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A B S T R A C T 

We reanalyse the recent compilation of distance measurements to M87 by collecting the data from published literature. Different 
from the traditional statistical methods, based on the principle of minimum information loss, we use a robust most frequent value 
(MFV) procedure to estimate the distance to M87, irrespective of the Gaussian or non-Gaussian distributions. The MFV-based 

robust estimate for the M87 distance modulus is given by 31 . 09 

+ 0 . 04 
−0 . 03 (statistical) + 0 . 05 

−0 . 07 (systematic) mag corresponding to a 68.27 

per cent confidence interval, whereas the result of combining the two uncertainties in quadrature is 31 . 09 

+ 0 . 06 
−0 . 08 mag. We also 

construct the error distributions of M87 distance moduli values according to the weighted mean, median, and MFV, which 

is non-Gaussian. This demonstrates that the MFV method offers a more accurate and robust estimate of the distance to M87 

compared to methods that depend on the unfulfilled assumption of Gaussianity. 

Key words: methods: statistical – stars: distances – stars: statistics – cosmology: cosmological parameters. 
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 I N T RO D U C T I O N  

t is well known that the Virgo cluster, along with its giant elliptical
alaxy M87, plays an important role in establishing the extragalactic
istance ladder to more remote astronomical objects like the Fornax
nd Coma clusters. As an ideal candidate for the remote distance
etermination, M87 and its distance have been one of hot spots in a lot
f research fields, from Hubble constant to black hole imaging (Event
orizon Telescope Collaboration 2019 ; Kim et al. 2020 ). Obviously,
 more accurate value for the distance measurements to M87 will
lso impro v e our understanding of fundamental astrophysics and
osmology (de Grijs & Bono 2020 ; Mohan et al. 2024 ). 

Because of the significant impact of the distance measurements to
87, there have been many distinct observational methods used to
easure its value o v er the last several decades. After an extensive

ata mining effort, de Grijs and Bono (de Grijs & Bono 2020 )
referred to as D20 hereafter) had compiled a data base of 211
istance measurements to M87/the Virgo cluster, whose result was
 m − M) 0 = 31 . 03 ± 0 . 14 mag corresponding to 16 . 07 ± 1 . 03 Mpc.
n recent decades, there has been a notable increase in the accuracy
f astronomical distance measurements, leading to a renewed focus
n physical data research. None the less, the significant difference
n distance measurements among the different methods remains a
uzzling problem that has confounded researchers in the realms
 E-mails: zhangphysics@126.com (JZ); 383876806@qq.com (YC); 
wb@sdu.edu.cn (WS) 
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f physics and astrophysics. This has become a topic of much
ontro v ersy (Ramakrishnan & Desai 2023 ). 

The classical median method is widely used in statistical analysis
o e v aluate the characteristics of v arious observ ational quantities
n a wide range of applications, as it is not influenced by outliers
Gott et al. 2001 ; Podariu et al. 2001 ; Chen & Ratra 2003 ; Chen,
ott & Ratra 2003 ; Chen & Ratra 2011 ; Crandall & Ratra 2014 ,
015 ; Crandall, Houston & Ratra 2015 ; Bethapudi & Desai 2017 ;
amarillo et al. 2018a ; Penton et al. 2018 ; Rajan & Desai 2018 ;
hang 2018 ; Yu et al. 2020 ; Zhang et al. 2022 ; Ramakrishnan &
esai 2023 ; Rackers, Splawska & Ratra 2024 ). Several known

xamples of non-Gaussian error data have been used to apply
edian statistics concerning the Hubble constant (Chen et al.

003 ; Chen & Ratra 2011 ), 7 Li abundance (Crandall et al. 2015 ;
hang 2017 ), LMC and SMC distances (Crandall & Ratra 2015 ),
euterium abundance and spatial curvature constraints (Penton et al.
018 ), the distance to the Galactic Centre (Camarillo et al. 2018a ),
alactic rotational velocity (Camarillo, Dredger & Ratra 2018b ), and
eutron lifetime (Rajan & Desai 2020 ). Likewise, another alternative
pproach is that of Bayesian statistics, as this is commonly utilized
n astrophysics and particle physics (Von der Linden, Dose & Von
oussaint 2014 ; Sharma 2017 ; Rallapalli & Desai 2023 ; Rinaldi
t al. 2023 ). 

