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DUALITY AND REGGE CUTS IN INELASTIC 2-BODY PROCESSES

A. KRZYWICKI

1. INTRODUCTION

The purpose of this paper is to review some of the recent consider-
ations in the phenomenology of the Regge cuts. This review will neither be
complete nor completely unbiased. We shall almost exclusively consider the
inelastic 2-body processes and we shall spend most of our time examining the
phenomenological consequences of introducing cuts, when the duality between
Regge poles and direct channel resonances is postulated(1). In the framework
of the pure Regge pole model, this duality leads to a considerably simplified
description of the high energy scattering phenomena, providing an elegant just-
ification for the exchange degeneracy constraints(*). It is tempting to keep
these constraints even when the Regge cuts are introduced into the ga@éfﬁ This
attitude is partly motivated by aesthetic reasons, but also by the hope (large-
ly justified as will be seen) that it will be possible to preserve in a more
complete theory the progress of understanding of high energy phenomena, which
we owe to the duality concept. Finally I should mention that this talk addresses

mostly to experimentalists and that often I shall sacrify rigour in favour of

simplicity.

2. WHY DOES ONE NEED CUTS ?

Several purely theoretical arguments (study of Feynman diagrams and

of the unitarity corrections to the Regge pole exchange amplitudes, the neces-
3

sity of "shielding" the Gribov-Pomeranchuk fixed singularities etc.( )) indi-

cate that Regge cuts are needed in the theory of strong interactions.

(*) This has been reviewed at the 4th Moriond Meeting by P. Sonderegger.

(2)

(**) Notice that our approach will essentially be that of the Argonne group
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Unfortunately, until now, these considerations have yielded no really reliable
predictions for the strength of the discontinuity across the cut. Several
experimental facts suggest, however, that cut effects are quite sizable. The
strongest experimental evidence for the importance of the cut effects comes

from the observed features of certain inelastic 2-body reactions :

(i) Analyticity and factorization constraints relate among them the
forward behavior of the differential cross sections for different reactions
if a pure Regge pole model is adopted(4). These predictions are often in dis-
agreement with the experimental data. For example, a conspiring pion is needed
to get the sharp forward peak of the np = pn differential cross section. How-
ever, a conspiring pion produces a forward dip in m N = p A ; it is a peak that

(5)

is observed .

(ii) Polarization in pion charge-exchange seems to decrease with
energy less rapidly than expected if it resulted from the interference between

the leading Regge pole (p) and a secondary pole.

I mentioned the most drastic and best-known facts. I do not mean
that they cannot be explained with Regge poles alone. It appears, however,

that such an explanation would be rather artificial and not economical.

The elastic scattering also presents certain features, like the cross-
over effect(*), whose description requires unpleasant ad hoc assumptions in the
framework of pure Regge polology and which become relatively easily under-
standable once the cuts are introduced(6’7)a

Of course, since a fundamental theory of the Regge cuts is lacking,
we are bounded to use phenomenological models which also rest upon rather

ad hoc assumptions. The advantage of these models is to provide a unified

description of apparently distinct phenomena.

(*) The differential cross sections for AB = AB and AB = AB cross each other

at a small value of |t|.
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3. SOME GENERAL FEATURES OF THE LEADING CUTS IN THE PHENOMENOLOGICAL MODELS
(*)

Consider for definiteness the eikonal model and for the sake of
simplicity let us neglect spins. We write the scattering amplitude for the

transition i = j in the form :

fji(s, cos ) =i éE }:({,+ H PL(COS 8)(1 - eix)ji (3.1)
£
where X(4) is the "eikonal matrix"(S). Following Arnold(z) we postulate
k 1 B
xji(L) =7 J‘_1 d cos B P&(cos 9) fji(s, cos @) (3.2)

where f?i is the "Born" amplitude of the model, in occurrence an amplitude
for the transition i = j parametrized as in a simple Regge pole exchange
model. Eq. (3.2) constitutes the essential dynamical postulate and replaces
the integral expression, well known in non-relativistic quantum mechanics,

relating the phase shift to the potential in the eikonal approximation.

It is easy to see how the Regge cuts emerge. Let x?i(L) be the
contribution to xji(L) from the Regge pole R. Assuming linear trajectories

and smooth residues one has

(t)
, ‘ n R %
Ry ® R,®...R =-1i /ka(“ B pylcos @) [TTGx M ~ S
1 k=1 S = o (log s)
(3.3)
with n n
a(t) =) o0 -n+1+t/L) 1/ar] (3.4)
k=1 le=T1

th
(oh(o) and og are the intercept and the slope of the n Regge trajectory).

The asymptotic estimation in Eq. (3.3) is most easily obtained if

the replacements

(*) It is worthwhile to remark that if one parametrizes the Regge input a la

(9) (10).

Veneziano, the Baker-Blankenbecler model is more suitable
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Z(&+ 1) P&(cos 8)... - jb b J_ (b /=F)...
b

1
J a cos 8 Pylcos B) ... = :§? [/ e/ T 6/ .

valid for 6. <<land s = , are made in (3.2) and (3.3). In particular, it

&
is a simple exercise to derive the following formula, which will be useful

later
1 1
At o B i et/[K“L 5 (3.5)
© © s(A + B) :
= o! i_}_r. - o _E__ﬂ . .
When A = a1(1og . 3 ) and B = oé(log s > ) Eq. (3.5) implies Eq.

