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Game theory problems are widely applied in many research areas such as computer science and finance, 
with the key issue being how to quickly make decisions. Here, we present a novel quantum algorithm for 
game theory problems based on a continuous quantum walk. Our algorithm exhibits quantum advantage 
compared to classical game algorithms. Furthermore, we exploit the analogy between the wave function of 
the Schrödinger equation and the voltage in Kirchhoff’s law to effectively translate the design of quantum 
game trees into classical circuit networks. We have theoretically simulated the quantum game trees and 
experimentally validated the quantum functionality speedup on classical circuit networks. Due to the 
robust scalability and stability inherent in classical circuit networks, quantum game trees implemented 
within this framework hold promise for addressing more intricate application scenarios.

Introduction

  Game theory is a collection of mathematical models that study 
decision-making in situations involving conflict and coopera-
tion, with the aim of abstracting key elements of various competi-
tive scenarios and scientifically investigating their characteristics 
[  1 –  5 ]. Recent research has integrated artificial intelligence into 
game theory problems, combining machine learning methods 
to excel in domains such as chess and Go. This convergence has 
resulted in the development of high-performance computer pro-
grams capable of playing at a superhuman level [  6 –  13 ]. A typical 
example in the game theory is the 2-player game, which involves 
the decisions from 2 agents. This problem can be cast into a 
decision tree to determine which agent wins by calculating the 
optimal value function within this tree. This is accomplished 
through high-performance alpha-beta search techniques, which 
efficiently explore vast search spaces, or by utilizing a general-
purpose Monte Carlo Tree Search (MCTS) algorithm. These 
methods allow researchers to subsequently provide the optimal 
solution. In such scenarios, the ability to make decisions quickly 
often proves to be a decisive factor in achieving success. Research 
has shown [  14 ] that if 2-player game trees are viewed as AND-OR 
trees, then the minimax value of the game tree corresponds pre-
cisely to the value of the optimal solution in the AND-OR tree. 
Therefore, the evaluation of game problems hinges on efficiently 
obtaining the optimal solution to the AND-OR tree problems. 
In the assessment of AND-OR tree problems [  15 –  17 ], classically, 
the value of a balanced binary AND-OR tree with zero error 
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computed using a technique called alpha-beta pruning. Despite 
the fact that no algorithm has outperformed this classical zero-
error algorithm for a long time, it remains quite slow.

  On the other hand, quantum algorithms offer important 
advantages in addressing specific 2-player game problems. 
The simplest case is the Prisoners’ Dilemma, which is the one-
step decision problem. When quantum strategies are employed 
in the Prisoners’ Dilemma, the decision-making process no 
longer presents a dilemma [  18 ,  19 ]. Not only the one-step deci-
sion problem, the many-step decision problem is also studied 
with quantum algorithms. Some works encode all possible 
solutions of a variety of game search problems into a Hilbert 
space. By using Grover’s quantum search algorithm [  20 ], they 
achieve a quadratic speedup over naive classical algorithms 
[  21 –  24 ]. Then, the bounded-error quantum algorithms based 
on quantum circuit model have been developed for evaluating 

game trees [  25 –  30 ] on a graph, which requires an  O
�
√

N logN
�

    
query for evaluating AND-OR formulas with size N. However, 
it remains unclear how to experimentally implement these 
algorithms or whether tree structures can be used for this 
purpose.

  In this paper, we propose a novel scheme to realize a 2-player 
game based on AND-OR tree structures. The contributions of 
our work are 2-fold. First, we employ a subgame design tech-
nique to develop a quantum algorithm for the Hamiltonian 
AND-OR tree using continuous-time quantum walk. Our pro-

posed algorithms achieve a query time of  O
�√

N
�

    for evalu-

ating preprocessed approximately balanced AND-OR trees. 
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Second, we validate the quantum speedup characteristics of 
this algorithm within circuit networks.

  The organization of this paper is as follows. In the “Theoretical 
Scheme of Quantum 2-Player Zero-Sum Games” section, we 
introduce basic concepts related to game trees and present the 
theory of quantum 2-player games based on tree structures. In 
the “Circuit Designs of Quantum 2-Player Games” section, we 
demonstrate how to design the quantum algorithm in circuit 
networks, showcasing its gaming functionality with quantum 
speedup. The corresponding experimental results of quantum 
2-player games in circuit networks have been addressed in the 
“Experimental Realizations of Quantum 2-Player Games” sec-
tion. Finally, we discuss and provide future outlooks. The quan-
tum speedup in game tree solving plays a crucial role in various 
aspects of society, particularly in fields like artificial intelligence 
and deep learning. 

Results
Theoretical Scheme of Quantum 2-Player  
Zero-Sum Games
  In this section, we propose a novel multi-step decision-making 
framework for a 2-player game based on a continuous-time 
quantum walk, demonstrating quantum speedup. Before pro-
viding the details of the quantum 2-player game, we initiate the 
process by constructing a quantum AND-OR tree using the 
quantum walk at first.  

Quantum AND-OR tree based on quantum walk
  Here, we demonstrate quantum speedup for the quantum 
AND-OR tree. First, we design and implement the most com-
mon basic 2-input OR gate and 2-input AND gate structures in 
the quantum game tree. These 2-input OR and AND gates are 
constructed by using the negative-AND (NAND) gate. The con-
struction details of the NAND gate are shown in Section S1.

