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DUALITY AND REGGE CUTS IN INELASTIC 2-BODY PROCESSES 

A .  KRZYWICKI 

1 .  INTRODUCTION 

The purpose of this paper is to review some of the recent consider­
ations in the phenomenology of the Regge cuts . This review wi ll neither be 
complete nor completely unbiased . We shall almost exc lusively consider the 
ine lasti c 2-body processes and we shall spend most of our time examining the 
phenomenological consequences of introducing cuts , when the duality between 

( 1 ) Regge poles and direct channel resonances is postulated • In the framework 
of the pure Regge pole model , this duality leads to a considerably simplified 
description of the high energy scattering phenomena , providing an e legant just­
ifi cation for the exchange degeneracy constraints ( * ) . It is tempting to keep 
these constraints even when the Regge cuts are introduced into the gaf!le(:"*) This 
attitude i s  partly motivated by ae sthetic reasons , but also by the hope ( large­
ly justifie� as wil l  be seen) that it wil l  be possible to preserve in a more 
complete theory the progress of understanding of high energy phenomena , which 
we owe to the duality concept . Finally I should mention that this talk addresses 
mostly to experimentali sts and that often I shall sacrify rigour in favour of 
simplic ity .  

2 . WHY DOES ONE NEED CUTS ? 

Several pure ly theoretical arguments ( study of Feynman diagrams and 
of the unitarity corrections to the Regge pole exchange amplitudes ,  the neces­
sity of " shielding" the Gribov-Pomeranchuk fixed singularities etc . ( 3 ) ) indi­
cate that Regge cuts are needed in the theory of strong interactions . 

( * )  This has been reviewed at the 4th Moriond Meeting by P .  Sonderegger . 

( ** )  Notice that our approach wil l  essentially be that of the Argonne group (2 ) . 
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Unfortunately, until now, these considerations have yielded no really reliable 
predictions for the strength of the discontinuity acros s the cut . Several 
experimental facts suggest ,  however , that cut effects are quite si zable . The 
strongest experimental evidence for the importance of the cut effects comes 
from the observed features of certain inelasti c 2-body reactions : 

( i ) Analyticity and factorization constraints relate among them the 
forward beha.vior of the differential cross sections for different reactions 
if a pure Regge pole model is adopted (4 ) . These predictions are often in dis-
agreement with the experimental data . For example , a conspiring pion is needed 
to get the sharp forward peak of the np � pn differential cross section . How­
ever , a conspiring pion produce s  a forward dip in � N � p 6 ; it is a peak that 
is observed ( 5 ) . 

( i i )  Po larization in pion charge-exchange seems to decrease with 
energy less rapidly than expe cted if it resulted from the interference between 
the leading Regge pole ( p) and a secondary pole . 

I mentioned the most drasti c and best-known facts . I do not mean 
that they cannot be explained with Regge poles alone . It appears ,  however , 
that such an explanation would be rather artificial and not economical . 

The elastic scattering also presents certain features ,  like the cro s s-
( * ) over effect , whose description requires unpleasant ad hoc assumptions in the 

framework of pure Regge polology and which become relatively easily under­
standable once the cuts are introduced ( 6 , 7 ) . 

Of course ,  since a fundamental theory of the Regge cuts i s  lacking , 
we are bounded to use phenomeno logical models which also rest upon rather 
ad hoc as sumptions . The advantage of the se models is to provide a unified 
description of apparently di stinct phenomena . 

( * ) The differential cross sections for AB � AB and AB � AB cros s each other 
at a small value of lt l . 
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3 .  SOME GENERAL FEATURES OF THE LEADING CUTS IN THE PHENOMENOLOGICAL MODELS 

Consider for definitenes s ( * )  the eikonal model and for the sake of 
simplicity let us neglect spins . We write the scattering amplitude for the 
transition i � j in the form 

fj i  ( s ,  cos 9 )  = i {!' l ( .e,  + !) P .e,( co s 9 )  ( I  - eiX ) j i 
.e, 

( 3 .  1 ) 
where x ( t) i s  the "eikonal matrix" ( S ) . Fol lowing Arnold ( 2 )  we postulate 

x . .  ( .e,) J i  
k 1 B = rs J_1 d cos 9 p .e,( co s 9 )  fj i  ( s ,  cos 9 )  ( 3 . 2 )  

B where f . .  is the "Born" amplitude of the mode l ,  in occurrence an amplitude J i  
for the transition i � j parametrized as in a simple Regge pole exchange 
model . Eq . ( 3 . 2 )  constitutes the essential dynamical postulate and replaces 
the integral expression, well known in non-relativistic quantum mechanics , 
relating the phase shift to the potential in the eikonal approximation. 

x� ' ( .e,) be the J l  It i s  easy to see how the Regge cuts emerge . Let 
contribution to x . . ( t) from the Regge pole R .  Assuming linear traj ec�ories J i 
and smooth residues one has 

with 

n R 
! )  P, ( cos 9 )  ["lf( i  X n) ]  . . 

� k=1 J i  

n n 

°'c ( t )  = I' '\ ( 0 )  - n + 1 + t/ [ l 1 / � J 
k=1 k=1 

s .... 00 

01 ( t )  c s 
n-1 ( log s )  

( 3 . 3 )  

( 3  .4 ) 

( QI  ( 0 )  and n 0t' are the intercept and the slope of the n 
th n Regge traj ectory) . 

The asymptotic estimation in Eq . ( 3 . 3 )  i s  most easily obtained if 
the replacements 

( * )  It is worthwhile to remark that if one parametrizes the Regge input a la 
. ( 9 )  . . ( 1 0 )  Veneziano , the Baker-Blankenbecler model i s  more suitable • 
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l ( l  + !) Pl( cos 9 )  . . . .... k2 J b db J0 ( b  ;:t )  . . .  
l 

J 1 d cos 8 P,c,( cos 9 )  
-·1 

. . . ... 

valid for 0 . << 1  and s .... = ,  are made in ( 3 . 2 )  and ( 3 . 3 ) . In particular , it 
is a simple exercise to derive the following formula ,  which will be useful 
later 

At '°' Bt i 
/[1 1 

e '61 e ,...,. s (A + B ) 

t - + - ] A B e 

( s i'Ti) When A = Q11 log s - 2 and 
( 3 .4 ) (with n = 2 ) . 0 

s i'Ti B = a.' ( log - - -) 2 s 2 0 

( 3 . 5 )  

Eq . ( 3 . 5 )  implies Eq . 

