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Abstract—A tight integration of quantum accelerators with
high-performance computers (HPC) necessitates relocating the
often highly sensitive quantum devices from controlled lab-
oratory environments to noisy data centers. Various factors
impacting fidelity must be tracked and mitigated to ensure the
performance of quantum computers in such environments. This
paper describes a monitoring system utilizing Internet of Things
(IoT) technology incorporating multiple sensors to gather and
feed data into a data center-wide database. The data collected
is then analyzed to identify correlations between fidelity and
environmental factors. Using this data, we propose a novel,
adaptive calibration mechanism in which a machine learning
model predicts the optimal calibration timing for the quantum
computer based on fidelity prediction with varying environmental
conditions. In the larger scope, this research aims to enhance our
understanding of fidelity-altering factors and develop strategies
for maintaining optimal quantum computer performance in real-
world, noisy data center environments.

Index Terms—High-Performance Computing, Quantum Com-
puting, Monitoring, Operational Data Analytics, Sensor

I. INTRODUCTION

Various quantum technologies and systems exist to build
quantum computers or quantum processing units (QPUs).
Some of the more prominent include superconducting qubits
[1], trapped ions [2], neutral atoms [3], nitrogen vacancies
(NV) in diamonds [4], silicon quantum dots [5], and photonic
platforms [6]. Such quantum systems generally have (effec-
tive) two-level states with long coherence times capable of
being initialized, coherently manipulated, and read out [7].
Moreover, the peculiar features of quantum systems, such
as superposition and entanglement, make quantum computing
more attractive than classical computing for some algorithms
[8]. However, while in the noisy intermediate-scale quantum
(NISQ) era [9], these QPUs are very restricted by their number
of qubits and their relatively short decoherence time [10].

In an ideal situation, quantum systems should be isolated
from the environment. In reality, however, they cannot avoid
coupling to the environment when controlling signals route
to the QPUs. Thus, they may lose their coherence, and the
coupling may increase the error rate or make the machine
unusable. The challenge here is to minimize such couplings
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[11]. Further, many surrounding environmental factors — in-
cluding temperature, magnetic/electric fields, mechanical vi-
bration/rotation, acoustical noise, and pressure — may also
affect the performance of QPUs. To fully understand the
operating conditions and the impact they can have, it is,
therefore, necessary to track them. For this purpose, we
set up a comprehensive multi-sensor system to monitor the
surrounding environment of quantum computers (QCs) and
their supporting systems to investigate how the environment

alters the behavior of QPUs.
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Fig. 1. Workflow description for the inputs from DCDB and quantum results
and outputs of the calibration interface for calibration prediction.

The Data Center Data Base (DCDB) [12] provides a conve-
nient and scalable monitoring solution in a uniform format
for data retrieval and storage from various sensor sources.
DCDB is already in large-scale production use for existing
HPC systems, albeit with different sensors, often in the form
of hardware performance counters. It uses modular plugins for
data acquisition from arbitrary data sources and relies on the
Message Queuing Telemetry Transport (MQTT) [13] protocol
for data transmission. As part of this work, we have adopted
DCDB for use on QPUs by developing and deploying new
plugins capable of tracking quality metrics of QPUs as well
as environmental sensors from the operation environment in
the Leibniz Supercomputing Centre (LRZ) testbed known as
BEAST (Bavarian Energy, Architecture, & Software Testbed).
Access to DCDB’s monitoring data is provided via a Grafana
frontend that allows easy visualization with a well-established
tool. Data can also be queried via command line tools and a



shared library that enables integration with third-party software
and analysis models.

Using the integrated quality and sensor metrics via the
DCDB database, we propose a novel calibration scheme
(shown in Fig. 1), which applies the collected data to predict
the needed recalibration times of the QPU. This information
can then be fed to several sources, such as a quantum resource
manager, for use in scheduling decisions or a calibration
database to enhance the performance of calibration prediction
models further.

