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Abstract

Over the last few decades, Physical Cosmology has come a long way from a primitive
and data deprived field of research with several speculative theories of origin, evolution
and composition of the Universe to a mature, data-driven field of research with a very well
established theoretical foundation. The Standard Model of Cosmology, the 6-parameter
ΛCDM model, has been immensely successful in describing most (but not all) of what we
see around us in the observable Universe. Tested against various independent cosmolog-
ical probes like the Cosmic Microwave Background (CMB), Large-Scale Structure (LSS),
Lyman-alpha forest, supernovae datasets etc, the model has proven to be pretty concor-
dant. However, there still remain several tantalizing open questions about our universe
which have kept cosmologists occupied. Our progress in answering these questions is usu-
ally a matter of gleaning more and more information about our universe. This is done
either by finding new probes, acquiring more data for existing probes or by improving
statistical methodologies employed to existing probes and datasets.

The first part of this thesis develops and explores the use of kinetic Sunyaev-Zeldovich
(kSZ) effect as a cosmological probe. After giving a brief overview of the field in an in-
troductory chapter, a theoretical framework for the study of the kSZ effect is laid out
in chapter 2. We propose an optimal bispectrum estimator that combines CMB maps
with galaxy surveys, and show its equivalence to existing statistics. We explore the infor-
mation content of the estimator, generalize it to incorporate issues arising from redshift
uncertainties in photometric surveys and redshift space distortions an produce forecasts for
upcoming CMB experiments and galaxy surveys. Chapter 3 explores kSZ velocity recon-
struction — a quadratic estimator for mapping the largest-scale cosmological modes of the
Universe. We implement kSZ velocity reconstruction in an N-body simulation pipeline and
explore its properties. We find that the reconstruction noise can be larger than the analytic
prediction which is usually assumed. We revisit the analytic prediction and find additional
noise terms which explain the discrepancy. The new terms are obtained from a six-point
halo model calculation, and are analogous to the N (1) and N (3/2) biases in CMB lensing.
We implement an MCMC pipeline which estimates fNL from N-body kSZ simulations, and
show that it recovers unbiased estimates of fNL, with statistical errors consistent with a
Fisher matrix forecast. Overall, these results confirm that kSZ velocity reconstruction will
be a powerful probe of cosmology in the near future, but new terms should be included in
the noise power spectrum.

The second part of the thesis presents my contribution to the CHIME/FRB collabo-
ration where we are searching for Fast Radio Bursts (FRB). FRBs are bright, millisecond
pulses of extra-galactic origin which were first seen in 2007 in a radio survey, with another
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handful of them seen in the ensuing decade. A tracer of large-scale structure, FRBs offer
a new window into the Universe and are sensitive to many astrophysically relevant quan-
tities. The CHIME/FRB experiment which was commissioned in 2018, is currently the
leading experiment cataloguing and studying these FRBs. I developed a Markov Chain
Monte Carlo pipeline that fits models of varying complexity to the FRB events observed
by CHIME.
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Chapter 1

Introduction

Cosmology is the study of origin, evolution and composition of our Universe. In the stan-
dard picture, the Universe came into existence approximately 13.8 billion years ago and
underwent a brief phase of rapid exponential expansion called inflation that brought various
patches of the observable Universe into causal contact and seeded the initial condition for
its evolution. This was followed by the phase of reheating which resulted in the generation
of Standard Model (SM) elementary particles. The equations describing the subsequent
evolution of our background Universe come from Einstein’s Theory of General Relativity.
These equations relate the geometry and expansion of the Universe to the average energy
content and are derived under the assumption that it is isotropic and homogeneous. How-
ever, this assumption is not entirely correct. The Universe exhibits significant departure
from homogeneity on small scales. These deviations, which can be seen in the relic radi-
ation from when the Universe was only ∼380,000 years old, called the Cosmic Microwave
Background (CMB), encode fundamental information about the cosmos — about its origin,
evolution and composition. These fluctuations were sourced by quantum fluctuations in
the primordial fields and have evolved over time in accordance with the laws of physics. By
studying statistical patterns in the CMB and interpreting it under a consistent theoretical
framework — the ΛCDM model, we have come to learn a lot about our universe. In this
introductory chapter, I will give a brief overview of the basic ingredients of theoretical and
observational CMB cosmology.
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1.1 Background Universe

1.1.1 Metric

The cosmological principle posits that on large enough scales, our Universe is spatially
homogeneous and isotropic. Homogeneity means that the universe looks the same at all
locations in space, while isotropy means that it looks the same in all directions. Math-
ematically, these statements imply translational and rotational invariance. Observations
show that the universe is indeed homogeneous and isotropic on sufficiently large scales
(& 100 Mpc). This simple observation has far reaching consequences. It leads to a
simple geometry for the background universe that can then be combined with the field
equations of Einstein’s theory of relativity to solve for its evolution. The model that de-
scribes a homogeneous and isotropic system, which is also expanding with time, is called
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) model. The metric gµν in the FLRW
model is a generalization of the Minkowski metric of Special Relativity and encodes the
geometry of the Universe. For a non-static, expanding universe, it is a function of time and
defines a notion of coordinate invariant distance measure ds2 between two distinct points
on the space-time.

ds2 = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2dθ2 + r2sin2θdφ

)
= −dt2 + a(t)2dl2 (1.1)

where we work in natural units with c=1. Our metric convention is (−,+,+,+) and we use
Einstein summation convention wherever needed. a(t) is the time-dependent scale factor
encoding the expansion of our Universe. The parameter k parameterizes the geometry of
the Universe. k < 0 and k > 0 correspond to open and closed geometries, respectively,
while k = 0 describes a flat Universe that follows Euclidean principles. Observations
strongly support a spatially flat Universe and we will assume the same going forward.

1.1.2 Dynamical Equation

The Friedmann equations are a set of equations derived from Einstein’s theory of General
relativity that govern the evolution of FLRW metric. The Einstein’s field equation connects
the metric gµν of the FLRW model and its derivatives to the energy density of the Universe

Rµν −
1

2
gµνR = 8πGTµν (1.2)
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where Rµν is called the Ricci tensor given by

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα (1.3)

where , α denotes derivative with respect to 4-position xα. Γ is called Christoffel’s symbol
and is given in terms of the metric gµν and its derivative by

Γµαβ =
gµν

2
(gαν,β + gβν,α − gαβ,ν) (1.4)

and Tµν is the stress-energy tensor that contains information about pressure and energy
in the Universe. For a perfect fluid, which is a valid description of constituents in the
homogeneous and isotropic Universe at large scales

Tµν = diag(ρ, P, P, P ) (1.5)

The Friedmann equations are obtained by solving the time-time and one of the space-space
components of the above equation for FLRW metric:

H2(t) =

(
ȧ

a

)2

=
8πGρ(t)

3

ä

a
= −4πG

3
(ρ+ 3P ) (1.6)

where ρ and P are energy density and pressure. They are all functions of time. The first
of these equations relates the rate of expansion a(t) of a flat Universe to its energy density
ρ(t).

1.1.3 Perturbed metric

To go beyond the zeroth order background Universe, one can parameterize the departures
of the true metric gµν from the FLRW metric using linear perturbation. This is a valid
approach for most of the cosmologically relevant scales and times. The general metric
gµν(t, x) is a symmetric matrix with 10 independent degrees of freedom. They can be
decomposed into scalar, vector and tensor components depending upon how they behave
under spatial rotation [101]. For understanding the evolution of perturbations in radiation
and matter at linear order, we only need the scalar components since only they couple to
density perturbations. Under the intuitive and convenient Newtonian gauge, the metric
with scalar perturbations can be parameterized as

ds2 = −(1 + 2ψ(t, x))dt2 + (1− 2φ(x, t))a(t)2dl2 (1.7)
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where ψ is the Newtonian potential while φ can be interpreted as spatial variation in local
curvature. This metric can be fed into the Einstein equation to derive constraint relations
connecting the fields ψ and φ to perturbations in energy density ρ. On scales much below
the horizon, the time-time component of Eq. (1.2) results in

∇2ψ = 4πGδρ (1.8)

which is called the Poisson equation. Furthermore, under the assumption of negligible
anisotropic stress in relativistic components of the Universe, one can use the space-space
component of Eq. (1.2) to conclude that

ψ = φ (1.9)

1.2 Statistical Background

Being an inherently statistical subject, Cosmology relies heavily on probability and statis-
tics. Here, we will review some basic ideas that are used later in the thesis.

A random, mean zero field δ on a 3D space IR3 is a map δ : IR3 → IR that assigns a ran-
dom value to each point in IR3 obtained from a joint probability distribution. For a Gaus-
sian random field, this joint distribution for an arbitrary set of points X = [x1, x2, ..., xn]
is given by

P (δ) =
1√

(2π)nDet(C)
exp

(
− XTC−1X

2

)
(1.10)

where Cij = 〈δ(xi)δ(xj)〉 is the n-by-n covariance matrix of the field values. For a Gaussian
random field, the fourier transform components δ(k) are also Gaussian random with a
diagonal covariance matrix, by translation invariance. Such a field is fully described by its
2-point function or power spectrum P (k), defined as

〈δ(k)δ(k′)〉 = P (k)(2π)3δ3(k + k′) (1.11)

More generally, a random field can be described by a series of N-point functions. The
3-point function or the bispectrum is similarly defined by

〈δ(k)δ(k′)δ(k′′)〉 = B(k, k′, k′′)(2π)3δ3(k + k′ + k′′) (1.12)

Wick’s Theorem: For Gaussian random fields, the N-point function vanishes when N is
odd. For the case when N is even, it can be expressed in terms of products of powerspectrum
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summed over all possible pair combinations. As an example, the four-point function for
Gaussian fields can be written as

〈δ(k1)δ(k2)δ(k3)δ(k4)〉 = 〈δ(k1)δ(k2)〉〈δ(k3)δ(k4)〉+ 〈δ(k1)δ(k3)〉〈δ(k2)δ(k4)〉
+ 〈δ(k1)δ(k4)〉〈δ(k2)δ(k3)〉 (1.13)

Non-Gaussianity: Theoretical models as well as observational data from CMB exper-
iments and galaxy surveys suggest that primordial fields were (nearly) Gaussian, with
very strong constraints on any departure from purely Gaussian scenario. This Gaussianity
is preserved under linear transformation but breaks down when the transformations are
non-linear. As long as the field values (perturbations) are small (δ << 1), the evolution
equations are dominated by linear terms and the evolution preserves the Gaussian nature of
the field. For sufficiently large-scales (k . 0.01 Mpc−1), this is true at all times and there-
fore on large scales, the fields are well described by a fully Gaussian model. For scales of
size k ∼ 1 Mpc−1, gravitational collapse amplifies these perturbations which consequently
require a fully non-linear treatment. The late-time universe (z < 4) thus becomes non-
gaussian at these non-linear scales. For such a non-gaussian field, he power spectrum is no
longer an optimal statistic and we need to resort to higher point functions like bispectrum
and trispectrum to gain further information. The trispectrum for a non-gaussian field is
given by

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = T (k1, k2, k3, k4, |k1 + k2|, |k3 + k4|)(2π)3δ3(k1 + k2 + k3 + k4)
(1.14)

where c stands for connected and denotes the contribution to the 4-point function of non-
gaussian fields after the unconnected contribution as defined by Eq. (1.13) is accounted for.
Another complication in the modelling and analysis of galaxy survey data obtained using
a spectroscopic survey is that the large-scale structure, in addition to being non-linear, is
observed in redshift space. Generally, the galaxy redshift increases with radial distance,
but since redshifts also get a contribution from radial velocity, the redshift to radial posi-
tion mapping gets distorted. This is called redshift-space distortion.

Estimator: An estimator is an statistic to infer quantity of interest (called the estimand)
from a dataset. An example of an estimator is the maximum-likelihood estimator which
estimates parameters of a model by maximizing the likelihood of the observed data over the
parameter space. In cosmology, estimators are used to estimate quantities like the power
spectrum of cosmological fields from the data observed in an experiment. An optimal
estimator is an estimator that produces unbiased estimates of the desired quantity with
minimum uncertainty.
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Fisher Matrix

Fisher matrix is the expectation of the Hessian or the curvature of the negative log like-
lihood of parameters Θ = (θ1, θ2, ...θn) given a data realization D = [d1, d2, ...dm], taken
around a fiducial value Θ0

Fij = −
〈
d2lnL(D|Θ)

dθidθj

〉
θ0

(1.15)

The inverse of the Fisher matrix forecasts the covariance matrix of model parameters.
The general definition of Eq. (1.15) applies to any parameter set Θ and dataset D. In
cosmology, the data could be degrees of freedom of a random field like the CMB. When
interpreted under a model like the ΛCDM, the parameters are cosmological parameters of
that model.

1.3 Cosmic Microwave Background

The 19th century witnessed Statistical Physics and Electrodynamics develop into mature
fields. Early in the 20th century, Einstein developed the theory of relativity. Around
the same time, Georges Lemaitre and Edwin Hubble discovered that distant galaxies in
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Figure 1.1: The CMB temperature anisotropies seen by Planck [6]. The grey lines delineate
regions that are masked and then inpainted
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the Universe were receding away from us with recessional speeds directly proportional to
their distance, thus hinting at an expanding Universe. When combined in a consistent
way together with the cosmological principle, these developments led to a picture of the
Universe where early on it was a hot and dense soup of elementary particles. The properties
of this primordial state were worked out by physicists in the following decades. One of
the major predictions coming out from these calculations was the existence of a nearly
isotropic black-body radiation that originated when the photons which were initially in
equilibrium with the baryons, fell out of the equilibrium once the Universe cooled down to
a temperature of 3000 K from an earlier hotter state. This fall in temperature was a direct
outcome of cosmic expansion and allowed electrons and protons to combine together to
form neutral hydrogen. Once stable neutral hydrogen started forming, the photons began
streaming freely. The CMB is a relic radiation from this epoch which is observed today at
micro-meter and millimeter wavelengths.

The CMB was first observed in 1964 by Arno Penzias and Robert Wilson in rather
serendipitous circumstances [155]. The duo were investigating radio satellite communica-
tion using horn antennas at the Bell labs, when they encountered a constant and isotropic
source of excess background power corresponding to a temperature of 3 K. They shared
their findings with a group of cosmologists at Princeton who were working on detecting
this very signal and had just the right interpretation of the signal [65]. Penzias and Wilson
were awarded the Nobel prize in physics for their discovery in 1978. The CMB is one of
the fundamental predictions of the Big Bang Model, and its observation established the
model as the leading theory of our origin.

The observed CMB is a combination of contributions from different physical effects
which we list here to orient the reader:

• The“primary” CMB [102] which is described by linear perturbation theory, dominates
on large angular scales (l . 2000), and originates almost entirely at high redshift
(z ∼ 1000).

• CMB lensing [118, 90], which refers to distortions in the primary CMB due to grav-
itational lensing by structures in the late universe (z ∼ 2).

• The kinetic Sunyaev-Zeldovich (kSZ) effect [200, 142], which refers to new anisotropy
generated by scattering of CMB photons from free electrons, computed to first order
in (v/c), where v is the electron velocity in the CMB rest frame. The kSZ effect is
the main focus of this thesis.

• The thermal Sunyaev-Zeldovich (tSZ) effect [142], which refers to contributions sourced
by electron-CMB scattering and proportional to (v/c)2. The tSZ effect is mainly
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sourced by the largest galaxy clusters, which have deep potential wells leading to
large virial electron temperature Te.

• The cosmic infrared background (CIB), which refers to thermal emission from dust
in star-forming galaxies [107].

• Radio point sources – a catchall term for compact objects which emit at CMB wave-
lengths, such as distant quasars.

• The gravitational potential which remains static during matter domination and thus
during most of post recombination era, undergoes evolution at late times when dark
energy starts dominating. This introduces power at the largest scale which enter
the horizon at late times and is called the integrated Sachs-Wolfe effect. The full
non-linear version of this effect is known as Rees-Sciama effect.

1.3.1 Statistical Description

The CMB can be modelled as a random field on the sphere [102, 20]. The blackbody
temperature T ≈ 2.726K of the CMB is nearly independent of which part of the sky is
observed, but sensitive measurements show a small level (∼ 200µK) of anisotropy. Thus,
the CMB temperature is a function T (θ) of sky location θ (a unit vector which parame-
terizes a point on the sphere). In the standard cosmological model, the CMB realization
T (θ) is a random field, where the underlying source of randomness is quantum mechanical
randomness during inflation. The primary goal of a CMB experiment is to map out fluc-
tuations in temperature of the CMB as a function of direction in the sky i.e. T (θ). The
fluctuations around the mean temperature in the CMB can then be expressed as

δT (θ) = T (θ)− 〈T 〉 (1.16)

Due to the simplicity that it offers, the CMB field is usually analyzed in its equivalent
representation in harmonic space given by

T (θ) =
∞∑
l=0

l∑
m=−l

almYlm(θ) (1.17)

where spherical harmonics Ylm’s are a set of orthonormal basis functions on 2D sphere
similar to the Fourier basis in Euclidean space. A given harmonic Ylm(θ) corresponds to
an angular size θ = π/l. The components alm describe the amplitude of anisotropy.

alm =

∫
dθ T (θ)Y ∗lm(θ) (1.18)
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Figure 1.2: The CMB power spectrum from Planck [7]. The plotted curve corresponds to

DTTl = l(l+1)Cl
2π

. The error bars show ±1σ diagonal uncertainties.

Here, each alm is a random variable. First let’s describe their two-point function i.e.
covariance. By spherical symmetry (Wigner-Eckhart theorem), the most general two-point
function invariant under rotation is:

〈alma∗l′m′〉 = Clδll′δmm′ (1.19)

This equation defines the power spectrum Cl. The CMB power spectrum is an observ-
able extremely sensitive to the fundamental cosmological parameters.

1.3.2 Primary CMB

Primary CMB refers to the anisotropies sourced at the surface of last scattering – a 3D
sphere on our past light-cone where the photons last scattered at the time of decoupling.
It is what would be observed in the absence of cosmological structure (galaxies, halos etc.)
between us and the surface of last scattering.

The primary CMB is a Gaussian field to an excellent approximation. This means
that each alm is a Gaussian random variable, whose variance is determined by the power
spectrum Cl. Therefore, the Cl’s completely determines the statistics of the primary CMB.
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The power spectrum Cl can be computed numerically from first principles. There are
dedicated software packages for this CAMB [121], CMBFAST [171], CLASS [116] which solve
differential equations that combine GR and Maxwell’s equation (together with some crucial
atomic physics during recombination) to give us theoretical prediction for Cl’s as a function
of fundamental cosmological parameters. The details of the computation is outside the
scope of this thesis.

The primary CMB power spectrum is very sensitive to cosmological parameters, and
generally speaking, the most powerful constraints on cosmological parameters come from
comparing measurements of Cl to data.

1.4 Secondary Anisotropies

1.4.1 Lensing

One prominent secondary anisotropy is the gravitational lensing of CMB [118, 90]. Grav-
itational interaction of CMB photons with intervening structure leads to the bending of
their path of propagation and maps anisotropies originating at a given spot in the sky to
a slightly different location while keeping the black-body spectrum intact.

Tlensed(θ) = Tunlensed(θ + d(θ)) (1.20)

The deflection field d is a random vector field whose power spectrum can be computed
with CAMB or CLASS. Given the power spectra of d(θ) and Tunlensed, the power spectrum of
Tlensed can be computed numerically. On large scales (l . 1500), lensing produces small
changes to Cl. On small scales, lensing eventually dominates the primary CMB. We omit
here further description of the lensed CMB and its non-Gaussian signatures, since the focus
of our thesis is the kSZ effect.

1.4.2 Kinetic Sunyaev-Zeldovich effect

The Kinetic Sunyaev-Zeldovich effect [33, 200], the subject of this thesis, is another promi-
nent secondary anisotropy in the CMB sourced by the scattering of CMB photons off free
electron clouds which have bulk radial velocities. kSZ anisotropies preserve the black-body
spectrum of CMB and are thus much harder to glean directly from a CMB map.

Based on its origin, the kSZ effect comes in two flavors. Patchy kSZ is sourced by moving
ionized bubbles of free electrons that were formed around ionizing sources of radiation

10



during the phase when the Universe was undergoing reionization (6 < z < 20). In addition
to fluctuations in electron density and radial velocity field, the patchy kSZ is also sensitive
to fluctuations in the ionization fraction. The focus of my work is late-time kSZ which is
sourced by electrons found in post-reionization universe (z < 6) mainly in virialized objects
like galaxies.

kSZ is a unique tool to probe electron densities in the outskirts of galaxy clusters and
has been proposed as tool to resolve the ‘missing baryon problem‘ [38, 92, 95]. The missing
baryon problem refers to the discordance between high redshift estimates of baryons coming
from CMB and Big Bang nucleosynthesis (BBN) to the low redshift observations of baryons
in the Universe. A significant fraction of the total baryon that we expect based on CMB
data and BBN has not been observed in the low-redshift Universe. Furthermore, our lack of
knowledge of the baryon distribution severely limits the potential returns of future galaxy
lensing surveys. A better understanding of electron (baryon) distribution provided by kSZ
will help us alleviate this issue. The kSZ effect was recently used to show that the gas profile
in halos is more extended than the dark matter profile [166]. Future kSZ measurements
with higher signal-to-noise could provide constraints on feedback mechanism operating at
galactic scales.

On the cosmological side, due to its dependence on large-scale radial velocity vr, kSZ
has also been proposed as a promising tool to constrain models of dark-energy [60, 93, 30],
modified gravity [144, 32], neutrino mass [145] etc. The details of how to efficiently extract
the radial velocity is presented in Chapter 2 and 3.

kSZ signal

The physical phenomenon behind the kSZ effect is the Doppler shifting of CMB photons
when they scatter off electrons moving in radial direction in the CMB rest frame. Schemat-
ically, the effect can be expressed as:

∆T (θ)

Tcmb
= −

∑
i

τivri (1.21)

where for each direction θ we have summed up contributions coming from electron clouds
with optical depth τi having a radial velocity vr in the CMB rest frame. Formally, the net
effect can be expressed as a line of sight integral

∆T (θ)

Tcmb
= −

∫ χ∗

0

dr g(θ, r)v(θ, r) · r̂ (1.22)
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Figure 1.3: Schematic diagram for the kSZ effect. A CMB photon enters the electron cloud
from an arbitrary angle, and is up-scattered to higher energy by an electron due to its bulk
velocity [142].

where θ is the 2D angular position in the sky and r is the comoving look-back distance.
g(θ, r) is called the visibility function giving us the probability of last scattering happening
at distance r and v is the velocity field at that point in space. For late-time kSZ, the upper-
limit of the integration χ∗ is the comoving distance on the past light-cone corresponding
to the end of re-ionization. The visibility function is given by

g(θ, r) = τ̇ e−τ(r) (1.23)

where τ(r) is the optical depth to r given by

τ(θ, r) = σT

∫ r

0

dr′

1 + z
ne(θ, r

′) (1.24)

where σT is the Thomson cross-section. Here we work under natural units (c = 1) where
derivative with respect to comoving time is the same as that with respect to comoving
distance.

The free electron density ne can be expressed in terms of comoving proton number
density today, ne0 , the baryon overdensity δb, free electron fraction χe, and redshift z. As a
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trum of a few prominent black-body preserving secondary anisotropies. Credit: Smith and
Ferraro [182]

simplification, we assume that χe is a constant which is a good approximation once helium
is doubly ionized in low-redshift Universe (z < 3).

ne(θ, r) = ne0χe(1 + δb(θ, r))(1 + z)3 (1.25)

Substituting this back in Eq. (1.22), we get

∆T (θ)

Tcmb
= −ne0χeσT

∫
dr e−τ(r)(1 + z)2q · r̂ (1.26)

where q is the momentum field given by q = (1 + δb(x))v(x). It turns out that the
contributions from the linear term suffers severe cancellations when projected along the
line of sight so the only main contributing source is the term δbvr.

kSZ power spectrum

Since kSZ is the focus of the thesis, we’ll next describe the calculation of the power spectrum
in detail. The kSZ power spectrum, in its most general form, is a 4-point function involving
velocity at linear scales and electron density on non-linear scales. Schematically, one can
express it as

〈δbvrδbvr〉 = 〈vrvr〉〈δbδb〉+ 2〈δbvr〉2 + 〈δbδbvrvr〉c
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The late-time kSZ becomes a dominant effect only at scales of ∼ 2′ and therefore small-
angle limit can be used in describing it. In the linear limit where the connected term
vanishes, the kSZ power spectrum can be expressed in terms of 3D power spectrum of its
ingredients using the Limber approximation [124, 129] and is given by

CkSZ
l = (ne0σTχe)

2

∫
dr

r2
(1 + z)4e−2τ(r)Pqrqr

(
k =

l + 1/2

r
, µ = 0, z

)
(1.27)

where Pqrqr is the power spectrum of radial component of momentum field which unlike a

scalar field, depends on the direction of the wave-vector encoded by the parameter µ = k̂ · r̂
The power spectrum of a vector quantity like the momentum field can in general expressed
as the sum of contribution from a longitudinal term and a transverse term.

Pqiqj(k) = P ||qq(k)k̂ik̂j + P⊥qq(k)

[
δij − k̂ik̂j,

]
In the case of kSZ, i = j = r̂ denoting the radial direction and µ = k̂ · r̂ = 0. With these
considerations in place, we find that the contribution from the longitudinal component
vanishes and the final expression for power spectrum becomes

Pqrqr = P⊥qq(k) (1.28)

Writing this in terms of constituent fields

q⊥(k) =

∫
d3k′

(2π)3
(k̂′ − µk̂)v(k̂′)δb(|k′ − k|)

and using Wick’s theorem, the Pqrqr in Eq. (1.27) becomes

Pqrqr(k, µ) =
1

2

∫
d3k′

2π3
(1− µ2)Pδδ(|k′ − k|)Pvv(k′)−

(1− µ2)k′
|k− k′| Pδv(|k

′ − k|)Pδv(k′)

The kSZ power spectrum is shown in Fig. 1.4. Analogously to CMB lensing, the kSZ is
non-Gaussian. Describing non-Gaussian effects in the CMB is an area of active research,
and the main focus of the thesis in Chapters 2, 3.

1.4.3 Other sources of anisotropy

Thermal Sunyaev-Zeldovich

The thermal Sunyaev-Zeldovich (tSZ) effect [33] arises due to the inverse Compton scatter-
ing of CMB photons by hot electrons found near the core of massive galaxy clusters. The
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interaction boosts photons to a higher energy state while conserving their number, causing
a slight distortion to the black-body spectrum of CMB. The resultant effect is sensitive to
the electron density and temperature of the core region and probes pressure fluctuations
in the Universe. Owing to its unique spectral signature, the tSZ effect can be statistically
separated from other secondaries using high-resolution multi-frequency observations of the
CMB.

Cosmic Infrared Background

The Cosmic Infrared Background (CIB) is sum total of radiation seen at infrared wave-
lengths that come from dusty star forming galaxies. The emission from stars at optical
and UV wavelength are absorbed and remitted by the dust residing in these galaxies.
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Chapter 2

KSZ tomography and the Bispectrum

Over the last 30 years, the CMB temperature power spectrum (Figure 2.1) has been mea-
sured with increasing precision. On large angular scales (l ∼< 2000), the CMB is dominated
by so-called “primary” anisotropy, i.e. anisotropy which originates on the last scattering
surface at redshift z ∼ 1100. On smaller angular scales 2000 ∼< l ∼< 4000, the CMB receives
large contributions from gravitational lensing: primary anisotropy which has been lensed
by large-scale structure at 0 ∼< z ∼< 5, shifting CMB power to smaller scales. Finally, on the
smallest scales l ∼> 4000, the CMB becomes dominated by the kinetic Sunyaev-Zeldovich
(kSZ) effect, i.e. Doppler shifting of CMB photons by free electrons (Fig. 2.1).

The primary and lensed CMB have been measured to high precision, and this has been
a gold mine of information for cosmology. So far, the kSZ effect has been detected at a
few sigma in cross-correlation with large-scale structure [88, 159, 165, 63, 94, 58], but it
will be measured much more accurately in the near future. Qualitatively, it is clear that
upcoming kSZ measurements will provide interesting new information in both astrophysics
and cosmology. On the astrophysics side, the kSZ probes the distribution of electrons in
galaxy clusters, including cluster outskirts where the gas is too cold to appear in thermal
SZ, and not dense enough to appear in X-rays. This is a novel observation which can address
the “missing baryon” problem [38, 92, 95]. On the cosmology side, the kSZ is a probe of
velocities on large scales. Potential applications include dark energy [60, 93, 30], modified
gravity [144, 32], neutrino mass [145], void models [80, 42, 48, 39, 135, 206, 202], bulk
flows [203, 204], and theories predicting significant large-scale inhomogeneity [205, 193].

There are well-established statistical frameworks for analyzing the primary and lensed
CMB. The primary CMB is a Gaussian field, and therefore all of the information is con-
tained in the power spectrum. The lensed CMB is non-Gaussian, but the lens recon-
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struction quadratic estimator φ̂ provides a framework for constructing higher-point statis-
tics [100, 103, 151].

In contrast, for the kSZ, many different statistics have been proposed [95, 88, 123, 12,
64]. It is not obvious how these statistics relate to each other, how to incorporate them
into larger forecasts involving more datasets, or whether one is more informative than the
others. One may wonder whether there is a unifying approach.

This work has three main purposes. First, we show that if small-scale CMB observations
are combined with a galaxy survey on the same patch of sky, then the kSZ effect introduces
a large three-point correlation function (or bispectrum) involving two powers of the galaxy
field and one power of the CMB. Following a standard approach used in other areas of
cosmology (for example estimating fNL from the primary CMB), we construct the optimal
bispectrum estimator for this signal. We also construct the bispectrum Fisher matrix,
which can be used to forecast total signal-to-noise, or for more complex multiparameter
forecasts. A crucial property of the kSZ bispectrum is that it is parity-odd under reflections
in the radial direction, and therefore the estimator is not biased by other non-Gaussian
signals (CIB, CMB lensing, thermal SZ), which are parity-even.
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Figure 2.1: The CMB power spectrum CTT
l from primary CMB, gravitational lensing,

late-time kSZ (z < 6) and reionization kSZ. The late-time kSZ was calculated from the

halo model (see App. A.3) and the reionization kSZ was taken from [154]. We have only

shown contributions with blackbody frequency dependence. Non-blackbody contributions

(CIB, tSZ) can be mostly removed using multifrequency analysis, but the level of residual

contamination will depend on experiment-specific details.
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A second purpose of the work is to show that several independently proposed statistics
for analyzing the kSZ effect are mathematically equivalent, if optimally weighted. These
statistics include the kSZ template method [95], the pair sum statistic [88], the velocity
matched filter from [123], the velocity growth method from [12], and the velocity recon-
struction introduced recently in [64]. We will use the term “kSZ tomography” as a catchall
term to refer to any of these statistics.

These kSZ tomography statistics have a common property: they are all three-point
estimators involving two powers of the galaxy field and one power of the CMB, as we will
show explicitly in §2.3.1 Therefore, the underlying signal is the bispectrum 〈ggT 〉. In
fact, we will show that all of the kSZ tomography statistics (if optimally weighted) are
just different ways of algebraically representing the optimal bispectrum estimator Ê . The
estimator Ê is an integral over triples of wavenumbers k + k′ + l/χ = 0, and a double sum
over galaxy pairs (i, j). The ordering of these integrals and sums can be exchanged, and
using different orderings, the estimator Ê can be rewritten algebraically to take the form
of any of the kSZ tomography statistics in [95, 88, 123, 12, 64].

Thus, kSZ tomography is “bispectrum estimation in disguise”, and a variety of appar-
ently different statistics are simply different ways of implementing the optimal bispectrum
estimator. However, the bispectrum perspective has technical advantages. For example,
it clarifies what kSZ tomography actually measures. Our calculation (§2.2) of the 〈ggT 〉
bispectrum will show that it peaks in the squeezed limit where the wavenumbers kL, kS
of the two galaxy modes satisfy kL � kS, and is proportional to Pgv(kL)Pge(kS). Here,
Pgv(kL) is the galaxy-velocity power spectrum on large scales, and Pge(kS) is the galaxy-
electron power spectrum on small scales. Thus, kSZ tomography is a measurement of two
power spectra Pgv(kL), Pge(kS), within a degeneracy which allows an overall constant to be
exchanged, leaving the product Pgv(kL)Pge(kS) invariant. This is the well-known optical
depth degeneracy in the kSZ [25, 76, 128, 185].

The third purpose of this chapter is to give a simple recipe for incorporating kSZ
tomography into larger analyses (either Fisher matrix forecasts or actual data analysis),
using a quadratic estimator formalism. Before explaining our recipe, we pause briefly to
review CMB lens reconstruction [100, 103, 151], which will turn out to be analogous.

1Not every proposed kSZ statistic is a 3-point estimator of the form 〈ggT 〉. One of the first kSZ

statistics proposed [67, 60] is a cross correlation between large-scale structure and the squared high-pass

filtered CMB. Recently this method was used to obtain a 4σ measurement of the kSZ [94, 72]. This is a

3-point estimator of a different type, namely 〈gTT 〉. As another example, a four-point estimator 〈TTTT 〉
was recently proposed [182, 74] which does not use an external large-scale structure dataset and can probe

reionization. In this work, we do not consider these statistics, and define “kSZ tomography” to mean any

kSZ-sensitive three-point estimator of type 〈ggT 〉.
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In the case of the lensed CMB, the lens reconstruction quadratic estimator φ̂(l) esti-
mates each Fourier mode φ(l) of the CMB lensing potential, using a quadratic combination
of CMB modes. This naturally leads to higher-point statistics. If φ̂ is correlated with a
galaxy survey g, the result is is a three-point estimator involving two powers of the CMB
and one power of the galaxies. The auto power spectrum of φ̂ is a four-point estimator in
the underlying CMB map. Furthermore, it is straightforward to incorporate all of these
higher-point statistics in larger analyses, by including φ as an additional field with the
appropriate noise power spectrum.

Analogously, we propose that kSZ tomography can be included in larger analyses by
including a large-scale radial velocity reconstruction v̂r(k) with appropriate noise power
spectrum. The quadratic estimator v̂r(k) involves one power of the small-scale galaxy
field and one power of the small-scale CMB. The estimator and its noise power spectrum
are given explicitly in Eqs. (2.56), (2.57) below. The quadratic estimator v̂r was first
constructed in [64].

The auto power spectrum of v̂r is a four-point estimator in the underlying galaxy and
CMB maps, with schematic form (ggTT ). The cross spectrum of v̂r with a galaxy field is a
three-point estimator of schematic form (ggT ). To incorporate these higher-point statistics
into a larger analysis, we simply include the field vr with appropriate noise power spectrum.

This is very similar to CMB lensing, but there are some interesting differences between
the kSZ quadratic estimator v̂r and the lensing estimator φ̂, as we now explain. The
most obvious difference is that v̂r(k) is a 3-d reconstruction, whereas φ̂(l) is 2-d. Further
differences arise by considering the noise power spectrum of v̂r, as we explain in the next
few paragraphs.

First we note that on large scales, where linear perturbation theory is a good approxi-
mation, the radial velocity vr is related to the density field δm by:

vr(k) = µ
faH

k
δm(k) (2.1)

where f = ∂(logD)/∂(log a) is the usual redshift-space distortion parameter, and µ =
kr/k. Therefore, we can “convert” the kSZ-derived radial velocity reconstruction v̂r to a
reconstruction δ̂(k) = µ−1(k/faH)v̂r(k) of the large-scale density field δm. We will show
(Eq. (2.57) below) that on large scales, the reconstruction noise Nvr(kL) approaches a
constant. Therefore, the kSZ reconstruction noise on the density field δm has the form:

N rec
δδ (k) ∝ µ−2

(
k

faH

)2

(as k → 0) (2.2)
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From this noise power spectrum, we can deduce two qualitative features of the large-scale
kSZ-derived reconstruction.

First, the kSZ cannot reconstruct transverse modes (µ ≈ 0), and the kSZ reconstruction
cannot be cross-correlated with a 2-d field, such as the CMB lensing potential. This is due
to the µ−2 prefactor in Eq. (2.2), and is easy to understand intuitively: transverse modes
do not contribute to kSZ because the associated radial velocity is zero. For this reason,
in this chapter we only consider 3-d large-scale structure fields, such as galaxy surveys. A
galaxy survey with photometric redshifts is an interesting intermediate case between 2-d
and 3-d [108]. In this case, there is a signal-to-noise penalty when cross-correlating with
the kSZ reconstruction, but the SNR is still large enough to be interesting. We work out
the details in §2.5.

