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Abstract In this work, we construct a new stellar model
in the regime of anisotropic fluid pressure using the concept
of vanishing complexity for spherically symmetric fluid dis-
tributions (Herrera in Phys Rev D 97:044010, 2018) and a
convenient ansatz in order to close the Einstein’s field equa-
tions. The resulting model fulfills the fundamental physical
acceptability stellar conditions for a specific set of compact-
ness factor. The stability and its response against fluctuations
in the matter sector is also investigated.

1 Introduction

In 1915, Einstein published his famous work on the General
Theory of Relativity, which changed completely our view and
understanding of the structure of space and time in the uni-
verse. The concepts related to this theory are realized in the
Einstein’s Field Equations (EFE), which describe how grav-
ity arises from the curvature of space-time in the presence
of matter or radiation. Since then, several works have been
devoted to studying these equations and the construction of
a wide range of models for describing phenomena from the
solar system to cosmological scales. Thus, Schwarzschild [1]
obtained the first EFE solution describing the space-time in
the interior and exterior of a compact uniform-density sphere,
and ever since, the modeling of relativistic stellar compact
objects has moved from the regime of toy models to sophis-
ticated, realistic stellar structures. For example, it is worth
mentioning the seminal work of Tolman [2] in obtaining exact
solutions of EFE for static fluid spheres and the pioneering
work of Bowers and Liang [3] where the local anisotropy
for static, and spherically symmetric distribution of matter
is analysed. In this context, researchers have concentrated
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on the formation and properties of these stellar structures,
which are commonly used to refer to white dwarfs, neutron
stars, and black holes. Thus, despite the fact that the complete
nature of interactions inside of these stellar compact objects
is still unknown, several models are published in order to
characterize compact stellar structures.

Researchers consider both isotropic and anisotropic pres-
sures on the relativistic fluid that supports the compact objects
in order to develop models that can describe their main char-
acteristics. To first approximation the local pressure isotropy
can be considered a valid assumption in the study of stellar
compact objects, however, it is known that many physical
processes can produce deviations from isotropy and/or local
anisotropy fluctuations in pressure that may be caused by a
large variety of physical phenomena, especially in compact
objects. Theoretical studies on more realistic stellar models
in [4] show that nuclear matter may be locally anisotropic at
very high densities. According to these views, the radial pres-
sure may not be equal to the tangential pressure in massive
stellar objects. Some of the research in this regard is reported
in [5–12]. Additionally, it has been found strong evidence
suggesting that for certain ranges of density, a large number
of physical phenomena can cause local anisotropy and must
therefore be considered in order to describe more realistic
models. For example, one possible source of anisotropy is
related to the intense magnetic fields observed in compact
objects such as white dwarf stars, neutrons or magnetized
quark stars [13–15], pion and meson condensations [16],
exotic phase transitions [17] and others phenomena are exten-
sively investigated in [18–22].

Even so, a recent result in [23] shows that any realis-
tic physical process of the type expected in stellar evolu-
tion always tends to produce pressure anisotropy due to the
presence of dissipation, energy density inhomogeneities, and
shear. As a result, any final stage of a dynamical regime in the
evolution of a star should exhibit pressure anisotropy. Con-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11701-w&domain=pdf
http://orcid.org/0000-0003-0176-1373
mailto:julio.andrade@espoch.edu.ec
mailto:diego.santana@espoch.edu.ec


  523 Page 2 of 16 Eur. Phys. J. C           (2023) 83:523 

sequently, radial and tangential pressures become unequal,
and the concept of local anisotropy inevitable emerges in the
study of realistic compact stellar models [24–27].

It is worth noting that the problem of obtaining exact EFE
solutions for static and spherically symmetric space-times
supported by anisotropic fluid includes solving a robust sys-
tem of coupled differential equations. The problem is that
there are only three independent EFE, but five unknown quan-
tities: two metric functions, the energy density, the radial
and tangential pressures (matter sector). This issue has been
addressed over time by employing widely successful strate-
gies for obtaining precise EFE solutions [28–38]. Even exact
solutions of the EFE for anisotropic fluid distribution on the
background of a pseudo-spheroidal or paraboloidal space-
times have been obtained in [39–43]. And for example,
recently, the polytropic equation of state was used for devel-
oping models for compact objects with anisotropic poly-
tropes [11,44,45], as well as modified polytropic equations of
state are used to obtain anisotropic stellar models in [46,47],
which result versatile in the way to describe several applica-
tions in astrophysics such as white dwarfs, neutron stars or
Fermi fluids. Furthermore, it is worth noticing that in the
Ref. [48] a novel approach to integrate the Lane–Emden
equations for relativistic anisotropic polytropes is presented.

Particularly, in this work we obtain a new interior solu-
tion of EFE in the anisotropic regime of pressure as a result
of the using as an extra condition the idea complexity for
static self-gravitating spheres proposed by Herrera [49] and
a convenient ansatz for the radial metric potential λ. This
idea of complexity for the self-gravitating system has been
widely accepted and used; it arises from the existence of a
structure scalar called complexity factor YT F that contains
information about the matter content of the fluid distribution.
Specifically, this factor depends on pressure anisotropy and
energy inhomogeneity. It is worth mentioning the case of
the called “vanishing complexity”, where YT F = 0, which
can be reached when both pressure anisotropy and energy
inhomogeneity vanish, which pertains to the simplest case.
When pressure anisotropy and energy inhomogeneity cancel
out, another more fascinating scenario emerges.