  The design scheme for the quantum OR tree is shown in 
Fig.  1 A. For a 2-input OR gate, the depth of the quantum OR 
tree is d = 2. Here, the parameter L is taken as  L = 8

√
N ≈ 12    

with ﻿N = 2. There are a total of M = 32 nodes. It includes 25 
nodes of the runway, 3 nodes of the tree structure, and 4 nodes 
of the input layer. The top row input has 2 states, with connec-
tions and disconnections between the first 2 rows of nodes 
corresponding to inputs 1 and 0, respectively. The lowest root 
node in the tree structure is connected to a runway at the node 
﻿L + 1 = 13, in which the length of runway is 2L + 1 = 25. Each 
node in Fig.  1 A can be represented by a 32 × 1 dimensional 
quantum state, where the state function ∣r〉 = (0, ...0, 1, 0, …, 0) T  
represents that the rth element of the column vector is 1, and 
all other elements are 0. Thus, the entire quantum OR tree can 
be represented by a 32 × 32 dimensional Hamiltonian H. The 
details of constructing a quantum OR tree are provided in 
Section S2.        

  In our study, at time t, the wave function of the system 
can be represented as ψ(t) = (ψ 1(t), ψ 2(t), ⋯, ψ 32(t)) T . We con-
struct the initial state of the system at time t = 0, ﻿∣�(0)⟩ =

    1√
L

∑r=13
r=2

eir�∕2∣r⟩    [  31 ,  32 ], as shown in the bottom left corner 

of Fig.  1 A. The initial state distribution is located on the left 
side of the bottom runway. At time t, the state function evolves 
into ∣ψ(t)〉 = eiHt﻿∣﻿ψ(0)〉, and  trun =

L

2
= 6   . During the evolution 

process, we focus on the probability of the initial wave packet 

appearing on either side of the bottom runway. If the probability 
of the wave packet appearing on the left runway is greater than 
that on the right runway, the root node outputs 0. Conversely, if 
the probability of the wave packet appearing on the right runway 
is greater than that on the left runway, the root node outputs 1. 
To better illustrate the computation results, we define the output 
as Pout﻿ = P ∈R﻿ − P ∉R﻿ , where ﻿P∈R =

∑
L+1< r<2L+2

∣ ⟨r�𝜓(t)⟩�2    and 

﻿P∉R =
∑

r∉[L+2,2L+1]

∣ ⟨r��(t)⟩�2   . It can be observed that when 

﻿Pout﻿ > 0, the quantum OR tree evaluates the root node as 1, and 
when Pout﻿ < 0, the quantum OR tree evaluates the root node as 
0. Detailed derivations can be found in Section S2.

  Due to the symmetry of the 2-input quantum OR tree struc-
ture, it effectively encompasses 3 distinct inputs: 00, 01 (or 10), 
and 11. The temporal evolution of the calculation results Pout﻿ 
for the 2-input quantum OR tree is depicted in Fig.  1 B. The 
various curves in Fig.  1 B represent the evolution of the output 
of the root node over time for the input scenarios 00, 01, 10, 
and 11, respectively. It is evident that after time t > 6, the output 
results for inputs 01 (red solid line), 10 (blue dashed line), and 
11 (purple solid line) are Pout﻿ > 0, which indicates that the wave 
packet is more likely to occupy nodes on the right side of the 
runway. In this scenario, the output of the root node of the tree 
is 1. In contrast, for the input scenario of 00 (green solid line), 
﻿Pout﻿ is always less than 0. This means that the wave packet is 
more likely to occupy nodes on the left side of the runway and 
within the tree, consequently leading to an output of 0 at the 
root node. That is, we have realized a basic 2-input quantum 
OR tree.

  Similarly, we can also construct a 2-input quantum AND 
tree, as shown in Fig.  1 C. The depth of the quantum AND tree 
is d = 2, where L is chosen as  L = 8

√
2N = 16   . There are a total 

of M = 39 nodes. It includes 33 nodes of the runway, 2 nodes 
of the tree structure, and 4 nodes of the input layer. The first 
2 rows of nodes also have 2 states, representing the values of 
inputs 1 and 0, respectively. The root node of the tree is con-
nected to a runway at node 17, in which the length of runway 
is 2L + 1 = 33. Thus, the entire quantum AND tree can be rep-
resented by a 39 × 39 dimensional Hamiltonian H. Details for 
the construction of quantum AND tree have also been shown 
in Section S2. In our study, at time t, the wave function of the 
system can be represented as ψ(t) = (ψ 1(t), ψ 2(t), ⋯, ψ 39(t)) T . In 
such a case, the initial state of the system at time t = 0 is 
expressed as  ∣�(0)⟩ = 1√

L

∑r=17
r=2

eir�∕2∣r ⟩    [ 31 , 32 ]. Its distribu-

tion is located on the left side of the bottom runway. At time 
﻿trun =

L

2
= 8    , we can obtain the output of the AND tree. The 

curves in Fig.  1 D represent the change of Pout﻿ over time for 
inputs of 00, 01, 10, and 11, respectively. It can be seen that for 
the input scenario of 11 (purple solid line), after time t > 8, 
﻿Pout﻿ > 0, resulting in the output of the tree being 1. In contrast, 
for the other input scenarios (00, 01, 10), Pout﻿ is always less than 
0, leading to the output of the root node of the tree being 0. 
This approach allows us to implement a fundamental 2-input 
quantum AND tree.