Second, on large scales, kSZ tomography derived from a galaxy survey constrains cos-
mological modes better than the galaxy survey itself. This is because the kSZ reconstruction
noise in Eq. (2.2) is proportional to k2 on large scales, whereas the Poisson noise of the
galaxy survey approaches a constant value n−1

g . We find (Fig. 2.5 below) that the crossover
occurs around k ∼ 0.01 Mpc−1, although the exact value depends on the details of the CMB
and galaxy surveys.

Another qualitative feature of the kSZ-derived velocity reconstruction v̂r is that it
appears with a bias parameter 〈v̂r〉 = bvv

true
r which must be marginalized. This is not

initially obvious, but we will show in §2.4 that this is a consequence of the kSZ optical
depth degeneracy, i.e. astrophysical uncertainty in the small-scale galaxy-electron power
spectrum Pge(kS). Marginalizing bv fully incorporates the optical depth degeneracy in a
larger analysis.

Here is an example to illustrate the power of the velocity reconstruction approach to kSZ
tomography. An interesting recent paper [188] showed that the optical depth degeneracy
can be broken using an “octopolar” version of the pair sum estimator from [88]. In velocity
reconstruction language, the degeneracy breaking can be described as follows. Consider two
fields, the kSZ-derived velocity reconstruction v̂r = bvvr = bvµ(faH/k)δm, and a redshift-
space galaxy field field δg = (bg + fµ2)δm. If we cross-correlate them, the cross power
spectrum has µ dependence of schematic form Pv̂rδg ∝ (faHσ2

8/k)(bvbgµ+ bvfµ
3). In this

form, we see that a measurement of the µ3 term breaks the optical depth degeneracy, in
the sense that it pins down the value of bv (within uncertainty on cosmological parameters
f,H, σ8). This transparent explanation of the degeneracy breaking illustrates the power
of the velocity reconstruction approach. A Fisher matrix forecast which includes redshift
space distortions would automatically “discover” the degeneracy breaking, without needing
to construct the octopolar pair sum explicitly (or needing to know that it exists in advance).
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Earlier in this introduction, we stated that the kSZ-derived velocity reconstruction v̂r
is mathematically equivalent to the other kSZ tomography statistics in [95, 88, 123, 12].
This statement implicitly assumes that we cross-correlate v̂r with the galaxy field g on
large scales, but do not use it for anything else. However, in a larger analysis, v̂r can
be correlated with a variety of fields (including itself), and the µ-dependence of these
correlations will lead to extra degeneracy breaking. In our view, this makes the velocity
reconstruction approach more powerful than the other kSZ tomography statistics, and we
advocate using it (at least for cosmology).

Summarizing the results so far, we can give a one-sentence description of how kSZ
tomography fits into the larger picture of cosmological observables. KSZ tomography
reconstructs the largest modes of the universe, with lower noise than galaxy surveys, up to
an overall bias parameter which must be marginalized, and with the caveat that transverse
modes (µ ≈ 0) are not reconstructed.

This picture clarifies which cosmological parameters the kSZ can constrain. The pri-
mordial non-Gaussianity parameter fNL is a prime candidate. The kSZ can be used to
reconstruct large-scale density fluctuations with very low noise, which improves fNL con-
straints from galaxy surveys by using the sample variance cancellation idea from [172]. We
present fNL forecasts in [146].

This chapter is organized as follows. In §2.2 we compute the 〈δgδgT 〉 bispectrum, and

construct the optimal bispectrum estimator Ê and its Fisher matrix. We then show (§2.3)
that the optimal bispectrum estimator Ê can be rewritten algebraically in several different
ways, corresponding to the different kSZ tomography formalisms in [95, 88, 123, 12, 64].
Armed with this machinery, in §2.4 we analyze several aspects of kSZ tomography, including
the velocity reconstruction v̂r and its formal properties (§2.4.3), prospects for constraining
astrophysics (§2.4.4). and the optical depth degeneracy (§2.4.5). In §2.5, we show how to
incorporate photometric redshifts and redshift space distortions. We conclude in §2.6.

2.1 Definitions and notation

Throughout this chapter we use the following simplified “snapshot” geometry. We take
the universe to be a periodic 3D box with comoving side length L and volume V = L3,
“snapshotted” at some time t∗. We denote the redshift of the snapshot by z∗, the comoving
distance to redshift zero by χ∗, etc.

We take the 2D sky to be a periodic square with angular side length L/χ∗, and define
line-of-sight integration by projecting onto the xy-face of the cube, with a factor 1/χ∗ to
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convert from spatial to angular coordinates. We denote the transverse coordinates of the
box by (x, y), but denote the radial coordinate by r (not z, to avoid notational confusion
with the redshift). We write (·)r for the radial component of a three-vector, and r̂ for a
unit vector in the radial direction.

With this notation, the kSZ anisotropy is given by the line-of-sight integral:

TkSZ(θ) = K∗

∫ L

0

dr qr(χ∗θ + rr̂) (2.3)

where qi(x) = δe(x)vi(x) is the electron momentum field, K(z) is the kSZ radial weight
function with units µK-Mpc−1:

K(z) = −TCMBσTne,0xe(z)e−τ(z)(1 + z)2 (2.4)

and τ(z) is the optical depth to redshift z.

This simplified geometry neglects lightcone evolution, curved-sky effects, and survey
boundaries, all of which will be nontrivial complications in real data analysis. However,
it is convenient to ignore these complications when asking questions such as which KSZ
observables we should measure, and how we should interpret them. When forecasting
galaxy surveys, we approximate the true geometry by our simplified geometry, by matching
z∗ to the mean redshift of the survey and matching the box volume V to the comoving
volume of the survey.

Our Fourier conventions for a 3D field are:

f(x) =

∫
d3k

(2π)3
f(k)eik·x f(k) =

∫
d3x f(x)e−ik·x (2.5)

and similarly for a 2D field T (θ)↔ T (l).

We sometimes use the integral notation:∫
k1+k2+···+kn=0

=

∫
d3k1

(2π)3

d3k2

(2π)3
. . .

d3kn
(2π)3

(2π)nδ3 (k1 + k2 + ...+ kn) (2.6)

to make equations concise.

In linear theory, the velocity field has zero curl, so we can write vj(k) = (ikj/k)v(k),
where v(k)∗ = v(−k). The linear density field, velocity field, and radial velocity field are
related by

δ(k) =
k

faH
v(k) vr(k) =

ikr
k
v(k) (2.7)
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where f(z) = ∂(logD)/∂(log a) is the usual redshift space distortion parameter. Sometimes
we will also use the notation µ = kr/k.

We define the galaxy overdensity δg(x) as a sum of delta functions (or in Fourier space,
a sum of complex exponentials):

δg(x) =
1

ng

∑
i

δ3(x− xi) δg(k) =
1

ng

∑
i

e−ik·xi (2.8)

where the sum ranges over 3D galaxy positions xi, and ng denotes the comoving number
density of galaxies. We denote the galaxy bias by bg.

The fiducial cosmological model we assume in our forecasts roughly corresponds to
that determined by Planck with Hubble constant H0 = 67.3 km/s/Mpc, baryon density
Ωbh

2 = 0.02225, cold dark matter density Ωch
2 = 0.1198, scalar spectral index ns = 0.9645,

amplitude of scalar fluctuations As = 2.2 × 10−9, optical depth to reionization τ = 0.06,
and minimal sum of neutrino masses

∑
mν = 0.06 eV.

For our kSZ forecasts, we will need to know the galaxy auto power spectrum P tot
gg (k)

and the galaxy-electron cross power spectrum Pge(k). We model these power spectra using
the halo model. The main source of modeling uncertainty is the electron halo profile which
is assumed, which affects Pge(k). In our fiducial model, we use the “AGN” electron profile
from [25]. We calculate the kSZ power spectrum Cl from the electron power spectrum
Pee(k), calculated self-consistently using the halo model with the same electron profile.
Details of the halo model and kSZ model are in Appendix A.3.

2.2 The 〈δgδgT 〉 bispectrum

The underlying signal for kSZ tomography is a three-point function (or the bispectrum)
〈δg(k)δg(k

′)T (l)〉 involving two powers of a galaxy field, and one power of the CMB. There
is a standard formalism in cosmology for constructing optimal three-point estimators, and
forecasting their statistical errors (used for example to construct fNL estimators for the
CMB). In this section, we apply this formalism to the kSZ three-point function to construct
the optimal bispectrum estimator for kSZ tomography. We also derive the bispectrum
Fisher matrix, which can be used for forecasting.

The kSZ bispectrum is unusual: it involves two powers of a 3D field δg(k), and one
power of a 2D field T (l). This will change some details of the bispectrum formalism. For
example, we will show that the most general bispectrum allowed by symmetry is a function
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of four variables B(k, k′, l, kr), rather than the usual function of three variables B(k, k′, k′′)
which arises for three 3D fields (or three 2D fields).

2.2.1 Mathematical representation of the bispectrum

First we write down the most general three-point function 〈δgδgT 〉 allowed by symmetry.
In the simplified geometry used in this chapter (§2.1), the statistics of the fields δg(x),
T (θ) are invariant under the following symmetries. First, we can rotate both δg and T in
the xy-plane. Second, we can translate in the xy-plane, by applying shifts (∆x,∆y) to δg,
and angular shifts (θx, θy) = ((∆x)/χ∗, (∆y)/χ∗) to T . Third, we can translate δg in the
radial direction, leaving T unchanged.

By 3D translation invariance, the three-point function contains the delta function:

〈δg(k)δg(k
′)T (l)〉 = B(k,k′, l) (2π)3δ3

(
k + k′ +

l

χ∗

)
(2.9)

Note that the delta function implies that the radial components satisfy kr + k′r = 0. Once
the radial components are specified, 2D rotation invariance implies that B(k,k′, l) only
depends on the lengths k, k′, l. Therefore we can write

〈δg(k)δg(k
′)T (l)〉 = iB(k, k′, l, kr)(2π)3δ3

(
k + k′ +

l

χ∗

)
(2.10)

where the factor i has been introduced for future convenience. The permutation symmetry
k↔ k′ implies:

B(k, k′, l, kr) = B(k′, k, l,−kr) (2.11)

and by taking the complex conjugate of Eq. (2.10) we get:

B(k, k′, l, kr)
∗ = −B(k, k′, l,−kr) (2.12)

There is one more symmetry we can use: reflection symmetry in the radial direction. Under
this symmetry, the kSZ temperature transforms with a minus sign, so we get:

B(k, k′, l,−kr) = −B(k, k′, l, kr) (2.13)

Combining Eqs. (2.11)–(2.13), we see that B(k, k′, l, kr) is real-valued, antisymmetric in
k, k′ and odd in kr.

The parity-odd transformation law under radial reflections (Eq. (2.13)) has the impor-
tant consequence that the kSZ bispectrum is orthogonal to bispectra produced by other
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secondaries (lensing, Rees-Sciama, residual tSZ, residual CIB). These secondaries all gener-
ate δgδgT -bispectra which are parity-even under radial reflections.2 As we will show in the
next section, this implies that the kSZ tomography estimator is unbiased by the non-kSZ
secondaries. This property makes kSZ tomography a particularly interesting way of ex-
tracting cosmological information from future CMB experiments, where the main challenge
may be disentangling different contributions, rather than obtaining high SNR.

2.2.2 Optimal bispectrum estimator and Fisher matrix

Given a predicted form of the kSZ bispectrum B(k, k′, l, kr), what is the optimal bispectrum
estimator Ê? To answer this question, we start with the most general three-point estimator

Ê =

∫
k+k′+l/χ∗=0

W (k,k′, l)
(
δg(k)δg(k

′)T (l)
)

(2.14)

with weight function W (k,k′, l) to be determined by the following constrained optimization
problem. We minimize the variance Var(Ê), subject to the constraint that Ê is an unbiased
estimator for the bispectrum amplitude, i.e. 〈Ê〉 = 1 if the true bispectrum is B. When
computing Var(Ê), we assume that the fields δg, T are Gaussian for simplicity.

Now a short calculation (similar to the derivation in A.1) , gives the following results.
The optimal bispectrum estimator is:

Ê =
1

2FBB

∫
k+k′+l/χ∗=0

−iB∗(k, k′, l, kr)
P tot
gg (k)P tot

gg (k′)CTT,tot
l

(
δg(k)δg(k

′)T (l)
)

(2.15)

where P tot
gg is the total power spectrum of the galaxy survey including shot noise, and

CTT,tot
l is the total power spectrum of the CMB survey including instrumental noise. The

prefactor FBB is the bispectrum Fisher matrix, which is defined for a pair of bispectra
B,B′ by:

FBB′ =
V

2

∫
k+k′+l/χ∗=0

B(k, k′, l, kr)∗B′(k, k′, l, kr)

P tot
gg (k)P tot

gg (k′)CTT,tot
l

(2.16)

2We have included CMB lensing in this list of parity-even secondaries, even though the δgδgT -

bispectrum produced by lensing is probably very small. To see this, we note that if the CMB lensing

potential φ and the unlensed CMB Tunl were statistically independent, then lensing would not produce a

δgδgT -bispectrum, since the statistics of the lensed CMB would be invariant under T → (−T ). However,

there is a small correlation between φ and Tunl on small scales due to the Rees-Sciama effect, and this

produces a small, parity-even δgδgT -bispectrum.
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where V is the survey volume. The total signal-to-noise of the kSZ bispectrum is given
by SNR = F

1/2
BB . More generally, given N bispectra to be jointly estimated, their N -by-N

covariance matrix is the inverse Fisher matrix. If the bispectrum estimator Ê is constructed
assuming bispectrum B, and the true bispectrum is B′, then the expectation value of the
estimator is 〈Ê〉 = FBB′/FBB.

We can use this last property of the estimator to show that the kSZ bispectrum es-
timator is unbiased by parity-even secondaries (CMB lensing, Rees-Sciama, residual tSZ,
residual CIB), as stated without proof in the previous section. This amounts to show-
ing that FBB′ = 0, where B is the parity-odd kSZ bispectrum and B′ is any parity-even
bispectrum. Writing out the transformation laws explicitly, we have:

B(k, k′, l,−kr) = −B(k, k′, l, kr) B′(k, k′, l,−kr) = B′(k, k′, l, kr) (2.17)

From the form of the Fisher matrix in Eq. (2.16), this implies FBB′ = 0. We note that this
argument relies on reflections in the radial direction being an exact symmetry. This is true
for the simplified snapshot geometry in this chapter (§2.1), but the symmetry is not exact
in reality due to evolution along the lightcone, and therefore we expect some small leakage
between kSZ tomography and parity-even secondaries in a more detailed treatment. We
defer this to future work.

In Eq. (2.16), we have written the Fisher matrix FBB′ as an integral over vector
wavenumbers k,k′, l. While formally transparent, this is inconvenient for numerical eval-
uation. In Appendix A.2, we show that FBB′ can be written as an integral over scalar
wavenumbers:

FBB′ =
V

2

∫
dk dk′ dl dkr I(k, k′, l, kr)

B(k, k′, l, kr)∗B′(k, k′, l, kr)

P tot
gg (k)P tot

gg (k′)CTT,tot
l

(2.18)

where I(k, k′, l, kr) is defined in Eq. (A.22).

2.2.3 The tree-level kSZ bispectrum

In this section we calculate an explicit formula for the kSZ bispectrum B(k, k′, l, kr). In
real space, the kSZ anisotropy T (θ) is given by the line-of-sight integral in Eq. (2.3).
Converting to Fourier space and writing qr = δevr, this becomes:

T (l) =
K∗
χ2
∗

∫
q+q′=l/χ∗

(
δe(q)vr(q

′)
)

(2.19)
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Plugging this in, we can write the 〈δgδgT 〉 three-point function as a large-scale structure
four-point function:〈

δg(k)δg(k
′)T (l)

〉
=
K∗
χ2
∗

∫
q+q′=l/χ∗

〈
δg(k)δg(k

′)δe(q)vr(q
′)
〉

(2.20)

It would be very difficult to give a complete calculation of this four-point function which
extends to nonlinear scales! As a starting point, suppose we neglect the connected part
of the four-point function, and compute the disconnected or tree-level part using Wick’s
theorem:〈

δg(k)δg(k
′)T (l)

〉
tree

=
K∗
χ2
∗

(
Pge(k)

−ik′rPgv(k′)
k′

+ (k↔ k′)

)
(2π)3δ3

(
k + k′ +

l

χ∗

)
(2.21)

Comparing with the definition of the bispectrum B(k, k′, l, kr) in Eq. (2.10), we read off
the tree-level kSZ bispectrum in the form:

B(k, k′, l, kr)tree =
K∗kr
χ2
∗

(
Pge(k)

Pgv(k
′)

k′
− Pgv(k)

k
Pge(k

′)

)
(2.22)

The tree-level kSZ bispectrum is guaranteed to be a good approximation to the true kSZ
bispectrum in the limit where all wavenumbers k, k′, l are small (so that loop corrections
are small).

However, we are interested in the kSZ bispectrum in a different limit, namely the
“squeezed” limit in which one wavenumber k is small (say ∼< 0.1 Mpc−1), and the other
wavenumbers k′, l are large (say k′ ∼ l/χ∗ ∼ 1 Mpc−1). To see this intuitively, consider the
following argument. The kSZ is sourced by a real-space product of the form δe(x)vr(x),
and almost all of the power in the velocity field vr comes from large scales. Therefore, one
of the wavenumbers must correspond to a large scale, say k ∼< 0.1 Mpc−1. On the other
hand, the CMB wavenumber must be roughly l ∼ 4000, since smaller values of l will be
dominated by the primary and lensed CMB, and larger values of l will be noise-dominated.
The triangle condition k + k′ + (l/χ∗) = 0 then requires the wavenumber k′ to correspond
to a small scale, roughly k′ ∼ 1 Mpc−1.

Now we introduce an ansatz which will be of central importance throughout the chapter.
We assume that in the squeezed limit (k ∼< 0.1 Mpc−1 and k′ ∼ 1 Mpc−1), the kSZ
bispectrum is accurately approximated by the tree-level expression in Eq. (2.22), but using
the nonlinear small-scale galaxy electron Pge(k

′) on the RHS. (Abusing terminology slightly,
we will continue to call Eq. (2.22) the “tree-level” bispectrum, even though the Pge factor
now includes loop and nonperturbative contributions.)
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As a direct check that our ansatz is accurate, we have estimated the bispectrum directly
from N -body simulations, and compared to the tree-level approximation (2.22). We used
the public DarkSky simulation [180] with box size 1600 h Mpc−1 and 40963 particles, and
used dark matter particles instead of electrons, and halos instead of galaxies. Empirically,
we find in the squeezed limit (k ≤ 0.04 h Mpc−1 and 1 ≤ k′ ≤ 2 h Mpc−1), the tree-
level bispectrum (2.22) is accurate to a few percent or better. The details of our N -body
simulation results will be presented separately [83].

As a check that our approximations are self-consistent, we can show that if we assume
that the kSZ bispectrum is given by the tree-level expression in Eq. (2.22), then the signal-
to-noise is dominated by the squeezed limit k � k′. We write the total signal-to-noise of
the bispectrum as SNR2 = FBB, where FBB is the Fisher matrix defined in Eq. (2.18). We
then plug in the tree-level kSZ bispectrum in Eq. (2.22), and integrate out the variables
kr, l to write the Fisher matrix as a double integral over (k, k′). After a short calculation
we get:

SNR2 =
V

2

∫
dk

k

dk′

k′
f(k, k′) (2.23)

where f(k, k′) is defined by:

f(k, k′) =
K2
∗

16π3χ3
∗

k2(k′)2

P tot
gg (k)P tot

gg (k′)

(
Pge(k)

Pgv(k
′)

k′
− Pgv(k)

k
Pge(k

′)

)2

×
∫ (k+k′)χ∗

|k−k′|χ∗
dl

Γ(k, k′, l/χ∗)2

CTT,tot
l

(2.24)

and Γ is defined in Eq. (A.21). By plotting the integrand f(k, k′), we can see which parts
of the (k, k′)-plane contribute to the integral. We find that almost all of the signal-to-noise
comes from the squeezed limit (Figure 2.2).

2.2.4 Squeezed limit

Summarizing the previous section, we have argued that the kSZ bispectrum is dominated
by the squeezed limit kL � kS, where kL ∼< 0.1 Mpc−1 is a linear scale, and kS ∼ 1 Mpc−1

is a nonlinear scale.

In the squeezed limit, our previous results simplify. The bispectrum becomes:

B(kL, kS, l, kLr) = −K∗kLr
χ2
∗

Pgv(kL)

kL
Pge(kS) (2.25)
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Figure 2.2: Scale dependence of the kSZ bispectrum. Left: SNR distribution in the (k, k′)-

plane, obtained by plotting the integrand f(k, k′) defined in Eq. (2.24). As expected, most

of the SNR comes from the squeezed limits k � k′ and k′ � k. Right: The cumulative SNR

of the bispectrum as more short-wavelength modes are included in the Fisher integral. The

difference between the squeezed limit SNR and the tree-level integral is 11%. In both plots,

noise parameters from Simons Observatory and DESI were assumed (see Tables 2.1, 2.2

below).

since the first term in Eq. (2.22) is much smaller than the second. We have omitted the
“tree” subscript on the LHS since the tree-level bispectrum is an accurate approximation
in the squeezed limit, provided that the nonlinear power spectrum Pge(kS) is used on the
RHS. In this chapter, we model Pge(kS) using the halo model (Appendix A.3). Note that
the triangle condition kL + kS + (l/χ∗) = 0 implies l ≈ (kSχ∗) and kSr = −kLr.

The optimal bispectrum estimator Ê in Eq. (2.15) can be simplified, if we restrict the
integrals to the squeezed limit kL � kS:

Ê =
K∗

χ2
∗FBB

∫
k+k′+l/χ∗=0

ikLr
kL

Pgv(kL)Pge(kS)

P tot
gg (kL)P tot

gg (kS)CTT,tot
l

(
δg(kL)δg(kS)T (l)

)
(2.26)

where the integrals on the RHS should be understood as running over wavenumbers kL �
kS which contribute significantly to the signal-to-noise (as shown in Figure 2.2). Note
that there is a factor of two in Eq. (2.26) relative to Eq. (2.15) because the (k, k′) integral
in (2.15) runs over squeezed configurations twice (for k � k′ and k′ � k).
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The Fisher matrix in Eq. (2.16) simplifies as follows. If we make no assumptions on
the bispectra other than assuming that the squeezed limit dominates, then:

FBB′ = V

∫
dkL dkS dkLr

kLkSχ
2
∗

8π3

(
B(kL, kS, l, kLr)

∗B′(kL, kS, l, kLr)

P tot
gg (kL)P tot

gg (kS)CTT,tot
l

)
l=kSχ∗

(2.27)

where the integral runs over |kLr| ≤ kL � kS, and both positive and negative kLr. This
form of the Fisher matrix is nice since the algebraically messy factor I(k, k′, l, kr) does not
appear (as in Eq. (2.18)). Now suppose we specialize further, by considering bispectra
B,B′ which are of “kSZ type”, meaning that the bispectra are given by the functional
form in Eq. (2.25) for different choices of power spectra Pgv, Pge:

B(kL, kS, l, kLr) = −K∗kLr
χ2
∗

Pgv(kL)

kL
Pge(kS) B′(kL, kS, l, kLr) = −K∗kLr

χ2
∗

P ′gv(kL)

kL
P ′ge(kS)

(2.28)
Plugging into Eq. (2.27), the Fisher matrix between kSZ-type bispectra can be written:

FBB′ = V
K2
∗

8π3χ2
∗

∫
dkL dkS dkLr k

2
Lr

(
Pgv(kL)P ′gv(kL)

kLP tot
gg (kL)

)(
kSPge(kS)P ′ge(kS)

P tot
gg (kS)

)(
1

(Ctot
l )l=kSχ∗

)

= V
K2
∗

12π3χ2
∗

(∫
dkL k

2
L

Pgv(kL)P ′gv(kL)

P tot
gg (kL)

)(∫
dkS kS

Pge(kS)P ′ge(kS)

P tot
gg (kS)

1

(Ctot
l )l=kSχ∗

)
(2.29)

where in the second line we have integrated kLr from −kL to kL. The Fisher matrix fac-
torizes as the product of integrals over kL and kS. This factorization implies that the
measurements of Pgv(kL) and Pge(kS) obtained from kSZ tomography are independent,
aside from an overall normalization which is degenerate. This degeneracy in kSZ tomogra-
phy is called the “optical depth degeneracy” and will be discussed in more detail in §2.4.

2.3 Equivalence with other formalisms

Summarizing previous sections, we have now shown that the optimal estimator for kSZ
tomography is:

Ê =
K∗

χ2
∗FBB

∫
k+k′+l/χ∗=0

ikLr
kL

Pgv(kL)Pge(kS)

P tot
gg (kL)P tot

gg (kS)CTT,tot
l

(
δg(kL)δg(kS)T (l)

)
(2.30)

where the integral runs over triangles kL + kS + l/χ∗ = 0. The integral should also be
restricted to squeezed triangles, in order to ensure that Eq. (2.25) for the bispectrum is an
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accurate approximation. For example, the integrals could be cut off at kL,max = 0.1 Mpc−1

and kS,min = 1 Mpc−1. We have shown (Fig. 2.2) that almost all of the signal-to-noise

comes from the squeezed limit, so that the value of Ê will not depend much on the precise
choice of cutoffs.

The form of Ê in Eq. (2.30) is convenient for many calculations, but less intuitive than
the kSZ tomography formalisms proposed in [95, 88, 123, 12, 64]. One may also wonder
how best to evaluate Ê algorithmically, given a CMB map and a galaxy catalog. There is
more than one way to do this, since Ê is a triple integral, and there is also a double sum
over galaxies hidden in the δg(kL)δg(kS) factor. These integrals and sums can be evaluated

using different orderings, leading to different implementations of the estimator Ê . In this
section, we will show that each of the kSZ tomography formalisms in [95, 88, 123, 12, 64]
corresponds to a different implementation of Ê as follows:

• We can write both factors of δg(k) in Eq. (2.30) as sums over galaxy positions δg(k) =∑
i e
−ik·xi , and bring both sums to the outside, to write Ê as a double sum over

galaxy positions Ê =
∑

ijWij, where the pair weighting Wij depends on the CMB
temperatures at galaxy positions i, j. This turns out to be equivalent to the pair sum
estimator proposed in [88].

• We can bring the l-integral to the outside, and write the estimator in the schematic
form Ê =

∫
d2lT (l)∗T̂ (l), where T̂ is a 2D map formed from two powers of the galaxy

field. This turns out to be equivalent to the kSZ template formalism from [95].

• We can write δg(kS) =
∑

i e
−ikS ·xi as a sum over galaxy positions xi, and bring the

sum to the outside, to write Ê as a sum of schematic form
∑

i ηiT̃i. Here, T̃i is
the high-pass filtered CMB at galaxy location i, and ηi is an estimate of the radial
velocity at galaxy i which is derived from the long-wavelength modes of the galaxy
survey. This turns out to be equivalent to either of the kSZ tomography statistics
in [123, 12].

• We can bring the kL-integral to the outside, and write the estimator in the schematic
form Ê =

∫
d3kL δg(kL)∗ v̂(kL), where v̂(kL) is a 3D map formed from one power of

the small-scale CMB temperature and one power of the small-scale galaxy modes.
This turns out to be equivalent to the kSZ-derived velocity reconstruction from [64].

In the following subsections we will work out the details of this equivalence, for each of
the kSZ tomography statistics in turn. We will do this in more detail for the last statistic
(the kSZ-derived velocity reconstruction from [64]), since some intermediate results in the
derivation will be used in later sections of the chapter.
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2.3.1 Equivalence between the bispectrum and pair sum

In this section we will show that the bispectrum estimator Ê is equivalent to the pair sum
estimator from [88]. We start by writing Ê as:

Ê =

∫
k+k′+l/χ∗=0

ikLr
kL

Pgv(kL)Pge(l/χ∗)

P tot
gg (kL)P tot

gg (l/χ∗)C
TT,tot
l

(
δg(kL)δg(kS)T (l)

)
(2.31)

where we have replaced Pge(kS) by Pge(l/χ∗) in Eq. (2.30), and likewise for P tot
gg (kS). This

is an accurate approximation in the squeezed limit kL � kS. We have also removed a
constant prefactor, since the overall normalization of the estimator will not be important
in this section.

In a galaxy catalog, the galaxies are specified as a sequence of 3D locations xi where
i = 1, · · · , Ngal, and the galaxy field δg(x) is a sum of delta functions (or in Fourier space,
a sum of complex exponentials):

δg(x) =
1

ng

∑
i

δ3(x− xi) δg(k) =
1

ng

∑
i

e−ik·xi (2.32)

We plug this into Eq. (2.31) and bring the sums to the outside, to write the result as a
sum over galaxy pairs (i, j):

Ê =
∑
ij

∫
k+k′+l/χ∗=0

ikLr
kL

Pgv(kL)Pge(l/χ∗)

P tot
gg (kL)P tot

gg (l/χ∗)C
TT,tot
l

T (l)e−i(kL·xi+kS ·xj)

=
∑
ij

∫
d3kL
(2π)3

d2l

(2π)2

ikLr
kL

Pgv(kL)Pge(l/χ∗)

P tot
gg (kL)P tot

gg (l/χ∗)C
TT,tot
l

e−ikL·(xi−xj)eil·(x
⊥
j /χ∗)T (l)

=
∑
ij

Ω(xj − xi) T̃ (θj) (where θj = x⊥j /χ∗) (2.33)

where we have defined a filtered CMB T̃ (θ) and a weight function Ω(x) by:

T̃ (θ) =

∫
d2l

(2π)2

Pge(l/χ∗)

P tot
gg (l/χ∗)C

TT,tot
l

T (l)eil·θ (2.34)

Ω(x) =

∫
d3kL
(2π)3

ikLr
kL

Pgv(kL)

P tot
gg (kL)

eikL·x (2.35)

The quantity θj = xj/χ∗ defined in Eq. (2.33) is just the angular location of the j-th
galaxy, in the simplified box geometry used in this work (§2.1).
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To simplify the pair weighting Ω(xj −xi) in Eq. (2.33), we note that Ω(x) = ∂rW (|x|),
where:

W (|x|) =

∫
d3k

(2π)3

Pgv(k)

kP tot
gg (k)

eik·x (2.36)

and ∂r(·) denotes the radial derivative. We evaluate the radial derivative as:

Ω(x) = ∂rW (|x|) =
x · r̂
|x| W

′(|x|) (2.37)

where r̂ is the unit vector in the radial direction. Plugging into Eq. (2.33), we can write Ê
as:

Ê =
∑
ij

xij · r̂
|xij|

W ′(|xij|)T̃ (θj)

=
1

2

∑
ij

xij · r̂
|xij|

W ′(|xij|)(T̃ (θj)− T̃ (θi)) (where xij = xj − xi) (2.38)

In the second line, we have antisymmetrized T̃ (θj)→ (T̃ (θj)−T̃ (θi))/2, since the remaining
factors in the double sum are antisymmetric in i, j.

Our final form for Ê in Eq. (2.38) is a sum over galaxy pairs. The pair weighting agrees
perfectly with the pair sum estimator from [88], including the overall angular dependence
(xij · r̂)/|xij|. Therefore, the bispectrum estimator is equivalent to the pair sum.

This equivalence establishes some interesting properties of the pair sum estimator which
are not obvious in advance. First, the optimal l-weighting of the CMB is given by Eq. (2.34).
Second, the optimal weighting in the pair separation r = |xij| is given by W ′(r), where
W (r) is defined in Eq. (2.36). Third, the pair sum statistic is an optimal kSZ tomography
estimator, if these weightings in l and r are used. Fourth, the total signal-to-noise of the
pair sum can be forecasted as SNR = F

1/2
BB , where FBB is the bispectrum Fisher matrix

defined previously in Eq. (2.29).

2.3.2 Equivalence between the bispectrum and kSZ template for-

malisms

In this section we will show that the bispectrum estimator is equivalent to the kSZ template
formalism from [95]. First we recall the details of the kSZ template formalism. We start
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by defining the 3D field:

η(kL) =
ikLr
kL

Pgv(kL)

P tot
gg (kL)

δg(kL) (2.39)

This can be interpreted as a minimum variance linear reconstruction of the radial velocity
vr(kL) from the long-wavelength modes of the galaxy survey.3 Similarly, we define the 3D
field:

ε(kS) =
Pge(kS)

P tot
gg (kS)

δg(kS) (2.40)

which can be interpreted as a best estimate for the small-scale electron density δe(kS),
given the galaxy map. Finally, we define a 2D “kSZ template” field T̂ (θ), by radially
integrating the product of fields (ηε):

T̂ (θ) = K∗

∫ L

0

dr η(χ∗θ + rr̂) ε(χ∗θ + rr̂) (2.41)

The kSZ template field T̂ (θ) is constructed purely from the galaxy survey, but we expect it
to be highly correlated with the CMB temperature T (θ), since T̂ has been defined using an
integral (2.41) which mimics the line-of-sight integral (3.5) for the kSZ. Ref. [95] proposes

using the cross power spectrum CT T̂
l as a statistic for kSZ tomography.

To show that CT T̂
l is equivalent to the bispectrum estimator Ê , we proceed as follows.

First, we write T̂ in Fourier space, by plugging the definitions of η, ε (Eqs. (2.39), (2.40))
into the definition of T̂ (Eq. (2.41)):

T̂ (l) =
K∗
χ2
∗

∫
kL+kS=l/χ∗

ikLr
kL

Pgv(kL)

P tot
gg (kL)

Pge(kS)

P tot
gg (kS)

(
δg(kL)δg(kS)

)
(2.42)

3We have used the notation η (rather than say v̂r) in order to distinguish between two notions of

“large-scale velocity reconstruction” that will be used throughout the chapter. The estimator η defined

in Eq. (3.34) is a linear reconstruction of the large-scale radial velocity from the large-scale galaxy field.

In the next section we will introduce a kSZ-derived quadratic estimator v̂r which also reconstructs the

large-scale radial velocity, using one power of the small-scale CMB and one power of the small-scale galaxy

field.
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Then we calculate CT T̂
l as follows:

CT T̂
l = −K∗L

∫
d3kL
(2π)3

d3kS
(2π)3

kLr
kL

Pgv(kL)

P tot
gg (kL)

Pge(kS)

P tot
gg (kS)

B(kL, kS, l, kLr) (2π)3δ3

(
kL + kS +

l

χ∗

)
=
K2
∗L

χ2
∗

∫
d3kL
(2π)3

d3kS
(2π)3

k2
Lr

k2
L

Pgv(kL)2

P tot
gg (kL)

Pge(kS)2

P tot
gg (kS)

(2π)3δ3

(
kL + kS +

l

χ∗

)
=

K2
∗L

6π2χ2
∗

(∫
dkL k

2
L

Pgv(kL)2

P tot
gg (kL)

)(
Pge(kS)2

P tot
gg (kS)

)
kS=l/χ∗

(2.43)

To get the first line, we have used Eq. (2.42) and the definition (2.10) of the bispectrum.
To get the second line, we have plugged in the bispectrum in the form (2.25). The third
line is a simplification which is valid in the squeezed limit kL � kS. A similar calculation,
omitted for brevity, shows that the auto power spectrum of the template T̂ is given by the
same expression, i.e.

N T̂ T̂
l = CT T̂

l (2.44)

where we have used the notation Nl since we interpret the auto spectrum of T̂ as a noise
power spectrum.

Using the results in Eqs. (2.42), (2.43), (2.44), a short calculation starting from Eq. (2.30)
now shows that the optimal bispectrum estimator Ê can be written in the form:

Ê =
1

FBB

∫
d2l

(2π)2

CT T̂
l

CTT,tot
l N T̂ T̂

l

(
T (l)T̂ (−l)

)
(2.45)

(This equation can be simplified using N T̂ T̂
l = CT T̂

l , but we have written it in a way which
makes equivalence with the kSZ template formalism most transparent.)

This expression for Ê agrees perfectly, including the l-weighting, with the minimum
variance estimator for the cross-correlation of two fields T, T̂ with auto and cross spectra
given by CTT,tot

l , CT T̂
l , and N T̂ T̂

l . This proves that the kSZ tomography statistic CT T̂
l

from [95] is equivalent to the optimal bispectrum estimator Ê .

2.3.3 Equivalence between the bispectrum and velocity matched

filter

In this section, we will show that the bispectrum estimator Ê is equivalent to the “velocity
matched filter” statistic from [123].
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The idea of [123] is that at the location of each galaxy, the kSZ effect produces a small
correlation between the radial velocity vr and the high-pass filtered CMB temperature T̃ .
The correlation is small on a per-object basis, but can be detected by summing over many
galaxies. In our notation, the velocity matched-filter statistic is:4

α̂ =
∑
i

η(xi)T̃ (θi) (where θi = x⊥i /χ∗) (2.46)

where T̃ (θ) is the high-pass filtered CMB defined previously in Eq. (2.34), and η(x) is the
linear radial velocity reconstruction defined in Eq. (3.34).

