l.)

Check for
updates |

Research

A SCIENCE PARTNER JOURNAL

RESEARCH ARTICLE

Quantum 2-Player Games and Realizations

with Circuits

Jinliang Zhang', Tian Chen!, Wenyuan Deng, Xiaoxue Tong,
and Xiangdong Zhang”

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of
Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of
Physics, Beijing Institute of Technology, 100081 Beijing, China.

*Address correspondence to: chentian@bit.edu.cn (T.C.); zhangxd@bit.edu.cn (X.Z.)
tThese authors contributed equally to this work.

Game theory problems are widely applied in many research areas such as computer science and finance,
with the key issue being how to quickly make decisions. Here, we present a novel quantum algorithm for
game theory problems based on a continuous quantum walk. Our algorithm exhibits quantum advantage
compared to classical game algorithms. Furthermore, we exploit the analogy between the wave function of
the Schrodinger equation and the voltage in Kirchhoff's law to effectively translate the design of quantum
game trees into classical circuit networks. We have theoretically simulated the quantum game trees and
experimentally validated the quantum functionality speedup on classical circuit networks. Due to the
robust scalability and stability inherent in classical circuit networks, quantum game trees implemented

Citation: Zhang J, ChenT, Deng W,
Tong X, Zhang X. Quantum 2-Player
Games and Realizations with
Circuits. Research 2024;7:Article
0480. https://doi.org/10.34133/
research.0480

Submitted 27 June 2024
Revised 1 September 2024
Accepted 3 September 2024
Published 30 September 2024

Copyright © 2024 Jinliang Zhang etal.
Exclusive licensee Science and

Technology Review Publishing House.

No claim to original U.S. Government
Works. Distributed under a Creative
Commons Attribution License 4.0
(CCBY 4.0).

within this framework hold promise for addressing more intricate application scenarios.

Introduction

Game theory is a collection of mathematical models that study
decision-making in situations involving conflict and coopera-
tion, with the aim of abstracting key elements of various competi-
tive scenarios and scientifically investigating their characteristics
[1-5]. Recent research has integrated artificial intelligence into
game theory problems, combining machine learning methods
to excel in domains such as chess and Go. This convergence has
resulted in the development of high-performance computer pro-
grams capable of playing at a superhuman level [6-13]. A typical
example in the game theory is the 2-player game, which involves
the decisions from 2 agents. This problem can be cast into a
decision tree to determine which agent wins by calculating the
optimal value function within this tree. This is accomplished
through high-performance alpha-beta search techniques, which
efficiently explore vast search spaces, or by utilizing a general-
purpose Monte Carlo Tree Search (MCTS) algorithm. These
methods allow researchers to subsequently provide the optimal
solution. In such scenarios, the ability to make decisions quickly
often proves to be a decisive factor in achieving success. Research
has shown [14] that if 2-player game trees are viewed as AND-OR
trees, then the minimax value of the game tree corresponds pre-
cisely to the value of the optimal solution in the AND-OR tree.
Therefore, the evaluation of game problems hinges on efficiently
obtaining the optimal solution to the AND-OR tree problems.
In the assessment of AND-OR tree problems [15-17], classically,
the value of a balanced binary AND-OR tree with zero error

in expected time O(NlogZ[(H\/E)M]) = O(N®7>*) can be

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

computed using a technique called alpha-beta pruning. Despite
the fact that no algorithm has outperformed this classical zero-
error algorithm for a long time, it remains quite slow.

On the other hand, quantum algorithms offer important
advantages in addressing specific 2-player game problems.
The simplest case is the Prisoners’ Dilemma, which is the one-
step decision problem. When quantum strategies are employed
in the Prisoners’ Dilemma, the decision-making process no
longer presents a dilemma [18,19]. Not only the one-step deci-
sion problem, the many-step decision problem is also studied
with quantum algorithms. Some works encode all possible
solutions of a variety of game search problems into a Hilbert
space. By using Grover’s quantum search algorithm [20], they
achieve a quadratic speedup over naive classical algorithms
[21-24]. Then, the bounded-error quantum algorithms based
on quantum circuit model have been developed for evaluating

game trees [25-30] on a graph, which requires an O (\/ITI logN)

query for evaluating AND-OR formulas with size N. However,
it remains unclear how to experimentally implement these
algorithms or whether tree structures can be used for this
purpose.

In this paper, we propose a novel scheme to realize a 2-player
game based on AND-OR tree structures. The contributions of
our work are 2-fold. First, we employ a subgame design tech-
nique to develop a quantum algorithm for the Hamiltonian
AND-OR tree using continuous-time quantum walk. Our pro-

posed algorithms achieve a query time of O(VN) for evalu-
ating preprocessed approximately balanced AND-OR trees.

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

mailto:chentian@bit.edu.cn
mailto:zhangxd@bit.edu.cn
https://doi.org/10.34133/research.0480
https://doi.org/10.34133/research.0480
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fresearch.0480&domain=pdf&date_stamp=2024-09-30

Research

Second, we validate the quantum speedup characteristics of
this algorithm within circuit networks.

The organization of this paper is as follows. In the “Theoretical
Scheme of Quantum 2-Player Zero-Sum Games” section, we
introduce basic concepts related to game trees and present the
theory of quantum 2-player games based on tree structures. In
the “Circuit Designs of Quantum 2-Player Games” section, we
demonstrate how to design the quantum algorithm in circuit
networks, showcasing its gaming functionality with quantum
speedup. The corresponding experimental results of quantum
2-player games in circuit networks have been addressed in the
“Experimental Realizations of Quantum 2-Player Games” sec-
tion. Finally, we discuss and provide future outlooks. The quan-
tum speedup in game tree solving plays a crucial role in various
aspects of society, particularly in fields like artificial intelligence
and deep learning.

Results

Theoretical Scheme of Quantum 2-Player

Zero-Sum Games

In this section, we propose a novel multi-step decision-making
framework for a 2-player game based on a continuous-time
quantum walk, demonstrating quantum speedup. Before pro-
viding the details of the quantum 2-player game, we initiate the
process by constructing a quantum AND-OR tree using the
quantum walk at first.

Quantum AND-OR tree based on quantum walk
Here, we demonstrate quantum speedup for the quantum
AND-OR tree. First, we design and implement the most com-
mon basic 2-input OR gate and 2-input AND gate structures in
the quantum game tree. These 2-input OR and AND gates are
constructed by using the negative-AND (NAND) gate. The con-
struction details of the NAND gate are shown in Section SI.
The design scheme for the quantum OR tree is shown in
Fig. 1A. For a 2-input OR gate, the depth of the quantum OR

tree is d = 2. Here, the parameter L is taken as L = 84/N ~ 12

with N = 2. There are a total of M = 32 nodes. It includes 25
nodes of the runway, 3 nodes of the tree structure, and 4 nodes
of the input layer. The top row input has 2 states, with connec-
tions and disconnections between the first 2 rows of nodes
corresponding to inputs 1 and 0, respectively. The lowest root
node in the tree structure is connected to a runway at the node
L + 1 =13, in which the length of runway is 2L + 1 = 25. Each
node in Fig. 1A can be represented by a 32 X 1 dimensional
quantum state, where the state function |r) = (0,...0, 1,0, ..., 0)"
represents that the rth element of the column vector is 1, and
all other elements are 0. Thus, the entire quantum OR tree can
be represented by a 32 X 32 dimensional Hamiltonian H. The
details of constructing a quantum OR tree are provided in
Section S2.