Our prediction model identifies fidelity changes influenced
by environmental or QPU-related factors. If needed, it raises
a calibration flag to indicate the need for adjustments in
environmental factors or QPU calibration. The system notifies
the responsible individuals and sends the calibration prediction
to the resource manager. This calibration prediction plays
a crucial role in HPC environments, as it helps identify
the optimal balance between quantum computer up-time and
circuit fidelity.

The structure of the paper is as follows: Section II discusses
a superconducting circuit quantum computer and its quality
metrics, including coherence time, the fidelity of gates and
calibration schemes. Section III covers the sensor project at
LRZ, discussing the various kinds of sensors installed or
planned. As one example, the section focuses on temperature
monitoring. Section IV introduces our novel prediction model
for calibrating a quantum system. Section V concludes the

paper.
II. QuANTUM COMPUTER IN LRZ

At LRZ, we have installed a superconducting circuit quan-
tum computer from the company 1QM, referred to as System
1, which currently hosts a 5-qubit (Q5) QPU. An upgrade to
20-qubit QPU will occur in late 2023. The QPU comprises
superconducting qubits, couplers, control, and readout lines.
It can properly work when cooled to 10-15mK by a dilution
refrigerator (cryostat) with a mixture of Helium 3 and Helium
4. The QPU is manipulated by controlling microwave elec-
tronics (in the rack), which is operated at room temperature
and connected to the QPU through the co-axial wires and
amplifiers, attenuators, filters, and mixers (see Fig. 2).

The qubits are based on transmons [11] with typical mi-
crowave frequencies (5—10GHz). In such superconducting
qubits one can get fast single- and two-qubit gates on nanosec-
ond (ns) time scales with high fidelity of gate operations (e.g.
~ 99.5% for two-qubit gates). The gate operations on the
qubits are rather stable and the number of qubits can be easily
scaled in the fabrication.

A. Quality Metrics of QPU

To calibrate the QPU, the resonator spectroscopy of readout
lines has firstly to be determined. Then we characterize single
qubits by sending a sequence of pulses and measuring their
outputs. In the Q5 chip there are flux lines that can tune
the qubit frequencies. The drive frequency of an individual
qubit is determined by the Rabi and Ramsey sequences. The
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Fig. 2. The Quantum computer System 1 (Q5: 5 qubits) in LRZ. There is an
installation of 35 temperature sensors on the cryostat frame.

corresponding coherence time T1 (energy relaxation) and T2
(dephasing) are further analysized by the means of X, pulse
and X /o pulse, respectively [11]. Within T1, the qubit in a
state will remain without decaying to another state. Within
T2, the qubit in a superposition state will keep the phase
relationship between the two terms without dephasing to an
orthogonal state. Therefore, good qubits with long coherence
time are needed to achieve useful calculation times, and
calibration is essential to achieve optimal T1 and T2. Fig. 3
shows T1 and T2 after one complete calibration.

LRZ-Q5 T1, T2 Map (09/07/2023)
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Fig. 3. The decay time (T1) and the dephasing time (T2) of the Q5 chip with
a star topology. The time unit is microseconds.

Given the proper qubit characteristics the readout may be
further optimized by tuning its frequency and pulse amplitude
and phase through a couple of sweeps. In our Q5 chip the
native gates are rotation gates (R) and the Controlled-Z gate
(CZ). The CZ gate fidelity is determined by the interleaved
randomized benchmarking experiment, in which a sequence of
Clifford gates Cy,CZ,Cy,CZ,...,Cn_1, CZ followed by its
inverse is measured. The procedure is repeated for a number
of sequences with different lengths. Then the depolarizing
parameter extracted from the survival probability of the initial
state as a function of the sequence lengths can give us the gate
fidelity. The detailed quality of the gates and readout in Q5 is
shown graphically in its error map, see Fig. 4.



LRZ-Q5 Error Map (07/07/2023)

@
©

Readout Error (%)

'
0.000 8.422

1-qubit gate error rate (%) [Avg. = 0.137] CZ gate error rate (%) [Avg. = 2.111]

010 012 014 016 018 0.8 16 2.4 32

Fig. 4. The error map of the Q5 chip after one calibration: readout errors,
single-qubit gate and two-qubit gate (CZ) errors. The error map is generated
using Qiskit [14].