  Based on the 2-input quantum AND tree and OR tree, we con-
struct a general quantum AND-OR tree as shown in Fig.  1 E, com-
prising 3 main components: the input layer, the AND-OR tree 
structure, and the runway. In the input layer (the light blue area in 
Fig.  1 E), connections and disconnections between the 2 rows of 
nodes correspond to inputs of 1 and 0. They are then processed 
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Fig. 1. (A) Diagram for the 2-input quantum OR tree. If the nodes within the blue dashed box at the top are connected (disconnected), the input is 1 (0). (B) Output results of 
the quantum OR tree. The result is 0 when the input is 00, and it is 1 for inputs 01, 10, and 11. (C) Diagram for the 2-input quantum AND tree. (D) Output result of the quantum 
AND tree. The output is 0 when the input is 00, 01, and 10, and it is 1 only for the input 11. (E) Schematic diagram of the quantum AND-OR tree. With a depth of n, the input layer 
has N = 2n inputs, where the connections and disconnections between the nodes of the input layer are represented by 1 and 0, respectively; white nodes represent the AND 
nodes, while black nodes represent the OR nodes. As the depth of the tree increases, the nodes alternate between black and white. The root node (Troot) of the tree structure 
is the OR node, which is connected to a runway of length 2L + 1, and the initial ∣ψ(0)〉 is input from the left side of the runway. (F) Relationship between the output result time 
trun and the input parameter N for the 4 different structures of AND-OR trees. These trees are classified by their root nodes (AND nodes or OR nodes) and their depth (odd or 
even layers). All of them exhibit quantum speedup.
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within the AND-OR tree structure (the light yellow area in 
Fig.  1 E). Consequently, the result of the root node is considered 
as the output of the tree structure. The root node in the bottom 
layer of the tree structure is connected to a runway of length 2L + 1 
(the dark blue area in Fig.  1 E), where there are L nodes on each 
side of the connected point. The nodes on the runway are num-
bered from 1 to 2L + 1, while the nodes of the tree structure are 
sequentially numbered from the bottom to the top. Here, we set 
the value of L to be L = 8 × 2 n/2 for the quantum AND-OR tree 
structure of depth n. There are a total of M = 3 × 2 n + 2 n/2 + 4 
nodes. Each node in Fig.  1 E can be represented by a M × 1 dimen-
sional quantum state, where the state function ∣r〉 = (0, ...0, 1, 0, …, 0) T  
represents that the rth element of the column vector is 1, and all 
other elements are 0. Thus, the entire quantum AND-OR tree can 
be represented by a M × M dimensional Hamiltonian H. The 
details for the construction of the quantum AND-OR tree have 
also been presented in Section S3.

  Similarly to the quantum OR tree, the wave function of the 
system at time t can be represented as ψ(t) = (ψ 1(t), ψ 2(t), ⋯, ψM﻿
(t)) T . The initial state of the system at time t = 0 is  ∣�(0)⟩ =

    1√
L

∑r=L+1
r=2

eir�∕2 ∣ r ⟩    [ 31 , 32 ], as shown in the bottom left corner 

of Fig.  1 E, where the initial state distribution is located on the 
left side of the bottom runway. The initial state evolves accord-
ing to the Schrodinger equation:  i d

dt
�(t) = H�(t)   . We focus on 

the output result Pout﻿ = P ∈R﻿ − P ∉R﻿ at the time  trun =
L

2
   .

  After discussing the fundamental functionalities of the 
2-input AND tree and OR tree alongside the quantum AND-OR 
tree, we proceed to a detailed analysis of their quantum speedup 
properties. Assuming that all AND-OR trees are of a 2-input 
nature, 4 distinct structures emerge based on the characteristics 
of the root node (AND or OR) and the depth level (odd or 
even).

  When the root node of an AND-OR tree is an OR node 
and the tree depth is even (where n represents the depth of 
the tree, n = 2k, k = 0, 1, 2…), the corresponding quantum 
walk describing the tree (with depth denoted by d) remains 
unchanged, that is, d = n = 2k. However, when the tree depth 
is odd (n = 2k + 1, k = 0, 1, 2…), an additional layer of depth 
is added to the input layer of the corresponding quantum 
game tree, resulting in a tree depth of d = n + 1 = 2k + 2. 
Similarly, if the root node is an AND node, and tree depth is 
even (n = 2k, k = 0, 1, 2…), both the root node and the input 
layer of the corresponding quantum tree increase by one layer, 
resulting in a depth of d = n + 2 = 2k + 2. In the case of odd 
(n = 2k + 1, k = 0, 1, 2…) depth scenarios, the corresponding 
quantum tree adds one layer at the root node, yielding a tree 
depth of d = n + 1 = 2k + 2. Detailed descriptions of these 
4 types of AND-OR tree structures based on quantum walk 
have been presented in Section S4.

  Figure  1 F illustrates the relationship between the output 
result time trun﻿ and the input parameter N for these 4 types of 
structures. It is noted that this output time corresponds to the 
duration required for fully distinguishing different results, and 
the output result in 0 or 1 does not change with a longer time 
evolution. We examine the evolution trend of theoretical values 
with changes in the input scale N for different structures. For 
each structure, we can conclude that under the condition of 
input scale N, the output time satisfies  t ∝

√
N     with N, thereby 

demonstrating the quantum speedup.   

Description of 2-player zero-sum games
  As shown in the previous section, the quantum speedup in the 
quantum AND-OR tree has been demonstrated. In the follow-
ing, we give the description of 2-player zero-sum games at first; 
then, we map this game problem to the quantum AND-OR tree 
and show the quantum speedup.

  The game process is typically represented by the game tree 
illustrated in Fig.  2 A. During the game, the first player (Alice) 
makes the “OR” operation of their child nodes, and the sec-
ond player (Bob) does the “AND” operation of their child 
nodes. These are labeled by the black and white dots, respec-
tively, in Fig.  2 A. One round of game contains one “OR” and 
“AND” operations. In one round, Alice can make a choice at 
the beginning, and Bob wants to choose the strategy to win, 
no matter what moves made by Alice before. In this way, a 
new round of game is run. Alice needs to find a new strategy 
to win in the new situation, and the “OR” operation is made 
by Alice again. Therefore, the “OR” and “AND” operations 
(black and white dots in Fig.  2 A) appear alternatively during 
the game process. The arrows in different colors in Fig.  2 A 
represent different choices. When Alice chooses the decision 
﻿A 1 (the green arrow in Fig.  2 A), Bob can choose between B 1 
and B 2 (blue arrows); when Alice chooses A 2 (gray arrow), 
Bob can choose between B 3 and B 4 (gold arrows); and when 
Alice chooses A 3 (purple arrows), Bob can only choose B 5 
(red arrows). The game is terminated when reaching terminal 
leaf nodes (rectangles in the top of Fig.  2 A). Each leaf node 
contains a variable xi﻿ with the value of 1 or 0. Based on the 
inputs of the terminal leaf nodes, we can quickly determine 
the decision paths of Alice and Bob, and evaluate the output 
result of the root node (the yellow star in Fig.  2 A) of the game 
tree. In the game between Alice and Bob, Alice wins if the 
root node value equals 1; conversely, Bob prevails when the 
root node value is 0.        

