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Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague, Trojanova 13, 12000 Praha 2, Czech Republic

E-mail: vaclav.kus@fjfi.cvut.cz, petr.bour@fjfi.cvut.cz

Abstract. We introduce a new data based approach to homogeneity testing and variable
selection carried out in high energy physics experiments, where one of the basic tasks is to test the
homogeneity of weighted samples, mainly the Monte Carlo simulations (weighted) and real data
measurements (unweighted). This technique is called ’data re-arranging’ and it enables variable
selection performed by means of the classical statistical homogeneity tests such as Kolmogorov-
Smirnov, Anderson-Darling, or Pearson’s chi-square divergence test. P-values of our variants of
homogeneity tests are investigated and the empirical verification through 46 dimensional high
energy particle physics data sets is accomplished under newly proposed (equiprobable) quantile
binning. Particularly, the procedure of homogeneity testing is applied to re-arranged Monte
Carlo samples and real DATA sets measured at the particle accelerator Tevatron in Fermilab
at DØ experiment originating from top-antitop quark pair production in two decay channels
(electron, muon) with 2, 3, or 4+ jets detected. Finally, the variable selections in the electron
and muon channels induced by the re-arranging procedure for homogeneity testing are provided
for Tevatron top-antitop quark data sets.

1. Particle physics tasks and data structure
In this paper, we deal with the top-antitop quark pair production after annihilated collisions
of accelerated proton and antiproton beams at Tevatron synchrotron within DØ experiment in
Fermilab [1] at 2TeV centered energy. The data set (DATA) measured is provided with the
Monte Carlo simulation set (MC). The top-antitop quark decay process, together with the levels
of contamination of the relevant signal S with respect to different background decays B, are
shown in Figure 1. The dimensions of MC and DATA are both limited to 46 selected physical
variables of various ranges and supports listed in Table 1.

Table 1. Short names of variables in DØ top quark decay channel.

1 Apla 9 M0nl 17 Centr 25 LepEta 33 DRJetJet2 41 Jteta3
2 Spher 10 M1nl 18 DRminejet 26 Jetm 34 DRJetJet3 42 Jteta4
3 HTL 11 MT0nl 19 DiJetDrmin 27 Metper 35 Jtpt1 43 JtMVA1
4 JetMt 12 Met 20 Ht 28 Metpar 36 Jtpt2 44 JtMVA2
5 HT3 13 Mtt 21 Ht20 29 DphiJetJet1 37 Jtpt3 45 JtMVA3
6 MEvent 14 Mva max 22 Ktminp 30 DphiJetJet2 38 Jtpt4 46 JtMVA4
7 MT1NL 15 Wmt 23 Lepdphimet 31 DphiJetJet3 39 Jteta1
8 M01mall 16 Wpt 24 LeppT 32 DRJetJet1 40 Jteta2
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#jets Electron channel Muon channel
2 2011176 2001522
3 719484 668072
4+ 295932 277214

#jets S/B ratio (%) S/B ratio (%)
2 1.13% 0.88%
3 12.24% 10.98%
4+ 39.09% 39.34%

Figure 1. Number of generated samples in Top-antitop quark pair production from pp̄
annihilation at Tevatron and signal (S) to background (B) ratio in MC simulations.

Prior to any supervised physical task based on MC samples [2], it is vital to guarantee
the homogeneity of MC and DATA. However, in most cases, the MC samples are re-weighted
according to the actual detection ability of the accelerator. In TMVA ROOT package, the
homogeneity testing procedures are simply based on weighted histograms found for equidistant
binning in each single dimension (variable). We propose the homogeneity testing approach
based on equiprobable quantile binning and re-arranged MC sample in Sections 2 and 3, which
is applicable to arbitrary weighted observations. Then we apply the tests to the DØ top quark
production at Tevatron. This data set of 46 variables represents a bunch of wide-ranging and
significantly complex array of observations, which are sometimes positive, negative, bounded,
discrete or continuous, etc. When this homogeneity is not possible to accept, the variable
selection is consequently induced, i.e., we are forced to considerable dimensionality reduction in
all six top quark decay channels, as it is treated in Section 4.