B. Calibration Scheme: Static and Dynamic

In LRZ a standard routine of calibrating QPUs is being
set up. Our goal is to build up scalable calibration matrices
and integrate them into our HPC workflow, database and job
performance management.

A set of measurements have been added to our calibration
setup as a quality metric set, including routines to extract
T1, T2, Rabi, Ramsey, single-shot readout fidelity, single-qubit
gate fidelity, two-qubit gate fidelity, and state tomography [11].
The number of measurement shots is fixed. The systematic re-
calibration procedure is currently designed as the following.
When the performance is still within bounds since the last
calibration, we re-characterize the qubit readout, single-qubit
gates, and CZ gates with a small number of runs. If the
system worsens, we execute an extended process, adding more
detailed runs. When the calibration is complete, a new quality
metric data set is created, and the quality of QPU is updated
with these fresh values. These static data are collected, ported
into the DCDB, and traced for further executions, e.g., error
mitigation.

Besides the static quality metric set, we also build a dynamic
data set, which monitors dynamically the quality of qubits and
gates. As soon as the quality is lower than some thresholds, a
re-calibration will be triggered.

III. ENVIRONMENTAL FACTORS MONITORED BY SENSORS

The Q5 quantum computer resides in LRZ’s Quantum In-
tegration Centre (QIC). Two centrally placed air conditioning
units (HVAC: Heating, Ventilation, Air Conditioning) maintain
temperatures of approximately 20°C. Also located in the
same room are the related microwave control electronics and
controllers for fridge temperature and vacuum. On the other
side of the room, two compute racks house the conventional
access computers for the QPU and a Raspberry Pi 4B (RPI)
for gathering environmental data. The RPI is connected via a
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100Mb LAN cable to a private VLAN for security, while we
can still ssh to the RPI for maintenance and updates.

Next to the main room is its accessory machine room, which
houses the cryostat’s compressors, coolers, and gas handling
system (GHS). Since this equipment produces mechanical
vibrations, electromagnetic fields, and acoustic noise, they
reside in this separate space. With various physical sensors
installed, we seek to understand which physical qualities
influence the QPU.

A. Environmental Sensors: Installed

As the monitoring project at LRZ is currently in the build-
up phase, we currently rely on four sensor groups, which we
expect to be among the most critical.

1) Temperature: On the frame of the cryostat, we provide
35 temperature sensors, one every ten centimeters, covering
the room height from 0 cm (floor) to 340 cm (almost ceiling
height). Each sensor is of the type DS18B20. They are all
connected to a 1-wire bus routed to the RPI, where a DS2480B
connects it to the serial port of the RPI. This way, the
long 1-wire lines having to traverse the whole room are
met with a controlled impedance, which minimizes ringing
and transmission errors. All temperatures are measured every
minute. Fig. 2 shows the sensors on the frame.

2) Movement: Humans near the fridge can introduce an
unwanted coupling to the QPU, e.g., through phonons (vibra-
tions) that might transmit through the frame and the cryostat
vessel to the QPU. They can also be the source of increased
temperature, especially in larger groups. In order to detect
human presence in the room, we use a Passive Infrared (PIR)
sensor, type HC-SR501, mounted to a cable duct close to the
ceiling and centrally in the room. This sensor has a wide
field of view and detects the movement of heat sources (e.g.,
humans) anywhere in the room. Its on/off output is connected
to a General-purpose Input/output (GPIO) input pin on the
RPI. Every change in the logical state of this line triggers an
interrupt, which in turn writes a data point to our database.

3) Fridge Temperatures: Several temperatures and pres-
sures inside the cryostat are being measured and recorded
using vendor interfaces. Variations in the QPU temperature
may indicate problems with the cryostat system.