  The game problem addressed in Fig.  2 A can be mapped to 
a 5-input quantum AND-OR tree, as illustrated in Fig.  2 B, 
which is composed of dashed brown subtrees representing a 
4-input subtree (the light yellow solid subtree in Fig.  2 A) and a 
2-input OR tree. Now, we employ a subgame design technique 
to develop a quantum algorithm for the Hamiltonian AND-OR 
tree using continuous quantum walk and then realize the quan-
tum speedup in the gameplay process with a 5-input quantum 
AND-OR tree. The formula representation of this tree is as fol-
lows: φ(x) = (x 1 ∧ x 2) ∨ (x 3 ∧ x 4) ∨ x 5, xi﻿ ∈ {0, 1}, where ∧ and 
∨ denote AND nodes and OR nodes, respectively. The 5 input 
values are x 1, x 2, x 3, x 4, and x 5; φ(x) represents the result of the 
calculation of the root node of the 5-input quantum AND-OR 
tree. Additionally, the AND-OR tree can further decompose into 
a smaller 4-input subtree and a 2-input OR tree, φ(x) = φ  sub,4(x) ∨ x 5, 
﻿xi﻿ ∈ {0, 1}. The operational formula for the 4-input subtree is as 
follows: φ  sub,4(x) = (x 1 ∧ x 2) ∨ (x 3 ∧ x 4), xi﻿ ∈ {0, 1}, as shown 
in Fig.  2 B. The 4-input subtree can then be further decom-
posed into a smaller 3-input subtree and a 2-input AND tree 
(see the inset of Fig.  2 C). The 3-input subtree, as depicted in 
Fig.  2 D, is characterized by the following operational formula: 
﻿�sub,3(x) =

(
x1 ∧ x2

)
∨ x∗

3
, xi ∈ {0,1}   , where  x∗

3
    represents the 

result of the calculation for the input x 3 and x 4.
  For the 3-input subtree, here we take the value of L to be 

﻿L = 8
√
3 ≈ 14   . The top row of inputs in Fig.  2 D can be in con-

nected or disconnected states, corresponding to input values of 
1 and 0, respectively. The lowest root node in the tree structure 
is connected to a runway of length 29, in which the connection 
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node is 15. This tree structure features 6 independent inputs: 
000, 001, 010 (100), 011 (101), 110, and 111. The results of the 
calculation of the output of the 3-input subtree over time are 
depicted in Fig.  2 E. From the graph, it is evident that after time 

﻿t > trun

(
L

2
= 7

)
   , the input types: 110 (green line), 011 (purple 

line), 001 (orange-red line), and 111 (light blue line) have output 
﻿Pout﻿ > 0. This signifies that under these input types, the wave 
packets of the input predominantly occupy the right side of 

the runway, leading to a computation result of 1 at the root 
node. On the contrary, the results Pout﻿ for input 000 (blue line) 
and 010 (orange-yellow line) consistently remain less than 0. 
This suggests that the wave packets of the input are predomi-
nantly reflected onto the left side. Consequently, the corre-
sponding inputs yield a result of 0. This implies that in the 
game played within this 3-input subtree, if the inputs are 110, 
011, 001, or 111, Alice wins, whereas if the inputs are 000 or 
010, Bob wins.

Fig. 2. (A) Alice and Bob double zero-sum game tree. The entire game tree is made up of numerous subtrees. Each gray triangle represents a subtree, while the orange-
yellow line depicts the optimal path throughout the entire gameplay process. The black nodes represent the choice of Alice (OR node), and the white nodes represent the 
choice of Bob (AND node). The input values of the terminal nodes xi are only 0 and 1. The green arrows denote the strategies available to Alice, with the strategy A1, A2, or 
A3 for a particular node in the game process. In contrast, the blue arrows represent the strategies available to Bob, who can choose strategy {A1| B1, B2}, {A2| B3, B4}, and 
{A3| B5}. The dashed brown triangles and the solid yellow triangles represent the 4-input subtree and the 5-input subtree, respectively. (B) Schematic diagram of the 5-input 
quantum AND-OR tree. On the right side is the corresponding classical game tree structure. (C) Schematic diagram of the 4-input quantum AND-OR tree. (D) Schematic 
diagram of the 3-input quantum AND-OR tree. (E) Results for a 3-input quantum AND-OR tree. The inputs 000 and 010 result in an output of 0, while the inputs 001, 011, 
110, and 111 lead to an output of 1. (F) Results for the 4-input quantum AND-OR tree. The inputs 0000, 0001, and 0101 result in an output of 0. The inputs 0011, 0111, and 
1111 result in an output of 1. (G) Results for the 5-input quantum AND-OR tree. The inputs 00000, 00010, and 01010 result in an output of 0. All other inputs result in an 
output of 1. The red dashed line represents the measurement time.
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  Furthermore, by integrating the 3-input subtree with a 2-input 
AND tree, a larger 4-input subtree is obtained, as depicted in 
Fig.  2 C. We take the value of L to be  L = 8

