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By use of the conf ormal transf ormations, in addition to translating the Brans–Dicke (BD) 
action to the Einstein frame (EF), we introduce an electromagnetic Lagrangian which pre- 
serves conformal invariance. We solve the EF field equations, which mathematically are 
confronted with the problem of indeterminacy, by use of an exponential ansatz function. 
When the self-interacting potential is absent or is taken constant in the BD action, the ex- 
act solution of this theory is just that of Einstein-conf ormal-in variant theory with a trivial 
scalar field. This is a higher-dimensional (HD) analogue of the same considered in Ref. [R.- 
G. Cai, Y. S. Myung, Phys. Rev. D 56 , 3466 (1997)]. The EF general solution admits two 

classes of black holes (BHs) with non-flat and non-AdS asymptotic behavior which can 

produce extreme and multi-horizon ones. We obtain the exact solutions of BD-conformal- 
inv ariant theory, b y a ppl ying in verse conf ormal transf ormations, which show two classes 
of extreme and multi-horizon BHs too. Based on the fact that thermodynamic quantities 
remain unchanged under conformal transformations, we show that the first law of BH ther- 
modynamics is valid in the Jordan frame. We analyze the thermal stability of the HD BD- 
conf ormal-in variant BHs by use of the canonical ensemble method. 
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1. Introduction 

The scalar–tensor theory is a modified gravity theory in which the scalar field is non-minimally
coupled to gravity. It can be considered as the simplest extension of Einstein’s gravity theory
which coincides with the lo w ener gy limit of string theory [ 1 ]. This theory is often used for re-
solving the problems of inflation and dark energy in the modern cosmology [ 2 , 3 ]. Brans and
Dicke have proposed a version of scalar-tensor theory which is consistent with Mach’s princi-
ple and Dirac’s large number hypothesis [ 4 , 5 ]. It includes a coupling parameter denoted by ω,
which recovers Einstein’s initial theory as the Br ans–Dicke (BD) par ameter grows to infinity [ 6 ].
The BD theory, which is considered as an alternati v e theory of gravity, has had some outstand-
ing cosmological achie v ements. For e xample: although the advanced pr ecession of Mer cury’s
perihelion was initially explained by Einstein’s theory, when the sun’s oblateness is taken into
account a complete explanation is possible by BD theory [ 7 ]. 

It has been shown that the exact solutions of four-dimensional (4D) BD-Maxwell theory,
in the absence of self-interacting scalar potential, is just the Reissner–Nordström (RN) black
hole (BH) with a trivial constant scalar field [ 8 ]. This is due to the fact that Maxwell’s electro-
© The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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dynamics remains conf ormal-in variant in 4D spacetimes, and the dif ferential equa tion gov-
erned by the scalar field becomes sour ce-fr ee. In the higher-dimensional (HD) spacetimes,
howe v er, since Maxwell’s electrodynamics is no longer conf ormal-in variant and plays the role
of a non-zero source, the solutions are affected by non-trivial scalar fields [ 9 , 10 ]. Here, we
show that similar result can be achie v ed when the BD theory is considered in the presence
of HD conf ormal-in variant electrodynamics. Maxwell’s theory of classical electrodynamics is 
conf ormal-in variant only in the 4D spacetimes. It also leads to infinite electric field and self-
energy in the position of point-like charged particles. Different models of non-linear electro-
dynamics were initially proposed with the aim of resolving the related failures [ 11 , 12 ]. Some
of the non-linear electromagnetic models, such as Born–Infeld and Born–Infeld-like theories 
[ 13–19 ], hav e successfully remov ed the singularities in the classical le v el. The prob lem of con-
formal symmetry breaking in the higher- and lower-dimensional spacetimes may be resolved 

by suitable use of the power-law non-linear electrodynamics [ 20 , 21 ]. 
Conf ormal in variance was initially introduced by showing that Maxwell’s equations re-

main invariant under confor mal transfor mations [ 22, 23 ]. A detailed discussion on the phys-
ical importance of conformal symmetry in physics, and some other conf ormal-in variant equa-
tions, can be seen in Ref. [ 24 ]. In flat spacetime, massless fields propagate on the light-cone, and
their field equations are conf ormal-in variant. An important point is that although the con-
f ormal in variance guarantees the light-cone propagation, the inverse is not always true [ 25 ]. It
is well-known that the massless spin-2 particles, the so-called gravitons which propagate with
the light speed, are described by a symmetric rank-2 tensor field in Einstein’s theory of rela-
tivity, and this theory violates conformal symmetry. It has been shown that a theory of rel-
ativity which presents symmetries of de Sitter and conformal groups sim ultaneousl y can be
constructed by use of a mixed symmetry rank-3 tensor field [ 25–27 ]. Moreover, the anti-de
Sitter/conf ormal-in variant field theory (AdS/CFT) correspondence states that there is a rela-
tion between d -dimensional conf ormal-in variant field theory (CFT) and a theory of gravity in
a ( d + 1)-dimensional anti-de Sitter (AdS) space, both with the same symmetry group SO (2,
d ). Nowadays, the AdS/CFT dual and its applications have been extended to almost all di v erse
areas of physics [ 28–33 ]. 

