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Abstract

The EG statistic provides a valuable tool for evaluating the predictions of general relativity (GR) by probing the
relationship between gravitational potential and galaxy clustering on cosmological scales within the observable
Universe. In this study, we constrain the EG statistic using photometric redshift data from the Dark Energy Survey
(DES) MagLim sample in combination with the Planck 2018 cosmic microwave background (CMB) lensing map.
Unlike spectroscopic redshift surveys, photometric redshift measurements are subject to significant redshift
uncertainties, making it challenging to constrain the redshift distortion parameter β with high precision. We adopt a
new definition for this parameter, β(z) = fσ8(z)/bσ8(z). In this formulation, we reconstruct the growth rate of
structure, fσ8(z), using the artificial neural network method, while simultaneously utilizing model-independent
constraints on the parameter bσ8(z), directly obtained from the DES collaboration. After obtaining the angular
power spectraCℓ

gg (galaxy–galaxy) and kCℓ
g (galaxy–CMB lensing) from the combination of DES photometric data

and Planck lensing, we derive new measurements of the EG statistic: EG = 0.354 ± 0.146, 0.452 ± 0.092,
0.414 ± 0.069, and 0.296 ± 0.069 (68% confidence limit) across four redshift bins z= 0.30, 0.47, 0.63, and 0.80,
respectively, which are consistent with the predictions of the standard Lambda cold dark matter model. Finally, we
forecast the EG statistic using future photometric redshift data from the China Space Station Telescope, combined
with lensing measurements from the CMB-S4 project, indicating an achievable constraint on EG of approximately
1%, improving the precision of tests for GR on cosmological scales.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Weak gravitational lensing
(1797); Cosmic microwave background radiation (322); Observational cosmology (1146)

1. Introduction

Since the discovery of the accelerated expansion of the
Universe through supernova observations, many cosmological
and gravitational theories have emerged to explain this
phenomenon. One of the most well-known models is the
Lambda cold dark matter (ΛCDM) model, often called the
standard model of cosmology. This model is popular because
of its simplicity and its success in explaining various types of
data, including observations of the cosmic microwave back-
ground (CMB) and galaxy surveys.

The ΛCDM model assumes that general relativity (GR) is
the correct theory of gravity. To account for the accelerated
expansion of the Universe, it introduces a constant called Λ,
which represents dark energy. This constant creates a type of
negative pressure that drives the Universe's expansion to speed
up. Interestingly, this constant is mathematically identical to
what is expected from quantum vacuum energy, but the
problem is that its value, which corresponds to an energy scale
of about 10−3 eV, is vastly different from the predictions made
by particle physics. This discrepancy is one of the biggest
mysteries in cosmology.

On the other hand, alternative theories known as modified
gravity (MG) models have been developed. These models offer
different explanations for the Universe's expansion. Some of
them can reproduce the same expansion history as the ΛCDM

model without the need for dark energy, which leads to
questioning whether GR is the correct theory of gravity at very
large (cosmological) scales.
Although GR and MG models may predict similar rates of

expansion when considering the Universe as a whole (the
“background level”), they usually show differences when we
study small variations, or perturbations, in the Universe. These
differences can be important for understanding the behavior of
cosmic structures, such as galaxies and galaxy clusters, which
can help distinguish between these competing theories.
P. Zhang et al. (2007) introduced an elegant statistic, EG,

designed to distinguish between the ΛCDM+GR framework
and MG theories. The EG statistic is defined as the ratio of the
Laplacian of the difference between the two scalar potentials,
∇2(Ψ + Φ), to the peculiar velocity divergence field, θ. In
practical applications,∇2(Ψ + Φ) is typically obtained from the
cross correlation between gravitational lensing and galaxy
clustering, while the peculiar velocity field is derived from the
galaxy–velocity cross correlation or, equivalently, from the
product of the galaxy autocorrelation and the redshift-space
distortion (RSD) parameter β = f/b, where f is the growth rate
of structure and b is the galaxy bias.
Importantly, EG exhibits scale-dependent behavior under

MG models, while it remains scale independent within the
ΛCDM framework, as demonstrated by P. Zhang et al. (2007)
and A. R. Pullen et al. (2015). This scale dependence makes EG

a powerful tool for directly testing GR. Moreover, a key
advantage of the EG statistic is that it does not depend on
galaxy bias or the amplitude of matter perturbations, providing
a more robust probe of gravity on cosmological scales.
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The first measurement of the EG statistic was conducted by
R. Reyes et al. (2010), using weak-lensing measurements of
background galaxies as tracers of gravitational lensing. They
obtained EG = 0.39 ± 0.06 at z= 0.32, confirming the
predictions of the ΛCDM model on scales ranging from 10 to
50 h−1 Mpc. Building on this approach, subsequent measure-
ments of EG have been extended to larger scales, approximately
70 h−1 Mpc, and over redshifts in the range 0.2� z� 0.6
(C. Blake et al. 2016; S. Alam et al. 2017a; S. De La Torre
et al 2017; A. Amon et al. 2018; C. Blake et al. 2020).

In addition, A. R. Pullen et al. (2015) proposed using CMB
lensing as an alternative probe for gravitational lensing,
enabling EG to be measured at earlier cosmic times and on
larger scales. CMB lensing presents several advantages over
galaxy–galaxy lensing. In galaxy–galaxy lensing, source
galaxies are typically assigned photometric redshifts, which
suffer from significant uncertainties, and are influenced only by
foreground galaxies at lower redshifts. In contrast, CMB
lensing is sourced at z= 1100, which is far enough to be
unaffected by galaxy positions at redshifts z ~ 1. Moreover,
CMB lensing is largely free from complex astrophysical
effects, such as intrinsic alignments that can bias galaxy-
lensing measurements, due to the nearly Gaussian intrinsic
distribution of CMB photons. This makes CMB lensing a more
robust and reliable probe for large-scale gravitational lensing
effects.

In a recent study, Y. Zhang et al. (2021) estimated the
EG statistic at an effective redshift of z ~ 1.5 over scales of
19–190 h−1 Mpc, using the Planck 2018 CMB-lensing
convergence map (N. Aghanim et al. 2020) and the Sloan
Digital Sky Survey (SDSS) eBOSS DR16 quasar clustering
catalogs (B. W. Lyke et al. 2020). The results of this analysis
were consistent with the predictions of the ΛCDM+GR model
within 1σ significance.

To estimate EG, in addition to gravitational-lensing measure-
ments, it is necessary to measure the growth of structure, which
is typically achieved through 3D clustering analysis. This
process requires accurate redshift information for tracers,
making spectroscopic redshift surveys the preferred method.
For photometric redshift surveys, which suffer from lower
redshift accuracy, T. Giannantonio et al. (2016) proposed an
alternative statistic, DG, which does not require direct
measurements of structure growth. However, DG requires
external information on the galaxy bias, which prevents it from
directly distinguishing between GR and MG theories, thereby
limiting its utility as a probe for testing gravity at cosmological
scales (Omori et al. 2019; Marques & Bernui 2020).

In this work, we aim to estimate the EG statistic using the
magnitude-limited (MagLim) sample from the Dark Energy
Survey (DES; B. Flaugher et al. 2015) and the Planck 2018
CMB-lensing data (N. Aghanim et al. 2020). To mitigate the
impact of inaccuracies in photometric redshift information on
the measurement of structure growth, we calculate the effective
redshift of the data set. We then employ the artificial neural
network (ANN) method to estimate the corresponding structure
growth, utilizing prior measurements derived from spectro-
scopic data. Additionally, we incorporate model-independent
constraints on the parameter bσ8(z), which are directly obtained
from the 3 × 2 pt analysis of the DES galaxy clustering and
lensing probes. This approach helps to reduce the errors
introduced by photometric redshift uncertainties, thereby
improving the reliability of our EG estimation.