This idea of complexity for self-gravitating spheres has
been used as an extra condition to close the EFE in order
to obtain new stellar models. Thus, we can mention sev-
eral works where this definition has been used; for example,
recently, anisotropic solutions of EFE describing embedding
Class I compact stars have been obtained by using a vanish-
ing complexity factor condition in the context of the Grav-
itational Decoupling approach (GD) (see Refs. [50–55] for
details about GD approach) [56], as well as the construction
of an anisotropic generalization of the Buchdahl static stel-
lar model by implementing the method of GD via extended
minimal geometric deformation and further requiring van-
ishing complexity in [57]. Also, it is worth mentioning that

the role of GD on isotropization and complexity of self-
gravitating systems under the complete geometric deforma-
tion approach and the role of complexity on self-gravitating
compact stars under GD have been studied in [58,59], respec-
tively. Even this definition has been used for the construction
of new stellar models in the framework of alternative theories
of gravity (see, for example, the Refs. [60–73]); for exam-
ple, the vanishing complexity and gravitational decoupling
approach have been used to investigate a spherically sym-
metric anisotropic solution in f (Q) gravity theory for the
first time recently in [74].

In this work, we also use the definition of vanishing com-
plexity for self-gravitating spheres in order to close the result-
ing EFE. The obtained solution is regular and meets all phys-
ical plausibility conditions, and its stability is also inves-
tigated. It is worth mentioning that the number of interior
solutions in the regime of anisotropic fluid with vanishing
complexity is reduced nowadays; therefore, new models with
these characteristics are important in the field of theoretical
astrophysics, and therefore the relevance of obtaining this
kind of new solutions is well established.

The paper has been organized as follows: Sect. 2 is dedi-
cated to reviewing briefly the EFE for anisotropic fluid dis-
tribution, in Sect. 3 we introduce and review the idea of com-
plexity for self-gravitating fluid spheres, in Sect. 4 we obtain
a new stellar model with the aim of vanishing complexity
and a convenient choice of ansatz on radial metric potential,
in Sect. 5 we briefly review the fundamental stellar physical
acceptability conditions for a realistic stellar compact object,
while in Sect. 6, contains a physical analysis of the model.
Finally, in Sect. 7, we draw some conclusions about our work.

2 Einstein field equations for anisotropic fluid
distributions

The Einstein field equations (EFE) for vanishing cosmolog-
ical constant are

Gμν ≡ Rμν − 1

2
gμνR = κTμν, (1)

where Rμν the Ricci tensor, R is the curvature scalar, Tμν

is the energy–momentum tensor and κ = 8πG

c4 . Now, in

order to model a star, we must use the space-time of a static
self-gravitating sphere provided by the metric

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (2)

where ν and λ are functions (called as metric potentials) that
depend only on the radial coordinate r . In such sense in the
co moving frame the physical interior of the self-gravitating
object can be modelled as an relativistic anisotropic fluid
given by a density energy ρ, radial pressure pr and tangential
pressure pt . So in this way the energy–momentum tensor Tμν
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is represented by

Tμμ = (ρ + pt )uμuν − pt gμν + (pr − pt )sμsν, (3)

whose components (ρ, pr , pt , pt ) are known as the matter
sector of the interior solution and

uμ = (e−ν/2, 0, 0, 0), (4)

is the four velocity of the fluid and sμ another quantity define
as

sμ = (0, e−ν/2, 0, 0), (5)

with the properties sμuμ = 0 and sμsμ = −1.
So if one uses the information of Eqs. (2) and (3) in EFE

(1), one arrives at

8πρ = 1

r2 + e−λ

(
λ′

r
− 1

r2

)
, (6)

8πpr = − 1

r2 + e−λ

(
ν′

r
+ 1

r2

)
, (7)

8πpt = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (8)

where primes denote differentiation with respect to the radial
coordinate r , and we assume the geometric units G = c = 1.
Note that Eqs. (6)–(8) constitutes a set of three differentials
equations with five unknown quantities: {ν, μ} (metric poten-
tials) and {ρ, pr , pt }. So in order to solve this system, it is
necessary to use two extra conditions, which usually can be
geometrical relations (for example, the Karmakar condition
[75]), equations of state (EoS) that relate the physical quanti-
ties of matter sector (for example, the polytropic equation of
state, the Van der Waals equation of state, etc. [76–79]) and
others. In particular, in this work we use the idea of complex-
ity for static self-gravitating fluid spheres of Herrera [49] and
a convenient choice of an ansatz for the radial metric potential
λ in order to obtain a new interior solution for EFE.

Furthermore, the contracted Bianchi identities ensure that
the Einstein tensor is divergence-free. Then, by the Eq. (1),
we can derive the covariant conservation of the energy–
momentum tensor as follows:

�μT
μν = 0, (9)

which explicitly gives us the generalized Tolman–Opp
enheimer–Volkoff (TOV) equation for anisotropic fluid

dpr
dr

= −ν′

2
(ρ + pr ) − 2Π

r
, (10)

with Π ≡ pr − pt . If one uses the definition of mass function
given by

R3
232 = 1 − e−λ = 2m

r
, (11)

or equivalently

m = 4π

∫ r

0
r̃2ρ(r̃)dr̃ (12)

the TOV can be expressed as

dpr
dr

= −
(
m + 4πr3 pr

)
r (r − 2m)

(ρ + pr ) − 2Π

r
, (13)

which accounts for the hydrostatic balance of the fluid within
the interstellar object. Note that the pressure gradient is bal-
anced by a gravitational term and a term that includes the
local anisotropy distribution.

3 Complexity of self-gravitating spheres

The concept of complexity varies greatly depending on the
subject of study, particularly; in this work, we shall use a defi-
nition of complexity for static and spherically symmetric self-
gravitational systems that was recently proposed by Herrera
[49,80,81] in the context of the general theory of relativity.
This definition replaces the fundamental idea of probability
distribution that appears in the definition of “imbalance” and
information by the energy density of the fluid distribution
(see [82]). And likewise, this definition replaces certain pre-
vious definitions of complexity for self-gravitating spheres
that considered only the energy density of the fluid, ignoring
the other components of the energy–momentum tensor that
describes the interior of the star from the point of view of
general theory of relativity.