Since the BHs are systems in high energy le v els, inv estigation of their properties in the pres-
ence of quantum-corrected classical perspecti v es is e xpected to gi v e mor e r ealistic advantages
[ 34 , 35 ]. Thus, noting the fundamental role of conformal invariance in constructing AdS/CFT
correspondence, and also its importance in establishing conformal quantum gravity theory 

[ 36 , 37 ], we study the impacts of conformal symmetry, via consideration of conf ormal-in variant
electrodynamics, on the thermodynamic behavior of HD BD BHs. Briefly, the main purpose
of the present work is to obtain the exact charged BD BH solutions in the presence of HD
conf ormal-in variant electr odynamics. Also, thr ough stud y of thermod ynamic properties, we
examine the impacts of conf ormal-in variant electrodynamics on the thermodynamic quanti- 
ties, the first law of BH thermodynamics and the stability properties of the BD BHs. 

The paper will be organized as follows: In Sect. 2 , by a ppl ying a ma thema tical tool named
as the conformal transformation, the action of HD BD theory is translated from the Jordan
frame (JF) to that of Einstein-dilaton (Ed) theory in the Einstein frame (EF). Through this
procedure, the action of conf ormal-in variant electrodynamics has been introduced for the HD
spacetimes. In Sect. 3 , two novel classes of exact HD solutions are introduced in the presence
of conf ormal-in variant electrodynamics. In Sect. 4 , the exact solutions of the BD-conformal-
2/14 



PTEP 2023 , 113E02 M. Dehghani 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/11/113E02/7330200 by D

eutsches Elektronen Synchrotron user on 06 D
ecem

ber 2023
invariant gravity theory are obtained, from their Ed analogues, by use of the inverse conformal
transformations. Regarding the fact that under conformal transformations the thermodynamic
quantities remain invariant, we show that the first law of BH thermodynamics is valid for our
novel BD-conf ormal-in v ariant BHs. We discuss thermal stability of the BD BHs b y use of the
canonical ensemble method. The results will be summarized and discussed in Sect. 5 . 

2. The general formalism 

The action of BD theory can be written either in the JF or in its conformally related spacetime,
named as the EF. The field equations obtained by the variational principle in the JF are highly
non-linear such that they cannot be solved directly [ 38 , 39 ]. Fortunately, there is a ma thema tical
tool known as the conformal transformations by use of which one can translate the JF action
to that of EF, where the equations of gravitational and scalar fields are decoupled [ 40 , 41 ]. The
EF action is just that of Ed theory, and the rela ted dif ferential equa tions can be easily solved
for the spherically symmetric BHs. Then, by using inverse conformal transformations, one can
obtain the exact BD BH solutions from the corresponding ones in the EF [ 42 , 43 ]. The action
of ( n + 1)-dimensional BD gravity theory, in the presence of an electroma gnetic La grangian,
takes the following general form [ 44 , 45 ]: 

I BD = − 1 

16 π

∫ √ 

−ḡ 

[
ψ R̄ − ω 

ψ 

ḡ 

μν∂ μψ ∂ νψ − U (ψ ) + L ( X̄ ) 
]

d 

n +1 x, (1) 

where R̄ = ḡ 

μνR̄ μν is the Ricci scalar, ω is the BD parameter, and ψ is a scalar field. The
term L ( X̄ ) states the Lagrangian density of non-linear electrodynamics as a function of 
X̄ = F̄ 

μνF̄ μν . F̄ μν = ∂ μĀ ν − ∂ νĀ μ is the Farady’s tensor and Ā μ is the electromagnetic four-
potential. Here, we use the power-Maxwell non-linear electrodynamics with the Lagrangian
density as [ 46 , 47 ] 

L ( X̄ ) = 

(−X̄ 

)p 
, (2) 

and p is the parameter of non-linearity. Note that, in the case of p = 1, Maxwell’s electrody-
namics is r ecover ed. 

Making use of the variational principle, the various field equations can be achie v ed. One can
show that the gravitational field equation takes the following form [ 48 ]: 

ψ 

(
R̄ αβ − 1 

2 

R̄ ̄g αβ

)
− (∇̄ α∇̄ β − ḡ αβ�̄

)
ψ = T 

(s ) 
αβ + T 

(em ) 
αβ , (3) 

where �̄ = ∇̄ μ∇̄ 

μ is the dAlembertian operator, and T 

(em ) 
αβ and T 

(s ) 
αβ are stress-energy tensors of 

the scalar and electromagnetic fields 

T 

(s ) 
αβ = 

ω 

ψ 

∇̄ αψ ∇̄ βψ − 1 

2 

[
U ( ψ ) + 

ω 

ψ 

( ̄∇ ψ ) 2 
]

ḡ αβ, (4) 

T 

(em ) 
αβ = 

1 

2 

(−X̄ 

)p 
ḡ αβ + 2 p 

(−X̄ 

)p−1 
F̄ ανF̄ 

ν
β . (5) 

Also, for the scalar field equation, we have 

2[ ω(n − 1) + n ] ̄�ψ = (n − 1) ψ U 

′ (ψ ) − (n + 1) U (ψ ) + 

1 

2 

( n + 1 − 4 p ) 
(−X̄ 

)p 
. (6) 

and for the electromagnetic field equation, we obtain 

∂ α

[ √ 

−ḡ 

(−X̄ 

)p−1 
F̄ 

αβ
] 