The asymptotic behavior in ( 3 . 3 )  i s  that of a Regge cut contribution . 
It is important that the study of Feynman diagrams also leads to Eq . ( 3 . 4 ) . 

A leading cut associated with a Regge pole R will be defined by 
the requirement 

QI ( 0 )  = c 

One obtains a leading cut by compounding 

°ll ( O )  ( 3 . 6 )  

R with pomerons ( QJ  ( 0 )  = 1 ) .  p 

It i s  evident from ( 3 . 2 )  and ( 3 . 3 )  that the leading cut contribution 
to the amplitude is a linear functional of the Regge pole contribution R. 
We denote this functional by F (R) . Hence 

k 

when x are independent of e .  n 

k 

In the approximation of a flat Pomeranchon , 

( 3 . 7 )  

Q11 = O ,  the Pomeran­p 
chon contribution to ( 3 . 2 )  is purely imaginary and one gets from ( 3 . 3 )  

* * F (R) = F (R ) ( 3 . 8 )  
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i . e .  F (R ) i s  a real functional . 

A Regge cut can be considered as a continuum of Regge poles 

= QI ( t )  
J c 

( ) ( 1 e-i TTQI) ( s/s ) ct d,., g::I:: ct, t ± 0 "' ( 3 . 9 )  

where the superscript :I: refers to the signature of the Regge pole . We used 
the fact ,  which can be obtained from ( 3 . 3 ) , that in this model the signature (* ) of the cut is the same as that of the pole • When the discontinuity function 
g::l::( a, t ) is real , the reality of F implies 

and one gets the fol lowing asymptotic expression 

-iTT�(O ) 
( real function independent of :I:) X [ 1  :I: e J 

4 .  AN EXAMPLE THE CROSS-OVER EFFECT 

( 3 . 1 0 ) 

( 3 . 1 1 ) 

As an application of the preceding considerations let us consider 
the cross-over problem .  Take two reactions related by the s � u c�os sing 
AB � AB and AB � AB .  Let AB � AB be an exotic channel ( like NN � NN or 
K+N � K+N) . The common experimental situation is that atot (AB � AB ) > 

atot (AB � AB ) . As sume for simplicity that QI� = O .  Duality implies 

fB (AB � AB ) = ip - r 

B -i TToi( t ) f (AB � AB ) = ip - r e 
( 4 .  1 ) 

where r and p are real functions ( r > 0 ) . In the cut model one has for 

(* ) As for the other quantum numbers of the cut , they are those of the set of 
Regge poles which are " compounded" . E . g . each leading cut R ® p  • •  , will have 
the g-parity of the R ( since the g-parity of P i s  +1 ) but no definite parity 
(because the relative angular momentum of R and P is left undetermined ) . 
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f (AB ._. AB ) = i p - r - c 

f (AB ._. AB ) 

d e� (AB ._. AB ) dt 

de� (AB ... AB ) di:, 

= 

= 

_2 p 

_2 p 

= l. -i TTQ'( t )  -i TTO'( 0 )  p - r e - c e 

p = p + F (p )  
c = F ( r )  

2 + O ( r  ) 

+ 2p [r sin TTa( t )  + c sin 2 TTQ'( O )  J + O ( r  ) 

(4 . 2 ) 

(4 . 3 )  

Wi thout cuts the cros s-over appears at oi( t ) = O .  With cuts it i s  
shifted toward the point t = 0 provided 0 < -c < r . 

When Q'( t )  = t + t 

t 0 = 

the cros s-over is at t = t where 0 

1 - 2 TT arc sin( c/r ) t=t 0 

(* )  One gets t0 � - . 2 when ( c/r ) t=t � - 80 % . This gives an idea about the 
magnitude of the cut contribution �o the e lastic scattering amplitudes since 
for Plab of the order of 1 0  GeV/c the cross-over appears precisely near 

( * ) This corresponds roughly to ( c/r ) t R1 - 50 % when one uses ( 3 . 5 )  ( the =O 
slope of the Pomeron exchange amplitude is roughly 4 GeV-2 • In eikonal model 
fits the slope of the "genuine " Regge pole amplitudes is usually also roughly 

-2 I 3-4 GeV for Plab of the order of 1 0  GeV c ) .  The eikonal model calculations 
typically yie ld ( c/r ) t=O � - 30 % • This is the reason why usually the cross­
over obtained in these calculations appears at slightly too large a value of 
I t I · 
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t = - . 2  • Since r ......., s oi( t )  shrinks and 
t - 0 logarithmically as s - � • 0 

5 .  THE SOPKOVICH FORMULA 

a( o )  c ......., s /log s one expects that 

Let us assume that the off-diagonal elements of the eikonal matrix 
in ( 3 . 1 ) are small .  Treating the inelastic transitions as a perturbation one 
easily gets 

iX ix . . 
( 1  - e ) . .  = 1 - e J J  ( 5 .  1 ) 

J J  

and (* ) 
i i 

ix 2X . .  2X . .  2 ( 1  e J J l l  o [ (x . .  � j ( 5 . 2 )  - e ) . . = x . . e + - x . . ) J i 
J l J l J J  l l  

( ,f,) The quantity on the UIS of ( 5 . 2 )  i s  the partial wave amplitude T . .  for the 
J l 

inelasti c reaction i - j .  According to the Arnold ansatz we consider x . . 
as the partial wave "Born" amplitude B (t) for this reaction . Denoting �� 

) j i  
S (t the S-matrix element for the elastic transition j - j and using ( 5 . 1 ) j j  
we can rewrite ( 5 . 2 )  in the more familiar form 

= 

kno.wn as the Sq:ikovich formula ( 1 1 ) . 

( 5 . 3 )  

The sum o f  the contribution from a Regge pole R and from all the 
associated leading cuts to the elastic scattering amplitude i s  obtained from 
( 5 .  1 ) 

[R + F (R ) J (.(; ) 
. p 

R ix . .  
[ i  X . .  J e J J 

J J  
l. R x . . J J  

- i x� . [ 1 
J J  

( 5 .4 )  

I t  is evident that the cut contribution t o  the amplitude subtracts from that 
of the Regge pole . We have seen in the pre ceding section that this is indeed 
a requirement needed to get the cross-over effe ct .  Furthermore the fits to 

(* ) Here , we als o  as sume that the elastic scattering in states i and j is 
not too different . 
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the elastic scattering indicate that the cut contribution as given by ( 5 o 1 ) 
( * )  is of correct order of magnitude , 

Simi larly? in the Sopkovich formula , the cuts reduce the input "Born" 
amplitude especially for low partial waves .  This leads to a simple intuitive 
picture : the situation looks as if the inelastic transition oc curred in a 
semi-transparent medium 9 where both the incident and final waves are absorbed . 