The structure of this paper is organized as follows: In
Section 2, we review the theory behind the EG statistic and the
estimator used in our analysis. Section 3 outlines the data sets
employed for this study. In Section 4, we detail the methods
used to estimate the RSD parameter, the angular power
spectrum and covariance matrix, and present the results
obtained from real data. Section 5 provides the forecast results
for the upcoming galaxy survey, the China Space Station
Telescope (CSST). Finally, we summarize our findings and
conclusions in Section 6.
For the self-consistency test across all data sets, we assume

the following cosmological parameters: Ωm = 0.336,
Ωb = 0.045, h= 0.670, ns = 0.959, and σ8 = 0.746, as given
in T. Abbott et al. (2023).

2. Formalism and Estimator

2.1. EG Formalism

We assume a flat ΛCDM Universe described by a perturbed
Friedmann–Robertson–Walker metric and consider only scalar
perturbations. The metric in the conformal Newtonian gauge is
expressed as

( )[ ( ) ( ) ] ( )t t= - + Y + - Fds a d dx1 2 1 2 , 12 2 2

where Ψ and Φ represent the weak-field potentials in the time
and space metric components, respectively. In GR, when
anisotropic stress is negligible, the two potentials are equal, i.e.,
Φ = Ψ. However, this equality typically does not hold in MG
models, leading to a phenomenon known as gravitational slip.
Following P. Zhang et al. (2007), the EG statistic in Fourier

space can be defined as

( ) ( )
( ) ( )

( )
q

=
Y + F
+

E z k
c k

H z k
,
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, 2G
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0
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where θ = ∇ · v/H(z) is the divergence of the peculiar velocity
field v, and H(z) is the Hubble expansion rate at redshift z. In
linear perturbation theory, θ(k) can be expressed as
θ = −f (z)δm(k, z), where f is the linear growth rate, which in
GR is given by [ ( )]» Wf zm

0.55. Here, Ωm(z) represents the
matter density parameter at redshift z.
According to the Poisson equation, F =k H2 3

2 0
2Ωm0(1 + z)δm,

and assuming the relation Φ = Ψ, we can simplify the EG
statistic in GR as follows: EG(z) = Ωm0/f (z). Under these
assumptions, the EG statistic becomes independent of scale,
meaning that it remains constant at a given redshift in GR. In
contrast, in MG models, the EG statistic typically exhibits scale
dependence. This scale dependence in MG models arises from
deviations in the relationship between the gravitational potentials
Ψ and Φ. Consequently, measuring EG at different scales could
distinguishing between GR and alternative theories of gravity.
Following Equation (2), the EG statistic can also be

expressed in terms of power spectra as

( )
( )

( ) ( )
( )( )=

+ q

 Y+F
E k z

c P k

H z P k
,

3 1
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g

g

2

0
2

2

where ( ) Y+FP g2 is the galaxy–∇2(Ψ + Φ) cross-power
spectrum and Pθg is the galaxy–peculiar velocity cross-power
spectrum. By projecting the 3D power spectrum onto a 2D
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spherical surface, EG can be estimated as

( ¯) ( )= q

k
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,

3
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0
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where z̄ is the effective redshift of the galaxy survey, kCℓ
g is the

measured lensing convergence–galaxy cross-correlation angu-
lar power spectrum, and qCℓ

g is the velocity–galaxy cross-
correlation angular power spectrum.

In practice, measuring qCℓ
g directly is challenging. However,

we can utilize the relationship · b=qC Cℓ ℓ
g gg , where β = f/b is

the RSD parameter and b is the linear bias parameter of the
galaxy survey. This allows us to replace qCℓ

g with the product of
the galaxy autocorrelation power spectrum Cℓ

gg and β, which
are easier to measure. Then, the modified expression for EG

becomes (A. R. Pullen et al. 2015)

( ¯) ( ¯)
( ¯)

( )
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k
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ℓ
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where Γ(z) is the calibration factor.

2.2. Angular Power Spectrum

In the Limber approximation, the angular cross-correlation
power spectrum between two tracers can be described generally
as (D. N. Limber 1953)
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where χ(z) is the comoving distance at redshift z, WX/Y(z) are
the window functions for the respective tracers, c is the speed
of light, and PXY is the 3D power spectrum of the two tracers.
In the estimation of the EG statistic, we mainly focus on the
linear regime. Therefore, we can substitute the matter power
spectrum Pmm(k, z) in place of PXY(k, z), since linear matter
fluctuations dominate at large scales. The tracer-specific effects
are then incorporated into the window functions.

For the galaxy survey, the window function is given by
Wg(z) = b(z)n(z), where b(z) is the galaxy bias and n(z) is the
redshift distribution of the galaxy sample. The lensing
convergence window function for the CMB at redshift
z* = 1100 is expressed as

( )
( )

( ) ( ) ( )W
= +k * *W z z

H

cH z
z W z z,

3

2
1 , , 7m0

2
,0

where the lensing convergence kernel function W(z, z*) is
given by
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with χ(z) being the comoving distance at redshift z, and χ(z*)
is the comoving distance to the CMB. Using these window
functions, the angular power spectra Cℓ

gg and kCℓ
g can be

described as
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( ) ( )
( )

( ) ( )
( )

( )/

ò
W

c

c

= +

´
+

k *C
H

c
dz z

W z z

z

b z n z P
ℓ

z
z

3

2
1

,

1 2
, . 10

ℓ
mg 0

2
,0

2 2

mm⎜ ⎟
⎛
⎝

⎞
⎠

These expressions provide the theoretical predictions for the
galaxy autocorrelation power spectrum and the galaxy–CMB
lensing cross-correlation power spectrum.

2.3. Calibration Factor

In addition to the angular power spectra Cℓ
gg and kCℓ

g , a
calibration factor Γ(z) is needed for estimating EG in
Equation (5). Following A. R. Pullen et al. (2016) and
S. Yang & A. R. Pullen (2018), in the calibration factor Γ(z) it
is essential to consider several additional factors beyond the
standard normalization term to ensure accuracy

( ) ( ) ( )
( ) ( )
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+

G

*
ℓ z C C

c
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H z n z

H z W z z
,

2

3 1 ,
, 11b
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⎤
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where CΓ and Cb are extra calibration factors that account for
the broad redshift distribution and the lensing kernel, as well as
for scale-dependent bias due to nonlinear clustering. These are
expressed as
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whereCℓ
mg is the angular power spectrum that combines galaxy

bias with the matter power spectrum
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and Qℓ
mg is given by
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These equations provide the framework to compute the
necessary calibration factors Γ(z), which are crucial for
correcting the estimation of EG. The calibration accounts for
both the impact of galaxy redshift distribution and the effects of
nonlinear clustering on bias and lensing.

3. Observational Data

3.1. DES MagLim Sample

The DES (B. Flaugher et al. 2015) is a large-scale imaging
survey designed to cover approximately 5000 deg2 of the southern
sky, employing five broadband filters (grizY) to observe galaxies.
DES operates with a 570 MP camera mounted on the 4 m Blanco
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telescope at the Cerro Tololo Inter-American Observatory in
Chile. One of the key scientific goals of DES is to provide
stringent constraints on cosmological parameters, including the
dark energy equation of state parameter w.

This work utilizes data from the first three years (Y3) of DES
observations, collected between 2013 August and 2016
February. The analysis focuses on the MagLim galaxy sample
derived from the Y3 GOLD catalog, applying the same
selection criteria as M. Rodrìguez-Monroy et al. (2022). The
MagLim sample is defined by an i-band magnitude cut that
depends linearly on the photometric redshift, facilitating the
inclusion of a greater number of higher-redshift galaxies. The
photometric redshifts for the MagLim sample are estimated
using the directional neighborhood fitting algorithm (J. De
Vicente et al. 2016).