√
4 = 16   . Due to struc-

tural symmetry, there are only 6 distinct input combinations 
for the 4 inputs: 0000, 0001 (0010, 0100, 1000), 0011 (1100), 0101 
(1010, 0110, 1001), 0111 (1011, 1101, 1110), and 1111. The time-
varying calculation results of the output of the 4-input quantum 
AND-OR tree are shown in Fig.  2 F. It is evident that after time 
﻿t > 8, the output Pout﻿ > 0 for 0111 (green line), 0011 (orange-
yellow line), and 1111 (light blue line) indicate that under these 
input types, the wave packets predominantly occupy the right 
side of the runway. In these respective input scenarios, the cal-
culation results of the 4-input quantum AND-OR tree is 1. For 
comparison, it is evident from the figure that the output Pout﻿ for 
0000 (deep blue line), 0001 (orange-red line), and 0101 (purple 
line) consistently remain below 0. Under these input types, the 
wave packets are predominantly reflected to the left side of the 
runway, resulting in a corresponding calculation result of 0. This 
implies that in the larger 4-input subtree game, if the inputs are 
0011, 0111, or 1111, Alice wins; however, if the inputs are 0000, 
0001, or 0101, Bob wins. It should be noted that, compared to 
the 3-input subtree earlier, if Alice wins in the 3-input subtree 
game, then in the 4-input subtree game, regardless of the value 
of the fourth input, Alice will ultimately win.

  Compared to the 4-input subtree, the final 5-input quantum 
AND-OR tree introduces an additional input while maintain-
ing structural symmetry. There are a total of 12 independent 
combinations of inputs, namely, 00000, 00001, 00010, 00011, 
00110, 00111, 01010, 01011, 01110, 01111, 11110, and 11111. 
For the 5-input AND-OR tree, we take the value of L to be 24. 
The small deviation away from  8

√
5 ≈ 18    is due to the asym-

metric input in the middle (Fig.  2 B).
  The time-varying calculation results of the output for the 

5-input quantum AND-OR tree are depicted in Fig.  2 G. It is 
noteworthy that the output results Pout﻿ for 00000 (brown line), 
00010 (pink line), and 01010 (purple line) consistently remain 
below 0. This means that under these input types, the wave 
packets predominantly concentrate on the left side of the run-
way, resulting in an output value of 0. In contrast, it is evident 
from the figure that, after time t > 9, the output results Pout﻿ for 
the remaining 9 cases are all greater than 0. Under these inputs, 
the wave packets predominantly occupy the right side of the 
runway, resulting in an output value of 1. Similarly to the previ-
ous description, for the 5-input game tree, if Alice wins in the 
4-input subgame, regardless of the input of the fifth bit in the 
5-input game tree, Alice will ultimately win the 5-input game.

  Therefore, for the 3-input subtree, the 4-input subtree, and the 
5-input game tree, from the study above, we can conclude that 
with the input scale N, the time to obtain the output result satisfies 
﻿t ∝

√
N    with N, which demonstrates the quantum speedup. Since 

then, we have introduced the design of a 2-player zero-sum game 
tree based on quantum walk and presented the corresponding 
results. In the following discussion, we explore how to design 
classical circuit networks to simulate these quantum game trees.    

Circuit Designs of Quantum 2-Player Games
  In this section, we provide the circuit design for a general quan-
tum AND-OR tree. As depicted in Fig.  3 A, each circle corre-
sponds to a node in the structural diagram shown in Fig.  1 E, 
with a total of M = 3 × 2 n + 2 n/2 + 4 nodes in the entire circuit 
structure. Similarly to the numbering of nodes in Fig.  1 E, we 
start by numbering the nodes on the runway and then proceed 

to number the nodes from the bottom to the top of the tree 
structure. The voltage states on these nodes can be represented 
by column vector ϕ(t) = (V 1(t), V 2(t), …, VM﻿(t)) T , where the 
voltage Vi﻿(t) represents the voltage value at the ith circuit node 
at time t. In Fig.  3 A, the top 2 rows of nodes in the circuit are 
connected via dual in-line package (DIP) switches. These DIP 
switches can be adjusted to be connected or disconnected, cor-
responding to input values of 1 or 0, as shown in Fig.  3 B. In 
Fig.  3 A, each node is grounded using a capacitor resistor, with 
the grounding method varying according to the design require-
ments. The nodes in the circuit network are grounded via 
capacitors and resistors or negative impedance converter (NIC) 
modules [  33 ,  34 ], as shown in Fig.  3 C, D, E, and G. Each node 
is connected via a NIC, as depicted in Fig.  3 F. This structure 
consists of an operational amplifier, 2 resistors connected to 
the positive and negative terminals of the operational amplifier, 
and a resistor R  i, j﻿ (representing the effective resistance from 
node i to nodej). The NIC module can reverse the direction of 
current flow from node i to node j and from node j to node i 
[ 34 –  36 ]. In addition, the descriptions of the Kirchhoff equation 
set for the i-th current node are provided in the Methods sec-
tion, and the correspondence between these equations and the 
Schrodinger equation is shown in S5 of the Supplementary 
Materials.        

  At the initial moment, 1-V DC voltage is applied to the 
corresponding L nodes on the runway left side, with the 
remaining nodes grounded. After the evolution begins, we 
disconnect the initial voltage of 1 V and grounding from the 
remaining nodes. The voltage state ϕ(t) evolves according to 
Kirchhoff ’s current law. During the evolution of the circuit, 
the operating time tcircuit﻿ of the circuit equations differs from 
the theoretical operating time ttheory﻿ of the system by only one 
constant term: tcircuit﻿ = ttheory﻿ ∗ (RiCi﻿) [ 32 ,  37 ]. In our simulations 
and experiments, the resistance Ri﻿ is set to 10 kΩ, and the 
capacitance Ci﻿ is set to 100 nF. Therefore, in experiments, 1 ms 
corresponds to a theoretical time unit of 1. The output result 
can also be represented by subtracting the voltage of the 
remaining nodes from the voltage at the right end of the run-
way, that is,  Vout(t) =

∑
i∈R

��Vi(t)
��2 −

∑
i∉R

��Vi(t)
��2   . This way, by 

measuring the voltage values of circuit nodes at different times 
using an oscilloscope, we can determine the computation result 
of the quantum AND-OR tree.