It is important to stres s  that both ( 5 . 1 ) and the Sopkovich formula 
rest heavily upon the perturbative treatment of the inelasti c transitions . When 
one attempts to construct models where intermediate inelastic transitions ( in 
parti cular the diffraction dis so c iation pro cesses ) are at least partly taken 
into account , then it becomes evident that the perturbative arguments which 
lead to Eq . ( 5 . 1 ) and to the Sopkovi ch formula respectively , have a different 
physical meaning . Hence the validity of ( 5 . 1 ) does not imply that of ( 5 . 2 )  
and vice versa . Indeed9 the cros s�over phenomenon is an argument in favour 
of ( 5 . 1 ) ,  or at least of the "absorptive 11 sign of the cut . However 9 in fitting 
inelasti c reaction data one often needs cuts stronger than predicted by the 
Sopkovich ansatz . Even the 1 1absorpti ve " sign of the cut , which predicts cor­
rectly the polarization in pion�nucleon charge-exchange reactions and the 
sharp peak in nuc leon charge exchange 9 seems doubtful in certain cases ( like 
the hypercharge�exchange pr o c e s s e s  o r  photoproduction ) o 

{ 1 2-� 1 " )  6 .  DUALITY-PRESERVING REGGE CUT'S ' . . ·' : 

Among the c onsequenc e s  o f  duality ( supplemented by the usual as sump­
tion about the absence of exo t i c  resonance s ) the most clear-cut are probably 
those which state that linear combinations of certain scattering amplitudes 
are purely real . For example 

- ., ( . +  . � 0 \, Im f K n .,,,, K P J  = 0 ( 6 .  1 ) 
or equivalently 

(* ) See , ho��ver , the footnote o n  
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( 6 . 2 )  

When Regge cuts are taken into acc ount these predi ctions , in general , 
break down . However , as discussed in Sec . 3 ,  in the approximation a' = 0 , p 
the leading cuts satisfy the reality condition ( 3 . 8 ) . If the contribution 
of the Regge poles , � R . , is real then combining ( 3 . 7 )  and ( 3 . 8 )  one has l 

Im [ � F ( R . ) J = Im F ( � R . ) = 0 
l l ( 6 . 3 )  

For obvious reasons we say then that the leading cuts are duality preserving 
Eqs . ( 6 . 1 ) and ( 6 , 2 )  remain true in the approximation when pole ® pole cuts 
(which are , of course ,  duality non-preserving) are negle cted . Thus one predi cts 
a vanishing polarization 

and (using ( 6 . 2 ) at t = 0 ) 

+ p (K n � K0 p )  = 0 

+ 
CJ'rr (K p ) 

( 6 . 4 ) 

( 6 . 5 ) 

Simi larly , since both np � np and pp � pp channels are exotic : 

( 6 . 6 ) 

It is worthwhi le to note that Eqs . (6 . 5 ) and ( 6 . 6 ) are very well satisfied 
experimentally 

7 .  POLARIZATION AND DIPS (A GENERAL DISCUSSION )  

Everybody knows that a vanishing polarization is predicted in the 
pure Regge pole model for reactions where only one Regge pole is exchanged . 
This predic tion extends to pro cesses dominated by the exchange of several 
Regge poles if the hypothesis of strong exchange degeneracy is adopted . A 
non-v�nishing po larization is , however , observed in charge and hypercharge 
exchange reactions . These po larizations can be explained by the interference 
of the Regge pole ( s ) with the associated Regge cut ( s )  and a slow ( logarithmic )  
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decrease with energy of the polarizations is then expected in agreement with 
the data . This is a well-known fact which is often put forward to emphasize 
the importance of the cut effects . 

Let us consider for definiteness the pion-nucleon charge exchange 
scattering , assuming that only the p pole and the assoc iated leading cuts 
contribute significantly to the amplitude . Provided the leading cuts are 
duality-preserving , one can write the scattering amplitude at very high energy 
as 

( 7 . 1 ) 

where A. =0 or for the helicity nonflip and flip respectively and r A  , 
are real functions of s and t .  

Apart from an su3 Clebsch-Gordan co effi c ient ,  the same rt.. appears 
in K+ n � K0 p .  The Gell-Mann ghost-killing mechanism for A2 and the ex­
change degeneracy , necessary to ensure ( 6 . 1  ) , imply that rt.. is finite . 

One obtains from ( 7 . 1 ) the following expression for the polarization 

sin ; oi(t )  sin ; a( O ) J sin ; [ O'( t )  - 0'( 0 ) ] 
( 7 . 2 )  

The neces sary zeros of p are evident from the above formula . These zeros 
have , however , two di stinct origins : 

( i )  Exchange degeneracy yields the factor sin ; Q1( t )  which vanishes 
e . g .  at a( t )  = 0 ( for n-p � � n the corresponding factor is c o s  ; Q1( t )  and 
the first ze:ro of p appears at QI( t )  = -1 ) . 

( i i )  The factor sin ; [ oi( t )  - oi(O ) ]  c omes from the difference of 
phase between the pole and the cut contributions and has to be considered more 
carefully . 

The cut has a phase -TI 0'( 0 )  + 0 ( 1 /log s ) . In writing (7 . 1 ) we 
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neglected the correction term 0 ( 1 /log s ) , which is a bad approximation since 
the principal term in the phase of the cut cancels with the phase of the pole 
at t = O. The po larization has a kinamatical zero at t = 0 (angular momentum 
conservation) and the dynamical zero ( c f .  ( 7 . 2 ) )  which co incides with the 
kinematical one at infinite energy , but which appears at t � 0 for any finite 
energy . 

