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Abstract—A tight integration of quantum accelerators with
high-performance computers (HPC) necessitates relocating the
often highly sensitive quantum devices from controlled lab-
oratory environments to noisy data centers. Various factors
impacting fidelity must be tracked and mitigated to ensure the
performance of quantum computers in such environments. This
paper describes a monitoring system utilizing Internet of Things
(IoT) technology incorporating multiple sensors to gather and
feed data into a data center-wide database. The data collected
is then analyzed to identify correlations between fidelity and
environmental factors. Using this data, we propose a novel,
adaptive calibration mechanism in which a machine learning
model predicts the optimal calibration timing for the quantum
computer based on fidelity prediction with varying environmental
conditions. In the larger scope, this research aims to enhance our
understanding of fidelity-altering factors and develop strategies
for maintaining optimal quantum computer performance in real-
world, noisy data center environments.

Index Terms—High-Performance Computing, Quantum Com-
puting, Monitoring, Operational Data Analytics, Sensor

I. INTRODUCTION

Various quantum technologies and systems exist to build

quantum computers or quantum processing units (QPUs).

Some of the more prominent include superconducting qubits

[1], trapped ions [2], neutral atoms [3], nitrogen vacancies

(NV) in diamonds [4], silicon quantum dots [5], and photonic

platforms [6]. Such quantum systems generally have (effec-

tive) two-level states with long coherence times capable of

being initialized, coherently manipulated, and read out [7].

Moreover, the peculiar features of quantum systems, such

as superposition and entanglement, make quantum computing

more attractive than classical computing for some algorithms

[8]. However, while in the noisy intermediate-scale quantum

(NISQ) era [9], these QPUs are very restricted by their number

of qubits and their relatively short decoherence time [10].

In an ideal situation, quantum systems should be isolated

from the environment. In reality, however, they cannot avoid

coupling to the environment when controlling signals route

to the QPUs. Thus, they may lose their coherence, and the

coupling may increase the error rate or make the machine

unusable. The challenge here is to minimize such couplings

[11]. Further, many surrounding environmental factors – in-

cluding temperature, magnetic/electric fields, mechanical vi-

bration/rotation, acoustical noise, and pressure – may also

affect the performance of QPUs. To fully understand the

operating conditions and the impact they can have, it is,

therefore, necessary to track them. For this purpose, we

set up a comprehensive multi-sensor system to monitor the

surrounding environment of quantum computers (QCs) and

their supporting systems to investigate how the environment

alters the behavior of QPUs.

Fig. 1. Workflow description for the inputs from DCDB and quantum results
and outputs of the calibration interface for calibration prediction.

The Data Center Data Base (DCDB) [12] provides a conve-

nient and scalable monitoring solution in a uniform format

for data retrieval and storage from various sensor sources.

DCDB is already in large-scale production use for existing

HPC systems, albeit with different sensors, often in the form

of hardware performance counters. It uses modular plugins for

data acquisition from arbitrary data sources and relies on the

Message Queuing Telemetry Transport (MQTT) [13] protocol

for data transmission. As part of this work, we have adopted

DCDB for use on QPUs by developing and deploying new

plugins capable of tracking quality metrics of QPUs as well

as environmental sensors from the operation environment in

the Leibniz Supercomputing Centre (LRZ) testbed known as

BEAST (Bavarian Energy, Architecture, & Software Testbed).

Access to DCDB’s monitoring data is provided via a Grafana

frontend that allows easy visualization with a well-established

tool. Data can also be queried via command line tools and a
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shared library that enables integration with third-party software

and analysis models.

Using the integrated quality and sensor metrics via the

DCDB database, we propose a novel calibration scheme

(shown in Fig. 1), which applies the collected data to predict

the needed recalibration times of the QPU. This information

can then be fed to several sources, such as a quantum resource

manager, for use in scheduling decisions or a calibration

database to enhance the performance of calibration prediction

models further.