To show that the kSZ tomography statistic α̂ is equivalent to the bispectrum estimator
Ê , we start by writing Ê in the form:

Ê =

∫
kL+kS+l/χ∗

ikLr
kL

Pgv(kL)Pge(l/χ∗)

P tot
gg (kL)P tot

gg (l/χ∗)C
TT,tot
l

(
δg(kL)δg(kS)T (l)

)
(2.47)

where we have replaced Pge(kS) by Pge(l/χ∗) in Eq. (2.30), and likewise for P tot
gg (kS). These

replacements are valid in the squeezed limit kL � kS. We then manipulate as follows:

Ê =
1

ng

∑
i

∫
d3kL
(2π)3

d2l

(2π)2

ikLr
kL

Pgv(kL)Pge(l/χ∗)

P tot
gg (kL)P tot

gg (l/χ∗)C
TT,tot
l

(
δg(kL)T (l)

)
ei(kL+l/χ∗)·xi

=
1

ng

∑
i

(∫
d3kL
(2π)3

ikLr
kL

Pgv(kL)

P tot
gg (kL)

δg(kL)eikL·xi
)∫

d2l

(2π)2

Pge(l/χ∗)

P tot
gg (l/χ∗)C

TT,tot
l

T (l)eil·(x
⊥
i /χ∗)

=
1

ng

∑
i

η(xi)T̃ (x⊥i /χ∗) (2.48)

In the first line, we have plugged in δg(kS) = n−1
g

∑
i e
−ikS ·xi , and used the delta function to

do the kS-integral. To get from the second line to the third, we have recognized the factors
in parentheses as the definitions of T̃ (θ) and η(x) in Eqs. (2.34), (3.34). The final result is
the α̂-statistic in Eq. (2.46), completing the proof that α̂ is equivalent to the bispectrum
estimator Ê .

4Ref. [123] uses different notation as follows. The linear radial velocity η(xi) is denoted vrec,i, and the

high-pass filtered CMB T̃ (θi) is denoted Ki. The kSZ tomography statistic is written α̂ =
∑
i wi(Ki/vrec,i),

where wi ∝ v2rec,i, or equivalently α̂ ∝∑i vrec,iKi.
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2.3.4 Equivalence between the bispectrum and the velocity growth

method

In this section, we will show that the optimal bispectrum estimator Ê is equivalent to the
“velocity growth method”, a kSZ tomography statistic introduced recently in [12].

In [12], the large-scale structure catalog is assumed to be a catalog of galaxy clusters
with mass estimates, and a prescription is given for the relative weighting of mass bins.
Let us first consider the simpler case of a narrow mass bin. We are also implicitly assuming
a narrow redshift bin, by using the “snapshot” geometry from §2.1.

The kSZ tomography statistic from [12] is defined by maximizing a likelihood function
L(α), which in our notation is given by:5

− logL(α) ∝
∑
i

(
αη(xi)τ500 − T̃ (θi)

)2

(2.49)

where τ500 is an estimate for the cluster optical depth, T̃ (θ) is the high-pass filtered CMB
defined previously in Eq. (2.34), and η(x) is the linear radial velocity reconstruction defined
in Eq. (3.34).

Given this likelihood, the maximum-likelihood estimator α̂ML is:

α̂ML =

∑
i η(xi)T̃ (θi)

τ500

∑
i η(xi)2

(2.50)

We note that statistical fluctuations in the denominator will be small, since there will
be many clusters in the catalog, and the value of η(xi)

2 will be uncorrelated from one
cluster to the next, provided the cluster separation is larger than the correlation length
of the velocity field. Therefore, to a good approximation, we can replace η(xi)

2 in the
denominator by its expectation value 〈η2〉, and write:

α̂ML ≈
∑

i η(xi)T̃ (θi)

Nτ500〈η2〉 (2.51)

5Ref. [12] uses different notation as follows. The linear radial velocity reconstruction η(xi) is denoted

β̂ir, and the high-pass filtered CMB T̂ (θi) is denoted aikSZ. In writing the likelihood in Eq. (2.49), we

have assumed that all clusters are identical, so that the estimated optical depth τ500 is independent of i,

and so are statistical errors on the quantities τ500, T̂ , η. This is a reasonable assumption because we are

considering narrow mass and redshift bins.

37



In this form, we see that α̂ML is proportional to the kSZ tomography statistic considered in
the previous section (in Eq. (2.46), also denoted α̂), where we showed that it is equivalent
to the optimal bispectrum estimator Ê .

In this analysis, we only considered the case of a narrow mass bin, setting aside the
question of how to optimally weight different mass bins. Ref. [12] discusses this optimiza-
tion in detail, in addition to the optimal choices of l and kL-weightings which appear in
the filtered CMB T̃ and velocity reconstruction η (Eqs. (2.34), (3.34)).

In the bispectrum approach used in this chapter, these weight optimizations are per-
formed differently. The optimal l and kL-weightings are part of the optimal bispectrum
estimator Ê , which was derived previously in §2.2. So far, we have not discussed how to
optimally weight cluster mass bins. We will defer this question to §2.4.6 as part of a more
general discussion of how to incorporate kSZ tomography into larger analyses.

2.3.5 Equivalence between the bispectrum and long-wavelength

velocity reconstruction

In this section, we will show that the optimal bispectrum estimator Ê is equivalent to the
long-wavelength radial velocity reconstruction from [64].

First we recall the idea from [64] (see also [193, 46] for further related details). The
kSZ induces a squeezed bispectrum of schematic form 〈vr(kL)δg(kS)T (l)〉. Therefore, we
can build a quadratic estimator for long-wavelength radial velocity modes vr(kL) by sum-
ming over pairs (δg(kS)T (l)) of short-wavelength modes in the galaxy and CMB maps.
This is analogous to CMB lensing, where there is a squeezed bispectrum of the form
〈φ(l)T (l′)T (l′′)〉, and consequently the long-wavelength CMB lensing potential φ can be
reconstructed from small-scale CMB modes.

We next derive the minimum variance estimator v̂r(kL) in the simplified “snapshot”
geometry from §2.1, by solving a constrained optimization problem as follows. Consider a
general quadratic estimator of the form:

v̂r(kL) =

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l) δ

∗
g(kS)T ∗(l) (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.52)

with weights W (kS, l) to be determined. We want to find the weights W (kS, l) which
minimize the power spectrum of the reconstruction, subject to the constraint that the
reconstruction is unbiased, i.e. 〈v̂r(kL)〉 is equal to the true radial velocity vr(kL). Here,
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the expectation value 〈v̂r(kL)〉 is an average over small-scale modes, in a fixed realization
of the long-wavelength modes.

A short calculation gives the mean and noise power spectrum of the quadratic estimator
in Eq. (2.52), for arbitrary weights W (kS, l):

〈v̂r(kL)〉 =
K∗
χ2
∗

[∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)Pge(kS)(2π)3δ3

(
kL + kS +

l

χ∗

)]
vr(kL) (2.53)

Nvr(kL) =

∫
d3kS
(2π)3

d2l

(2π)2
|W (kS, l)|2P tot

gg (kS)CTT,tot
l (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.54)

To get the first line, we have used the identity 〈δg(kS)T (l)〉 = (K∗/χ2
∗)Pge(kS)vr(kS+l/χ∗),

which follows from Eq. (2.19).

Now we solve for the weightsW (kS, l) which minimizeNvr(kL), subject to the constraint
〈v̂r(kL)〉 = vr(kL). A short calculation using Eqs. (2.53), (2.54) shows that W (kS, l) and
Nvr(kL) are related by:

W (kS, l) = Nvr(kL)
K∗
χ2
∗

Pge(kS)

P tot
gg (kS)CTT,tot

l

(2.55)

Plugging back into Eqs. (2.52), (2.54), our final expressions for the minimum-variance
quadratic estimator v̂r(kL) and its reconstruction noise power spectrum are:

v̂r(kL) = Nvr(kL)
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)

P tot
gg (kS)CTT,tot

l

(
δ∗g(kS)T ∗(l)

)
(2π)3δ3

(
kL + kS +

l

χ∗

)
(2.56)

Nvr(kL) =
χ4
∗

K2
∗

[∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)2

P tot
gg (kS)CTT,tot

l

(2π)3δ3

(
kL + kS +

l

χ∗

)]−1

=
χ2
∗

K2
∗

∫ kS dkS
2π

(
Pge(kS)2

P tot
gg (kS)CTT,tot

l

)
l=kSχ∗

−1

(2.57)

where we have used kL � kS in the last line to simplify.

This concludes our description of the quadratic estimator v̂r. We mention in advance
that the expressions for v̂r and Nvr (Eqs. (2.56), (2.57)) will be used extensively throughout
the rest of the chapter.
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To construct a kSZ tomography statistic, i.e. a scalar quantity which is kSZ-sensitive,
we can cross-correlate the radial velocity reconstruction v̂r(kL) with the galaxy field on
large scales, with a suitable kL-weighting. We next show that this procedure is equivalent
to the optimal bispectrum estimator Ê . Starting from Eq. (2.30) for Ê , we plug in Eq. (2.56)
for v̂r, to write Ê in the form:

Ê =
1

FBB

∫
d3kL
(2π)3

ikLr
kL

Pgv(kL)

P tot
gg (kL)Nvr(kL)

(
δg(kL)v̂r(kL)∗

)
(2.58)

Similarly, we start with the Fisher matrix element FBB in the following form:

FBB = V
K2
∗

χ4
∗

∫
d3kL
(2π)3

d3kS
(2π)3

d2l

(2π)2

k2
Lr

k2
L

Pgv(kL)2

P tot
gg (kL)

Pge(kS)2

P tot
gg (kS)

1

CTT,tot
l

(2π)3δ3

(
kL + kS +

l

χ∗

)
(2.59)

which follows from Eq. (2.16), after restricting the integral to squeezed triangles and plug-
ging in the kSZ bispectrum from Eq. (2.25). We then plug in Eq. (2.57) for Nvr , to write
FBB in the form:

FBB = V

∫
d3kL
(2π)3

k2
Lr

k2
L

Pgv(kL)2

P tot
gg (kL)Nvr(kL)

(2.60)

The expressions (2.58), (2.60) for Ê and FBB agree perfectly, including constant factors,
with the minimum variance estimator for the cross-correlation of two fields δg(kL), v̂r(kL),
with an anisotropic two-point function of the form 〈δg(k′)∗v̂r(k)〉 = (ikr/k)Pgv(k)(2π)3δ3(k−
k′). This completes the proof that the optimal bispectrum estimator Ê is equivalent to
cross-correlating the kSZ-derived velocity reconstruction v̂r with the galaxy field δg on large
scales.

The reconstruction v̂r can be used to build more general statistics as well. For example,
we could consider the auto power spectrum of v̂r (rather than the cross power spectrum
with a galaxy field). Or we could introduce v̂r into a larger analysis including many
fields which can be cross-correlated with each other. The v̂r formalism is also particularly
convenient for incorporating redshift-space distortions and photometric redshift errors. For
this reason, the kSZ-derived velocity reconstruction is a particularly powerful approach to
kSZ tomography (at least for cosmology), and we advocate using it. Most of the rest of
the chapter is devoted to exploring properties of v̂r in more detail.
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2.4 Forecasts and phenomenology

So far, we have built up a lot of formal machinery. We have interpreted kSZ tomography
as bispectrum estimation, constructed the optimal bispectrum estimator, and its Fisher
matrix (§2.2). We have shown that the formalisms [95, 88, 123, 12, 64] for kSZ tomography
are equivalent to the bispectrum, and worked out the details of how to translate between
them (§2.3).

In this section, we will analyze several aspects of kSZ tomography using our machinery.
The ability to translate between different formalisms will be useful, since calculations which
are intuitive in one formalism may not be in others.

In forecasts in this section, we consider galaxy surveys with parameters given in Ta-
ble 2.1. The parameters for LSST are based on [132, 130], and those for DESI are based
on [61]. We use the LSST Gold sample up to Year 1 (LSST-Y1) and up to Year 10 (LSST-
Y10). The DESI sample we consider includes the BGS, LRG, ELG and QSO samples.

For the Planck and CMB-S4 CMB experiments, we model the noise power spectrum in
each frequency channel as

N ν
` = N ν

0

(
1 +

(
`

`knee

)α)
exp

(
`(`+ 1)θ2

FWHM

8 ln 2

)
. (2.61)

with frequencies ν, beamsize θFWHM and white noise sensitivity sw given in Table 2.2.
For CMB-S4, we conservatively assume atmospheric noise parameters of `knee = 3000
and α = −4 in all frequency channels, and do not include the atmospheric noise term
for Planck. We then construct a standard internal linear combination (ILC) noise curve
from those frequencies in combination with the Planck frequency bandpasses specified in
Table 2.2, with foreground noise from tSZ, clustered and point source CIB, and radio point
sources [69] in addition to reionization and late-time kSZ. For Simons Observatory, we use
a parametric fit to the publicly available noise curves [178] for the Goal fsky = 0.4 standard
ILC cleaned case.

We assume that the CMB experiment overlaps with DESI over fsky = 0.2 and with
LSST over fsky = 0.3. For all small-scale power spectra (Pge(kS), Pgg(kS) and late-time
CkSZ
` ), we use the halo model as described in Appendix A.3, where the stellar mass threshold

is chosen such that the predicted number density of galaxies is the same as in Table 2.1.
For large-scale power spectra (Pgv(kL), Pgg(kL)), we multiply the nonlinear matter power
spectrum by the linear galaxy bias in Table 2.1.
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2.4.1 Total signal-to-noise ratio

The total SNR for kSZ tomography can be computed using any of the three expressions:

SNR2 = V
K2
∗

12π3χ2
∗

(∫
dkL k

2
L

Pgv(kL)2

P tot
gg (kL)

)(∫
dkS kS

Pge(kS)2

P tot
gg (kS)

1

(Ctot
l )l=kSχ∗

)
(2.62)

= Ω

∫
d2l

(2π)2

(CT T̂
l )2

CTT,tot
l N T̂ T̂

l

(2.63)

= V

∫
d3kL
(2π)3

k2
Lr

k2
L

Pgv(kL)2

P tot
gg (kL)Nvr(kL)

(2.64)

These expressions are mathematically equivalent and correspond to different formalisms
introduced previously. The first expression (2.62) is the bispectrum Fisher matrix el-
ement FBB from Eq. (2.29). The second expression (2.63) is the total SNR2 for the
cross-correlation between the CMB and the kSZ template T̂ from §2.3.2. Here, Ω is the
angular survey area in steradians, and the power spectra CT T̂

l , N T̂ T̂
l which appear were

given in Eqs. (2.43), (2.44). The third expression (2.64) is the total SNR2 for the cross-
correlation between the large-scale galaxy field and the kSZ-derived velocity reconstruction
v̂r from §2.3.5. The reconstruction noise power spectrum Nvr(kL) was given in Eq. (2.57).

Although kSZ tomography has currently been detected at the few-sigma level, the
SNR will rapidly improve in the near future. We forecast that CMB-S4 will have total
SNR = (653, 333, 366), in combination with (DESI, LSST-Y1, LSST-Y10) respectively. On

DESI LSST-Y1 LSST-Y10

Mean redshift 0.75 0.9 1.1

Overlap survey volume (Gpc3) 116 113.4 180

Overlap fsky 0.2 0.3 0.3

Number density (Mpc−3) 1.7× 10−4 6.9× 10−3 1.2× 10−2

Number density (arcmin−2) 0.66 18 48

Galaxy bias 1.51 1.7 1.6

Photo-z error σz/(1 + z) 0 0.03 0.03

Table 2.1: Galaxy survey parameters used throughout §2.4. In the case of LSST, photo-

z errors are incorporated into kSZ tomography forecasts using machinery which will be

developed in §2.5.
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Planck

Frequency Beam Noise RMS

(GHz) (arcmin) (µK-arcmin)

30 33 145

44 23 149

70 14 137

100 10 65

143 7 43

217 5 66

353 5 200

CMB-S4

Frequency Beam Noise RMS

(GHz) (arcmin) (µK-arcmin)

28 7.6 20.0

41 5.1 17.5

90 2.4 2.0

150 1.5 1.8

230 1.0 6.3

Table 2.2: CMB frequency channels, white noise levels, and beam sizes used through-

out §2.4. For CMB-S4, we conservatively assume atmospheric noise parameters of

`knee=3000 and α = −4 in all frequency channels.

a shorter timescale, Simons Observatory will have SNR = (405, 205, 221) in combination
with the same galaxy surveys. To put these in context, the current best measurement is
around 6σ [166]. Note that LSST has lower SNR than DESI, even though its density is
higher, due to photo-z errors. In Figure 2.3, we show more SNR forecasts, for varying
CMB parameters in correlation with DESI.

2.4.2 What does kSZ tomography actually measure?

In this section we will give a simple answer to the question, “what does kSZ tomography
measure”? It is convenient to use the bispectrum formalism. Here, the underlying signal
is the squeezed bispectrum:

B(kL, kS, l, kLr) = −K∗kLr
χ2
∗

Pgv(kL)

kL
Pge(kS) (2.65)

We see that the observables are the large-scale galaxy-velocity power spectrum Pgv(kL)
and the small-scale galaxy-electron power spectrum Pge(kS).

Because the bispectrum in Eq. (2.65) can be measured as a function of two variables
(kL, kS), the power spectra Pgv(kL) and Pge(kS) can be measured independently, except
for one degeneracy: we have the freedom to multiply Pgv(kL) by a constant A, while
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Figure 2.3: KSZ tomography signal-to-noise ratio as a function of CMB noise level and

beam at 150 GHz, in cross-correlation with DESI. The fiducial CMB experiment configura-

tion is CMB-S4 as described in Table 2.2, with white noise level and beams in all frequency

channels scaled appropriately. The total noise in the CMB includes contributions from the

lensed CMB, reionization and late-time kSZ, and the tSZ/CIB/radio residual after stan-

dard ILC foreground cleaning.

multiplying Pge(kS) by 1/A. This leaves all kSZ tomography observables unchanged, since
the bispectrum (2.65) is invariant. This degeneracy is the well-known “kSZ optical depth
degeneracy” [25, 76, 128, 185].6

Thus, kSZ tomography measures two power spectra Pgv(kL) and Pge(kS). The results
of a kSZ tomography analysis could be presented as a pair of power spectra with error
bars, as in Figure 2.4. When interpreting these plots, the only subtlety is the optical depth
degeneracy, which allows an overall normalization to be exchanged between Pgv(kL) and
Pge(kS).

6This is unrelated to another “optical depth degeneracy” in the CMB: the cosmological parameters As
and τ are constrained with less precision than the combination Ase

−2τ .
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Figure 2.4: Statistical uncertainties on the galaxy-velocity (left) and galaxy-electron (right)

power spectrum from kSZ tomography, for Simons Observatory and DESI. Error bars were

computed using Eqs. (2.68), (2.72) below. The galaxy-electron cross-spectrum includes

contributions from 1-halo (blue dashed) and 2-halo terms (orange dot-dashed). KSZ to-

mography measures the galaxy-electron cross-spectrum very well in a window of wavenum-

bers 0.3 . k . 5 Mpc−1 where it is primarily 1-halo dominated.

2.4.3 Constraining cosmology: the large-scale power spectrum

Pgv(kL)

The large-scale galaxy-velocity power spectrum Pgv(kL) can be used to constrain cosmo-
logical parameters. For simplicity, we first assume that Pge(kS) is fixed to a fiducial value.

For cosmological forecasts, we find it most convenient to use the long-wavelength veloc-
ity reconstruction formalism from §2.3.5. There we showed that a kSZ-derived quadratic
estimator v̂r(k) can reconstruct each mode of the long-wavelength radial velocity with noise
power spectrum:

Nvr(kL) =
χ2
∗

K2
∗

∫ kS dkS
2π

(
Pge(kS)2

P tot
gg (kS)CTT,tot

l

)
l=kSχ∗

−1

(2.66)

Equivalently, the quadratic estimator can be viewed as a reconstruction of the (non-radial)
velocity v(kL) = µ−1vr(kL) or density δm(kL) = µ−1(k/faH)vr(kL), with noise power
spectra:

N rec
vv (kL, µ) = µ−2Nvr(kL) N rec

δδ (kL, µ) = µ−2

(
k

faH

)2

Nvr(kL) (2.67)
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Given these noise power spectra, error bars on Pgv(kL) can be computed as:

∆Pgv =

(
V

∫
kL∈b

d3kL
(2π)3

1

P tot
gg (kL)N rec

vv (kL, µ)

)−1/2

=

(
V

∫ kmax
L

kmin
L

∫ 1

−1

k2
LdkL dµ

4π2

1

P tot
gg (kL)N rec

vv (kL, µ)

)−1/2

(2.68)

where V is the survey volume, and b = (kmin
L , kmax

L ) is a kL-bin. This result was used
previously to plot error bars in Figure 2.4. We note that Eq. (2.68) can also be derived in
the other kSZ tomography formalisms, for example by splitting the bispectrum in kL-bins
and using the bispectrum Fisher matrix in Eq. (2.29).

The reconstruction noise power spectrum N rec
δδ (kL) in Eq. (2.67) has two novel features.

First, on large scales, kSZ tomography derived from a galaxy survey constrains cosmological
modes better than the galaxy survey itself. This is because N rec

δδ is proportional to k2 on
large scales, whereas the Poisson noise power spectrum of the galaxy survey has a constant
value n−1

gal. Therefore, on sufficiently large scales, the kSZ-derived noise must be lower.

To quantify this, in Figure 2.5, we compare Poisson noise to kSZ-derived noise, for
several combinations of galaxy and CMB surveys. The crossover occurs around kL ∼ 0.01
Mpc−1, but depends on the details of the surveys.

Since future galaxy surveys will generally be sample variance limited on large scales,
one may wonder whether lowering the noise using kSZ tomography actually gains anything.
In situations where sample variance cancellation is beneficial, the low-noise measurement
from kSZ tomography can be quite helpful. A prime candidate is constraining fNL using
large-scale halo bias. This is explored in detail in [146].

A second novel feature of the reconstruction noise power spectrum in Eq. (2.67) is that
it is anisotropic, with an overall µ−2 prefactor. This is easy to understand intuitively.
Since the velocity is curl-free in linear theory, the velocity vi of a mode points in a direc-
tion parallel to its Fourier wavenumber ki. In particular, a mode with µ = 0 has velocity
perpendicular to the line of sight and does not produce a kSZ signal. Therefore, its recon-
struction noise must be infinite, since the amplitude of the mode cannot be constrained
from kSZ.

The µ−2 dependence has the qualitative consequence that the kSZ-derived reconstruc-
tion of the long-wavelength modes cannot be cross-correlated with a 2D field, for example
the CMB lensing potential φ. Indeed, in the Limber approximation, only 3D modes with
µ = 0 will contribute to φ, and these modes have infinite noise in the kSZ reconstruction.
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(Because the Limber approximation is not perfect, the cross correlation between φ and
the kSZ reconstruction will not be exactly zero, but we expect it to be very small.) For
cross-correlations with a 3D field, such as the galaxy-velocity cross correlation 〈δgvrec〉, the
µ−2 prefactor does not have a qualitative effect, although it does result in an order-one
signal-to-noise penalty.7

So far in this section, we have assumed that the small-scale power spectrum Pge(kS) is
known in advance. Now let us consider the effect of uncertainty in Pge(kS) when recon-
structing long-wavelength modes. Suppose the quadratic estimator v̂(kL) is constructed us-
ing a fiducial power spectrum P fid

ge (kS), but the true power spectrum is P true
ge (kS) 6= P fid

ge (kS).
Then v̂r(kL) will be a biased estimator of vr(kL). After a short calculation, the bias can
be written in the following form:

〈v̂r(kL)〉 = bvvr(kL) (2.69)

where the velocity reconstruction bias bv is given by:

bv =

∫
dkS F (kS)P true

ge (kS)∫
dkS F (kS)P fid

ge (kS)
where F (kS) = kS

P fid
ge (kS)

P tot
gg (kS)

(
1

CTT,tot
l

)
l=kSχ∗

(2.70)

The details of Eq. (2.70) are unimportant, except for the crucial property that the bias bv is
independent of kL. That is, the kSZ-derived velocity reconstruction actually reconstructs
the velocity (or density) field up to an overall normalization bv which is not known in
advance, and therefore must be marginalized. This is similar to the case of a galaxy field,
where the galaxy bias bg must be marginalized. In the kSZ context, the bias parameter bv
arises because of the optical depth degeneracy.

2.4.4 Constraining astrophysics: the small-scale power spectrum

Pge(kS)

KSZ tomography can be used to measure the small-scale galaxy-electron power spectrum
Pge(kS) in kS-bins. Here, we will neglect the optical depth degeneracy, since Pgv(kL)

7There are other examples of cosmological fields with the property that cross-correlations with 2d

fields are always near-zero, but for different reasons. The 21-cm brightness temperature Tb(n, z) has this

property, because 21-cm maps must be high-pass filtered in the radial direction in order to remove Galactic

foregrounds. Similarly, when analyzing Lyman-alpha forest spectra from bright quasars, each spectrum is

normalized by dividing by the quasar continuum emission, which is obtained from the data by some form

of low-pass filtering. This normalization procedure is a radial high-pass filter which removes correlations

with 2d fields.
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Figure 2.5: Left: Reconstruction noise on large-scale modes using kSZ tomography. The

solid lines are the total matter power spectrum at the redshifts of DESI and LSST. The

dashed lines are the shot noise levels 1/(W 2b2n̄) in galaxy clustering (scaled appropriately

by the galaxy bias b and photo-z error W (k)). The dot-dashed lines are reconstruction

noise levels N rec
δδ (kL) using kSZ tomography (Eq. (2.67)), for longitudinal modes (µ = 1),

for various combinations of galaxy and CMB surveys. Right: The matter power spectrum

at the mean redshift of the LSST sample compared with kSZ tomography reconstruction

noise, for a few choices of photo-z error σz.

can be predicted in advance to a few percent, by combining well-measured cosmological
parameters with an external measurement of galaxy bias (say from cross-correlating with
CMB lensing).

First we ask, what is the statistical error ∆Pge on the power spectrum Pge(kS) in a
kS-bin? This can be derived in any of our kSZ formalisms, but a quick way to read off
the answer using our previous results is as follows. We start with Eq. (2.62) for the total
SNR2, which is written in a form where it can be split into kS-bins. If we restrict to a
single bin (kmin

S , kmax
S ), and assume that Pge(kS) has the constant value P fid

ge over the bin,
then the single-bin SNR is:

SNR2
bin = V

K2
∗

12π3χ2
∗
(P fid

ge )2

(∫
dkL k

2
L

Pgv(kL)2

P tot
gg (kL)

)(∫ kmax
S

kmin
S

dkS kS
1

P tot
gg (kS)

1

(Ctot
l )l=kSχ∗

)
(2.71)

The single-bin statistical error ∆Pge and SNR are related by ∆Pge = P fid
ge /SNRbin. There-
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fore:

∆Pge =

[
V

K2
∗

12π3χ2
∗

(∫
dkL k

2
L

Pgv(kL)2

P tot
gg (kL)

)(∫ kmax
S

kmin
S

dkS kS
1

P tot
gg (kS)

1

(Ctot
l )l=kSχ∗

)]−1/2

(2.72)
This expression was used previously to show error bars on Pge(kS) in Figure 2.4. One
interesting property of this measurement is that the error bars blow up for both low and
small kS. The power spectrum is constrained in a window of scales (roughly 0.3 . k . 5
Mpc−1) which are mainly 1-halo dominated.

In this work, our focus is on cosmology, and we will not explore the astrophysical
implications of a precision measurement of Pge(kS), aside from a few brief comments as
follows.

A kSZ-derived measurement of Pge(k) probes the distribution of electrons in halos.
This is similar to galaxy-galaxy lensing, which measures the galaxy-matter power spectrum
Pgm(k), and probes the distribution of matter in halos. In galaxy-galaxy lensing, Pgm(k)
is usually modelled using the halo model, and we can do the same for Pge(k), writing it as
the sum of 1-halo and 2-halo terms:

Pge(k) = bgbePmm(k) +
1

ngρm

∫
dmmn(M)ug(k|m)ue(k|m) (2.73)

where ug(k|m) and ue(k|m) denote the galaxy and electron profiles respectively. (For more
details on the halo model, see Appendix A.3.) In particular, “miscentering”, or the nonzero
offset between galaxies and halo centers [41], is naturally incorporated by including a galaxy
profile ug(k|m) 6= 1 in the model, as is already standard for galaxy-galaxy lensing.

There is a degeneracy in Pge(kS) (Eq. (2.73)) between the electron profile ue(k|m) and
the galaxy profile ug(k|m). One way of breaking this degeneracy is to measure the galaxy-
matter power spectrum Pgm(k) using galaxy-galaxy lensing with the same galaxy sample.
The dependence on the galaxy profile largely cancels in the ratio Pge(k)/Pgm(k) (but not
perfectly, since the galaxy profile can depend on halo mass). Therefore, galaxy-galaxy
lensing nicely complements kSZ tomography.

KSZ tomography is also complementary to thermal SZ and X-ray observations, which
also probe the distribution of electrons in halos. Relative to tSZ and X-ray, kSZ tomog-
raphy is more sensitive to electrons in the outskirts of halos. This is because the kSZ
profile is proportional to one power of the electron number density ne, whereas X-ray pro-
files are proportional to n2

e, and tSZ profiles are proportional to neT , where T is the gas
temperature.
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Normally, a measurement of a power spectrum such as Pge(k) can be converted (by
taking a Fourier transform) to a measurement of the associated correlation function ζge(r).
This is particularly intuitive for kSZ tomography since ζge(r) is the stacked electron profile
around galaxies, which is easy to interpret. However, kSZ tomography has the unusual
property that the error bars on Pge(k) blow up at both small and large k (Figure 2.4, right
panel). In real space, this means that if we estimate ζge(r) in r-bins, the marginalized error
bars on each bin will be artificially large and highly correlated. For this reason, it seems
preferable to work in Fourier space, and use the power spectrum Pge(k) when visualizing
results or performing model fits.

2.4.5 More on the optical depth degeneracy

As previously described (§2.4.2), kSZ tomography measures the power spectra Pge(kS)
and Pgv(kL), up to an overall amplitude which can be exchanged (the “optical depth
degeneracy”).

If the goal of kSZ tomography is to constrain the galaxy-electron power spectrum
Pge(kS), then the optical depth degeneracy adds extra uncertainty to the overall amplitude,
due to uncertainty in Pgv(kL). At back-of-the-envelope level, Pgv(kL) can be predicted in
advance to a few percent, since cosmological parameters and galaxy bias can be measured
to this accuracy. Therefore, the optical depth degeneracy should not be an issue if the kSZ
tomography measurement has total SNR . 30, but should be taken into account above
this threshold.

If the goal of kSZ tomography is to constrain cosmological modes on large scales, then
the optical depth degeneracy shows up as a bias parameter 〈v̂r〉 = bvvr in the velocity
reconstruction, which must be marginalized. For some purposes, for example the fNL
forecasts which we present in [146], marginalizing bv turns out to have a minimal effect.
For other purposes, for example if we want to use the overall amplitude of Pgv(kL) to
constrain the cosmological growth rate, then the optical depth degeneracy is a serious
problem, unless it can be broken somehow.

The optical depth degeneracy could be broken (for cosmological purposes) if the galaxy-
electron power spectrum Pge(kS) can be predicted in advance to better than a few percent.
As previously noted [25, 76, 128, 185], a necessary condition for doing this is that the
mean optical depth τ̄ of galaxy clusters in the sample must be determined, since τ̄ sets the
overall amplitude of the 2-halo term in Pge(kS). (This is the origin of the term “optical
depth degeneracy”.)
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However, we would like to add the observation that predicting τ̄ is not sufficient for
breaking the optical depth degeneracy, since kSZ tomography is mainly sensitive to Pge(kS)
in the 1-halo dominated regime (Figure 2.4). On these scales, Pge(kS) depends not only on
τ̄ , but also on the details of the spatial profile of the free electrons, including the outskirts
of the cluster where the profile is difficult to measure in X-ray or tSZ. (“Optical depth
degeneracy” is not really the right term, since τ̄ is one of several factors which determine
the small-scale power spectrum Pge(kS), and we need to know the amplitude of Pge(kS) on
1-halo scales to break the degeneracy.) For this reason, we suspect that breaking the kSZ
optical depth degeneracy astrophysically will be very difficult.

Recently, [188] proposed breaking the kSZ optical depth degeneracy in a different way,
by using an “octopolar” version of the pair sum estimator, rather than an astrophysical
prior on Pge(kS). We will study this proposal in the next section.

2.4.6 Including kSZ tomography in larger cosmological analyses

We have shown that the kSZ tomography statistics in [95, 88, 123, 12, 64] are “bispectrum
estimation in disguise” and mathematically equivalent. In particular, bispectrum estima-
tion can be implemented by cross-correlating the kSZ-derived velocity reconstruction v̂r
with the galaxy survey g on large scales.

If the kSZ-derived velocity reconstruction v̂r is included in a larger analysis (either a
Fisher matrix forecast or actual data analysis) with the appropriate noise power spectrum,
then additional higher-point statistics will naturally arise. For example, consider a forecast
with two fields: the velocity reconstruction v̂r and the galaxy field δg. The Fisher matrix
would combine contributions from the galaxy auto power spectrum Pgg(k), the cross power
spectrum Pgv̂(k) (which is really a three-point function 〈ggT 〉), and the auto power spec-
trum Pv̂v̂(k) (which is really a four-point function 〈ggTT 〉). This is very similar to CMB
lensing, where including the lens reconstruction φ̂ in a larger analysis naturally generates
all “interesting” three-point and four-point statistics.

Previously, we stated that velocity reconstruction is equivalent to the other kSZ to-
mography statistics. This statement implicitly assumes that we cross-correlate v̂r with the
galaxy field g on large scales, but do not use it for anything else. However, in a scenario
where v̂r is included in a larger analysis involving more fields, it automatically captures
multiple higher-point statistics and their covariances. For this reason, we prefer the ve-
locity reconstruction formalism to the other approaches to kSZ tomography, at least for
cosmological purposes. (For purposes of constraining astrophysics through measurements
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of Pge(kS), the kSZ template method from [95] seems simplest.) Another technical advan-
tage of v̂r is that it makes the optical depth degeneracy easy to incorporate, by adding a
nuisance parameter bv and marginalizing it at the end.

As another example, suppose we have N tracer fields, for example corresponding to
halos in different mass bins. Then we can construct N kSZ-derived velocity reconstructions
v̂

(i)
r , which can be cross-correlated with tracer field j, or with each other. To find the

optimal weighting of all these power spectra, we need to know the N -by-N matrix N
(ij)
vr

of reconstruction noise power spectra. Starting from the definition of v̂r in Eq. (2.56), a
short calculation gives:

N (ij)
vr =

2πχ2
∗

K2
∗

Aij
AiiAjj

(2.74)

where we have defined

Aij =

∫
dkS kS

P
(i)
ge (kS)P

(j)
ge (kS)P

(ij)
gg (kS)

P
(i)
gg (kS)P

(j)
gg (kS)

(
1

CTT,tot
l

)
l=kSχ∗

(2.75)

In principle, each velocity reconstruction has its own reconstruction bias b
(i)
v which must

be independently marginalized. The bias parameters for i 6= j are different because the
kS-weighting F (kS) in Eq. (2.70) is different for each galaxy field.

As a final illustration of the power of the velocity reconstruction approach, it is straight-
forward to see how the optical depth degeneracy gets broken when redshift-space distortions
in the galaxy field are included, as shown by [188]. Consider a Fisher matrix forecast with
two 3-d fields, a galaxy field δg and its kSZ-derived velocity reconstruction v̂r. On large
scales,

δg(k) = (bg + fµ2)δm(k) + (noise) v̂r(k) = µ
bvfaH

k
δm(k) + (noise) (2.76)

where µ = kr/k as usual. Then the cross power spectrum Pgv̂r(k, µ) is:

Pgv̂r(k, µ) =
(
µbgbv + µ3fbv

) faH
k

Pmm(k) (2.77)

The two terms have different µ dependence and their coefficients can be measured sep-
arately. In particular, the coefficient of the µ3 term is a measurement of the parameter
combination bvf

2Hσ2
8. Because f , H, and σ8 are well-determined cosmological parameters,

this pins down bv and breaks the optical distance degeneracy.

Summarizing, the velocity reconstruction approach is powerful because it fully incor-
porates kSZ tomography into a larger analysis. It automatically “discovers” subtle effects
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such as the degeneracy breaking from higher-µ terms, without needing to construct the
appropriate statistic (octopole pair sum) explicitly, or even needing to know in advance
that it exists.