4) Liquid Nitrogen: In the machine room, liquid nitrogen
(LN2) is used by the GHS to freeze out and remove impurities
from the cooling system. Therefore, LN2 must continuously
pump into the GHS, and it is necessary to monitor the volume
of the supply vessel as the LN2 is consumed and evaporates.
To this end, we weigh the supply vessel automatically with an
industrial scale of type IFB 60K-3L.-2023e from KERN every
hour and compute the amount of LN2 still in the vessel. This
amount is then stored in the DCDB.

B. Environmental Sensors: Planned

While the above sensors give us a first set of critical metrics
for monitoring, optimizing, and calibrating QCs in data center
environments, many more potential sources for coupling exist.
We are, therefore, in the process of adding additional sensors
Or sensor groups.



1) Air Humidity: Humidity is also controlled by the HVAC
units; however, keeping a record of it is important, as elec-
tronic circuits may fail if the humidity is too low or too high.

2) Air Pressure: Variations in air pressure, which are not
controlled, may indicate the opening or closing of doors or
windows or a change in weather, like impending thunder-
storms, which may influence the QPU.

3) Light: While light might not directly influence the QPU
due to its opaque shielding by the vacuum vessel, light sensor
is triggered to indicate the fluorescent ceiling lights, which
may create electromagnetic stray fields.

4) Vibration: A very sensitive industrial seismome-
ter/accelerometer, mounted directly to the cryostat frame, can
detect minute vibrations that might couple to the QPU.

5) Acoustic Noise: Acoustic noise, be it from people chat-
ting or surrounding systems and their fans operated on the
same machine floor, might also influence the QPU and will
be measured by a sensitive microphone. Only its amplitude
will be registered, not speech contents (to fulfill data privacy
laws). We will also perform an audio spectrum analysis on the
noise to isolate predominant frequencies that might interfere,
especially with trapped ion QPUs.

6) Electromagnetic Fields: Despite the heavy metallic
shielding, electromagnetic fields might leak to the QPU. We
will measure electric and magnetic fields in the low-frequency
range of 20 Hz to 10kHz.

7) Radioactivity: Cosmic rays are very powerful and might
penetrate the QPU shielding. We will install a Geiger counter
above the cryostat to register abnormal events.

8) Water Temperatures in the Cooling System: At several
critical points, we will measure the temperatures of our
cooling systems via MODBUS industrial sensors to detect
malfunctions or errors early on.

9) AC Power Condition: We use several 3-phase AC power
circuits to supply our equipment. We will measure not only
power consumption but also power noise on these lines.

10) Data from Building Sensors: We will measure and
record the power consumption of nearby large power con-
sumers, including building elements like elevators and large-
scale HPC systems with their power fluctuations.

All of these sensors, which will be handled through addi-
tional DCDB plugins and fed into the same database to enable
correlation analysis, will help us fully track the environmental
conditions in the QIC setup and the QC systems in HPC
production environments. This new operational monitoring
will be crucial for successfully operating and optimizing
hybrid HPCQC setups.

C. Environmental Data Monitoring and Alerting

In this subsection, we present the monitoring of temperature
parameters, including room temperatures, cryostat data, and
liquid nitrogen containers. All temperature data is stored in
the DCDB database. Using the versatility of DCDB, we have
developed a custom script running as a system service on the
same machine, which uses the Prometheus client library [15]
and collects real-time data from sensors. The script scrapes
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the latest values from the DCDB database every five seconds.
These values are transformed into numerical metrics using the
gauge identified by the label of sensors.

The scraped metrics are made accessible via a dedicated
HTTP server. Open-source monitoring and alerting tools
Prometheus and Alert Manager [15] are employed on another
virtual machine to monitor various real-time metrics contin-
uously. We define a temperature threshold of 25.5°C for the
room and 15mK for cryostats. Beyond those points, potential
risks to the QPU may arise. Whenever the temperature rises
above this threshold, Prometheus triggers an alert managed
by the Alert Manager configured to send notifications through
email using the capabilities of webhook integration. Addition-
ally, alert messages are pushed to an internal chat channel
for the operations team. Through our internal platform for
real-time collaboration and communication, our monitoring
system allows recipients to promptly address any environ-
mental anomalies that may impact the quantum computing
infrastructure. Fig. 5 shows one recent event as an example.