Our prediction model identifies fidelity changes influenced

by environmental or QPU-related factors. If needed, it raises

a calibration flag to indicate the need for adjustments in

environmental factors or QPU calibration. The system notifies

the responsible individuals and sends the calibration prediction

to the resource manager. This calibration prediction plays

a crucial role in HPC environments, as it helps identify

the optimal balance between quantum computer up-time and

circuit fidelity.

The structure of the paper is as follows: Section II discusses

a superconducting circuit quantum computer and its quality

metrics, including coherence time, the fidelity of gates and

calibration schemes. Section III covers the sensor project at

LRZ, discussing the various kinds of sensors installed or

planned. As one example, the section focuses on temperature

monitoring. Section IV introduces our novel prediction model

for calibrating a quantum system. Section V concludes the

paper.

II. QUANTUM COMPUTER IN LRZ

At LRZ, we have installed a superconducting circuit quan-

tum computer from the company IQM, referred to as System

1, which currently hosts a 5-qubit (Q5) QPU. An upgrade to

20-qubit QPU will occur in late 2023. The QPU comprises

superconducting qubits, couplers, control, and readout lines.

It can properly work when cooled to 10-15mK by a dilution

refrigerator (cryostat) with a mixture of Helium 3 and Helium

4. The QPU is manipulated by controlling microwave elec-

tronics (in the rack), which is operated at room temperature

and connected to the QPU through the co-axial wires and

amplifiers, attenuators, filters, and mixers (see Fig. 2).

The qubits are based on transmons [11] with typical mi-

crowave frequencies (5−10GHz). In such superconducting

qubits one can get fast single- and two-qubit gates on nanosec-

ond (ns) time scales with high fidelity of gate operations (e.g.

∼ 99.5% for two-qubit gates). The gate operations on the

qubits are rather stable and the number of qubits can be easily

scaled in the fabrication.

A. Quality Metrics of QPU

To calibrate the QPU, the resonator spectroscopy of readout

lines has firstly to be determined. Then we characterize single

qubits by sending a sequence of pulses and measuring their

outputs. In the Q5 chip there are flux lines that can tune

the qubit frequencies. The drive frequency of an individual

qubit is determined by the Rabi and Ramsey sequences. The

Fig. 2. The Quantum computer System 1 (Q5: 5 qubits) in LRZ. There is an
installation of 35 temperature sensors on the cryostat frame.

corresponding coherence time T1 (energy relaxation) and T2

(dephasing) are further analysized by the means of Xπ pulse

and Xπ/2 pulse, respectively [11]. Within T1, the qubit in a

state will remain without decaying to another state. Within

T2, the qubit in a superposition state will keep the phase

relationship between the two terms without dephasing to an

orthogonal state. Therefore, good qubits with long coherence

time are needed to achieve useful calculation times, and

calibration is essential to achieve optimal T1 and T2. Fig. 3

shows T1 and T2 after one complete calibration.

Fig. 3. The decay time (T1) and the dephasing time (T2) of the Q5 chip with
a star topology. The time unit is microseconds.

Given the proper qubit characteristics the readout may be

further optimized by tuning its frequency and pulse amplitude

and phase through a couple of sweeps. In our Q5 chip the

native gates are rotation gates (R) and the Controlled-Z gate

(CZ). The CZ gate fidelity is determined by the interleaved

randomized benchmarking experiment, in which a sequence of

Clifford gates C1,CZ,C2,CZ, . . . ,CN−1,CZ followed by its

inverse is measured. The procedure is repeated for a number

of sequences with different lengths. Then the depolarizing

parameter extracted from the survival probability of the initial

state as a function of the sequence lengths can give us the gate

fidelity. The detailed quality of the gates and readout in Q5 is

shown graphically in its error map, see Fig. 4.
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Fig. 4. The error map of the Q5 chip after one calibration: readout errors,
single-qubit gate and two-qubit gate (CZ) errors. The error map is generated
using Qiskit [14].