In our study, at time t, the wave function of the system
can be represented as y(t) = (y;, (1), (1), -+, 1//32(t))T. We con-
struct the initial state of the system at time t =0, |w(0)) =

% Z::f e"/2|r) [31,32], as shown in the bottom left corner
of Fig. 1A. The initial state distribution is located on the left
side of the bottom runway. At time t, the state function evolves
into [y(t)) = ¢"|y(0)), and t,,, = % = 6. During the evolution
process, we focus on the probability of the initial wave packet

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

appearing on either side of the bottom runway. If the probability
of the wave packet appearing on the left runway is greater than
that on the right runway, the root node outputs 0. Conversely, if
the probability of the wave packet appearing on the right runway
is greater than that on the left runway, the root node outputs 1.
To better illustrate the computation results, we define the output

aSPoutzpeR_PgR’WherePeRz Z | (r|w(t)>|2and

L+1<r<2L+2
Pyp = > | (rly(H))]* It can be observed that when
r@[L+2.2L+1]
p

> 0, the quantum OR tree evaluates the root node as 1, and
when P, < 0, the quantum OR tree evaluates the root node as
0. Detailed derivations can be found in Section S2.

Due to the symmetry of the 2-input quantum OR tree struc-
ture, it effectively encompasses 3 distinct inputs: 00, 01 (or 10),
and 11. The temporal evolution of the calculation results P,
for the 2-input quantum OR tree is depicted in Fig. 1B. The
various curves in Fig. 1B represent the evolution of the output
of the root node over time for the input scenarios 00, 01, 10,
and 11, respectively. It is evident that after time ¢ > 6, the output
results for inputs 01 (red solid line), 10 (blue dashed line), and
11 (purple solid line) are P, > 0, which indicates that the wave
packet is more likely to occupy nodes on the right side of the
runway. In this scenario, the output of the root node of the tree
is 1. In contrast, for the input scenario of 00 (green solid line),
P, is always less than 0. This means that the wave packet is
more likely to occupy nodes on the left side of the runway and
within the tree, consequently leading to an output of 0 at the
root node. That is, we have realized a basic 2-input quantum
OR tree.

Similarly, we can also construct a 2-input quantum AND

tree, as shown in Fig. 1C. The depth of the quantum AND tree

is d = 2, where L is chosen as L = 84/2N = 16. There are a total
of M = 39 nodes. It includes 33 nodes of the runway, 2 nodes
of the tree structure, and 4 nodes of the input layer. The first
2 rows of nodes also have 2 states, representing the values of
inputs 1 and 0, respectively. The root node of the tree is con-
nected to a runway at node 17, in which the length of runway
is 2L + 1 = 33. Thus, the entire quantum AND tree can be rep-
resented by a 39 X 39 dimensional Hamiltonian H. Details for
the construction of quantum AND tree have also been shown
in Section S2. In our study, at time ¢, the wave function of the
system can be represented as y(t) = (y;, (1), y, (), -+, 1//39(1‘))T. In
such a case, the initial state of the system at time =0 is

expressed as |y (0)) = %Z::gei’”/zlr) [31,32]. Its distribu-
tion is located on the left side of the bottom runway. At time
boun = % = 8, we can obtain the output of the AND tree. The
curves in Fig. 1D represent the change of P, over time for
inputs of 00, 01, 10, and 11, respectively. It can be seen that for
the input scenario of 11 (purple solid line), after time > 8,
P, > 0, resulting in the output of the tree being 1. In contrast,
for the other input scenarios (00, 01, 10), P, is always less than
0, leading to the output of the root node of the tree being 0.
This approach allows us to implement a fundamental 2-input
quantum AND tree.

Based on the 2-input quantum AND tree and OR tree, we con-
struct a general quantum AND-OR tree as shown in Fig. 1E, com-
prising 3 main components: the input layer, the AND-OR tree
structure, and the runway. In the input layer (the light blue area in
Fig. 1E), connections and disconnections between the 2 rows of
nodes correspond to inputs of 1 and 0. They are then processed

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

1
A B —00
[0 C ;g 0.5 ig; Output =1
. Inputs: | > —1 /
@ CN Qoﬂ 0 P
ly(t=0)) 205
‘Q_ o Output =0
1 12 13 14 24 25 0 2 4 6
C D t
1 .
_ —00
*;i 05 igg Output =1
> :
<
32 33

400 T T
—t = 4v/N,OR — even
300—t = 4v2N,OR — odd 4
t =8V N,AND — even
_5200F - t = 4v2N, AND — odd

100

1

0 400 800 1200 1600 2000
N

1 1 1

Fig.1.(A) Diagram for the 2-input quantum OR tree. If the nodes within the blue dashed box at the top are connected (disconnected), the input is 1 (0). (B) Output results of
the quantum OR tree. The result is O when the input is 00, and it is 1 for inputs 01, 10, and 11. (C) Diagram for the 2-input quantum AND tree. (D) Output result of the quantum
AND tree. The output is 0 when the input is 00, 01, and 10, and it is 1 only for the input 11. (E) Schematic diagram of the quantum AND-OR tree. With a depth of n, the input layer
has N=2" inputs, where the connections and disconnections between the nodes of the input layer are represented by 1 and 0, respectively; white nodes represent the AND
nodes, while black nodes represent the OR nodes. As the depth of the tree increases, the nodes alternate between black and white. The root node (T,,,;) of the tree structure
is the OR node, which is connected to a runway of length 2L +1, and the initial [y(0)) is input from the left side of the runway. (F) Relationship between the output result time
t.,» and the input parameter N for the 4 different structures of AND-OR trees. These trees are classified by their root nodes (AND nodes or OR nodes) and their depth (odd or
even layers). All of them exhibit quantum speedup.

Zhang et al. 2024 | https://doi.org/10.34133/research.0480 3

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

within the AND-OR tree structure (the light yellow area in
Fig. 1E). Consequently, the result of the root node is considered
as the output of the tree structure. The root node in the bottom
layer of the tree structure is connected to a runway of length 2L + 1
(the dark blue area in Fig. 1E), where there are L nodes on each
side of the connected point. The nodes on the runway are num-
bered from 1 to 2L + 1, while the nodes of the tree structure are
sequentially numbered from the bottom to the top. Here, we set
the value of L to be L =8 x 2" for the quantum AND-OR tree
structure of depth n. There are a total of M =3 x 2" +2"***
nodes. Each node in Fig. 1E can be represented by a M X 1 dimen-
sional quantumstate, wherethestate function |r) = (0,...0,1,0, ..., 0)"
represents that the rth element of the column vector is 1, and all
other elements are 0. Thus, the entire quantum AND-OR tree can
be represented by a M X M dimensional Hamiltonian H. The
details for the construction of the quantum AND-OR tree have
also been presented in Section S3.