(3.4)(with n = 2).°

The asymptotic behavior in (3.3) is that of a Regge cut contribution.
It is important that the study of Feynman diagrams also leads to Eq. (3.4).

A leading cut associated with a Regge pole R will be defined by

the requirement
@ (0) = (0) (3.6)

One obtains a leading cut by compounding R with pomerons (ab(o) =1).

It is evident from (3.2) and (3.3) that the leading cut contribution
to the amplitude is a linear functional of the Regge pole contribution R.

We denote this functional by F(R). Hence
F (E X, Rk) = Z xkF(Rk) o (3.7)
k k

when x =~ are independent of 8.

In the approximation of a flat Pomeranchon, a% = 0, the Pomeran-

chon contribution to (3.2) is purely imaginary and one gets from (3.3)

* *
F(R) = F(R) (ozI') = 0) (3.8)
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i.e. F(R) is a real functional.

A Regge cut can be considered as a continuum of Regge poles

+ Oé(t) =1 o
F(R®) = [ g (o t) (12 e ™) (s/s ) aq (3.9)

where the superscript & refers to the signature of the Regge pole. We used
the fact, which can be obtained from (3.3), that in this model the signature
(*)

of the cut is the same as that of the pole .« When the discontinuity function
gi(a, t) is real, the reality of F implies

g (o t) = g (0o t) (3.10)

and one gets the following asymptotic expression

-inoh(O)
~ (real function independent of +) X [1 % e ] (3.11)

S = o

F(RY)

4, AN EXAMPLE : THE CROSS-OVER EFFECT

As an application of the preceding considerations let us consider
the cross—over problem. Take two reactions related by the s = u crossing :
AB = AB and AB = AB. Let AB = AB be an exotic channel (like NN = NN or

+ p— -
KN = K+N). The common experimental situation is that (AB = AB) >

C.
tot
c%ot(AB = AB). Assume for simplicity that o% = 0. Duality implies
B .
f (AB=AB) = ip-r

. (4.1)
(B ~IB) = ip - r omimolt)

where r and p are real functions (r > 0). In the cut model one has for

(*) As for the other quantum numbers of the cut, they are those of the set of
Regge poles which are "compounded". E.g. each leading cut R ® P... will have
the g-parity of the R (since the g-parity of P is +1) but ne definite parity

(because the relative angular momentum of R and P is left undetermined).
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S =
f(AB=AB) =iP-r-c
(4.2)
£(BB~iB) = if-r o iTAb) -imo(0)
where
5 = p+ F(p)
(¢ = F(r)
One gets
2B ~a3) = B+ 0(")
(4.3)
do (1 - 2 5 . ' 5
‘ET'(AB =~ AB) = P + 2P [r sin ma(t) + c sin ma(0)] + O(r")

Without cuts the cross-over appears at ot) = 0. With cuts it is

shifted toward the point t+ =0 provided 0 < -c < r .

When o(t) = ¥ 4+ t the cross-over is at t = to where

1
— 1 :
to = 2 arc 51n(c/r) .

*
One gets t_ wm -.2 when (c/r)t_t ~ - 80 % “( ) This gives an idea about the

magnitude of the cut contribution To the elastic scattering amplitudes since

for Pla of the order of 10 GeV/c the cross—over appears precisely near

b

(*)This corresponds roughly to (c/r)t_o ~ - 50 % when one uses (3.5) (the
slope of the Pomeron exchange amplitude is roughly 4 GeV—2. In eikonal model
fits the slope of the "genuine" Regge pole amplitudes is usually also roughly

3-4 GeV_2 for P of the order of 10 GeV/c). The eikonal model calculations

lab
typically yield (c/r)t_0 m — 30 % . This is the reason why usually the cross-—
over obtained in these calculations appears at slightly too large a value of

|¢]-
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olt)

t=-.2 . Since r~ s shrinks and c¢ ~ sa(o)/log S one expects that

to =+ 0 logarithmically as s = o .

5. THE SOPKOVICH FORMULA

Let us assume that the off-diagonal elements of the eikonal matrix
in (3.1) are small. Treating the inelastic transitions as a perturbation one

easily gets

i ix. .
(1 -e x).. = 1-¢ 9 (5.1)
JJ
*
and( )
N =X
_ X 2755 2Mii _ 2 g
(1 e )ji = e in e + 0[(xjj Xii) ] i#j (5.2)

(4)

The quantity on the LHS of (5.2) is the partial wave amplitude Tji for the

inelastic reaction i = j. According to the Arnold ansatz we consider ¥.

‘ ji
as the partial wave "Born" amplitude B(?i

st4)
3i

for this reaction. Denoting by
the S-matrix element for the elastic transition j = j and using (5.1)

we can rewrite (5.2) in the more familiar form

@) _ @) (@) () %
TS [Sj i [s;."] (5.3)

K
. B.
;3

known as the Sopkovich formula,(11 ) .

The sum of the contribution from a Regge pole R and from all the
associated leading cuts to the elastic scattering amplitude is obtained from
(5.1)

P

P
ix’ . ..
(R + F(R)](L) =z [i x?j] e 3= i 4xF _ x?j[1 497 (5.4)

Ji

ix

It is evident that the cut contribution to the amplitude subtracts from that
of the Regge pole. We have seen in the preceding section that this is indeed

a requirement needed to get the cross-over effect. Furthermore the fits to

(*) Here, we also assume that the elastic scattering in states i and j is

not too different.
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the elastic scattering indicate that the cut contribution as given by (5.1)
{#
is of correct order of magnitude\ )a
Similarly, in the Sopkovich formula, the cuts reduce the input "Born"
amplitude especially for low partial waves. This leads to a simple intuitive
picture : the situation looks as if the inelastic transition occurred in a

semi-transparent medium, where both the incident and final waves are absorbed.