B. Calibration Scheme: Static and Dynamic

In LRZ a standard routine of calibrating QPUs is being

set up. Our goal is to build up scalable calibration matrices

and integrate them into our HPC workflow, database and job

performance management.

A set of measurements have been added to our calibration

setup as a quality metric set, including routines to extract

T1, T2, Rabi, Ramsey, single-shot readout fidelity, single-qubit

gate fidelity, two-qubit gate fidelity, and state tomography [11].

The number of measurement shots is fixed. The systematic re-

calibration procedure is currently designed as the following.

When the performance is still within bounds since the last

calibration, we re-characterize the qubit readout, single-qubit

gates, and CZ gates with a small number of runs. If the

system worsens, we execute an extended process, adding more

detailed runs. When the calibration is complete, a new quality

metric data set is created, and the quality of QPU is updated

with these fresh values. These static data are collected, ported

into the DCDB, and traced for further executions, e.g., error

mitigation.

Besides the static quality metric set, we also build a dynamic

data set, which monitors dynamically the quality of qubits and

gates. As soon as the quality is lower than some thresholds, a

re-calibration will be triggered.

III. ENVIRONMENTAL FACTORS MONITORED BY SENSORS

The Q5 quantum computer resides in LRZ’s Quantum In-

tegration Centre (QIC). Two centrally placed air conditioning

units (HVAC: Heating, Ventilation, Air Conditioning) maintain

temperatures of approximately 20◦C. Also located in the

same room are the related microwave control electronics and

controllers for fridge temperature and vacuum. On the other

side of the room, two compute racks house the conventional

access computers for the QPU and a Raspberry Pi 4B (RPI)

for gathering environmental data. The RPI is connected via a

100Mb LAN cable to a private VLAN for security, while we

can still ssh to the RPI for maintenance and updates.
Next to the main room is its accessory machine room, which

houses the cryostat’s compressors, coolers, and gas handling

system (GHS). Since this equipment produces mechanical

vibrations, electromagnetic fields, and acoustic noise, they

reside in this separate space. With various physical sensors

installed, we seek to understand which physical qualities

influence the QPU.

A. Environmental Sensors: Installed
As the monitoring project at LRZ is currently in the build-

up phase, we currently rely on four sensor groups, which we

expect to be among the most critical.
1) Temperature: On the frame of the cryostat, we provide

35 temperature sensors, one every ten centimeters, covering

the room height from 0 cm (floor) to 340 cm (almost ceiling

height). Each sensor is of the type DS18B20. They are all

connected to a 1-wire bus routed to the RPI, where a DS2480B

connects it to the serial port of the RPI. This way, the

long 1-wire lines having to traverse the whole room are

met with a controlled impedance, which minimizes ringing

and transmission errors. All temperatures are measured every

minute. Fig. 2 shows the sensors on the frame.
2) Movement: Humans near the fridge can introduce an

unwanted coupling to the QPU, e.g., through phonons (vibra-

tions) that might transmit through the frame and the cryostat

vessel to the QPU. They can also be the source of increased

temperature, especially in larger groups. In order to detect

human presence in the room, we use a Passive Infrared (PIR)

sensor, type HC-SR501, mounted to a cable duct close to the

ceiling and centrally in the room. This sensor has a wide

field of view and detects the movement of heat sources (e.g.,

humans) anywhere in the room. Its on/off output is connected

to a General-purpose Input/output (GPIO) input pin on the

RPI. Every change in the logical state of this line triggers an

interrupt, which in turn writes a data point to our database.
3) Fridge Temperatures: Several temperatures and pres-

sures inside the cryostat are being measured and recorded

using vendor interfaces. Variations in the QPU temperature

may indicate problems with the cryostat system.
4) Liquid Nitrogen: In the machine room, liquid nitrogen

(LN2) is used by the GHS to freeze out and remove impurities

from the cooling system. Therefore, LN2 must continuously

pump into the GHS, and it is necessary to monitor the volume

of the supply vessel as the LN2 is consumed and evaporates.