  In Fig.  3 H, we present the circuit simulation results of the 
2-input quantum OR tree, 2-input quantum AND tree, 3-input 
subtree, and 4-input subtree relevant to the game process. The 
design diagrams of the corresponding circuit structures are 
included in Section S6. For the 2-input quantum OR tree, the 
results indicate that at time t > 6 ms, the output is 1 (Vout﻿ > 0) 
only when the inputs are 11 (purple upward-pointing triangle 
line), 10 (blue dotted line), and 01 (red square line), while for 
all other inputs, it remains 0 (Vout﻿ < 0). This simulation result 
aligns with the theoretical results in Fig.  1 B. For the 2-input 
quantum AND tree, at time t > 8 ms, the output is 1 (Vout﻿ > 0) 
only when the input is 11 (purple triangle upward-pointing line). 
This simulation result is also consistent with the theoretical 
results in Fig.  1 D. In the 3-input subtree, the formula is repre-
sented as: φ {sub,3}(x) = (x 1 ∧ x 2) ∨ x 3∗, xi﻿ ∈ {0, 1}. It is only after 
time t > 7 ms that the output is 1 when the inputs are 001 (orange 
square line), 011 (purple upward-pointing triangle line), 110 
(green downward-pointing triangle line), and 111 (blue right-
ward-pointing triangle line). For the 4-input subtree, the 
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Fig. 3. (A) Circuit design of the quantum AND-OR tree. (B) The connections and disconnections of the switches at the top represent inputs 1 and 0, respectively. (C) The pink nodes 
in the middle are connected to the ground through capacitors and resistors in parallel. (D) When the switch in the pink node is connected to the child node (input is 1), the switch 
in the pink node should be closed, that is, the capacitor and resistor are in parallel with the ground. (E) When the switch is open, the pink node should only be disconnected from 
the capacitor and connected to the ground. (F) Schematic diagram of the negative impedance converter (NIC), which includes an operational amplifier, 2 positive and negative 
resistors, and an equivalent resistor. (G) Nodes are connected to the ground in parallel through NIC modules and capacitors. (H) Simulation results of the 2-input quantum OR 
tree, the 2-input quantum AND tree, the 3-input AND-OR tree, and the 4-input AND-OR tree, which are consistent with the theoretical calculations in Fig. 2.
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formula is: φ {sub,4}(x) = (x 1 ∧ x 2) ∨ (x 3 ∧ x 4), xi﻿ ∈ {0, 1}. At time 
﻿t > 8  ms, the output is 1 (Vout﻿ > 0) only when the inputs are 0011 
(yellow diamond line), 0111 (green pointing downward triangle 
line), and 1111 (blue pointing rightward triangle line). The cir-
cuit simulation results for the 3-input subtree and 4-input sub-
tree correspond to the quantum theoretical results (see Fig.  2 E 
and F). Similarly, for the more complex quantum AND-OR tree 
structure, we can also utilize the classical circuit designs men-
tioned above. In Section S6, we also provide the circuit design 
and results for the 5-input game tree. Upon completing the cir-
cuit design and simulation, we then proceed to discuss the 
experimental realization of the quantum game tree circuit.   

Experimental realizations of quantum  
2-player games
  Based on the aforementioned circuit designs, we discuss how to 
proceed with experimental implementation. First, we demon-
strate the experimental implementation of a 2-input quantum 
OR tree. In Fig.  4 A, the physical printed circuit board (PCB) of 
the 2-input quantum OR tree is displayed. The size of the board 
is 35 cm × 25 cm. The circuit structures prepared for the experi-
ment correspond one to one with the theoretical design depicted 
in Fig.  3 A.        

  In Fig.  4 A, a 1 denotes push button switches used to control 
the operation of relays, while a 2 represents DIP switches. The 
switches in the open position signify input 0, while those in the 
closed position signify input 1. a 3 represents relays (model 
G6K-2F-Y-5VDC), used to simultaneously disconnect each 
node after applying the initial voltage, allowing the system to 
evolve from the initial time. a 4 represents 2 NICs, used to con-
nect adjacent nodes. The capacitors are 100 nF, and the resistors 
are 10 kΩ. The capacitance and resistance parameters chosen 
for the experiment determine the values of the circuit matrix. 
﻿a 5 is a pin header used to input the initial voltage and the volt-
age values of the complex impedances to the circuit board. The 
silver dashed box represents the runway, the blue dashed tri-
angles represent the quantum OR tree, and the red dashed circle 
represents the root node of the tree.

  For the 2-input quantum OR tree, during the circuit evolu-
tion, the 4 different inputs (00, 01, 10, 11) can be controlled by 
opening or closing the DIP switches. Each node is connected 
to the initial voltage via relays. The initial state of the circuit 

system is denoted as  � =
1√
L

⎛⎜⎜⎜⎝
0, 1, ⋯ , 1
⏟⏟⏟
L=12

,0,⋯ ,0

⎞
⎟⎟⎟⎠

T

V    , where all 

nonzero voltages are initially on the left side of the runway 
(r ≤ L + 1). When the push button switch is disconnected, the 
relays are opened, and each node is disconnected from the ini-
tial voltage, initiating the system’s evolution. During the evolu-
tion, voltages gradually appear at the nodes on the right side 
of the tree in the experiment. Using an oscilloscope to measure 
the voltage values of the nodes and calculating the difference 
between the sum of the squares of voltages at the rightmost 
nodes and the sum of the squares of voltages at non-rightmost 
nodes ( Vout(t) =