This definition is based on the structure of the fluid dis-
tribution (i.e., fluid inhomogeneity and pressure anisotropy),
in such a way that the simplest system is the one with perfect
fluid distribution, and that more complex systems are those
that vary from this fundamental system, especially those that
deviate from the regular pattern of constant energy density
and pressure isotropy.

Specifically, such a definition surges from the existence
of a structure scalar (denoted by YT F ) that is connected to
the orthogonal splitting of the Riemann tensor [83,84] in
static and spherically symmetric space-times (for the first
time, such a scalar and others were thoroughly examined in
[85]). The Riemann tensor can be expressed through the Weyl
tensor Cν

αβμ, the Ricci tensor Rμν and the curvature scalar R
in the following way:

Rν
αβμ = Cν

αβμ + 1

2
Rν

βgαμ − 1

2
Rαβδν

μ + 1

2
Rαμδν

β

−1

2
Rν

μgαβ − 1

6
R(δβ

ν gαμ − gαβδμ
ν ), (14)

and by other hand, we can only express the Weyl tensor in
terms of its electric part because the magnetic part vanishes
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in the spherically symmetric case:

Eμν = Cμγ νδu
γ uδ. (15)

It should be noted that Eμν can also be written as

Eμν = E

(
sμsν + 1

3
hμν

)
, (16)

with

E = −e−λ

4

(
ν′′ + ν′2 − λ′ν′

2
− ν′ − λ′

r
+ 2(1 − eλ)

r2

)
,

(17)

hμ
ν = δμ

ν − uμuν, (18)

having the properties for Eμν :

Eμ
μ = 0, Eμν = E(μν), Eμνu

μ = 0. (19)

It is now possible to show that the Riemann tensor can be
expressed using tensors (see [84] for details) as

Yμν = Rμγ νδu
γ uδ (20)

Zμν = ∗Rμγ νδu
γ uδ (21)

Xμν = ∗R∗
μγ νδu

γ uδ (22)

in what is called the orthogonal splitting of the Riemann ten-
sor. Here∗ denotes the dual tensor, i.e., R∗

μγ νδ = 1
2ηεσγ δR εσ

μν

and ημνλρ corresponds to the Levi-Civita tensor.
Tμν can be expressed in a particularly useful manner so

that after some manipulations, namely

Yμν = 4

3
π(ρ + 3p)hμν + 4πΠμν + Eμν, (23)

Zμν = 0, (24)

and

Xμν = 8

3
πρhμν + 4πΠμν − Eμν, (25)

with

Πμ
ν = Π

(
sμsν + 1

3
hμ

ν

)
(26)

P = pr + 2pt
3

. (27)

Thus, from the tensors Xμν and Yμν is possible to define four
structure scalar functions in the following way:

XT = 8πρ (28)

XT F = 4πΠ − E (29)

YT = 4π(ρ + 4pr − 2Π), (30)

and

YT F = 4πΠ + E . (31)

As a result of the preceding, XT F and YT F determine the
local anisotropy of pressure:

XT F + YT F = 8πΠ. (32)

Also, it is possible to express YT F in terms of energy density
inhomogeneity and system local anisotropy by

YT F = 8πΠ − 4π

r3

∫ r

0
r̃3ρ′dr̃ . (33)

This scalar captures the concept of complexity since it mea-
sures the relationship between the inhomogeneity in the
energy density and the pressure anisotropy of a static and
spherically symmetric self-gravitational system.

Additionally, it can be demonstrated that (33) permits one
to express the Tolman mass as

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YT Fdr̃ , (34)

where the subscript Σ indicates that the quantity is evalu-
ated on the boundary surface Σ . Equation (34) shows that
this scalar includes all the alterations caused by the energy
density inhomogeneity and the anisotropy of the pressure
on the active gravitational mass, namely, the Tolman mass,
which is a combination of its value for a zero-complexity
system and two other terms related to energy density inho-
mogeneity and pressure anisotropy, respectively. It can be
viewed as a convincing justification to define the complexity
factor by means of this scalar. Thus, this scalar represents
an appropriate parameter that characterizes the complexity
of self-gravitating static spheres because, first and foremost,
it is based on a structure scalar (which is critical because
it ensures that this characteristic is founded on a quantity
that is invariant for any observer) that contains all physical
parameters of the matter sector of the interior of the self-
gravitating sphere, and, more specifically, it is dependent on
inhomogeneity in the energy density and anisotropy in the
pressure.

Now, it is worth noticing that if one uses the EFE (6)–(8)
in (33) arrives at

YT F = e−λ

4r

[
ν′ (2 + rλ′ − rν′) − 2rν′′] , (35)

which represents an alternative method of calculating YT F

using knowledge of the space-time within the stellar compact
source.

Equation (33), in particular, has been used as a state equa-
tion to construct a limited number of new interior solutions
for static self-gravitating spheres [56–59,86–95]. For exam-
ple, it is significant to note that the vanishing complexity
criterion, namely, when YT F = 0, is met not only in the most
straightforward instances of isotropic and homogeneous sys-
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tems, but also in the situations where

Π = 1

2r3

∫ r

0
r̃3ρ′dr̃ , (36)

namely, in the scenarios where the pressure anisotropy and
energy inhomogeneity cancel each other.

The system of EFE can be closed using Eq. (36) as a com-
plementing condition because it reflects a non-local equation
of state (three interesting formalisms to construct solutions
with such a characteristic have been developed recently in
[91,96,97]).