In particular, recently, the distance measurements to M87 have
een thoroughly analysed using median statistics (Rackers et al.
024 ). Besides, a similar meta-analysis has also been done (Ramakr-
shnan & Desai 2023 ). From the perspective of robust statistics,
t is crucial to accurately estimate the distance to M87, taking
nto account the comprehensive nature of all observations. Even
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Figure 1. Histogram and probability density (red line) of the distance measurements to M87. [A colour version of this figure is available in the online version.] 
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hough there has been e xtensiv e research on data analysis and
ncertainty in physics and technology in recent decades, the ex- 
sting discrepancies among different measurements still require new 

obust statistical methods to strengthen the robustness of the model. 
his has led us to utilize the MFV procedure to reanalyse this

ssue. 
In this paper, we apply the MFV method (Steiner 1988 , 1991 ,

997 ; Steiner & Hajagos 2001 ; Kemp 2006 ; Szucs, Ci v an & Virag
006 ; Szegedi 2013 ; Szegedi & Dobroka 2014 ; Szab ́o, Balogh &
tickel 2018 ; Zhang et al. 2022 ; Golo vko 2023 ; Golo vko, Ka-
aev & Sun 2023 ) to analyse the distance measurements to M87.
he MFV method has been proposed to address the problems of

ithium abundance, Hubble constant tension, and the neutron lifetime 
nomaly (Zhang 2017 , 2018 ; Zhang et al. 2022 ). In particular, we
im to determine the robust best-fit estimate of distance to M87
iven in D20. This work is organized as follows: In Section 2 ,
e briefly summarize the data and descriptive statistics. Then, 

n Section 3 , we analyse the methodology of MFV. Section 4 is
edicated to the description of the calculated results. By enhancing 
revious findings, we also computed the confidence intervals and 
emonstrated their superiority o v er traditional statistics using the 
ost recent D20 compilation of the distance measurements to M87. 
ection 5 discusses the error distribution for distance measure- 
ents to M87. Furthermore, we show the comparison between 

heoretical MFV predictions and other statistical methods such as 
eighted mean and median. Eventually, our conclusions are given in 

ection 6 . 
 DATA  

p to now, numerous observed values of the distance measurements 
o M87 using different techniques have been published. In our 
nalysis, we use the D20 compilation including 15 tracers, such 
s Cepheids, planetary nebulae luminosity function (PNLF), surface 
rightness fluctuations (SBF), tip of the red giant branch (TRGB)
agnitude, and novae (de Grijs & Bono 2020 ) (The original mea-

urements data set sorted by tracer type can be seen at http://astro-
xpat.info/Data/pubbias.html). Further details of D20 data set had 
een discussed in the recent literature, e.g. Refs. (Ramakrishnan & 

esai 2023 ; Rackers et al. 2024 ). Ultimately, in this paper, we use
11 independent measurements of the distance to M87 to analyse 
ollowing Rackers et al. ( 2024 ). 

We adopt descriptive statistics methods to analyse the data of the
istance measurements to M87 and plot histograms of the number 
f data v alues, as sho wn in Fig. 1 . Using ggplot2, 30 bins were
hosen. Based on the grammar of graphics elucidating the essential 
lements that form the basis of all statistical graphics, the histogram
gure describes a mapping from the data to the aesthetic feature
f geometric objects (Wilkinson 2005 ; Wickham 2010 ). When the
umber of bins is different, the bars will start from a bin with the
pecified bin width. Despite the changes in the numerical values of
he histogram bins, the holistic trend of the graph remains unchanged 
Podariu et al. 2001 ; Wickham 2016 ). Also, the measurements are
llustrated in a boxplot in the upper row, and the median is represented 
y the line in the middle of the boxplot. Extending from the edges
MNRAS 533, 2916–2926 (2024) 
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Figure 2. Published distance measurements to M87 as a function of publication date. The taxonomic approach of the distance measurements to M87 for analysis 
is similar to that of D20. [A colour version of this figure is available in the online version.] 
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f the boxplot are the whiskers corresponding to the 25 and 75
er cent quantiles of the distribution. Apart from the whiskers, there
re individual outliers present, which are points that are deemed to
e significantly distinct from the rest of the sample. 
Fig. 2 illustrates publication years with the distance measurements

o M87 used for analysis since 1929, including tracers listed in D20
ollowing the taxonomic approach of D20 (de Grijs & Bono 2020 ).