Similarly to the quantum OR tree, the wave function of the
system at time ¢ can be represented as y(t) = (y; (1), (1), =, Wy,
()", The initial state of the system at time t =0 is |y (0)) =

r=LAL pirn /2|y)[31,32], as shown in the bottom left corner

e
of Fig. 1E, where the initial state distribution is located on the
left side of the bottom runway. The initial state evolves accord-
ing to the Schrodinger equation: i %u/(t) = Hy (t). We focus on
the output result P,,, = Pcp — Py at the time ¢, = L

run 2'

After discussing the fundamental functionalities of the
2-input AND tree and OR tree alongside the quantum AND-OR
tree, we proceed to a detailed analysis of their quantum speedup
properties. Assuming that all AND-OR trees are of a 2-input
nature, 4 distinct structures emerge based on the characteristics
of the root node (AND or OR) and the depth level (odd or
even).

When the root node of an AND-OR tree is an OR node
and the tree depth is even (where n represents the depth of
the tree, n = 2k, k=0, 1, 2...), the corresponding quantum
walk describing the tree (with depth denoted by d) remains
unchanged, that is, d = n = 2k. However, when the tree depth
isodd (n =2k +1,k=0,1,2...), an additional layer of depth
is added to the input layer of the corresponding quantum
game tree, resulting in a tree depth of d=n+ 1 =2k + 2.
Similarly, if the root node is an AND node, and tree depth is
even (n =2k, k=0, 1,2...), both the root node and the input
layer of the corresponding quantum tree increase by one layer,
resulting in a depth of d = n + 2 = 2k + 2. In the case of odd
(n=2k+1,k=0,1,2...) depth scenarios, the corresponding
quantum tree adds one layer at the root node, yielding a tree
depth of d = n + 1 = 2k + 2. Detailed descriptions of these
4 types of AND-OR tree structures based on quantum walk
have been presented in Section S4.

Figure 1F illustrates the relationship between the output
result time t,,,, and the input parameter N for these 4 types of
structures. It is noted that this output time corresponds to the
duration required for fully distinguishing different results, and
the output result in 0 or 1 does not change with a longer time
evolution. We examine the evolution trend of theoretical values
with changes in the input scale N for different structures. For
each structure, we can conclude that under the condition of

input scale N, the output time satisfies t « 4/ N with N, thereby
demonstrating the quantum speedup.

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

Description of 2-player zero-sum games

As shown in the previous section, the quantum speedup in the
quantum AND-OR tree has been demonstrated. In the follow-
ing, we give the description of 2-player zero-sum games at first;
then, we map this game problem to the quantum AND-OR tree
and show the quantum speedup.

The game process is typically represented by the game tree
illustrated in Fig. 2A. During the game, the first player (Alice)
makes the “OR” operation of their child nodes, and the sec-
ond player (Bob) does the “AND” operation of their child
nodes. These are labeled by the black and white dots, respec-
tively, in Fig. 2A. One round of game contains one “OR” and
“AND?” operations. In one round, Alice can make a choice at
the beginning, and Bob wants to choose the strategy to win,
no matter what moves made by Alice before. In this way, a
new round of game is run. Alice needs to find a new strategy
to win in the new situation, and the “OR” operation is made
by Alice again. Therefore, the “OR” and “AND” operations
(black and white dots in Fig. 2A) appear alternatively during
the game process. The arrows in different colors in Fig. 2A
represent different choices. When Alice chooses the decision
A, (the green arrow in Fig. 2A), Bob can choose between B,
and B, (blue arrows); when Alice chooses A, (gray arrow),
Bob can choose between B, and B, (gold arrows); and when
Alice chooses A, (purple arrows), Bob can only choose B
(red arrows). The game is terminated when reaching terminal
leaf nodes (rectangles in the top of Fig. 2A). Each leaf node
contains a variable x; with the value of 1 or 0. Based on the
inputs of the terminal leaf nodes, we can quickly determine
the decision paths of Alice and Bob, and evaluate the output
result of the root node (the yellow star in Fig. 2A) of the game
tree. In the game between Alice and Bob, Alice wins if the
root node value equals 1; conversely, Bob prevails when the
root node value is 0.

The game problem addressed in Fig. 2A can be mapped to
a 5-input quantum AND-OR tree, as illustrated in Fig. 2B,
which is composed of dashed brown subtrees representing a
4-input subtree (the light yellow solid subtree in Fig. 2A) and a
2-input OR tree. Now, we employ a subgame design technique
to develop a quantum algorithm for the Hamiltonian AND-OR
tree using continuous quantum walk and then realize the quan-
tum speedup in the gameplay process with a 5-input quantum
AND-OR tree. The formula representation of this tree is as fol-
lows: p(x) = (x; A x,) V (33 A X,) V X5, X; € {0, 1}, where A and
V denote AND nodes and OR nodes, respectively. The 5 input
values are x;, X,, X3, X, and x5; @(x) represents the result of the
calculation of the root node of the 5-input quantum AND-OR
tree. Additionally, the AND-OR tree can further decompose into
asmaller 4-input subtree and a 2-input OR tree, p(x) = @, 4(X) V X5,
x; € {0,1}. The operational formula for the 4-input subtree is as
follows: @, 4(x) = (x; A x,) V (x5 A %), x; € {0,1}, as shown
in Fig. 2B. The 4-input subtree can then be further decom-
posed into a smaller 3-input subtree and a 2-input AND tree
(see the inset of Fig. 2C). The 3-input subtree, as depicted in
Fig. 2D, is characterized by the following operational formula:
Pop3(x) = (%] Axy) V x3,%; € {0,1}, where x] represents the
result of the calculation for the input x; and x,.