= 0 . (7) 

Because of the strong coupling between the scalar and gravitational field equations it is very
difficult to obtain the analytical exact solutions dir ectly. Ther efor e we tend to translate the ac-
3/14 
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tion (1) from the JF to the EF, where the exact analytical solutions may be obtained simply. An
interesting transformation is the so-called conformal transformation which is defined through 

the following relation: 

ḡ μν −→ ḡ μν = 
2 (ψ ) g μν, (8) 

where g μν is the metric tensor in the EF and 
( ψ) is, in general, a well-defined function of the
spacetime coordinates. Note that the transformation (8) is not a coordinate transformation, but
it acts on the geometry and shrinks or stretches manifold. In addition to Eq. (8) we assume that
the Farady’s tensor transforms as F̄ μν −→ F μν . Under the conformal transformations presented
in Eq. (8) , the Ricci scalar can be calculated easily. That is [ 49 ], 

R̄ −→ R̄ = 
−2 R − 
−4 n (n − 3) g 

μν∂ μ
 ∂ ν
 − 2 n 
−3 �
. (9) 

Also, for the metric determinant and Maxwell invariant, we have 

ḡ −→ ḡ = 
2(n +1) g, (10) 

X̄ −→ X̄ = 
−4 X . (11) 

Consequently, one can write 

L ( X̄ ) −→ L ( X̄ ) = 
n +1 L (
−4 X ) , (12) 

and noting Eq. ( 2 ), one can conclude that if we set p = ( n + 1)/4, then L ( X̄ ) = L (X ) and, the
trace of electromagnetic energy-momentum tensor (5) vanishes (i.e. ḡ 

αβT 

(em ) 
αβ = 0 ) [ 50 ]. Thus the

Lagrangian density is invariant, and we achie v e the HD conformal-invariant electrodynamics. 
In addition, for the translation from JF to the EF, we need a scalar field in the EF which we

call φ and assume that ψ = ψ( φ). Ther efor e, we can write 

∂ μψ ∂ νψ = 

(
dψ 

dφ

)2 

∂ μφ ∂ νφ, (13) 

∂ μ
 ∂ ν
 = 

(
d


dφ

)2 

∂ μφ ∂ νφ. (14) 

Now, combining the above-mentioned results shows that the BD action (1) in the EF may be
written as [ 51–53 ] 

I Ed = − 1 

16 π

∫ √ −g 

[
R − 4 

n − 1 

g 

μν∂ μφ ∂ νφ − V (φ) + L (X ) 
]

d 

n +1 x, (15) 

if the following relations are fulfilled: 


(ψ ) = ψ 

−1 / ( n −1 ) , (16) 

U ( ψ )
n +1 ( ψ ) = V (φ) , (17) 

n (n − 1) 
(

d ln 


dψ 

)2 (dψ 

dφ

)2 

+ 

ω 

ψ 

2 

(
dψ 

dφ

)2 

= 

4 

n − 1 

. (18) 

By combining Eqs. (16) and (18) , and integrating the obtained equation we have 

ln ψ = 

±2 √ 

n + (n − 1) ω 

φ. (19) 

Ther efor e, we have 

ψ = e 2 βφ, (20) 
4/14 
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where β = 

1 √ 

n +(n −1) ω 

, with ω > − n 
n −1 , and for a suitable function φ( r ), the physical scalar field

ψ( r ) has to vanish at infinity. 

3. The Ed-conf ormal-inv ariant BHs 
The action (15) which has been written in the EF is known as the action of HD Ed gravity
theory coupled to conf ormal-in variant electrodynamics as the matter field. Making use of the
variational principle, it leads to the following field equations [ 54 , 55 ]: 

R μν = 

1 

n − 1 

[
g μνV (φ) + 4 ∂ μφ( r ) ∂ νφ( r ) 

] + 

g μν

2 

(
n − 3 

n − 1 

)
L (X ) − 2 L 

′ (X ) F μαF 

α
ν , (21) 

∇ μ

[
L 

′ (X ) F 

μν
] = 0 , (22) 

8 �φ(r ) = (n − 1) 
dV (φ) 

dφ
, (23) 

which may be named as the equa tions of gravita tional, electromagnetic and scalar fields, in or-
der. Her e, we ar e inter ested in obtaining the exact solutions in a static and spherically symmetric
( n + 1)-dimensional spacetime. Thus we start with the following ansatz [ 14 , 19 , 56 , 57 ]: 

d s 2 = g μνd x 

μd x 

ν = − f (r ) d t 2 + 

1 

f (r ) 
d r 2 + r 2 a 

2 (r ) h i j d x 

i d x 

j . (24) 

The unknowns f( r ) and a ( r ) will be determined later. Also, h ij dx 

i dx 

j is the line element of an
( n − 1)-dimensional subspace [ 58 ]. 