∑
i∈R

��Vi(t)
��2 −

∑
i∉R

��V (t)i
��2   ), we can obtain the 

output value of the tree’s root node.
  In Fig.  4 B, the experimental results for the 2-input quan-

tum OR tree are depicted, where green, blue, red, and purple 
represent the evolution of output node voltages in the circuit 

structure for inputs 00, 01, 10, and 11, respectively. Each line 
accompanied by error bars represents the results averaging 
5 times in experiments (the following results in Fig.  4 C to F are 
similar). It can be observed that after time t > 5.5 ms, an output 
result of 1 (Vout﻿ > 0) is obtained only when the input is 01 (10) 
or 11, while the other inputs remain at 0 (Vout﻿ < 0). It is noted 
that components in the circuit network, such as capacitors, 
resistors, and operational amplifiers, may have inherent errors, 
whereas the LTspice simulation software employs ideal com-
ponents. Consequently, there may be slight discrepancies in 
time between simulation and experiment results. The experi-
mental evolution results are nearly in agreement with the theo-
retical simulations. We have discussed the experimental error 
in Section S7. Nevertheless, we have observed that these vari-
ances fall within the expected range. This means that the experi-
mental results are reliable.

  In Fig.  4 C, the experimental results for the 2-input quantum 
AND tree are illustrated, where green, blue, red, and purple 
represent the evolution of voltages in the circuit structure for 
inputs 00, 01, 10, and 11, respectively. It can be observed that 
after time t > 7.6 ms, an output result of 1 is obtained only when 
the input is 11, while the other inputs remain at 0. Such input 
results indeed correspond to the functionality of the AND tree. 
Furthermore, Fig.  4 D presents the experimental results for the 
3-input subtree. The deep blue, orange-red, orange-yellow, 
purple, light green, and light blue solid lines represent the evo-
lution of voltages in the circuit structure for inputs 000, 001, 
010, 011, 110, and 111, respectively. It can be observed that after 
time t > 7.5 ms, an output result of 1 is obtained only when the 
inputs are 001, 011, 110, or 111, while for other inputs, the 
output remains at 0. We also present the experimental results 
for the 4-input subtree and the 5-input game tree in Fig.  4 E and 
F. For the 4-input subtree, after time t > 7.8 ms, an output result 
of 1 is obtained only when the inputs are 0011 (yellow line), 
0111 (green line), or 1111 (light blue line), while for other 
inputs, the output remains at 0. Similarly, for the 5-input quan-
tum AND-OR game tree, when the inputs are 00000 (gray line), 
00010 (pink line), and 01010 (purple line), the output result at 
the root node remains at 0 (Vout﻿ < 0). Conversely, for other 
inputs such as 01011 (red line), 00111 (blue line), and 11111 
(green line), after time t > 10 ms, the output result is 1(Vout﻿ > 0). 
The output results for other inputs are provided in Section S8. 
The experimental results described above correspond well to 
the circuit simulation results shown in Fig.  3 H.

  To showcase the quantum speedup of the AND-OR tree in 
circuit realization, we analyze the time required to distinguish 
between different outputs based on the tree’s input. Specifically, 
we select the root node as the OR node and set the depth of the 
AND-OR tree to be even. The relationship between the input N 
and the output time t is provided in Fig.  4 G. According to the 
quantum theory above (section “Theoretical Scheme of Quantum 
2-Player Zero-Sum Games”), it needs the time as  t ∝

√
N     with 

the input bit number, which has been depicted as the solid black 
line in Fig.  4 G. These theoretical results are obtained from the 
3-input subtree, the 4-input subtree, and the 5-input game tree 
in Fig.  2 . Here, the unit of time is chosen as millisecond, which 
corresponds to our circuit design. As shown in our circuit simu-
lation (Fig.  3 ) and experiment (Fig.  4 ), the quantity Pout﻿ has been 
chosen to show the distribution of probability on the runway. 
For all cases showing the output of 1, we choose the critical time 
at which all Pout﻿ are becoming larger than zero. This time is 
viewed as trun﻿. In Fig.  4 G, red circles are the simulation results 
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Fig. 4. (A) Printed circuit board (PCB) of the 2-input quantum OR tree structure. Detailed components of the quantum OR tree: a1, button switch to control relay operation; 
a2, DIP switch to select inputs (left for 0, right for 1), providing 3 independent inputs: 00, 01 (or 10), and 11; a3, relay (model: G6K-2F-Y-5VDC) to control the initial state 
of the circuit board; a4, two negative impedance modules (LT1013) within the gray box (resistor and capacitor highlighted with green dashed lines); a5, pin headers to 
introduce initial voltages and provide impedance to the system, as well as for voltage measurements at each node. (B) Experimental results of the 2-input quantum OR 
tree: 00 (green line), 01 (blue line), 10 (red dashed line), and 11 (purple line) are depicted. Each line is accompanied by error bars representing the results obtained from 
5 experiments. (C) Experimental results of the quantum AND tree of 2-input. Inputs are denoted by line colors similar to those in (B). (D) Experimental results of the 
3-input quantum AND-OR tree: Among the outputs, 000 (blue line) and 010 (orange-yellow line) are 0. For other inputs, 001 (orange line), 011 (purple line), 110 (green 
line), or 111 (light blue line), the output is 1. (E) Experimental results of the 4-input quantum AND-OR tree. The outputs for 0000 (blue line), 0001 (orange-yellow line), 
and 0101 (purple line) are 0; all other output results are 1. (F) Experimental results of the 5-input quantum AND-OR tree. The outputs for 00000 (gray line), 00010 (pink 
line), and 01010 (purple line) are 0; for other inputs such as 01011 (red line), 00111 (blue line), and 11111 (green line), the output results are all 1. (G) Relationship between 
the input N and the output time t for the 3-input subtree, the 4-input subtree, and the 5-input game tree. The solid line represents the theoretical calculation value, the 
red circle represents the simulated time, and the blue cross represents the experimentally measured time.
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that are obtained from the time for the 3-input subtree, the 
4-input subtree, and the 5-input game tree in the circuit simula-
tion in Section 3. Blue navy crosses denote the times from the 
experiment (Fig.  4 D to F). As shown in Fig.  4 G, it can be 
observed that the theoretical and simulated times strictly coin-
cide with each other. However, due to the relatively small value 
of N, there is a slight discrepancy between the experimental and 
simulated time. The experimental results are distributed around 
the theoretic results (blue solid line), which also demonstrates 
the quantum advantage in our circuit platform.    