For the 3-input subtree, here we take the value of L to be
L = 84/3 =~ 14. The top row of inputs in Fig. 2D can be in con-
nected or disconnected states, corresponding to input values of
1 and 0, respectively. The lowest root node in the tree structure
is connected to a runway of length 29, in which the connection

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

A E
2 1 1
_ . B2 &8 25 —000 —011 |Output = 1.
@ Alice = OR gate \ \ [0 Leaf nodes F; 05l —001 —110 -
O Bob = AND gate \ x, € {0,1} FORRS 010 —111 ;
- 1
o -
g 0 :
< .
n_o -0.5 f_,.-——-‘ . 1
—" Output=0 P 7',
Player 1 (Alice) Player 2 (Bob) A1 . G
GAME TREE 0 4 8
B F t
(xl X,X3 X, N 1 , i :
0) T
< / T LT _ Output =1
¥ I 051 0011 —1111 SRS
: 5 =] : '
q)sub.d (X)’/ OFi .g. 0
L px)) TH
. . n_° -0.5
49
-1 .
C 0 3 6 9
G t
~——00000 —01010 E
—00001 —01011 ;
—00010 —01110 Qutput=1 |,
0.5} 00011 —01111
&= —00110 —11110
- —00111 —11111
2
£ 0
D 3
o
0.5
A1 P
0 4 8 12
1 2 14 15 16 28 29 t

Fig. 2. (A) Alice and Bob double zero-sum game tree. The entire game tree is made up of numerous subtrees. Each gray triangle represents a subtree, while the orange-
yellow line depicts the optimal path throughout the entire gameplay process. The black nodes represent the choice of Alice (OR node), and the white nodes represent the
choice of Bob (AND node). The input values of the terminal nodes x; are only 0 and 1. The green arrows denote the strategies available to Alice, with the strategy A;, A, or
A; for a particular node in the game process. In contrast, the blue arrows represent the strategies available to Bob, who can choose strategy {A| B;, B,}, {A,| B3, B,}, and
{A;] Bs}. The dashed brown triangles and the solid yellow triangles represent the 4-input subtree and the 5-input subtree, respectively. (B) Schematic diagram of the 5-input
quantum AND-OR tree. On the right side is the corresponding classical game tree structure. (C) Schematic diagram of the 4-input quantum AND-OR tree. (D) Schematic
diagram of the 3-input quantum AND-OR tree. (E) Results for a 3-input quantum AND-OR tree. The inputs 000 and 010 result in an output of 0, while the inputs 001, 011,
110, and 111 lead to an output of 1. (F) Results for the 4-input quantum AND-OR tree. The inputs 0000, 0001, and 0101 result in an output of 0. The inputs 0011, 0111, and
1111 result in an output of 1. (G) Results for the 5-input quantum AND-OR tree. The inputs 00000, 00010, and 01010 result in an output of 0. All other inputs result in an
output of 1. The red dashed line represents the measurement time.

node is 15. This tree structure features 6 independent inputs:
000, 001, 010 (100), 011 (101), 110, and 111. The results of the
calculation of the output of the 3-input subtree over time are
depicted in Fig. 2E. From the graph, it is evident that after time
t> t,,m(% = 7), the input types: 110 (green line), 011 (purple
line), 001 (orange-red line), and 111 (light blue line) have output
P, > 0. This signifies that under these input types, the wave
packets of the input predominantly occupy the right side of

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

the runway, leading to a computation result of 1 at the root
node. On the contrary, the results P,,, for input 000 (blue line)
and 010 (orange-yellow line) consistently remain less than 0.
This suggests that the wave packets of the input are predomi-
nantly reflected onto the left side. Consequently, the corre-
sponding inputs yield a result of 0. This implies that in the
game played within this 3-input subtree, if the inputs are 110,
011, 001, or 111, Alice wins, whereas if the inputs are 000 or
010, Bob wins.

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

Furthermore, by integrating the 3-input subtree with a 2-input
AND tree, a larger 4-input subtree is obtained, as depicted in
Fig. 2C. We take the value of Ltobe L = 8 /4 = 16. Due to struc-
tural symmetry, there are only 6 distinct input combinations
for the 4 inputs: 0000, 0001 (0010, 0100, 1000), 0011 (1100), 0101
(1010,0110,1001),0111 (1011,1101,1110), and 1111. The time-
varying calculation results of the output of the 4-input quantum
AND-OR tree are shown in Fig. 2F It is evident that after time
t> 8, the output P,,, > 0 for 0111 (green line), 0011 (orange-
yellow line), and 1111 (light blue line) indicate that under these
input types, the wave packets predominantly occupy the right
side of the runway. In these respective input scenarios, the cal-
culation results of the 4-input quantum AND-OR tree is 1. For
comparison, it is evident from the figure that the output P, for
0000 (deep blue line), 0001 (orange-red line), and 0101 (purple
line) consistently remain below 0. Under these input types, the
wave packets are predominantly reflected to the left side of the
runway, resulting in a corresponding calculation result of 0. This
implies that in the larger 4-input subtree game, if the inputs are
0011, 0111, or 1111, Alice wins; however, if the inputs are 0000,
0001, or 0101, Bob wins. It should be noted that, compared to
the 3-input subtree earlier, if Alice wins in the 3-input subtree
game, then in the 4-input subtree game, regardless of the value
of the fourth input, Alice will ultimately win.

Compared to the 4-input subtree, the final 5-input quantum
AND-OR tree introduces an additional input while maintain-
ing structural symmetry. There are a total of 12 independent
combinations of inputs, namely, 00000, 00001, 00010, 00011,
00110, 00111, 01010, 01011,01110, 01111, 11110, and 11111.
For the 5-input AND-OR tree, we take the value of L to be 24.
The small deviation away from 84/5 ~ 18 is due to the asym-
metric input in the middle (Fig. 2B).

The time-varying calculation results of the output for the
5-input quantum AND-OR tree are depicted in Fig. 2G. It is
noteworthy that the output results P,,, for 00000 (brown line),
00010 (pink line), and 01010 (purple line) consistently remain
below 0. This means that under these input types, the wave
packets predominantly concentrate on the left side of the run-
way, resulting in an output value of 0. In contrast, it is evident
from the figure that, after time t > 9, the output results P, for
the remaining 9 cases are all greater than 0. Under these inputs,
the wave packets predominantly occupy the right side of the
runway, resulting in an output value of 1. Similarly to the previ-
ous description, for the 5-input game tree, if Alice wins in the
4-input subgame, regardless of the input of the fifth bit in the
5-input game tree, Alice will ultimately win the 5-input game.

Therefore, for the 3-input subtree, the 4-input subtree, and the
5-input game tree, from the study above, we can conclude that
with the input scale N, the time to obtain the output result satisfies
t \/ﬁ with N, which demonstrates the quantum speedup. Since
then, we have introduced the design of a 2-player zero-sum game
tree based on quantum walk and presented the corresponding
results. In the following discussion, we explore how to design
classical circuit networks to simulate these quantum game trees.

Circuit Designs of Quantum 2-Player Games

In this section, we provide the circuit design for a general quan-
tum AND-OR tree. As depicted in Fig. 3A, each circle corre-
sponds to a node in the structural diagram shown in Fig. 1E,
with a total of M = 3 x 2" + 2" ** nodes in the entire circuit
structure. Similarly to the numbering of nodes in Fig. 1E, we
start by numbering the nodes on the runway and then proceed

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

to number the nodes from the bottom to the top of the tree
structure. The voltage states on these nodes can be represented
by column vector ¢(t) = (V,(¢), V,(1),. M(t)) where the
voltage V() represents the voltage Value at the ith circuit node
at time t. In Fig. 3A, the top 2 rows of nodes in the circuit are
connected via dual in-line package (DIP) switches. These DIP
switches can be adjusted to be connected or disconnected, cor-
responding to input values of 1 or 0, as shown in Fig. 3B. In
Fig. 3A, each node is grounded using a capacitor resistor, with
the grounding method varying according to the design require-
ments. The nodes in the circuit network are grounded via
capacitors and resistors or negative impedance converter (NIC)
modules [33,34], as shown in Fig. 3C, D, E, and G. Each node
is connected via a NIC, as depicted in Fig. 3E. This structure
consists of an operational amplifier, 2 resistors connected to
the positive and negative terminals of the operational amplifier,
and a resistor R, . (representing the effective resistance from
node i to nodej). The NIC module can reverse the direction of
current flow from node i to node j and from node j to node i
[34-36]. In addition, the descriptions of the Kirchhoft equation
set for the i-th current node are provided in the Methods sec-
tion, and the correspondence between these equations and the
Schrodinger equation is shown in S5 of the Supplementary
Materials.