Fig. 5. Display of room temperatures and movement in the lab. On June
23rd, 2023, at midnight, both HVAC units were lost and the room temperature
increased to almost 30°C.

IV. DATA PREDICTION MODEL FOR CALIBRATING QC

The setup described above enables gathering a wide range
of data from the quantum computer and its environment. The
next step is to utilize this data to improve system operation.
For this, we introduce a novel prediction scheme to estimate
calibration times and enable an automatic calibration setup.
Such capability is essential for operating QC systems in
production data center environments, which typically have
access restrictions, Service Level Agreement (SLA) uptime
requirements, and environments geared towards HPC systems
instead of QCs.

A. Assessing Gate/Circuit Fidelities

The fidelity of the quantum gates is one of the key features
of benchmarking QPUs. There are multiple approaches to
computing gate fidelity. The most common one, which we
follow as well, is to apply a sequence of unitaries to retrieve
the initial state, i.e., given a gate U the fidelity can be



captured by the expression ()|UUT|y). This is the so-called
randomized benchamrking protocol when U includes a random
sequence of gates.

For this approach, we implement several experimental cir-
cuits using random unitary gates to examine the fidelity decay
with increasing depth. This intends to retrieve the original state
using these random circuits. The fidelity of each circuit run
is then measured using the Qiskit Ideal quantum circuit state
vector simulator using the Hellinger fidelity technique.

The experimental circuit is implemented in Qiskit, utiliz-
ing the native gates of the QPU to avoid any transpilation
processes that may affect the circuit’s processing. We use the
QuantumCircuit.r(f, ¢, qubit) function to apply the R gate to
all five qubits of the system. For this experiment, we set 6 to
—7/2 and ¢ to 7.

To facilitate the analysis, the tests are automated to run
the circuit every five minutes, incrementing the depth by
one for each qubit and saving the results in a database for
further analysis. The decay of fidelity as the depth increases
is depicted in Fig. 6.
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Fig. 6. The degradation of fidelity as the depth of the circuit increases,
reaching a maximum depth of 48.

B. Correlations

We then use analysis models to establish correlations be-
tween various parameters. As anticipated, the primary corre-
lation observed is between fidelity and depth. Investigating
the correlation between fidelity and time in this context is less
informative since depth increases with time. Before executing
the main circuit, a secondary circuit comprising two unitary
gates is executed on each qubit to assess the fidelity of minimal
circuits on different qubits and detect any fidelity variations
over time.

The correlations among various factors are presented in the
table represented in Fig. 7. Analyzing these correlations fa-
cilitates the development of a prediction model for estimating
fidelity as different factors vary across circuits and parameters.

To investigate the impact of time on fidelity, we devise an
additional experiment that maintains a constant circuit depth
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timestamp depth hellinger_fidelity_circuit hellinger_fidelity_Q0
timestamp 1.000 0.190 -0.080 -0.563
depth 0.190 1.000 -0.410 0.050
hellinger_fidelity_circuit -0.080 -0.410 1.000 -0.007
hellinger_fidelity_Q0 -0.563 0.050 -0.007 1.000

Fig. 7. Illustration table of the correlation coefficients among different
parameters in the experimental circuits. The “time_stamp” column rep-
resents the time, the “depth” column represents the circuit depth, the
“hellinger_fidelity_circuit” column represents the fidelity of the circuit, and
the “hellinger_fidelity_QO” column represents the fidelity of the minimal
circuit applied on each qubit.

while executing the circuit every five minutes under identical
conditions as the previous experiment. In this iteration, we
use a two-qubit native Controlled-Z gate, taking into account
the star layout of the QPU to minimize transpilation and
prevent any optimization applied to the designed circuit. The
correlation between fidelity and time is shown in Fig. 8. The
time is normalized between 0 to 1 by prepossessing for better
analysis.
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Fig. 8. Tllustration of the correlation between the “time_stamp” representing
the normalized time (horizontal-axis), and the “hellinger_fidelity_circuit”
representing the fidelity of the circuit (vertical axis).