Discussion
  Currently, the quantum circuit model can process multiple 
states simultaneously, potentially offering computational speedup 
in solving complex game problems. However, quantum com-
puting is still constrained by noise and hardware limitations. 
Although the theoretical proposal of the balanced NAND-gate 
on the conjugated organic molecular structure is achieved [  38 ], 
it is not easily implemented in reality due to the hardness in 
the accurate control of the internal structure of molecules and 
electron movement. Recent study shows that the balanced 
NAND-gate algorithm is tested in a photonic waveguide [  39 ], 
but fixed inputs and a lack of tunability increased resource 
consumption and limited its application. In this way, the plat-
forms with the conjugated organic molecules or the wave-
guides are not able to display the complicated functions 
required in the game problem easily. Compared with other 
platforms, the circuit has a high maturity and scalability, and 
can handle 2-player game problems stably and efficiently. In 
addition, the circuit is deterministic and robust in the cal-
culation results, which is suitable for solving game problems 
that require high accuracy.

  In addition, we have successfully implemented an 8-input 
AND-OR tree and conducted demonstrations on a PCB plat-
form. Indeed, as the number of components increases, the 
required area of the PCB expands, and the accumulation of 
component errors increases, thereby affecting the output results. 
However, by mapping the implementation from a PCB to an 
integrated circuit (IC) chip, these issues can be effectively 
addressed. As shown in [  40 ,  41 ], the extremely low error rates 
in the chip enable the realization of low parasitic capacitance 
and inductance, thereby reducing signal distortion and error 
accumulation, and improving the precision and stability of the 
circuit. Implementing the game problem using IC chips offers 
the following advantages. For instance, the chip, which con-
tains thousands of complementary metal-oxide semiconductor 
(CMOS) transistors, is fabricated using a 65-nm CMOS process 
technology, with a size of 3, 000 × 3, 500 μm2[ 41 ]. Based on 
this component count, it is estimated that up to 100 inputs for 
the game problem can be realized. Because of these advantages, 
the implementation of the game problem on ICs can scale up 
to larger inputs while keeping the circuit size within the mil-
limeter range.

  In this work, we design a quantum algorithm based on a 
quantum walk and experimentally verify the quantum speedup 
on a classical circuit platform. We map the 2-player zero-sum 
game to the AND-OR tree and design the quantum AND-OR 
tree to solve the game problem. In our study, we choose the 
5-input game tree as an example and divide it into a 4-input 
subtree and a 3-input subtree in sequence. Our results verify 
the consistency between the optimal path of a subtree and that 

of the entire game tree. More importantly, the time for obtain-
ing the output result satisfies  t ∝

√
N     with the N inputs, which 

has the good correspondence to the time in the quantum 
algorithm. Circuit simulations and experimental results real-
ize a new type of classical computing based on the quantum 
intermediary construction. Furthermore, the solution for the 
2-player zero-sum game can be obtained within the time as 
that from the quantum algorithm. Although we only discuss 
the 2-player zero-sum game problem here, it is also possible to 
use the concept of the game tree to demonstrate the quantum 
speedup for more complex game problems, including chess, 
economics, cybersecurity, computer science, and finance, among 
others. The quantum speedup in the game problem here pro-
vides a new idea for improving computing power in the era of 
big data and will be widely used in various fields.   

Methods
  In the circuit, the Kirchhoff equation set for the i -th current 
node can be expressed as:
﻿﻿   

  Here, the capacitance value Ci﻿ and the resistance value Ri﻿ 
represent the capacitance and grounding resistance values of 
the ith circuit node, respectively. The node equation set for the 
entire circuit system can be expressed as:
﻿﻿   

  The matrix A is a real matrix of size M × M, and its elements 
are determined by the capacitance and resistance between the 
nodes of the circuit. If we multiply  Eq. 2  by the imaginary unit 
﻿i, we obtain  i d�(t)

dt
= iA�(t) =�(t)   . In our study, we choose 

the appropriate grounding resistor values so that the diagonal 
elements of the matrix A are all zero. Then, the effective resist
ance values of the NICs are adjusted to ensure that the matrix 
﻿    satisfies the condition of being a Hermitian matrix. The 
Matrix      and the Hamiltonian H can be obtained through 
similarity:   = PHP −1. We can get:

﻿﻿   

  In the equation, P represents the similarity transformation 
matrix, whose specific form is provided in Section S5. If we 
regard P −1 ϕ(t) as the wave function ψ(t) in the Schrödinger 
equation, then the evolution of the circuit system exactly cor-
responds to the time evolution of the quantum system. It is 

found that the initial state  �(0) = 1√
L

⎛⎜⎜⎜⎝
0, 1, 1, … , 1
⏟⏞⏞⏟⏞⏞⏟

L

,0,0,… ,0

⎞⎟⎟⎟⎠

T

    

in circuit evolution is similar to the initial wave function 
designed in quantum theory, where the voltage unit is set as 
﻿
√
LV−1   .   

(1)

Ci

dVi(t)

dt
+
Vi(t)

Ri

=
∑
j

Vj(t)−Vi(t)

Ri,j

dVi(t)

dt
=

1

RCi

∑
j

[
Vj(t)−Vi(t)

]

(2)
d�(t)

dt
= A�(t)

(3)i
d

dt

(
P−1�(t)

)
= H

(
P−1�(t)

)
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