At the initial moment, 1-V DC voltage is applied to the
corresponding L nodes on the runway left side, with the
remaining nodes grounded. After the evolution begins, we
disconnect the initial voltage of 1 V and grounding from the
remaining nodes. The voltage state ¢(t) evolves according to
Kirchhoft’s current law. During the evolution of the circuit,
the operating time t,,;, of the circuit equations differs from
the theoretical operating time #,,,,, of the system by only one
constant term: £ ;.. = tyeory * (R,C;) [32,37]. In our simulations
and experiments, the resistance R; is set to 10 k€2, and the
capacitance C, is set to 100 nF. Therefore, in experiments, 1 ms
corresponds to a theoretical time unit of 1. The output result
can also be represented by subtracting the voltage of the
remaining nodes from the Voltage at the right end of the run-

way, that is, V,,,(t) = Z |V(t)| - Z |V(t)| This way, by

measurmg the voltage values of c1rcu1t nodes at different times
using an oscilloscope, we can determine the computation result
of the quantum AND-OR tree.

In Fig. 3H, we present the circuit simulation results of the
2-input quantum OR tree, 2-input quantum AND tree, 3-input
subtree, and 4-input subtree relevant to the game process. The
design diagrams of the corresponding circuit structures are
included in Section S6. For the 2-input quantum OR tree, the
results indicate that at time ¢ > 6 ms, the output is 1 (V,,, > 0)
only when the inputs are 11 (purple upward-pointing triangle
line), 10 (blue dotted line), and 01 (red square line), while for
all other inputs, it remains 0 (V,,, < 0). This simulation result
aligns with the theoretical results in Fig. 1B. For the 2-input
quantum AND tree, at time ¢ > 8 ms, the outputis 1 (V,,, > 0)
only when the input is 11 (purple triangle upward-pointing line).
This simulation result is also consistent with the theoretical
results in Fig. 1D. In the 3-input subtree, the formula is repre-
sented as: @, 3(x) = (x; A X,) V x3,, x; € {0, 1}. It is only after
time ¢ > 7 ms that the output is 1 when the inputs are 001 (orange
square line), 011 (purple upward-pointing triangle line), 110
(green downward-pointing triangle line), and 111 (blue right-
ward-pointing triangle line). For the 4-input subtree, the

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

A
5 5 5 . B 1
Inputs:
* TrOOf *
¢(t) /\ Output:O fID: OUtpUt=1
Runway i :
:‘ \\\\\ F Il,’ ‘\\\
JTAT/
H 1 T 1 r
~—00 ; ~-00 i
05} +(1); Output =1 . [05} +2; Output=1,
— _—- D - :
& 11 = 11 :
= 0 < o :
= S _ 1
>o ° Output=0 !
-0.5} <’ ; > 0.5 .
tput=0 d
1 / =t runi= 6 ms . trun = 8MS
0 2 4 6 8 0 3 6 9
t /ms t /ms
1 y 1 '
——000 —-—011 ——0000 ——0101

~-001 110 — e 0001 —+0111
0.5} + 010 »111 Output=1 .= 0.5+ 0011 »-1111 Output=1

= = i
: 3 =
1 = :
£ o : e o0 '
5 i % :
o : 3
> .05} 2 : >° 0.5
_+* Output =0 _ : - Gutput = 0 :
. "~ . trun =7 TY?,S P o (Outpu trun = 8 ?TLS
0 4 8 g 3 6 T o
t/ms t/ms

Fig.3.(A) Circuit design of the quantum AND-OR tree. (B) The connections and disconnections of the switches at the top represent inputs 1 and O, respectively. (C) The pink nodes
in the middle are connected to the ground through capacitors and resistors in parallel. (D) When the switch in the pink node is connected to the child node (input is 1), the switch
in the pink node should be closed, that is, the capacitor and resistor are in parallel with the ground. (E) When the switch is open, the pink node should only be disconnected from
the capacitor and connected to the ground. (F) Schematic diagram of the negative impedance converter (NIC), which includes an operational amplifier, 2 positive and negative
resistors, and an equivalent resistor. (G) Nodes are connected to the ground in parallel through NIC modules and capacitors. (H) Simulation results of the 2-input quantum OR
tree, the 2-input quantum AND tree, the 3-input AND-OR tree, and the 4-input AND-OR tree, which are consistent with the theoretical calculations in Fig. 2.

Zhang et al. 2024 | https://doi.org/10.34133/research.0480 7

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

formula is: @, 4(x) = (x; Ax,) V (23 A), x; € {0, 1}. At time
t > 8 ms, the outputis 1 (V,,, > 0) only when the inputs are 0011
(yellow diamond line), 0111 (green pointing downward triangle
line), and 1111 (blue pointing rightward triangle line). The cir-
cuit simulation results for the 3-input subtree and 4-input sub-
tree correspond to the quantum theoretical results (see Fig. 2E
and F). Similarly, for the more complex quantum AND-OR tree
structure, we can also utilize the classical circuit designs men-
tioned above. In Section S6, we also provide the circuit design
and results for the 5-input game tree. Upon completing the cir-
cuit design and simulation, we then proceed to discuss the
experimental realization of the quantum game tree circuit.

Experimental realizations of quantum

2-player games

Based on the aforementioned circuit designs, we discuss how to
proceed with experimental implementation. First, we demon-
strate the experimental implementation of a 2-input quantum
OR tree. In Fig. 4A, the physical printed circuit board (PCB) of
the 2-input quantum OR tree is displayed. The size of the board
is 35cm X 25 cm. The circuit structures prepared for the experi-
ment correspond one to one with the theoretical design depicted
in Fig. 3A.

In Fig. 4A, a, denotes push button switches used to control
the operation of relays, while a, represents DIP switches. The
switches in the open position signify input 0, while those in the
closed position signify input 1. a, represents relays (model
G6K-2F-Y-5VDC), used to simultaneously disconnect each
node after applying the initial voltage, allowing the system to
evolve from the initial time. g, represents 2 NICs, used to con-
nect adjacent nodes. The capacitors are 100 nF, and the resistors
are 10 kQ. The capacitance and resistance parameters chosen
for the experiment determine the values of the circuit matrix.
as is a pin header used to input the initial voltage and the volt-
age values of the complex impedances to the circuit board. The
silver dashed box represents the runway, the blue dashed tri-
angles represent the quantum OR tree, and the red dashed circle
represents the root node of the tree.