2.5 Photometric redshift errors and redshift space dis-

tortions

As previously explained, kSZ tomography requires a 3D field. If a 2D field were used, the
signal-to-noise would be near-zero. A galaxy survey with photometric redshifts is an inter-
esting intermediate case between 2D and 3D, and one may wonder whether photometric
surveys are useful for kSZ tomography.

At back-of-the-envelope level, the answer can be worked out as follows. The effect of
photo-z errors is to suppress power in modes of the galaxy survey whose radial wavenumber
kr is larger than kz = H/σz, where σz is the RMS photo-z error. On the other hand, most
of the SNR for kSZ tomography comes from scales k ∼ kv, where kv ∼ 0.02 h Mpc−1 is
the velocity correlation length. Therefore, photo-z errors impose a large SNR penalty in
the limit kz � kv, and a small penalty in the limit kz � kv. Taking H ∼ 3 × 10−4 h
Mpc−1 and σz ∼ 0.02, a typical value of kz might be kz ∼ 0.015 h Mpc−1. That is, the
characteristic scales kz and kv are usually comparable, which means that photo-z errors
result in an order-one SNR penalty.

To take a concrete example, previously in §2.4.1, we found that the total SNR for kSZ
tomography with CMB-S4 and LSST-Y10 was 366. This forecast includes the effect of
photometric redshift errors, using machinery that will be developed in this section. If we
artificially assume that LSST has no photo-z errors, then we find SNR=827. Thus, photo-z
errors reduce total SNR by a factor ≈2.3 in this example.

In this section, we will also consider redshift space distortions (RSD), i.e. apparent
radial displacement of galaxies due to their peculiar velocities. We will analyze the effect
of photo-z errors and RSD on kSZ tomography using a common framework.

2.5.1 Modelling photo-z errors and RSD

In the next few sections, we use a bar (̄·) to denote “distorted by photo-z errors and RSD”
and a tilde (̃·) to denote “undistorted”. We derive expressions for distorted power spectra
such as P̄ge, in terms of their undistorted counterparts.
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Considering photo-z errors first, we will assume the simplest possible model: each
galaxy has an independent Gaussian redshift error with variance σ2

z . In our halo model
(Appendix A.3), this is equivalent to convolving the real-space galaxy profile ug(x) by a
Gaussian radial kernel with comoving width ∆x = σz/H∗. In Fourier space, this corre-
sponds to multiplication by a Gaussian in kr:

ug(k)→ W (kr)ug(k) where W (kr) = exp

(
− σ2

z

2H2
∗
k2
r

)
(2.78)

The profile ug(k) is now a function of both the length k = |k| and the radial component
kr of the wavenumber k.

Note that convolving the profile ug(k)→ W (kr)ug(k) is not the same thing as convolv-
ing the galaxy field δg(k) → W (kr)δg(k) (and the latter would be incorrect). If we write
δg(x) as a sum of delta functions n−1

g

∑
i δ

3(x − xi), then the underlying profile ug which
determines the locations xi is convolved with W (kr), but the delta functions themselves
are not convolved with W (kr).

Now we analyze the effect of photo-z errors on the total galaxy power spectrum P tot
gg .

First recall that in the undistorted case, P̃ tot
gg is the sum of a 2-halo term, a 1-halo term,

and a shot noise term:

P̃ tot
gg (k) = P̃ 2h

gg (k) + P̃ 1h
gg (k) +

1

ng
(2.79)

From the explicit formulas for P 2h
gg and P 1h

gg in Eqs. (A.41), (A.42), we see that if we
modify the profile ug as in Eq. (2.78), then the two-halo and one-halo terms get a factor
W 2, whereas the shot noise term is unmodified:

P̄ tot
gg (k, kr) = W (kr)

2
(
P̃ 2h
gg (k) + P̃ 1h

gg (k)
)

+
1

ng
(photo-z only) (2.80)

where “photo-z only” means that we have included photo-z errors but not redshift-space
distortions. Note that P̄ tot

gg is anisotropic: it is a function of both k and kr.

We can apply a similar analysis to cross spectra of the form PgX , where X could be the
electron field e, the matter field m, or the velocity field v. We model these cross spectra
as 1-halo and 2-halo terms (e.g. Eqs. (A.49), (A.50) for the Pge case). Looking at these
expressions, we see that both the 1-halo and 2-halo terms get a factor W (kr). That is, the
effect of photo-z errors on cross spectra is simply:

P̄gX(k, kr) = W (kr)P̃gX(k) (photo-z only) (2.81)
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where X ∈ {e,m, v}.
In real galaxy surveys, modelling photometric errors is more complex than the simple

Gaussian model considered here. We have assumed a Gaussian error distribution, whereas
a real survey would have a small population of drastic outliers. We have also assumed
that galaxies have independent photo-z errors, i.e. a halo with N galaxies would have
redshift error σz/

√
N . This may be an incorrect assumption if the errors have systematic

dependence, e.g. on metallicity. Exploring these issues further is outside the scope of this
work.

Now we consider redshift-space distortions. On large scales, the effect of RSD is given
by the Kaiser formula, which states that the galaxy profile ug is modified as:

ug(k)→
(

1 + β
k2
Lr

k2
L

)
ug(k) (2.82)

where β = f/bg and f = ∂(logD)/∂(log a). As in the photo-z case, convolving the profile ug
is not equivalent to convolving the galaxy field δg. Large-scale power spectra are modified
as:

P̄ tot
gg (kL, kLr) =

(
1 + β

k2
Lr

k2
L

)2 (
P̃ 2h
gg (kL) + P̃ 1h

gg (kL)
)

+
1

ng
(RSD only)

P̄gX(kL, kLr) =

(
1 + β

k2
Lr

k2
L

)
P̃gX(kL) (RSD only) (2.83)

where X ∈ {e,m, v} and a large scale has been assumed.

On small scales, redshift space distortions (“Fingers of God”) are nonlinear and difficult
to model. However, we will be interested in “near-transverse” small-scale modes where kSr
is small, even though kS is large. This is because kSZ tomography always involves a delta
function of the form δ3(kL+kS+l/χ∗) which implies kSr = −kLr. For near-transverse small-
scale modes, we have checked with simulations that the effect of redshift space distortions
is small, and we will neglect it in this work. Details of the simulations will be presented
separately in [83]. Thus, on small scales we will assume:

P̄ tot
gg (kS, kSr) = P̃ tot

gg (kS) P̄gX(kS, kSr) = P̃ tot
gg (kS) (RSD only) (2.84)

where X ∈ {e,m, v} and a near-transverse small-scale mode has been assumed.

Summarizing this section, our model for photo-z errors and RSD’s on large and small
scales is defined by Eqs. (2.80), (2.81), (2.83), (2.84) above. Combining these results, our
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“bottom-line” model including both effects is:

P̄ tot
gg (kL, kLr) = W (kLr)

2

(
1 + β

k2
Lr

k2
L

)2 (
P̃ 2h
gg (kL) + P̃ 1h

gg (kL)
)

+
1

ng
(2.85)

P̄ tot
gg (kS, kSr) = W (kSr)

2
(
P̃ 2h
gg (kS) + P̃ 1h

gg (kS)
)

+
1

ng
(2.86)

P̄gX(kL, kLr) = W (kLr)

(
1 + β

k2
Lr

k2
L

)
P̃gX(kL) (2.87)

P̄gX(kS, kSr) = W (kSr) P̃gX(kS) (2.88)

where X ∈ {e,m, v}, and W (kr) is the Fourier transformed photo-z error distribution
defined in Eq. (2.78).

2.5.2 The kSZ bispectrum with photo-z’s and RSD

Next we consider the combined effect of photo-z errors and RSD on previous results in the
chapter. In some cases, the derivations involve repeating analysis from previous sections,
which we do in streamlined form.

First we consider the kSZ bispectrum. In the squeezed limit kL � kS, the distorted
bispectrum B̄ can be written in any of the following forms:

B̄(kL, kS, l, kLr) = −K∗kLr
χ2
∗

P̄gv(kL, kLr)

kL
P̄ge(kS, kLr)

= −K∗kLr
χ2
∗

W (kLr)
2

(
1 + β

k2
Lr

k2
L

)
P̃gv(kL)

kL
P̃ge(kS)

= W (kLr)
2

(
1 + β

k2
Lr

k2
L

)
B̃(kL, kS, l, kLr) (2.89)

generalizing Eq. (2.25) in the undistorted case.

Note that in the first line of Eq. (2.89), we have written P̄ge(kS, kLr) on the RHS instead
of P̄ge(kS, kSr). We have used the relation kSr = −kLr to eliminate kSr in favor of kLr,
for notational consistency with the LHS, where only kLr appears. We will do the same
elsewhere in this section without commenting on it explicitly.
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The minimum-variance bispectrum estimator Ê is given by:

Ê =
K∗

χ2
∗FBB

∫
d3kL
(2π)3

d3kS
(2π)3

d2l

(2π)2

ikLr
kL

P̄gv(kL, kLr)P̄ge(kS, kLr)

P̄ tot
gg (kL, kLr)P̄ tot

gg (kS, kLr)C
TT,tot
l

×
(
δg(kL)δg(kS)T (l)

)
(2π)3δ3

(
kL + kS +

l

χ∗

)
(2.90)

generalizing Eq. (2.26) in the undistorted case.

As in the undistorted case, the integrals in Eq. (2.90) should be understood as run-
ning over wavenumbers kL � kS which contribute significantly to the signal-to-noise (Fig-
ure 2.2). The barred power spectra on the RHS of Eq. (2.90) are given by Eqs. (2.85)–(2.88).

The Fisher matrix FBB is given by any of the following forms:

FBB = V

∫
kL+kS+ l

χ∗
=0

B̄(kL, kS, l, kLr)
2

P̄ tot
gg (kL, kLr) P̄ tot

gg (kS, kLr)C
TT,tot
l

= V

∫
dkL dkS dkLr

kLkSχ
2
∗

8π3

(
B̄(kL, kS, l, kLr)

2

P̄ tot
gg (kL, kLr) P̄ tot

gg (kS, kLr)C
TT,tot
l

)
l=kSχ∗

= V
K2
∗

8π3χ2
∗

∫
dkL dkS dkLr

(
k2
Lr

kL

P̄gv(kL, kLr)
2

P̄ tot
gg (kL, kLr)

)

×
(
kSP̄ge(kS, kLr)

2

P̄ tot
gg (kS, kLr)

)(
1

(Ctot
l )l=kSχ∗

)
(2.91)

generalizing Eqs. (2.16), (2.27), (2.29) in the undistorted case. In the second and third
lines, the integral runs over |kLr| ≤ kL � kS, with positive or negative kLr.

Recall that in the undistorted case, FBB could be simplified further by doing the kLr
integral, leading to the simple form of the Fisher matrix in Eq. (2.29). This does not work
in the distorted case because the kLr dependence of the integrand is more complicated, due
to the P̄ tot

gg denominators.

2.5.3 Constraining astrophysics using Pge(kS), with photo-z’s and

RSD

Previously in §2.4.4, we forecasted error bars on the galaxy-electron power spectrum
P̃ge(kS) in the undistorted case. In this section we will generalize to include photo-z errors
and RSD.
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For simplicity, we will assume that P̄gv(kL, kLr) is known in advance. For example, it
could be given by Eq. (2.87) above, with β and W (kLr) assumed known. We will forecast
constraints on the small-scale galaxy-electron power spectrum Pge twice, with different
levels of generality.

First, a general “two-variable” forecast: suppose P̄ge(kS, kSr) is a free function of two
variables (kS, kSr), which we want to measure using kSZ tomography. We will derive
an expression for the statistical error ∆P̄ge over a “band” β, which can be an arbitrary
subset of the (kS, kSr) plane (including positive and negative values of kSr). Following the
derivation in §2.4.4, we start with Eq. (2.91) for the total SNR2 and restrict the integrals to
the band β, to obtain the SNR2 in the band, and the bandpower error ∆P̄ge = P̄ge/SNRβ.
The result is:

SNR2
β = V

K2
∗

χ2
∗

∫
(kS ,kSr)∈β

kS dkS dkSr
2π

A(kSr)P̄ge(kS, kSr)
2

P̄ tot
gg (kS, kSr)

(
1

CTT,tot
l

)
l=kSχ∗

(2.92)

∆P̄ge =

V K2
∗

χ2
∗

∫
(kS ,kSr)∈β

kS dkS dkSr
2π

A(kSr)

P̄ tot
gg (kS, kSr)

(
1

CTT,tot
l

)
l=kSχ∗

−1/2

(2.93)

where we have defined:

A(kLr) =

∫ ∞
|kLr|

kLdkL
4π2

k2
Lr

k2
L

P̄gv(kL, kLr)
2

P̄ tot
gg (kL, kLr)

(2.94)

Second, we do a “one-variable” forecast, where we make the extra assumptions that
P̄ge(kS, kSr) = W (kSr)P̃ge(kS) as in Eq. (2.88), and the photo-z error distribution W (kSr)
is known. In the one-variable forecast, we want to measure the undistorted galaxy-electron
power spectrum P̃ge(kS) in a kS-bin (kmin

S , kmax
S ). We specialize Eq. (2.92) by setting

P̄ge(kS, kSr) = W (kSr)P̃ge(kS) and integrate out kSr, to obtain the SNR2 in the kS-bin,

and the bandpower error ∆P̃ge = P̃ge/SNRbin:

SNR2
bin = V

K2
∗

χ2
∗

∫ kmax
S

kmin
S

kS dkS
2π

B(kS)P̃ge(kS)2

(
1

CTT,tot
l

)
l=kSχ∗

(2.95)

∆P̃ge =

V K2
∗

χ2
∗

∫ kmax
S

kmin
S

kS dkS
2π

B(kS)

(
1

CTT,tot
l

)
l=kSχ∗

−1/2

(2.96)

Here, we have defined:

B(kS) =

∫ kS

−kS
dkSr

W (kSr)
2A(kSr)

P̄ tot
gg (kS, kSr)

(2.97)
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2.5.4 Constraining cosmology with photo-z’s and RSD

Previously in §2.4, we argued that for cosmological applications, kSZ tomography is best
formulated as a quadratic estimator v̂r(kL) which reconstructs long-wavelength modes of
the radial velocity field. In this section, we revisit this analysis in the presence of RSD
and photo-z errors. We mention in advance that we will construct two different quadratic
estimators, a “minimum variance” estimator v̂mv

r (kL) and a “robust” estimator v̂rob
r (kL).

The minimum variance estimator v̂mv
r (kL) has the best possible reconstruction noise

power spectrum, but has the drawback that if P̄ge(kS, kSr) is not known perfectly, then the
reconstruction bias is a function bmv

v (kLr). This is in contrast to the undistorted case, where
a single bias parameter bv must be marginalized. The robust estimator v̂rob

r has higher noise,
but its velocity bias brob

v is constant on large scales, under certain assumptions which we
will state explicitly.

To construct the minimum variance estimator v̂mv
r , we repeat the logic from §2.3.5,

allowing power spectra to be anisotropic. We consider a general quadratic estimator of the
form:

v̂mv
r (kL) =

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l) δ

∗
g(kS)T ∗(l) (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.98)

and solve for the weights W (kS, l) which minimize the noise power spectrum

Nmv
vr (kL, kLr) =

∫
d3kS
(2π)3

d2l

(2π)2
|W (kS, l)|2P̄ tot

gg (kS, kSr)C
TT,tot
l (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.99)

subject to the constraint 〈v̂mv
r (kL)〉 = vr(kL), which is equivalent to:

1 =
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)P̄ge(kS, kSr) (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.100)

This constrained minimization problem can be solved by a short calculation involving La-
grange multipliers. The minimum variance estimator v̂mv

r (kL) and its noise power spectrum
Nmv
vr (kL, kLr) are found to be:

v̂mv
r (kL) =

K∗
χ2
∗
Nmv
vr

∫
d3kS
(2π)3

d2l

(2π)2

P̄ge(kS, kSr)

P̄ tot
gg (kS, kSr)Ctot

l

δg(kS)∗T (l)∗ (2π)3δ3

(
kL + kS +

l

χ∗

)
(2.101)
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Nmv
vr (kL, kLr) =

χ4
∗

K2
∗

[∫
d3kS
(2π)3

d2l

(2π)2

P̄ge(kS, kSr)
2

P̄ tot
gg (kS, kSr)C

TT,tot
l

(2π)3δ3

(
kL + kS +

l

χ∗

)]−1

=
χ2
∗

K2
∗

∫ kS dkS
2π

(
P̄ge(kS, kLr)

2

P̄ tot
gg (kS, kLr)C

TT,tot
l

)
l=kSχ∗

−1

(2.102)

The final result is very similar to the quadratic estimator derived previously in the undis-
torted case in Eq. (2.56) above. Note that the reconstruction noise power spectrum is
anisotropic in the presence of photo-z errors. We have written it as Nvr(kL, kLr), but we
note that it only depends on kLr.

Now we analyze the effect of the optical depth degeneracy, by assuming that the estima-
tor v̂mv

r is defined using fiducial power spectrum P̄ fid
ge (kS, kSr), which may differ from the true

power spectrum P̄ true
ge (kS, kSr). A short calculation shows that 〈v̂mv

r (kL)〉 = bmv
v (kLr)vr(kL),

where the velocity reconstruction bias bmv
v (kLr) is given by:

bmv
v (kLr) =

∫
dkS F (kS, kLr)P̄

true
ge (kS, kLr)∫

dkS F (kS, kLr)P̄ fid
ge (kS, kLr)

(2.103)

where

F (kS, kLr) =

(
kSP̄

fid
ge (kS, kLr)

P̄ tot
gg (kS, kLr)C

TT,tot
l

)
l=kSχ∗

(2.104)

We see that the velocity bias is not constant on large scales: it depends on the radial
component kLr of the wavenumber kL. This is a potential problem for cosmological pa-
rameter constraints, since it may require introducing many nuisance parameters in order
to parameterize the velocity bias bmv

v (kLr).

2.5.5 A quadratic estimator which is robust to photo-z errors

We now construct a “robust” velocity reconstruction estimator v̂rob
r whose reconstruction

bias bv is constant on large scales, as in the undistorted case. The construction is simple:
we define

v̂rob
r (kL) = W (kLr)

−1v̂und
r (kL) (2.105)

where v̂und
r (kL) is the undistorted quadratic estimator, defined by:

v̂und
r (kL) = Nund

vr

K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2

P̃ge(kS)

P̃ tot
gg (kS)CTT,tot

l

(
δ∗g(kS)T ∗(l)

)
(2π)3δ3

(
kL + kS +

l

χ∗

)
(2.106)
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Nund
vr (kL) =

χ2
∗

K2
∗

∫ kS dkS
2π

(
P̃ge(kS)2

P̃ tot
gg (kS)CTT,tot

l

)
l=kSχ∗

−1

(2.107)

This is the same as the previous definition in Eq. (2.56), but we have rewritten it to

emphasize that it is defined using undistorted power spectra P̃ tot
gg , P̃ge throughout.

With the prefactor W (kLr)
−1 in Eq. (2.105), the robust estimator v̂rob

r is an unbiased
reconstruction in the distorted case, i.e. 〈v̂rob

r (kL)〉 = vr(kL). This statement is not obvious,
but follows from a short calculation using Eqs. (2.86), (2.88), (2.100).

Another short calculation shows that the reconstruction noise of the robust estimator
is:

N rob
vr (kL, kLr) =

(
Nund
vr (kL)

W (kLr)

)2
K2
∗

χ2
∗

∫
kS dkS

2π

(
P̃ge(kS)2P̄ tot

gg (kS, kLr)

P̃ tot
gg (kS)2CTT,tot

l

)
l=kSχ∗

(2.108)

where Nund
vr (kL) is the undistorted reconstruction noise in Eq. (2.107).

Next we compute the reconstruction bias bv for the robust estimator. Suppose the
velocity reconstruction v̂rob

r (kL) is defined using fiducial galaxy-electron power spectrum

P̄ fid
ge (kS, kSr) = Wfid(kSr)P̃

fid
ge (kS), and the true power spectrum is given by P̄ true

ge (kS, kSr) =

Wtrue(kSr)P̃
true
ge (kS). Then a short calculation shows that 〈v̂rob

r (kL)〉 = brob
v (kLr)vr(kL),

where the velocity reconstruction bias brob
v (kLr) is given by:

brob
v (kLr) =

Wtrue(kLr)

Wfid(kLr)
bund
v (2.109)

where bund
v is the undistorted bias parameter, defined previously in Eq. (2.70) and inde-

pendent of kL.

From Eq. (2.109), we see that the velocity reconstruction bias brob
v is independent of

kL if the photometric error distribution W (kLr) is well-characterized, so that Wfid(kLr) =
Wtrue(kLr) to a good approximation. If W (kLr) is poorly characterized, then more nuisance
parameters would be necessary, to model uncertainty in the photometric error distribution.

This situation is qualitatively similar to weak gravitational lensing, where photo-z errors
must be well-characterized to avoid introducing extra nuisance parameters. Because weak
lensing is of central importance for upcoming large-scale structure surveys, photometric
redshift errors are expected to be precisely characterized. Therefore, it seems reasonable to
assume that in the kSZ context, photometric redshift errors will also be characterized well
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enough that the bias v̂rob
r is constant on large scales. In the context of a real photometric

survey such as LSST, this assumption should probably be revisited using detailed survey-
specific modeling, but this is outside the scope of this work. Our analysis here is simply to
show that there is no “showstopper” problem in doing kSZ tomography using photometric
catalogs.

In summary, we have now shown how to modify the minimum-variance velocity recon-
struction v̂mv

r (kL), obtaining a “robust” reconstruction v̂rob
r (kL) whose bias brob

v is constant
on large scales. This construction depends on the following assumptions. First, the dis-
torted and undistorted galaxy-electron power spectra must be related by P̄ (kS, kSr) =

W (kSr)P̃ (kS). Second, the photometric redshift error distribution W (kSr) must be well-
characterized.

In principle, the robust estimator has higher reconstruction noise than the minimum-
variance estimator. However, the two are nearly equal in practice. For example, for
LSSTY10 × S4, the noise curves are identical at large scales and at most 3% different on
small scales. In this work, we have used minimum-variance noise curves in forecasts (since
it makes no practical difference), but in real data analysis we recommend using the robust
estimator.

Throughout this section, we have constructed reconstruction estimators v̂r(kL) for the
radial velocity. As in the undistorted case, a radial velocity reconstruction v̂r can be
converted to either a reconstruction of the full velocity field v̂(kL) = −iµ−1v̂r(kL), or the
density field δ̂(kL) = µ−1(kL/faH)v̂r(kL), with noise power spectra

Nvv(kL) = µ−2Nvr(kL) Nδδ(kL) = µ−2

(
kL
faH

)2

Nvr(kL) (2.110)

2.6 Discussion

We have shown that several proposed kSZ tomography statistics are “bispectrum estima-
tion in disguise” and mathematically equivalent. Among these statistics, the kSZ-derived
radial velocity quadratic estimator v̂r is particularly convenient, since it naturally gen-
erates additional higher-point statistics. For example, an auto correlation of the form
〈v̂r(k)∗v̂r(k)〉 is a four-point estimator in the underlying CMB and galaxy fields.

This perspective puts kSZ tomography on the same footing as more familiar higher-
point estimators in cosmology, making its properties more transparent. For example, the
degeneracy breaking mechanism recently proposed in [188] appears “automatically” when
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v̂r is included in a Fisher matrix forecast which also includes a galaxy survey with redshift-
space distortions.

There are two kSZ tomography observables. First, kSZ tomography measures the small-
scale galaxy-electron power spectrum Pge(kS) on 1-halo dominated scales. This measure-
ment probes the distribution of electrons in halos and will be interesting to combine with
other probes, especially galaxy-galaxy lensing, thermal SZ, and X-ray observations.

Second, kSZ tomography measures 3-d cosmological modes on large scales, with lower
noise than can be achieved with galaxy surveys. Thus, even though the kSZ appears on
small scales in the CMB, its cosmological constraining power arises from its ability to
constrain large-scale physics.

In this work, we have sometimes made simplifications or approximations which could
be explored in more detail in future work:

• The simplified “snapshot” geometry from §2.1 neglects evolution along the lightcone,
and makes the flat-sky approximation.

• We have assumed that the kSZ anisotropy is sourced by the large-scale velocity
field vr. This is an approximation to a gauge-invariant quantity, namely the CMB
dipole in the electron rest frame. On Hubble scales this approximation may become
inaccurate.

• We used symmetry arguments to show that the kSZ bispectrum is unbiased by con-
tributions from other CMB secondaries. These symmetry arguments break down in
the presence of sky cuts or evolution along the lightcone.

• We have neglected terms which are subleading in the squeezed limit kL � kS, but
such terms may become important at high SNR.

• We have not included all non-Gaussian contributions to higherN -point functions. For
example, our forecasts assume that the quadratic estimator v̂r has auto correlations of
the form 〈v̂r(k)∗v̂r(k)〉 ∝ (Pvr(k)+Nvr(k)). This is an approximation to a four-point
function of type 〈δgδgTT 〉. Similar approximations are often made in the context
of CMB lens reconstruction. We are in the process of using N -body simulations to
study this issue systematically [83].

• Our model for photometric errors assumes that the error distribution is known per-
fectly, that drastic outliers are negligible, and that every galaxy has an independent
photo-z error.
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Chapter 3

Exploring kSZ velocity

reconstruction

The cosmic microwave background (CMB) has been a gold mine of cosmological infor-
mation. So far, the constraining power of the CMB has come mainly from “primary”
anisotropy from the last scattering surface (which dominates at angular wavenumbers
l . 2000) and gravitational lensing (which dominates at 2000 . l . 4000). On even
smaller scales (l & 4000), the CMB temperature is dominated by the kinetic Sunyaev-
Zeldovich (kSZ) effect: Doppler shifting of CMB photons by free electrons in the late
universe.

The kSZ effect has been detected in cross-correlation with large-scale structure, with
the latest measurements approaching 10σ [88, 159, 165, 63, 94, 58, 166], and upcoming
experiments such as Simons Observatory [4] should make percent-level measurements in
the next few years. In anticipation of these upcoming measurements, it is very interesting
to ask how best to constrain cosmological parameters with the kSZ effect, possibly in
cross-correlation with large-scale structure.

A variety of kSZ-sensitive statistics have been proposed (e.g. [67, 60, 95, 88, 123, 12,
182, 64, 183] and references therein), but in this work we focus on the velocity recon-
struction estimator v̂r from [64].1 Velocity reconstruction is a particularly convenient kSZ
estimator for cosmological applications, since it is straightforward to include v̂r in analyses

1The term “velocity reconstruction” is sometimes used to refer to two different statistics. First, the

quadratic estimator v̂r which reconstructs velocity modes from the kSZ and large-scale structure. Second, a

linear operation which reconstructs velocity modes from a galaxy catalog (with no kSZ input, although this
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involving multiple large-scale structure fields, or incorporate complications like redshift-
space distortions (RSD) [183].

The kSZ velocity reconstruction v̂r is a quadratic estimator which reconstructs the
large-scale radial velocity v̂r(kL) from small-scale modes of a galaxy field δg(kS) and CMB
temperature T (l). (For the precise definition, see §3.4.) The scales involved are roughly
kL ∼ 10−2 Mpc−1, kS ∼ 1 Mpc−1, and lCMB ∼ 5000. Thus, the underlying signal for the
reconstruction is the velocity field on large scales where it can be modelled very accurately,
but the reconstruction noise is hard to model, since the noise is derived from nonlinear
scales.

KSZ velocity reconstruction is interesting for cosmology because its noise power spec-
trum is smaller on large scales than previously known methods, such as galaxy surveys,
as we will explain in the next few paragraphs. First, we note that on large scales, linear
theory is a good approximation, and radial velocity vr, velocity v, and matter overdensity
δm are related in Fourier space by:

vr(kL) = µv(kL) = µ
faH

kL
δm(kL) (3.1)

Here, f = ∂ logD/∂ log a is the usual RSD parameter, and µ = kLr/kL is the cosine of
the angle between the Fourier mode kL and the line of sight. Therefore, by applying
appropriate factors of µ and (faH/k), the radial velocity reconstruction v̂r may be viewed
as a reconstruction of v or δm. This allows us to compare the noise power spectrum of kSZ
velocity reconstruction to other LSS observables, which measure the density field δm.

To take a concrete example, consider a galaxy survey, which measures the density field
δm with a noise power spectrum N(k) = b−2

g n−1
g which is constant on large scales. The noise

power spectrum of the kSZ velocity reconstruction v̂r(kL) is more complicated, but for now
we just note that Nvr(kL) is also constant on large scales. (The noise power spectrum Nvr

will be discussed in depth in §3.4, §3.5.) To compare the two, we convert the kSZ velocity
reconstruction to a reconstruction of δm using Eq. (3.1), obtaining noise power spectrum:

NkSZ
δm (kL) =

(
kL

µfaH

)2

Nvr(kL) (3.2)

Due to the factor k2
L on the RHS, the kSZ-derived reconstruction of the large-scale modes

operation is an ingredient in a kSZ stacking analysis [165, 166]). In this chapter, “velocity reconstruction”

always refers to the kSZ quadratic estimator v̂r.
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has parametrically lower noise than the galaxy field.2 This low-noise large-reconstruction
has several potential applications (e.g. [143, 205, 193, 45, 98, 49]), but we will concentrate
on the cosmological parameter fNL. In [147, 49], it was shown that adding kSZ data to
an analysis of galaxy clustering can significantly improve fNL constraints, relative to the
galaxies alone. In this forecast, the fNL sensitivity arises from non-Gaussian bias [56, 181]
in the galaxy survey. The field vr is not directly sensitive to fNL, but including it helps
improve the fNL constraint, using the idea of sample variance cancellation [173].

Summarizing, kSZ velocity reconstruction estimator is emerging as an interesting new
tool for constraining cosmology, using upcoming kSZ and large-scale structure data. How-
ever, there is currently a major caveat. As mentioned above, the reconstruction v̂r is
derived from LSS modes on scales kS ∼ 1 Mpc−1, and therefore the reconstruction noise
depends on statistics of nonlinear modes which are difficult to model. Forecasting work
so far (e.g. [64, 183, 147]) has used simple analytic models which approximate the true
statistics of the reconstruction noise. The purpose of this work is to assess the validity of
these approximations, by applying kSZ velocity reconstruction to N -body simulations.

In the bullet points below, we separate the issues by dissecting the different approxi-
mations which are usually made, and summarize the main results of this chapter.

• In [183] it was argued that the kSZ-derived velocity reconstruction v̂r(k) is an esti-
mator of the true radial velocity on large scales:

v̂r(k) = bvv
true
r (k) + (reconstruction noise) (3.3)

where the reconstruction noise is uncorrelated with vtrue
r , and the bias bv is constant

on large scales. The value of bv depends on the mismatch between the true small-scale
galaxy-electron power spectrum Pge(kS) and the fiducial spectrum P fid

ge (kS) used to
construct the quadratic estimator.

In this chapter, we will confirm all of these “map-level” properties of the velocity
reconstruction estimator v̂r using N -body simulations. We also find that, although bv
is constant on the largest scales, it starts to acquire scale dependence at a surprisingly
small value of k (see Figure 3.3).

• Moving from “map level” to power spectra, we next consider the power spectrum of
the reconstruction noise. In [183], an analytic model was given for the noise power

2Loophole: This is only true for modes where |µ| = |kr|/k is not too small. For modes with small

µ, the factor µ−2 in Eq. (3.2) acts as an SNR penalty, and “transverse” modes with µ = 0 cannot be

reconstructed at all from the kSZ.
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spectrum, which makes the approximation that the small-scale galaxy field δg(kS)
and the small-scale CMB T (l) are uncorrelated. This is a good approximation if
the CMB modes are noise-dominated, but potentially dubious if the CMB is kSZ-
dominated. In this chapter, we will denote the reconstruction noise power spectrum
computed in this approximation by N

(0)
vr (kL), and call it the “kSZ N (0)-bias”. This

terminology is intended to emphasize an analogy with CMB lensing which will be
explained later in the chapter.

We compare the reconstruction noise power spectrum in our simulations with the
kSZ N (0)-bias, and find a significant discrepancy, even in the limit kL → 0. For the
fiducial survey parameters used in this chapter (see §3.2), the N (0)-bias underpredicts
the true reconstruction noise power spectrum by a factor 2–3. This turns out to have
a small effect on the bottom-line constraint on fNL, but this may not be the case for
other choices of survey parameters (CMB noise, galaxy density, redshift, etc.) This
result shows that the N (0)-bias proposed in [183] as a model for reconstruction noise
is sometimes incomplete.

• Motivated by this discrepancy between theory and simulation, we revisit the calcu-
lation of the kSZ reconstruction noise, and find additional terms. The new terms
are analogous to the N (1)-bias [109] and N (3/2)-bias [40] in CMB lensing, and are
obtained from a six-point halo model calculation. We calculate the new terms under
some simplifying approximations, and find that they explain the excess noise seen
in simulations (see Figure 3.6). The new terms are algebraically simple enough that
including them in future forecasts or data analysis should be straightforward (see
Eq. (3.82)).

• Moving from the reconstruction noise power spectrum to higher-point statistics, we
next study the question of whether reconstruction noise is a Gaussian field. As a
simple test for Gaussianity, we compute the correlation matrix between k-bands of
the estimated reconstruction noise power spectrum (which would be the identity
matrix for a Gaussian field). The bandpower covariance determines statistical errors
on parameters derived from power spectra. In particular, the fNL Fisher matrix
forecasts from [147] implicitly assume that bandpower correlations are small, and we
would like to test this assumption.

In simulation, we find that bandpower correlations are small on the very large scales
which dominate fNL constraints, but increase rapidly with k, and become order-one
at k ∼ 0.03 Mpc−1.

• Putting everything together, we develop an “end-to-end” pipeline which recovers fNL
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from a simulated galaxy catalog and kSZ map. The pipeline applies the quadratic
estimator v̂r, then performs MCMC exploration of the posterior likelihood for param-
eters (fNL, bg, bv), given realizations of the galaxy field δg and velocity reconstruction
v̂r. When deriving the posterior likelihood, we assume that the reconstruction noise
power spectrum is equal to the N (0)-bias, and that the reconstruction noise is a
Gaussian field. Based on previous bullet points, these approximations are imperfect,
but their impact on parameter constraints should be small, and therefore it seems
plausible that the posterior likelihood will produce valid parameter constraints.

We find that kSZ velocity reconstruction works! We run the pipeline on simulations
with both zero and nonzero fNL, in a noise regime where sample variance cancel-
lation is important, and demonstrate that it recovers unbiased fNL estimates, with
statistical errors consistent with Fisher matrix forecasts.

These results largely serve as zeroth-order validation of the basic kSZ velocity recon-
struction framework from [64, 183] and fNL forecasts from [147], with the addition of new
terms in the reconstruction noise. This initial exploratory study can be extended in several
interesting directions; see §3.7 for systematic discussion.

To test kSZ velocity reconstruction as accurately as possible, we want to use as much
simulation volume as we can. For this reason, we use collisionless N -body simulations,
which have much lower computational cost per unit volume than hydrodynamical simula-
tions. We approximate the electron overdensity field by the dark matter field (δe = δm),
and approximate the galaxy catalog by a halo catalog (δg = δh). These are crude ap-
proximations, and in particular our approximation δe = δm means that we overpredict the
galaxy-electron power spectrum Pge(kS) by an order-one factor. However, in this chapter
our goal is to compare theory and simulation, and the level of agreement is unlikely to
depend on details of small-scale power spectra, as long as the analysis is self-consistent.
Since we use collisionless simulations, we can also leverage the high-resolution Quijote pub-
lic simulations [199] with a total volume of 100 Gpc3 and fNL = 0. For fNL 6= 0, we run
GADGET-2 [187] with a custom initial condition generator.

This chapter builds on several papers which explore the effects of primordial non-
Gaussianity in N -body simulations, e.g. [56, 62, 158, 86, 82, 201, 87, 168, 22, 31] and
references therein. The new ingredient is the kSZ velocity reconstruction v̂r. To our
knowledge, there is only one previous paper which explores kSZ velocity reconstruction
in simulations [46]. There, a large correlation was found between the reconstructed radial
velocity v̂r and the true radial velocity vtrue

r , but the reconstruction noise was not compared
with theory, and non-Gaussian simulations were not studied.
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This chapter is organized as follows. In §3.2, we describe our simulation pipeline
for generating large-scale structure and kSZ realizations. In §3.3, we show large-scale
structure and CMB power spectra from our simulations. In §3.4, we study the kSZ velocity
reconstruction estimator v̂r in detail, and characterize key properties such as bias, noise,
and non-Gaussian bandpower covariance. In §3.5, we calculate kSZ reconstruction noise
in the halo model, and find new terms N (1) and N (3/2) which agree with the simulations.
We present our MCMC-based fNL pipeline in §3.6, and conclude in §3.7. The code for this
work can be accessed at https://github.com/utkarshgiri/kineticsz.