2. Tests of homogeneity for weighted samples
Let X1 denote the random variable representing the selected MC physical variable distributed
by F and X2 be the corresponding DATA associated variable distributed by G. Then the
homogeneity testing means the statistical test of hypothesis H0 : F = G at a given significance

level α ∈ (0, 1). Let X1 = (X
(1)
1 , . . . , X

(1)
n1 ) denote repeated real valued random variables

identically and independently distributed (i.i.d.) from a cumulative distribution function (cdf)

F and let (w
(1)
1 , . . . , w

(1)
n1 ) be their corresponding nonnegative weights. Then we define weighted

empirical distribution function (wedf) of X1 by

FW1
n1

(x) =
1

W1
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i ), where W1 =

n1∑
i=1

w
(1)
i , (1)

and IA(·) denotes the characteristic function (indicator) of the set A. Assume further that

X2 = (X
(2)
1 , . . . , X

(2)
n2 ) represents repeated i.i.d. variables under cdf G with the corresponding

nonnegative weights (w
(2)
1 , . . . , w

(2)
n2 ). Then the same definition (1) gives us the wedf GW2

n2
with

W2 =
∑n2

j=1w
(2)
j . In our HEP representation, X2 corresponds to DATA and so all the weights

w
(2)
j = 1, W2 = n2, and GW2

n2
= Gn2 is the usual edf.

In this paper, we use classical two sample Kolmogorov-Smirnov (K-S) test [3] and two sample
Anderson-Darling (A-D) test [4, 5], both applied to wedf’s. Further, the χ2 divergence test of
homogeneity [6] is applied to weighted histograms, which does not employ the concept of wedf’s.
First of all, it is necessary to set up the number of bins k and the subsequent binning t0 < . . . < tk.
The most frequently used binning is the equidistant one made within a chosen interval [a, b]
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Figure 2. Quantile binning technique for weighted pooled sample {X1,X2} through mwedf.

spread out over the data sample. However, this approach can be generally insufficient due to poor
diversification of data into the equidistant bins, thus the local distribution of data can be lost.
Therefore, for a given fixed k, we propose using of the so called equiprobable quantile binning,
t0 < . . . < tk, developed in [7], which assigns approximately the same portion of (weighted)
observations to every cell (tj−1, tj ]. This method of binning initially consists in finding out
the wedf of pooled sample {X1,X2} with W = W1 +W2 weighted observations, then creating
a modified continuous version of wedf (say mwedf) by linear interpolation of all neighbouring
middle points of the constant segments of wedf. Consequently, equi-balanced (j/k)-th quantiles
tj of mwedf are evaluated for all j = 1, . . . , k − 1, as illustrated in Figure 2. Thus the quantile
binning guarantees the uniformly distributed information contained in weighted data sample
since approximately the same sum of weights is concentrated in every cell.

After we have defined the equiprobable pattern of quantile binning t0 < . . . < tk for a fixed
k, we make a judicious choice of k. Because of the large number of observations in DATA and
large sums of weights in MC samples, the χ2 divergence test could potentially loose its power
with excessively increasing number of bins k, as was shown in [8]. Thus, we decided to choose
the following wise choice of the number of bins k = ⌈1 + log2W ⌉ proposed and tested in [9].

Table 2. Sample sizes and sums of weights W1,W2 in MC and DATA measurements in top
quark decay channel at Tevatron, W = W1 +W2, and number of bins k = ⌈1 + log2W ⌉.

Top quark decay MC samples X1 DATA samples X2 Weights #Bins
#jets n1 W1 n2 W2 W k
2 2011176 59118.87 59121 59121 118239.87 17

Electron 3 719484 11904.55 11905 11905 23809.55 15
4+ 295932 3006.98 3007 3007 6013.98 13
2 2001522 44736.64 44736 44736 89472.64 17

Muon 3 668072 9098.06 9098 9098 18196.06 15
4+ 277214 2325.02 2325 2325 4650.02 13

Now, we apply the three homogeneity tests K-S, A-D, and χ2 to the set of all 46 variables
from top quark pair decay production at Tevatron introduced in Section 1. The factual sample
sizes with corresponding sums of weights W and number of bins k are given in Table 2. Figure
3 provides us with the comparison of weighted χ2 divergence test of homogeneity with K-S
and A-D tests based on wedf’s. Notice that divergence tests produce generally slightly higher
p-values compared with K-S and A-D tests.
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Figure 3. P-values of weighted homogeneity tests K-S, A-D, and χ2, of MC and DATA
distributions for all m = 46 variables in Electron 4+ Jets channel. (log-scale)

3. Re-arranging technique for DØ top quark data
The regular asymptotic properties derived for classical unweighted K-S, A-D, and χ2 tests
motivate us to plug into the testing an unweighted data set instead of weighted MC samples.
Therefore, we propose a certain transformation of the weighted MC data file into an aggregated
unweighted MC† data array. We make two requirements for such a re-arrangement. First,
we desire preserving or even exploiting the information contained in MC weighting, since the
weights linked to certain observations refer the distribution layout in close neighbourhood of
these observations. Secondly, we require the sum of weights in MC to correspond to the number
of observations in the unweighted re-arranged MC†.
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Figure 4. P-values of K-S tests for all m = 46 variables in MC and MC† data sets of Electron
4+ Jets channel. (log-scale)

For simplicity, let us denote by X =
(
X(1), . . . , X(n)