In line with the method used by A. Porredon et al. (2022) and
J. Sánchez (2022), we divide the MagLim galaxies into six
tomographic redshift bins ranging from z= 0.2 to z= 1.05, with
bin edges at [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. Figure 1
shows the redshift distribution for each tomographic bin.
However, consistent with the findings of T. M. Abbott et al.
(2022), we adopt a conservative approach and exclude the two
highest redshift bins from our analysis. This decision stems from
issues identified after unblinding the data, where significant
discrepancies were observed in both the clustering and galaxy–
galaxy lensing signals for galaxies at z > 0.85, leading to poor fits
with the cosmological models under consideration.

The MagLim catalog assigns a weight to each galaxy to
correct for observational systematics, as described in M. Rodr-
ìguez-Monroy et al. (2022). Using these weights, we construct
a map of the number of sources per pixel, where the total
number of galaxies in pixel p is computed as Np =∑iäpwi, with
wi being the weight of the ith galaxy. For the pixelization
scheme, we choose the HEALPix resolution parameter
Nside = 2048, which matches the resolution of the CMB-
lensing mask map discussed in Section 3.2.

Each pixel in the galaxy overdensity map is then defined by
the relation (G. Marques et al. 2024)

¯
( )d = -

f

N

n

1
1, 16p

p

p⎛

⎝
⎜

⎞

⎠
⎟

where n̄ represents the mean number of sources in the
unmasked pixels and is calculated as

¯ ( )=
å

å
n

N

f
. 17

p p

p p

Here, fp denotes the fractional coverage of each pixel, which
accounts for the DES mask. The DES mask is provided at a
higher resolution of Nside = 4096, with values of fp ranging
from 0.8 to 1 for effectively observed regions. To match the
galaxy map resolution, we average the fp values from the
higher-resolution pixels, degrading the mask map to
Nside = 2048.
Following this processing, we obtain a galaxy density map

and the corresponding mask map, which together cover an area
of 4143 deg2 of the sky. These maps will be used for the galaxy
clustering analysis in this work.

3.2. Cosmic Microwave Background Lensing

Gravitational lensing of the CMB can be detected, due to
detailed understanding of the primordial CMB's statistical
properties. As CMB photons travel from the last scattering
surface to Earth, their paths are deflected by intervening matter,
causing subtle distortions in the observed anisotropies. These
distortions alter the statistical characteristics of the CMB,
enabling the reconstruction of a map of the gravitational
potential responsible for the deflection. This gravitational
potential provides valuable insights into the growth and
distribution of cosmic structures.
Since the CMB-lensing map traces the matter distribution

directly, it acts as an unbiased tracer of the Universe's matter
density field. For this analysis, we use the minimum-variance
(MV) estimate of the gravitational lensing convergence, as
reconstructed from the CMB temperature and polarization
measurements in the Planck 2018 data release (N. Aghanim
et al. 2020).
Specifically, we utilize the COM_Lensing_4096_R3.00

data set, which is based on both temperature and polarization
measurements. This data set comes with a survey mask
covering approximately 70% of the sky at Nside = 2048 and
includes the noise estimate for the Planck lensing reconstruc-
tion, kkNℓ . The MV lensing potential estimates are derived from
SMICA DX12 CMB maps, with the lensing convergence
available in spherical harmonics coefficients, aℓm, up to
ℓmax = 4096.
For our analysis, we limit the range of multipoles to

8� ℓ� 2048, excluding higher multipoles due to the signifi-
cant reconstruction noise at small scales. This choice focuses
on quasi-linear scales, where the contribution from nonlinear
effects is minimal relative to statistical errors. Moreover, we
adopt a conservative multipole range of ℓmin = 80 and
ℓmax = 400, as we will discuss in more detail in Section 4, to
ensure that nonlinear scales do not dominate our results.

4. Numerical Results

4.1. Redshift-space Distortion Parameter

In cosmological analyses, the growth of structure is typically
measured through 3D clustering, which necessitates precise
redshift information for tracers. As such, spectroscopic redshift
surveys are generally preferred due to their superior accuracy,

Figure 1. Redshift distributions of the DES Y3 MagLim sample. The kernel
function of the CMB lensing is also shown in the figure. For clarity, all results
have been normalized.
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whereas photometric redshift surveys, such as DES, suffer from
lower redshift precision. Consequently, in our analysis, we do
not directly estimate the RSD parameter β = f/b from
photometric redshift data. Instead, we adopt a modified
expression, ( ) ˆ ˆ/b =z f b, where ˆ ( )s=f f z8 and ˆ ( )s=b b z8
(L. Wenzl et al. 2024). By leveraging the DES galaxy and
lensing probes, we can estimate b̂, while f̂ is derived from
previous spectroscopic measurements of the linear growth rate,
employing a regression algorithm.

4.1.1. f̂ Measurement

First, we provide the complete set of f̂ measurements
utilized in our analysis in Table 1, which includes 66 f̂
measurements from various large-scale structure (LSS) spectro-
scopic redshift surveys, covering the redshift range from
z= 0.001 to z= 1.944 (L. Kazantzidis & L. Perivolaropou-
los 2018; F. Skara & L. Perivolaropoulos 2020).

Subsequently, we employed a fitting approach, ANN fitting,
to derive the f̂ values for the MagLim sample at their
corresponding effective redshifts. Here, we opted for ANN
over the more conventional Gaussian process (GP) due to
concerns raised in previous studies (L. Perenon et al. 2021),
which suggest that the current data's distribution and precision
can cause GP reconstructions to be overly sensitive to prior
assumptions, such as hyperparameter ranges or mean functions.
In contrast, ANN, being a machine learning method, has been

demonstrated to be a universal approximator capable of
modeling a wide range of functions. It is a purely data-driven
technique that does not impose Gaussian assumptions. Thus,
with an appropriately chosen network architecture, ANN can
provide an accurate representation of the input data's distribu-
tion. Therefore, in our analysis, we used the open-source
package ReFANN3 (G.-J. Wang et al. 2020) to perform the
ANN fitting process.
In Figure 2 we present the estimations of f̂ for the MagLim

sample at their corresponding effective redshifts. Using these
66 data points, we can determine the evolution of f̂ with
redshift through the ANN algorithm, as shown by the black
solid line in the figure. The light green region represents the
68% confidence interval for the ˆ ( )f z provided by the ANN
algorithm, and it is evident that due to the higher density of
observational data between redshifts of 0.3 and 0.6, the error in
the final reconstruction of ˆ ( )f z is smaller around a redshift of
0.5. By comparing this with the theoretical curve from the
ΛCDM model (orange dashed line), we observe that the
evolution of f̂ derived from the existing data is consistent with
that predicted by ΛCDM at 68% confidence level. The final
estimations of f̂ at four redshifts are listed in Table 2.