It is easy to show that 

( 7 . 3 )  

if O'' = 0 . Indeed , using the impact parameter representation for conve­
nienc� , one has ( 7 )  

with 

F (R) = k /S J b db JA ( b ;=t) x/.- (b , s ) ( e iX - 1 )  

XO = 

X1 = 

= 

1 rs J A d A J (b /=-t") k s 0 

1 -rs J A d Ft J ( b  Ft) k s 1 

R ( s ,  t ) 0 

R1 ( s ,  t ) 

1 d R1 ( s ,  t )  
k rs - J J.:t d Ft J (b Ft) [ ;::t J db 0 

(7 . 4 )  

( 7 . 5a )  

( 7 . 5b )  

As the behavior of is determined by the I ) O'( t )  Regge factor ( s  sR 
common to R0 and R1 /;:::t. Roughly 

1 2 
XO ,..._, k /S R0 ( s ,  0 )  exp [- b /4 log ( s/sR) ]  S -+ CIO 

( 7 . 6 )  
b R1 ( s ' t )  2 

X1 4k rs c .r=t Jt=O exp [- b /4 log( s/sR ) ]  / log ( s/sR) S -+ CIO 

Eq . ( 7 . 3 ) is readily obtained substituting ( 7 . 6 )  into ( 7 . 4 ) , provided the 
absorptive cut-off becomes energy independent at large s , which i s  preci se-
ly the case when O'' = o .  p 
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Using ( 3 . 5 )  with i TT A = ai' ( log s/sR - 2) we see that the corrective 
term in the phase of c 0 is positive at small It ! where the first leading 
cut is the most important . Neglecting ( cf .  ( 7 . 3 ) )  the fo llowing replace-
ment should be made in ( 7 . 2 )  

sin ; [ ar( t )  - ai(O ) J ..., sin ; [ ar( t )  - ct( O )  + a ( t ) /log s/s0 ] , a ( O )  > 0 
( 7 . 7 )  

and we find that p vanishes at 

t � - a (O ) /  ai' log s/s 0 ( 7 . 8 )  

This zero tends logarithmically toward the point t = 0 as s � = . 
. ( 1 6 ) Such a dynamical moving zero of the polarization is typical for cut models • 

As discussed in Sec . 4 the Sopkovich formula yields the fo llowing 
predictions for the sign of the cut 

sgn[ cAJ = - sgn[rAJ 

( 7  1 7 ) Phenomenologi cal fits (with or without cuts ) give ' 

Using ( 7 . 3 )  we find 

- r 0 > 0  

( 7 . 9 )  

( 7 . 1 0 ) 

( 7 . 1 1 )  

and p > 0 fo r small l t l , in agreement with the experimental data on 
TT p � T'f'ln . 

To c lose this section let us mention the problem of dips . Actually ,  
there are two kinds of dips in cut models : 

(a ) Dips ( or breaks ) that occur at relatively large values of lt l ,  
and which are interpreted as re sulting from multiple scattering of the pro­
j e ctile on the target "stuff11 ( 1 8-2 1 ) . As an example one can quote the break 
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dcr in dt ( pp ... pp ) for 2 lt l � 1 - 1 . 2  GeV . The se dips are expected to become 
more and more pronounced as energy increases . 

( b )  Dips at small values of l t l  which reflect the structure of the 
Regge pole amplitude (usually at °R, ( t ) = O ) .  In general , we can expect egge 
that , as energy increases and for fixed t ' the cut progressively dominates 
the pole ( since Q'1 < Q'1 ) and the dip becomes less and less marked . This cut pole 
i s  indeed observed for several reactions , for example in the n° photoproduction 
( 2 2 )  . 

. · •  However , two points should be kept in mind . First , the cut amplitude 
i s  an integral , whose integrand involves as a factor the Regge pole amplitude � 
It can be shown that if the Regge amplitude changes sign, then results a can­
cellation which reduces the magnitude of the cut amplitude at t which rough­
ly corresponds to the zero of the Regge amplitude ( 6 ) . Sec ondly, when the 
helicity-flip Regge amplitude is particularly large , the cut is less important 
( c f .  ( 7 . 3 ) )  and consequently the dip is less affected by the existence of the 
cut . This seems to be the case in n-p ... n°n : the dip ( due to the vanishing 
of Regge amplitudes at Q' ( t ) = O ,  cf . ( 7 . 1 ) )  survives at highest energies 
where experiments were done , although the peak that follows it i s  progressive-

( 2 3 )  ly smeared out • 

8 .  DUALITY NON-PRESERVING REGGE CUTS ( 1 4 ) 

In the preceding di scussion we often made use of the approximation 
O'' = 0 ' p which for leading cuts implies the important reality condition 
F ( R* ) = F* ( R) • However , the e lastic scattering results obtained with the 
Serpukhov acce lerator point toward a non-zero slope of the Pomeron , If 
O'' � 0 , then even the leading cuts are duality non-preserving : F (R* ) � p 
F* (R) • Nevertheles s ,  some of the duality predictions are not very sensitive 
to the approximation 

2 
O'' = 0 and can be maintained if p 

( say Q'1 � 4 Ge V ) • p 

In the following we shall ,  for definiteness , - 1+ 0 2 ... - 1+  0 2 

R± A. 

scattering . Let us write 

= A. . °R,(t )  
�A. (J-t )  ( s/sR ) [1 

the Regge pole 

± 
-i TI°R_ ( t )  

e J 

O'' is not too large p 

limit ourselves to the 
amplitudes 

( 8 .  1 ) 
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(notice that R+ and R- are strongly degenerate )  and the Pomeron exchange 
(* ) amplitude 

p = 
1 +a' t 

iy( s/sp) 
p e 

i ' t  -- TTO' 2 � p ( 8 . 2 )  

At very high energy ,  and with a proper choice o f  the scale parameters sR and 
sp , it is reasonable to neglect the t-dependence of the residues in ( 8 . 1 ) 
and ( 8 . 2 ) . Consider only the first leading cut ( i . e .  R l8l P ; it dominates 
over the other cuts at small lt j ) - . One easily finds from ( 7 .4 )  and (7 . 5 )  
[x i s  given by a formula identical to ( 7 . 5a ) , with R replac ed by PJ that 

= ( 8 . 3 )  
2 up to terms of the relative order 0 ( 1 /log s ) , and that ( 7 . 3 )  i s  replaced by 

where a' c 

Set 

Then 

(R+ :I: R- ) F (R+ :I: R� ) 0 0 1 oi�/OJi + 0 ( 1 /log s )  = 
(R+ ± R� ) F (R+ ± R- ) 1 0 0 

i s  the slope of the moving cut 

= 

= 

01 ( t )  c 

+ -Arg F (RA + R1_ ) 

= 

= 

= 

01 ( 0 )  + Ot' t c c 

Dta(O )  + 
ctR CY� t 
ctR + Ot' p 

-i TTQ'c ( t )  /2+iaA. e 

-i TTO'c ( t )  /2+iaA e 

( 8 . 4 )  