For the 2-input quantum OR tree, during the circuit evolu-
tion, the 4 different inputs (00, 01, 10, 11) can be controlled by
opening or closing the DIP switches. Each node is connected

to the initial voltage via relays. The initial state of the circuit
T

system is denoted as ¢ = —lo,1, -, 1,0,--,0| V, whereall
Vi
=12

nonzero voltages are initially on the left side of the runway
(r <L+ 1). When the push button switch is disconnected, the
relays are opened, and each node is disconnected from the ini-
tial voltage, initiating the system’s evolution. During the evolu-
tion, voltages gradually appear at the nodes on the right side
of the tree in the experiment. Using an oscilloscope to measure
the voltage values of the nodes and calculating the difference
between the sum of the squares of voltages at the rightmost
nodes and the sum of the squares of voltages at non-rightmost

nodes (V,,,() = Y |V,-(t)|2 -Y |V(t)i|2), we can obtain the
i€R iR

output value of the tree’s root node.

In Fig. 4B, the experimental results for the 2-input quan-
tum OR tree are depicted, where green, blue, red, and purple
represent the evolution of output node voltages in the circuit

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

structure for inputs 00, 01, 10, and 11, respectively. Each line
accompanied by error bars represents the results averaging
5 times in experiments (the following results in Fig. 4C to F are
similar). It can be observed that after time ¢ > 5.5 ms, an output
result of 1 (V,,, > 0) is obtained only when the inputis 01 (10)
or 11, while the other inputs remain at 0 (V,,, < 0). It is noted
that components in the circuit network, such as capacitors,
resistors, and operational amplifiers, may have inherent errors,
whereas the LTspice simulation software employs ideal com-
ponents. Consequently, there may be slight discrepancies in
time between simulation and experiment results. The experi-
mental evolution results are nearly in agreement with the theo-
retical simulations. We have discussed the experimental error
in Section S7. Nevertheless, we have observed that these vari-
ances fall within the expected range. This means that the experi-
mental results are reliable.

In Fig. 4C, the experimental results for the 2-input quantum
AND tree are illustrated, where green, blue, red, and purple
represent the evolution of voltages in the circuit structure for
inputs 00, 01, 10, and 11, respectively. It can be observed that
after time ¢ > 7.6 ms, an output result of 1 is obtained only when
the input is 11, while the other inputs remain at 0. Such input
results indeed correspond to the functionality of the AND tree.
Furthermore, Fig. 4D presents the experimental results for the
3-input subtree. The deep blue, orange-red, orange-yellow,
purple, light green, and light blue solid lines represent the evo-
lution of voltages in the circuit structure for inputs 000, 001,
010,011,110, and 111, respectively. It can be observed that after
time ¢ > 7.5ms, an output result of 1 is obtained only when the
inputs are 001, 011, 110, or 111, while for other inputs, the
output remains at 0. We also present the experimental results
for the 4-input subtree and the 5-input game tree in Fig. 4E and
E For the 4-input subtree, after time t > 7.8 ms, an output result
of 1 is obtained only when the inputs are 0011 (yellow line),
0111 (green line), or 1111 (light blue line), while for other
inputs, the output remains at 0. Similarly, for the 5-input quan-
tum AND-OR game tree, when the inputs are 00000 (gray line),
00010 (pink line), and 01010 (purple line), the output result at
the root node remains at 0 (V,,, < 0). Conversely, for other
inputs such as 01011 (red line), 00111 (blue line), and 11111
(green line), after time ¢ > 10 ms, the output resultis 1(V,,, > 0).
The output results for other inputs are provided in Section S8.
The experimental results described above correspond well to
the circuit simulation results shown in Fig. 3H.

To showcase the quantum speedup of the AND-OR tree in
circuit realization, we analyze the time required to distinguish
between different outputs based on the tree’s input. Specifically,
we select the root node as the OR node and set the depth of the
AND-OR tree to be even. The relationship between the input N
and the output time ¢ is provided in Fig. 4G. According to the
quantum theory above (section “Theoretical Scheme of Quantum
2-Player Zero-Sum Games”), it needs the time ast < /N with
the input bit number, which has been depicted as the solid black
line in Fig. 4G. These theoretical results are obtained from the
3-input subtree, the 4-input subtree, and the 5-input game tree
in Fig. 2. Here, the unit of time is chosen as millisecond, which
corresponds to our circuit design. As shown in our circuit simu-
lation (Fig. 3) and experiment (Fig. 4), the quantity P, has been
chosen to show the distribution of probability on the runway.
For all cases showing the output of 1, we choose the critical time
at which all P, are becoming larger than zero. This time is
viewed as t,,,,. In Fig. 4G, red circles are the simulation results

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

OR gate

(input-3)

out

\)

X2Q-A-42-499

Two inpu

-f-10 Output=1
051 1 11
0 _____________________________
0.5 "Output =0
trun = 5.5 TS
-1 .
2 4 6
t/ms
1 — E 1 ;
—-000 +-011 —-0000 0101 '
1001 -1-110 —-0001 10111 L
05 010 111 Output =1 05 0011 1111 ﬂ/:’ 1
b :
3 :
Of=r=cmm==s==cocsm=c=- £ 0 ke
] :
o
05 Output=0 | > 05
) anl trun = 7.5 M)
1< - : : : A
0 2 4 6 8
t/ms
G
—1-00000 +-01011 !
—-00010 100111 ! 10
0.5 01010 11111 '
.5
. 8
Output =1 Q
Y e Y. 48 400 E 6
5 I~
- 4 trun =4vN Th
-0.5 _ —Theory
Output =0 O Simlulation
Experiment
-1
0 4 8 12 2 3 4 5 6
t/ms N

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

Fig.4.(A) Printed circuit board (PCB) of the 2-input quantum OR tree structure. Detailed components of the quantum OR tree: a,, button switch to control relay operation;
a,, DIP switch to select inputs (left for O, right for 1), providing 3 independent inputs: 00, 01 (or 10), and 11; a, relay (model: G6K-2F-Y-5VDC) to control the initial state
of the circuit board; a,, two negative impedance modules (LT1013) within the gray box (resistor and capacitor highlighted with green dashed lines); as, pin headers to
introduce initial voltages and provide impedance to the system, as well as for voltage measurements at each node. (B) Experimental results of the 2-input quantum OR
tree: 00 (green line), 01 (blue line), 10 (red dashed line), and 11 (purple line) are depicted. Each line is accompanied by error bars representing the results obtained from
5 experiments. (C) Experimental results of the quantum AND tree of 2-input. Inputs are denoted by line colors similar to those in (B). (D) Experimental results of the
3-input quantum AND-OR tree: Among the outputs, 000 (blue line) and 010 (orange-yellow line) are O. For other inputs, 001 (orange line), 011 (purple line), 110 (green
line), or 111 (light blue line), the output is 1. (E) Experimental results of the 4-input quantum AND-OR tree. The outputs for 0000 (blue line), 0001 (orange-yellow line),
and 0101 (purple line) are O; all other output results are 1. (F) Experimental results of the 5-input quantum AND-OR tree. The outputs for 00000 (gray line), 00010 (pink
line), and 01010 (purple line) are O; for other inputs such as 01011 (red line), 00111 (blue line), and 11111 (green line), the output results are all 1. (G) Relationship between
the input N and the output time t for the 3-input subtree, the 4-input subtree, and the 5-input game tree. The solid line represents the theoretical calculation value, the
red circle represents the simulated time, and the blue cross represents the experimentally measured time.