Table 1
The f̂ Data Compilation Used in the Analysis

z f̂ Reference z f̂ Reference z f̂ Reference

0.35 0.440 ± 0.050 [1a] 0.77 0.490 ± 0.18 [1b] 0.17 0.510 ± 0.060 [1c]
0.02 0.314 ± 0.048 [2], [3a] 0.02 0.398 ± 0.065 [3b], [4] 0.25 0.3512 ± 0.0583 [5]
0.37 0.4602 ± 0.0378 [5] 0.25 0.3665 ± 0.0601 [5] 0.37 0.4031 ± 0.0586 [5]
0.44 0.413 ± 0.080 [6] 0.60 0.390 ± 0.063 [6] 0.73 0.437 ± 0.072 [6]
0.067 0.423 ± 0.055 [7] 0.30 0.407 ± 0.055 [8] 0.40 0.419 ± 0.041 [8]
0.50 0.427 ± 0.043 [8] 0.60 0.433 ± 0.067 [8] 0.80 0.470 ± 0.080 [9]
0.35 0.429 ± 0.089 [10] 0.18 0.360 ± 0.090 [11] 0.38 0.440 ± 0.060 [11]
0.32 0.384 ± 0.095 [12a] 0.32 0.48 ± 0.10 [12b] 0.57 0.417 ± 0.045 [12b]
0.15 0.490 ± 0.145 [13] 0.10 0.370 ± 0.130 [14] 1.40 0.482 ± 0.116 [15]
0.59 0.488 ± 0.060 [16] 0.38 0.497 ± 0.045 [17] 0.51 0.458 ± 0.038 [17]
0.61 0.436 ± 0.034 [17] 0.38 0.477 ± 0.051 [18] 0.51 0.453 ± 0.050 [18]
0.61 0.410 ± 0.044 [18] 0.76 0.440 ± 0.040 [19] 1.05 0.280 ± 0.080 [19]
0.32 0.427 ± 0.056 [20] 0.57 0.426 ± 0.029 [20] 0.727 0.296 ± 0.0765 [21]
0.02 0.428 ± 0.0465 [22] 0.60 0.550 ± 0.120 [23] 0.86 0.400 ± 0.110 [23]
0.1 0.48 ± 0.16 [24] 0.001 0.505 ± 0.085 [25] 0.85 0.45 ± 0.11 [26]
0.31 0.384 ± 0.083 [27] 0.36 0.409 ± 0.098 [27] 0.40 0.461 ± 0.086 [27]
0.44 0.426 ± 0.062 [27] 0.48 0.458 ± 0.063 [27] 0.52 0.483 ± 0.075 [27]
0.56 0.472 ± 0.063 [27] 0.59 0.452 ± 0.061 [27] 0.64 0.379 ± 0.054 [27]
0.1 0.376 ± 0.038 [28] 1.52 0.420 ± 0.076 [29] 1.52 0.396 ± 0.079 [30]
0.978 0.379 ± 0.176 [31] 1.23 0.385 ± 0.099 [31] 1.526 0.342 ± 0.070 [31]
1.944 0.364 ± 0.106 [31] 0.60 0.49 ± 0.12 [32] 0.86 0.46 ± 0.09 [32]
0.57 0.501 ± 0.051 [33] 0.03 0.404 ± 0.0815 [34] 0.72 0.454 ± 0.139 [35]

Note. References: (1a) SDSS-LRG, (1b) VVDS, and (1c) 2dFGRS (Y.-S. Song & W. J. Percival 2009); (2) 2MRS (M. Davis et al. 2011); (3a) 2MRS and (3b) Type Ia
supernova (SN Ia) + IRAS (M. J. Hudson & S. J. Turnbull 2012); (4) SN Ia + IRAS (S. J. Turnbull et al. 2012); (5) SDSS-LRG-200 (L. Samushia et al. 2012); (6)
WiggleZ (C. Blake et al. 2012); (7) 6dFGS (F. Beutler et al. 2012); (8) SDSS-BOSS (R. Tojeiro et al. 2012); (9) VIPERS (S. De La Torre et al. 2013); (10) SDSS-
DR7-LRG (C.-H. Chuang & Y. Wang 2013); (11) GAMA (C. Blake et al. 2013); (12a) BOSS-LOWZ and (12b) SDSS DR10 and DR11 (A. G. Sánchez et al. 2014);
(13) SDSS-MGS (C. Howlett et al. 2015); (14) SDSS-veloc (M. Feix et al. 2015); (15) FastSound (T. Okumura et al. 2016); (16) SDSS-CMASS (C.-H. Chuang et al.
2016); (17) BOSS DR12 (S. Alam et al. 2017b); (18) BOSS DR12 (F. Beutler et al. 2017); (19) VIPERS v7 (M. J. W.lson 2016); (20) BOSS-LOWZ (H. Gil-Marìn
et al. 2017); (21) VIPERS (A. Hawken et al. 2017); (22) 6dFGS + SN Ia (D. Huterer et al. 2017); (23) VIPERS PDR2 (A. Pezzotta et al. 2017); (24) SDSS DR13
(M. Feix et al. 2017); (25) 2MTF (C. Howlett et al. 2017); (26) VIPERS PDR2 (F. Mohammad et al. 2018a); (27) BOSS DR12 (Y. Wang et al. 2018); (28) SDSS DR7
(F. Shi et al. 2018); (29) SDSS-IV (H. Gil-Marìn et al. 2018); (30) SDSS-IV (J. Hou et al. 2018); (31) SDSS-IV (G.-B. Zhao et al. 2019); (32) VIPERS PDR2
(F. Mohammad et al. 2018b); (33) BOSS DR12 voids (S. Nadathur et al. 2019); (34) 2MTF 6dFGSv (F. Qin et al. 2019); and (35) SDSS-IV (M. Icaza-Lizaola et al.
2020).

3 https://github.com/Guo-Jian-Wang/refann
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4.1.2. b̂ Measurement

We obtain the b̂ values for the DES MagLim sample from
the data chains provided by T. Abbott et al. (2023).4 Their
analysis used the Y3 observations from DES, either indepen-
dently or in combination with external cosmological probes, to
constrain potential extensions of the ΛCDM model. Specifi-
cally, they employed the two-point correlation functions of
weak gravitational lensing, galaxy clustering, and their cross
correlations (commonly referred to as 3 × 2 pt) to constrain six
different extensions of the ΛCDM model.

One of these extensions is a binned σ8(z) model, which
serves as a phenomenological probe of structure growth
without assuming specific physical mechanisms. In this
approach, the binned σ8(z) model is defined as

( )[ ]s sº A , 18i
i
P

8
bin

8
lin

where Ai
Plin represents the amplitude of the linear matter power

spectrum in the ith redshift bin, which equals 1 in the ΛCDM
model. Therefore, we can determine the amplitude of the
growth of structure, σ8, in each redshift bin. Additionally, the
numerical chains provide direct access to the linear bias for
each redshift bin, enabling us to derive constraints on the
combined parameter ˆ s=b b 8. The resulting constraints on b̂,
obtained from the chains, are presented in Table 2.

In conclusion, we utilize the measurements of ˆ ( )f z and ˆ ( )b z
to estimate the RSD parameter β(z) for the first four
tomographic bins of the DES MagLim sample, with the results
detailed in Table 2. To assess the uncertainties in β(z), we
apply the error propagation method. Notably, the uncertainties
in our reconstructed β values are significantly smaller than
those obtained from current constraints based on 3D power
spectrum analyses. This improvement primarily stems from the
reconstructed linear growth rate, which incorporates multiple f̂
measurements from various sources rather than relying on a
single survey. Moreover, we find that the uncertainties in β

have a minimal impact on the subsequent EG estimates, as the
dominant source of error in current EG estimates arises from
uncertainties in the power spectra.