It is important to stress that both (5.1) and the Sopkovich formula
rest heavily upon the perturbative treatment of the inelastic transitions. When
one attempts to construct models where intermediate inelastic transitions (in
particular the diffraction dissociation processes) are at least partly taken
into account, then it becomes evident that the perturbative arguments which
lead to Eq. (5.1) and to the Sopkovich formula respectively, have a different
physical meaning. Hence the validity of (5.1) does not imply that of (5.2)
and vice versa. Indeed, the cross—over phenomenon is an argument in favour
of (5.1), or at least of the “"absorptive" sign of the cut. However, in fitting
inelastic reaction data one often needs cuts stronger than predicted by the
Sopkovich ansatz. Even the "absorptive" sign of the cut, which predicts cor-
rectly the polarization in pion-nucleon charge-exchange reactions and the
sharp peak in nucleon charge exchange, seems doubtful in certain cases (like
the hypercharge-exchange processss or photoproduction).

6. DUALITY-PRESERVING EEGGE cups' 2 °)

Among the consequernces of duality (supplemented by the usual assump-
tion about the absence of exctic resonances) the most clear-cut are probably
those which state that linear combinaticns of certain scattering amplitudes

are purely real. For example

m (K o =X°p) = 0O (6.1)

or equivalently

(*) See, however, the footnots on
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In [£(X n =K n) - £ p X" p)] =0 (6.2)

When Regge cuts are taken into account these predictions, in general,
break down. However, as discussed in Sec. 3, in the approximation o' =0 ,

the leading cuts satisfy the reality condition (3.8). If the contribution
of the Regge poles, T Ri , is real then combining (3.7) and (3.8) one has

Im [T F(R)] = Im F(g Ri) = 0 (6.3)

For obvious reasons we say then that the leading cuts are duality preserving :
Egqs. (6.1) and (6.2) remain true in the approximation when pole ® pole cuts
(which are, of course, duality non-preserving) are neglected. Thus one predicts

a vanishing polarization

p(K+ n=K°p) = 0 (6.4)

and(using (6.2) at t = 0)

o n) = g (K p) (6.5)

Similarly, since both np = np and pp = pp channels are exotic :

°T(n p) = °T(P P) (6.6)

It is worthwhile to note that Egs. (6.5) and (6.6) are very well satisfied

experimentally

7. POLARIZATION AND DIPS (A GENERAL DISCUSSION)

Everybody knows that a vanishing polarization is predicted in the
pure Regge pole model for reactions where only one Regge pole is exchanged.
This prediction extends to processes dominated by the exchange of several
Regge poles if the hypothesis of strong exchange degeneracy is adopted. A
non-vanishing polarization is, however, observed in charge and hypercharge
exchange reactions. These polarizations can be explained by the interference

of the Regge pole(s) with the associated Regge cut(s) and a slow (logarithmic)
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decrease with energy of the polarizations is then expected in agreement with
the data. This is a well-known fact which is often put forward to emphasize

the importance of the cut effects.

Let us consider for definiteness the pion-nucleon charge exchange
scattering, assuming that only the p pole and the associated leading cuts
contribute significantly to the amplitude. Provided the leading cuts are
duality-preserving, one can write the scattering amplitude at very high energy

as

£, = r (1 - ) (7.1)

A ‘A

where A =0 or 1 for the helicity nonflip and flip respectively and Ty

c are real functions of s and +t.

A

Apart from an SU3 Clebsch-Gordan coefficient, the same r, appears

A

+
in K n = K° p. The Gell-Mann ghost-killing mechanism for A2 and the ex-

change degeneracy, necessary to ensure (6.1), imply that ry is finite.
One obtains from (7.1) the following expression for the polarization

~ [(r1c0 - roc1) sin g o(t) sin g o(0)] sin g [oAt) - oA0)]

s 7 (7.2)

The necessary zeros of p are evident from the above formula. These zeros

have, however, two digtinct origins :

(i) Exchange degeneracy yields the factor sin g ot) which vanishes

-

e.g. at ot) = 0 (for m p = MNn the corresponding factor is cos 5 o(t) and

the first zero of p appears at oft) = -1).

(ii) The factor sin g (o) - u(O)] comes from the difference of
phase between the pole and the cut contributions and has to be considered more

carefully.

The cut has a phase -m o(0) + O(1/10g s). In writing (7.1) we
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neglected the correction term 0(1/log s), which is a bad approximation since
the principal term in the phase of the cut cancels with the phase of the pole

at t = 0. The polarization has a kinamatical zero at t = O (angular momentum
conservation) and the dynamical zero (ef. (7.2)) which coincides with the

kinematical one at infinite energy, but which appears at t # 0 for any finite

energy.
It is easy to show that
01/00 = 0(1/1og s) (7.3)
if &' = 0 . Indeed, using the impact parameter representation for conve-
nience, one has(7)
H
F(R) = k/5 [babJ, (b/7F) x,(b, s) (e -~ 1) (7.4)
with
X, = t) (7.5a)
1
X, = T j /—¥ 4 /=% J1(b /=T) R1(s, t)
; R1(s, t)

As s = , the behavior of X, is determined by the Regge factor (s/sR)a(t)
common to R0 and R1//—f. Roughly