4 New stellar model

The vanishing complexity condition, YT F = 0, yields the
differential equation shown below

ν′′ −
(

1

r
+ λ′

2

)
ν′ + 1

2
ν′2 = 0, (37)

for which is necessary the information of the radial metric
potential λ in order to obtain ν. So in this work we propose
an ansatz for the radial metric potential given by

e−λ = A

A + Br2 , (38)

where A and B are constants. In principle, we propose this
ansatz only because we have tested it and it is suitable for us
to find a regular and adequate new solution to the EFE, and
it is not associated with any particular physical motivation.
In particular, one can associate our ansatz with the particular
case of the well-behaved metric function corresponding to the
Finch–Skea solution [56,98] given by e−λ = 1

1+Lr2 where

L = B
A .

Therefore, using this ansatz in (37) we arrive at

eν = ec2

((
A + Br2

)3/2 + 6Bc1

)2

, (39)

with c1 and c2 integration constants.
Now, using the metric potentials (38)–(39) in EFE, we

obtain the matter sector given by

ρ = B
(
3A + Br2

)
8π

(
A + Br2

)2 , (40)

pr = B

8π

[
6A√

A + Br2
((

A + Br2
)3/2 + 6Bc1

)

− 1

A + Br2

]
, (41)

Π = − B2r2

8π
(
A + Br2

)2 , (42)

with A + Br2 > 0 and c1 �= −
(
A+Br2

)3/2

6B .

Furthermore, by employing the matching conditions (see
C6. in the following section), we have

c1 = − BR2 − 5A

6B

√
A + BR2 (43)

ec2 = R − 2M

36A2R
(
A + BR2

) (44)

A = BR3 − 2BMR2

2M
, (45)

with A + BR2 > 0.

5 Physical acceptability conditions

The fundamental physical requirements necessary to any
interior solution can describe a realistic stellar compact object
are (see Ref. [99] for a detailed discussion of these condi-
tions):

C1. The metrics eν and eλ should be finite and regular in
the interior of a stellar compact object; eν should be a
monotonously increasing function of radial coordinate
r , and e−λ should be a monotonously decreasing func-
tion. Furthermore, eν(0) = constant and e−λ(0) = 1.

C2. The matter sector given by the density energy ρ, radial
pressure pr and transversal pressure pt should be posi-
tive and regular inside the compact stellar object. They
should be monotonously decreasing functions of radial
coordinate r , with their maximum values at the center.
Also, pt (r) > pr (r) inside the star, with the excep-
tion of the center, where pt (0) = pr (0). Moreover,
the radial pressure should vanish at the boundary of
the star.

C3. The Dominant Energy Condition (DEC): ρ − pr ≥ 0
and ρ − pt ≥ 0 should be fulfilled ∀r, r ≤ R. Also,
it is desirable that even the strong energy condition
(SEC) ρ ≥ pr + 2pt is satisfied. Obviously, the latter
encompasses DEC.

C4. The redshift function z(r) = g−1/2
t t (r) − 1 should

decrease outward, and its value at the surface z(r = R)

is less than the universal bound for solutions satisfying
the DEC, namely zbound = 5.211 [100].

C5. The stability of the stellar object requires that the speed
of sound should be less than the speed of light, c = 1,
which leads 0 ≤ v2

r = dpr
dρ ≤ 1 and 0 ≤ v2

t = dpt
dρ ≤ 1

inside of a stellar compact object.
C6. At the boundary of the stellar compact object (r =

R), the metric components eν and e−λ should match
continuously with the Schwarzschild exterior solution,
namely

eν |r=rΣ = e−λ|r=rΣ = 1 − 2M

R
, (46)
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where M and rΣ = R are the total mass and radius of
the star, respectively.
As also is necessary that

pr (r = R) = 0 (47)

since the exterior of the star in this case is considered
to be empty.

6 Physical analysis

In this section, we analyse the physical acceptance of the
stellar model obtained in this work. In this sense, we have
checked that the behavior of the whole model given by
Eqs. (38)–(45) is regular within the set of compactness fac-
tors of 0.4023 ≤ u = M

R ≤ 0.4104.

6.1 Metrics

It is noticeable that C1 of the previous section is fulfilled
for the model in Figs. 1 and 2, as well, we can notice that
eν is a monotonously increasing function of r and e−λ is a
monotonously decreasing function of the same variable r . So
the space-time within the stellar compact object behaves as
expected.

6.2 Matter sector

In Figs. 3, 4, and 5, the behavior of the matter sector of the
solution is presented. We can note from these figures that
condition C2 is fulfilled. Furthermore, from Fig. 6, we can
note that Δ = −Π > 0, and the radial and tangential pres-
sures are equal in the center of the stellar object, which is
absolutely necessary in order to maintain certain stability of
the stellar object.

Fig. 1 eν for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 2 e−λ for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 3 ρ for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 4 pr for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

6.3 Energy conditions and causality

On the other hand, it is also necessary to show that our
model should satisfy the dominant energy condition given
by C3 in order to affirm that this matter sector belongs to an
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Fig. 5 pt for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 6 pt − pr for compactness factors of 0.4023 (black line), 0.406
(blue line), 0.408 (purple line), 0.4104 (red line)

acceptable physical energy–momentum source. This is effec-
tively observed in Figs. 7 and 8. However, we have checked
that the model does not fulfill the Strong Energy Condi-
tion (SEC) described in C3 for the compactness parameters
0.35 < u = M/R (see Fig. 9). Based on the foregoing, we
can conclude that our model can explain realistic stars from
an energy standpoint because it should obey either of the two
energy conditions (DEC or SEC) [99–102].

Moreover, in Figs. 10 and 11 the profiles of sound veloc-
ities inside of the star are shown. It is noticeable that these
velocities do not surpass the limit value of light velocity in
vacuum that in this case is taken as c = 1. However, these
results are interesting since their profiles are not monotonous
functions of the radial coordinate r .