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

that are obtained from the time for the 3-input subtree, the
4-input subtree, and the 5-input game tree in the circuit simula-
tion in Section 3. Blue navy crosses denote the times from the
experiment (Fig. 4D to F). As shown in Fig. 4G, it can be
observed that the theoretical and simulated times strictly coin-
cide with each other. However, due to the relatively small value
of N, there is a slight discrepancy between the experimental and
simulated time. The experimental results are distributed around
the theoretic results (blue solid line), which also demonstrates
the quantum advantage in our circuit platform.

Discussion

Currently, the quantum circuit model can process multiple
states simultaneously, potentially offering computational speedup
in solving complex game problems. However, quantum com-
puting is still constrained by noise and hardware limitations.
Although the theoretical proposal of the balanced NAND-gate
on the conjugated organic molecular structure is achieved [38],
it is not easily implemented in reality due to the hardness in
the accurate control of the internal structure of molecules and
electron movement. Recent study shows that the balanced
NAND-gate algorithm is tested in a photonic waveguide [39],
but fixed inputs and a lack of tunability increased resource
consumption and limited its application. In this way, the plat-
forms with the conjugated organic molecules or the wave-
guides are not able to display the complicated functions
required in the game problem easily. Compared with other
platforms, the circuit has a high maturity and scalability, and
can handle 2-player game problems stably and efficiently. In
addition, the circuit is deterministic and robust in the cal-
culation results, which is suitable for solving game problems
that require high accuracy.

In addition, we have successfully implemented an 8-input
AND-OR tree and conducted demonstrations on a PCB plat-
form. Indeed, as the number of components increases, the
required area of the PCB expands, and the accumulation of
component errors increases, thereby affecting the output results.
However, by mapping the implementation from a PCB to an
integrated circuit (IC) chip, these issues can be effectively
addressed. As shown in [40,41], the extremely low error rates
in the chip enable the realization of low parasitic capacitance
and inductance, thereby reducing signal distortion and error
accumulation, and improving the precision and stability of the
circuit. Implementing the game problem using IC chips offers
the following advantages. For instance, the chip, which con-
tains thousands of complementary metal-oxide semiconductor
(CMOS) transistors, is fabricated using a 65- nm CMOS process
technology, with a size of 3, 000 x 3, 500 um*[41]. Based on
this component count, it is estimated that up to 100 inputs for
the game problem can be realized. Because of these advantages,
the implementation of the game problem on ICs can scale up
to larger inputs while keeping the circuit size within the mil-
limeter range.

In this work, we design a quantum algorithm based on a
quantum walk and experimentally verify the quantum speedup
on a classical circuit platform. We map the 2-player zero-sum
game to the AND-OR tree and design the quantum AND-OR
tree to solve the game problem. In our study, we choose the
5-input game tree as an example and divide it into a 4-input
subtree and a 3-input subtree in sequence. Our results verify
the consistency between the optimal path of a subtree and that

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

of the entire game tree. More importantly, the time for obtain-
ing the output result satisfies t /N with the N inputs, which
has the good correspondence to the time in the quantum
algorithm. Circuit simulations and experimental results real-
ize a new type of classical computing based on the quantum
intermediary construction. Furthermore, the solution for the
2-player zero-sum game can be obtained within the time as
that from the quantum algorithm. Although we only discuss
the 2-player zero-sum game problem here, it is also possible to
use the concept of the game tree to demonstrate the quantum
speedup for more complex game problems, including chess,
economics, cybersecurity, computer science, and finance, among
others. The quantum speedup in the game problem here pro-
vides a new idea for improving computing power in the era of
big data and will be widely used in various fields.

Methods

In the circuit, the Kirchhoff equation set for the i -th current
node can be expressed as:

v | Vi (t)
i ar
dvi(o) _

. Z[V(t) V(t)]

Here, the capacitance value C; and the resistance value R,
represent the capacitance and grounding resistance values of
the ith circuit node, respectively. The node equation set for the
entire circuit system can be expressed as:

do(t)
Cdt

(t) Vi)
Z i

(1)

= Ag(t) ()

The matrix A is a real matrix of size M X M, and its elements
are determined by the capacitance and resistance between the
nodes of the c1rcu1t If we multiply Eq. 2 by the imaginary unit

i, we obtain i ‘Z(= iA@(t) = Hp(t). In our study, we choose

the appropriate grounding resistor values so that the diagonal
elements of the matrix A are all zero. Then, the effective resist-
ance values of the NICs are adjusted to ensure that the matrix
H satisfies the condition of being a Hermitian matrix. The
Matrix H and the Hamiltonian H can be obtained through
similarity: H = PHP™'. We can get:

i% (P'g(1)) = H(P'p(1)) 3)

In the equation, P represents the similarity transformation
matrix, whose specific form is provided in Section S5. If we
regard P~ '$(t) as the wave function y(t) in the Schrodinger
equation, then the evolution of the circuit system exactly cor-

responds to the time evolution of the quantum system. It is
T

found that the initial state ¢(0) = Llo,1,1,...,1,00,...,0

0 N

L

in circuit evolution is similar to the initial wave function

designed in quantum theory, where the voltage unit is set as

VLV-L

10

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

Acknowledgments

Funding: This work was supported by the National Key R&D
Program of China under grant no. 2022YFA 1404900 and the
National Natural Science Foundation of China (12234004 and
12374323).

Author contributions: J.Z. provided the theoretical analysis
cooperated with T.C. J.Z. performed the experiments and ana-
lyzed the data with the help of T.C., W.D.,, X.T., and X.Z. X.Z.
initiated and designed this research project.

Competing interests: The authors declare that they have no
competing interests.

Data Availability

All data needed to evaluate the conclusions of the study are
present in the paper and the Supplementary Materials. Addi-
tional data related to this paper may be requested from the
author upon reasonable request.

Supplementary Materials

Sections S1 to S8
Figs. S1 to S8

References

1. Lucas WE An overview of the mathematical theory of games.
Manag Sci. 1972;18(5-part-2):3-19.

2. Von Neumann J, Morgenstern O, Theory of games and economic
behavior. 2nd ed. Princeton (NJ): Princeton University Press;
1947.