Xo s %@ Tz Rl 0) exp [- b/4 logls/sy)]

(7.6)
b R1(S, ‘t) 5
Xq ': . 4k./§'[ 7=t ]t=0 exp [- b°/4 log(s/sR)] / IOg(s/sR)

Eq. (7.3) is readily obtained substituting (7.6) into (7.4), provided the
absorptive cut-off becomes energy independent at large s , which is precise-

ly the case when o% = 0,
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Using (3.5) with A = o' (log s/sR —-%F) we see that the corrective

term in the phase of <, is positive at small |t| , where the first leading

cut is the most important. Neglecting ¢ (cf. (7.3)) the following replace-

1
ment should be made in (7.2)

sin g [a(t) - &(0)] = sin g [o(t) - o0) + a(t)/1log s/s 1, a(0) >0
(7.7)
and we find that p vanishes at
t ~ - a(0)/ o log s/so (7.8)

This zero tends logarithmically toward the point t =0 as s = o .

(16)

Such a dynamical moving zero of the polarization is typical for cut models

As discussed in Sec. 4 the Sopkovich formula yields the following

predictions for the sign of the cut

sgn[cx] = - sgn[rk] (7.9)

(7, 17)

Phenomenological fits (with or without cuts) give
/=T ro/r1 ~ - 20% (7.10)

Using (7.3) we find

(r1 c =T, 01) ~ Ty C >0 (7.11)

0
and p >0 for small |t| , in agreement with the experimental data on

m™p = ™n.

To close this section let us mention the problem of dips. Actually,

there are two kinds of dips in cut models :

(a) Dips (or breaks) that occur at relatively large values of |t|,

and which are interpreted as resulting from multiple scattering of the pro-

jectile on the target "stuff"(18-21). As an example one can quote the break
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) do 2 .
1 EE-(PP - pp) for |t| ~ 1 -1.2 GeV . These dips are expected to become

more and more pronounced as energy increases.

(b) Dips at small values of |t| which reflect the structure of the
Regge pole amplitude (usually at ohegge(t) =0). In general, we can expect
that, as energy increases and for fixed +t , the cut progressively dominates

the pole (since ) and the dip becomes less and less marked. This

ogut < o'I')ole
is indeed observed for several reactions, for example in the m° photoproduction
(22)). However, two points should be kept in mind. First, the cut amplitude

is an integral, whose integrand involves as a factor the Regge pole amplitude.
It can be shown that if the Regge amplitude changes sign, then results a can—.
cellation which reduces the magnitude of the cut amplitude at t which rough-
ly corresponds to the zero of the Regge amplitude(6). Secondly, when the
helicity-flip Regge amplitude is particularly large, the cut is less important
(cf. (7.3)) and consequently the dip is less affected by the existence of the
cut. This seems to be the case in m p = m°n : the dip (due to the vanishing
of Regge amplitudes at o (t) = 0, cf. (7.1)) survives at highest energies
where experime?ts)were done, although the peak that follows it is progressive-
23

ly smeared out

8. DUALITY NON-PRESERVING REGGE CUTS(14)
In the preceding discussion we often made use of the approximation
o =0, which for leading cuts implies the important reality condition
F(R*) = F¥*(R) . However, the elastic scattering results obtained with the
Serpukhov accelerator point toward a non-zero slope of the Pomeron. If
o' # 0 , then even the leading cuts are duality non-preserving : F(R¥*) #
F*(R) . Nevertheless, some of the duality predictions are not very sensitive
to the approximation ¢' = O and can be maintained if o% is not too large

2
(say a% € 4 GeV ).

In the following we shall, for definiteness, limit ourselves to the

0 %+ - 0_%+ scattering. Let us write the Regge pole amplitudes

(t) —iﬂoh(t)
e ]

RE - B,\(/—t))‘ (s/sR)aR (1 =+

N (8.1)
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(notice that R+ and R are strongly degenerate) and the Pomeron exchange

(*
amplitude

1+o't —%, o't
P = iV(S/SP) P e = P (8.2)

At very high energy, and with a proper choice of the scale parameters Sp and

Sp it is reasonable to neglect the t-dependence of the residues in (8.1)
and (8.2). Consider only the first leading cut (i.e. R ® P ; it dominates

over the other cuts at small |t|); One easily finds from (7.4) and (7.5)
[x is given by a formula identical to (7.5a), with R replaced by P] that

FR"+r)| = [PRT - r)| (8.3)

2
up to terms of the relative order 0(1/log” s), and that (7.3) is replaced by

+ - + -
(B £ 50) F(R] &R])

= o/a + 0(1/1log s) (8.4)
(R] +R) F(R] +R) %

where qg is the slope of the moving cut :

o (t) = o (0) + o't
%
= P (8.5)
= oh(O) + = T o t .
R T
Set
Arg F(RT + R]) = a, -1
A A A A
N (8.6)
Arg F(Rx - Rx? = -1 oé(t) +oay + bk
Then
-imy (t)/2+ia
+ A (¢ A
F(Rl) = ¢, cos [z ab(t) - bX] e
(8.7)
-img (t)/2+ia
=\ . . l (d A
F(R,) = i c, sin [Z o (1) - b,J e

(*)Notice that with this convention, P becomes t-independent (a nonsense) when
one sets Q% = 0. Thus one should not take the limit a% = 0 in the formulae

derived from (8.2).
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When o% is small the cut flip contribution to the polarization is not very im-
portant. We neglect it for simplicity. The position of the "moving zero" of p

is determined by the equation

m aR(t) -m ac(t) + 2a0 ='0 (8.8)

where the Regge pole amplitude is Ri (e.g. Tp = mn or nrp = Mn with p
and A2 exchange respectively) and by

T o/R(t) - cvc(t) +a +b =0 (8.9)

- - - -0
when the Regge pole amplitude is R+ - R (e.g. Kp=Kn with p and A2

exchange). Only when the cut is duality-preserving, the position of the moving
zero is common to the three reactions, since ax = bk .