( 8 . 5 )  

( 8 . 6 )  

( 8 . 7 )  

(* )Notice that with this convention , P becomes t-independent ( a  nonsense ) when 
one sets a' = 0 .  Thus one should not take the limit 0t' � 0 in the formulae p p 
derived from ( 8 . 2 ) . 
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When a' is small the cut flip contribution to the polarization is not very im­p 
portant . We neglect it for simplicity .  The position of the "moving zero " of p 

i s  determined by the equation 

TT ct... ( t )  - TT � ( t )  + 2a = ' 0  -!(, c 0 
where the Regge pole amplitude i s  ± R ( e . g . TT p -+ TT0n or 
and A2 exchange respectively) and by 

'TT °'R ( t )  - TT CYc ( t )  + a 0 + b 0 

( 8 . 8 )  

TT p -+ 'T1 n with p 

= 0 ( 8 . 9 )  

when the Regge pole amplitude i s  R+ - R- ( e . g .  K-p ... K0n with p and A2 
exchange ) .  Only when the cut i s  duality-preserving , the position of the moving 
zero i s  c ommon to the three reactions , since = 

Of course , when F* (R) -:j. F (R* ) the polarization + p (K n -+ K0p )  -:f. 0 .  
The sign o f  this polarization depends on the relative magnitude of and 
b>.. • It is impo ssible to make a truly model-independent prediction. However , 
asymptotic expressions for aA 
( 8 . 3 )  and ( 8 .4 ) : 

bA can be derived in the same manner as Eqs . 

a>.. = 

b,._ = 

TT 
2log s/s + 

0 

TT( 1  + A ) CY' 
c 

2a' log s/s p 0 

2 0 ( 1 /log s )  

2 ( 8 . 1 0 ) TT( 0'1 ) 2 c + 2cl t + 0 ( 1 /log s )  
p 

Eqs . ( 8 . 1 0 ) with different scale parameter s are asymptotically equivalent . 0 
One may hope that Eqs . ( 8 . 1 0 ) can be used for rough estimations as non-
asymptotic energies provided s is properly chosen .  Hopefully , this para-o 
meter i s  determined by the position of the moving zero of p . We postpone 
the discussion of polarizations to the fol lowing sections • Anticipating 
slightly , we can say that the qualitative features of polarizations that are 
allowed, to be non-zero by the unbroken duality remain valid ( the signs of 
polarizations , the existence of the moving zero , the zeros due to the exchange 
degeneracy) .  

and using ( 8 . 1 0 ) one finds 



III . 1 09 

x 
c sin (a - b ) I 0 0 0 1 ::-: ,_,, ! 06 mb 
r 0 sin TT Of?, ( 0 )  

at 6 GeV/c ( 8 . 1 1 ) 

(we set Cl'' :::: . 4  and assumed that p at 2 t = - . 35 GeV for 
1 1  • 2 Ge V / c ) • It is seen that the vio lation of Eq . ( 6 . 5 )  is indeed well within 
experimental errors ( �  . 1  mb ) .  

9 .  PROCESSES RELATED BY LINE REVERSAL 

It has been pointed out by Gilman (24) · ( see also Mathews ( 2 5 ) ) that 
the comparison of the behavior of reactions related by the s ... u crossing pro­
vides a very sensitive test of the exchange degeneracy hypothesis . 

We shall c onsider the pseudoscalar meson-baryon scattering . The 
contribution of the Regge poles with positive signature to the amplitudes of _ 
'rea.ctions related by s ... u crossing is identical while the corresponding contri­
�bution of the Regge poles with negative signature changes sign . For example 
if 

13+ ( t )  
QI ( t )  

f (AB ... CD ) s + [ 1 = 

then 
QI ( t ) 

f ( CB ... AD) 13+( t )  s + [ 1 = 

-iTTQI ( t )  + + e J 

-i TTQ' ( t )  
e + J + 

QI ( t )  
+ 13- ( t )  s 

QI ( t )  
- 13- ( t )  s 

With weak exchange degeneracy, which postulates + QI = ot 

-i TTQ' ( t )  
[ 1 - e J 

( 9 .  1 ) 

-i TTQ' (t )  
[ 1 - J - e 

( 9 . 2 )  

one predicts (we 
assume that the energy is high enough to neglect the kinematical factor due to 
the difference of masse s )  

dcr(AB ... CD ) = -�Q'(CB ... AD )  dt dt 

p (AB ... CD ) = - p (CB ... AD ) 

( 9 . 3 )  

( 9 .4 ) 
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+ Strong exchange degeneracy, which postulates ct = OI d r.l+ --r.l -an � � , predicts 
a vanishing polarization in both s � u crossed reactions 

p (AB � CD ) = p (CB � AD) = O 

The experimental situation has recently been summarized by 

( 9 . 5 )  

( 2 6 )  . . ( 27 )  Sonderegger and Kwan Wu Lai and Louie . It i s  i n  a drastic disagreement 
with the above predictions , except perhaps for the kaon charge exchange where 

d a( - -polarizations haye not yet been measured and � K p � K0n) becomes equal to 
dey + dt 
dt(K n � K0p ) near 5 GeV/c (however , there is no data above 5 . 5  GeV/c ) .  

( i )  The polarization in hypercharge exchange reactions , K-p � TI-�o 
( near 3 GeV/c ) and K-p � n° A0 (up to 4 . 5  GeV/c ) ,  is large and at small jt j 
it i s  of the same sign as the polarization in respective line cros sed reactions ( * )  

( one might o�je c4 however , that the energies where the experiments were per­
formed are not high enough ) . 

( i i )  The differential cross sections change substantially under s � u 
cros sing . An amusing empirical regularity i s  observed for hypercharge exchange 
reactions : out of the two processes related by s � u cros sing , the one where 
"hypercharge annihilation" (** )  (using the terminology of Van Hove and colla-
b t ( 2B ) ) · " bl · f "  · 1  d . · t ·  1 t t h 1 d .tdt Th " ora ors i s  possi e in ina an ini ia s a es , as arger rJJ • i s  
rule is apparently not true for charge exchange , s�nce ��(K-n � K0 �- ) < 
dcr( + ++ - - - / dt K p � K0 6 ) .  However , the data on K n �  K0 6  ao not extend beyond 5 GeV c .  

dcr - - dcr + Also dt (K p � K0n )  < dt (K n � K0p) at low energy , put the two cross sections 
become equal at 5 GeV/c . On the other hand , among the two nucleon charge­
exchange reactions , pn � np and pp - nn , the one where annihilation (now I mean 
the "usual" , baryon number annihilation) is possible in final and initial states 
has dcr/dt larger by a factor of four ! 