C. Structural Analysis for Environmental Factors

Further, we add several environmental measurements from
our sensor setup to enable further analysis and explore their
correlation with fidelity. Due to the limited duration of our
initial experiments (approximately 17 hours) and the frequency
of experimental circuit runs (every five minutes), certain
environmental factors exhibited minimal variance and are not
included in this analysis. The analysis, then, focuses on the
following environmental factors: room temperature, mixing
chamber temperature in the cryostat, and cryostat pressure
(P1). Other environmental data captured by sensors, such as
laboratory movement and various pressures and temperatures
at different stages of the cryostat, are excluded due to their



limited variance within the experiment duration but will play
a crucial role in our planned longtime studies.

The analysis reveals a notable correlation between vacuum
can pressure in the cryostat measured in (pBars) and fidelity,
with a correlation coefficient of +0.495, as shown in Fig. 9.
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Fig. 9. Correlation between Pressure vacuum can pressure in cryostat (pBar)
and fidelity.

D. Prediction

To determine how fidelity decays over time we run an
experiment using a CZ gate configuration that matches the
topology of our QPU on all 5 qubits at a depth of three. We
include the environmental and QPU-related factors with time-
stamps as indices to predict the fidelity over 24-hour window.
We continuously ran the circuit every five minutes without
conducting any changes to the circuit to observe how fidelity
decays over time. Given the nature of our time-series data,
several considerations influenced our choice of the prediction
model. First, the presence of impulse signals, such as move-
ment sensors data within the laboratory environment (see Fig.
5), necessitates a model capable of detecting data shifts. Sec-
ond, while our fidelity prediction strive for utmost accuracy,
a margin of approximately 2%-5% in fidelity estimation is
acceptable, though this range may be subject to adjustment
based on specific application requirements. Consequently, a
fundamental requirement is the model’s ability to generate
uncertainty intervals encompassing the projected values, ac-
commodating this acceptable variability. A third consideration
is the ease of parameter tuning, ensuring that adjustments
do not compromise the model’s accuracy. Equally vital is
the fourth aspect: scalability. The model must seamlessly
accommodate the integration of new sensors and the escalated
frequency of quantum computer job submissions. This neces-
sitates the model’s proficiency in handling substantial datasets,
while remaining resilient to both missing data instances and
outliers that may arise. Consequently, our chosen approach
revolves around a general forecasting model, aligning with our
overarching utilization — forecasting prediction. To this end,
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we opt for the implementation of the “Prophet” forecasting
model [16] to predict fidelity 24 hours after the experiment
run-time. We divide the data into 80for training and 20% for
testing. The model shows an accuracy of 73.5510335%. The
prediction graph is shown in Fig. 10
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Fig. 10. Prediction of the fidelity over a 24-hour period using forecasting
prediction model.

V. CONCLUSION

In summary, we have investigated the influence of the envi-
ronment on a quantum computer by installing various sensors.
We have developed workflows that seamlessly integrate the
data collection from various sensors into a database, DCDB.
Further, a machine learning-based prediction model has been
built based on the data collected into the DCDB, resulting
in optimal triggering of the re-calibration of the quantum
system. In the future, as more data is collected over a longer
time, we aim to establish stronger correlations between various
environmental factors and the performance of the quantum
computer.

In Ref. [17], the authors have established a method to
estimate the fidelity of the quantum circuits by introducing
the notion of Probability of Successful Trails (PST). The
above quantity being monotonically related to the fidelity, we
aim to leverage the above measure to estimate the fidelity
of quantum computers better. There have also been recent
proposals, for instance, Ref. [18], where a relationship between
a random circuit and feature vectors of a neural network has
been explored. In the current context, the above ideas can be
inverted, wherein the neural network trained on the sensor
data can be mapped to a random circuit, therefore resulting in
a quantum circuit capturing the environmental effects.
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