0f course, when F*(R) # F(R*¥) the polarization p(K+n - K%p) # 0.
The sign of this polarization depends on the relative magnitude of a and

b

A

A\ It is impossible to make a truly model-independent prediction. However,
asymptotic expressions for ax , bk can be derived in the same manner as Egs.

(8.3) and (8.4) :

i 2
a,)l = mo + 0(1/10g S)
.10
m(1 + Mo (o) 2 (8.10)
bl = o log yp + o v+ 0(1/log s)
b 0 b

Egs. (8.105 with different scale parameter s, are asymptotically equivalent.
One may hope that Egqs. (8.10) can be used for rough estimations as non-
asymptotic energies provided so is properly chosen. Hopefully, this para-
meter is determined by the position of the moving zero of p . We postpone
the discussion of polarizations to the following sections . Anticipating
slightly, we can say that the qualitative features of polarizations that are
allowed- to be non-zero by the unbroken duality remain valid (the signs of
polarizations, the existence of the moving zero, the zeros due to the exchange

degeneracy).

Assuming that roughly Ico/r0|t_0 ~ 30 % and using (8.10) one finds
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¢ sin(a - b))
° ° | ~ .06 mb
ro sin T QR(O)

lop®'n) - & &'D) | & ap(Kn) - o, (KP) | X |

at 6 GeV/c (8.11)

(we set o%': .4 and assumed that p(mp = m™n) =0 at t = -.35 GeV2 for
11.2 GeV/c). It is seen that the violation of Eq. (6.5) is indeed well within

experimental errors (® .1 mb).

9. PROCESSES RELATED BY LINE REVERSAL

(24)

It has been pointed out by Gilman - (see also Mathews(zs)) that
the comparison of the behavior of reactions related by the s = u crossing pro-

vides a very sensitive test of the exchange degeneracy hypothesis.

-

We shall consider the pseudoscalar meson-baryon scattering. The

?

contribution -of the Regge poles with positive signature to the amplitudes of
reactions related by s = u crossing is identical while the corresponding contri-

‘bution of the Regge poles with negative signature changes sign. For example

if
+ oz+(t) -ime, (t) _ o'_(t) —iﬂcv_(t)
f(AB - CD) = B (t) s (1 +e ]+ B (%) s (1 -e ]
(9.1)
then
N o, (t) -imy, (t) _ a () -ima_(t)
£(CB = AD) = B (t) s 1 +e 1-8(t) s (1 -e 1 .
(9.2)

+ .
With weak exchange degeneracy, which postulates o = o , one predicts (we
assume that the energy is high enough to neglect the kinematical factor due to

the difference of masses) :

49()p - _49Gg - %
dt(AB CD)_dt(CB AD) (9.3)

- p(CB - AD) (9.4)

Il

p(AB = CD)
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Strong exchange degeneracy, which postulates df = o and B+ -8 , predicts

a vanishing polarization in both s = u crossed reactions
p(AB=CD) = p(CB=AD) = O (9.5)

The experimental situation has recently been summarized by
Sonderegger(26) and Kwan Wu Lai and Louie(27). It is in a drastic disagreement
with the above predictions, except perhaps for the kaon charge exchange where
polarizations have not yet been measured and %%KK—p - K°n) becomes equal to

d +
E%(K n = K°p) near 5 GeV/c (however, there is no data above 5.5 GeV/c).

(i) The polarization in hypercharge exchange reactions, K_p - 50
(near 3 GeV/c) and K p = mope  (up to 4.5 GeV/c), is large and at small |[t]
it is of the same sign as the polarization in respective line crossed reactions(*)
(one might ohject, however, that the energies where the experiments were per-

formed are not high enough).

(ii) The differential cross sections change substaﬂtially under s = u
crossing. An amusing empirical regularity is observed for hypercharge exchange
reactions : out of the two processes related by s = u crossing, the one Wﬁere
"hypercharge annihilation"(**) (using the terminology of Van Hove and colla-

(

borators 28)) is possible in final and initial states, has larger dg/dt. This
rule is apparently not true for charge exchange, since-%ka—n - KoA) <

%EKK+p - K°A++). However, the data on K n =Kop do not extend beyond 5 GeV/c.
Also-%f(K_p - Kon) <-%g(K+n = Kop) at low energy, but the two cross sections
become equal at 5 GeV/c. On the other hand, among the two nucleon charge-
exchange reactions, pn = np and pﬁ - nﬁ, the one where annihilation (now I mean
the "usual", baryon number annihilation) is possible in final and initial states

has dg/dt larger by a factor of four !

At high energy and small ltl, the Sopkovich formula predicts

(*) The strong exchange degeneracy of K¥ and K*¥*¥ in hypercharge exchange reactions
follows from the postulated absence of exotic resonances in meson-meson and
baryon-baryon systems, duality and factorization.