oreo v er, the marginal panels associated with the main panel show
he marginal distribution of the distance measurements to M87 as
he function of the distance or publication data. The points represent
he o v erall data set in dif ferent colours corresponding to dif ferent
ndividual tracers. With the view of vertical comparison, Fig. 3 shows
 ridge graphical representation of the distance measurements to
87 based on different methods from different tracers. As depicted

n the plots abo v e, we can see some apparent relationships between
ur quantitati ve v ariables. In short, for the purpose of a holistic
omparison from multiple perspectives, these figures display the
omprehensive graphical representation of the distance measure-
ents to M87 based on different methods from various individual

racers. 
It is worthwhile to investigate the different deviations of the

istance measurements to M87 mentioned in D20 from the het-
roscedasticity. When dealing with all of the collected data, it is
ssential to address zero error and asymmetric systematic uncertain-
ies in a clear and consistent manner. Ho we ver, accurately e v aluating
he impact of zero error and asymmetric uncertainties remains a
hallenging task (Barlow 2003 ; Audi et al. 2017 ; Barlow 2021 ).
NRAS 533, 2916–2926 (2024) 
he main reason is that the anomalous deviation among different
easurement methods of M87 may be attributed to unidentified

ystematic effects and uncertainties, potentially indicating the ne-
essity of robust MFV statistics. On the other side, the physical
easurement is approximation for true value and cannot be with

ero error. Analogous statistical procedures have been discussed
sing the more general Bayesian/frequentist framework to deal with
ossible unknown systematic effects (Cowan 2019 ; Erler & Ferro-
ern ́andez 2020 ). Therefore, in order to reduce the sensitivity to
utliers, we use the average value of the uncertainties to calculate
he error distribution for the weighted mean in the case of zero error
Rackers et al. 2024 ). 

 ANALYSI S  O F  M E T H O D O L O G Y  

rom a distance ladder perspective, the estimation of the distance
easurements to M87 is one of the vital problems (de Grijs & Bono

020 ). In order to obtain a more accurate estimate of measurements,
here has been a substantial application of statistical methods,
ncluding median statistics, maximum likelihood estimation, and
ayesian statistics (Feigelson & Babu 2012 ). Understandably, there

s no justification for researchers to perpetually suppose that the prior
istribution of a physical quantity is normal. Although Gaussian
istribution is commonly used based on the central limit theorem, it
s not al w ays the most suitable choice, particularly when dealing with
pecial samples. For example, there are exceptions to the central limit
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Figure 3. The ridge plot of the observed results used for the analysis from different tracers. [A colour version of this figure is available in the online version.] 
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heorem in the case of a random variable following a Cauchy distri-
ution. Another significant issue is the heavy-tailed problem shown 
n the observed distributions. To be honest, it is extremely difficult 
or anyone to accurately determine if the normality characteristic is 
ntrinsic to the measurement data (Chen et al. 2003 ; Crandall et al.
015 ; Singh et al. 2016 ; Bailey 2017 ; Zhang 2017 ). 
When analysing measurement data, χ2 analyses, the least squares 
ethod (LSM; Kelly 2007 ; Zhang et al. 2012 ), and median statistics

re commonly given priority consideration to extract important 
nformation (Gott et al. 2001 ). Ho we ver, when the prior distributions
re non-Gaussian, it is necessary to consider more specific details of
he prior distributions in order to achieve more precise and robust
utcomes. On the other hand, as is known to all that every computa-
ional statistical model contains inevitable underlying assumptions. 
learly, before performing any statistical computation, it is essential 

o consider the normality of the distribution, which encompasses 
he error distribution and the prior distribution (Zhang 2017 ; Zhang 
t al. 2022 ). Moreo v er, dealing with heteroscedasticity is consistently
 major challenge for traditional methods. Therefore, it is important 
o use a violin plot to reveal the significant details regarding the
istributions of the distance measurements to M87, as shown in 
ig. 4 . The violin and kernel density plots for different methods are
hown in these subgraphs, which are particularly useful for e v aluating 
ummary and descriptive statistics. Additionally, we can make a 
irect comparison between the median and average v alues, allo wing 
s to intuitively observe the distributions of various subgroups and 
he potential non-Gaussian errors in the distance measurements to 

87 from different approaches. In brief, these obstacles also inspire 
s to utilize the no v el MFV method for determining the distance to
87. 
On the basis of the central limit theorem, the distribution of
easurement data should be normal in most cases. Even so, the

rror distributions of measurement data are still probably non- 
aussian. For instance, it is possible that the measurement data 
ight not originate from a random sample of independent, identically 

istributed random variables, which should be pro v en. Due to the
deal conditions of pure mathematics, it is necessary to temporarily 
ccept some plausible hypotheses based on e xpedienc y. According 
o the data of distance measurements to M87, physicists expect to
ccurately estimate the real value from different prior distributions. 
or the sake of a better implementation of this purpose, Steiner
Steiner 1991 , 1997 ) proposed a more robust statistical algorithm–