It has been shown that, in obtaining the exact solutions, this theory is confronted with the
problem of indeterminacy [ 59 , 60 ]. This means that the number of unknowns is one more than
the unique equations. This problem can be resolved by use of an exponential ansatz [ 16 , 61 , 62 ].
That is, 

a (r ) = e ( 2 αφ) / ( n −1 ) , (25) 

where α is a constant coefficient. Evidently, in the absence of a dilaton field it reduces to unity
and the line element of Einstein gravity is r ecover ed. Then the scalar field φ( r ) is obtained as
[ 59 ] 

φ(r ) = γ ln 

(
b 

r 

)
, with γ = 

(n − 1) α
2(1 + α2 ) 

. (26) 

Note that b is a positi v e constant. The combination of Eqs. (20) and (6) shows that, for positi v e
v alues of α and β, ψ v anishes at infinity. Also, for the non-vanishing component of Farady’s
tensor, in terms of an integration constant q , we have 

F tr = q r −2 / ( 1+ α2 ) , (27) 

and noting the relation F tr = −∂ r A t ( r ) one obtains 

A t = 

⎧ ⎨ 

⎩ 

−q ln 

( r 

 

)
, for α2 = 1 , 

q 

(
1+ α2 

1 −α2 

)
r ( α

2 −1 ) / ( α2 +1 ) , for α2 < 1 . 
(28) 

The remaining unknowns f( r ) and V ( φ) are governed by the following differential equations: 

n − 1 − 2 αγ

(n − 1) r 

[
f ′ (r ) + ( n − 2 − 2 αγ ) 

f (r ) 
r 

]
= 

n − 2 

r 2 a 

2 (r ) 
− V (φ) 

n − 1 

− L (X ) 
2 

, (29) 

−γ

r 

[
f ′ (r ) + ( n − 2 − 2 αγ ) 

f (r ) 
r 

]
= 

n − 1 

8 

dV (φ) 
dφ

. (30) 
5/14 
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Before obtaining the general solution of these equations, we consider an special case in which
V ( φ) = 0 or V ( φ) = constant , for example V ( φ) = 2 �. Thus we have dV (φ) / dφ = 0 , and Eqs.
(29) and (30) are incompatible unless γ = 0. Then, noting Eq. (26) , we have φ = 0 and, Eq. ( 20 )
results in ψ = 1. Under these conditions, the set of Eqs. ( 29 ) and ( 30 ) lead to 

f (r ) = 1 − m 

r n −2 
− 2�r 2 

n (n − 1) 
+ 

(
2 q 

2 
)( n +1 ) / 4 

2 r n −1 
, (31) 

which is nothing but the metric function of HD Einstein’s gravity with a conf ormal-in variant
electrodynamics. Ther efor e, the BD-conformal-invariant theory, when the action does not in-
clude the self-interacting potential U ( ψ), is just the HD RN-conf ormal-in variant theory cou-
pled to a trivial scalar field ψ = 1. This issue is the HD correspondence of the 4D BD-Maxwell
theory, where the Maxwell’s electrodynamics is conf ormal-in variant, considered in Ref. [ 8 ]. 

Now, the general solutions of Eqs. (29) and (30) can be written in the following forms [ 59 ]: 

V (φ) = 

{ 

2�e f f e 
4 φ/ ( n −1 ) + 2�1 φe 4 φ/ ( n −1 ) + 2�2 e [ 2(n +1) φ] / ( n −1 ) , for α2 = 1 . 

2�e 4 αφ/ ( n −1 ) + 2�3 e 4 φ/ [ α(n −1) ] + 2�4 e [ 2(n +1) φ] / [ α(n −1) ] , for α2 < 1 , 
(32) 

where, �e f f is the cosmological constant � = −[ n (n − 1) ] / 2 
 

2 with a constant absorbed in it,
and 

�1 = 

−2(n − 2) 
b 

2 
, �2 = 

(
2 q 

2 
)( n +1 ) / 4 

2 b 

( n +1 ) / 2 
, �3 = 

α2 (n − 1)(n − 2) 
2 b 

2 (α2 − 1) 
, �4 = 

α2 (n − 1) 
(
2 q 

2 
)( n +1 ) / 4 

2(n + 1 − 2 α2 ) b 

( n +1 ) / ( 1+ α2 ) 
, 

(33) 

and, in terms of the integration constant m , Eq. ( 29 ) gi v es the following e xact solution for the
metric function: 

f (r ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−mr ( 3 −n ) / 2 − 8�
e f f 

br 

(n −1) 2 + 

4 r (n −2) 
b(n −1) 

[ n +1 
n −1 + ln 

( b 
r 

)] − ( n +1 
n −1 

) (
2 q 

2 
)( n +1 ) / 4 

r ( 3 −n ) / 2 ln 

( r 

 

)
, 

for α2 = 1 , 

−m r 1 −( 2 γ /α) − 2�b 

2 ϒ
( r 

b 

)2 / ( 1+ α2 ) + ϒ1 
( r 

b 

)( 2 α2 ) / ( 1+ α2 ) + ϒ2 
(
2 q 

2 
)( n +1 ) / 4 

r ( 1 −n +2 α2 ) / ( 1+ α2 ) ,

for α2 < 1 . 