At high energy and small lt l , the Sopkovich formula predicts 

(*) The strong exchange degeneracy of K* and K** in hypercharge exchange reactions 
follows from the postulated absence of exotic resonances in meson-meson and 
baryon-baryon systems , duality and factorization . 
(** )  Two partic l e s with hypercharge +1 and -1 respectively produce n partic le s  

- + with hypercharge 0 :  e . g .  K p - (n - 1 ) n + � .  
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� TT > I arg ( cut ) - arg ( pole ) I = 6 � > F 
l cut I < I pole I X l cos /::, � I 

1
2 2 2 da = I fin = lpole I + I cut I + 2 !pole I I cut \ c os 6 q> 

it i s  evident (* )  that 

( a )  da increases when I TT - 6 �  I increases 

( b )  dcr decreases when l cut l increases 

( 9 . 6a ) 

( 9 . 6b )  

( 9 . 7 ) 

( 9 . 8 ) 

First , let us take into acG,ount the leading cut only, as suming for 
simplicity that a' = O .  At high energy and small lt l p 

-i TT°1 ( t )  � ( ** ) l ( r1 ( t )  e ) 0 P l weakly depends on 111 , and ( c f .  ( 3 . 5 ) )  

-i TT°1 (t ) 111 -iTTa1 ( t ) 111 6 � ' = arg[ ( :r1 ( t )  e ) 0 P] - arg[r1 ( t )  e J = TT+TT a{ t111 +cp0 111 

with ¢ ,..., O ( "l /  log s ) . Hence 0 

and one predicts 

( 9 . 9 )  

( 9 . 1 0 )  

( 9 . 1 1 ) 

and als� provided the P-baryon couplings do not violate the su
3 

symmetry too 
badly, 

( * )  Take o[dcr] /o !cut I . 
-iTTa ( 1 ) ( ** )  � = 1 ( 0 )  means that the Regge amplitude has the phase factor e 



do-( - TT- "'+ ) dt K p 
... 

£.; 

do- - --(K n '""' TT A0 ) dt 
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do- + + + < -(TT p '""' K L: ) dt 
( 9 . 1 2 )  

in complete disagreement with experiment ( the processes on the UIS c orrespond 
to � = 0 , those on the RHS of the above inequalities to 111 = 1 ) . 

We know that in e lastic scattering the secondary Regge trajectories 
(with intercept FOd 1 /2 )  are responsible for large differences between particle 
and antiparti c le total cross sections . Through absorption these sec ondary 
traj ectories can lead to non-negligible cut effects in inelastic reactions . 
Let us therefore consider the pole 0 pole cuts also . Again we neglect the 
dependence of l ( r1 ( t )  e

-iTTCtJ ( t ) 111 ) 0 ( r2 ( t ) e-iTTCl2 (t ) 112 ) I on � and 112 , and 
we write ( r2 ( t )  < 0 ,  cf . (4 . 1 ) )  : 

ti¢ " = arg[ ( r1 ( t )  
-iTT°1 ( t ) 111 e ) 0 

- arg[r1 ( t ) 
-i TT°1 ( t )  111 e J = 3 -TT + 2 TT Q'.1 t 11 - TT 1 1 

where cp 1 , 2 ,...., 0 ( 1 /log s ) . We can safely put 

3/2 TT 

3/2 TT + TT0'1 t + ¢1 
ti "' " = 

TT + tP2 

TT + TTO'.) t + </>1 + ¢2 

For K charge-exchange , since 

( r2 ( t ) 
-i TT0'2 ( t )  112 e ) ]  

0'2 ( 0 )  112 + <1>1 111 + <1>2 � 

� (O )  = 1 /2 

111 = 0 � = 0 

111 = � = 0 

111 = 0 112 = 1 

111 = 1 � = 1 

( 9 . 1 3 )  

( 9 . 1 4 ) 

( 9 . 1 5 )  

the effects of the leading and sec ondary cuts are going in the opposite directions 
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and the predi ction ( 9 . 1 1 )  is abandoned .  

Using the conventional duality arguments ( see Rosner( 34 ) ) one finds 
that the secondary Regge pole c ontribution to the K+�+ � �+�+ amplitude is real 
( '% = 0 ) .  Since 

( 9 . 1 6 )  

the effects o f  the leading cut and o f  the sec ondary cut , associated with ab­
sorption in the final state , are going in the same direction as far as the 

. f i "  + K+ + 
-

+ pair o reac ;ions , TT p � � and K p � TT � is c oncerned ; the prediction 
( 9 . 1 2 )  is c onfirmed . The same is true for other hypercharge-exchange process- s .  
( . 

( 1 5 L Michael } .  

Strictly speaking the above arguments are valid at a sufficiently 
high energy . When one goes down with energy the situation become s more complex , 
but the conclusions remain es sentially the same . There are several ways out . 
The first i s  to abandon simply the exchange degeneracy arguments .  Sec ondly, 
one can as sume that su3 is strongly broken in the Pomeron couplings so that 

= , + > =c - > = + + = - + not only aT l,TT p > O'T K p (which is true ) but also O'T (K � )  > aT ( TT  � )  , 
in such a manner th6t the effect of the secondary traj ectories at finite 
energies is c ompensated (* ) . The third possibility, which I prefer persor$lly ,  
is to call into question the universal applicability of the Sopkovich formula . 
We mentioned in Sec . 5 that it re sts upon the perturbative treatment of inelas­
tic transitions and that the relative strength of the cuts may be modified by 
the effect of the intermediate inelastic states . Also the signs of the cuts 
become then uncertain. The fact that the inequality ( 9 . 6a ) has been verified 
in elastic s cattering and charge exchange reactions does not mean that it is 
true in all pos sible case s .  