3.1 Preliminaries and notation

3.1.1 “Snapshot” geometry

Following [183], we use the following simplified “snapshot” geometry throughout the chap-
ter. We take the universe to be a periodic 3-d box with comoving side length L = 1 h−1

Gpc and volume V = L3, “snapshotted” at redshift z∗ = 2, corresponding to comoving
distance χ∗ ≈ 5200 Mpc. The notation (·)∗ means “evaluated at redshift z∗”, e.g. H∗ is
the Hubble expansion rate at z∗, and χ∗ is comoving distance between z = 0 and z = z∗.

Three-dimensional large-scale structure fields, such as the galaxy overdensity δg(x), are
defined on a 3-d periodic box of comoving side length L. Two-dimensional angular fields,
such as the CMB T (θ), are defined on a 2-d periodic flat sky with angular side length
L/χ∗. We define line-of-sight integration by projecting the 3-d box onto the xy-face of
the cube, with a factor 1/χ∗ to convert from spatial to angular coordinates. We denote
transverse coordinates of the box by (x, y), but denote the radial coordinate by r (not z,
to avoid notational confusion with redshift). We denote a unit three-vector in the radial
direction by r̂, and denote the transverse part of a three-vector x by x⊥. Thus a galaxy at
spatial location x appears at angular sky location θ = x⊥/χ∗.

In the full lightcone geometry, the kSZ temperature anisotropy is given by a line-of-
sight integral T (θ) =

∫
drK(r) (r̂ · qe(θ, r)), where qe = (1 + δe)ve is the dimensionless

electron momentum field, and K(·) is the kSZ radial weight function:

K(z) = −TCMB σT ne,0 xe(z) e−τ(z) (1 + z)2 (3.4)

In the snapshot geometry, this line-of-sight integral becomes:

TkSZ(θ) = K∗

∫ L

0

dr
(
r̂ · qe(χ∗θ + rr̂)

)
(3.5)
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3.1.2 Fourier conventions

Our Fourier conventions for a 3-d field f(x) with power spectrum P (k) are:

f(k) =

∫
d3x f(x)e−ik·x 〈f(k)f(k′)∗〉 = P (k)(2π)3δ3(k− k′) (3.6)

In a finite pixelized 3-d volume V , we use Fourier conventions:

f(k) =
V

Npix

∑
x

f(x)e−ik·x
〈
f(k)f(k′)∗

〉
= V P (k)δkk′ (3.7)

With these conventions, the radial velocity vr(k) and matter overdensity δm(k) are related
in linear theory by:

vr(k) = ikr

(
faH

k2

)
δm(k) (3.8)

Here, f(z) = (∂ logD(z)/∂ log a), where D(z) is the growth function.

Similarly, our Fourier conventions for a 2-d flat-sky field f(θ) with angular power
spectrum Cl are:

f(l) =

∫
d2θ f(θ)e−il·θ

〈
f(l)f(l′)∗

〉
= Cl(2π)2δ2(l− l′) (3.9)

In finite pixelized 2-d area A this becomes:

f(l) =
A

Npix

∑
θ

f(θ)e−il·θ
〈
f(l)f(l′)∗

〉
= AClδll′ (3.10)

In our code, we often represent 2-d fields using dimensionful coordinates x⊥ = χ∗θ and
k⊥ = l/χ∗, which eliminates factors of χ∗ in some equations. For example, the line of sight
integral (3.5) becomes T (x⊥) = K∗

∫
dr (r̂ · qe(x⊥ + rr̂)).

3.1.3 Primordial non-Gaussianity and halo bias

Single-field slow-roll inflation is arguably the simplest model of the early universe. In this
model, the initial curvature perturbation ζ is a Gaussian field to an excellent approxima-
tion [2, 138]. This is not the case in many alternative models, and searching for primordial
non-Gaussianity (deviations from Gaussian initial conditions) is a powerful probe of physics
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of the early universe. A wide variety of observationally distinguishable non-Gaussian mod-
els has been proposed (see e.g. [8] and references therein).

In this chapter, we will concentrate on “local-type” non-Gaussianity, in which the
initial curvature perturbation ζ is of the form:

ζ(x) = ζG(x) +
3

5
fNL

(
ζG(x)2 − 〈ζ2

G〉
)

(3.11)

where ζG is a Gaussian field, and fNL is a cosmological parameter to be constrained from
observations. Local-type non-Gaussianity is fairly generic in multifield early universe mod-
els, such as curvaton models [125, 134, 133], or modulated reheating models [70, 110].
Conversely, there are theorems [138, 52] which show that fNL = 0 in single-field early
universe models, i.e. models in which a single field both dominates the stress-energy of the
early universe, and determines the initial curvature perturbation.

In a pioneering paper [56], Dalal et al showed that large-scale clustering of dark matter
halos depends sensitively on fNL. More precisely, the halo bias bh is scale dependent on
large scales, with functional form:

bh(k) = bg + fNL
bng

α(k, z)
(3.12)

where bg is the Gaussian (scale-independent) bias, and:

α(k, z) ≡ 2k2T (k)D(z)

3ΩmH2
0

(3.13)

The quantity α(k, z) relates the matter overdensity δm(k, z) to initial curvature ζ(k) in
linear theory: δm(k, z) = (3/5)α(k, z)ζ(k). On large scales k → 0, α(k, z) is proportional
to k2, leading to an fNLk

−2 term in the halo bias. Thanks to this term, even small values
of fNL can produce large observable effects on large scales. Although current large-scale
structure constraints on fNL [44] are not competitive with CMB constraints [8], future LSS
experiments which probe large volumes and high redshifts should be comparable or better
than the CMB [43, 59, 66, 10, 73, 167].

The parameter bng in Eq. (3.12) is given exactly by [181, 21]:

bng = 2
∂ log nh
∂ log σ8

(3.14)

This exact expression is of limited usefulness, since the derivative on the RHS is not an
observable quantity. Treating bng as a free parameter is not a viable option for data
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analysis, since it would be degenerate with fNL (only the combination bngfNL would be
observable). However, in spherical collapse models of halo formation, bng is related to the
Gaussian bias as:

bng = 2δc(bg − 1) (3.15)

where δc is the collapse threshold, given by δc = 1.69 in the Press-Schechter model [163],
or δc = 1.42 in Sheth-Tormen [177]. Although Eq. (3.15) is an approximation to the exact
result (3.14), it is usually accurate at the 10–20% level [62, 158, 86, 82, 201, 87, 168, 22, 31],
and is suitable for data analysis, since the parameters (bg, fNL) can be jointly constrained
without degeneracy.

In our N -body simulations, we find that Eq. (3.15) gives a good fit to the non-Gaussian
bias observed in our N -body simulations, if the Sheth-Tormen threshold δc = 1.42 is used.
(See Figure 3.1 below.) This is consistent with previous simulation-based studies [158, 86,
87, 22], which used the parameterization bng = 2

√
q(1.69)(bg−1), and found a fudge-factor√

q around 0.84 for friends-of-friends halos (which we use in our pipeline, see §3.2.2). In
the rest of the chapter, we model large-scale halo bias using Eq. (3.12), where bng is given
by Eq. (3.15) with δc = 1.42.

3.2 Simulation pipeline

3.2.1 Collisionless approximation

Simulating high-fidelity kSZ maps for velocity reconstruction is very computationally chal-
lenging. KSZ anisotropy appears on small angular scales in the CMB, where it is sourced
by electron density fluctuations on small scales kS ∼ 1 Mpc−1, leading to high resolution
requirements in a simulation. Furthermore, on these small scales, collisionless N -body
simulations are not really accurate enough to simulate the electron density, and hydrody-
namical simulations should be used instead, which are much more expensive. At the same
time, the cosmological constraining power of the kSZ comes from the largest scales, so a
large simulation volume is required, if the goal is to make a simulation with an interesting
fNL constraint. This combination of volume and resolution requirements presents a serious
computational challenge, and new simulation methods are probably required to satisfy all
requirements strictly.

In this work, our goal is simply to test kSZ velocity reconstruction for biases as precisely
as possible, under a self-consistent set of assumptions. For this purpose, perfectly accurate
kSZ simulations are not required, and approximations are acceptable, as long as they are
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self-consistent. We will make the approximation that the electron density perfectly traces
the dark matter density (δe = δm). This overestimates power spectra such as Pge, Pee, or
CkSZ
l by an order-one factor on small scales, since hydrodynamic effects suppress electron

fluctuations relative to dark matter [175]. However, the question of whether kSZ velocity
reconstruction is biased is unlikely to depend on the details of these small scale power
spectra. For our purposes, what is crucial is that the approximation δe ≈ δm is applied
consistently throughout the simulation and reconstruction pipelines.

The approximation δe ≈ δm dramatically decreases computational cost, since we can
use collisionless N -body simulations. Similarly, instead of simulating galaxies, we use dark
matter halos as a proxy for galaxies, i.e. we make the approximation δg ≈ δh. In the rest of
the chapter, we use “galaxies” synonymously with “halos”, and “electrons” synonymously
with “dark matter particles”.

3.2.2 N-body simulations

We are interested in collisionless N -body simulations for both zero and nonzero fNL. For
fNL = 0, rather than running our own simulations from scratch, we use the Quijote simula-
tions [199], a large suite of publicly available N -body simulations. We use 100 simulations
with 10243 particles and volume 1 h−3 Gpc3 each.

For fNL 6= 0, we generated a limited number of N -body simulations by running
GADGET-2 [187] with non-Gaussian initial conditions as follows. We simulate the initial
curvature ζ, by simulating a Gaussian field ζG, and then adding a quadratic term:

ζ(x) = ζG(x) +
3

5
fNL

(
ζG(x)2 − 〈ζ2

G〉
)

(3.16)

where the squaring operation is performed in real space. We evolve ζ to the Newtonian po-
tential Φ at redshift zini = 127, using linear transfer functions computed using CLASS [117].
We then generate initial conditions for GADGET-2 at zini = 127 using the Zeldovich approx-
imation [105]:

Ψi(q) = −∂i∂−2δm(q) = − 2

3a2H(a)2

(
∂iΦ(q)

)
(3.17)

vi(q) =
∂Ψi

∂τ
= − 2

3aH(a)

(
∂iΦ(q)

)
(3.18)

Here, q is the initial Lagrangian location of particles which in our case occupy center of 3D
mesh, Ψi(q) is the initial particle displacement, and vi(q) is the initial velocity. We evolve
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particles from zini = 127 to z∗ = 2 using GADGET-2 with the same parameters (cosmological
parameters, force softening length, etc.) as the Quijote simulations.

3.2.3 Large-scale structure fields: δm, δh, qr

The output of an N -body simulation is a catalog of particles with velocities. In this section,
we describe our postprocessing of the catalog, to obtain pixelized 3-d maps of the matter
overdensity δm(x), halo overdensity δh(x), and radial momentum qr(x).

To compute δm(x), we grid particle positions on a regular 3D mesh using the cloud-
in-cell (CIC) algorithm [96], implemented in the public code nbodykit [89]. We use a 3D
mesh with 10243 pixels, corresponding to pixel size 1 h−1 Mpc.

To obtain a halo catalog, we run the Rockstar halo-finder [27] on the particle posi-
tions. (Note that the Quijote simulations include a halo catalog, but we run our own halo
finder instead, so that simulations with zero and nonzero fNL are processed consistently.)
Rockstar implements a modified version of the Friends-of-Friends (FOF) algorithm [57].
Under the FOF scheme, a particle f is a friend of particle p if f lies within a radius b
(called the linking length) of p. The basic idea of FOF is to link all the particles which
are friends of each other and also the particles which are friends of their friends and group
them together to define halos in the simulation. The groups with particle counts larger
than a threshold are taken to be an instance of a virialized halo. The radius b is called
the linking length and is often defined in terms of inter-particle distance. After the halo
catalog is produced, it is processed to obtain a halo overdensity map δh(x) by CIC-gridding
halo positions.

We use an FOF linking length of 0.28 and require a minimum of 40 particles to classify
a structure as a halo. This results in halo bias bh ∼ 3.24 and density n3d

h ≈ 2.5×10−4 Mpc−3

for simulations with fNL = 0 at redshift z∗ = 2. Since we are using halos as proxies for
galaxies, our effective 2-d galaxy number density is dn2d

g /dz = (χ2
∗/H∗)n

3d
h = 0.8 arcmin−2.

In comparison, DESI has a combined (ELG+LRG+QSO) number density dn2d
g /dz = 0.91

arcmin−2 at its peak at z = 0.75 [61], while Vera Rubin Observatory “gold” sample will
have a number density dn2d

g /dz = 36 arcmin−2 at its peak at z = 0.6 [131].

The radial momentum field deserves some discussion. We are interested in making
3-d maps of the true radial velocity vtrue

r , in order to compare it to the kSZ velocity
reconstruction v̂r on large scales. However, in an N -body simulation, the definition of vtrue

r

is ambiguous. Here are three possibilities:
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1. We can use the radial momentum qr = (1 + δ)vr. Since momentum is particle-
weighted, it can be directly computed from particle positions and velocities.

2. We can use the linear velocity field vlin
r (k), obtained by applying linear transfer

functions to the initial conditions.

3. We can choose a smoothing scale, and define the velocity to be the smoothed mo-
mentum, divided by the smoothed density (appropriately regulated to avoid dividing
by zero in voids).

We actually tried all three possibilities, and found that the first (the radial momentum
qr) has the highest correlation with the kSZ velocity reconstruction v̂r. This makes sense
intuitively by considering the case of a “near-void” region whose density is close to zero. In
a near-void region, the velocity reconstruction v̂r is small, since a factor of the small-scale
inhomogeneity δg(kS) appears in v̂r. Since the momentum qr is also small in a near-void,
but the radial velocity vr is not, we expect v̂r to correlate more strongly with qr than with
vr.

Since qr has the highest correlation with v̂r, and is also most straightforward to derive
from an N -body simulation, we will use qr throughout the chapter. (In hindsight, it
would make sense to rename the quadratic estimator v̂r → q̂r, and call it “kSZ momentum
reconstruction” instead of “kSZ velocity reconstruction”. However, we will use the v̂r
notation and velocity reconstruction terminology, for consistency with previous papers.)
With this motivation for introducing the radial momentum, it is straightforward to compute
qr(x) from an N -body simulation. We simply CIC-grid particles as before, weighting each
particle by its radial velocity.

A technical point: we use compensated CIC-gridding with 10243 pixels throughout
our pipeline, even though this suppresses power at wavenumbers close to the Nyquist fre-
quency of the pixelization [96, 169, 89]. The suppression is a 3% at k = 0.8kNyq, and 30% at
k = kNyq [89]. In our kSZ velocity reconstruction pipeline, this does not lead to biases, pro-
vided that CIC-gridded fields and power spectra are used self-consistently throughout the
pipeline. For example, we find (Figure 3.3 below) that the kSZ velocity reconstruction bias
bv is 1 on large scales, if the quadratic estimator v̂r is implemented with CIC-gridding, and
defined self-consistently using CIC-gridded power spectra Pge(kS), Pgg(kS) (see Eq. (3.26)).

3.2.4 CMB maps

Given the output from an N -body simulation, we simulate a kSZ map as follows. Let xi
denote the 3-d position of the i-th particle in the simulation (where i = 1, · · · , Npart), let
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vi denote the velocity, and let θi = x⊥i/χ∗ denote the projected angular sky location. We
approximate the momentum q(x) as a sum of velocity-weighted delta functions:

q(x) =
1

np

∑
i

viδ
3(x− xi) (3.19)

where np = Npart/L
3
box is the 3-d particle number density. Plugging into the line-of-sight

integral (Eq. (3.5)), the kSZ temperature is:

TkSZ(θ) =
K∗
χ2
∗np

∑
i

(r̂ · vi)δ2(θ − θi) (3.20)

In our pipeline, we discretize CMB maps using (1024)2 pixels, corresponding to angular
pixel size (∆θ) = Lbox/(1024χ∗) = 0.96 arcmin, and Nyquist frequency lNyq = π/(∆θ) =
11250. We evaluate the RHS of Eq. (3.20) by gridding each delta function onto the 2-d
mesh using the Cloud-in-Cell (CIC) scheme [96].

We add simulations of the lensed primary CMB and instrumental noise to our simula-
tions, treating both contributions as Gaussian fields. We use noise power spectrum:

Nl = s2
w exp

[
l(l + 1)θ2

fwhm

8 ln 2

]
(3.21)

with white noise level sw = 0.5 µK-arcmin, and beam size θfwhm = 1 arcmin. Note that
we treat the non-kSZ CMB as Gaussian, which neglects possible biases from non-Gaussian
secondaries. This is a loose end, although symmetry arguments suggest that biases are
probably small. For more discussion, see §3.7.

In the rest of the work, we fix fiducial survey parameters described above (sw = 0.5 µK-
arcmin, θfwhm = 1 arcmin, bg = 3.24, effective dng/dz = 0.8 arcmin−2). Our galaxy survey
parameters are similar to DESI, and our CMB parameters are intentionally futuristic (a
bit better than CMB-S4), in order to maximize statistical power of our simulations.

3.3 LSS and CMB power spectra

In this section we present matter, halo, and CMB power spectra from our simulation
pipeline. In the next section we will study higher-point statistics and kSZ velocity re-
construction. We start by confirming that the large-scale halo bias is described by the
model:

bh(k) = bg + fNL
2δc(bg − 1)

α(k, z)
(δc = 1.42) (3.22)
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Figure 3.1: Top panel. Large-scale halo bias bh(k) = Pmh(k)/Pmm(k) from N -body simula-

tions with fNL = ±50. For comparison, we show the bias model (3.22), with bg = 3.01, 3.15

for fNL = −50, 50 respectively. (These values were obtained from the MCMC pipeline to

be presented in §3.6.) For each value of fNL, we use four N -body simulations with volume

1 h−3 Gpc3 each. Bottom panel. Halo shot noise from simulation from the same set of sim-

ulations, defined as the power spectrum of the field δ′h(k) = δm(k)− bh(k)δm(k), compared

to the Poisson prediction Pδ′h(k) = 1/nh.
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in agreement with previous studies [56, 62, 158, 86, 82, 201, 168, 31]. In Figure 3.1 (top), we
estimate the halo bias bh(k) = Pmh(k)/Pmm(k) directly from the matter-halo and matter-
matter power spectra of simulations with fNL = ±50, and find good agreement with the
bias model in Eq. (3.22).

Next we consider the halo-halo power spectrum Phh(k). On large scales, we want to
check that linear halo bias plus shot noise is a good description, i.e.

Phh(k) = bh(k)2Pmm(k) +
1

nh
(3.23)

A stronger version of this check is to show that the power spectrum of the field δ′h =
δh − bh(k)δm is consistent with pure shot noise: Pδ′hδ′h(k) = 1/nh. In Figure 3.1 (bottom),
we find good agreement, thus confirming the model (3.23).

Taken together, Eqs. (3.22), (3.23) are a complete model for halo clustering on large
scales. Turning next to small scales, we present small-scale power spectra which are relevant
for kSZ velocity reconstruction. The definition of the kSZ velocity reconstruction estimator
v̂r (Eq. (3.25) below) involves the small-scale galaxy-electron and galaxy-galaxy power
spectra Pge(kS), Pgg(kS), evaluated at wavenumbers kS ∼ 1 Mpc−1. In the collisionless
N -body approximation used in this work (δe ≈ δm, δg ≈ δh), these power spectra are equal
to Pmh(kS) and Phh(kS), which we show for reference in the top panel of Figure 3.2.

The definition of v̂r also involves the small-scale CMB power spectrum Ctot
l , which is

the sum of kSZ, noise, and lensed CMB contributions. These contributions are shown in
the bottom panel of Figure 3.2. The kSZ contribution CkSZ

l is estimated directly from the
simulations.

As another check on our pipeline, in Figure 3.2 we compare CkSZ
l to the “standard”

analytic estimate CSkSZ
l , and find good agreement. The analytic estimate is derived fol-

lowing [104, 175] by approximating the electron momentum as qe = (1 + δe)v where the
linear velocity v and nonlinear electron field δe are Gaussian. In this approximation, the
kSZ power spectrum is:

CSkSZ
l =

(faH∗)2K2
∗L

2

∫
d3k′

(2π)3
PNL
mm(|k− k′|)Pmm(k′)

k(k − 2k′µ)(1− µ2)

k′2(k2 + k′2 − 2kk′µ)

∣∣∣∣k=l/χ∗
µ=k̂·k̂′

(3.24)

where Pmm and PNL
mm are the linear and non-linear matter power spectrum, and L is the

box size.

The kSZ power spectrum in Figure 3.2 underestimates the predicted Cl from hydrody-
namical simulations (e.g. [170]) by a factor ∼2. This is because our “snapshot” geometry
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Figure 3.2: Top. Small scale halo-halo and matter-halo power spectrum from Quijote

N-body simulations. These power spectra are used in the definition of the velocity recon-

struction estimator v̂r (Eq. (3.26) below). Bottom. Plot showing various contributions to

the CMB power spectrum. The lensed CMB power spectrum is computed using the CLASS

Boltzmann code [34], and the noise power spectrum is based on Eq. (3.21) with sw = 0.5

µK-arcmin and θfwhm = 1 arcmin. The kSZ power spectrum CkSZ
l is estimated directly from

our simulation pipeline. For comparison, we also show the “standard” analytical estimate

CSkSZ
l , based on [175] and computed using Eq. (3.24).
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only includes kSZ fluctuations from a redshift slice of thickness Lbox = 1 h−1 Gpc. (We
also make the approximation that electrons trace dark matter, i.e. Pee ≈ Pmm, which has
the opposite effect of increasing Cl, but this is a smaller effect.) This is not an issue for
purposes of this work, where our goal is to test kSZ velocity reconstruction for biases as
precisely as possible, under a self-consistent set of assumptions. We considered making the
simulations more realistic, by adding simulated kSZ outside the simulated redshift range,
but we expect that this would be nearly equivalent to adding uncorrelated Gaussian noise,
and would only serve to decrease the precision of our tests.

3.4 The KSZ quadratic estimator applied to N-body

simulations

3.4.1 KSZ quadratic estimator

In this section, we describe our implementation of the kSZ velocity reconstruction estimator
v̂r. The inputs to kSZ velocity reconstruction are the 2-d CMB map T (l) and 3-d galaxy
overdensity field δg(k). The outputs are the 3-d radial velocity reconstruction v̂r(k) and

noise power spectrum N
(0)
vr (kL). These are given by [183]:

v̂r(kL) = N (0)
vr (kL)

K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)

Pgg(kS)Ctot
l

δ∗g(kS)T ∗(l) (2π)3δ3

(
kL + kS +

l

χ∗

)
(3.25)

N (0)
vr (kL) =

χ4
∗

K2
∗

[∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)2

Pgg(kS)Ctot
l

(2π)3δ3

(
kL + kS +

l

χ∗

)]−1

(3.26)

The noise power spectrum in the second line (3.26) is obtained by calculating the two-
point function 〈v̂r(kL)v̂r(k

′
L)∗〉, under the approximation that the galaxy catalog and CMB

are independent. To emphasize an analogy with CMB lens reconstruction that will be
explained in §3.5, we will call the noise power spectrum defined in Eq. (3.26) the “kSZ
N (0)-bias” throughout the chapter. One of our goals is to compare the kSZ N (0) bias to
the reconstruction noise in N -body simulations, to test the accuracy of the approximation
leading to Eq. (3.26).

In principle, N
(0)
vr (kL) is a function of both kL = |kL|, and the direction of kL relative

to the line of sight. However, on the large scales which are relevant for constraining fNL,
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it approaches a constant:

N (0)
vr (kL)→ χ4

∗
K2
∗

[∫
d2l

(2π)2

Pge(l/χ∗)2

Pgg(l/χ∗)Ctot
l

]−1

(kL → 0) (3.27)

In Eqs. (3.25), (3.26), we have given Fourier-space expressions for v̂r(kL) and N
(0)
vr (kL).

These expressions are computationally expensive, and in practice alternative expressions
are used, which factorize the computation into FFT’s as follows. The velocity reconstruc-
tion v̂r(kL) is computed as:

v̂r(kL) = N (0)
vr (kL)

K∗
χ2
∗

∫
d3x δ̃g(x) T̃

(x⊥
χ∗

)
e−ikL·x (3.28)

where the filtered galaxy field δ̃g(x) and filtered CMB T̃ (θ) are defined by:

δ̃g(x) =

∫
d3kS
(2π)3

Pge(kS)

Pgg(kS)
δg(kS)eikS ·x T̃ (θ) =

∫
d2l

(2π)2

1

Ctot
l

T (l)eil·θ (3.29)

Similarly, the kSZ N (0)-bias is computed efficiently as:

N (0)
vr (kL) =

χ4
∗

K2
∗

[∫
d3x f1(x) f2

(x⊥
χ∗

)
e−ikL·x

]−1

(3.30)

where the 3-d field f1 and 2-d field f2 are defined as:

f1(x) =

∫
d3kS
(2π)3

Pge(kS)2

Pgg(kS)
eikS ·x f2(θ) =

∫
d2l

(2π)2

1

Ctot
l

eil·θ (3.31)

Eqs. (3.28), (3.30) for v̂r and N
(0)
vr are mathematically equivalent to Eqs. (3.25), (3.26), but

have much lower computational cost.

One more detail of our v̂r implementation. The definitions of v̂r and N
(0)
vr above involve

small-scale power spectra Pge(kS), Pgg(kS), and Ctot
l . In this work, we do not attempt to

model these small-scale spectra (e.g. with the halo model). Instead, we measure them
directly from simulation, by estimating each power spectrum in bandpowers, and inter-
polating to get a smooth function of wavenumber. The estimated power spectra Pge(kS),
Pgg(kS), and Ctot

l in our simulations were shown previously in Figure 3.2.

By estimating small-scale power spectra directly from simulation, our pipeline is “cheat-
ing”, since Pge(kS) is not observable. (The other two small-scale power spectra Pgg(kS)
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and Ctot
l can be estimated directly from data in a real experiment, and so it is not cheating

to measure them from simulations.) In a real experiment, we would need to use a fiducial
model P fid

ge (kS), which need not equal the true power spectrum P true
ge (kS). In [183], it is

predicted that in this situation, the velocity reconstruction acquires a large-scale linear
bias:

v̂r(kL) = bvvr(kL) + (Reconstruction noise) (3.32)

where the velocity reconstruction bias bv is 1 if P fid
ge = P true

ge , but can differ from 1 if
P fid
ge 6= P true

ge . We will test this prediction in the next section.

3.4.2 Noise and bias of velocity reconstruction

In [183] we predicted that the velocity reconstruction estimator v̂r(kL) is an unbiased
estimator of the radial momentum qr(kL) on large scales, and that the reconstruction noise
is given by the N (0)-bias in Eq. (3.26). These statements are “predictions” since they are
derived using analytic approximations to the statistics of large-scale structure on nonlinear
scales. In this section, we will test these key predictions with N -body simulations.

We start by stating precisely the predictions we would like to test. We define the kSZ
velocity reconstruction bias bv(kL) of the simulation by:

bv(kL) =
Pqr v̂r(kL)

Pqrqr(kL)
(3.33)

Then we predict that bv → 1 on large scales, if we assume that the galaxy-electron power
spectrum Pge(kS) is known in advance and used in the quadratic estimator (3.25). If
fiducial power spectrum P fid

ge (kS) 6= P true
ge (kS) is used, then we make the weaker prediction

that bv approaches a constant on large scales.

We define the reconstruction noise field η(kL) = v̂r(kL)−bv(kL)qr(kL), or equivalently:

v̂r(kL) = bv(kL)qr(kL) + η(kL) where Pηqr(kL) = 0 (3.34)

Then we predict that the power spectrum Pη(kL) is equal to the kSZ N (0)-bias N
(0)
vr (kL)

given previously in Eq. (3.26).

Note that in the above, we compare v̂r to the radial momentum qr, since v̂r is expected
to be more correlated with momentum than with other definitions of the radial velocity, and
momentum is also more straightforward to define in simulation (see discussion in §3.2.3).
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Figure 3.3: Top panel. Correlation coefficient r between fields v̂r and qr, where v̂r is

the kSZ velocity reconstruction derived from an N -body simulation, and qr is the true

radial momentum of the simulation. We estimate r in k-bins using Eq. (3.35), excluding

wavenumbers with µ = 0. The “theory” curve was obtained using Eq. (3.36). Bottom panel.

KSZ velocity reconstruction bias bv, estimated in k-bins using Eq. (3.37). The solid line

was computed assuming perfect knowledge of the galaxy-electron power spectrum Pge(kS)

in the definition of v̂r. The dashed line was computed using fiducial galaxy-electron power

spectrum P fid
ge (kS) = P true

ge (kS) exp(−k2/k2
0), where k0 = 1 Mpc−1. The vertical line at

k = 0.012 Mpc−1 is the kmax that we use in our MCMC pipeline later (§3.6).
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In the rest of this section, we will test the above predictions with simulations. All
results in this section use 100 Quijote simulations with fNL = 0 and total volume 100 h−3

Gpc3.

Before exploring bias and reconstruction noise, we do a simple intuitive comparison
between the radial momentum qr and the reconstruction v̂r. In Figure 3.3 (top) we show
the correlation coefficient between qr and v̂r. More precisely, we choose a set of k-bins, and
for each k-bin b we define a correlation coefficient rsim

b by:

rsim
b =

∑
k∈b v̂

∗
r(k)qr(k)(∑

k∈b |qr(k)|2
)1/2 (∑

k∈b |v̂r(k)|2
)1/2

(3.35)

It is seen that the kSZ-derived velocity reconstruction v̂r(k) is nearly 100% correlated
to the true momentum on large scales. This is crucial, since we want to use velocity
reconstruction to cancel sample variance in the galaxy field and constrain fNL, which
requires a high correlation. To quantify this better, we compare to the “theory” prediction
for the correlation coefficient:

rtheory
b =

( ∑
k∈b µ

2
kPvv(k)∑

k∈b(µ
2
kPvv(k) +Nvr(k))

)1/2

(3.36)

where µk = (k̂ · r̂) as usual. This expression for rtheory
b was calculated assuming bv = 1 and

Pη = N
(0)
vr .

In Figure 3.3 (top), the correlation coefficient seen in simulation qualitatively agrees
with the theory prediction, but we do see some level of mismatch. On large scales, rsim

b is
a little smaller than rtheory

b . This is consistent with a factor 2–3 increase in reconstruction
noise that we will describe shortly. Intriguingly, on small scales, rsim

b is a little larger than
rtheory
b . By comparing Figs 3.3 (bottom) and 3.4, this can be interpreted as arising from

enhancement of the velocity bias bv on small scales, with no corresponding enhancement
in reconstruction noise.

Next we would like to test the prediction that the velocity reconstruction bias bv → 1 on
large scales. In Figure 3.3 (bottom), we show the bias from N -body simulations, estimated
in non-overlapping k-bins by defining:

(bv)b =

∑
k∈b qr(k)∗ v̂r(k)∑

k∈b |qr(k)|2 (3.37)

for each k-bin b. The bias is 1 on large scales as predicted. As k increases, the bias is an
increasing function of k, and becomes large for surprisingly small values of k. For example,
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Figure 3.4: Velocity reconstruction signal and noise power spectra from 100 high resolution

Quijote simulations. Pv̂r and Pqr are the power spectra of the noisy velocity reconstruction

v̂r, and the true radial momentum qr (both from simulation). Pη is the reconstruction noise

from simulation, defined as the power spectrum of the noise field η defined in Eq. (3.34).

N
(0)
vr is the kSZ N (0)-bias in Eq. (3.26).

bv ≈ 2.4 at k = 0.1 Mpc−1. The level of scale dependence seen in the velocity bias bv(k) is
much higher than the familiar case of halo bias (see Fig. 3.1). However, on the very large
scales (k . 0.01) that are important for fNL constraints, bv is constant to an excellent
approximation.

In Figure 3.3 (bottom), we also show the velocity bias bv if we construct the quadratic
estimator v̂r using fiducial galaxy-electron power spectrum P fid

ge (kS) 6= P true
ge (kS). For illus-

trative purposes, we have arbitrary chosen P fid
ge (kS) = P true

ge (kS) exp(−k2/k2
0), where k0 = 1

Mpc−1. As predicted, we find that bv approaches a constant on large scales, but the value
is 6= 1.

Finally, we come to the main result of this section: comparing the reconstruction noise
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Pη in simulation with the kSZ N (0)-bias. In Figure 3.4, we show four power spectra:

• The total power spectrum Pv̂r of the kSZ velocity reconstruction (including noise),
estimated from simulation.

• The power spectrum Pqr of the radial momentum, estimated from simulation.

• The reconstruction noise power spectrum Pη, estimated from simulation using the
definition of η in Eq. (3.34).

• The kSZ N (0)-bias N
(0)
vr , computed using Eq. (3.26).

Contrary to the prediction from [183], the reconstruction noise Pη in simulation exceeds
the kSZ N (0)-bias by a factor 2–3! This increase in noise can potentially affect fNL con-
straints, even though the fNL constraints are derived from large scales where the velocity
reconstruction is signal-dominated, because sample variance cancellation plays a role in
the constraints. We will explore this issue in more detail in §3.5 and §3.6.

As a code check, we also estimated the power spectrum of a “fake” kSZ velocity re-
construction v̂fake

r , constructed by applying the quadratic estimator to a galaxy catalog δg
and a CMB map T derived from independent N -body simulations. The power spectrum of
v̂fake
r is exactly equal to N

(0)
vr , since by construction N

(0)
vr is the reconstruction noise under

the approximation that δg and T are independent. In our simulations, we find the expected

exact agreement between P fake
η and N

(0)
vr . This is a strong check on our pipeline, and indi-

cates that the discrepancy between Pη and N
(0)
vr is a real effect arising from higher-point

correlations in the N -body simulation. In §3.5, we will explain this discrepancy using the
halo model.

3.4.3 Bandpower covariance

So far, our comparisons between theory and simulation have focused on mean power spec-
tra: either the cross spectrum Pv̂rqr which determines the bias bv(k), or the noise power
spectrum Pηη. However, for either forecasts or data analysis, the power spectrum covari-
ance is also important. If the reconstruction noise η were a Gaussian field, then its power
spectrum covariance would be:

Cov(Pη(b), Pη(b
′)) =

2

Nb

Pη(b)
2δbb′ (3.38)
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Figure 3.5: Correlation coefficient between bandpowers P (k) of the velocity reconstruction

v̂r(k) (left panel), true momentum qr(k) (middle panel), and reconstruction noise η(k) =

v̂r(k)− bv(k)qr(k) (right panel). Correlation coefficients were estimated from 100 Quijote

simulations.

where b, b′ denote narrow non-overlapping k-bins, and Nb denotes the number of modes
in bin b. The standard Fisher matrix forecasting formalism implicitly assumes that the
Gaussian bandpower covariance (3.38) is a good approximation. Our MCMC fNL pipeline
in §3.6 will make slightly stronger assumptions, by assuming that the full probability
density function of η is well-described by its Gaussian approximation.

As one test of the Gaussian approximation, we estimate the correlation matrix between
bandpowers and show the result in Figure 3.5. We find that non-Gaussian bandpower
covariance is small at low k, but very significant (correlations of order one) at high k. The
transition between the two regimes is fairly sharp and occurs at k ∼ 0.03 Mpc−1. This
suggests that non-Gaussian bandpower covariance is unlikely to be an issue for constraining
fNL, where statistical weight comes from the very largest scales. (For example, in the fNL
analysis in the next section, we will use kmax = 0.012 Mpc−1.) However, the bandpower
covariance in Figure 3.5 assumes our fiducial survey parameters, and we have not explored
parameter dependence systematically.

3.5 Higher-order biases to kSZ reconstruction noise

In §3.4.2, we found a discrepancy between the reconstruction noise Pη in simulation and
the kSZ N (0)-bias. In this section, we will elaborate on our previous statements that the
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N (0)-bias does not include all terms in the reconstruction noise, derive additional terms
which arise in the halo model, and numerically compare the new terms to the simulations.

3.5.1 Setup

We will calculate the total power spectrum of the reconstruction Pv̂r v̂r(kL), which will
contain all signal and noise terms. First, we set up the calculation using schematic notation
which just keeps track of how many terms are present, and how each term factorizes as a
product of fields. Since the quadratic estimator has schematic form v̂r ∼ (δgT ), its power
spectrum has schematic form:

Pv̂r v̂r(kL) ∼
〈
(δgT )(δgT )

〉
. (3.39)

Our calculation will make a series of approximations which we will explain as we go along.
First, we make the approximations:

• Approximation 1. We write the CMB as T = TkSZ + Tother, and make the approxi-
mation that the non-kSZ contribution Tother is statistically independent of the galaxy
catalog. This neglects possible non-Gaussian effects from CMB secondaries, e.g. CMB
lensing.