(34) 

We have used the definitions ϒ = [ (1 + α2 ) 2 ] / [ (n − 1)(n − α2 ) ] , ϒ1 =
[ (1 + α2 ) 2 (n − 2) ] / [ (α2 + n − 2)(1 − α2 ) ] and ϒ2 = [ (1 + α2 ) 2 (n + 1) ] / [ 2(n + 1 − 2 α2 )(1 − α2 ) ] ,
for simplicity. Note that the statements presented in Eqs. (32) , (33) and (34) reduce to the cor-
responding quantities in the four-dimensional case of Brans–Dicke–Maxwell theory, where the 
applied electromagnetic theory is conf ormal-in variant too [ 63 ]. Also, in the absence of dilaton
field (i.e. α = 0), the asymptotically AdS metric function (31) is r ecover ed. This means that
our solutions, which are asymptotically unusual, are affected by the scalar field. Indeed, the
inclusion of dilatonic scalar field causes the metric function to be asymptomatically non-flat
and non-AdS. 

The plots of f( r ) − r , for n = 4 and n = 5 cases, have been depicted in Figs. 1 and 2 . They
illustra te tha t our solutions re v eal that e xtreme, naked singularity, one-horizon, two-horizon
and three-horizon BHs can occur for the properly chosen parameters. The appearance of the
m ulti-horizon BHs, w hich shows a quantum effect known as the anti-evaporation [ 64 ], arises
from the consideration of conf ormal-in variant electrodynamics. 
6/14 
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Fig. 1. f( r ) versus r , for 
 = 1 , b = 1 . 5 , q = 1 : Left: n = 4 , m = 4 , α = 

0 . 38( black ) , 0 . 43( blue ) , 0 . 47 (red) , Right: n = 5 , α = 0 . 4 , m = 3 . 7 (black) , 3 . 94 (blue) , 4 . 22 (red) . 

Fig. 2. f( r ) versus r , for α = 1 , 
 = 2 , q = 1 : Left: n = 4 , b = 0 . 8 , m = 

7 . 5 (black) , 8 . 28 (blue) , 9 . 3 (red) , 10 . 3 (blue dashed) , 11 . 1 (brown) , Right: n = 5 , b = 0 . 6 , m = 

7 . 3 (black) , 8 . 05 (blue) , 8 . 8 (red) , 9 . 5 (blue dashed) , 10 (brown) . 
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4. The BD-conf ormal-inv ariant BHs 
Up to now, the exact solutions have been obtained in the presence of an HD conformal-
invariant electrodynamics inspired by nonlinear pow er-Maxw ell field, in the EF where the static
and spherically symmetric spacetime takes the form of Eq. ( 24 ). Now, we explore BD BH solu-
tions in the JF by use of their EF counterparts. Then, we stud y thermod ynamics and thermal
stability of our novel BD BHs. To this end we proceed with the following line element [ 65 , 66 ]: 

d s 2 = ḡ μνd x 

μd x 

ν = −A (r ) d t 2 + 

d r 2 

B(r ) 
+ r 2 C 

2 (r ) h i j d x 

i d x 

j . (35) 

Note that the functions A (r ) , B(r ) , and C(r ) are unknown metric coefficients, and will be fixed
by use of the conformal transformations (8) . Noting Eqs. (16) and (20) , we have 
(φ) =
exp {−[( 2 β ) / ( n − 1 )] φ} and ḡ μν = ( b/r ) −( 4 βγ ) / ( n −1 ) g μν . Thus, for the metric coefficients, we have 

A (r ) = 

(
b 

r 

)−( 4 βγ ) / ( n −1 ) 

f (r ) , 

B(r ) = 

(
b 

r 

)( 4 βγ ) / ( n −1 ) 

f (r ) , 

C(r ) = 

(
b 

r 

)−( 2 βγ ) / ( n −1 ) 

a (r ) . (36) 
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Fig. 3. B(r ) versus r , for 
 = 1 , b = 1 . 5 , q = 1 , β = 2 : Left: n = 4 , m = 4 , α = 

0 . 38 (black) , 0 . 43 (blue) , 0 . 47 (red) , Right: n = 5 , α = 0 . 4 , m = 3 . 7 (black) , 3 . 94 (blue) , 4 . 22 (red) . 

Fig. 4. B(r ) versus r , for α = 1 , 
 = 2 , q = 1 , β = 1 : Left: n = 4 , b = 0 . 7 , m = 

7 . 8 (black) , 8 . 44 (blue) , 8 . 9 (red) , 9 . 4 (blue dashed) , 9 . 8 (brown) , Right: n = 5 , b = 0 . 5 , m = 

7 . 95 (black) , 8 . 165 (blue) , 8 . 3 (red) , 8 . 5 (blue dashed) , 8 . 7 (brown) . 
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Note that a ( r ) and f( r ) have been presented in Eqs. (25) and (34) , respecti v el y. The gra phs
of B(r ) versus r , for five- and six-dimensional cases ( i.e. n = 4 and n = 5 ) have been plot-
ted in Figs. 3 and 4 . The graphs show that three-horizon, two-horizon, one-horizon, extreme
and horizon-less BHs appear for the BD exact solutions obtained here. The appearance of the
extreme BHs with two extreme horizons (blue curves of Figs. 3 and 4 ), and the existence of 
the multi-horizon BHs re v eals the impacts of the conf ormal-in variant electrodynamics under
consideration. 