To this end, we weigh the supply vessel automatically with an

industrial scale of type IFB 60K-3L-2023e from KERN every

hour and compute the amount of LN2 still in the vessel. This

amount is then stored in the DCDB.

B. Environmental Sensors: Planned
While the above sensors give us a first set of critical metrics

for monitoring, optimizing, and calibrating QCs in data center

environments, many more potential sources for coupling exist.

We are, therefore, in the process of adding additional sensors

or sensor groups.
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1) Air Humidity: Humidity is also controlled by the HVAC

units; however, keeping a record of it is important, as elec-

tronic circuits may fail if the humidity is too low or too high.

2) Air Pressure: Variations in air pressure, which are not

controlled, may indicate the opening or closing of doors or

windows or a change in weather, like impending thunder-

storms, which may influence the QPU.

3) Light: While light might not directly influence the QPU

due to its opaque shielding by the vacuum vessel, light sensor

is triggered to indicate the fluorescent ceiling lights, which

may create electromagnetic stray fields.

4) Vibration: A very sensitive industrial seismome-

ter/accelerometer, mounted directly to the cryostat frame, can

detect minute vibrations that might couple to the QPU.

5) Acoustic Noise: Acoustic noise, be it from people chat-

ting or surrounding systems and their fans operated on the

same machine floor, might also influence the QPU and will

be measured by a sensitive microphone. Only its amplitude

will be registered, not speech contents (to fulfill data privacy

laws). We will also perform an audio spectrum analysis on the

noise to isolate predominant frequencies that might interfere,

especially with trapped ion QPUs.

6) Electromagnetic Fields: Despite the heavy metallic

shielding, electromagnetic fields might leak to the QPU. We

will measure electric and magnetic fields in the low-frequency

range of 20 Hz to 10kHz.

7) Radioactivity: Cosmic rays are very powerful and might

penetrate the QPU shielding. We will install a Geiger counter

above the cryostat to register abnormal events.

8) Water Temperatures in the Cooling System: At several

critical points, we will measure the temperatures of our

cooling systems via MODBUS industrial sensors to detect

malfunctions or errors early on.

9) AC Power Condition: We use several 3-phase AC power

circuits to supply our equipment. We will measure not only

power consumption but also power noise on these lines.

10) Data from Building Sensors: We will measure and

record the power consumption of nearby large power con-

sumers, including building elements like elevators and large-

scale HPC systems with their power fluctuations.

All of these sensors, which will be handled through addi-

tional DCDB plugins and fed into the same database to enable

correlation analysis, will help us fully track the environmental

conditions in the QIC setup and the QC systems in HPC

production environments. This new operational monitoring

will be crucial for successfully operating and optimizing

hybrid HPCQC setups.

C. Environmental Data Monitoring and Alerting

In this subsection, we present the monitoring of temperature

parameters, including room temperatures, cryostat data, and

liquid nitrogen containers. All temperature data is stored in

the DCDB database. Using the versatility of DCDB, we have

developed a custom script running as a system service on the

same machine, which uses the Prometheus client library [15]

and collects real-time data from sensors. The script scrapes

the latest values from the DCDB database every five seconds.

These values are transformed into numerical metrics using the

gauge identified by the label of sensors.

The scraped metrics are made accessible via a dedicated

HTTP server. Open-source monitoring and alerting tools

Prometheus and Alert Manager [15] are employed on another

virtual machine to monitor various real-time metrics contin-

uously. We define a temperature threshold of 25.5◦C for the

room and 15mK for cryostats. Beyond those points, potential

risks to the QPU may arise. Whenever the temperature rises

above this threshold, Prometheus triggers an alert managed

by the Alert Manager configured to send notifications through

email using the capabilities of webhook integration. Addition-

ally, alert messages are pushed to an internal chat channel

for the operations team. Through our internal platform for

real-time collaboration and communication, our monitoring

system allows recipients to promptly address any environ-

mental anomalies that may impact the quantum computing

infrastructure. Fig. 5 shows one recent event as an example.