FV method, based on the principle of minimizing information 
oss. Regardless of whether the prior distribution is considered to 
e Gaussian or not, the robust MFV procedure is not only highly
fficient but also eliminates shortcomings such as high sensitivity to 
utliers in the data set for measurements (Zhang 2017 , 2018 ). 
In order to elucidate the effect of prior distribution and error dis-

ributions, we utilize the MFV procedure to assess the characteristics 
MNRAS 533, 2916–2926 (2024) 
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Figure 4. Violin plots and nested box diagrams of distance measurements to M87. The MFV and average values from different methods are indicated by the 
inverted triangle and circle, respectively, while the solid horizontal line in the box illustrates the median. [A colour version of this figure is available in the online 
version.] 
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ethods such as maximum likelihood estimation or LSM, Steiner
ut forward the maximum reciprocals principle, 

∑ 

i 

1 

X 

2 
i + S 2 

= max , (1) 

here X i is the residuals and deviations, and S denotes the mea-
urement error. According to the minimization of the information
i vergence (relati ve entropy) demonstrating the measure of infor-
ation loss (Huber 1981 ; Steiner 1991 , 1997 ), Steiner suggested

he MFV method and the scaling factor ε, i.e. dihesion, for the
ake of e v aluating the parameter of scale to some extent to reduce
he information loss. Furthermore, we can calculate the MFV and
he dihesion via iterations. After the ( j + 1)-th step of the MFV
rocedure, the relative equation of iterations for the most frequent
alue M is as follows: 

 j+ 1 = 

∑ n 

i= 1 

ε 2 
j 
x i 

ε 2 
j 
+ ( x i −M j ) 2 ∑ n 

i= 1 

ε 2 
j 

ε 2 
j 
+ ( x i −M j ) 2 

, (2) 

here x i is a series of the measurements and the dihesion ε j can be
alculated by 
NRAS 533, 2916–2926 (2024) 
 

2 
k+ 1 = 

3 
∑ n 

i= 1 
ε 4 
k 

( x i −M j ) 2 

[ ε 2 k + ( x i −M j ) 2 ] 2 ∑ n 

i= 1 
ε 4 
k 

[ ε 2 k + ( x i −M j ) 2 ] 2 
. (3) 

here the iterative initial value M 0 is chosen as the average value of
he measurements, and the initial value of ε is obtained as 

 0 = 

√ 

3 

2 
( x max − x min ) . (4) 

Additionally, we utilize the fixed threshold criterion to control
recision during iterations. After a number of iterations, the most
requent value M and dihesion ε can be determined when the
arameter uncertainty is below a certain threshold (e.g. 10 −5 ).
vidently, the robust dihesion ε does not behave like the sensitive
tandard deviation in LSM, which is easily affected by outliers
Steiner 1991 , 1997 ). 

 RESULTS  

he outcome of these calculations is MFV = 31.09 mag, which
s in agreement with the recently published results (31.08 mag)
Ramakrishnan & Desai 2023 ; Rackers et al. 2024 ). Because obser-
ational data reflect the essence of physical quantities, it is possible
o use robust statistics and data science, such as the MFV method,
o characterize the data. For estimating the uncertainty of physical
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Table 1. MFV and medians of distance measurements to M87 by tracer. 

tracers Number MFV shift mfv 95 per cent c.l. range Median shift med 95 per cent c.l. range 