Indeed the horizon radii are the real roots of equation ḡ 

rr = B(r ) = 0 . Although it is not
easy to determine its real roots anal yticall y, based on the method of Ref. [ 67 ] we can gi v e some
analysis by use of plots. The relation B(r h ) = 0 , where the r h is the horizon radius, gi v es 

m (r h ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

4 r ( n −1 ) / 2 
h 

{ 

n −2 
b(n −1) 

[ 

n +1 
n −1 + ln 

(
b 
r 

h 

)] 

− 2�
e f f 

b 

(n −1) 2 

} 

− ( n +1 
n −1 

) (
2 q 

2 
)( n +1 ) / 4 

ln 

(
r 

h 

 

)
, 

for α2 = 1 ,

r ( 2 γ /α) −1 
h 

[
ϒ1 

(
r 

h 
b 

)( 2 α2 ) / ( 1+ α2 ) 
− 2�b 

2 ϒ
(

r 
h 
b 

)2 / ( 1+ α2 ) 
]

+ ϒ2 
(
2 q 

2 
)( n +1 ) / 4 

r ( α
2 −1 ) / ( α2 +1 ) 

h 
, 

for α2 < 1 ,

(37) 

which is useful for exploring the existence of BH and cosmological horizons. To do this, we
consider the cases with and without cosmological horizon, separately. 
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Fig. 5. m ( r h ) versus r h , for n = 4 , 
 = 1 : Left: q = 0 . 4 , b = 1 . 5 , α = 0 . 25 (black) , 0 . 5 (blue) , 0 . 65 (red) , 
Middle: α = 1 , b = 0 . 35 , q = 0 . 45 (black) , 0 . 55 (blue) , 0 . 65 (red) , Right: α = 1 , b = 0 . 5 , q = 

1 . 85 (black) , 2 . 2 (blue) , 2 . 5 (red) . 
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When there is no cosmological horizon ( r c ), b y v arying r h from zero to infinity, the function
m ( r h ) starts from infinity and goes to infinity again. In other words m ( r h ) has a minimum value
at m = m ext . The intersections of lines m = constant with curve m ( r h ) determine the location
of BH horizons. Ther efor e, noting the left-hand panel of Fig. 5 , our solutions show BHs with
inner ( r −) and outer ( r + 

) horizons provided that m > m ext is chosen. For m = m ext and m < m ext 

they show extreme BHs and naked singularities, respecti v ely. This issue corresponds to the case
presented in Fig. 3 . 

In the presence of cosmological horizons, m ( r h ) starts from infinity and goes to minus infinity
as r h changes from zero to infinity. Thus, noting the number of real roots of ∂ m / ∂ r h = 0, the
following cases are possible: (1) There are two real roots and, thus m ( r h ) has a minimum and a
maximum at m = m ext and m = m crit , respecti v ely. As shown in the middle panel of Fig. 5 , the
BHs with three inner ( r −), outer ( r + 

) and cosmological ( r c ) horizons exist if m is in the interval
m ext < m < m crit . Extreme BHs occur for m = m ext , and naked singularities with a cosmological
horizon can exist for the cases m < m ext and m ≥ m crit . (2) There is no real root and no minimum
or maximum occurs (see the right-hand panel of Fig. 5 ). Ther efor e the exact solutions present a
naked singularity with cosmological horizon, which does not show a BH. Note that these cases
are in agreement with the plots of Fig. 4 . 

Now, the JF/physical scalar potential U ( ψ) can be determined by use of Eqs. (16) , (17) , (20)
and (32) . That is, 

U (ψ ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ψ 

( n +1 ) / ( n −1 ) 
[ 

�e f f ψ 

2 / ( ( n −1) β) + �1 
ln ψ 

2 β ψ 

2 / ( ( n −1) β) + �2 ψ 

( n +1 ) / [ (n −1) β] 
] 

, 

for α2 = 1 ,

2 ψ 

( n +1 ) / ( n −1 ) 
[
�ψ 

( 2 α) / [ (n −1) β] + �3 ψ 

2 / [ (n −1) αβ] + �4 ψ 

( n +1 ) / [ (n −1) αβ] 
]
, 

for α2 < 1 ,

(38) 

which can be considered as a typical power-law function of ψ . Application of similar func-
tions has produced acceptable results in the context of scalar-tensor cosmology [ 68 , 69 ]. Note
that U ( ψ), in addition to a scalar term, includes two additional terms which reflect the im-
pacts of charge q and cosmological constant �. Also, it recovers the same quantity in the four-
dimensional Brans–Dicke–Maxwell theory [ 63 ]. 
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Making use of the BH’s surface gravity, one can calculate the horizon temperature of BD-
conf ormal-in variant BHs. It can be shown that T̄ = ( 1 / 4 π ) 

{ √ 

[ B( r ) / A ( r ) ] dA ( r ) / dr 
} 

r = r + 
[ 70–

73 ]. For our case, noting Eq. (36) , one can show that 

T̄ = 

1 

4 π

(
b 

r + 

)( 4 βγ ) / ( n −1 ) d 

dr 

[ (
b 

r 

)−( 4 βγ ) / ( n −1 ) 

f (r ) 

] 

r = r + 

= 

1 

4 π

df (r ) 
dr 

| r = r + = T . (39) 