6.4 Redshift

In Fig. 12, the redshift z is plotted. In this figure, we can
observe that the redshift is a monotonously decreasing func-
tion of the radial coordinate r , having its maximum value at
the center of the stellar compact object. Also, it is noticeable

Fig. 7 ρ − pr for compactness factors of 0.4023 (black line), 0.406
(blue line), 0.408 (purple line), 0.4104 (red line)

Fig. 8 ρ − pt for compactness factors of 0.4023 (black line), 0.406
(blue line), 0.408 (purple line), 0.4104 (red line)

Fig. 9 ρ − pr − 2pt for compactness factors of 0.35 (green line),
0.4023 (black line), 0.406 (blue line), 0.408 (purple line), 0.4104 (red
line)

that the surface redshift value is below the universal bound
of zbound = 5.211.

We have checked that for the obtained solution fulfills
the fundamental physical conditions for those compactness
parameters mentioned before. However, since the anisotropy
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Fig. 10 vr for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 11 vt for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Fig. 12 z for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (purple line), 0.4104 (red line)

Δ and sound velocities have a non-monotonous decreasing
behavior inside the stellar compact object, it is possible that
the model is unstable. As a result, in this work, we go a step
further and investigate the stability of the new solution in the
next four subsections.

Fig. 13 ρ′′ for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (red line), 0.4104 (green line)

6.5 Stability against convection criterion

The stability of a spherical stellar compact object to convec-
tion implies the buoyancy principle: any fluid element pushed
downward must float back to its original position [103–105].
This implies that in any hydrostatic matter configuration,
pressure and energy density must decrease outwards. Any
fluid that supports a self-gravitating sphere should satisfy
this principle in order to remain stable during convection,
then in such sense it was demonstrated in [106] that if the
energy density of any fluid distribution is such that

ρ′′ ≤ 0, (48)

then effectively it fluid distribution fulfills such principle.
Thus, in order to study this condition, in Fig. 13, we show

the profile of ρ′′ for our model. From this figure, it is observ-
able that the model fulfills this stability condition in the inner
regions of the star, while the outer regions are unstable. To
some extent, it could be argued that the outer layers can tol-
erate this instability while the inner layers can not; to some
extent, this could be tolerated. But nevertheless, if the behav-
ior were the opposite, that is, if Eq. (48) is true for the outer
layers and not for the inner ones, this would imply that each
element of mass tends towards the center of the star, poten-
tially causing a collapse.

6.6 Stability against gravitational collapse criterion

To investigate the resistance of the model to collapse, it is
necessary to examine the behavior of the adiabatic index Γ

in the radial direction given by

Γ = ρ + pr
pr

dpr
dρ

, (49)

which should satisfy

Γcri t ≤ Γ (50)
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Fig. 14 Γ for compactness factors of 0.4023 (black line), 0.406 (blue
line), 0.408 (red line), 0.4104 (green line)

with

Γcri t = 4

3
+ 19

21
u. (51)

This is because a spherically symmetric system is only
affected in the radial direction against eventual gravitational
collapse in the presence of local anisotropies.

The aforementioned relationship given by Eq. (50) accounts
for relativistic changes to the adiabatic index, which can
cause instabilities within the star. The second term on the
right side of Eq. (51) represents relativistic corrections to the
Newtonian perfect fluid and anisotropy contribution. This
stability condition (50) thus applies to any relativistic com-
pact object supported by an anisotropic fluid. Furthermore,
this condition asserts the existence of a critical value for the
adiabatic index Γcri t . This critical value is determined by the
amplitude of the Lagrangian displacement from equilibrium
and u = M/R is the compactness factor (see Refs. [107–109]
for a more in-depth discussion of this point).

In this sense, we have plotted the behavior of Γ in func-
tion of radial coordinate r in Fig. 14. We have checked that
the model presents instability against collapse for the com-
pactness factors shown in the caption of Fig. 14.

6.7 Harrison–Zeldovich–Novikov stability criterion

Also known as the “static stability criterion”, it establishes
that any relativistic stellar fluid will be stable and static under
radial perturbations if the mass of the system is increasing as
a function of its central energy density ρ0, namely, dM

dρ0
> 0.

The total mass as a function of its central density for this
model is

M = 4πρ0R2

3 + 8πρ0R2 , (52)

from which we obtain that

dM

dρ0
= 12πR3

(3 + 8πρR2)2 ,

which is of course positive since R > 0. This means that
the new model satisfy the static stability criterion. Therefore
the anisotropic compact objects described by our new model
are stable. However, they are unstable when their internal
gases undergo an adiabatic process related to gravitational
collapse because the stability against gravitational collapse
criterion is not satisfied, which is the first point associated
with extreme changes in gravitational force inside stars.

The above result leads us to analyse the behavior of the
matter sector of these models against small perturbations in
the next subsection.

6.8 Gravitational cracking criterion

In this section we study the behavior of the fluid distribution
of our model just after its departure from equilibrium, when
total non-vanishing radial forces of different signs appear
within the system. This analysis is based on the idea of
cracking produced in a spherical fluid distribution, which was
first developed by Herrera in 1992 [110] and then fine tuned
in later works [111–113]. The analysis focuses on studying
when the radial force in the interior of stellar compact object
is directed inward in the inner part of the sphere and reverses
its sign beyond some value of the radial coordinate, we say
there is a cracking, even if only after the fluid deviates from
equilibrium. In the opposite case, when the force is directed
outward in the inner part and changes sign in the outer part,
we shall say that there is an overturning.

It is important to mention that cracking is closely related to
the problem of compact object structure formation, but only
at time scales smaller than or equal to the hydrostatic time
scale [114–116]. In such a sense, the cracking analysis is just
take a photography of the state of total radial force within the
stellar compact object when it departures from equilibrium.
Likewise, it should be clarified that the appearance of frac-
tures directly and drastically affects the future structure and
evolution of the compact object.