4.2. Angular Power Spectrum

We then calculate the angular power spectra Cℓ
gg and kCℓ

g

using the galaxy number density map from the DES MagLim
sample and the lensing measurements from Planck. These
calculations are performed using the pseudo-Cℓ estimator,
implemented in the NaMaster software package,5 which
provides an unbiased estimate of the angular power spectra.
The estimation of the angular power spectrum is affected by

the survey's sky coverage, as the mask introduces coupling
between different modes of the true power spectrum. In this
framework, the true underlying power spectrum, Cℓ

true , is
derived from the observed power spectrum, Cℓ

obs , by applying
the inverse of the mode-coupling matrix, M, as

( )å=
¢

¢ ¢C M C . 19ℓ
ℓ

ℓℓ ℓ
true obs

The mode-coupling matrix ¢Mℓℓ is determined entirely by the
mask information. As shown in E. Hivon et al. (2002), the
coupling matrix ¢Mℓℓ can be efficiently and analytically
computed due to the orthogonality of the Wigner 3j symbols.
To mitigate the effects of the mask, we apply a binning process
to the resulting power spectrum, using a wide multipole bin
width of Δℓ = 30. This approach helps to reduce the
correlations between different multipole bins, ensuring that
the impact of mode coupling is minimized and that the
correlations among the binned multipoles remain small.
Given the sky coverage of the DES survey and the use of the

Limber approximation in our analysis, we apply a conservative
cut on large scales by setting the minimum multipole value to
ℓmin = 80. To address the effects of nonlinearity, we define a
maximum wavenumber, knl, for the transition from linear to
quasi-linear scales. This is determined by the condition

( ¯) ( )/ p =k P k z, 2 1nl
3

nl
2 , following the approach outlined in

S. Yang & A. R. Pullen (2018). Given that the DES
photometric data are used, we adopt a more conservative
approach by setting an upper limit of ℓmax < 400. This results
in maximum multipole values of 188, 390, 400, and 400 for the
respective MagLim redshift bins used in the EG estimator. This
conservative selection helps to mitigate the impact of

Figure 2. The reconstruction of the function ˆ ( )f z from the f̂ measurements,
shown as the black solid line, along with the 68% confidence level indicated by
the light green region. The blue points with error bars represent the f̂ values
obtained from the literature, while the red stars denote the inferred f̂ values for
the DES MagLim sample. For comparison, the theoretical prediction of ˆ ( )f z
based on the ΛCDM model is also displayed.

Table 2
The Effective Redshifts, Corresponding Galaxy Bias ( )s=b̂ b z8 Values,

Linear Growth Rate, and the Calculated ˆ ˆ/b = f b Values

zeff ˆ ( )s=b b z8
ˆ ( )s=f f z8

ˆ ˆ/b = f b

0.30 0.924 ± 0.034 0.432 ± 0.011 0.467 ± 0.021
0.47 0.956 ± 0.044 0.438 ± 0.010 0.458 ± 0.023
0.63 1.003 ± 0.035 0.438 ± 0.011 0.437 ± 0.019
0.80 0.865 ± 0.034 0.434 ± 0.015 0.501 ± 0.026

Note. The table shows the effective redshifts of the first four tomographic bins
of the DES MagLim sample, along with the corresponding galaxy bias

( )s=b̂ b z8 values from T. Abbott et al. (2023), the linear growth rate values

derived using ReFANN, and the calculated ˆ ˆ/b = f b values.

4 https://desdr-server.ncsa.illinois.edu/despublic/y3a2_files/y3a2_beyond_
lcdm/chains/ 5 https://github.com/LSSTDESC/NaMaster
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nonlinearity and ensures the robustness of the analysis on
middle scales.

Furthermore, the observed galaxy autocorrelation power
spectrum is affected by the discrete nature of galaxies, which
introduces an additional shot-noise contribution. Typically, the
galaxy sample is assumed to follow a Poisson distribution,
allowing the shot noise to be estimated as (C. Garcìa-Garcìa
et al. 2021)

( ) ˜ ˜
¯

( )å= =
á ñ-

¢

¢N M N N
m

n
, . 20ℓ

ℓ
ℓℓ ℓ ℓ

1

eff

Here, 〈m〉 represents the mean value of the mask across the full
sky, and n̄ eff denotes the effective mean number density,
defined as

( )
¯ ( )=

å

W å å

Î

Î

n
w

m w
, 21

i p i

p p i p i
eff

2

pix
2

where Ωpix is the pixel area in steradians, mp is the mask value
for pixel p, and wi is the weight assigned to each galaxy in
pixel p.

In our analysis, we subtract the shot-noise contribution from
the observed galaxy autocorrelation power spectrum Cℓ

gg.
Afterward, we correct the resulting power spectrum by dividing
them by the square of the pixel window function, which is
obtained using the standard HEALPix tools. This process
ensures that the power spectrum is properly corrected for
pixelization effects. For the observed galaxy-lensing conv-
ergence power spectrum kCℓ

g , since the CMB-lensing conv-
ergence κ is a continuous field unaffected by the pixel window
function and the pixel window function is not applied in the aℓm
to map transformation, we only need to correct for the
pixelization effects by dividing by a single pixel window
function.

4.3. Covariance Matrices

In our analysis, we employ the jackknife (JK) resampling
method to estimate covariance matrices, relying exclusively on
the available data sample.

The overlapping sky region between the DES MagLim
sample and the Planck lensing data is partitioned into NJK

equal-area patches. JK subsamples are generated by sequen-
tially omitting one patch at a time, resulting in a set of leave-
one-out samples. The JK-estimated mean power spectrum
across all patches is calculated as

( )( )åá ñ =
=

X
N

X
1

. 22ℓ
k

N

ℓ
k

JK 1

JK

The covariance of the measurements is determined by
aggregating the variations across all patches. The general
expression for the covariance between two angular power
spectra, Xℓ and ¢Yℓ , is given by

( ) ( )( ) ( )( ) ( )å=
-

- á ñ - á ñ
=

¢ ¢ ¢C X Y
N

N
X X Y Y,

1
, 23ℓ ℓ

k

N

ℓ
k

ℓ ℓ
k

ℓ
JK

JK 1

JK

where [ ]Î kX Y C C, ,ℓ ℓ ℓ ℓ
g gg .

In the case of autocorrelations, it is necessary to account for
variations in shot noise within the galaxy map when a patch is
removed. As outlined by L. Wenzl et al. (2024), the shot noise

in the subsample can be analytically represented as

( )( ) =
-

N
N

N
N

1
. 24ℓ

k
ℓ

JK

JK

The number of JK samples is determined by the largest
scales we aim to investigate. A. R. Pullen et al. (2015)
suggested that the minimum patch size should adequately
capture the largest cosmological scales. Adhering to this
recommendation, we conservatively select NJK = 30 patches
for our analysis. We also varied the number of patches NJK to
ensure the stability of the covariance matrix.
For a multivariate Gaussian vector with a finite sample size,

the estimated covariance matrix Ĉ follows a Wishart distribu-
tion, providing an unbiased estimate of the true covariance
matrix C. However, the inverse of the estimated covariance
matrix, ˆ-C

1
, which follows an inverse Wishart distribution, is a

biased estimate of the true inverse covariance matrix C−1. This
bias arises from inaccuracies in Ĉ. To address this issue, we
follow the approach outlined by J. Hartlap et al. (2007) and
apply a correction factor to obtain the unbiased inverse
covariance

ˆ ˆ ( )= -
+
-

- -C C
N

N
1

1

1
, 25d

unbiased
1

JK

1
⎜ ⎟
⎛
⎝

⎞
⎠

where Nd denotes the number of band powers utilized, and its
values are 3, 10, 10, and 10 for each redshift bin, respectively.
Furthermore, S. Dodelson & M. D. Schneider (2013)
emphasized that, in maximum likelihood fitting, the errors in

the inverse covariance matrix ˆ-C
1
propagate to the model

parameters. This effect can be mitigated by multiplying the
inverse covariance matrix by the following factor (J. W. Perc-
ival et al. 2014)

( )
( )

( )=
+ -

+ + +
M

B N N

A B N

1

1 1
, 26

d p

p

where Np represents the number of parameters, and for the
estimation of the single parameter EG, Np = 1. The constants A
and B are defined as