(*¥*) Two particles with hypercharge +1 and -1 respectively produce n particles

with hypercharge 0 : e.g. K_p = (n-1)m+ 2+.
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; ™ >| arg(cut) - arg(pole)| = A(‘p >g (9.6a)
|cut| < | polel X |cos A(D | (9.6Db)
Since
do = |f, ]2 = |pole |2 + |cu'b|2 + 2|pole | |cut| cos A (9.7)
in
it is i (*)
evident that
(2) do increases when "rr - Aq)l increases
| (9.8)

(b) do decreases when |cut| increases

First, let us take into account the leading cut only, assuming for

simplicity that aI') = 0. At high energy and small |t|

-ime (t)

|(r1 (t) e * n1) ® P| weakly depends on M, (**), and (cf. (3.5))
—ima ()N —img, ()7
A(pl = arg[(r1 (t) e 0’1 1) &® P] - arg[r1 (t) e 0’1 1] = 1-r+1'rcv1'tﬂ1 +¢oﬂ1
(9.9)

with (Do ~ 0(1/ log s‘). Hence

|A‘¢)'(ﬂ1 =1) - m| > | A¢'(’ﬂ1 = 0) - m| (9.10)
and one predicts

g—g(K_i-n - Kop) < g—g(K_p - Kon) (9.11)

and alsq provided the P-baryon couplings do not violate the SU
badly,

3 symmetry too

(*) Take d[dg] /3 lcu'b
(%%) m, = 1 (0) means that the Regge amplitude has the phase factor e

-imy (1)
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dg .~ - oF dg, + ++
dt(K p=m T) < dt(ﬂ p=K7z)

(9.12)

dg, - - .
d—g(Kn-'n A°) < g—f(rrp"K°A°)

in complete disagreement with experiment (the processes on the LHS correspond

to T, =0, those on the RHS of the above inequalities to T, = 1).

We know that in elastic scattering the secondary Regge trajectories
(with intercept ms 1/2) are responsible for large differences between particle
and antiparticle total cross sections. Through absorption these secondary
trajectories can lead to non-negligible cut effects in inelastic reactions.
Let us therefore consider the pole ® pole cuts also. Again we neglect the
dependence of l(r1(t) e_iﬂQI(t)ﬂ1) ® (rz(t)e_iﬂaz(t)n2)| on T, and n, and
we write (rz(t) <0, cf. (4.1)) :

—imy ()M —-ima, (t)M
b7 = argllr,® e L D (e 23]

-imq, (t)
& n‘]:%n+ﬂ'0’1' 1;']']1—11012(0) ﬂ2+¢1ﬂ1+¢2112

(9.13)
- arg[r1(t) e

where ¢1 5~ 0(1/1og s). We can safely put 012(0) =1/2 :
H

3/2 ™+ ﬂo’.{t +¢1 ’ T]1 =1 'nz:O

A¢"= < (9-14)
m+ o, , =0 M, =1
.n+n't+¢1+cp2 , =1 1,=1

For K charge-exchange, since
lapr(ny =1, m=1) = al < | agi(y =0, W, =0) - (9.15)

the effects of the leading and secondary cuts are going in the opposite directions
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and the prediction (9.11) is abandoned.

Using the conventional duality arguments (see Rosner(34)) one finds
+
that the secondary Regge pole contribution to the K+Z# - K Z? amplitude is real

(Tb = 0). Since
lagr(n, =0, m, =1) - m| < [ap"(n, =1, M, =0) - m (9.16)

the effects of the leading cut and of the secondary cut, associated with ab-
sorption in the final state, are going in the same direction as far as the

pair of reactions, ﬂ%p - K+ Z+ and K_p - Zﬁ is concerned ; the prediction
(9.12) is confirmed. The same is true for other hypercharge-exchange process s.
(Michae1(15)).

Strictly speaking the above arguments are valid at a sufficiently
high energy. When one goes down with energy the situation becomes more complex,
but the conclusions remain essentially the same. There are several ways out.
The first is to abandon simply the exchange degeneracy arguments. Secondly,
one can assume that SU3 is strongly broken in the Pomeron couplings so that
not only o‘°T°(1-r+p) > c°T°(K‘p) (which is true) but also c;(K+ ) > c';(rr_f') ,
in such a manner that the effect of the secondary trajectories at finite
energies is compensated(*). The third possibility, which I prefer personhlly,
is to call into question the universal applicability of the Sopkovich formula.
We mentioned in Sec. 5 that it rests upon the perturbati;e treatment of inelas-—
tic transitions and that the relative strength of the cuts may be modified by
the effect of the intermediate inelastic states. Also the signs of the cuts
become then uncertain. The fact that the inequality (9.6a) has been verified
in elastic scattering and charge exchange reactions does not mean that it is

true in all possible cases.

(29)

Detailed numerical calculations have been done in Orsay , in

order to see.whether it is possible +to fit simultaneously the reactions

(*)Notice that if SU, is broken in the Pomeron pseudoscalar meson couplings

©, + o, + _+ ®, - o, - +
only, then cT('rr p) + O'T(K )~ qI‘(K p) + O'T(TT ).
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ﬁ+p - K+ Zﬁ and K p = m Z? in the energy range 5-16 GeV/c, taking the exchange
degeneracy & la lettre. The rule (3.3) for calculating cut contributions was
kept but the relative importance of different cuts was allowed to be arbitrary.
The conclusion is that exact exchange degeneracy can be maintained provided the
global contribution of cuts is of the opposite sign to that predicted by the
absorption model. It is amusing to note that if the Regge pole flip and non-
flip helicity amplitudes for ﬁ+p ] K+E? are of opposite sign (as in K p =
ﬁon, where mesons belonging to the same vector and tensor octets are exchanged(*)),
the polarization is then expected to be negative at small |t| and positive at
large Itl (it is what is observed)(**).