So to carry out this analysis, it is necessary to note that
the TOV (10) or (13) can be rewritten as

R = dpr
dr

+
(
m + 4πr3 pr

)
r (r − 2m)

(ρ + pr ) − 2Δ

r
, (53)

where R is the total radial force within the stellar compact
object per unit of volume on each fluid element. When the
stellar system is in hydrostatic equilibrium, this total force R
is null, however, when the system is facing some disturbance,
this force can deviate from that value. So it is interesting to
study those scenarios where these deviations occur.
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In such a sense, we shall assume that the perturbation is
done for the whole matter sector of the stellar model except
that the radial pressure remains unperturbed, namely, we have
to change or perturb the parameters of the model in such way
thatR �= 0. The idea is if the model has the parameters {α, β}
the “perturbed” TOV can be written as (up to first order)

R̂ = ∂R̂
∂α

δα + ∂R̂
∂β

δβ + O(δα2, δβ2). (54)

Now, if the systems experiments a cracking or overturning
is necessary that at some point R̂ changes of sign in some
interior point of the stellar object, which is traduced in the
existence of some real root for R̂ = 0. Thus it can be seen
how the existence of some real value Ξ such as δβ = −Ξδα,
and moreover that

Ξ = ∂R̃/∂α̃|β,α

∂R̃/∂β̃|β,α

. (55)

To apply this analysis to our model, we must first define the
dimensionless quantities listed below

α = A (56)

β = BR2 (57)

x = r

R
(58)

in terms of which we can write

ρ = β
(
3α + βx2

)
8πR2

(
α + βx2

)2 (59)

pr = −
1 −

α

(
6βx2

√
α+βx2

5α
√

α+β−β
√

α+β+(α+βx2)
3/2 +1

)

α+βx2

8πR2x2 (60)

Π = − β2x2

8πR2
(
α + βx2

)2 (61)

m = βRx3

2α + 2βx2 , (62)

for which we also use the condition (43).
Now, we proceed to perturb the matter sector through the

variation of the parameters {α, β}

α → α̃ = α + δα, (63)

β → β̃ = β + δβ, (64)

where the tilde indicates that the quantity has been perturbed.
The total radial force, on a fluid element, in terms of {α̃, β̃}
results in

Fig. 15 R̃ for β = 0.7, α = 1, Ξ = −1.7 (black line), Ξ = −1.2
(blue line), Ξ = −0.7 (red line), Ξ = −0.3 (green line) and Ξ = 0.5
(orange line)

Fig. 16 R̃ for β = 0.7, Ξ = −0.7, α = 0.90 (black line), α = 0.95
(blue line), α = 1.00 (red line), α = 1.10 (green line) and, α = 1.15
(orange line)

R̃(α + δα, β + δβ, x) = R̃(α, β, x) + ∂R̃
∂α̃

|α,βδα

+∂R̃
∂β̃

|β,αδβ + O(δα2, δβ2),

(65)

where the first term is zero given that it corresponds to the
unperturbed values of R̃. Of course, after perturbation, the
TOV is different from zero, so the system is no longer in
hydrostatic equilibrium. Note that if cracking (or overturn-
ing) occurs, R̃ must have a zero in the interval x ∈ (0, 1).

In Figs. 15, 16, and 17, we represent R̃ as a function of
x for different values of Ξ , α and β, respectively. For the
realization of these figures we have taken into account the
condition A+ BR2 > 0, which can be written as α +β > 0.
In Fig. 15, we show the profile of R̃with the values ofβ = 0.7
and α = 1 and different values of Ξ . Note that for the value
of Ξ = −0.7 the radial force is R̃ = 0 for every point inside
the star, but for the lower values of Ξ the system experi-
ments overturning and for the upper ones the fracture corre-
sponds to cracking. Interestingly, the perturbed total radial
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Fig. 17 R̃ for α = 1.0, Ξ = −0.7, β = 0.60 (black line), β = 0.65
(blue line), β = 0.70 (red line), β = 0.75 (green line) and β = 0.80
(orange line)

force experiments a kind of transition between scenarios with
overturning to scenarios with cracking when the value of Ξ

increases, and thus the radius where cracking/overturning
occurs coincide for all the values of Ξ considered.

On the hand, in Fig. 16, the profile of R̃ is shown for the
values of β = 0.7, Ξ = −0.7 and different values of α. It is
noticeable that under this configuration of parameters values
the system experiments a transition between configurations
with cracking to configurations with overturning when we
increase the value of α. Note that the fracture (cracking or
overturning) moves to inner shells with the reduction of α.
Also, it is worth noting that there is a configuration (red line)
where the system experiments the hydrostatic equilibrium,
namely, in such case R̃ = 0 inside of the stellar compact
object.

In Fig. 17, instead, we plot the behavior of R̃ for the param-
eter values of α = 1.0, Ξ = −0.7 and for different values
of β. We can observe that the system for this configuration
can experiment a kind of transition between scenarios with
overturning and scenarios with cracking when the β value is
increased. Also, it is important to note that there is a config-
uration (red line) where R̃ = 0. We can see that if β value
increases, the fracture (overturning or cracking) moves to the
inner shells of the stellar compact object.

In light of what has been mentioned before, we can con-
clude that the system can experience internal fracture (crack-
ing or overturning) when it is subjected to small perturba-
tions in its matter sector. If the value α of is increased, these
fractures move to the outer regions, whereas β increasing
causes the opposite behavior. Also, as shown in Figs. 15, 16
and 17, the stellar compact object can experiment transitions
between scenarios with cracking and scenarios with over-
turning by varying the values of Ξ , α and β, respectively. It
is worth also notice that there are configurations with hydro-
static equilibrium even after the perturbation action (see red
lines in Figs. 15, 16 and 17).