Note that we have used the fact that f( r + 

) = 0 here. These calculations show that the horizon
temperature is the same for both Ed and BD-conf ormal-in variant BHs. In other words, the BH
temperatur e r emains in variant under conf ormal transf ormations. Thus the Hawking tempera-
ture associated with the outer horizon ( r + 

) is explicitly written as [ 59 ] 

T̄ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

r + 
2 π

{ 

n −2 
r + b 

[ 

1 + ln 

(
b 

r + 

)] 

− 2�b 
(n −1) r + 

+ 

(2 q 2 ) ( n +1 ) / 4 

n −1 

[ ( r + 
b 

)( n −1 ) / 2 − n +1 
2 

] 

r −( n +1 ) / 2 
+ 

} 

, 

for α2 = 1 , 

1+ α2 

4 πr + 

[
n −2 

1 −α2 

(
b 

r + 

)−( 2 α2 ) / ( 1+ α2 ) 
− 2�b 2 

n −1 

( r + 
b 

)2 / ( 1+ α2 ) − ( n +1)( 2 q 2 ) ( n +1 ) / 4 

2(n +1 −2 α2 ) r 2 −ε 
+ 

]
, with ε = 

n +1 
1+ α2 , 

for α2 < 1 . 

(40) 

The electric charge of BD-conf ormal-in variant BHs can be calculated by the use of Gauss’
electric law [ 67 , 74 , 75 ]. It can be shown that 

Q̄ = 

ω n −1 

4 π
q 

( n −1 ) / 2 , for α2 ≤ 1 . (41) 

Thus, in comparison with the corresponding quantity in Ed theory, the electric charge remains
invariant under conformal transformations [ 59 ]. 

As it has been proved, by use of the Euclidean action method, mass, entropy and electric po-
tential of BHs preserve conf ormal-in variant symmetry [ 8 , 67 , 76 ]. Thus, for the mass M̄ , entropy
S̄ and electric potential �̄, we have [ 59 ] 

M̄ = 

(n − 1) ω n −1 

16 π (1 + α2 ) 
b 

2 αγ m, 

S̄ = 

ω n −1 

4 

r n −1 
+ 

e 2 αφ, (42) 

�̄(r + 

) = 

⎧ ⎨ 

⎩ 

−cq ln 

( r + 

 

)
, for α2 = 1 , 

cq 

(
1+ α2 

1 −α2 

)
r ( α

2 −1 ) / ( α2 +1 ) 
+ 

, for α2 < 1 , 
(43) 

where c = [2 / ( 2 − α2 )] b 

( 2 α2 ) / ( 1+ α2 ) , and ω n −1 = 

2 πn/ 2 

�(n/ 2) is equal to area of a unit S 

n −1 -sphere [ 77 ].
Now, by use of the condition B(r + 

) = 0 , we calculate the mass parameter m ( r + 

). The relation
between B(r ) and f( r ) in Eq. ( 36 ) shows that m ( r + 

) is identical for the EF and JF BHs. Ther efor e
the Smarr mass formula is the same for both Ed -and BD-conf ormal-in variant BHs [ 59 ]. That
is, 

M̄ ( S̄ , Q̄ ) = M(S, Q ) . (44) 

Through a direct calculation, one can show that 

�̄ = 

∂ M̄ ( S̄ , Q̄ ) 

∂ Q̄ 

= � and T̄ = 

∂ M̄ ( S̄ , Q̄ ) 

∂ S̄ 

= T . (45) 
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Fig. 6. T̄ (blue) and C̄ Q̄ 

(black) versus r + 

: Left: n = 4 , α = 0 . 4 , 
 = 1 , q = 1 , b = 1 . 5 , 0 . 5 T̄ , C̄ Q̄ 

. 

Middle: n = 4 , α = 0 . 4 , 
 = 2 , q = 0 . 3 , b = 0 . 5 , 2 T̄ , 0 . 004 C̄ Q̄ 

. Right: n = 4 , α = 1 , 
 = 2 , q = 1 , b = 

0 . 7 , 5 T̄ , 0 . 05 C̄ Q̄ 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/11/113E02/7330200 by D

eutsches Elektronen Synchrotron user on 06 D
ecem

ber 2023
Thus, the first law of BH thermodynamics is also valid for the BD-conf ormal-in variant BHs.
That is, 

d M̄ = T̄ d S̄ + �̄d Q̄ . (46) 

Thermal stability of the BHs can be investigated by use of the canonical ensemble method and
noting the signature of the heat ca pacity. A physicall y reasonable BH, with positive tempera-
ture, is in the stable phase if its heat capacity is positive. Unstable BHs undergo phase transition
to be stabilized. The vanishing and di v erging points of heat capacity are named as the first- and
second-type phase transition points, respecti v ely [ 78–81 ]. 