( )( )
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In Figure 3, we present the observed power spectra Cℓ
gg and

kCℓ
g derived from the DES MagLim sample and the Planck

lensing measurements across the four tomographic redshift bins
as well as their ratio, Rℓ. For illustrative purposes, we include
the square roots of the diagonal elements of the JK covariance
matrix as 1σ error bars on the data points. Additionally, we
indicate the scale cuts, where multipoles larger than the
maximum ℓ are excluded, by shading the corresponding regions
in gray.
Furthermore, we also conduct a comparison between the

observed power spectra Cℓ
gg and kCℓ

g and their corresponding
theoretical predictions for each tomographic redshift bin. The
theoretical predictions are generated using the DESC Core
Cosmology Library (N. E. Chisari et al. 2019), with the
underlying 3D power spectra computed via the CAMB
Boltzmann code. To ensure consistency between the observed
and theoretical power spectra, we apply the appropriate binned

7

The Astrophysical Journal Supplement Series, 276:71 (14pp), 2025 February Li & Xia



mode-coupling matrix and binning scheme to the theoretical
curves, accounting for the effects of the survey mask and
binning process. For the linear bias in each redshift bin, we
adopt the best-fit values derived from the 3 × 2 pt
measurements of the DES Y3 observations (T. Abbott et al.
2023), consistent with the values used in Section 4.1.2. The
comparison shows that the measurements of both Cℓ

gg and kCℓ
g

align well with the theoretical predictions.

4.4. EG(ℓ) Estimation

After obtaining the measurements of the RSD parameter β,
along with the angular power spectra Cℓ

gg and kCℓ
g , we estimate

the EG statistic as a function of the multipole using
Equation (5), as presented in Figure 4. Due to the maximum
multipole for the first redshift bin being =ℓ 180max , only three
multipole bins are included in the plot. To estimate the
uncertainty in the EG statistic, we employ the JK covariance
matrix method, calculating the EG values for the NJK = 30 JK
subsamples used in Section 4.3. The covariance matrix of EG is
then estimated using Equation (23). For clarity, we plot the
square roots of the diagonal elements of this covariance matrix
as 1σ error bars on the data points in Figure 4.

We observe that the estimates of ˆ ( )E ℓG are generally
consistent with the predictions of GR at 68% confidence level
across most redshift bins, with no significant scale-dependent
deviations. However, the EG measurements display consider-
able fluctuations, suggesting that the precision of the current
observational data is limited. Given that our analysis assumes
the scale independence of the RSD parameter β, these

fluctuations in the ˆ ( )E ℓG estimates are primarily influenced
by the ratios of the power spectra. As shown in Figure 3, even
within the redshift bin 0.55 < z < 0.7, the autocorrelation
power spectrum is slightly lower than the theoretical curve, and
the galaxy–CMB lensing cross-correlation power spectrum
deviates significantly from the theoretical model for all bins in
certain band powers. In comparison with the ratio Rℓ and ˆ ( )E ℓG
in Figure 4, we find that these deviations closely correspond to
the trends observed in Rℓ and ˆ ( )E ℓG for the respective redshift
bins. Specifically, the multipoles where Rℓ and ˆ ( )E ℓG yield
negative results are precisely those where kCℓ

g also takes
negative values. This suggests that the cross-correlation power
spectrum between galaxies and CMB lensing is the dominant
contributor to the observed fluctuations. To validate this idea,
we roughly estimated the contributions to the EG error from the
three components ( bkC C, , andℓ ℓ

gg g ) using the error propaga-
tion formula. For simplicity, we assumed the three components
to be independent, and the results indicated that the cross
correlation contributes over 90% to the EG error. Therefore,
improving the precision of ˆ ( )E ℓG estimates would likely benefit
significantly from more accurate measurements of the cross-
correlation power spectrum kCℓ

g .
In contrast to the first three redshift bins, it is notable that the

EG results within the redshift range 0.7 < z < 0.85 are
generally lower than those predicted by the ΛCDM model, a
trend that becomes more pronounced in the subsequent
constant EG estimation. However, as shown in Figure 3, the
power spectra Cℓ

gg and kCℓ
g for this redshift bin align closely

with theoretical predictions, suggesting that this discrepancy
may be due to an overestimated β parameter. We posit that the

Figure 3. The observed power spectra Cℓ
gg (left panels) and kCℓ

g (middle panels) and their ratio Rℓ (right panels) for the four redshift bins of the DES MagLim sample
are shown. The solid orange lines depict the theoretical predictions evaluated using the best-fit parameters from T. Abbott et al. (2023). The gray-shaded regions
highlight the range of multipoles that were excluded from the analysis due to nonlinearity.
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primary cause of the overestimation of β(z) stems from the
underestimation of ˆ ( )b z , as derived from the DES chains in the
fourth redshift bin. Specifically, the best-fit value of ˆ ( )b z4 is
noticeably lower compared to the values obtained in the other
three redshift bins. Although, in theory, EG should be
independent of galaxy bias, as this term cancels out in the
calculation, this assumption holds only if Cℓ

gg, kCℓ
g , and β yield

consistent estimates of galaxy bias. However, these three
constraints may not be fully consistent.

For instance, G. Marques et al. (2024) analyzed the
constraints on galaxy bias from the autocorrelation of MagLim
galaxies and their cross correlation with CMB lensing using the
fourth data release of the Atacama Cosmology Telescope. Their
findings indicate that, with other cosmological parameters
fixed, Cℓ

gg favors a higher galaxy bias than kCℓ
g , with the

difference reaching 2.43σ in the 0.7 < z < 0.85 bin. This
discrepancy likely impacts the constraint on b̂, derived from the
3 × 2 pt analysis, which may also be subject to such
inconsistencies. Therefore, we suggest that this inconsistency
could be a significant factor affecting the final EG estimates in
this redshift range.

4.5. Scale-independent EG

In addition to examining the EG statistic as a function
of multipoles, we also consider the estimation of a scale-

independent ĒG by fitting a constant value across all scales. The
best-fit value of ĒG is inferred by minimizing the χ2 function,
given by

[ ˆ ( ) ¯ ] ˆ [ ˆ ( ) ¯ ] ( )c = - --CE ℓ E E ℓ E , 28G G
T

G G
2 1

where Ĉ denotes the estimated covariance matrix of ˆ ( )E ℓG ,
which is also estimated using the JK resampling method. The
maximum likelihood estimate for ĒG can be expressed
analytically, as shown in Y. Zhang et al. (2021)

¯
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with the corresponding statistical uncertainty
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where ˆ-¢Cℓℓ
1
represents the unbiased covariance matrix obtained

in the previous section, and M is the correction factor
introduced in Equation (26).

Figure 4. The estimations of the EG statistic for the DES MagLim samples, combined with the Planck lensing measurements at the four redshift bins. The blue lines
represent the theoretical prediction within the ΛCDM model, which is scale independent.
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Finally, we obtain measurements of the scale-independent
EG in the four redshift bins at 68% confidence level

¯ ( )
¯ ( )
¯ ( )
¯ ( ) ( )

= 
= 
= 
= 

E z

E z

E z

E z

0.354 0.146,

0.452 0.092,

0.414 0.069,

0.296 0.069. 31

G

G

G

G

1

2

3

4

In Figure 5, we present a summary of previous EG estimates
alongside the results obtained in this work, compared with the
predicted values of EG within the ΛCDM model. Our
measurements show good consistency with other EG estimates,
as well as with the ΛCDM predictions. However, our results
exhibit larger statistical uncertainties, particularly at lower
redshifts. This is likely due to the smaller ℓmax chosen in these
redshift bins, which reduces the amount of available informa-
tion. Comparing different bins indicates that larger ℓmax values
generally lead to smaller statistical uncertainties in EG.
However, even with increased ℓmax, the errors remain too large
to effectively differentiate between various MG models.