Fig. 18 v2
t − v2

r for compactness factors of 0.4023 (black line), 0.406
(blue line), 0.408 (purple line), 0.4104 (red line)

In addition, if one observes again the Fig. 6, namely, the
behavior of the local anisotropy of stellar compact object
can note that there is a region in x = r/R ∈ (0.4; 0.5)

where the anisotropy changes smoothly in its growth with
respect to the radial variable r , which in certain measure
approximately coincides with maximum values of the per-
turbed radial force R̃ in Figs. 15, 16 and 17, demonstrating
a link between the presence of local anisotropy and the for-
mation of fracture (cracking or overturning) inside the stellar
compact object. Furthermore, we can see from these figures
that fractures inside stars tend to occur in the outer regions
of the stellar compact object, while anisotropy decreases in
these regions, which can be interpreted as showing how this
descent of anisotropy in these outer regions can be related
to the appearance of these fractures, which is consistent with
the work [111], where it was shown that cracking results only
if, in the process of perturbation leading to departure from
equilibrium, the local anisotropy is perturbed, suggesting that
fluctuations of local anisotropy may be crucial in the occur-
rence of cracking (see the works [117–119] where it is shown
that anisotropy play an important role in the appearance of
cracking).

Given the preceding results, it becomes vital to apply a
basic condition founded by Abreu in [101] to determine zones
of stability against gravitational cracking given by

− 1 ≤ v2
t − v2

r ≤ 0. (66)

In this way we plot the profile of v2
t − v2

r in the Fig. 18.
We can observe that the condition (66) is satisfied by the
inner shells of the star, namely, the inner shells are stable
regions against gravitational cracking, and the outer regions
are unstable regions, which corresponds to Figs. 15, 16,
and 17 because the fractures appear precisely in these outer
regions. Also, is worth mentioning that the transition between
the stable and unstable regions in Fig. 18 is around at x =
r/R ∈ (0.4; 0.5), which corresponds to those regions where
the local anisotropy undergoes a change in its growth with
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Fig. 19 R̃′ for β = 0.7, α = 1, Ξ = −1.7 (black line), Ξ = −1.2
(blue line), Ξ = −0.7 (red line), Ξ = −0.3 (green line) and Ξ = 0.5
(orange line)

Fig. 20 R̃′ for β = 0.7, Ξ = −0.7, α = 0.90 (black line), α = 0.95
(blue line), α = 1.00 (red line), α = 1.10 (green line) and, α = 1.15
(orange line)

respect to the radial variable r and with the maximum values
of the perturbed radial force R̃. Namely, the outer regions
are unstable when we add small perturbations in the matter
sector of our model. Thus, this result reinforces the idea of
the existence of direct relation between the presence of local
anisotropy and the apparition of cracking inside the stellar
compact object.

In order to avoid leaving only qualitative comments on the
important role that local anisotropy plays in the appearance
of fractures in the interior of the compact stellar object, we
perform the same analysis but with the caveat that now we
will consider the fluctuations over the entire material sector
of the solution except for radial pressure and local anisotropy;
that is, we consider the previous analysis but with the con-
sideration that the radial pressure and the local anisotropy
remain undisturbed. Thus, from these considerations, we
have obtained the following Figs. 19, 20, and 21. Note that we
have labelled the new radial force R̃′ in order to differentiate
it from R̃. The first that we note from these figures is that
the total R̃′ has the opposite sign with respect to R̃ for the
same configuration of parameters (see Figs. 15, 16, and 17),

Fig. 21 R̃′ for α = 1.0, Ξ = −0.7, β = 0.60 (black line), β = 0.65
(blue line), β = 0.70 (red line), β = 0.75 (green line) and β = 0.80
(orange line)

Fig. 22 R̃′′ for β = 0.7, α = 1, Ξ = −1.7 (black line), Ξ = −1.2
(blue line), Ξ = −0.7 (red line), Ξ = −0.3 (green line) and Ξ = 0.5
(orange line)

but also and most importantly that R̃′ has not any fracture
(cracking or overturning). Furthermore, we have checked that
if the anisotropy function Δ is not considered in R̃ a simi-
lar result is obtained also. Also note that the configurations
with null total radial force R̃ remain unchanged (red lines)
in R̃′. So in this sense, we show that effectively the presence
of local anisotropy or its fluctuations causes the presence of
cracking inside the stellar object for our model, which is in
accordance with previous works.

Now, since we have shown the model is unstable against
gravitational collapse and stable about the Harrison–Zeldovich–
Novikov stability criterion, it would seem interesting to
observe what happens to this total radial force if we per-
turb it solely on its radial pressure. Therefore, we use the
same analysis of cracking, but this time we only perturb the
radial pressure, while the other physical quantities remain
unchanged. In this case, we obtain Figs. 22, 23, and 24. In
this case we labelled the resultant total radial force like R̃′′ for
distinguish from the previous ones. We notice that the total
radial force shoots towards very high values as it approaches
the center of the star, which can indicate that if we perturb the

123



Eur. Phys. J. C           (2023) 83:523 Page 13 of 16   523 

Fig. 23 R̃′′ for β = 0.7, Ξ = −0.7, α = 0.90 (black line), α = 0.95
(blue line), α = 1.00 (red line), α = 1.10 (green line) and, α = 1.15
(orange line)

Fig. 24 R̃′′ for α = 1.0, Ξ = −0.7, β = 0.60 (black line), β = 0.65
(blue line), β = 0.70 (red line), β = 0.75 (green line) and β = 0.80
(orange line)

total radial force just in the radial pressure a huge force in the
direction of the stellar center is induced. At this point, we can
associate this with the fact that this model is unstable against
gravitational collapse since these small disturbances raise big
distortions in the radial direction as causes of gravitational
collapse. But, on the other side, the Harrison–Zeldovich–
Novikov stability criterion is also satisfied; therefore, we can
not affirm with all reliability that these great forces actu-
ally cause the gravitational collapse. Even one possibility
can be that the huge forces generated by radial disturbances
are big but finite, so in this sense, the stellar compact object
can support these forces without breaking its static stability
and does not collapse under radial disturbances. But since
cracking only shows us the trend just when the hydrostatic
equilibrium is broken and not beyond its evolution for suffi-
ciently long times to know the final state of the star, we can
not affirm whether these disturbances generate the collapse
or not.