All data 211 31.09 0 31.02–31.17 0.15 31.08 0 31.02–31.15 0.13 
Averages 21 31.14 0.05 30.92–31.38 0.46 31.08 0 30.98–31.40 0.42 
Cepheids 7 31.02 −0.07 30.86–31.20 0.34 31.02 −0.06 30.87–31.16 0.29 
Colour-magnitude 11 30.83 −0.26 30.64–31.06 0.42 30.84 −0.24 30.66–31.06 0.4 
Faber–Jackson 11 31.24 0.15 30.8–31.70 0.9 31.14 0.06 30.81–31.69 0.88 
GCLF 32 31.09 0.00 30.88–31.29 0.41 31.11 0.03 30.83–31.27 0.44 
Group membership 5 30.50 −0.59 30.37–30.87 0.5 30.5 −0.58 30.37–30.87 0.5 
H II 6 31.24 0.15 30.54–31.45 0.91 31.2 0.12 30.45–31.43 0.98 
Hubble law 8 26.96 −4.13 26.38–31.12 4.74 27.3 −3.78 26.5–31.10 4.6 
Novae 8 31.41 0.32 31.3–31.47 0.17 31.4 0.32 31.3–31.46 0.16 
Other methods 15 30.96 −0.13 30.71–31.18 0.47 30.9 −0.18 30.69–31.15 0.46 
PNLF 12 30.87 −0.22 30.82–30.90 0.08 30.865 −0.215 30.83–30.9 0.07 
SBF 18 31.10 0.01 31.01–31.18 0.17 31.12 0.04 31.02–31.17 0.15 
SNe 18 31.67 0.58 31.4–31.82 0.42 31.645 0.565 31.43–31.80 0.37 
TFR 36 31.24 0.15 30.97–31.47 0.5 31.235 0.155 30.98–31.49 0.51 
TRGB 3 31.06 −0.03 30.91–31.12 0.21 31.05 −0.03 30.91–31.12 0.21 
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uantities, the bootstrap method is one of the most ef fecti ve methods
nd is essential for e v aluating the rationality of the calculated results
Efron & Tibshirani 1994 ; Davison & Hinkley 1997 ). In order to
alculate the confidence interval, the bootstrap method follows a 
undamental process. Assuming that the observed data set of distance 
easurements to M87 is ( d 1 , . . . , d i ) chosen from an independent

nd identical distribution of true values of distance measurements 
ith the corresponding statistic θ ( d 1 , . . . , d i ), i.e. the MFV. Once a
ootstrap sample ( d ∗1 , . . . , d 

∗
i ) has been generated from the initial

bserved data with replacement, the next step is to calculate the 
mportant statistic, MFV, for the bootstrap sample. By repeating this 
rocess B times (usually 1000–3000 times), the distribution of the 
FV is generated. As a result, these distributions can be employed 

o assess confidence intervals (typically 68.27 or 95.45 per cent) of
he MFV for different distance measurement techniques. Finally, the 
alculated 68.27 per cent confidence interval for all measurements is 
31.06, 31.13] mag, taking into account statistical bootstrap errors, 
hile the calculated 95.45 per cent confidence interval for all data is

31.02, 31.17] mag. 
Generally, there are three statistical central estimates: median, 

eighted mean (Podariu et al. 2001 ), and MFV. As a comparison,
sing median statistics is another way to estimate confidence intervals 
or the distance measurements to M87 (Gott et al. 2001 ; Camarillo
t al. 2018a ). From the order statistic perspective, according to the
inomial test and estimation in non-parametric statistics (Cono v er 
999 ), the probability of the median between values x ( r) and x ( s) is 

( x ( r) � median � x ( s) ) = p( median � x ( s) ) − p( median < x ( r) ) , 

= 

s ∑ 

i= r 

(
n 

i 

)
/ 2 n , (5) 

here x ( i) is the order statistic. By application of this formula, 
he median for all measurements is 31.08 and the calculated 68.27 
er cent confidence interval is [31.03, 31.12] mag, while the 95.45 
er cent confidence interval for all data is [31.02, 31.15] mag. 

The calculated results and D20 data for the distance measurements 
o M87 are listed in Table 1 , which are used in our analysis. We
roup the 211 measurements into 15 subgroups based on the tracer 
ype in the final D20 compilation. The number of each subgroup 
nd the corresponding MFV and median statistics results are shown 
n Table 1 . The shifts in the 4th and 8th columns of the table list
he systematic displacement of MFV and median between the total 
ata set and subsets. The ranges in the 6th and 10th columns are
alculated by finding the distance between the upper and lower 
imits. From a theoretical perspective, the definition of this range 
aries depending on the type of fundamental uncertainty. In the 
ase of measured or binned scales, the measurement space can be
escribed as the relative standing of the observed data sets, allowing
or the definition of limits through two specified percentile endpoints 
r z-scores (Chakraborti & Li 2007 ; Mendenhall & Sincich 2016 ).
hus, both the upper and lower limits correspond to the dispersion
f the data, which are determined as the difference between the
igher and lower percentiles of the 95 per cent confidence level
C.L.) under typical conditions (Chen & Ratra 2011 ; Ialongo 2019 ;
ahedy et al. 2021 ). Furthermore, Fig. 5 shows histograms for all

racer subgroups, demonstrating multiple panel plots in terms of the 
ndividual tracer facets. The main goal is to explore the statistical
requent characteristic as a function of subgroups. 