Finally, we conducted a brief analysis of the impact of
magnification bias on our results. A. M. Dizgah & R. Durrer
(2016) highlighted that foreground density perturbations not
only magnify regions around galaxies but also alter the
selection of galaxies near the observational flux limit,
potentially introducing biases in galaxy clustering. In sub-
sequent studies, S. Yang & A. R. Pullen (2018) found that the
influence of magnification bias is relatively minor for most
spectroscopic galaxy surveys but becomes significant in
photometric galaxy surveys. To qualitatively assess this impact,
we adopted the magnification bias parameters from G. Marques
et al. (2024), applying values of 0.642, 0.63, 0.776, and 0.794
for the four redshift bins, respectively.

We then computed the theoretical changes in Cℓ
gg, kCℓ

g , and
EG with and without accounting for this magnification bias
correction. Our findings suggest that the effect of magnification
bias on the autocorrelation power spectrum is negligible, while
its impact on the cross-correlation power spectrum increases

with redshift but remains modest. The influence on EG is most
pronounced in the highest redshift bin, resulting in an average
shift of approximately 4%. The results are also presented in
Figure 5, with label “Wo.M.” Given the current level of
uncertainty in our measurements, we conclude that the effect of
magnification bias can be considered negligible for this
analysis.

5. Forecast

Given that the current EG measurements derived from
existing observations lack the precision required to effectively
distinguish between different MG models, we now turn to an
exploration of potential improvements in the estimation of EG

with upcoming LSS photometric surveys and CMB measure-
ments. Future surveys, such as CSST, promise to significantly
enhance both the quantity and quality of photometric data,
offering improved galaxy-clustering measurements. Similarly,
the next-generation stage-4 ground-based CMB experiment
(CMB-S4) will yield more precise CMB-lensing maps, which
will contribute to reducing uncertainties in the cross-correlation
power spectrum.

5.1. CSST

The CSST, as part of the Chinese Space Station Optical
Survey, is equipped with a 2 m aperture and seven photometric
filters spanning a broad wavelength range of 255–1000 nm.
These filters—near-ultraviolet, u, g, r, i, z, and y—are designed
to detect point sources with 5σ magnitude limits ranging from
24.4 to 26.3 AB mag, depending on the band.
To characterize the number density distribution of galaxies

in the survey, we adopt a parametric model for the galaxy
distribution, n(z), expressed as

( ) ( )µ -a
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n z z
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where the parameters α, β, and z0 are chosen to describe the
survey's galaxy population. Based on previous works like
Y. Gong et al. (2019), we use α = 2, β = 1, and z0 = 0.3,
which roughly match the expected distribution of galaxies for
photometric surveys like the CSST.
For tomographic analysis, where galaxies are divided into

several redshift bins, the number density of galaxies in a
specific redshift bin i, denoted as ni(z), is derived by integrating
the galaxy distribution n(z) over the redshift bin limits and
incorporating uncertainties from photometric redshift errors.
The probability distribution of the observed redshift zp given
the true redshift z is modeled by a Gaussian distribution
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where σz is the redshift scatter, typically modeled as a function
of redshift. For simplicity, we assume a constant redshift scatter
σz = 0.05, which is a reasonable approximation for future
photometric surveys.
The effective galaxy distribution in a given redshift bin is

then calculated using
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Figure 5. The scale-independent measurements of the EG statistic for the four
redshift bins of the DES MagLim sample. “W.M.” and “Wo.M.” represent
measurements with and without the magnification bias effect, respectively. For
comparison, previous EG measurements from other studies are also shown,
alongside the theoretical prediction based on the ΛCDM model (green
solid line).
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where erf is the error function, and zmin and zmax represent the
edges of the redshift bin. This equation accounts for the
smearing effect of redshift errors, allowing us to compute the
number density of galaxies within each tomographic bin.

For this analysis, we divide the survey into four uniform
redshift bins, and the corresponding surface galaxy densities n̄i
in units of galaxies per square arcminute are assigned as 7.9,
11.5, 4.6, and 3.7 for the four bins, respectively. The galaxy
bias, which affects the clustering properties of galaxies, is
assumed to follow a linear relation with redshift: b(z) =
1 + 0.84z, as derived from previous forecasts for similar
surveys (Y. Gong et al. 2019; H. Lin et al. 2022). This
parameterization of galaxy bias and number density will allow
for accurate predictions of galaxy clustering and cross-
correlation power spectra, enabling the study of cosmological
parameters such as dark energy, gravity, and the growth of LSS
with the CSST.

5.2. CMB-S4

CMB-S4 (K. N. Abazajian et al. 2016; K. Abazajian et al.
2022) will be a major advancement in CMB science, equipped
with dedicated telescopes featuring highly sensitive super-
conducting cameras. CMB-S4 is poised to push the boundaries
of CMB-lensing research by producing lensing maps with
significantly higher signal-to-noise ratios, thanks to its superior
sensitivity and enhanced polarization capabilities. With better
polarization sensitivity, CMB-S4 will generate lensing maps
less affected by contamination from foregrounds, such as dust
or other cosmic sources, that can obscure CMB signals.
Furthermore, the experiment's multifrequency approach will
aid in reducing foreground contamination in temperature, as
well as polarization-based lensing estimates. Specifically, the
polarization-based estimates, relying on E- and B-modes, will
be the most important for CMB-S4, providing more accurate
and sharper lensing maps. This will also facilitate improved
cross correlation with LSS maps from next-generation galaxy
surveys.

For the purposes of analysis, we model the CMB-S4
telescope beam with an FWHM of ¢1 and assume white noise
levels of 1 μK arcmin for temperature and 1.4 μK arcmin for
polarization. The noise power spectra deconvolved with a
beam, Nℓ

TT for temperature and N Nandℓ ℓ
EE BB for polariza-

tion, are modeled as Gaussian noise, given by the expression

( ) ( )q
= +N s ℓ ℓexp 1

8 log 2
, 35ℓ X

XX 2 FWHM
2

⎡
⎣⎢

⎤
⎦⎥

where X refers to either temperature (T) or polarization (E, B),
sX is the polarization and temperature noises in units of μK rad,
and θFWHM is the beam's FWHM in radians.

For CMB-lensing reconstruction, we utilize the quadratic
estimator method for the EB mode (E-mode polarization and B-
mode lensing signal), as described by W. Hu & T. Okamoto
(2002). This approach is implemented using the QUICKLENS
software package, which allows for efficient estimation of
lensing potentials. The combination of high sensitivity, low
noise levels, and advanced reconstruction techniques in CMB-
S4 will enable a dramatic improvement in lensing signal
extraction, offering new insights into the underlying structure
and evolution of the Universe.