A very important difference is observed between the slope of
%—g(K-n - T A) (4.0 £0.6 GeV—2) and that of —g—g(ﬂ—p = K°A) (7.3 £0.8 GeV—2).
This can perhaps be interpreted as an evidence for a cut dominating the pole
in K n - ﬂfA (ef. (3.5)). However the data on Kn=m A do not extend beyond

6 GeV/c and a serious conclusion can hardly be formulated.

On the other hand the much larger dg/dt for pp — nn than for pn = np
can be understood with an evasive pion. For small [t], the cuts dominate over
the pole. The sharp forward peak is obtained, when a very rapidly varying
pion exchange amplitude ~ t/(p,2 - t) is subtracted from much less varying
cut contributions (here we definitely need the absorptive sign of the cut).

But the absorption is much stronger (and the cut amplitude larger) in pi - nﬁ,
which simply reflects the presence of annihilation channels in nucleon-anti-

nucleon scattering.

(14)

Let us turn now to the polarization problem . When the cuts are
duality non-preserving, the reaction which corresponds to an improper duality

. - -t .o . . .
diagram (e.g. K p = m £ ) presents a non-vanishing polarization. This polar-

(*) This can be checked using the fits to the KN scattering by Dass, Michael
and Phillips(Bo).
(**) However, this can also be explained by properly choosing the F/D ratio for

helicity flip and non-flip amplitudes respectively.
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ization comes entirely from the phase of the cut (since the Regge pole ampli-
tude is real). This phase is expected to vary slowly with t and consequent-
ly the polarization will be of constant sign in a large interval of the momentum
transfers. On the contrary, the reaction obtained by crossing the mesonic line
corresponds to a proper duality diagram. The polarization has therefore the
usual moving zero at small |t| . When the equations (8.10) are used one more-
over predicts that the polarizations in two reactions related by s = u crossing

are of the same sign at small ‘t|.

The above description of the behavior of polarizations is based on
asymptotic arguments. Background effects of all types could alter these
predictions. It is interesting, however, that this description seems to cor-
respond to reality even at relatively small energies. Thus Egs. (8.10) predict
very correctly pg—g(K_p - -rr_E+) and p %(K—n‘-‘ m°A) when the data on n+p -

(*)

+_+ -
K. and mp=K°A (at ~ 3 GeV/c) are used as input data

(14,31)

10. CHARGE-EXCHANGE SCATTERING OF PSEUDOSCALAR MESONS AND SU3

Interesting equalities can be derived when it is assumed that Regge

*%
pole couplings obey the SU_, symmetry, the Pomeron being a pure SU singlet( ).

3 3
Then the functional F does not charge when one passes from one reaction to
another, provided the colliding particles are replaced by their "partners" in
an SU3 multiplet. Because of the linearity of F, the couplings of a Regge

pole exchanged in different reactions are in the same ratio as the couplings

of the associated leading cuts.

(*¥) In this calculation, o' appearing in (8.10) should probably be interpreted
as an effective slope in tﬁe (Pomeron + secondary poles) amplitudes describing
the elastic scattering (the pole ® pole cuts are important if they are at the
origin of the difference between differential cross sections in s and u
channels).

(*¥*) In fact the ratio of the (Pmm) +to the (PKK) coupling deviates from
unity by about 15-20 % , whenever one uses pure Regge poles or cut models to
fit the data. Nevertheless, it is encouraging that the relations of the type

derived in this section are often pretty well satisfied by experiment.
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Consider the following set of reactions

(a) mp = mn
(b) mp = Mgn
(c) K_p - Kon

(d) X'n = Kop.
The Regge poles which dominate the above reactions are p and A2.
A
Let fl and f{ denote respectively the helicity amplitudes associated with
(A2 + A2 ®P+ ...) and (p+ p®P + «..). Neglecting non-leading cuts we

can write the helicity amplitudes for reactions (a)—(d) as follows

a _ P
fy, = /21
b A
fk = -J/2/3 fk
(10.1)
C _ _ aP_ A
fk = fk fl
a _ 0 A
fk = fk - fk
Hence
c d b
= -/6 ¢
£y + £y /6 N
3 . (10.2)
C
fk - f)\ = - /2 f)\
and
¢ ,c* 4 a% a _a¥* b _b*
By By, FE £, = £y £+ 30 £, (10.3)
Taking the trace of (10.3) one gets
dg , i _ ad +3 ao” (10.4)
at dt ~ dt dt ’

Equating the imaginary parts of both sides of Eq. (10.3) one finds

dgyc dgd _ , doya doyb
(p dt) + (p dt) = (p dt) + 3(p dt) (10.5)
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(32)

Eq. (10.4) has been derived several years ago by Barger and Cline and is

well verified experimentally.

Linear relations between products of helicity amplitudes, analogous
to (10.3), can similarly be derived for sets of reactions involving resonance
production. Some of these relations can be found dispersed in the literature ;

they reflect merely the fact that exchanged "objects" have a well defined SU3

assignment. As will . be seen, the exchange degeneracy leads to further relations

between pairs of Im[fk X'] We limited our discussion to the charge-exchange
of pseudoscalar mesons since in this case one has experimental data on
Im[fk X'] [p dc (k). In the case of resonance production the exchange dege-

neracy constralnts concern the imaginary parts of density matrix elements and

can hardly be tested with existing data.