There exist two primary categories of experimental errors: system- 
tic and statistical. In fact, it is very difficult to reveal the presence
f systematic errors through the variability in measurements. No 
heory or model exists that adequately handles uncertainties caused 
y systematic errors in a consistent manner (D’agostini 2003 ; Barlow
021 ). The only established principle regarding systematic errors 
s that they must be recognized and mitigated to a degree well
elow the required precision (Audi et al. 2012 ; Taylor 2022 ). Due
o the complexity involved in offering a rigorous proof, we estimate
ystematic errors following Chen & Ratra ( 2011 ) and Rackers et al.
 2024 ). Inspired by the classic idea of generalization in statistical
earning (Hastie et al. 2009 ; James et al. 2023 ), our goal is to
trike a good balance between statistical methods and practical 
easurement experience according to the principle of Occam’s 

azor. Following Chen & Ratra ( 2011 ), with the ongoing debates
urrounding systematic errors in the error analysis field, we can 
onsider subgroup systematic uncertainties as pseudorandom errors 
t the level of the entire list (Gott et al. 2001 ). 

Statistical uncertainty exists within each tracer subgroup, leading 
o measurement variability, while systematic errors may arise among 
racers due to variations in techniques and calibrations. We have 
ompiled a no v el data set comprising the MFV values of individual
racer subgroups. Similar to Chen & Ratra ( 2011 ) and Rackers et al.
 2024 ), a median statistical analysis is carried out on this new data
et to determine the median of MFVs and quantify its associated
ncertainty. In the scenario where we consider these medians to differ
MNRAS 533, 2916–2926 (2024) 
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olely in a systematic manner, the resulting uncertainty corresponds
o the systematic uncertainty present in the entirety of the tracers
Gott et al. 2001 ; Chen & Ratra 2011 ). 

Therefore, we can apply these 15 subgroup MFVs in Table 1 as a
ew data set to estimate the systematic uncertainty of whole group of
racers. For the sake of simplicity, we use median statistics to obtain
he median of these subgroup MFVs and its rele v ant uncertainty. The
esult is 31 . 09 + 0 . 05 

−0 . 07 (systematic) mag at 68.27 per cent significance.
e also combine the statistical and systematic errors in quadrature

o get 31 . 09 + 0 . 06 
−0 . 08 , which is consistent with the results of recent

eferences (Ramakrishnan & Desai 2023 ; Rackers et al. 2024 ).
esides, based on binomial distribution, we used median statistics to
nalyse subgroup medians and our results are consistent with those
n recent references (Ramakrishnan & Desai 2023 ; Rackers et al.
024 ) 

 DISCUSSION  

t holds meaning to explore the distributions of deviations of the
istance measurements to M87 mentioned in D20 from the central
stimate. The present work outlines three strategies for statistical
entral estimation: weighted mean (Podariu et al. 2001 ), median,
nd MFV. The weighted mean is defined as 

 wm 

= 

∑ N 

i= 1 D i /σ
2 
i ∑ N 

i= 1 1 /σ
2 
i 

, (6) 

here D i denotes the measurement of distance and σi is the one
tandard deviation error, i.e. the quadrature sum of the statistical and
NRAS 533, 2916–2926 (2024) 
ystematic uncertainties. The weighted mean standard deviation is 

wm 

= 

1 √ ∑ N 

i= 1 1 /σ
2 
i 

. (7) 

he goodness of fit χ2 is 

2 = 

1 

N − 1 

N ∑ 

i= 1 

( D i − D wm 

) 2 / σ 2 
i . (8) 

he number of standard deviations that χ deviates from unity
Farooq, Crandall & Ratra 2013 ; Crandall & Ratra 2014 , 2015 ) is
escribed by 

 σ = | χ − 1 | 
√ 

2( N − 1) . (9) 

By utilizing the median as well as MFV statistics approaches,
e can construct the error distributions. Just like how median

tatistics assume statistical independence of all measurements, the
FV statistics also do not take into account individual measurement

ncertainties. This results in a broader range of errors on the central
alue compared to the weighted mean technique. In accordance
ith the specified central estimate of all measurements, the error
istribution linked to standard deviations (Crandall & Ratra 2015 ;
enton et al. 2018 ; Camarillo et al. 2018a ) is described by 