)
the ordered MC sample with the

corresponding ordered weights (w(1), . . . , w(n)) and let W =
∑n

i=1wi. Let ñ = ⌊W ⌋ + 1 denote
the desired minimal number of observations in the new transformed file MC†, where ⌊W ⌋ denotes
the biggest integer smaller than W . Afterwards, we construct the special weighted averages
Y from X, presuming that 0 ≤ w(i) ≤ 1 for all i ∈ 1, . . . , n. To define the first weighted

average Y(1), we use the smallest possible number of observations
(
X(1), . . . , X(k1)

)
such that

1 ≤
∑k1

i=1w(i) < 2. Thereby, for all l < k1 it holds that
∑l

i=1w(i) < 1. The residual portion of

weight w(k1) of the observation X(k1) equal to
∑k1

i=1w(i) − 1 is denoted as rk1 . Thereafter the
first MC† observation Y(1) can be defined as the following weighted average

Y(1) =

∑k1
i=1w(i)X(i) − rk1X(k1)∑k1

i=1w(i) − rk1
=

k1−1∑
i=1

w(i)X(i) + (w(k1) − rk1)X(k1), (2)
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where we simply substituted for rk1 in (2). The residual portion rk1 of X(k1) will be included
into the next weighted average Y(2). If this re-arranging procedure is applied recursively to the
successive observations in X, we obtain for all j = 1, . . . , ñ− 1,

rkj =

kj∑
i=kj−1+1

w(i) − rkj−1 − 1 (rk0 , 0), (3)

Y(j) = rkj−1
X(kj−1) +

kj−1∑
i=kj−1+1

w(i)X(i) + (w(kj) − rkj )X(kj), (4)

Y(ñ) = rkñX(n), where rkñ =

{
0, if w(n) − rkñ−1 < 1/2;
w(n) − rkñ−1, otherwise.

(5)

Figure 5. P-values of A-D tests for all m = 46 variables in MC and MC† data sets of Electron
4+ Jets channel. (log-scale)

Figure 6. P-values of χ2 homogeneity tests for all m = 46 variables in MC and MC† data sets
of Electron 4+ Jets channel. (log-scale)

Thus we have transformed the original weighted MC array X =
(
X(1), . . . , X(n)

)
into the

new unweighted MC† vector Y =
(
Y(1), . . . , Y(ñ)

)
by re-distributing the original weights from

MC sample to all the unit weights of vector Y . Therefore, we are authorized to apply the
standard unweighted theoretical asymptotic properties of K-S, A-D, and χ2. Indeed, the
resulting unweighted p-values (red bars) in Figures 4, 5, 6 from all standard K-S, A-D, χ2

tests, performed over MC†, remarkably matches with p-values (green bars) obtained by the
weighted tests performed over original MC sample. This coincidence holds true even for small
magnitudes of p-values.



6

1234567890

ICMSQUARE IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 936 (2017) 012063  doi :10.1088/1742-6596/936/1/012063

4. Induced variable selection for DØ top quark data
Finally, we applied all the three homogeneity tests to carry out the variable selection of the
complete 46 re-arranged MC and pure DATA samples measured in DØ top quark pair decay
channel at Tevatron accelerator. In Table 3 we present the list of variables for which the
hypotheses H0 of homogeneity were rejected at the significance level α = 0.01 for at least
two out of three applied tests of homogeneity. The results differ for our six decay channels.
Notice that 16 different variables were rejected in Muon 3 Jets channel, whilst only 5 different
variables were rejected in Muon 4+ Jets decay channel. It means that we are forced to reduce
considerably the dimension of Muon 3 Jets data sets to only 30 variables accepted by the
homogeneity test procedure. Similar variable selection to only 31 reduced dimensions is induced
by the homogeneity rejections in Muon 2 Jets channel. Moreover, the variables Jtpt1-3, Ht,
Ht20, HT3, HTL were rejected only in Muon 2 Jets and Muon 3 Jets channels while they work
quite well in all Electron channels. Also, Jteta3 and Centr variables are not properly generated
only in the case of 3 jets channels (Electron or Muon). On the contrary, the variable DRminejet
should be used in a consequent HEP analysis only in 4+ Jets channels (Electron or Muon) and
the worst result was achieved for Mva max variable, which is not allowed to enter any HEP
analysis since it was rejected in all top quark channels considered in Table 3.

Table 3. Variables rejected (⋆) by at least two of three considered K-S, A-D, χ2 homogeneity
tests of MC versus DATA at significance level α = 0.01

Jets 3 4 5 8 10 14 16 17 18 19 20 21 22 23 24 25 27 32 33 35 36 37 41 43 44 45 46

4+ ⋆ ⋆ ⋆ ⋆ ⋆
Muon 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4+ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Elec 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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