5.3. EG Uncertainties

Based on the performance parameters of the CSST
photometric redshift survey and the CMB-S4 lensing measure-
ments, we estimate the uncertainties associated with the EG

statistic across four distinct redshift bins. Consistent with
previous analyses, we establish a minimum multipole of
ℓmin = 80 and utilize the knl relation to determine the maximum
multipoles for each of the redshift bins. Given the anticipated
performance enhancements offered by the CSST, we set the
cutoff scale for ℓmax at 1000. Consequently, we derive the
maximum multipoles for the four redshift bins as fol-
lows: =ℓ 307, 815, 1000, and 1000max .
In our analysis, we adopt a Markov Chain Monte Carlo

(MCMC) approach to enhance our estimates. The corresp-
onding χ2 statistic is formulated as

[ ( ) ( )] [ ( ) ( )] ( )åc = á ñ - á ñ --d t d tℓ ℓ ℓ ℓCov , 36
ℓ

2 1

where ( )á ñd ℓ and ( )t ℓ represent the averaged data vectors and
theoretical vectors, respectively. In this work, the averaged data
vectors ( ˆ ˆ b̂á ñ á ñ á ñ

k
C C, ,ℓ ℓ

gg g
) include the instrument noise, while

the theoretical vectors ( bkC C, ,ℓ ℓ
gg g ) are derived from the

constrained parameters summarized in Table 3. The total χ2 for
our analysis is estimated as

( )c c c c= + + bk , 37tot
2

gg
2

g
2 2

where cgg
2 , c kg

2 , and cb
2 correspond to the contributions from

photometric galaxy clustering, galaxy–CMB lensing, and the
RSD parameter β, respectively.
Initially, we estimate the power spectra Cℓ

gg and kCℓ
g derived

from the CSST photometric redshift survey and CMB-S4
lensing measurements, alongside the measurements of β from
the CSST photometric redshift survey. Subsequently, we
jointly constrain related cosmological parameters, including
the current matter energy density Ωm,0 and the amplitude of
structure growth σ8, utilizing these measurements. Finally, we
leverage the constraints on these cosmological parameters to
infer the uncertainties associated with EG at the relevant scales.
The covariance of the angular power spectra Cℓ

gg and kCℓ
g is

expressed as

[ ˜ ( ) ˜ ( )]

( )
[ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )]

( )

d
=

D +
+

¢

¢

C ℓ C ℓ

f ℓ ℓ
C ℓ C ℓ C ℓ C ℓ

Cov ,

2 1
,

38

ℓℓ

XY XY

sky
XX Y Y XY XY

where fsky = 0.323 represents the fraction of the sky covered,
and ˜ ( )C ℓXY denotes the signal of the angular power spectra

Table 3
Free Parameters Considered in the Constraint Process

Parameter Fiducial Values Prior

Ωm,0 0.32 flat(0, 1)
ns 0.9665 flat(0.7, 1)
σ8 0.83 flat(0, 1)
h0 0.72 flat(0.5, 1)

Note. The first column shows the names of our free parameters. The second
and third columns show the fiducial values and the prior ranges of the
parameters, respectively.
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augmented by shot noise. Here, X and Y may refer to the same
or different tracers, such as galaxies and CMB lensing. To
estimate the error in the RSD parameter β for each redshift bin,
we employ the relation σ(β)/β = 0.085 ( ) ( )/+ -z z0.1 1 1 2 1

(S. Yang & A. R. Pullen 2018), where z2 and z1 are the upper
and lower limits of the redshift distribution, respectively.

We employ the MCMC sampler from the publicly available
Cobaya package (J. Torrado & A. Lewis 2021) to perform
likelihood sampling. The convergence of the chains is assessed
using the generalized version of the R – 1 Gelman–Rubin
statistic (A. Lewis 2013; A. Gelman & D. B. Rubin 1992), with
convergence defined by the criterion R − 1 < 0.01. To mitigate
the effects of initial conditions, the first 30% of the chains are
discarded as burn-in. Upon obtaining constraints on the
cosmological parameters, we utilize these constraints to infer
the uncertainties associated with EG at the relevant scales.

Figure 6 illustrates the estimated results of EG as a function
of multipoles for various redshift bins, demonstrating consis-
tency with the theoretical model within the 1σ confidence
interval. Notably, our estimates exhibit more than a fivefold
improvement in precision compared to the photometric results
obtained from the DES. Furthermore, in our estimation of the
constant ĒG, the overall error achieved is generally at the 1%
level, representing a significant enhancement over current
results. According to A. R. Pullen et al. (2015), this level of
precision enables the differentiation of GR from chameleon

gravity (with β > 1.1) at the 5σ level, and allows for the
distinction of f (R) gravity from GR at the 13σ level for
B0 > 10−7, thereby providing a stringent test of the viability of
f (R) theories.
Finally, we assessed the impact of magnification bias on our

results. To simplify our analysis, we employed the magnifica-
tion bias fitting formula derived from the Flagship simulations
of the Euclid mission (F. Lepori et al. 2022), which has
performance characteristics similar to those of the CSST. The
fitting formula is expressed as

( ) ( )= + + +s z s s z s z s z , 390 1 2
2

3
3

where the coefficients are defined as s0 = 0.0842, s1 = 0.0532,
s2 = 0.298, and s3 = −0.0113. Our findings indicate that the
presence of magnification bias could lead to deviations of up to
6% in estimates of EG. This magnitude of bias is significant and
should be taken into account for future high-precision estimates
of EG. Consequently, we emphasize that magnification bias
must be carefully addressed in subsequent analyses to ensure
that the results accurately reflect the underlying gravitational
theory.

6. Conclusions

The EG statistic, which integrates gravitational lensing and
LSS, represents a valuable cosmological probe for testing
theories of gravity, particularly because it is independent of

Figure 6. The estimations of the EG statistic at redshift bins for the CSST photometric redshift survey, combined with the CMB-S4 lensing measurements. The blue
lines represent the theoretical prediction within the ΛCDM model.
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galaxy bias and σ8. Unlike traditional methods relying on
spectroscopic surveys, this study estimates EG at four effective
redshifts, utilizing photometric redshift data from the DES
MagLim sample alongside Planck 2018 CMB-lensing conv-
ergence maps. To address the significant redshift uncertainties
inherent in photometric redshift surveys, we adopt a novel
approach for estimating the RSD parameter ˆ ˆ/b = f b, where
ˆ s=f f 8 and ˆ s=b b 8.
For the growth rate parameter f̂ , we compile current

measurements from various LSS spectroscopic redshift surveys
and implement an ANN algorithm, ReFANN, to derive
estimates. The ANN-based predictions for f̂ demonstrate
consistency with the standard ΛCDM model at the 68%
confidence level.

For the linear bias parameter b̂, we utilize constraints on b(z)
and σ8(z) across four redshift bins provided by the DES
collaboration to derive the corresponding ˆ ( )b z values. How-
ever, the derived value of b̂ for the highest redshift bin
(z = 0.8) is notably low, potentially introducing systematic
uncertainties in the final EG measurements.

We estimate the EG statistic by analyzing the angular power
spectra Cℓ

gg and kCℓ
g . Our results for EG(ℓ) reveal no significant

scale dependence across all redshift bins. Moreover, we present
new measurements of the EG statistic: EG = 0.354 ± 0.146,
0.452 ± 0.092, 0.414 ± 0.069, and 0.296 ± 0.069 (68%
confidence limit) for redshifts z = 0.30, 0.47, 0.63, and 0.80,
respectively. These estimates are generally consistent with
other EG measurements and predictions from ΛCDM, though
the statistical uncertainties remain relatively large. Addition-
ally, the EG measurement in the fourth redshift bin is notably
lower than the theoretical prediction, likely due to an under-
estimation of the bias in the DES sample at this redshift.

Given the substantial uncertainties in current observational
data, we simulate future data from the forthcoming CSST and
CMB-S4 experiment to project potential improvements in EG

precision. Our simulations indicate that future surveys could
reduce the uncertainties in EG measurements to the 1% level,
enabling a definitive distinction between GR and various MG
models.

Lastly, we assess the impact of magnification bias on the EG

estimates. Our findings suggest that magnification bias could
introduce deviations of up to 6% in the EG measurements. This
level of bias is significant, and we underscore the importance of
carefully accounting for magnification bias in future high-
precision EG analyses to ensure the accuracy and reliability of
constraints on gravitational theories.
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