Also, it is interesting to note that the system also expe-
riences fractures in regions further from the center of the
star center and that the configurations with hydrostatic equi-

librium (red lines) remain stable despite the perturbations.
Despite the great instability of this model, it is possible to
find configurations where it is totally stable even under the
action of disturbances in its matter sector, which is reinforced
from the fact that the static stability criterion is fulfilled.

7 Conclusions

A new stellar model in the regime of anisotropic fluid has
been developed. For such construction, we introduce a con-
venient ansatz for the radial metric component of the space-
time of the system, and the temporal metric component was
obtained using the well-established definition of vanishing
complexity for self-gravitating spheres. After getting the
static and spherically distributed space-time metric, we used
it to obtain the matter sector. The physical behavior was ana-
lyzed, finding that the model satisfies the physical require-
ments to represent realistic stellar compact objects, in this
sense, the whole physical conditions of Sect. 5 are fulfilled
for a certain set of compactness factors of 0.4023 ≤ u =
M
R ≤ 0.4104.

On the other hand, the model is stable against convection in
its inner regions but unstable in the outer regions of the stellar
compact object. In this sense, it could be conjectured about
the existence of a central core inside the star that does not
allow the outermost layers of the star to collapse inside due
to convective movement, which must be common due to the
extreme conditions in temperature and densities inside a star.
However, the model presents instability against gravitational
collapse for the set of compactness parameters mentioned
before. In such a sense, we can mentioned that the possible
tendency to collapse in this case is not associated with the
convective motion inside the stellar compact object. At the
same time, we checked that the model satisfies the Harrison–
Zeldovich–Novikov, which in a certain sense is opposed to
instability with respect to gravitational collapse, so that it
could be thought at first that the stars represented by this
model have great stability with respect to their hydrostatic
balance in the face of radial perturbations, but nevertheless,
if they are very intense, there could be a possible collapse.
In any case, we cannot affirm this with absolute certainty.

In this regard, the response of the model against small per-
turbations in its matter sector was analyzed in Sect. 6.8, and
the gravitational cracking criterion proposed by L. Herrera
was used. Namely, whenever the total non-vanishing radial
force appearing after the perturbation goes out of hydrostatic
equilibrium, having the possibilities that it is directed inward
in the inner part of the sphere and change its direction at
some r less than the radius of the star, and the opposite case
named as overturning. We analyze specifically, the state of
the system just after it departures from equilibrium. Firstly,
we have evidence that the system experiments a type of tran-
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sition between scenarios where the cracking is presented and
scenarios where the overturning is presented with the varia-
tion of the parameters involved in the model, specifically the
fracture point (cracking or overturning) appears in the inner
regions of the star if the values ofΞ andβ are increased, while
the fracture appears in the outer regions with the increase
of values of α, namely, the inner shells of the stellar com-
pact object are stable against cracking and the outer ones are
unstable.

It is also worth noting that the system can experiment with
scenarios in which the total radial perturbed force R̃ is equal
to zero, i.e. scenarios in which the system is in equilibrium
despite perturbations in the matter sector. As a result, we can
argue that the presence of internal fractures is not required
in all cases for this model, as there are scenarios or con-
figurations with absolute hydrostatic equilibrium despite the
action of the model’s small perturbations in the matter sector.
Moreover, we have shown explicitly the direct relation in the
appearance of any fracture inside the stellar compact object
with the presence of the local anisotropy and its fluctuations,
namely, without these two characteristic our model is free of
any internal fracture (cracking or overturning even when it
is perturbed).

Thus, if the system only experiences fluctuations in its
radial pressure, it causes a triggered increase in its total radial
force directed to the center of the star, which we believe are
scenarios associated with gravitational collapse in principle,
but which could also be scenarios of high central density but
static stability because the model responds to the Harrison–
Zeldovich–Novikov stability criterion. In this sense, we are
not sure that the appearance of these large forces can cause the
collapse; in fact, there could be the possibility that these huge
forces are compensated by the presence of local anisotropy
if we also take into account the presence of disturbances in
the entire material sector, and that the collapse can occur
in extreme cases associated with a large adiabatic compres-
sion of the baryonic gas inside the star by huge gravitational
forces. That is, we can not make a conclusive statement about
whether these forces actually cause a gravitational collapse.

Also, it is worth mentioning the presence of fractures in
the external parts of the compact object at the same time,
which is to say that in addition to the apparition of huge
forces directed to the center of the stellar compact object,
there would be a dynamic in the external layers. These results
mentioned before show us theoretically in a certain measure
that there are a wide number of plausible physical processes
giving rise to deviations from local isotropy, which take on
relevance since the occurrence of these types of fracture has
direct implications on the structure and evolution of the com-
pact object at time scales that are smaller than or equal to the
hydrostatic time scale and are associated with a wide num-
ber of physical processes that are present in a star, such as
intense magnetic fields observed in compact objects, neu-

trino viscosity, exotic phase transitions, and the superposition
of perfect fluids, among others. In any case, the appearance
of these fractures can be speculated about and associated
with the origin of several important stellar processes such
as star quakes and gravitational collapse, the emergence of
inner core fractures will undoubtedly change the conditions
for outer mantle ejection in supernova events, as well as the
occurrence of glitches and bursts of X-rays and gamma rays
in neutron stars.
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