The BH heat capacity is gi v en via the C̄ Q̄ 

= ( T̄ ∂ S̄ ) / ∂ T̄ . As a ma tter of calcula tion, one is able
to show that 

∂ T̄ 

∂ S̄ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

4 b ( 1 −n ) / 2 r ( 3 −n ) / 2 
+ 

π (n −1) ω n −1 

[ 

n +1 
4 (2 q 

2 ) ( n +1 ) / 4 r −( n +1 ) / 2 
+ 

− n −2 
r + b 

] 

, 

for α2 = 1 , 

−(1+ α2 ) ( r + /b ) 2 αγ

πr n + (n −1) ω n −1 

[ 

(n − 2) 
( r + 

b 

)( 2 α2 ) / ( 1+ α2 ) + 

2�b 2 (1 −α2 ) 
n −1 

( r + 
b 

)2 / ( 1+ α2 ) + � r 2 −ε 
+ 

] 

, 

for α2 < 1 , 

(47) 

where the parameter � is defined as � = 

[
(n + 1)(α2 − n )(2 q 

2 ) ( n +1 ) / 4 
]
/ 

[
2(n + 1 − 2 α2 ) 

]
. The

plots of T̄ and C̄ Q̄ 

are shown in Fig. 6 sim ultaneousl y, for analyzing thermal stability of phys-
ically reasonable BD-conf ormal-in variant BHs. 

The plots show that two different situations are possible for the BHs with α2 < 1: (1) There
is only one point of first-type phase transition located at r + 

= r ext , and BHs with horizon radii
gr eater than r ext ar e locally stable (left-hand panel). (2) There is one point of first-type phase
transition located at r + 

= r ext and two points of second-type phase transition, which we label
as R 1 and R 2, such that r ext < R 1 < R 2 (middle panel). The BHs with horizon radii in the ranges
r ext < r + 

< R 1 and r + 

> R 2 are stable. For the BHs with α2 = 1 ther e ar e two points of first-
type phase transition which we call r 1 ext and r 2 ext . Also, there is a point of second-type phase
transition which we label as r 1 such that r 1 ext < r 1 < r 2 ext . The BHs with horizon radii in the
interval r 1 ext < r + 

< r 1 are locally stable (right-hand panel). 

5. Conclusion 

We have started with the action of ( n + 1)-dimensional BD gravity in the presence of power-law
non-linear electrodynamics. The related field equations are highly non-linear and too difficult
11/14 
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to be solved directly. Thus we have converted the BD action to that of Ed theory by utilizing a
ma thema tical tool known as the conformal transformation. We found that an HD conformal-
invariant electrodynamics can be achie v ed for a suitable choice of non-linearity parameter.
Since the static and spherically symmetric Ed-conf ormal-in variant field equations form an in-
determinate system, we have used an exponential ansatz for overcoming this problem. In the
special case, when the scalar potential V ( φ) is absent (or is treated as a constant), we found that
the BD-conf ormal-in variant theory is just the HD RN-conf ormal-in variant which is coupled
to the trivial constant scalar field ψ = 1. A similar issue which is due to the consideration of 
conf ormal-in variant electrodynamics has been reported in the 4D BD-Maxwell theory too [ 8 ].
The general solution of Ed theory leads to two classes of conf ormal-in variant BHs. They are
asymptotically non-flat and non-AdS, but, due to conf ormal-in variant symmetry of electrody-
namics, in addition to the horizon-less , extreme , one-horizon and two-horizon BHs , this theory
re v eals multi-horizon ones too. The appearance of the multi-horizon BHs re v eals a quantum
effect known as the anti-evaporation phenomena [ 64 ]. We obtained two classes of exact solu-
tions f or BD-conf ormal-in v ariant theory b y use of the in verse conf ormal transf ormations on
the corresponding ones in the Ed theory. They also can produce multi-horizon BHs and exhibit
a quantum anti-evaporation effect (Figs. 3 and 4 ). 

The conserved and thermodynamic quantities of BD-conf ormal-in variant BHs have been 

calculated by use of the appropriate methods. Through direct calculations, we have shown that
the electric charge and Hawking temperature remain invariant under conformal transforma- 
tions. It is well-known that the entrop y-ar ea law is no longer valid for the BD BHs. Making
use of the Euclidean action method, it has been shown that BH mass, entropy and electric po-
tential are conf ormal-in variant and remain unchanged too [ 67 , 76 ]. Then, through the Smarr
mass relation, we have shown that the first law of BH thermodynamics is valid for our new
BD-conf ormal-in variant BHs. 

The thermal stability of BD BHs has been studied by use of the canonical ensemble method
and under the influence of conf ormal-in variant electrodynamics. It has been found that, for
the BHs with α2 < 1, ther e ar e two possibilities: (1) The BHs with r + 

= r ext undergo first-type
phase transition, and those with horizon radii greater than r ext are locally stable. (2) The BHs
with r + 

= r ext experience first-type phase transition while those with horizon radii equal to R 1 

and R 2 undergo second-type phase transition. The BHs with horizon radii in the ranges r ext 

< r + 

< R 1 and r + 

> R 2 are stable. In the case where α2 = 1, there are two points of first-
type phase transition, located at r + 

= r 1 ext and r + 

= r 2 ext , which is due to consideration of the
conf ormal-in variant electrodynamics. Also, there is a second-type phase transition point, which
we named r + 

= r 1 . It means that stability of the BHs has been affected by conformal symmetry
of the utilized electrodynamics. The second-type phase transition has not been reported in the
pre vious wor ks. The BHs with horizon radii in the range r 1 ext < r + 

< r 1 are locally stable (see
Fig. 6 ). 
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