• Approximation 2. The electron radial momentum factorizes as qr = (1 + vr)δe in the
kSZ line-of-sight integral (3.5).

Under these approximations, we can write Pv̂r v̂r(kL) schematically as:

Pv̂r v̂r(kL) ∼
〈
δgδg

〉 〈
TotherTother

〉
+
〈
(δgvrδe)(δgvrδe)

〉
(3.40)

We write the six-point function 〈(δgvrδe)(δgvrδe)〉 appearing on the RHS as a sum over
Wick contractions, plus a non-Gaussian part 〈(δgvrδe)(δgvrδe)〉ng. There are 15 Wick con-
tractions, but we make the following approximation, which reduces the number to 3:

• Approximation 3. In the Gaussian part of the six-point function 〈(δgvrδe)(δgvrδe)〉,
terms where vr Wick-contracts with either δg or δe are negligible.

The rationale for this approximation is as follows. The kSZ velocity reconstruction
v̂r(kL) is determined by the galaxy and electron fields δg(k), δe(k) on “kSZ” scales
k ∼ 1 Mpc−1. On these scales, radial velocity modes vr(k) are very small, which
implies that terms proportional to Pgvr(k) and Pevr(k) should also be small.
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In this approximation, Pv̂r has schematic form:

Pv̂r(kL) =
〈
δgδg

〉 〈
TotherTother

〉
+ (δgvrδe)(δgvrδe)︸ ︷︷ ︸

N(0)

+ (δgvrδe)(δgvrgδe)︸ ︷︷ ︸
Pvv

+

(δgvrδe)(δgvrδe)︸ ︷︷ ︸
N(1)

+
〈
(δgvrδe)(δgvrδe)

〉
ng︸ ︷︷ ︸

N(3/2)

(3.41)

(3.42)

where the non-Gaussian n-point function 〈·〉ng denotes the expectation value after
subtracting all Wick contractions.

Detailed calculation of each term now shows that the first two terms combine to give
the N (0)-bias, the third term is the “signal” power spectrum Pvr(kL), and the fourth and
fifth terms are new reconstruction noise terms N (1) and N (3/2):

Pv̂r v̂r(kL) = Pvr(kL) +N (0)
vr (kL) +N (1)(kL) +N (3/2)(kL) (3.43)

where the precise (non-schematic) forms of the new bias terms N (1) and N (3/2) are:

N (1)(kL) = N (0)
vr (kL)2 K

4
∗

χ8
∗

∫
d2l

(2π)2

d2l′

(2π)2

(
Pge(kS)2

Pgg(kS)Ctot
l

Pge(k
′
S)2

Pgg(k′S)Ctot
l′
Pvr(q)

)
kS=kL+l/χ∗
k′S=kL+l′/χ∗

q=−kL+(l+l′)/χ∗

(3.44)

N (3/2)(kL) = N (0)
vr (kL)2K

4
∗

χ8
∗

∫
d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3

d3q′

(2π)3

×
[

Pge(kS)

Pgg(kS)Ctot
l

Pge(k
′
S)

Pgg(k′S)Ctot
l′

〈
δg(kS)vr(q)δe(p)δ∗g(k

′
S)v∗r(q

′)δ∗e(p
′)
〉′
ng

]
kS=kL−l/χ∗
k′S=kL−l′/χ∗
p=−q+l/χ∗

p′=−q′+l′/χ∗

(3.45)

Here, a primed N -point function 〈∏N
i=1 Xi(ki)〉′ denotes the expectation value without the

delta function (2π)3δ3(
∑

ki).
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We have chosen to call the new terms the kSZ N (1)-bias and N (3/2)-bias, to emphasize
an analogy with CMB lensing. The N (0) and N (1) biases represent the total KSZ recon-
struction noise if all LSS fields are Gaussian. The N (1)-bias is a Wick contraction which
is more difficult to compute, since the integrals cannot be factored into a sequence of con-
volutions. The N (3/2)-bias represents additional noise bias arising from non-Gaussianity
of the LSS fields (δg and δe). All of these statements are also true for the CMB lensing
N (1)-bias [109] and N (3/2)-bias [40]. However, the analogy is not perfect: in the CMB
lensing case, there is a systematic expansion in powers of the lensing potential φ, and there
is no analogous expansion in the kSZ case. On a related note, when we evaluate the kSZ
biases numerically, we will find that the N (1)-bias is much smaller than N (0), whereas the
N (3/2)-bias is comparable to N (0).

3.5.2 KSZ N (1)-bias

In the limit kL � kS, the N (1)-bias in Eq. (3.44) can be simplified a lot. We make the
following approximations inside the integral:

N (0)
vr (kL) ≈ N (0)

vr (0) kS = kL + l/χ∗ ≈ l/χ∗ k′S = −q + l/χ∗ ≈ l/χ∗ (3.46)

where the third approximation is valid since the integrand contains the factor Pvr(q), which
peaks for q � kS. Making these approximations in Eq. (3.44), and changing variables from
l′ to l′′ = (l + l′), the integral factorizes as:

N (1)(kL) ≈ N (0)
vr (0)2 K

4
∗

χ8
∗

(∫
d2l

(2π)2

Pge(kS)4

Pgg(kS)2(Ctot
l )2

)
kS=l/χ∗

(∫
d2l′′

(2π)2
Pvr(q)

)
q=−kL+l′′/χ∗

(3.47)
We simplify the second factor as:(∫

d2l′′

(2π)2
Pvr(q)

)
q=−kL+l′′/χ∗

= k2
Lr

∫
d2l′′

(2π)2

(
Pv(q)

q2

)
q=−kL+l′′/χ∗

=
k2
Lrχ

2
∗

2π

∫ ∞
|kLr|

dq
Pv(q)

q
(by change of variables) (3.48)

where we use (Pvr(q) = (kLr/q)
2Pv(q)) to simplify the first line. To make the first factor

more intuitive, we define the dimensionless quantity:

W (l) = N (0)
vr (0)

K2
∗

χ4
∗

(
Pge(kS)2

Pgg(kS)Ctot
l

)
kS=l/χ∗

(3.49)
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which satisfies (using Eq. (3.26)): ∫
d2l

(2π)2
W (l) = 1 . (3.50)

Plugging into Eq. (3.47) we get:

N (1)(kL) ≈ k2
Lrχ

2
∗

2π

(∫
d2l

(2π)2
W (l)2

)(∫ ∞
|kLr|

dq
Pv(q)

q

)
(kL � kS) (3.51)

Note that for kL � kS, the N (1)-bias only depends on |kLr| = |µ|kL. In the limit kLr � keq,
where keq ∼ 0.02 Mpc−1 is the matter-radiation equality scale, N (1)(kLr) is proportional
to |kLr|. (In contrast to the N (0)-bias, which is constant on large scales.)

It will also be useful to have an expression for the N (1)-bias after angle-averaging kL
(e.g. in Figure 3.6 below). We omit the details of the calculation and quote the final result:

N (1)(kL)avg ≈
χ2
∗

6π

(∫
d2l

(2π)2
W (l)2

)(
1

kL

∫ kL

0

dq q2Pv(q) + k2
L

∫ ∞
kL

dq
Pv(q)

q

)
(3.52)

where “avg” means “angle-averaged over kL”, and kL � kS has been assumed.

3.5.3 KSZ N (3/2)-bias and halo model evaluation

In the limit kL � kS, the N (3/2)-bias in Eq. (3.45) also simplifies. We start by using the
halo model to compute the non-Gaussian six-point function:〈

δg(k1)δe(k2)δg(k3)δe(k4)vr(k5)vr(k6)
〉′
ng

(3.53)

which appears in N (3/2).

We briefly summarize the ingredients of the halo model; for a systematic review see [50].
Let n(M) be the halo mass function, or number of halos per unit volume per unit halo
mass. Let b(M) be the large-scale bias of a halo of mass M . Let nh =

∫∞
Mmin

dM n(M)
be the mean halo number density, and let ρm be the mean matter density. Here, Mmin is
the minimum halo mass for our catalog (corresponding to 40 particles). Let uM(k) be the
Fourier-transformed mass profile of a halo of mass M , normalized so that uM(0) = 1.
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It will be convenient to define:

αn(k1, · · · , kn) =
1

nh

∫ ∞
Mmin

dM n(M)
n∏
i=1

MuM(ki)

ρm
(3.54)

βn(k1, · · · , kn) =
1

nh

∫ ∞
Mmin

dM n(M)b(M)
n∏
i=1

MuM(ki)

ρm
(3.55)

β′n(k1, · · · , kn) =
1

nh

∫ ∞
0

dM n(M)b(M)
n∏
i=1

MuM(ki)

ρm
(3.56)

Note that for n = 0, we have α0 = 1 and β0 = b, where b = n−1
h

∫∞
Mmin

dM n(M)b(M) is the
halo bias.

Under the assumptions of the halo model, the connected six-point function in Eq. (3.53)
can be calculated exactly. In Appendix ??, we present the details of the calculation, and
diagrammatic rules for calculating n-point functions in the halo model, which may be of
more general interest. In the next few paragraphs (Eqs. (3.57)–(3.67)), we summarize the
result of the calculation.

We assume that the radial velocity modes vr(k5), vr(k6) in the six-point function (3.53)
are evaluated on linear scales k5,k6. Then the six-point function factorizes into lower-order
correlation functions (i.e. there are no fully connected contributions). More precisely, the
six-point function (3.53) is given by:〈

δg(k1)δe(k2)δg(k3)δe(k4)vr(k5)vr(k6)
〉
ng

=
[(
Qge

k1k2k5
Qge

k3k4k6
+Qgg

k1k3k5
Qee

k2k4k6
+Qge

k1k4k5
Qge

k2k3k6

)
+
(
k5 ↔ k6

)]
+
[(
P
δgvr
k1k5

Rege
k2k3k4k6

+ P δevr
k2k5

Rgge
k1k3k4k6

+ P δevr
k3k5

Rgee
k1k2k4k6

+ P δevr
k4k5

Rgeg
k1k2k3k6

)
+
(
k5 ↔ k6

)]
+
[
Sk1k2k3k4P

vrvr
k5k6

]
(3.57)

where we have introduced the following notation for some 2-, 3-, and 4-point functions:

PXY
k1k2

=
〈
X(k1)Y (k2)

〉
(X, Y ∈ {δg, δe, vr}) (3.58)

QXY
k1k2k3

=
〈
δX(k1)δY (k2)vr(k3)

〉
(X, Y ∈ {g, e}) (3.59)

RXY Z
k1k2k3k4

=
〈
δX(k1)δY (k2)δZ(k3)vr(k4)

〉
ng

(X, Y, Z ∈ {g, e}) (3.60)

Sk1k2k3k4 =
〈
δg(k1)δe(k2)δg(k3)δe(k4)

〉
ng

(3.61)
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The quantities Q,R, S on the RHS of Eq. (3.57) are given explicitly by:

Qge
k1k2k3

= β1(k2)

(
ik3r

k3

)
Pmv(k3) (2π)3δ3 (

∑
ki) (3.62)

Qgg
k1k2k3

=
b

nh

(
ik3r

k3

)
Pmv(k3) (2π)3δ3 (

∑
ki) (3.63)

Qee
k1k2k3

= nhβ
′
2(k1, k2)

(
ik3r

k3

)
Pmv(k3) (2π)3δ3 (

∑
ki) (3.64)

Rgge
k1k2k3k4

=
β1(k3)

nh

(
ik4r

k4

)
Pmv(k4) (2π)3δ3 (

∑
ki) (3.65)

Rgee
k1k2k3k4

= β2(k2, k3)

(
ik4r

k4

)
Pmv(k4) (2π)3δ3 (

∑
ki) (3.66)

Sk1k2k3k4 =

[
α2(k2, k4)

nh
+ β1(k2)β1(k4)Plin(k1 + k2) + bβ′2(k2, k4)Plin(k1 + k3)

+ β1(k2)β1(k4)Plin(k1 + k4) + bβ2(k2, k4)Plin(k1) + β′1(k2)β1(k4)Plin(k2)

+ bβ2(k2, k4)Plin(k3) + β1(k2)β′1(k4)Plin(k4)

]
(2π)3δ3(

∑
ki) (3.67)

where Pmv(k) = (faH/k)Plin(k) is the linear matter-velocity power spectrum.

Taken together, Eqs. (3.57)–(3.67)) are a complete calculation of the six-point func-
tion (3.53) in the halo model, in a rather daunting form with 22 terms! However, we will
now argue that most of these terms are negligible, when we compute the N (3/2)-bias by
plugging the six-point function into the integral (3.45).

In the integral (3.45), the six-point function is evaluated at the following configuration
of wavenumbers k1, · · · ,k6:

k1 = kL−
l

χ∗
k2 = −q+

l

χ∗
k3 = −kL+

l′

χ∗
k4 = q′− l′

χ∗
k5 = q k6 = −q′

(3.68)
To understand which terms are negligible, we classify wavenumbers as either “small-scale”
(meaning a typical kSZ scale ∼1 Mpc−1), or “large-scale” (meaning � 1 Mpc−1). In
the integral (3.45), we formally integrate over all wavenumbers (l, l′,q,q′), but we will
assume that q, q′ are large-scale , and (l/χ∗), (l′/χ∗) are small-scale, since these wavenumber
configurations dominate the integral. We will also assume that kL is large-scale, since we
are interested in the N (3/2)-bias in the limit kL → 0.
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Now we can state our criteria for deciding which terms in the six-point function are
negligible:

• Approximation 4. In the six-point function (3.53), terms where Plin is evaluated at a
small-scale wavenumber give negligible contributions to N (3/2).

Rationale: On a small scale k, clustering is small compared to halo shot noise, so
terms in the reconstruction noise proportional to Plin(k) should be subdominant to
other contributions.

• Approximation 5. Each term in the “primed” six-point function (3.53) contains a sin-
gle delta function δ3(· · · ). If the delta function argument is a small-scale wavenumber
(in the sense defined above), then we assume that the six-point term under considera-
tion gives a negligible contribution to N (3/2). For example, the term (Qgg

k1k3k6
Qee

k2k4k5
)

containing the delta function δ3(q + (l − l′)/χ∗) is negligible, whereas the term
(Qgg

k1k2k6
Qee

k2k3k5
) containing the delta function δ3(kL − q− q′) is non-negligible.

Rationale: In Eq. (3.45), the N (3/2)-bias is computed by by integrating over small-
scale wavenumbers (l/χ∗), (l/χ∗) and large-scale wavenumbers q,q′. If the six-point
function contains a term such as δ3(q + (l − l′)/χ∗), this imposes a constraint that
(l− l′)/χ∗ be a large-scale wavenumber, which is only satisfied in a small part of the
(l, l′)-plane. Therefore we expect a small contribution to N (3/2).

Most of the six-point terms in Eq. (3.57) are eliminated using these criteria. On the
first line of (3.57), all of the QQ-terms are eliminated using Approximation 5, except
(Qge

k1k2k6
Qge

k3k4k5
) which is non-negligible, and (Qge

k1k2k5
Qge

k3k4k6
) which is a special case: it

contains the delta function δ3(kL), and we neglect it since we are interested in the N (3/2)-
bias for nonzero kL. All eight PR-terms on the second line of Eq. (3.57) are eliminated using
Approximation 5. Finally, the last six S-terms (out of eight total S-terms) in Eq. (3.67)
are eliminated using Approximation 4. For example, the third term in (3.67) contains
Plin(k1 + k3) = Plin((l− l′)/χ∗), and (l− l′)/χ∗ is small-scale (except in a small part of the
(l, l′)-plane).

Summarizing this section so far, we have argued only three terms (out of 22) in the
six-point function (3.57) contribute significantly to the N (3/2) bias:〈

δg(k1)δe(k2)δg(k3)δe(k4)vr(k5)vr(k6)
〉′
ng

≈ −β1(k2)β1(k4)

(
k5rk6r

k5k6

)
Pmv(k5)Pmv(k6)(2π)3δ3(k1 + k2 + k6)

+

(
α2(k2, k4)

nh
+ β1(k2)β1(k4)Plin(k1 + k2)

)
Pvr(k5)(2π)3δ3(k5 + k6) (3.69)
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Using this expression, we now proceed to compute the N (3/2)-bias, by plugging the six-point
function (3.69) into our general expression (3.45) for the N (3/2)-bias, obtaining:

N (3/2)(kL) = N (0)
vr (kL)2K

4
∗

χ8
∗

∫
d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3

×
[

Pge(kS)

Pgg(kS)Ctot
l

Pge(k
′
S)

Pgg(k′S)Ctot
l′
β1(p)β1(p′)

(
qrq
′
r

qq′

)
Pmv(q)Pmv(q

′)

]
kS=kL−l/χ∗
k′S=kL−l′/χ∗

q′=kL−q
p=−q+l/χ∗

p′=−q′+l′/χ∗

+N (0)
vr (kL)2K

4
∗

χ8
∗

∫
d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3

×
[

Pge(kS)

Pgg(kS)Ctot
l

Pge(k
′
S)

Pgg(k′S)Ctot
l′

(
α2(p, p′)

nh
+ β1(p)β1(p′)Plin(kL − q)

)
Pvr(q)

]
kS=kL−l/χ∗
k′S=kL−l′/χ∗
p=−q+l/χ∗
p′=−q+l′/χ∗

(3.70)

We make the following approximations inside the integrals, which are valid for kL � kS:

Nvr(kL) ≈ Nvr(0) kS ≈ p ≈ l/χ∗ k′S ≈ p′ ≈ l′/χ∗ (3.71)

as in the N (1) case (see discussion near Eq. (3.46)). We also write Plin(q′)Pvr(q) =
Pmv(q

′)Pmv(q) q2
r/(qq

′), to combine the two terms in (3.70) into a single term:

N (3/2)(kL) ≈ N (0)
vr (0)2K

4
∗

χ8
∗

∫
d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3

×
[

Pge(kS)

Pgg(kS)Ctot
l

Pge(k
′
S)

Pgg(k′S)Ctot
l′

(
α2(kS, k

′
S)

nh
Pvr(q)

+ β1(kS)β1(k′S)

(
q2
r + qrq

′
r

qq′

)
Pmv(q)Pmv(q

′)

]
kS=l/χ∗
k′S=l′/χ∗
q′=kL−q

(3.72)

We symmetrize the integrand by replacing (q2
r + qrq

′
r)→ (qr + q′r)

2/2 = k2
Lr/2, and use the
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definition of W (l) in Eq. (3.49), obtaining:

N (3/2)(kL) ≈
∫

d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3
W (l)W (l′)

×
[

1

Pge(kS)Pge(k′S)

(
α2(kS, k

′
S)

nh
Pvr(q)

+ β1(kS)β1(k′S)

(
k2
Lr

2qq′

)
Pmv(q)Pmv(q

′)

]
kS=l/χ∗
k′S=l′/χ∗
q′=kL−q

(3.73)

So far, our approximations should be very accurate in the limit kL � kS. To simplify
further, we make two more approximations that are not as precise, but should suffice for
an initial estimate of the size of N (3/2). First, we assume that on kSZ scales, the galaxy-
electron power spectrum is dominated by its 1-halo term:

Pge(kS) ∼ P 1h
ge (kS) =

1

ρmnh

∫
dM n(M)MuM(kS) (3.74)

We then write some of the intermediate quantities which appear in the integral (3.73) as
follows:

α2(kS, k
′
S)

Pge(kS)Pge(k′S)
∼

〈
M2uM(kS)uM(k′S)

〉
M〈

MuM(kS)
〉
M

〈
M ′uM ′(k′S)

〉
M ′

(3.75)

β1(kS)

Pge(kS)
∼
〈
Mb(M)uM(kS)

〉
M〈

MuM(kS)
〉
M

(3.76)

where we have introduced the following notation, to denote an average over halos in the
catalog: 〈

· · ·
〉
M

=
1

nh

∫ ∞
Mmin

n(M) (· · · ) (3.77)

Our second approximation is that the factors uM(kS) approximately cancel on the RHS
of (3.75), (3.76), since they appear in both the numerator and denominator. Then the
right-hand sides of Eqs. (3.75), (3.76) simplify as:

α2(kS, k
′
S)

Pge(kS)Pge(k′S)
∼ A

β1(kS)

Pge(kS)
∼ B (3.78)
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where the dimensionless constants A,B are defined by:

A =
〈M2〉M
〈M〉2M

B =
〈Mb(M)〉M
〈M〉M

(3.79)

Making the approximations (3.78) in Eq. (3.73), the N (3/2)-bias simplifies significantly:

N (3/2)(kL) ∼
∫

d2l

(2π)2

d2l′

(2π)2

d3q

(2π)3
W (l)W (l′)

[
A

nh
Pvr(q) +

B2k2
Lr

2qq′
Pmv(q)Pmv(q

′)

]
q′=kL−q

=
A

nh
〈v2
r〉+

B2k2
Lr

2

∫
d3q

(2π)3

[
Pmv(q)Pmv(q

′)

qq′

]
q′=kL−q

(3.80)

where in the second line, we have used
∫
d2l/(2π)2W (l) = 1, and 〈v2

r〉 denotes the variance
of the radial velocity field:

〈v2
r〉 ≡

∫
d3k

(2π)3
Pvr(k) =

∫
k2 dk

6π2
Pv(k) (3.81)

Finally, we note that in the 3-d integral (3.80), one angular integral can be done analytically,
reducing to a 2-d integral. We omit the details and quote the final result:

N (3/2)(kL) ∼ A

nh
〈v2
r〉+

B2k2
Lr

8π2kL

∫ ∞
0

dq

∫ kL+q

|kL−q|
dq′ Pmv(q)Pmv(q

′) (3.82)

To angle-average over kL (as we will do in Figure 3.6 shortly), we replace k2
Lr → k2

L/3 in
the second term. The A-term in Eq. (3.82) is constant in kL, and the B-term goes to zero
at both low and high kL, with a peak at kL ∼ 0.03 Mpc−1.

3.5.4 Numerical evaluation and discussion

In the last few sections, we identified several new contributions to the kSZ reconstruction
noise, going beyond the N (0)-bias from [182]. Can these new contributions explain the
excess noise in our simulations, shown previously in Figure 3.4?

In Figure 3.6, we numerically evaluate the N (0), N (1), and N (3/2) biases as follows. All
power spectra are angle-averaged over k. We compute theN (0)-bias using Eqs. (3.30), (3.31),
but to maximize consistency with our simulations, we replace integrals (either

∫
d3x,

∫
d3k,

or
∫
d2l) by sums over the discrete set of pixels (or Fourier modes) used in our simulation

pipeline.
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We compute the angle-averaged N (1)-bias using Eq. (3.52), and the N (3/2)-bias using
Eq. (3.82). Note that (3.52) and (3.82) are approximations which are accurate for k → 0.
To evaluate (3.82), we need numerical values for the constants A,B defined in Eq. (3.79).
We get A = 2.3 using the measured halo mass function from our N -body simulations.
We approximate B ∼ bg, where bg = 3.24 is the halo bias of our simulations. (This
is an approximation since bg is calculated weighting all halos equally, whereas B is the
mass-weighted halo bias.)

Our first result in Figure 3.6 is that the N (1)-bias is negligible. As a check on our
N (1) calculation, we compared to Gaussian Monte Carlo simulations which are designed to
isolate the N (1)-bias, and find good agreement. In more detail, each Gaussian simulation
consists of 3-d Gaussian fields vr, δg, δe with the same auto and cross power spectra as the
Quijote simulations. For each triple (i, j, k) of Gaussian simulations, let v̂ijkr denote the
kSZ velocity reconstruction using fields vir, δ

j
g, δ

k
e from simulations i, j, k. Then the cross

power spectrum between v̂ijkr and v̂ikjr is equal to N (1), with no N (0) or N (3/2) contribution,
since N (1) is the only surviving contraction in Eq. (3.41).

Our main result in Figure 3.6 is that the N (3/2)-bias agrees well with the excess noise
seen in simulations! (Surprisingly, the agreement holds to high k, even though we have
freely made approximations which are only valid for k → 0.) Our conclusion is that higher-
order biases are real, non-negligible contributions to kSZ reconstruction noise which can
be calculated systematically in the halo model.

The preceding results have assumed fiducial survey parameters from §3.2. In this
chapter, we will not explore dependence on galaxy density ng or redshift z, although this
should be fairly straightforward using our expressions for N (0) and N (3/2) bias. However,
one parameter which is easy to analyze is the CMB noise level. In the approximation (3.82),
the N (3/2)-bias is independent of the CMB noise. On the other hand, Eq. (3.26) shows
that the N (0)-bias is proportional to Ctot

l = (Cl + Nl) evaluated on kSZ scales l ∼ 5000.
Therefore, as the CMB experiment becomes more sensitive, the N (3/2)-bias becomes more
important, relative to N (0).

Since our simulations use futuristic CMB noise parameters (0.5 µK-arcmin, θfwhm =
1 arcmin), and galaxy survey parameters comparable to DESI, it seems likely that N (3/2)

will be small (relative to N (0)) for DESI in combination with near-future CMB experiments
such as Simons Observatory. However, if DESI is replaced by an experiment with larger
galaxy density (e.g. Rubin Observatory), or if the CMB noise is . 1 µK-arcmin, then
N (3/2) may be important.
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Figure 3.6: Contributions to the KSZ reconstruction noise, computed as described in §3.5.4.

The reconstruction noise in simulations agrees well with the sum of analytic contributions

(N (0) +N (1) +N (3/2)). All noise power spectra have been angle-averaged over k, and N (1)

and N (3/2) have been computed using approximations which are valid for k → 0.
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3.6 Recovering fNL with an MCMC pipeline

In this section, we develop an MCMC-based analysis pipeline which recovers the value of
fNL from a galaxy catalog and CMB map. We demonstrate the ability of our pipeline
to recover the correct value of fNL, and validate its statistical errors with Monte Carlo
simulations.

In our pipeline, fNL sensitivity arises entirely from fNL dependence of the galaxy
bias: b(k) = bg + fNLbng/k

2. The velocity reconstruction v̂r is not directly fNL-sensitive.
However, v̂r can be used to cancel sample variance in the galaxy field, thus improving
the statistical error on fNL relative to a measurement of δg alone. The idea of sample
variance cancellation was introduced by Seljak in [173]. Sample variance cancellation is
automatically incorporated by our MCMC pipeline, since we write down the full posterior
likelihood L(fNL|δg, v̂r) (Eq. (3.90) below), which includes sample variance cancellation
automatically.

When constructing our posterior likelihood, we assume that the reconstruction noise
power spectrum is given by the N (0)-bias in Eq. (3.26). This neglects the N (3/2) bias, even
though we have shown that N (3/2) is comparable to N (0) for our fiducial survey parameters.
In principle, neglecting N (3/2) can produce both biased fNL estimates and underestimated
statistical errors (as in the CMB lensing case). However, in this section we will find that
within statistical errors of our simulations, our MCMC pipeline recovers unbiased estimates
of fNL, with scatter consistent with a Fisher matrix forecast.

In our pipeline, we have perfect knowledge of the galaxy-electron power spectrum
Pge(kS), and therefore we expect the reconstruction bias bv to equal 1. However, in our
MCMC’s, we will include bv as a nuisance parameter and marginalize it, so that our analysis
is more representative of real experiments. As a consistency check, we expect the value of
bv recovered from the MCMC’s to be consistent with 1.

3.6.1 MCMC pipeline description

The inputs to our pipeline are a realization δh(k) of the 3-d halo field, and the kSZ ve-
locity reconstruction v̂r(k). We want to constrain the cosmological parameter fNL, and
the nuisance parameters bg, bv. Here, bg is the Gaussian halo bias, and bv is the kSZ
velocity reconstruction bias from §3.4.2. For notational compactness, let π denote the
three-component parameter vector π = (fNL, bg, bv).
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We start by writing down the two-point statistics of the fields δg and v̂r. For each
Fourier mode k, let θ(k) be the two-component vector of fields:

θ(k) =

(
δh(k)
v̂r(k)

)
(3.83)

Let C(k, π) be the 2-by-2 Hermitian matrix defined by:〈
θ(k) θ(k′)†

〉
= C(k, π) (2π)3δ3(k− k′) (3.84)

We model C(k, π) on large scales by:

C11(k, π) = bh(k, π)2Plin(k) +
1

nh
(3.85)

C12(k, π) = −ikr
(
faH

k2

)
bv bh(k, π)Plin(k) (3.86)

C22(k, π) = k2
r

(
faH

k2

)2

b2
v Plin(k) +N (0)

vr (k) (3.87)

where bh(k, π) is the non-Gaussian halo bias:

bh(k, π) = bg + fNL
2δc(bg − 1)

α(k, z)
(δc = 1.42) (3.88)

and N
(0)
vr (k) was given in Eq. (3.26). The model for C(k, π) in Eqs. (3.85)–(3.87) follows

if we assume that δh and v̂r are modeled as:

δh(k) = bh(k) δm(k) + (Poisson noise)

v̂r(k) = ibvkr
faH

k
δm(k) + (Reconstruction noise) (3.89)

In the previous section, we tested these assumptions systematically, thus validating our
model (3.85)–(3.87) for the two-point function C(k, π).

However, to run an MCMC we need to go beyond the two-point function, by writing
down a model for the posterior likelihood L(π|θ) for parameter vector π, given data real-
ization θ(k). Here, we simply assume the Gaussian likelihood derived from the two-point
function in Eqs. (3.85)–(3.87):

L
(
π|θ) ∝

∏
k

(
DetC(k, π)

)−1/2
exp

(
−θ(k)†C(k, π)−1θ(k)

2V

)
(3.90)
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where the survey volume V on the RHS arises from our finite-volume Fourier convention
in Eq. (3.7). This “field-level” likelihood function makes fewer approximations than a
likelihood function based on power spectrum bandpowers. However, we emphasize that
the likelihood (3.90) treats δg and v̂r as Gaussian fields, and results from previous sections
do not imply its validity. Indeed, the main purpose of this section is to validate the
Gaussian likelihood function, by showing that it leads to valid constraints on fNL.

We truncate the likelihood (3.90) at kmax = 0.012 Mpc−1. The posterior likelihood is
sampled using Goodman-Weare sampling algorithm [85] implemented in the public library
emcee [78]. We use flat priors over a reasonable range of values for all three model pa-
rameters of the model, and run the chain long enough to fulfil recommended convergence
criterion based on correlation length.

3.6.2 Unbiased fNL estimates from MCMC

We now present results from running our MCMC pipeline on N -body simulations. First,
we check for additive bias in fNL, by confirming that when the MCMC pipeline is run on
simulations with fNL = 0, there is no bias toward positive or negative fNL.

In Figure 3.7, we jointly analyze all 100 Quijote simulations with fNL = 0, by multi-
plying together their posterior likelihoods. We run three versions of the MCMC pipeline as
follows. First, we constrain parameters using the halo field alone (δh). Second, we use our
standard setup described in the previous section, where we include the halo field and the
kSZ velocity reconstruction (δh + v̂r). Third, we use the halo field and a perfect, noise-free
realization of the matter overdensity (δh + δm). Note that in the second case (δh + v̂r), the
MCMC parameters are (fNL, bg, bv), whereas in the first and third cases, the parameters
are (fNL, bg). In the second case (δh + v̂r), the likelihoods in Figure 3.7 are marginalized
over the additional parameter bv.

The fNL constraint in Figure 3.7 from (δh + v̂r) is significantly better than the δh-
only constraint, and slightly worse than the (δh + δm)-constraint. This shows that sample
variance cancellation between δh and v̂r is happening, and the level of cancellation is
comparable to what would be obtained from a perfect measurement of δm.

From Figure 3.7, we can also conclude that the fNL estimates from our MCMC pipeline
are not additively biased. The combined (δh + v̂r) likelihood is consistent with fNL = 0,
within the statistical error from 100 simulations. Any additive fNL bias must be smaller
than this statistical error (roughly ∆fNL = 2).

Next, we check for multiplicative bias in fNL, by analyzing simulations with fNL 6= 0
and confirming that we recover the correct value of fNL. In Figure 3.8, we present results
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Figure 3.7: MCMC posteriors on (bg, fNL) from combined analysis of 100 high resolution

Quijote simulations with fNL = 0. The three likelihoods correspond to MCMC analysis

of the halo field alone (δh), joint analysis of the halo field and kSZ velocity reconstruction

(δh, v̂r), and joint analysis of the halo field and the noise-free matter field (δh, δm). In

the second case (δh, v̂r), likelihoods have been marginalized over the additional nuisance

parameter bv.
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Figure 3.8: MCMC constraints for fNL = −50 (top panel) and fNL = 50 (bottom). Each

panel combines likelihoods from four N -body simulations, each with volume 1 h−3 Gpc3.

The recovered fNL values are consistent with the true values, within statistical errors.
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Figure 3.9: A test of the error estimates from our MCMC pipeline. The solid histogram

contains one fNL estimate from each of 100 high-res Quijote simulations with fNL =

0, obtained by taking the median of the fNL posterior likelihood (after marginalizing

over bg, bv). The dashed line is a Gaussian whose width is equal to the Fisher forecasted

error on fNL. The two distributions have equal widths, within statistical errors from 100

simulations.

from non-Gaussian N -body simulations with fNL = ±50. It is seen that the MCMC
pipeline recovers the correct value of fNL within its reported statistical error (around 10–
20%). The total simulation volume is smaller (8 h−3 Gpc3) here than in the fNL = 0 case
(100 h−3 Gpc3), where Quijote simulations are available. Therefore, we cannot characterize
the behavior of the MCMC pipeline as precisely as we can in the fNL = 0 case. However,
the current observational situation is that fNL has not been detected, and the priority for
upcoming experiments will be testing the null hypothesis that fNL = 0. In this situation,
it should suffice to have a precise characterization of the pipeline on simulations with
fNL = 0, and a ≈10-20% test for bias on simulations with nonzero fNL.
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3.6.3 Consistency between MCMC results and Fisher matrix

forecasts

The tests in the previous section show that the MCMC pipeline recovers unbiased estimates
of fNL, but do not test statistical errors on fNL inferred from the posteriors. In this section,
we will validate fNL errors from the MCMC pipeline.

For the sake of discussion, we briefly describe a completely rigorous, Bayesian procedure
for validating fNL errors (even though this is not what we will end up doing!) Suppose
we choose a prior p(fNL), and generate a large number of simulations with fNL values
sampled from the prior. For each simulation s, we use MCMC to compute the posterior
likelihood p(fNL|s), and rank the true value of fNL within the posterior likelihood, to
obtain a quantile 0 < q < 1. Then we should find that q is uniform distributed, if the
posterior likelihoods have been computed correctly. This is a precise statement that can
be proved rigorously. This check validates error estimates from the MCMC pipeline, in
the sense that if the MCMC pipeline overestimates its error bars (i.e. returns posterior
likelihoods which are too wide), then the distribution of q-values will be narrower than
uniform.

The difficulty with this method is that it would require many simulations with fNL 6=
0, which would be very expensive. Instead, we will use an alternative method which
uses only simulations with fNL = 0 (so that we can use the Quijote simulations). For
each such simulation, let fmed

NL be the median of the MCMC posterior likelihood for fNL
(marginalized over bg, bv). Let σ(fmed

NL ) be the RMS scatter in fmed
NL over 100 Quijote

simulations. We will compare σ(fmed
NL ) to the Fisher forecasted statistical error on fNL

(which we will denote σF (fNL)). Intuitively, we expect that σ(fmed
NL ) ≈ σF (fNL), but

this is not rigorously guaranteed, so this test is not quite as precise as the Bayesian test
described above. However, the Cramér-Rao inequality implies σ(fmed

NL ) ≥ σF (fNL).

We briefly describe the implementation of our Fisher matrix forecast. The 3-by-3
Fisher matrix is given by:

Fab =
1

2

∑
k

Tr

[
C(k, π)−1∂C(k, π)

∂πa
C(k, π)−1∂C(k, π)

∂πb

]
(3.91)

where a, b index elements of the parameter vector (π1, π2, π3) = (fNL, bg, bv). The 2-by-
2 covariance matrix C(k, π) was defined previously in Eqs. (3.85)–(3.87), and parameter
derivatives of C are straightforward to compute. The Fisher-forecasted statistical error on
fNL, marginalized over (bg, bv), is given by σF (fNL) =

√
(F−1)11.
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In Figure 3.9, the solid histogram shows values of fmed
NL for all 100 Quijote simulations.

The dashed curve is a Gaussian whose width is equal to the Fisher forecasted error on fNL.
We find that σ(fmed

NL ) = 10.54 and σF (fNL) = 11.54. These values are equal (at 2σ) within
statistical errors from 100 Quijote simulations. This agreement was not guaranteed in
advance, since the Fisher forecast makes approximations (neglecting N (3/2)-bias, treating
δg and v̂r as Gaussian fields), whereas σ(fmed

NL ) is a Monte Carlo error estimate based on
N -body simulations. The observed agreement directly valdiates previous Fisher forecasts
based on kSZ velocity reconstruction (e.g. [183, 147]).