Fig. 5. Display of room temperatures and movement in the lab. On June
23rd, 2023, at midnight, both HVAC units were lost and the room temperature
increased to almost 30◦C.

IV. DATA PREDICTION MODEL FOR CALIBRATING QC

The setup described above enables gathering a wide range

of data from the quantum computer and its environment. The

next step is to utilize this data to improve system operation.

For this, we introduce a novel prediction scheme to estimate

calibration times and enable an automatic calibration setup.

Such capability is essential for operating QC systems in

production data center environments, which typically have

access restrictions, Service Level Agreement (SLA) uptime

requirements, and environments geared towards HPC systems

instead of QCs.

A. Assessing Gate/Circuit Fidelities

The fidelity of the quantum gates is one of the key features

of benchmarking QPUs. There are multiple approaches to

computing gate fidelity. The most common one, which we

follow as well, is to apply a sequence of unitaries to retrieve

the initial state, i.e., given a gate U the fidelity can be
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captured by the expression 〈ψ|UU†|ψ〉. This is the so-called

randomized benchamrking protocol when U includes a random

sequence of gates.

For this approach, we implement several experimental cir-

cuits using random unitary gates to examine the fidelity decay

with increasing depth. This intends to retrieve the original state

using these random circuits. The fidelity of each circuit run

is then measured using the Qiskit Ideal quantum circuit state

vector simulator using the Hellinger fidelity technique.

The experimental circuit is implemented in Qiskit, utiliz-

ing the native gates of the QPU to avoid any transpilation

processes that may affect the circuit’s processing. We use the

QuantumCircuit.r(θ, φ, qubit) function to apply the R gate to

all five qubits of the system. For this experiment, we set θ to

−π/2 and φ to π.

To facilitate the analysis, the tests are automated to run

the circuit every five minutes, incrementing the depth by

one for each qubit and saving the results in a database for

further analysis. The decay of fidelity as the depth increases

is depicted in Fig. 6.

Fig. 6. The degradation of fidelity as the depth of the circuit increases,
reaching a maximum depth of 48.

B. Correlations

We then use analysis models to establish correlations be-

tween various parameters. As anticipated, the primary corre-

lation observed is between fidelity and depth. Investigating

the correlation between fidelity and time in this context is less

informative since depth increases with time. Before executing

the main circuit, a secondary circuit comprising two unitary

gates is executed on each qubit to assess the fidelity of minimal

circuits on different qubits and detect any fidelity variations

over time.

The correlations among various factors are presented in the

table represented in Fig. 7. Analyzing these correlations fa-

cilitates the development of a prediction model for estimating

fidelity as different factors vary across circuits and parameters.

To investigate the impact of time on fidelity, we devise an

additional experiment that maintains a constant circuit depth

Fig. 7. Illustration table of the correlation coefficients among different
parameters in the experimental circuits. The ”time stamp” column rep-
resents the time, the ”depth” column represents the circuit depth, the
”hellinger fidelity circuit” column represents the fidelity of the circuit, and
the ”hellinger fidelity Q0” column represents the fidelity of the minimal
circuit applied on each qubit.

while executing the circuit every five minutes under identical

conditions as the previous experiment. In this iteration, we

use a two-qubit native Controlled-Z gate, taking into account

the star layout of the QPU to minimize transpilation and

prevent any optimization applied to the designed circuit. The

correlation between fidelity and time is shown in Fig. 8. The

time is normalized between 0 to 1 by prepossessing for better

analysis.

Fig. 8. Illustration of the correlation between the ”time stamp” representing
the normalized time (horizontal-axis), and the ”hellinger fidelity circuit”
representing the fidelity of the circuit (vertical axis).

