8;8‘§ mag,
with a 1o range of [31.03, 31.12]. The MFV estimate is given
by Dypy = 31.091’8:3‘3‘ mag with uncertainty corresponding to 68.27
per cent confidence intervals.

By employing these statistical methods, we are able to visualize
the error distributions of distance measurements with respect to
N, (Crandall & Ratra 2015), equations (10)—(13), in Fig. 6, which
indicates the NV, and symmetrical | N, | histograms using the weighted

MNRAS 533, 2916-2926 (2024)

20z Joquiajdag g uo Jasn Yaujolaiqienuaz-AS3a Aq $Z8EE . 2/916Z/E/SES/RIRINE/SEIUL/WOD dNO"DlWspEo.)/:SA]Y WO} POPEOJUMOQ



2924 J. Zhang et al.

15

[ S —

-  -—»—

e
T ———

Lo
———

number of measurements

T

e, e

i
T

l.—

I

—

i
---T——- —-

r-

.

I __T‘_‘I______

3
INol

— _ 1 Weighted mean
Median

r__1 MRV

—— Expected

|__I

I P P
3
l
I
[
-
_

Figure 7. Histogram of the error distribution in | N, | = 0.1. The solid black line indicates the expected Gaussian probabilities for all data and the dash—dotted,
dash, and dot lines denote the numbers of | N, | values for the weighted mean, MFV, and median, respectively. [A colour version of this figure is available in the

online version.]

mean, median, and MFV. The histogram of error distributions of
the measurements is displayed in Fig. 7 with |N,| = 0.1 bin size
for a more specific viewpoint. Clearly, these figures show that the
weighted mean case has a broader range than the expected Gaussian
distribution.

From these graphs, we can observe numerous statistical charac-
teristics. The expected Gaussian distribution is expected to yield 10
values with |N,| > 2 and a single value with |N,| > 3. But for
the weighted mean case, there are 73 values with |N,| > 2, 42
with |N,| > 3, and 29 with |N,| > 4. Remarkably, 68.3 per cent
of the N,__ error distribution lies within —2.06 < N, < 2.14 while

Owm

95.4 per cent falls within —19.85 < N, < 5.51. The observed N,
error distribution has constraints of |N,| < 2.13 and |N,| < 6.86,
respectively, and 37.9 and 65.4 percent of the values lie within
|Ny| < 1 and 2, respectively.

For the median case, the distribution has a narrower tail than
the expected Gaussian distribution, with 68 values of |N,| > 2, 42
with |N,| > 3 and 21 with |N,| > 4. For signed N,, 68.3 per cent
of the data lie within —1.93 < N, < 2.04, while 95.4 per cent fall
within —15.70 < N, < 6.16. The absolute |N,| error distribution
has constraints of |N,| < 2.03 and |N, | < 6.38, respectively. More-

MNRAS 533, 2916-2926 (2024)

over, 38.9 and 67.8 per cent of the values lie within |[N,| < 1 and 2,
respectively.

On the other hand, for the MFV case, we gain a central estimate
of (m — M)mpv = 31.09 mag, see Figs 6— 7, and also find a non-
Gaussian error distribution with 68 values of |N,| > 2, 42 with
|Ny| > 3 and 22 with | N, | > 4. 68.3 per cent of the data falls within
—1.96 < N, <2.05, while 95.4 percent lie within —6.59 < N, <
6.32. The | N, | error distribution has constraints of |N,| < 2.02 and
6.48, respectively, and 38.4 and 67.8 per cent of the values fall within
|Ny| < 1 and 2, respectively.

It is evident from these data analysis that the error distribution
for the MFV case is similar to that of the median case, while being
narrower than that of the weighted mean case. The progressively
tightening distributions of the weighted mean, median, and MFV
could potentially be associated with unaccounted-for systematic
uncertainties or correlations among distance measurements to M87,
which have not been taken into consideration (de Grijs, Wicker &
Bono 2014; Crandall & Ratra 2015; de Grijs & Bono 2020).
Evidently, these in-depth statistical descriptions show that the error
distributions of the weighted mean, median, and MFV are non-
Gaussian, underscoring the effectiveness of the MFV technique
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for a robust analysis of distance measurements to M87. In Fig.
8, we apply equations of three statistical methods to plot the
distributions of measurements illustrated as a function of years,
which demonstrates the calculated results using the weighted mean,
median, and MFV represented by different symbols. The bottom
panel displays the calculated residuals A D/ Dyry from the MFV. As
mentioned previously, similar results were obtained in the references
(Ramakrishnan & Desai 2023; Rackers et al. 2024). This strongly
indicates that error distributions are not Gaussian, which in turn
supports the reliability and reasonableness of MFV estimate.

6 CONCLUSION

In brief, the problem of the long-standing discrepancy in the distance
measurements to M87 remains a crucial challenge in the study of
astrophysics and cosmology. Despite the non-Gaussian nature of the
measurement compilation, we utilized the MFV statistics technique
to reconstruct a comprehensive statistical analysis of the data set for
the distance measurements to M87, which contain different tracer
types. In terms of robustness to the observed data, the MFV estimate
is given by 31.090 03 (statistical) 735 (systematic) mag correspond-
ing to a 68.27 percent confidence interval, whereas the result of
combining the two uncertainties in quadrature is 31.0970 0% mag.
According to the binomial distribution, the median statistical analysis
yields 31.08™0 04(statistical) {0 (systematic) mag at 68.27 per cent
significance. Moreover, based on the weighted mean, median and
MFV, we construct the error distributions of distance measurements

to M87 and find the characteristic of the non-Gaussianity. The
consistent results have shown the effectiveness and robustness of
MFV statistics, which will encourage more exploration into the use
of the MFV method in analogous scenarios.
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