( 29 )  . Detailed numerical calculations have been done in Orsay , in 
order to see : whether it is possible to fit simultaneously the reactions 

(* )Notice that if SU3 = + only , then O'T ( TT p )  + 
is broken in the Pomeron pseudoscalar meson couplings 
= + + = - = - + aT (K � ) � �(K p ) + aT ( TT � ) .  
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- - + and K p -+ TT '2: in the energy range 5-1 6 GeV/c , taking the exchange 
degeneracy a la lettre . The rule ( 3 . 3 ) for calculating cut contributions was 
kept but the relative importance of different cuts was allowed to be arbitrary . 
The conclusion i s  that exact exchange degeneracy can be maintained provided the 
global contribution of cuts is of the opposite sign to that predicted by the 
absorption model . It i s  amusing to note that if the Regge pole flip and non­
flip helicity amplitudes for TT+P -+ K+�+ are of opposite sign ( as in K p -+ 

(* )  K0n , where mesons belonging to the same vector and tensor o ctets are exchanged ) ,  
the polarization is then expected to be negative at small lt l and positive at 
large lt l ( i t  i s  what i s  observed ) (*� ) . 

A very important difference i s  observed between the s lope of 
da( - - ) -2 da - ) -2 
dt K n -+  TT A (i=t:1 4 . 0  :I: 0 . 6  GeV ) and that of dt ( TT  p -+  K0 /I. (� 7 . 3  :I: 0 . 8  GeV ) .  
This can perhaps be interpreted as an evidence for a cut dominating the pole 
in K-n -+  TT-A ( cf .  ( 3 . 5 ) ) .  However the data on K n -+  TT A do not extend beyond 
6 GeV/c and a serious conclusion can hardly be formulated . 

On the other hand the much larger da/dt for pp -+ nn than for pn -+ np 
can be understood with an evasive pion . For small \t j , the cuts dominate over 
the pole . The sharp forward peak is obtained , when a very rapidly varying 
pion exchange amplitude t/ ( µ2 - t )  is subtracted from much less varying 
cut contributions (here we definitely need the absorptive sign of the cut) . 
But the absorpti on i s  much stronger (and the cut amplitude larger )  in pp -+ nn, 
which simply reflects the presence of annihilation channels in nucleon-anti­
nucleon scattering . 

. . ( 1 4 ) Let us turn now to the polarization problem • When the cuts are 
duality non-preserving , the reaction which corresponds to an improper duality 
diagram ( e . g .  K-p -+  TT-�+ ) presents a non-vanishing polarization . This polar-

( * )  This can be checked using the fits to the KN scattering by Dass ,  Michael 
and Phillips ( 30 ) . 
( ** )  However ,  this can also be explained by properly choosing the F/D ratio for 
helicity flip and non-flip amplitudes respectively . 
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i zation comes entirely from the phase of the cut ( since the Regge pole ampli­
tude is real ) . This phase is expected to vary slowly with t and c onsequent­
ly the polarization will be of constant sign in a large interval of the momentum 
transfers . On the contrary, the reaction obtained by cros sing the mesonic line 
c orresponds to a proper duality diagram . The polarization has therefore the 
usual moving zero at small lt l • When the equations ( 8 . 1 0 ) are used one more­
over predicts that the polarizations in two reactions related by s � u crossing 
are of the same sign at small lt l . 

The above description of the behavior of polarizations is based on 
asymptotic arguments . Background effects of all types could alter these 
predictions . It is interesting , however ,  that this description seems to cor­
respond to reality even at relatively small energies . Thus Eqs . ( 8 . 1 0 )  predict 

dcr - - + dcr - + very correctly p dt (K p � TT L: ) and p dt (K n . �  ,.,.0 A) when the data on 'Ti p � 
K+L:+ and TT p � K0 A (at F::; 3 GeV/c ) are used as input data (* ) . 

1 0 .  CHARGE-EXCHANGE SCATTERING OF PSEUDOSCALAR MESONS AND su3 
( 1 4 , 31 ) 

Intere sting equalities can be derived when it is assumed that Regge 
(** ) pole couplings obey the su3 symmetry ,  the Pomeron being a pure su3 singlet • 

Then the functional F does not charge when one passes from one reaction to 
another ,  provided the c o l liding particles are replaced by their "partners" in 
an SU3 multiplet . Because of the linearity of F ,  the couplings of a Regge 
pole exchanged in different reactions are in the same ratio as the couplings 
of the associated leading cuts . 

(* ) In this calculation, a' appearing in ( 8 . 1 0 ) should probably be interpreted p 
as an effective slope in the (Pomeron + secondary poles ) amplitudes describing 
the elastic scattering ( the pole ® pole cuts are important if they are at the 
origin o_f the difference between differential cross se ctions in s and u 
channels ) . 
(** ) In fact the ratio of the (PTTTT) to the (PICK) c oupling deviates from 
unity by about 1 5-20 % , whenever one uses pure Regge poles or cut models to 
fit the data . Neverthele s s ,  it is encouraging that the relations of the type 
derived in this section are often pretty we ll satisfied by experiment . 
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Consider the fol lowing set of reactions 

(a )  

(b )  

( c )  

(d )  

TT-p ..,. ,,On 

TT-p ... 1)8n 
- -K p ... K0n 
+ K n ... K0p . 

The Regge poles which dominate the above reactions are � and A2 • 
Let f� and ff denote re spectively the helic ity amplitudes associated with 
(A2 + A2 ® P + • . .  ) and ( p  + p ® P + . . •  ) .  Neglecting non-leading cuts we 
can write the helic ity amplitudes for reactions ( a ) - ( d) as follows 

fa /.. = 

fb A. = 

fc A. = 

fd A. = 

Hence 

and 

./2 f p /.. 
- /213 fA A. 
- f� - fA 

A. 

f p -/.. fA /.. 

b 
= - .fE f,._ 

Taking the trace of ( 1 0 . 3 ) one gets 

Equating the imaginary parts of both sides of Eq . ( 1 0 . 3 )  one finds 

dO" c dO")d ( p  dt) + (p dt = 
dO")a dcr b ( p  at + 3 (p ·at ) 

( 1 0 . 1 ) 

( 1 0 . 2 ) 

( 1 0 . 3 ) 

( 1 0  .4 ) 

( 1 0 . 5 )  
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. ( 32 )  Eq . ( 1 0 .4 )  has been derived several years ago by Barger and Cline and i s  
well verified experimentally .  

Linear relations between products of helic ity amplitudes ,  analogous 
to ( 1 0 . 3 ) , c1�n simi larly be derived for sets of reactions involving resonance 
production. Some of the se re lations can be found di spersed in the literature 
they reflect merely the fact that exchanged " obj ects" have a well defined su3 
assignment . As will .be seen, the exchange degeneracy leads to further relations 

k k* between pairs of Im[f:X. f;x. , J • We limited our discussion to the charge-exchange 
of p:seudoscalar mesons since in this case one has experimental data on 

k k* dcr (k)  Im[f:X. f;x. 1 ] ,...., [p dt] • In the case of resonance production the exchange dege-
neracy constraints concern the imaginary parts of density matrix elements and 
can hardly be tested with existing data . 