3. Ewerhart C. Backward induction and the game-theoretic
analysis of chess. Games Econ Behav. 2002;39(2):206-214.

4. Alkheliwi T. Applying game theory rules to enhance decision
support systems in credit and financial applications. In: 2014
Computer Games: AI Mobile, Multimedia, Educational and Serious
Games (CGAMES). Louisville (KY): IEEE: Animation; 2014.

5. Pijls W, de Bruin A. Game tree algorithms and solution trees.
Theor Comput Sci. 2001;252(1-2):197-215.

6. Hsu F-H. Behind deep blue: Building the computer that defeated
the world chess champion. Princeton (NJ): Princeton University
Press; 2002.

7. Coulom R, Efficient selectivity and backup operators in
Monte-Carlo tree search. In: International Conference on
Computers and Games. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2006.

8. Kocsis L, Szepesvari C, Bandit based Monte-Carlo planning.
In: European Conference on Machine Learning. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2006.

9. Coulom R. Computing ‘Elo ratings’ of move patterns in the
game of go. ICGA J. 2007;30(4):198-208.

10. Baudis P, Gailly], Pachi: State of the art open source Go
program. Adv Comput Games. 2011:24-38.

11. Silver D, Huang A, Maddison CJ, Guez A, Sifre L,
van den Driessche G, Schrittwieser J, Antonoglou I,
Panneershelvam V, Lanctot M, et al. Mastering the game
of Go with deep neural networks and tree search. Nature.
2016;529(7587):484-489.

12. Silver D, Schrittwieser], Simonyan K, Antonoglou I,
Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, et al.

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Mastering the game of Go without human knowledge. Nature.
2017;550(7676):354-359.

Silver D, Hubert T, Schrittwieser], Antonoglou I, Lai M, Guez A,
Lanctot M, Sifre L, Kumaran D, Graepel T, et al. A general
reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science. 2018;362(6419):1140-1144.
Stockman GC. A minimax algorithm better than alpha-beta?
Artif Intell. 1979;12(2):179-196.

Saks M, Wigderson A, Probabilistic Boolean decision trees
and the complexity of evaluating game trees. In: 27th Annual
Symposium on Foundations of Computer Science (SFCS 1986).
Toronto (ON, Canada): IEEE; 1986.

Campbell MS, Marsland TA. A comparison of minimax tree
search algorithms. Artif Intell. 1983;20(4):347-367.

Elnaggar AA. A comparative study of game tree searching
methods. Int] Adv Comput Sci Appl. 2014;5(5):68-77.

Eisert J, Wilkens M, Lewenstein M. Quantum games and
quantum strategies. Phys Rev Lett. 1999;83(15):3077.

Du J. Experimental realization of quantum games on a
quantum computer. Phys Rev Lett. 2002;88(13):

Article 137902.

Grover LK. A fast quantum mechanical algorithm for database
search. In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing. Philadelphia (PA): ACM;
1996. p. 212-219.

Ambainis A. Quantum search algorithms. ACM SIGACT News.
2004;35(2):22-35.

Cleve R, Gavinsky D, Yonge-Mallo D.L., Yonge-Mallo DL,
Quantum algorithms for evaluating min-max trees. In: Workshop
on Quantum Computation, Communication, and Cryptography.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2008.

Barnum H, Saks M. A lower bound on the quantum query
complexity of read-once functions.] Comput Syst Sci.
2004;69(2):244-258.

Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA.
Exponential algorithmic speedup by a quantum walk. In:
Proceedings of the Thirty-Fifth Annual ACM Symposium on
Theory of Computing. San Diego (CA): ACM; 2003.

Childs AM. Universal computation by quantum walk. Phys Rev
Lett. 2009;102(18):Article 180501.

Ambainis A, Childs AM, Reichardt BW, Spalek R, Zhang S.
Any AND-OR formula of size N can be evaluated in time
NA1/2+0(1) on a quantum computer. SIAM] Comput.
2010;39(6):2513-2530.

Meyer DA, Wong TG. Connectivity is a poor indicator of fast
quantum search. Phys Rev Lett. 2015;114(11):Article 110503.
Weng C-X. Beating the fault-tolerance bound and security
loopholes for byzantine agreement with a quantum solution.
Research. 2023;6:0272.

Reichardt BW, Faster quantum algorithm for evaluating game
trees. In: Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms. San Francisco (CA):
Society for Industrial and Applied Mathematics; 2011.
Chakraborty S. Spatial search by quantum walk is optimal for
almost all graphs. Phys Rev Lett. 2016;116(10):Article 100501.
Farhi E, Goldstone J, Gutmann S. A quantum algorithm for
the Hamiltonian NAND tree. Theory Comput. 2007;4:
169-190.

Zhang Y. A new type of classical logic circuit with exponential
speedup. Adv Intell Syst. 2023;5(3):2200232.

Pan N, Chen T, Sun H, Zhang X. Electric-circuit realization of
fast quantum search. Research. 2021;2021:Article 9793071.

1

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

Research

34.

35.

36.

37.

Liu S, Gao W, Zhang Q, Ma S, Zhang L, Liu C, Xiang YJ, Cui TJ,
Zhang S. Topologically protected edge state in two-dimensional
Su-Schrieffer-Heeger circuit. Research. 2019;2019:8609875.
Zhang H. Electric-circuit simulation of quantum fast

hitting with exponential speedup. Adv Quantum Technol.
2022;5(4):2100143.

Luo K, Yu R, Weng H. Topological nodal states in circuit
lattice. Research. 2018;2018:6793752.

Tong X. Quantum combinational logics and their realizations
with circuits. Adv Quantum Technol. 2024;7(1):2300251.

Zhang et al. 2024 | https://doi.org/10.34133/research.0480

38.

39.

40.

41.

Jensen PWK. Molecular realization of a quantum NAND tree.
Quantum Sci Technol. 2019;4(1):Article 015013.

Wang Y. Integrated quantum-walk structure and NAND tree
on a photonic chip. Phys Rev Lett. 2020;125(16):Article 160502.
Cao W, Wang C, Chen W, Hu S, Wang H, Yang L, Zhang X.
Fully integrated parity-time-symmetric electronics. Nat
Nanotechnol. 2022;17(3):262-268.

Deng W. Ultrasensitive integrated circuit sensors based on
high-order non-Hermitian topological physics. Sci Adv.
2024;10(38):eadp6905.

12

202 ‘T J80q0100 U0 U0.104YouAS-Usuo.p [3 sayasineq Bunyyis e Hioaousios' [ds//:sdny wouy papeojumoq

https://doi.org/10.34133/research.0480

	Quantum 2-Player Games and Realizations with Circuits
	Introduction
	Results
	Theoretical Scheme of Quantum 2-Player Zero-Sum Games
	Quantum AND-OR tree based on quantum walk
	Description of 2-player zero-sum games

	Circuit Designs of Quantum 2-Player Games
	Experimental realizations of quantum 2-player games

	Discussion
	Methods
	Acknowledgments
	Data Availability
	Supplementary Materials
	References