3.7 Discussion

KSZ velocity reconstruction is a promising method for constraining cosmology. However,
almost all work to date (with the notable exception of [46]) has been based on analytic
modeling which has not been tested with simulations. In this chapter, we have made a
detailed comparison between analytic models and N -body simulations. Overall, we have
found good agreement, concluding with an end-to-end pipeline which recovers unbiased
estimates of fNL from simulated galaxy and kSZ datasets, with statistical errors which are
consistent with a Fisher matrix forecast. This initial study is a starting point for future
refinements, and we list some possibilities here:

• We have found a discrepancy between velocity reconstruction noise in our N -body
simulations, and the kSZ N (0)-bias which is typically used in forecasts. Using the halo
model, we revisited the calculation of the reconstruction noise power spectrum, and
found new terms: the kSZ N (1) and N (3/2) biases. We computed these terms numer-
ically and found that N (1) is negligible, while N (3/2) matches the excess noise seen in
simulations (Figure 3.6). Our final expression for N (3/2) (Eq. (3.82)) is algebraically
simple enough that it should be straightforward to include in future forecasts or data
analysis.

• Similarly, we have found that the non-Gaussian bandpower covariance of the recon-
struction noise can be large (§3.4.3). It would be interesting to model this effect, e.g.
using the halo model.

For our choice of fiducial survey parameters (§3.2), neither the non-Gaussian band-
power covariance nor the N (3/2)-bias has much impact on the bottom-line fNL con-
straint. However, this may not be the case for other choices of survey parameters
(CMB noise, galaxy density, redshift, etc.), and systematic exploration of parameter
dependence would be valuable.
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• We have used collisionless N -body simulations, making the approximations that elec-
trons trace dark matter (δe = δm) and galaxies are in one-to-one correspondence with
dark matter halos (δg = δh). These are crude approximations, and our simulations
overpredict the small-scale galaxy-electron power spectrum Pge(kS) by an order-one
factor. We do not think this is an issue for purposes of this work, where our goal
is to test agreement between simulations and theory under self-consistent assump-
tions. However, it would be good to check this by incorporating baryonic physics,
for example using the Illustris-TNG simulation [148].

• We have used a snapshot geometry (§3.1.1), which could be generalized to a lightcone
geometry with redshift evolution.

• We have not included CMB foregrounds and other non-Gaussian secondaries (e.g. lens-
ing). This issue is not as serious as it sounds, since there are symmetry arguments
which show that the velocity reconstruction bias produced by foregrounds and sec-
ondaries should be small.

In the case of CMB lensing, there is a symmetry which reverses the sign of the
primary CMB anisotropy Tpri → −Tpri while leaving late-universe LSS unchanged.
Strictly speaking, this is an approximate symmetry which assumes that the last
scattering surface and the late universe are statistically independent, but this is an
excellent approximation on small scales. Under this symmetry, the lensed CMB is
odd (Tlen → −Tlen), whereas the kSZ and other secondaries/foregrounds are even
(T → T ). This implies that lensing cannot produce a velocity reconstruction bias
〈v̂r〉.
Most non-kSZ secondaries (including CMB lensing, but also e.g. tSZ or CIB) are even
under radial reflection symmetry, whereas the kSZ is odd. This implies that there
is no velocity reconstruction bias. However, radial reflection is only an approximate
symmetry in a lightcone geometry (unlike the snapshot geometry where it is exact),
so there will be some residual bias which should be quantified with simulations. Ad-
ditionally, even if foregrounds/secondaries produce minimal velocity reconstruction
bias, their non-Gaussian statistics may produce extra reconstruction noise (relative
to a Gaussian field), and it would be useful to quantify this with simulations.

• A natural extension of this work would be to study the effect of redshift space distor-
tions (RSD’s) or photometric redshift errors. Ref. [183] makes analytic predictions
for the effect of RSD’s and photo-z errors on kSZ velocity reconstruction, on large
scales and assuming a simplified photo-z model. It would be interesting to compare
these predictions to simulations. Additionally, simulations could be used to study
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small-scale RSD’s (“Fingers of God”) and catastrophic photo-z errors, where analytic
predictions are difficult.

If RSD’s are included in the simulations, then it should be possible to break the
kSZ optical depth degeneracy, as first proposed in [188]. More precisely, the 〈gvr〉
correlation function contains terms proportional to µ0 and µ2, and by comparing
the amplitude of these terms, the parameter combination f/bg can be constrained,
with no contribution from bv. It would be very interesting to test this picture with
simulations.

• We have focused on constraining fNL, and it would be interesting to study other
applications of kSZ tomography, for example using sample variance cancellation to
constrain the RSD parameter f = ∂ logD/∂ log a. Similarly, we could generalize the
non-Gaussian model, by introducing scale-dependent fNL, or the “gNL model” with
ζ3-type non-Gaussianity.
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Chapter 4

MCMC analysis pipeline for

CHIME/FRB

In this chapter, we present an MCMC pipeline for performing parameter infer-
ence on Fast Radio Bursts (FRBs) observed by the CHIME/FRB experiment.
CHIME (Canadian Hydrogen Intensity Mapping Experiment) is a modern in-
terferometric telescope in Canada with a dedicated pipeline for detecting these
mysterious radio transients. The FRB pulses detected in real-time by CHIME
are subsequently fit with a physically motivated FRB model in an offline anal-
ysis. Currently, we have a fitting routine in place that fits a model by directly
optimizing a likelihood. Using a Bayesian approach with MCMC sampling, we
can go beyond this simple approach to better characterize their properties. We
discuss the details of the experiment, the model that we fit and the steps taken
to make the MCMC sampling process computationally time efficient, so as to
make the Bayesian fitting a practical approach for analysing the large number
of FRBs that CHIME is detecting.

FRBs are extremely bright pulses of very short (∼millisecond) duration and transient
nature that are seen in the radio part of the electromagnetic spectrum. Discovered for the
first time in 2007 [127] in the archival data of the Parkes radio telescope in Australia, FRBs
have emerged as one of the most exciting phenomena in the field of time-domain astronomy
[51, 157]. They show up sporadically in the radio data as solitary pulses and come from
random locations in the sky. They are highly coherent with spectral and temporal features
reminiscent of pulsars but unlike pulsars, they do not show periodic emission. Seen across
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a wide range of frequencies between 110 MHz to 8 GHz [79, 162], their sky distribution is
quite isotropic [106] and they have been found to be coming from cosmological distances
[47, 164, 24]. However, what truly sets them apart is their energy scale, which is orders
of magnitude larger than a typical pulse from a pulsar (see Figure 4.3). Explaining their
origin has become a central unresolved problem in astronomy, and numerous theories have
been proposed to explain the extraordinary emission mechanism that powers them and
progenitors that host them [161].

To date, we have detected hundreds of FRBs across several telescopes [127, 196, 174],
with a majority of them being one off events where only a single emission from the source
was observed. However, a significant number of FRB sources have been seen to repeat i.e.
the same source emits pulses intermittently [186, 14, 18]. These repeaters have proven very
consequential. Not only do they rule out cataclysmic models for their sources, and in turn
for at least a sub-population of FRBs, they also allow us to point powerful telescopes in
their direction for follow-up studies [47]. These powerful telescopes often use interferometry
[139, 195] to combine simultaneous observations of the source using receivers with very
long baselines (separation) and localize the source within a galaxy with sub-arcsecond
precision. The localizations facilitate characterisation of parent galaxies, shedding light
on the environment where their progenitors reside. These localizations have confirmed the
long held belief that FRBs are not just extra-galactic but are coming from cosmological
distances.

Being a novel, transient phenomenon, FRBs generally remained elusive for a consider-
able period of time, with less than 20 detections in the decade following their first detection
[156]. Traditional telescopes usually have one or more limitations that make them ineffi-
cient when it comes to detecting FRBs. Some of the common shortcomings include limited
sensitivity, limited sky exposure, narrow bandwidths, small field of view or lack of real-time
data processing and analysis tools. As a result, FRB detections remained sporadic even
when their rate was estimated to be as high as 1000 per sky per day. All this has changed
with the advent of CHIME/FRB [13]. With its large field of view, high sensitivity, broad
bandwidth and specifically optimized detection pipeline, it has been extremely prolific in
detecting FRBs. So far, CHIME/FRB has detected over 2000 FRBs, thereby increasing
the total count by a factor of 15.

The science case for CHIME goes beyond just detecting FRBs. FRBs offer a new
window into the Universe and have several potential astrophysical and cosmological ap-
plications [126, 160, 137, 75, 136]. By physically modelling an FRB pulse, we can tease
out a lot of useful information. Using the intensity data, CHIME/FRB can estimate
the arrival time of FRBs with millisecond precision. High precision of time estimates are
needed when associating coincident emissions during multi-wavelength observations across
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Figure 4.1: A figure showing the unique place FRBs occupy in the luminosity-width plane.

The widths of FRBs, which constrain the size of their emission region, are similar to

pulsars but their spectral luminosity is several orders of magnitude larger. Their brightness

temperature too is exceptionally high. Figure credit: Evan Keane.

telescopes. An example of this is the recent discovery of bursts coming from a galactic
magnetar — SGR 1935 2154 that was seen by several telescopes [15, 141, 191, 36]. Pre-
cise arrival time estimates are also needed for resolving short time-scale features as well
as any short-timescale periodicity, both of which hold clues into the origin of FRBs. The
width of a coherent pulse corresponds to the light travel time through the pulse emitting
region, and therefore the pulse width of an FRB constrains the size of emission engines,
providing us useful hints about the emission mechanism. The spectrum of an FRB is an-
other feature that sheds light on their emission mechanism. Lastly, the coherent pulses
undergo dispersion, scattering and scintillation due to propagation effects which modifies
their appearance. All these effects can be modelled in the intensity data to learn about the
intervening media. The high spectral resolution of CHIME/FRB helps with the precise
estimation of frequency dependent features including spectrum, dispersion measure and
scattering.
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This chapter goes into the details of FRB modelling and presents an end-to-end MCMC
pipeline for estimating the model parameters from CHIME/FRB intensity data. The
pipeline builds upon the native fitting code fitburst to incorporate qualities of Bayesian
formulation of statistical inference. It uses the high-performance python library JAX for
model composition and likelihood evaluation and is capable of running on both CPUs
and GPUs. To efficiently sample the posterior, we develop a vectorized and just-in-time
compiled implementation of the popular affine-invariant MCMC sampling algorithm [85]
that executes each step of iteration in a vectorized fashion. Moving the likelihood evaluation
and sampling to GPU accelerates the analysis by leveraging their high through-puts and
is particularly well suited for our use case. The GPU version of the code dramatically
reduces the wall-time for analysis. This has allowed us to pursue an approach to model
fitting where we we fit progressively complex models, starting with a simple model defined
on a sub-space of parameters, and eventually converge to the model that best fits the
data. With this exploratory workflow, we have found that our MCMC pipeline gives us
a much higher rate of success compared to fitburst when fitting models to data using
an automated pipeline without manual intervention. Given the time taken by the this
MCMC pipeline is of the same order as the direct fitting pipeline, we anticipate that more
and more events would be analyzed by this pipeline going into the future. The MCMC
sampler is made public at https://github.com/utkarshgiri/jaims.

4.1 Highlights from CHIME/FRB

• CHIME/FRB became operational in a precommissioning mode in mid 2018 and
detected its first FRB on 2018 July 25. Not only was this observation monumental
for CHIME/FRB and laid to rest many uncertainties regarding its operation, but
it was also the first event to be seen at such a low frequency and provided much
needed motivation for continued observation at low frequencies where many promi-
nent telescopes operate. In [16], we reported observations of 13 FRBs, including an
event that turned out to be a repeater, the second repeater ever seen. The repeater
was analyzed in [14].

• In [18], CHIME/FRB reported a set of 8 repeating FRBs along with their ∼arc-
minute localizations to aid follow-up studies by the FRB community.

• A major clue towards understanding the origin of FRB was the high-significance
observation of a ∼16 day periodic activity in FRB 180916.J0158+65 [15]. The FRB
was seen to be active in a period of 5 days with no activity outside it. Both an
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Figure 4.2: Schematic of the CHIME telescope signal path

intrinsic emission modulation as well as external geometrical or physical model could
explain the observed periodicity.

• In another milestone paper [19], we reported the detection of two FRB like bursts
coming from the direction of galactic magnetar SGR-1935 2154. The bursts were
observed during a period of unusually high activity from the SGR, lasting over several
days [36]. Remarkably, the bursts were coincident with peaks in X-ray light-curves
as seen by several X-ray and Gamma-ray telescopes [141, 191]. This observation has
given a strong boost to theories proclaiming magnetars to be the FRB engines.

• CHIME/FRB presented a catalogue of 535 FRBs [17], the first catalogue release of
this size and scope observed in a single survey with uniform selection effects. The cat-
alogue paper was accompanied with several science papers that perform population
analysis of the events.

4.2 Instrument

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a Canadian interfer-
ometric telescope at the Dominion Radio Astrophysical Observatory in British Columbia,
Canada. Designed primarily with the aim of mapping neutral hydrogen in the universe
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[149, 23], it was soon realized that the same instrument would be ideal for detecting tran-
sients like FRBs and led to the development of a separate project with a dedicated back
end for real-time detection of FRBs — CHIME/FRB .

The CHIME instrument has been described in detail in an overview paper [13]. Here
we give a brief summary. The CHIME telescope comprises of four 20m × 100m cylin-
drical reflectors with no moving parts, aligned in the North-South direction and operating
between 400 − 800 MHz. Each of these reflectors come with 256 dual-polarization an-
tennas installed along its focal plane axis. The analog signal received by the feeds gets
digitized to a time-series with a 1 nano-second time-resolution before getting channelized
to 1024 frequency channels at a resolution of 2.56 µs using customized integrated circuits
called Field-Programmable Gate Arrays (FPGAs). The channelized output from FPGAs
is processed by a series of pipelines (see Figure 4.2). First among them is the Level-0 or
the L0 pipeline which performs the task of beamforming using Fast-Fourier Transforms
[192, 150, 139]. It is built out of 256 GPU nodes that correlate data from all the feeds with
appropriate time delays to constructively interfere them to produce beams with increased
sensitivity to a particular location in the sky. In total it produces 1024 beams on the sky
and further up-channelizes the data-stream by a factor of 16 (total 16384 channels) at a
time resolution of 1-ms.

The data then goes to the L1 pipeline which is responsible for detecting FRBs. After
filtering out some extreme but mitigable instances of human-made radio frequency interfer-
ence (RFI), the CPU based L1 pipeline uses a near optimal tree-based algorithm to search
for FRBs in real-time. The pipeline utilizes a ring-buffer to store and persist the intensity
data and on detecting a candidate event above a nominal signal-to-noise (SNR), it triggers
a dump of a few seconds of data around the event for further offline analysis. Finally the
pipeline also has a machine-learning based routine for sifting through the candidate events
to identify genuine FRBs. The L2 pipeline performs another iteration of RFI removal and
groups together instances of an event that are detected in multiple beams. The L3 pipeline
is responsible for estimating the flux associated with the pulse as well as possible source
identification and association. The last in the series is the L4 pipeline which is responsible
for maintaining a database for candidate meta-data.

4.3 Data

Once a detection is triggered by the L1 pipeline, few seconds of intensity data around
the event is dumped to disk. The intensity data is a 2D array with the two axes being
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frequency and time. For CHIME , the data has in total 16384 frequency channels. An
FRB arriving in the intensity data is dispersed in time as can be seen in Figure 4.3. This
happens due to the fact that propagating electromagnetic waves obey a dispersion relation
given by [113]

ω2 = ω2
e + c2k2 (4.1)

where ωe is the electron plasma angular frequency given by

ω2
e =

4πnee
2

me

(4.2)

As a result of this dispersion, the group velocity of coherent radio waves passing through
electron plasma becomes

vg =
∂ω

∂k
= c

(
1−

[
ωe
ω

]2
)1/2

(4.3)

For purely vacuum media or high-frequency waves (ωe/ω → 0), the group velocity is close
to the speed of light c. However, most of the space is filled with free electrons which
are cold and tenuous with densities in the range 10−4 − 104 cm−3 (0 < ωe/ω � 1) and
therefore produces tangible decrease in group velocity and thus the pulse arrival time at a
given observing frequency ν is
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DM (4.4)

where the constant a = [ e2

2πmec
] = 4.148 GHz2 cm3 pc−1 ms and DM =

∫
nedl. The integral

over the electron density ne counts the number of electrons encountered by the FRB along
its path from source to observer and is called the dispersion measure (DM). For each of the
16384 frequency channels in our intensity data, we can use estimate of initial arrival time
t0 and DM from the real-time pipeline to extract a sweep of ∼100 ms of data centered on
the pulse. Thus the 2D array data that we fit our model to has approximately 16384×100
elements.
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4.4 Pulse Model

In this section, we will describe how the intensity I(ν, t) is modelled in terms of 7 parameters
that we will describe one by one. The basic pulse model we fit to an observed FRB accounts
for its intrinsic features as well as propagation effects imprinted on the burst [17, 140]. The
intrinsic profile of an FRB consists of a Gaussian pulse in time with a frequency-dependent
modulation given by its spectrum. The Gaussian profile is a two parameter model given
by

1√
2πw2

exp

(
− (t− t0)2

2w2

)
where t0 is the time of arrival of the burst at our telescope at a reference frequency and
w is the width of the pulse. We model the spectrum of the burst using a 3 parameter
power-law given by

As

(
ν

ν0

)ns+α ln( ν
ν0

)

where As is the amplitude, ns is the spectral index and α models the running of spectral
index as a function of frequency. They combine together to give us the total intrinsic pulse
profile

Iintrinsic(ν, t) = As

(
ν

ν0

)ns+α ln( ν
ν0

)[
1√

2πw2
exp

(
− (t− t0)2

2w2

)]
(4.5)

This intrinsic profile captures features that are likely intrinsic to the FRB generation
process. In addition to these intrinsic features, the observed pulse is also modified due to
propagation effects. Chief among these are scattering and dispersion.

Scattering, or multi-path propagation of the FRB causes many copies of the pulse to
be super-imposed with different delays. This results in a temporal broadening of the pulse
which can be modelled under a thin screen approximation where the Gaussian profile gets
convolved with a decaying exponential of the form e−t/τs where the scattering time is given
by

τs = τ

(
ν

νs

)−SI
(4.6)

where τ is called the scattering measure defined at a reference frequency νs and parame-
terizes the spectral broadening. We choose the center of the observing bandwidth as the
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reference frequency for scattering i.e. νs = 600 MHz. The parameter SI is called the
scattering index characterizing the frequency dependence of the broadening. The scatter-
ing index depends on the nature of plasma inhomogeneities and in particular their power
spectrum (∝ 〈n2

e〉). It can be a free parameter in principle but in almost all cases we fix
its value to 4.

Iscattered(ν, t) = Iintrinsic(ν, t)⊗
[
θ(t)

1

τs
exp

(
− t

τs

)]
(4.7)

where θ(t) is the Heaviside function and ⊗ denotes a convolution operation.

Finally, the dispersion leads to a frequency dependent delay in the arrival of the FRB
pulse as discussed in §4.3 and leads to a time shift given by

I(ν, t) = Iscattered(ν, t−∆t(ν)) (4.8)

where ∆t(ν) is given by Eq. (4.4) and is dependent on two new parameters: DM and DI.
Eq. (4.8) gives the final model that we use for computing a 2-d data array Iij(νi, tj) given
arbitrary values of the parameters θ = (t0, DM,w,As, ns, α, τ)

4.5 MCMC

Given the forward model of an FRB as in Eq. (4.8) , the process of parameter estimation is
the inverse problem (much like most data analysis problems in astrophysics and cosmology)
of inferring the region in parameter space that is most likely to describe the FRB properties.

In order to infer the model parameters, we work under the Bayesian framework which
formalizes the inference problem. The Bayesian approach returns a distribution over the
parameter space assigning a higher probability to regions in the space which best fit the
data. The approach naturally incorporates our previous beliefs or knowledge about the
parameter space expressed in the form of a distribution called the prior.

Formally, the posterior distribution P(θ|D) over parameters θ = (t0, DM,w,As, ns, α, τ),
of our fiducial model described in §4.4, for a dataset D is given by

P(θ|D) ∝ P(D|θ)P(θ) = Lθ(D)P(θ) (4.9)

where P(θ) is the prior over the model parameters and Lθ(D) is the likelihood. In our case,
we prefer uninformative priors for our model parameters and use a uniform distribution
with broad support. The likelihood is given by
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Lθ = exp(−χ2(θ,D)/2) (4.10)

with

χ2(θ,D) =
∑
t,ν

(D(t, ν)− I(t, ν|θ))2

σ2
ν

(4.11)

where σ2
ν is the per channel variance of our data that we compute using the entire stretch

of data saved to disk. Intuitively, the model parameters can be inferred by performing a
dense sampling of the parameter space and rejecting all those samples which do not give
a forward model in a close neighbourhood of the observed data after accounting for the
noise. However, this naive approach of sampling is inefficient given the complexity of the
problem we are tackling.

A much more efficient way of obtaining the posterior distribution is Monte Carlo
Markov Chain (MCMC) that refers to a class of algorithms that sample from a given
probability distribution p where in the asymptotic limit, the samples generated using the
algorithm are indistinguishable from samples generated from p. The sampling relies on the
philosophy of Markov processes (where each new sample is a random variable xn+1 drawn
from a conditional distribution p(xn+1|x) conditioned only on the previous sample x and
not on the entire history) to generate a sequence of points in parameter space which even-
tually converge to the true posterior distribution. There are many algorithms to realize
MCMC sampling process, each with their own pros and cons and usually one chooses the
algorithm that best suits their needs.

4.6 Affine-invariant sampler

The MCMC algorithm that we use for sampling the posterior is the affine-invariant en-
semble sampling algorithm proposed by Goodman and Weare [85]. The affine-invariance
property of the algorithm implies that the sampler remains robust to affine transformation
i.e. scaling and shift operations of the random variable with a given distribution. The
algorithm evolves an ensemble of walkers, each of which are assigned a to a random posi-
tion in the parameter space to begin with, and moves them to the most probable region in
the parameter space. The algorithm has excellent auto-correlation property and requires
minimal hand-tuning of run-time parameters compared to other traditionally used MCMC
algorithms. In [78], a parallel version of this algorithm was developed which is capable of
using multiple CPU cores in parallel and a pure python implementation was presented in
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the form of a public library emcee [77]. The improvised algorithm utilized disjoint sets of
walkers, where the walkers in one set had their position updated based on the walkers from
the other set. In particular, the entire ensemble of K walkers is divided into two sets: a
main set Si and a complimentary set S∼i each of size K/2. The position of each walker in
the main set for the iteration t+ 1 is given by

Xk(t+ 1) = Xj(t) + Z[Xk(t)−Xj(t)] (4.12)

where Xk is a walker in the main set and Xj is a randomly selected walker from the
complimentary set S∼i. Z here is a random number generated from a distribution given
by

g(z) ∝


1√
z

if z ∈
[

1

2
, 2

]
,

0 otherwise
(4.13)

The chain will satisfy detailed balance if the proposal is accepted with probability

q = min

(
1, ZN−1 p(Xk(t+ 1))

p(Xk(t))

)
, (4.14)

Once the position of all the walkers in the set Si is updated, the position of walkers in the
set S∼i is updated similarly using now the set Si as the complimentary set.

4.6.1 GPU implementation

The likelihood defined in Eq. (4.10) is a numerically intensive function involving a complex
model I(t, ν) with 16k-by-100 elements in a 2D array. Each walker at every step of sampling
requires this likelihood to be evaluated. Given the particular nature of our model, the
likelihood evaluation can be dramatically accelerated by utilizing the high throughputs
provided by Graphical Processing Units (GPUs). GPUs are particularly well suited for
performing parallel numerical operations on contiguous block of data. Furthermore, for
when sampling with K walkers, the position of half the walkers (K/2) at a given iteration
can be updated simultaneously. This way of updating the positions can be done efficiently
using a vectorized (batched) implementation of both likelihood evaluation as well as update.

We implement this GPU compatible version of the algorithm using the public library
JAX [37]. JAX is a modern high-performance library for numerical calculations on GPUs
implemented primary for machine learning research and application. JAX uses XLA (Ac-
celerated Linear Algebra; a domain-specific compiler for linear algebra) to compile and
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run programs on GPUs and has an API very similar to the popular numerical library
NumPy. Compilation happens under the hood by default, with library calls getting just-
in-time compiled and executed. But JAX also lets us just-in-time compile our own Python
functions into XLA-optimized kernels. We make use of just-in-time compilation as well as
another useful feature offered by JAX called vmap (vectorized map) to improve our code.

The pipeline can be run from the command-line on one of the analysis nodes of
CHIME/FRB . The program takes the native event ID as an input and begins by reading
the entire intensity data for the event stored on hard drives. It then uses the real-time esti-
mate of arrival time t0 and DM to produce a 16k by 100 size array of data around the pulse
This preprocessing is performed using the iautils package developed by the CHIME/FRB
collaboration. This constitutes our D(t, ν) in Eq. (4.10). The model that we use is similar
to the one used in fitburst but is rewritten in JAX and incorporates several changes that
speeds up the original implementation by up to a factor of ∼3. We compose the model
pulse at an upsampled factor of 4 and 2 in time and frequency which we then boxcar-
convolve to get the predicted pulse at our instrumental resolution. This comprises our
I(t, ν). Additionally, we also implement a simpler purely Gaussian model without any
scattering that we fit initially to refine our parameters before running the full 7-parameter
model.

We now have all the ingredients for our likelihood evaluation. We begin the process
by fitting a Gaussian model with parameters θ = (t0, w,As, ns, α) where the DM has
been kept fixed to the rough value estimated by the real-time detection pipeline which
has a sub-percent precision. This initial iteration provides a reasonable estimate of width
(w) and the spectral parameters (As, ns, and α) of the model. We impose bounds on the
parameters via a uniform prior and depending on the convergence of our samples, decide
to relax or keep the bounds. Next, we fit the same Gaussian model, but this time with
DM as a free parameter. This step gives the best Gaussian fit to the data. Finally, we
fit the full 7-parameter model of Eq. (4.10) with parameters θ = (t0, DM,w,As, ns, α, τ).
Figure 4.4 shows this model fit to a significantly scattered event seen by CHIME/FRB.
Figure 4.5 shows the resultant triangle plot for the model parameters showing 2-d marginal-
ized posterior distribution of all the parameter pairs as well as 1-d marginalized posterior
distribution.

4.7 Future Direction

The MCMC pipeline is currently getting integrated into the CHIME/FRB’s analysis
pipeline that processes incoming events in an automated fashion. Our development is still
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Figure 4.4: Figure showing the result of fitting a model to an FRB candidate. Left panel.

The result of dedispersing the intensity data using the best fit DM and arrival time t0.

Centre Panel. The best fit pulse profile obtained from the pulse fitting process. Right panel.

The residual left after subtracting the pulse model from dedispersed intensity data. Some

frequency channels have been masked out as they are polluted with radio frequency inter-

ferences(RFI). The masked channels are most clearly visible in the panel on the right but

the same channels have also been masked in the other panels. This plot is produced using

a routine developed by Ziggy Pleunis and other members of CHIME/FRB collaboration.

a work in progress where we will continue to explore ideas that improve the workflow.
Currently, we see a > 90% success rate when running the pipeline out-of-the-box on a
set of recently observed events. These events were detected using a configuration that
results in a more precise estimates of t0 and DM from the real-time pipeline which are
used as initial input to the MCMC pipeline. Going forward, the plan is to develop a
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more versatile logic that results in an even better success rate. There are other frontiers
where more work is needed. The pipeline has not yet been fully tested on multi-component
events. Fitting multi-component model out-of-the box might prove a non-trivial challenge.
Another shortcoming of the current setup is the lack of a proper beam model. A Bayesian
modeling of the beam can be naturally incorporated into this framework where one can
easily marginalize over the beam parameters when computing the parameter constraints.
Model comparison so far has proven pretty time consuming on CPUs, but now with the
likelihood re-written in JAX , one can use publicly available nested sampling libraries written
in JAX [9], which are several orders of magnitude faster than existing CPU implementations,
to compute the evidence for model comparison [179]. Having model comparison can help
us identify events which are better fit with the basic Gaussian model and hence rule out
scattering with significance for these events. Identifying sub-populations with no scattering
could be quite illuminating.

4.8 Discussion

Bayesian inference has become the preferred way of estimating model parameters in much
of Astronomy and Astrophysics. Experiments like Planck[3, 5], Ligo-Virgo Collaboration
[1], EHT [71] all use Bayesian formalism for inference purposes. CHIME/FRB itself
used an earlier CPU-only version of this MCMC pipeline for estimating FRB parameters
in our very first science paper [14]. We also internally corroborated the results from our
direct fitting routine fitburst with that from this pipeline for over 200 events that have
been presented in the catalogue paper [17]. In the very near future, we plan to use this
toolkit to revisit the analysis of events seen from SGR 1935 2154. As mentioned before,
CHIME/FRB detected 2 bursts from this source on April 28, 2020 which coincided with
peaks in X-ray and Gamma-ray light-curves. However, based on the least-squares direct
fit results, the radio bursts appear to be leading their high energy counterparts by a few
milliseconds [122, 141]. Its precise time of arrival remains a point of interest for the FRB
community since in almost all models, the radio pulse is predicted to arrive after or at the
same time as the X-ray pulse. A Bayesian estimate of the time of arrival that marginalizes
over all the remaining parameter could resolve any remaining ambiguities.

Given its simple intuitive interpretation and the benefits it offers, it would be very
rewarding to develop this work further into a mature pipeline that can run out-of-the-box
on majority of the events. The speed-up obtained by promoting the likelihood evaluations
as well as the sampling to GPUs offers a time-efficient way of realizing this goal.
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Chapter 5

Conclusion

The kSZ effect in the CMB will be detected at percent level within the next few years.
Sourced by the Doppler shifting of CMB photons when they scatter of electron clouds
with bulk radial velocity, the kSZ effect is a secondary anisotropy in the CMB that is
proportional to the product of large-scale velocity at a location and the local electron
density. A high significance detection will enable several high impact applications of the
effect. On small-scales, it will allow us to probe the baryon distribution in the Universe
both within as well as in the outskirts of halos, something which has been notoriously
challenging so far. On the cosmological side, kSZ is a unique probe of large-scale velocity.

In chapter 2 of this thesis, we present a bispectrum estimator of type 〈ggT 〉 for estimat-
ing the kSZ signal by combining two legs of galaxy density field with a CMB temperature
map containing the kSZ signal. The signal-to-noise of the estimator peaks in the squeezed
limit where we show that it factorizes as the product of large-scale galaxy velocity power
spectrum (Pgv) and small scale galaxy electron power spectrum (Pge). Thus measuring the
bispectrum in mode bins, gives us a measurement of Pgv and Pge as a function of scale, up
to a factor that can be exchanged between the two. We show that the bispectrum is related
to several existing estimators of kSZ including the pair-sum method and velocity template
method, both of which have been used to detect kSZ at a few sigmas with existing CMB
experiments and galaxy surveys. The bispectrum estimator is robust to secondary effects
like CMB lensing, CIB and tSZ due to the odd parity of kSZ and allows a straightforward
way of incorporating issues like redshift-space distortions and photo-z effect. Using the
machinery, we forecast ∼ 500σ detection of kSZ in the near future.

Due to the the coupling between small scale electron density and large-scale radial
velocity in the kSZ source term, one can construct a quadratic estimator v̂r for the radial
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velocity field which combines a tracer of electron density at small scales – for instance the
galaxy density field – with a CMB temperature map at similar scales, to estimate large-scale
radial velocity field. Our bispectrum formalism is closely related to v̂r and we analyzed
the behaviour of this estimator analytically in Chapter 2. We found that the leading order
noise for the estimator, which we call the N0 bias, becomes scale independent at the large
scales where the reconstruction is of interest. This behaviour of the reconstruction noise
implies that modes reconstructed using this approach offer us the best probe of cosmology
at the largest scales edging past traditional methods that use galaxy density obtained from
galaxy surveys. Although future galaxy surveys will be limited by cosmic variance and
not by Poisson noise of galaxy samples, having an additional lower-noise tracer has several
interesting applications. One such application is its use in cancelling sample variance when
constraining scale-dependent signatures at the largest scales. One primary candidate for
sample variance cancellation is in constraining primordial non-gaussianity parameter fNL
using the scale dependent bias induced by a non-zero fNL. The Fisher forecasts for this
look very promising [147]. However the analysis makes several assumptions. In particular
it assumes that the fields involved are all Gaussian even at small-scales. This simple picture
breaks down under realistic scenarios and can potentially jeopardize its return.

To explore this in detail, in Chapter 3, we implement kSZ velocity reconstruction in an
N-body simulation pipeline and explore its properties. We process a large suite of N-body
simulation data producing consistent realizations of CMB temperature maps and halo cat-
alogues which are then fed to an implementation of the quadratic estimator to reconstruct
the radial velocity in a 3D volume. In our subsequent analysis, we find that at the map
level, our analytic expectations from chapter 2 hold. We obtain a very high correlation
reconstruction with a constant bias on large scales. We find that the reconstruction noise
can be larger than the analytic prediction which is usually assumed. We revisit the analytic
prediction and find additional noise terms which explain the discrepancy. The new terms
are analogous to the N (1) and N (3/2) biases in CMB lensing. The N (1) bias, which is a
Gaussian contribution to the total noise, turns out to be subdominant in comparison to
the leading order N (0) noise term. The N (3/2) bias, which arises due to the non-gaussian
nature of the underlying fields, is obtained from a six-point halo model calculation. Finally,
we implement an MCMC pipeline which estimates fNL from N-body simulations, using a
multi-tracer approach which uses the reconstructed velocity field along with halos in the
simulations and improves constraints on fNL by nearly a factor of 2.5 under a fiducial setup
similar to a combination of the CMB-S4 experiment and the DESI spectroscopic survey.
Overall, these results confirm that kSZ velocity reconstruction will be a powerful probe
of cosmology in the near future, but new terms should be included in the noise power
spectrum.

128



Fast Radio Bursts, the other main topic in this thesis, are an exciting new phenomenon
in radio astronomy. These millisecond duration transient pulses of extreme energy come
from extra-galactic distances and offer a new window on to the universe. Their dispersion
measure (DM), an observable quantity proportional to the electron column density from
their source to us, makes them a unique probe of the electron (baryon) distribution.

CHIME (Canadian Hydrogen Intensity Mapping Experiment) is a modern interfero-
metric telescope in Canada with a dedicated pipeline for detecting these mysterious radio
transients. The CHIME/FRB experiment has propelled research in this field by reporting
several interesting results and has produced a large catalogue of more than 500 FRBs in
a short duration of operation. The FRB pulses detected in real-time by CHIME are sub-
sequently fit with a physically motivated FRB model in an offline analysis. In chapter 4,
we go into the details of FRB modelling and present an end-to-end MCMC pipeline for
estimating the model parameters from CHIME/FRB intensity data. The pipeline builds
upon the native fitting code fitburst to incorporate qualities of Bayesian formulation of sta-
tistical inference. It uses the high-performance python library JAX for model composition
and likelihood evaluation and is capable of running on both CPUs and GPUs. To efficiently
sample the posterior, we develop a vectorized and just-in-time compiled implementation of
the popular affine-invariant MCMC sampling algorithm. Moving the likelihood evaluation
and sampling to GPUs accelerates the analysis by leveraging their high through-puts and
is particularly well suited for our use case. The GPU version of the code dramatically
reduces the wall-time for analysis. Since the time taken by the this MCMC pipeline is
of the same order as the direct fitting pipeline, we anticipate that more and more events
would be analyzed by this pipeline going into the future.

Together, the kSZ effect and FRBs will provide us some key insights into the small-
scale baryonic physics in the coming years. The cross-correlation between galaxies and FRB
DM map will probe the galaxy-electron power spectrum Pge [137]. For the purposes of kSZ
velocity reconstruction, a large sample of FRBs with known redshifts will help mitigate
the problem of bias in kSZ velocity reconstruction arising due to uncertainty in small-scale
Pge. Our lack of knowledge of the baryon distribution severely limits the potential returns
of future galaxy lensing surveys. Both kSZ and FRBs can help alleviate us this issue.
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Appendix A

Some useful results and derivations

A.1 Quadratic Estimator for radial velocity

The kSZ signal in the Fourier space is a convolution given by:

T (l) =
K∗
χ2

∫
dq3

(2π)3

dq′3

(2π)3
δe(q)vr(q

′)(2π)3δ3

(
q + q′+ l

χ∗

)
(A.1)

For large multipoles l where kSZ dominates, the above expression couples large-scale ve-
locity modes with small scale electron-density field. Due to this very nature of kSZ, one
can combine the CMB temperature map with a tracer of large-scale electron field and sum
over small scale modes and multipoles to get an estimate of the large scale radial field.