Let us rewrite Egqs. (10.1) explicitly separating the pole and cut
contributions to the amplitudes and using (8.9), (8.6) and (8.7)

a m -imo(t)/2 m _EI%%(t)+iah
fy =1 /2 ry sin 3 o(t) e +i /2 cy sin[z ac(t) - b)\]e
.
. -iza (t)+ia
- 2 2
f; = =/2/3 r,cos g aot)e inedt)/ - /273 cxcos[g oé(t) - bk]e ¢ A
. -imy (t)+i(a,+b,)
f; = -1y e_lﬂa(t) = oy ¢ A (10.6)
& 1(a)-by)
N W Y

If according to (8.4) and (8.10) respectively, we put (roc1/r1co) = ag/a‘

and &y = ao , the following three equations are easily obtained

1

(p %f%a cosfg a(t){cos[g o&(t) - boj - a% COS[; Qé(t) - b1]}

o (10.7a)
3(pd 49)P5in 3 oft){sin[3 o (+) - b ] - = sin[3 o (t) - b 1]
& a o
(pd_t) {sin[m o(t) - m ac(t)+ao+b0]—? sin[mo(t) - m ac(t) +a0+b1 1}
. (10.7p)

24
= 2(Pdc) 51n—a(t) 31n[40(t)_ a(t)4—a ]{31n[ o (t)-—b ]-——E-s1n[ (t) b, 11
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Q"
(p3D*{sin(a_- b ) - — sin(a, - b))} = 2(p3D) sin Toft) sin [Jalt) -0 (t)+a ] x

- Qlé o (10.70)
x {sin(3 o () = b ] - — sinl5 o (¢) - b, ]}

The qualitative features of the polarizations read from the above equations are
precisely those discussed in Sec. 7 : the zeros of p(mp = m°n) and

p(mp = ﬂgn) due to the factors sin mg/2 and cos me/2 respectively, reflect
the exchange degeneracy. The factor sin[m/2 ot) - m/2 oé(t) + aO] yields a
moving zero,in p(Trp - m°n) and p(nrp - n8n). The moving zero of

p(Kp = Kon) is slightly displaced.

+
The polarization in K n = K°p (which is # O since we take duality
non preserving cuts) is of the same sign as in K—p - K°n for small |t|, as
it should be according to the preceding section for two processes related by

S = u crossing.

We give in Table I the polarization for mp = Tgn K p=Kon and
K'n - K°p predicted from Eqs. (10.7a-c) using p(m p = m™n) and data on dif-
ferential cross sections as input data. Neglecting the T-X mixing our prediction
for mp—=Tn can be compared with the results of Ref.(33) % The agreement
is good (but, of course, the experimental errors are very important ; an ideal
situation for theoreticians !). One should notice that a relatively large
polarization is predicted for K p = Ko n scattering (about 20 % at -.3 <t <0
and 11.2 GeV/c).
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Table I

Charge-exchange (polarization) X (differential cross section) at 11.2 GeV/c)

: 2 -—
(in pb/GeV'). We assume that the moving zero of p(mp = mn) is at t = -.35,

-t .03 .06 .09 12 .165 .225 .275
do, - . : . g
Pﬁ(ﬁp - Tron) 18. 175 115 16- 17- 90 5-4
experimenta,1(23) + 9. + 10. +7.8 | £7.5] 5. +5. -+ 3.
'pg—:(-ﬁ_p ~ 7M°n) 3.5 + 4. 7.5 3.9
experimental(BS) for .024 < -t < ,135 for .135 < -t < .285
do, -
P&%(ﬁ - ﬂgn) 9.4 9.9 7.2 12, 14, 9.8 7.5
calculated +4.7 | £5.8 § £5, 5.4 | £4.3 1 £5.5 | £4.2
do,. - =0
p(ﬁ(K p = K°n) 31. 29. 19. 26, | 21, - 1.7 | - 24.
calculated +16. | +17. + 13, +12, | 6.1 1, + 13,
pg—g(K_'_n - Kop) 15. 17. 14, 26. 40. 40. 52.
calculated +7.6 [ £10, +9.9 | £12, 12, + 22, + 29,
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Table II
d K d -
(pa%b( )/pafkﬂ p = ™n) calculated at 5.9 GeV/c using the same value of s, as
in the preceding table.
-t .1 .2 .3 .6 .9

ng(ﬂ-:p - T] n) 07 1.1 1 .7 - 3.8 —09

dt 8

do,,— =

p(-l—t-(Kp-‘Kon) 1.8 1.4 | =2.4 | -25. | = 3.7

p%f(K-i—n - Kp) 1.3 2.8 8.5 14, 1.9
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11. CONCLUSIONS

We have discussed the influence of cuts on the duality predictions
for charge and hypercharge exchange scattering (however, the backward scatter-
ing has not been considered). We claim that all the successful predictions of
duality remain valid in a very good approximation. Moreover the cuts permit
to save the exchange degeneracy in several cases, when otherwise it would have
to be badly broken (polarizations, dips). The problem of the behavior under
s = u crossing of the differential cross sections in hypercharge exchange
processes is, of course, delicate. We think, however, that it is not the ex-
change degeneracy but the universality of the Sopkovich formula (more precise-

ly, of the absorptive sign of the cut) that is doubtful.

I am indebted to B. Sadoulet and to J. Tran Thanh Van for reading the manuscript

of this paper and for their comments.
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