 σi 
= 

D i − D CE √ 

σ 2 
i + σ 2 

CE 

, (10) 

here D CE is the central estimate of distance measurements, either
he median D med or MFV D MFV , and σCE is the uncertainty of D CE ,
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Figure 6. Histograms of the number of standard deviations in half bins away from the weighted mean, median, and MFV listed in the top, middle, and bottom 

rows. The left (right) column illustrates the signed (absolute) deviation, where the smooth curves in panels represent the best-fit Gaussian. The N σ of positive 
and ne gativ e cases indicate greater and less than the weighted mean, median, and MFV. [A colour v ersion of this figure is available in the online v ersion.] 
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ither σmed or σMFV . Noteworthy, this formula presupposes that the 
entral estimate is uncorrelated with the data set, which is not fulfilled
n this scenario. Although there is an expression for Gaussianly 
istributed data and for a weighted-mean central estimate (See the 
ppendix of Camarillo et al. 2018a ), the accurate expressions in 

he case of non-Gaussian distributions still remain unresolved for 
he important statistics such as median and MFV. When the central 
stimate D CE is the true value, this formula is al w ays correct in
 frequentist framework. Taking into account, the statistic as an 
pproximation to the true value, from the consistency of comparison, 
e use the derived equations to simplify the analysis, which provides 
aluable holistic inferences. These various combinations of central 
stimates and uncertainties are given by 

 

wm 

σi 
= 

D i − D wm √ 

σ 2 
i + σ 2 

wm 

, (11) 

 

med 
σi 

= 

D i − D med √ 

σ 2 
i + σ 2 

med 

, (12) 

 

MFV 
σi 

= 

D i − D MFV √ 

σ 2 
i + σ 2 

MFV 

. (13) 

de Grijs & Bono ( 2020 ) reported a distance modulus of ( m −
) M87 
0 = 31 . 03 ± 0 . 14 mag. They only chosed a well-calibrated and

ndependently determined subset from the Cepheids, TRGB, and 
BF measurements. Similar to previous work in Ramakrishnan & 

esai ( 2023 ), for the weighted mean we used the measurements with
rror bars and obtained ( m − M) wm 

= 31 . 109 ± 0 . 008 mag. Also,
e find χ2 = 6 . 57 and the number of standard deviations that χ
eviates from unity is 28.83. Moreo v er, based on the procedure
utlined in Rackers et al. ( 2024 ), we use the full data set for
alculations by setting the measurements without errors to the 
verage value of the uncertainties for that tracer. The weighted mean
f all 15 tracers is ( m − M) wm 

= 31 . 068 ± 0 . 008 mag. These results
re in good accord with previous work (Ramakrishnan & Desai 2023 ;
ackers et al. 2024 ) 
The MFV and median statistics procedures are advantageous 

ecause they do not rely on the individual measurement errors. 
s a result, a greater uncertainty will be observed in the central

stimate compared to the weighted mean scenario. When applying 
edian and MFV statistics to construct the confidence interval via 

he abo v e equations, the central estimate for D med is 31 . 08 + 0 . 04 
−0 . 05 mag,

ith a 1 σ range of [31.03, 31.12]. The MFV estimate is given
y D MFV = 31 . 09 + 0 . 04 

−0 . 03 mag with uncertainty corresponding to 68.27
er cent confidence intervals. 

By employing these statistical methods, we are able to visualize 
he error distributions of distance measurements with respect to 
 σ (Crandall & Ratra 2015 ), equations ( 10 )–( 13 ), in Fig. 6 , which

ndicates the N σ and symmetrical | N σ | histograms using the weighted
MNRAS 533, 2916–2926 (2024) 
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M

Figure 7. Histogram of the error distribution in | N σ | = 0 . 1. The solid black line indicates the expected Gaussian probabilities for all data and the dash–dotted, 
dash, and dot lines denote the numbers of | N σ | values for the weighted mean, MFV, and median, respectively. [A colour version of this figure is available in the 
online version.] 
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ean, median, and MFV. The histogram of error distributions of
he measurements is displayed in Fig. 7 with | N σ | = 0 . 1 bin size
or a more specific viewpoint. Clearly, these figures show that the
eighted mean case has a broader range than the expected Gaussian
istribution. 
From these graphs, we can observe numerous statistical charac-

eristics. The expected Gaussian distribution is expected to yield 10
alues with | N σ | ≥ 2 and a single value with | N σ | ≥ 3. But for
he weighted mean case, there are 73 values with | N σ | ≥ 2, 42
ith | N σ | ≥ 3, and 29 with | N σ | ≥ 4. Remarkably, 68.3 per cent
f the N σwm error distribution lies within −2 . 06 ≤ N σ ≤ 2 . 14 while
5.4 per cent falls within −19 . 85 ≤ N σ ≤ 5 . 51. The observed N σwm 

rror distribution has constraints of | N σ | ≤ 2 . 13 and | N σ | ≤ 6 . 86,
espectively, and 37.9 and 65.4 per cent of the values lie within
 N σ | ≤ 1 and 2, respectively. 