Therefore we can write a quadratic estimator which has the general form

v̂r(kL) =

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)δ

∗
g(kS)T ∗(l) (2π)3δ3

(
kL + kS +

l

χ∗

)
(A.2)

with ensemble average given by

〈v̂r(kL)〉 =

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)〈δ∗g(kS)T ∗(l)〉 (2π)3δ3

(
kL + kS +

l

χ∗

)
(A.3)

=

[
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)Pge(kS) (2π)3δ3

(
kL + kS +

l

χ∗

)]
vr(kL) (A.4)
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with the leading-order 1 variance given by

V ar(v̂r(kL)) =

∫
d3kS
(2π)3

d2l

(2π)2
|W (kS, l)|2Pgg(kS)Cl (2π)3δ3

(
kL + kS +

l

χ∗

)
(A.5)

The optimal quadratic estimator can be derived from Eq. (A.5) by minimizing its variance
while keeping it unbiased i.e. v̂r(kL) = 〈v̂r(kL)〉. The constraint for unbiased estimator
reduces to the condition that the term in square brackets in Eq. (A.4) is 1:

N =

[
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2
W (kS, l)Pge(kS) (2π)3δ3

(
kL + kS +

l

χ∗

)]
= 1 (A.6)

We can perform this constrained optimization by using the method of lagrange multipliers.
The Lagrangian function for our case will be given by

V ar(v̂r(kL))− λN = 0 (A.7)

on maximizing this with respect to the weight, we get

W ∗(kS, l) = W (kS, l) = λ
K∗
χ2
∗

Pge(kS)

Pgg(kS)Ctot
l

(A.8)

to get λ we substitute this back in N

N =

[
λ
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)2

Pgg(kS)Clχ2
∗

(2π)3δ3

(
kL + kS +

l

χ∗

)]
= 1 (A.9)

which gives

λ =
χ4
∗

K∗

[ ∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)2

Pgg(kS)Ctot
l

(2π)3δ3

(
kL + kS +

l

χ∗

)]−1

(A.10)

and so finally we have an expression for the optimal expression

v̂r(kL) = λ
K∗
χ2
∗

∫
d3kS
(2π)3

d2l

(2π)2

Pge(kS)

Pgg(kS)Ctot
l

δ∗g(kS)T ∗(l) (2π)3δ3

(
kL + kS +

l

χ∗

)
(A.11)

1One of the major results in this work is the derivation of higher-order contribution to this variance.

This is done in the next chapter.
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A.2 Mode-counting integral

The purpose of this appendix is to derive Eq. (2.18) for the Fisher matrix FBB′ as an
integral over scalar wavenumbers. We start from the definition of FBB′ :

FBB′ =
V

2

∫
d3k

(2π)3

d3k′

(2π)3

d2l

(2π)2

B(k, k′, l, kr)∗B′(k, k′, l, kr)

P tot
gg (k)P tot

gg (k′)CTT,tot
l

(2π)3δ3

(
k + k′ +

l

χ∗

)
(A.12)

and insert the following expression in the integrand on the RHS:

1 =

∫
dK dK ′ dL dκ

(
δ(|k| −K) δ(|k′| −K ′) δ(|l| − L) δ(kr − κ)

)
(A.13)

to write FBB′ in the form

FBB′ =
V

2

∫
dK dK ′ dL dκ I(K,K ′, L, κ)

B(K,K ′, L, κ)∗B′(K,K ′, L, κ)

P tot
gg (K)P tot

gg (K ′)CTT,tot
L

(A.14)

where I(K,K ′, L, κ) is the “mode-counting integral”

I(K,K ′, L, κ) =

∫
k+k′+ l

χ∗
=0

δ(k −K)δ(k′ −K ′)δ(l − L′)δ(kr − κ) (A.15)

which counts the number of closed triangles k + k′ + (l/χ∗) = 0 with lengths (K,K ′, L)
and radial wavenumber κ.

It remains to calculate I explicitly. First note that by rotational symmetry, the quantity

J(K,K ′, κ, l) =

∫
d3k

(2π)3

d3k′

(2π)3
(2π)3δ3

(
k + k′ +

l

χ∗

)
δ(k−K)δ(k′−K ′)δ(k3−κ) (A.16)

only depends on l through its length l = |l|. Therefore I and J are related by:

I =

∫
d2l

(2π)2
J(l)δ(l − L) =

L

2π
J(L) (A.17)

To compute J , we assume l points in the x-direction, and use the 3D delta function to
eliminate the d3k′ integral, obtaining:

J =

∫
d3k

(2π)3
δ(k −K)δ(k′ −K ′)δ(k3 − κ) (A.18)
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where k′ is defined in the integrand by k′2 = (k1− l/χ∗)2 +k2
2 +k2

3. Since this a 3D integral
with three delta functions, it is given by the inverse Jacobian

J = 2
1

(2π)3

(
∂{k, k′, k3}
∂{k1, k2, k3}

)−1

(A.19)

where the prefactor 2 is because the delta function constraints have two solutions. A short
calculation now gives the Jacobian:

∂{k, k′, k3}
∂{k1, k2, k3}

=
l

kk′χ∗

[
Γ

(
k, k′,

l

χ∗

)2

− k2
3

]1/2

(A.20)

where we have defined

Γ(k, k′, k′′) =

√
(k + k′ + k′′)(k + k′ − k′′)(k + k′′ − k′)(k′ + k′′ − k)

2k′′
(A.21)

Note that all factors under the square root are positive if the wavenumbers k, k′, k′′ sat-
isfy the inequalities needed for k, k′, k′′ to form a closed triangle. By Heron’s formula,
Γ(k, k′, k′′) can be interpreted as the component of k (or k′) perpendicular to k′′, in a
closed triangle k + k′+ k′′ = 0. Thus the inequality that κ must satisfy to ensure that the
delta function constraints have solutions is simply |κ| ≤ Γ(k, k′, l/χ).

Putting Eqs. (A.17), (A.19), (A.20) together, we get our bottom-line formula for I:

I(K,K ′, L, κ) =
KK ′χ∗

8π4

[
Γ

(
K,K ′,

L

χ∗

)2

− κ2

]−1/2

(A.22)

where the formula is understood to apply when K,K ′, (L/χ∗) form a closed triangle, and
|κ| ≤ Γ(K,K ′, L/χ∗). Otherwise, I = 0.

A.3 Halo model

Throughout this chapter, we use the halo model to compute nonlinear power spectra in-
volving dark matter, electron, and galaxy fields. In this appendix, we describe the details.

In the halo model, one makes the fundamental assumption that all the dark and bary-
onic matter is bound up in halos with varying mass and density profiles. The correlation
function for density fluctuations then receives two contributions: a “two halo term” which
arises from the clustering properties of distinct halos, and a “one halo term” which arises
from the correlation in density between two points in the same halo. A review of the halo
model can be found in Ref. [50].
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Dark matter

In Fourier space, the dark matter power spectrum is given by

Pmm(k, z) = P 1h
mm(k, z) + P 2h

mm(k, z) (A.23)

P 1h
mm(k, z) =

∫ ∞
−∞

d lnm mn(m, z)

(
m

ρm

)2

|u(k|m, z)|2 (A.24)

P 2h
mm(k, z) = P lin(k, z)

[∫ ∞
−∞

d lnm mn(m, z)

(
m

ρm

)
bh(m, z)u(k|m, z)

]2

(A.25)

In these expressions, m is the halo mass, ρm is the present day cosmological matter density,
n(m, z) is the halo mass function (e.g. the differential number density of halos with respect
to mass), u(k|m, z) is the normalized Fourier transform of the halo profile, P lin(k) is the
linear matter power spectrum, and bh(m, z) is the linear halo bias.

The halo mass function is defined by

n(m, z) =
ρm
m2

f(σ, z)
d lnσ(m, z)

d lnm
, (A.26)

where σ2(m, z) is the rms variance of mass within a sphere of radius R that contains mass
m = 4πρmR

3/3, defined as

σ2(m, z) =
1

2π2

∫ ∞
0

dk k2P lin(k, z)W 2(kR) (A.27)

Here, R = R(m) and the window function in Fourier space is

W (kR) =
3 [sin(kR)− kR cos(kR)]

(kR)3
(A.28)

We assume the Sheth-Tormen collapse fraction [176]:

f(σ, z) = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p]
δc
σ

exp

[
−aδ

2
c

2σ2

]
(A.29)

with A = 0.3222, a = 0.75, p = 0.3, and δc = 1.686. The linear halo bias bh(m, z) accounts
for the biasing of halos in the presence of variations in the density field, and is given by
the response of the number density to variations in the collapse threshold δc. We use the
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Sheth-Tormen bias:

bh(m, z) = 1 +
1

δc

d log f

d log σ

= 1 +
1

δc

(
a
δ2
c

σ2
− 1

)
+

2p

δc

(
1 +

(
a
δ2
c

σ2

)p)−1

(A.30)

Note that the halo bias satisfies a consistency relation:∫ ∞
−∞

d lnm mn(m, z)

(
m

ρm(z)

)
bh(m, z) = 1. (A.31)

Finally, we need u(k|m, z), the Fourier transform of the dark matter halo density profile,
which for spherically symmetric profiles is defined as

u(k|m, z) =

∫ rvir

0

dr 4πr2 sin(kr)

kr

ρ(r|m, z)
m

. (A.32)

We assume that halos are truncated at the virial radius, and have mass

m =

∫ rvir

0

dr 4πr2ρ(r|m, z) (A.33)

Note that with this definition of mass, u(k|m, z)→ 1 as k → 0. Returning to the two-halo
term and using the consistency relation in Eq. (A.31), this property of u(k|m, z) ensures
that P 2h

mm(k, z) ' P lin(k, z) in the limit where k → 0, as it should.

We assume that dark matter halos follow an NFW profile:

ρ(r|m, z) =
ρs

(r/rs)(1 + r/rs)2
(A.34)

and relate the scale radius rs to the virial radius rvir by the concentration parameter
c = rvir/rs. We model the concentration by the median power law fit of [68], neglecting
stochasticity:

c(m, z) = A

(
m

2× 1012h−1M�

)α
(1 + z)β (A.35)

with A = 7.85, α = −0.081, and β = −0.71.

Including halos in the range 104M� < m < 1017M�, our model reproduces the non-
linear matter power spectrum using the commonly used ’halofit’ model of Ref. [184] at the
< 10% level over the range 10−5 Mpc−1 < k < 20 Mpc−1.
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Electrons

The electron distribution in the halo model is modelled by assuming gas is bound within
dark matter halos, having density profiles ρgas(m, z) which we assume to be a function of
the host halo mass and redshift only. The gas power spectrum is given by Eq. A.23 with
u(k|m, z) calculated through Eq. A.32 by replacing ρ(m, z) with ρgas(m, z) and computing a
grid of templates. To estimate the systematic uncertainty associated with the distribution
of free electrons within halos, we employ three models for the electron profile: the universal
gas profile of Ref. [111] and two fitting functions from Ref. [25] based on simulations with
two different sub-grid feedback models (“AGN” and “SH”). Throughout we assume that
electrons trace gas, and neglect the deficit in large scale power caused by collapse of gas
into stars within halos 2.

The universal gas profile of Ref. [111] is obtained by assuming that the gas has a poly-
tropic equation of state P ∝ ργ with unknown γ and demanding hydrostatic equilibrium
within the gravitational potential well of the dark matter halo (assumed NFW, as above).
The two unknown parameters, γ and an integration constant from the equation for hydro-
static equilibrium, are fixed by demanding that the slope of the gas profile matches that
of the dark matter at twice the virial radius. Therefore, within this model, we explicitly
require that gas traces dark matter on the largest scales.

The fitting function for the AGN and SH models of Ref. [25] is given by 3

ρgas =
Ωb

Ωm

ρc(z)ρ̄0(m, z)

(
r

2R200(m, z)

)γ [
1 +

(
r

2R200(m, z)

)α(m,z)
]−(β(m,z)+γ)/α(m,z)

(A.36)
where γ = −0.2, R200(m, z) is radius at which the dark matter halo reaches a density
200ρc(z), and the parameters ρ̄0(m, z), α(m, z), and β(m, z) are fitted with a power law in
halo mass and redshift:

A = Ax0

(
M200

1014M�

)αxm
(1 + z)α

x
z (A.37)

with parameters in the AGN and SH model given from Table 2 of Ref. [25]. For the AGN
model, we have {Aρ00 , α

ρ0
m , α

ρ0
z } = {4000, 0.29,−0.66}, {Aα0 , ααm, ααz } = {0.88,−0.03, 0.19},

and {Aβ0 , αβm, αβz } = {3.83, 0.04,−0.025}. For the SH model, we have {Aρ00 , α
ρ0
m , α

ρ0
z } =

{19000, 0.09,−0.95}, {Aα0 , ααm, ααz } = {0.70,−0.017, 0.27}, {Aβ0 , αβm, αβz } = {4.43, 0.005, 0.037}.
2This can cause a ∼ 30− 50% decrease in power on large scales [175]
3To be consistent with a universal NFW profile, where β is the power law index at large r, one must

correct Eq. A1 of Ref. [25] as we have done here.
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In Fig. A.1 we compare the 1-halo terms in the power spectrum for the three gas
models to the 1-halo term for dark matter for halos in the range 1010M� < m < 1017M�.
The one halo term is the dominant contribution to the power spectrum over the plotted
range. On scales k.5 Mpc−1, one can approximate the gas power spectrum by the dark
matter power spectrum. At higher k, the difference between the gas profiles and dark
matter and among the various gas models becomes apparent, with the three models giving
different predictions at the ∼ 50% level. This is indicative of the ’theory’ error bar on the
electron power spectrum, which depends in detail on how the various feedback processes
are modelled.

10 1 100 101 102

k

0.0

0.2

0.4

0.6

0.8

1.0

P1h ee
/P

1h m
m

Universal
AGN
SH

Figure A.1: The ratio of the one halo gas power spectrum P 1h
ee and the one halo dark

matter power spectrum P 1h
mm for three models of the gas profile.

Galaxies

We model the distribution of galaxies within dark matter halos by the Halo Occupation
Distribution (HOD) model [28] of Refs. [114, 115]. This model has been calibrated using
measurements of the galaxy-galaxy power spectrum, galaxy-galaxy weak lensing, and the
stellar mass function [115] to a redshift of z = 1. We extrapolate the applicable redshift
range to z ∼ 4 using fits for the stellar mass-halo mass relation in Ref. [26]. This is the
’baseline HOD model’ of Ref. [91].

Briefly, the ingredients going into the HOD model are as follows. First, we assume
separate distributions for central and satellite galaxies. The number of central galaxies in
a halo is always 0 or 1, and centrals are at exact halo centers. The mean number of centrals
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N̄c(m) in a halo of mass m is fixed by the amount of stellar mass in each dark matter halo
and given by:

N̄c(m) =
1

2
− 1

2
erf

(
log10(mthresh

∗ )− log10 [m∗(m)]√
2σlogm∗

)
(A.38)

where m∗(m) is the stellar mass in a halo of mass m. We specify the galaxy sample
by imposing a threshold mthresh

∗ in stellar mass of observable galaxies, and we assume
a log-normal distribution for the stellar mass at fixed halo mass with constant redshift-
independent scatter σlogm∗ = 0.2 (consistent with [115]). We employ the model developed
in Ref. [26] for m∗(m), which we refer the reader to for more details. A fiducial threshold
is mthresh

∗ = 1010.5 M�, which corresponds to a halo mass of m ' 1012 M� at z = 0. In the
body of the text, we match the number densities for various surveys by adjusting mthresh

∗ .

For the satellite galaxies, we assume that the spatial profile is NFW, and the mean
number of satellites N̄s(m) in a halo of mass m is given by:

N̄s(m) = N̄c(m)

(
m

msat

)αsat

e−mcut/m (A.39)

We choose values for the free parameters msat, αsat, and mcut (which depend on the choice
of mthresh

∗ ) consistent with the ’SIG MOD1’ model of Ref. [115] (from the median redshift
bin). We show N̄c and N̄s at z = 0 for our choice of parameters in Fig. A.2.

1011 1012 1013 1014 1015 1016

m
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100

101

102

103

N
(z

=
0)
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Satellite
Total

Figure A.2: The number of central and satellite galaxies as a function of halo mass using

the assumed HOD at z = 0.

We define the one and two halo contributions to the galaxy-galaxy power spectrum as

157



(see e.g. [28]):

Pgg(k, z) = P 1h
gg (k, z) + P 2h

gg (k, z) (A.40)

P 1h
gg (k, z) =

∫ ∞
−∞

d lnm
mn(m, z)

n2
g

(
2
〈
Nc(m)Ns(m)

〉
uc(k)us(k|m, z) +〈

Ns(m)(Ns(m)− 1)
〉
us(k|m, z)2

)
(A.41)

P 2h
gg (k, z) = P lin(k, z)

[∫ ∞
−∞

d lnm mn(m, z)bh(m, z)

×
(
N̄c(m)uc(k) + N̄s(m)us(k|m, z)

ng

2)

(A.43)

Here, ng is the mean number of galaxies as a function of halo mass and redshift:

ng =

∫ ∞
−∞

d lnm mn(m, z)
(
N̄c(m) + N̄s(m)

)
. (A.44)

and uc(k), us(k|m, z) denote the Fourier-space profiles of the centrals and satellites. Since
we are assuming that centrals are at exact halo centers, and satellites are NFW-distributed,
we have uc(k) = 1, and us(k|m, z) is given by the Fourier-space NFW profile.4

The expectation values 〈Ns(m)(Ns(m)−1)〉 and 〈NcNs〉 appearing in Eq. (A.41) depend
on the assumed correlation between centrals and satellites. We consider two extremes: (1)
centrals and satellites are totally uncorrelated, and (2) a central is required for a satellite,
and therefore centrals and satellites are maximally correlated. In these cases, and assuming
that the number of satellites is Poisson distributed, a short calculation shows:

〈Ns(m)(Ns(m)− 1)〉 =

{
N̄s(m)2 if centrals and satellites are uncorrelated

N̄s(m)2/N̄c(m) if centrals and satellites are correlated
(A.45)

〈Nc(m)Ns(m)〉 =

{
N̄c(m)N̄s(m) if centrals and satellites are uncorrelated

N̄s(m) if centrals and satellites are correlated
(A.46)

4In Eqs. (A.41), (A.42), we have denoted the profile uc(k) explicitly, rather than setting it to 1. This is

to clarify a technical point which arises in §2.5 when modeling photometric redshift errors. As explained

there, photo-z errors modify galaxy profiles as u(k)→W (kr)u(k), where W (kr) is the Fourier-space photo-

z error distribution. This convolution is applied to both profiles uc(k), us(k). By Eqs. (A.41), (A.42) it

follows that both P 1h
gg (k) and P 2h

gg (k) are multiplied by factors of W (kr)
2, as claimed in the body of the

chapter (Eq. (2.80)).
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When deriving this, note that in the maximally-correlated model, the number of satellites
in a halo which contains a central (i.e. the conditional PDF P (Ns|Nc = 1)) is a Poisson
random variable with mean N̄s(m)/N̄c(m) (not mean N̄s(m)).

As our fiducial choice in the following we use the maximally-correlated model. At
the level of the galaxy galaxy power spectrum, the difference between these two models is
minimal (at the ∼ 5% level for k < 102 Mpc−1).

Examining the two-halo term, and using the property that ug(k|m, z) → 1 as k → 0,
we see that the linear galaxy bias is given by

bg(z) =

∫ ∞
−∞

d lnm mn(m, z)bh(m, z)
〈Nc(m)〉+ 〈Ns(m)〉

ng
(A.47)

yielding P 2h
gg (k, z) ' bg(z)2P lin(k, z) on large scales.

Cross-power

The one and two halo contributions to the cross-power between galaxies and gas (or matter)
is given by (see e.g. [28])

Pge(k, z) = P 1h
ge (k, z) + P 2h

ge (k, z) (A.48)

P 1h
ge (k, z) =

∫ ∞
−∞

d lnm mn(m, z)
m

ρm
ue(k|m, z)

〈Nc(m)〉uc(k) + 〈Ns(m)〉us(k|m, z)
ng

(A.49)

P 2h
ge (k, z) = P lin(k)

[∫ ∞
−∞

d lnm mn(m, z)bh(m, z)
〈Nc(m)〉uc(k) + 〈Ns(m)〉us(k|m, z)

ng

]
×
[∫ ∞
−∞

d lnm mn(m, z)

(
m

ρm

)
bh(m, z)ue(k|m, z)

]
(A.50)

where notation has been introduced above.

In Fig. A.3, we compare the auto and cross power for galaxies at redshifts z = 0 and
z = 1 including halo masses in the range 1010M� < m < 1017M� assuming the ’AGN’
model for the gas profile.

kSZ from the halo model

We will also need a model for the kSZ contribution to the CMB power spectrum CTT
l . We

model this as the sum of two terms, from late times (i.e. after reionization) and reionization.
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Figure A.3: Auto and cross power spectra in our halo model assuming the ’AGN’ model

for the gas profile at z = 0 (left) and z = 1 (right) including halo masses in the range

1010M� < m < 1017M�.

We use the model from [154] for the reionization contribution to CTT
l . We calculate the

late-time kSZ contribution in the well known non-linear approximation from [99]. The kSZ
angular power spectrum at large multipoles is dominated by the power spectrum of the
transverse momentum field, Pq⊥(k), and is given by [200]

C` =
1

2

(σT n̄e,0
c

)2
∫

dχ

χ2a4
e−2τPq⊥

(
k =

l

χ
, χ

)
. (A.51)

The power spectrum of the transverse momentum field can be approximated as [99]

P S
q⊥

(k, z) = ȧ2f 2

∫
d3k′

(2π)3
P nl
ee (|k− k′|, z)P lin

δδ (k′, z)
k(k − 2k′µ′)(1− µ′2)

k′2(k2 + k′2 − 2kk′µ′)

where P nl
ee is the non-linear power spectrum of the electron distribution, which we calculated

in the halo model. We show the resulting kSZ power spectra for different halo profiles in
Fig. A.4. The differences between these profiles at the `-range of interest in this work is
only of the order of 10%. However the true uncertainty on the kSZ signal size is likely
larger than that (compare for example the simulations in [175]). Nevertheless we are using
consistent assumptions in this work by calculating Pgg, Pge and Pee from the same model.
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Figure A.4: CMB power spectrum from kSZ from redshifts 0 < z < 6 calculated in the

halo model using different electron distribution profiles.
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Appendix B

Diagrammatic rules for the halo

model

The main purpose of this appendix is to derive Eqs. (3.57)–(3.67) for the non-Gaussian
six-point function 〈

δg(k1)δe(k2)δg(k3)δe(k4)vr(k5)vr(k6)
〉
ng

(B.1)

in the halo model. In general, n-point correlation functions in the halo model consist of
many combinatorial terms. A second purpose of this appendix is to show that these terms
can be enumerated using diagrammatic rules, similar to Feynman rules in QFT.

We consider the simplest version of the halo model, in which halos are linearly biased
tracers of a Gaussian field δlin (the linear density field). In this model, the expected number
of halos per volume per unit halo mass is:

s(M,x) = n(M)
(
1 + b(M)δlin(x)

)
(B.2)

where n(M) is the halo mass function and b(M) is the linear bias. We will call s(M,x)
the halo source field, and distingiush it from the halo density field δh(x), which is a sum
of delta functions. By assumption in the halo model, the halo density field is given by
Poisson-sampling the halo source field.

We consider fields δX which are sums over halos:

δX(k) =
∑
j

WX(Mj, k)e−ik·xj (B.3)
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where the j-th halo has mass Mj and position xj. In particular, in our collisionless ap-
proximation (§3.2.1), the electron field δe and galaxy field δg are of the form (B.3), with
weight functions WX(M, z) given by:

We(M,k) =
M

ρm
uM(k) Wg(M,k) =

{
1/nh if M ≥Mmin

0 if M < Mmin
(B.4)

where uM(k) is the Fourier-transformed density profile of a halo of mass M , normalized so
that uM(0) = 1.

B.1 Expectation values in a fixed realization of the

halo source field

Expectation values in the halo model can be calculated in two steps. First, we take
an “inner” average over Poisson-sampled halos, in a fixed realization of the source field
s(M,x). Second, we take an “outer” average over realizations of s(M,x), or equivalently
realizations of δlin(x) via Eq. (B.2). In this section, we will analyze the inner average. We
consider an n-point expectation value 〈δX1(k1) · · · δXn(kn)〉s, where the suffix 〈·〉s means
that the expectation value is taken over Poisson placements of halos, in a fixed realization
of s(M,x).

We plug in the definition (B.3) of δX , to write the expectation value as a sum over
n-tuples of halos:

〈
δX1(k1) · · · δXn(kn)

〉
s

=

〈 ∑
j1,··· ,jn

(
n∏
i=1

WXi(Mji , ki)e
−iki·xji

)〉
s

(B.5)

Then, as usual in the halo model, we split the sum into combinatorial terms, based on
which elements of the n-tuple (j1, · · · , jn) are equal to each other. For example, consider
the four-point function 〈

δg(k1)δe(k2)δg(k3)δe(k4)
〉

(B.6)

which is a subset of the six-point function (B.1). Writing the four-point function as a sum
over halo quadruples, we could keep terms (j1, j2, j3, j4) such that

j1 = j4 = j and j2 = j3 = j′ with j 6= j′ (B.7)
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obtaining a contribution which we will denote by T :

T =

〈∑
j 6=j′

(
Wg(Mj, k1)We(Mj, k4)e−i(k1+k4)·xj

)(
We(Mj′ , k2)Wg(Mj′ , k3)e−i(k2+k3)·xj′

)〉
s

(B.8)
This term T is one of 7 “two-halo” terms which contribute to the four-point function (B.6),
out of 15 total terms. Physically, T corresponds to summing over all quadruples (g1, e2, g3, e4)
such that galaxy g1 and electron e4 are in one halo, and galaxy g2 and electron e3 are in a
different halo. To compute T , we replace each sum

∑
j by an integral

∫
d3x dM s(M,x),

obtaining:

T =

(∫
d3x dM Wg(M,k1)We(M,k4)s(M,x)e−i(k1+k4)·x

)
×
(∫

d3x′ dM ′We(M
′, k2)Wg(M

′, k3)s(M ′,x′)e−i(k2+k3)·x′
)

=

(∫
dM Wg(M,k1)We(M,k4)s(M,k1 + k4)

)(∫
dM ′We(M

′, k2)Wg(M
′, k3)s(M,k2 + k3)

)
(B.9)

We now introduce diagrammatic notation, representing this equation by the diagram:

T =


M

δg(k1) δe(k4)

M ′
δe(k2) δg(k3)

 (B.10)

where diagrams are translated to equations using the rules:

· · ·
k1k2 kn

M

=

∫
dM s(M,

∑
ki) M

δX(k)
= WX(M,k) (B.11)

In general, an n-point correlation function 〈δXi(ki) · · · δXn(kn)〉s is the sum over all dia-
grams obtained using these rules. External lines in the diagrams correspond to fields being
correlated, and vertices correspond to halos.
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B.2 Fully averaged expectation values

The diagrammatic rules just derived in Eq. (B.11) correspond to an expectation value 〈·〉s
over Poisson placements of halos, in a fixed realization of the halo source field s(M,x).
In this section, we take the “outer” expectation value over s. We also consider n-point
functions which contain factors of the linear density field δlin(k), or the radial velocity vr(k),
so that our machinery will be general enough to calculate the six-point function (B.1).

In general, the source function s(M,x) will depend on the halo bias model. We
will consider the simplest possibility, namely the linear bias model s(M,x) = n(M)(1 +
b(M)δlin(x)), or equivalently in Fourier space:

s(M,k) = n(M)
[
(2π)3δ3(k) + b(M)δlin(k)

]
(B.12)

Now consider a quantity which depends on the halo source field s(M,k), such as the term
T from the previous section:

T =

∫
dM dM ′Wg(M,k1)We(M,k4)We(M

′, k2)Wg(M
′, k3)

[
s(M,k1 + k4)s(M,k2 + k3)

]
(B.13)

To average over s, we replace all factors of s by the RHS of Eq. (B.12), and take the
expectation value over δlin using Wick’s theorem. This gives:

〈T 〉 =

∫
dM dM ′Wg(M,k1)We(M,k4)We(M

′, k2)Wg(M
′, k3)n(M)n(M ′)

×
[
(2π)6δ3(k1 + k2)δ3(k3 + k4) + b(M)b(M ′)(2π)3δ3(

∑
ki)
]

(B.14)

Diagramatically, we represent this procedure for averaging over s as follows. We start
with the diagram (B.10) representing T , in which each hollow circle contains one factor of
s(M,k). We sum over all ways of either pairing vertices with wavy lines (representing a
Wick contraction proportional to Plin), or leaving vertices unpaired. In the case of T , there
are two possibilities:

M
δg(k1) δe(k4)

M ′
δe(k2) δg(k3)

M
δg(k1) δe(k4)

M ′
δe(k2) δg(k3)

(B.15)
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where the diagrams are interpreted using the following diagrammatic rules:

· · ·
k1k2 kn

M

=

∫
dM n(M) (2π)3δ3(

∑
ki) M

δX(k)
= WX(M,k)

· · ·
k1k2 kn

q
M

=

∫
dM n(M)b(M) (2π)3δ3(q +

∑
ki)

q
=

∫
d3q

(2π)3
Plin(q)

(B.16)

Note that we use hollow vertices in diagrams where s is not averaged (Eq. (B.11)), and
solid vertices in diagrams where s is averaged (Eq. (B.16)).

A n-point expectation value of the form 〈δXi(k1) · · · δXn(kn)〉 may be computed by
enumerating all diagrams, using the preceding diagrammatric rules. An n-point function
which also contains factors of δlin(k) or vr(k), such as the six-point function (B.1), can be
represented diagrammatically by adding the following external lines:

δlin(k)
= Plin(k)

vr(k)
=
ikr
k
Pmv(k) (B.17)

where we have assumed that vr(k) is evaluated on a linear scale, so that vr(k) = (ikr/k)v(k) =
(ikr/k)(faH/k)δlin(k).
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B.3 The six-point function 〈δ2
gδ

2
ev

2
r〉

We calculate the non-Gaussian six-point function (B.1) using the diagrammatic rules in
Eqs. (B.16), (B.17). Up to permutations of external legs, there are five possible diagrams:

D1 =


δg(k1) δe(k2)

vr(k5)

δg(k3) δe(k4)

vr(k6)
 D2 =


δe(k2)

δg(k3)

δe(k4)

δg(k1)

vr(k5)

vr(k6)



D3 =


δg(k1)

δe(k2)

δg(k3)

δe(k4)

vr(k5)

vr(k6)
 D4 =


δg(k1)

δe(k2)

δg(k3)

δe(k4)

vr(k5)

vr(k6)


D5 =


δg(k1)

δe(k2)

δg(k3)

vr(k5)

vr(k6)

δe(k4)

 (B.18)
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In particular, there are no fully connected diagrams, as claimed in the main text (§3.5.3).
We evaluate these diagrams as follows (denoting ki1···in = (ki1 + · · ·+ kin)):

D1 =

(∫
dM n(M)b(M)Wg(M,k1)We(M,k2)

ik5r

k5

Pmv(k5) (2π)3δ3(k125)

)
×
(∫

dM ′ n(M ′)b(M ′)Wg(M
′, k3)We(M

′, k4)
ik6r

k6

Pmv(k6) (2π)3δ3(k346)

)
= −β1(k2)β1(k4)

k5rk6r

k5k6

Pmv(k5)Pmv(k6) (2π)6δ3(k125)δ3(k346) (B.19)

D2 =

(∫
dM n(M)b(M)We(M,k2)Wg(M,k3)We(M,k4)

ik6r

k6

Pmv(k6)(2π)3δ3(k2346)

)
×
(∫

dM ′ n(M ′)b(M ′)Wg(M
′, k1)

ik5r

k5

Pmv(k5)(2π)3δ3(k15)

)
= −bβ2(k2, k4)

k5rk6r

k5k6

Pmv(k5)Pmv(k6) (2π)6δ3(k2346)δ3(k15) (B.20)

D3 =

∫
dM n(M)Wg(M,k1)We(M,k2)Wg(M,k3)We(M,k4)Pvr(k5) (2π)6δ3(k1234)δ3(k56)

=
α2(k2, k4)

nh
Pvr(k5) (2π)6δ3(k1234)δ3(k56) (B.21)

D4 =

∫
dM dM ′ n(M)n(M ′)Wg(M,k1)We(M,k2)Wg(M

′, k3)We(M
′, k4)

× b(M)b(M ′)Plin(k1 + k2)Pvr(k5) (2π)6δ3(k1234)δ3(k56)

= β1(k2)β1(k4)Plin(k1 + k2)Pvr(k5) (2π)6δ3(k1234)δ3(k56) (B.22)

D5 =

∫
dM dM ′ n(M)n(M ′)Wg(M,k1)We(M,k2)Wg(M,k3)We(M

′, k4)

× b(M)b(M ′)Plin(k4)Pvr(k5) (2π)6δ3(k1234)δ3(k56)

= β1(k2)β1(k4)Plin(k4)Pvr(k5) (2π)6δ3(k1234)δ3(k56) (B.23)

where for each diagram, the first line on the RHS gives the result of applying the diagram-
matic rules straightforwardly, and the second line uses the α, β notation from Eqs. (3.54)–
(3.56).

Comparing with the expression for the six-point function in the main text (Eqs. (3.57)–
(3.67)), the diagram D1 is the term (Qk1k2k5Qk3k4k6) on the first line of Eq. (3.57). One
can check that the other five QQ-terms in (3.57) are obtained by permuting external legs
of D1.
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There is a similar story for the other diagrams. The diagram D2 is the first PR-term
on the second line of Eq. (3.57), and the other seven PR-terms are obtained by permuting
external legs of D2. The diagram D3 corresponds to the first S-term in Eq. (3.57). The
next three S-terms in (3.57) correspond to the diagram D4, and diagrams obtained from D4

by permuting external legs. Finally, the last four S-terms in (3.57) correspond to D5, and
diagrams obtained from D5 by permuting external legs. Putting all 22 diagrams together
gives the six-point function shown in the main text (Eqs. (3.57)–(3.67)). Deriving this
result was the main goal of this appendix.

B.4 Discussion and generalizations

Diagrammatic rules make some properties of the halo model more transparent. For exam-
ple, a connected n-point function 〈δX1(k1) · · · δXn(kn)〉c consists of a one-halo term, plus
(2n−1−1) two-halo terms containing one power of Plin, with no terms with ≥ 3 halos. This
is easy to see from the diagrammatic rules, but not so obvious otherwise.

We have only considered the simplest version of the halo model: linearly biased tracers
of a Gaussian field. The diagrammatic rules can be extended to generalizations of this
model as well. We sketch a few examples, without attempting to be exhaustive.

Our assumption of linear halo bias can be generalized, for example by a higher-order
bias model of the form δh = bδlin + b2δ

2
lin + · · · . This can be incorporated by adding new

vertices to the diagrammatic rules in Eq. (B.16), such as:

· · ·
k1k2 kn

q1 q2

M
=

∫
dM n(M)b2(M) (2π)3δ3(q1 + q2 +

∑
ki) (B.24)

This would give rise to loop diagrams and renormalization, whereas linear bias (as assumed
in the main paper) only produces tree diagrams.

As another extension of the halo model, suppose that galaxies are derived from halos
using an additional level of Poisson sampling. More precisely, assume that in a halo of mass
M , the number of galaxies is a Poisson random variable with mean Ng(M), and the spatial
location of each galaxy is a random variable with profile ug(M,k). We introduce square
vertices for galaxies (continuing to denote halos by circular vertices), which are endpoints
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for external legs of the form δg(k). For example, the following diagram represents a one-
halo, two-galaxy term in the three-point function 〈δg(k1)δg(k2)δg(k3)〉:

δg(k1)

δg(k2)
δg(k3)k1 + k2 k3

=
1

n3
g

∫
dM n(M)Ng(M)2ug(M,k1 + k2)ug(M,k3)

(B.25)
Multiple galaxy populations (e.g. centrals and satellites) can be handled by introducing
multiple galaxy vertex types.

Finally, the halo model is sometimes generalized by including nonlinear evolution of
the density field, rather than assuming s is proportional to δlin. Nonlinear evolution can be
incorporated by adding interaction vertices which couple three or more wavy lines ( ),
in a way which is familiar from standard cosmological perturbation theory (for a review
see [29]). Indeed, diagrammatic rules are frequently used for perturbative calculations
involving continuous LSS fields. In this appendix, we have shown how to extend these
rules to include discrete fields derived by Poisson sampling, such as halos and galaxies.
This way of enumerating combinatorial terms in the halo model is convenient, especially
for higher-n correlation functions, where the number of terms is large.
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