Let us rewrite Eqs . ( 1 0 . 1 ) expli citly separating the pole and cut 
contributions to the amplitudes and using ( 8 . 9 ) , ( 8 . 6 )  and ( 8 . 7 )  

_iTTQ' ( t )+ia a 1. '2 . 1i ( t )  -iTTa(t ) /2 PJ . [ TT ( )  J 2 c ;>.. f;x. = / L. r:X. s1n ;z 0t e + i ..; 2 c :X. sin 2 oic t - b;x. e 

-i�°'c ( t }+ia:X. b;x.Je 

( 1 0 . 6 )  

I f  acc ording to ( 8 .4) and ( 8 . 1 0 ) respectively , we put ( r0c1 /r1 c0 ) = et�/oi' 
and the following three equations are easily obtained : 

OI' 
( pd

d
t
cr) a[ sin[TT  Ot( t ) - TT  OI ( t ) + a  + b J - -f  sin[TTa( t ) - TT  et ( t ) + a + b1 J }  c o o 01 c o 

( 1 0 .7b )  
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O'' 
x. ( s in[-2

TT a ( t )  - b J - � sin[!T O' ( t )  - b1 ] }  c 0 ai' 2 c 
( 1 0 .7c ) 

The qualitative features of the polarizations read from the above equations are 
preci sely those discussed in Sec . 7 : the zeros of p ( n-p - non) and 
p (-i"p - 'Tlsn) due to the factors sin rrc/2 and cos n0'/2 respectively, reflect 
the exchange degeneracy . The factor sin[n/2 O'( t )  - n/2 a ( t )  + a J yields a c 0 
moving zero > in p ( TT-p - n°n) and p ( rr-p - �8n) . The moving zero of 
p (K-p - K0n) is slightly displaced . 

+ The polarization in K n - K0p (which is � 0 since we take duality 
non preserving cuts ) is of the same sign as in K-p - K0n for small jt j , as 
it should be ac c ording to the preceding section for two processes related by 
s - u cros sing . 

We give in Table I the polarization for TT p - �8n K-p - K0n and + K n  - K0p predic ted from Eqs . ( 1 0 . 7a-c )  using p (i°p - ,,On) and data on dif-
ferential cros s sections as input data . Neglecting the 'T}-X mixing our prediction 
for TT p - � n can be c ompared with the results of Ref . ( 33 )  � The agreement 
is good (but , of course , the experimental errors are very important ; an ideal 
situation for theoretic ians ! ) o  One should notice that a relatively large 

- _o polarization i s  predicted for K p - K n scattering (about 20 % at - . 3  < t < 0 
and 1 1  . 2  GeV/c ) .  
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Table I 

Charge-exchange ( po larization) X ( differential cross se ction) at 1 1  . 2  GeV/c ) 
( in �b/GeV2 ) .  We assume that the moving zero of p ( TT-P ... ,,.On) is at t = - . 35 . 

-t 

dcr( -p- TT p _. ,,.On) dt 
. t 1 ( 2 3 )  experimen a. 

dcr -p-( TT p _. i]0n) dt 
. ( 3 3 )  experimental 

dcr - ) Pat ( TT P ... i]8n 

calculated 

dcr - -p-(K p ... K 0n) dt 
calculated 

da( + ) p- K n  ... K0p dt 
calculated 

. 03 

1 8 .  

:I: 9 .  

for 

9 .4 

± 4 . 7  

31 • 

± 1 6 .  

1 5 .  

:I: 7 . 6  

. 06 . 09 

1 7 �  1 1  • 

:I: 1 0 .  ± 7 . 8  

3 . 5  ± 4 .  

. 024 < -t < . 1  35 

9 . 9  7 . 2  

± 5 . 8  ± 5 .  

29 . 1 9 .  

± 1 7 . ± 1 3 . 

1 7 .  1 4 .  

:I: 1 0 .  :I: 9 . 9 

. 1 2  • 1 65 . 22 5 . 275 

1 6 .  1 7  : '  9 .  5 . 4 

:I: 7 . 5  ± 5 .  ± 5 .  ± 3 .  

7 . 5  ± 3 . 9 

for . 1 35 < -t < . 2 85 

1 2 .  1 4 . 9 .8 7 . 5  

::I: 5 .4 ± 4 . 3  :!:: 5 . 5  ± 4 . 2  

26 . 21 • - 1 . 7 - 24 . 

± 1 2 .  ± 6 . 1  ± 1 .  ± 1 3 .  

26 . 40 . 40 . 52 . 

± 1 2 .  ± 1 2 . :I: 22 . ± 29 . 

. 
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Tab le II 

( dO') (K)/ dO'( - -+ -lln) 1 t d t 5 9 G V/ . t pdt pdt n p ii- ca cula e a • e c using he same value of s0 as 
in the preceding table . 

-t 

dO' - ) Pat ( n p ... 118n 

dO' - -p-(K p -+ K0n) dt 

dO'  + ) p-(K n -+  K0p dt 

. 1  . 2  

. 7  1 • 1 

1 . 8  1 .4 

1 • 3 2 . 8 

. 3  . 6  . 9  

1 . 7 - 3 . 8 - . 9  

- 2 . 4  - 25 . - 3 . 7 

8 . 5  1 4 .  1 . 9 
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1 1 1 • CONCLUSIONS 

We have discussed the influence of cuts on the duality predictions 
for charge and hypercharge exchange s cattering (however , the backward scatter­
ing has not been c onsidered ) . We c laim that all the successful predictions of 
duality remain valid in a very good approximation. Moreover the cuts permit 
to save the exchange degeneracy in several cases , when otherwise it would have 
to be badly broken (polarizations , dips ) . The problem of the behavior under 
s � u crossing of the differential cross sections in hypercharge exchange 
processe s i s ,  of course , delicate . We think , however , that it is not the ex­
change degeneracy but the universality of the Sopkovich formula (more prec ise­
ly, of the absorptive sign of the cut ) that i s  doubtful . 

* 

* * 

I am indebted. to B .  Sadoulet and to J .  Tran Thanh Van for reading the manuscript 
of this paper and for their comments . 
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