For the median case, the distribution has a narrower tail than
he expected Gaussian distribution, with 68 values of | N σ | ≥ 2, 42
ith | N σ | ≥ 3 and 21 with | N σ | ≥ 4. For signed N σ , 68.3 per cent
f the data lie within −1 . 93 ≤ N σ ≤ 2 . 04, while 95.4 per cent fall
ithin −15 . 70 ≤ N σ ≤ 6 . 16. The absolute | N σ | error distribution
as constraints of | N σ | ≤ 2 . 03 and | N σ | ≤ 6 . 38, respectively. More-
NRAS 533, 2916–2926 (2024) 
 v er, 38.9 and 67.8 per cent of the values lie within | N σ | ≤ 1 and 2,
espectively. 

On the other hand, for the MFV case, we gain a central estimate
f ( m − M) MFV = 31 . 09 mag, see Figs 6 – 7 , and also find a non-
aussian error distribution with 68 values of | N σ | ≥ 2, 42 with

 N σ | ≥ 3 and 22 with | N σ | ≥ 4. 68.3 per cent of the data falls within
1 . 96 ≤ N σ ≤ 2 . 05, while 95.4 per cent lie within −6 . 59 ≤ N σ ≤
 . 32. The | N σ | error distribution has constraints of | N σ | ≤ 2 . 02 and
.48, respectively, and 38.4 and 67.8 per cent of the values fall within
 N σ | ≤ 1 and 2, respectively. 

It is evident from these data analysis that the error distribution
or the MFV case is similar to that of the median case, while being
arrower than that of the weighted mean case. The progressively
ightening distributions of the weighted mean, median, and MFV
ould potentially be associated with unaccounted-for systematic
ncertainties or correlations among distance measurements to M87,
hich have not been taken into consideration (de Grijs, Wicker &
ono 2014 ; Crandall & Ratra 2015 ; de Grijs & Bono 2020 ).
vidently, these in-depth statistical descriptions show that the error
istributions of the weighted mean, median, and MFV are non-
aussian, underscoring the ef fecti veness of the MFV technique
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Figure 8. (Top) The distance measurements to M87 as a function of the publication year. The points represent the measured data using different methods, while 
the triangle, diamond, and inverted triangle depict the weighted mean, MFV, and median, respectiv ely. Dark gre y shadings indicate the MFV uncertainties are 
at 1 σ confidence level. (Bottom) We show the residuals of the fit or data with respect to the MFV as a function of the publication date. [A colour version of this 
figure is available in the online version.] 
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or a robust analysis of distance measurements to M87. In Fig. 
 , we apply equations of three statistical methods to plot the
istributions of measurements illustrated as a function of years, 
hich demonstrates the calculated results using the weighted mean, 
edian, and MFV represented by different symbols. The bottom 

anel displays the calculated residuals � D/D MFV from the MFV. As
entioned previously, similar results were obtained in the references 

Ramakrishnan & Desai 2023 ; Rackers et al. 2024 ). This strongly
ndicates that error distributions are not Gaussian, which in turn 
upports the reliability and reasonableness of MFV estimate. 

 C O N C L U S I O N  

n brief, the problem of the long-standing discrepancy in the distance 
easurements to M87 remains a crucial challenge in the study of

strophysics and cosmology. Despite the non-Gaussian nature of the 
easurement compilation, we utilized the MFV statistics technique 

o reconstruct a comprehensive statistical analysis of the data set for
he distance measurements to M87, which contain different tracer 
ypes. In terms of robustness to the observed data, the MFV estimate
s given by 31 . 09 + 0 . 04 

−0 . 03 (statistical) + 0 . 05 
−0 . 07 (systematic) mag correspond- 

ng to a 68.27 per cent confidence interval, whereas the result of
ombining the two uncertainties in quadrature is 31 . 09 + 0 . 06 

−0 . 08 mag. 
ccording to the binomial distribution, the median statistical analysis 
ields 31 . 08 + 0 . 04 

−0 . 05 (statistical) + 0 . 04 
−0 . 06 (systematic) mag at 68.27 per cent 

ignificance. Moreo v er, based on the weighted mean, median and 
FV, we construct the error distributions of distance measurements 
o M87 and find the characteristic of the non-Gaussianity. The 
onsistent results have shown the ef fecti veness and robustness of
FV statistics, which will encourage more exploration into the use 

f the MFV method in analogous scenarios. 
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