C. Structural Analysis for Environmental Factors

Further, we add several environmental measurements from

our sensor setup to enable further analysis and explore their

correlation with fidelity. Due to the limited duration of our

initial experiments (approximately 17 hours) and the frequency

of experimental circuit runs (every five minutes), certain

environmental factors exhibited minimal variance and are not

included in this analysis. The analysis, then, focuses on the

following environmental factors: room temperature, mixing

chamber temperature in the cryostat, and cryostat pressure

(P1). Other environmental data captured by sensors, such as

laboratory movement and various pressures and temperatures

at different stages of the cryostat, are excluded due to their
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limited variance within the experiment duration but will play

a crucial role in our planned longtime studies.

The analysis reveals a notable correlation between vacuum

can pressure in the cryostat measured in (pBars) and fidelity,

with a correlation coefficient of +0.495, as shown in Fig. 9.

Fig. 9. Correlation between Pressure vacuum can pressure in cryostat (pBar)
and fidelity.

D. Prediction

To determine how fidelity decays over time we run an

experiment using a CZ gate configuration that matches the

topology of our QPU on all 5 qubits at a depth of three. We

include the environmental and QPU-related factors with time-

stamps as indices to predict the fidelity over 24-hour window.

We continuously ran the circuit every five minutes without

conducting any changes to the circuit to observe how fidelity

decays over time. Given the nature of our time-series data,

several considerations influenced our choice of the prediction

model. First, the presence of impulse signals, such as move-

ment sensors data within the laboratory environment (see Fig.

5), necessitates a model capable of detecting data shifts. Sec-

ond, while our fidelity prediction strive for utmost accuracy,

a margin of approximately 2%-5% in fidelity estimation is

acceptable, though this range may be subject to adjustment

based on specific application requirements. Consequently, a

fundamental requirement is the model’s ability to generate

uncertainty intervals encompassing the projected values, ac-

commodating this acceptable variability. A third consideration

is the ease of parameter tuning, ensuring that adjustments

do not compromise the model’s accuracy. Equally vital is

the fourth aspect: scalability. The model must seamlessly

accommodate the integration of new sensors and the escalated

frequency of quantum computer job submissions. This neces-

sitates the model’s proficiency in handling substantial datasets,

while remaining resilient to both missing data instances and

outliers that may arise. Consequently, our chosen approach

revolves around a general forecasting model, aligning with our

overarching utilization – forecasting prediction. To this end,

we opt for the implementation of the ”Prophet” forecasting

model [16] to predict fidelity 24 hours after the experiment

run-time. We divide the data into 80for training and 20% for

testing. The model shows an accuracy of 73.5510335%. The

prediction graph is shown in Fig. 10

Fig. 10. Prediction of the fidelity over a 24-hour period using forecasting
prediction model.

V. CONCLUSION

In summary, we have investigated the influence of the envi-

ronment on a quantum computer by installing various sensors.

We have developed workflows that seamlessly integrate the

data collection from various sensors into a database, DCDB.

Further, a machine learning-based prediction model has been

built based on the data collected into the DCDB, resulting

in optimal triggering of the re-calibration of the quantum

system. In the future, as more data is collected over a longer

time, we aim to establish stronger correlations between various

environmental factors and the performance of the quantum

computer.

In Ref. [17], the authors have established a method to

estimate the fidelity of the quantum circuits by introducing

the notion of Probability of Successful Trails (PST). The

above quantity being monotonically related to the fidelity, we

aim to leverage the above measure to estimate the fidelity

of quantum computers better. There have also been recent

proposals, for instance, Ref. [18], where a relationship between

a random circuit and feature vectors of a neural network has

been explored. In the current context, the above ideas can be

inverted, wherein the neural network trained on the sensor

data can be mapped to a random circuit, therefore resulting in

a quantum circuit capturing the environmental effects.
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