
The new CERN Controls Middleware

A Dworak1, F Ehm1, P Charrue1 and W Sliwinski1
1 CERN, CH-1211 Geneva 23, Switzerland

E-mail: andrzej.dworak@cern.ch

Abstract. The Controls Middleware (CMW) project was launched over ten years ago. Its main
goal was to unify middleware solutions used to operate the CERN accelerator complex. A key
part of the project, the equipment access library RDA, was based on CORBA, an
unquestionable middleware standard at the time. RDA became an operational and critical part
of the infrastructure, yet the demanding run-time environment revealed shortcomings of the
system. Accumulation of fixes and workarounds led to unnecessary complexity. RDA became
difficult to maintain and to extend. CORBA proved to be rather a cumbersome product than a
panacea. Fortunately, many new transport frameworks appeared since then. They boasted a
better design and supported concepts that made them easier to use. Willing to profit from the
coming long LHC shutdown which will make it possible to update the operational software, the
CMW team reviewed user requirements and in their terms investigated eventual CORBA
substitutes. Evaluation of several market recognized products helped to identify the most-
suitable middleware solution: ZeroMQ. This article presents the results of the evaluation
process, the proposed design and functionality of the new system as well as the plan of its
integration with the currently deployed system.

1. CERN Controls Middleware
The Controls Middleware (CMW) project was launched at CERN over ten years ago. Its main goal
was to unify middleware solutions used to operate CERN accelerators. Many software components
were developed, among them the Remote Device Access (RDA) [1] library. The main responsibility of
the library was to allow communication with servers that operate hardware sensors and actuators. As
presented in figure 1, the RDA design corresponds to the Accelerator Device Model [1] in which
devices, named entities in the control system, can be controlled via properties. RDA implements this
model in a distributed environment with devices residing in front-end servers that can run anywhere in
the controls network. It provides a location-independent and reliable access to devices from control
programs. By invoking the device access methods clients can read, write, and subscribe to device
property values. Currently over 4000 servers (processes) are deployed, which contain altogether
almost 80,000 devices. In total the system gives access to more than 2,000,000 properties/IO points,
on which clients may perform read/write operations or monitor their values [2].

1.1. Present implementation
From the beginning there were certain requirements [3] imposed on RDA that drove its
implementation: relying only on standards; interoperability with the already existing communication
infrastructure at CERN; portable on LynxOS with an old gcc v.2.95 compiler, Linux, Windows, HP-

1 To whom any correspondence should be addressed.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

Published under licence by IOP Publishing Ltd 1

UX and AIX (only the first three are still supported; LynxOS is being eradicated); C/C++ and Java
bindings for client/server libraries; request-reply and publish-subscribe operations on device data.
Each call type should provide timeout settings and handling of communication errors. Moreover,
complementary, centrally managed services like naming service, reservation service and access
control should be supplied.

To facilitate development of the new library it was decided to base it on an already existing, mature
product. CORBA [4] was a very popular middleware at that time and fulfilled all the requirements.
Thus, it was chosen as the communication layer. The C++ implementation was based on omniORB
(currently 4.1.2,) and the Java implementation on JacORB (currently 2.2.4.) RDA library wrapped
CORBA, hiding all its complexities and providing a simple to use API. The proposed solution was
widely accepted and became an operational and critical part of the infrastructure.

Figure 1. RDA implements the Accelerator Device Model which gives remote access from control
programs to servers that operate hardware sensors and actuators.

1.2. Shortcomings of the system
Unfortunately, the demanding run-time environment revealed a few shortcomings of RDA.
Accumulation of fixes and workarounds led to unnecessary complexity. Desire to deliver a better,
more user-friendly solution led to a general review of the system. Discussions with library clients
helped to identify several major issues, of which the most troublesome are the ones directly correlated
with CORBA [5]. First, the CORBA standard is inherently huge and complex. Libraries that try to
fully implement it have a major memory footprint. This is an issue especially for older front-end
computers. It is well understood that RDA as a communication framework uses only a small fraction
of the CORBA platform, but users still have to pay the full run-time price. On the other hand, libraries
such as JacORB do not implement the full functionality. This leads to mismatches in behaviour of
Java and C++ bindings. The struggle to support "asynchronous" operations on top of the synchronous
calls leads to unnecessary complexity in the library code and design. Second, the way CORBA is used
in RDA leads to multiple data conversions between different representations. This is both time
consuming and leads to higher memory usage. Third, CORBA is based on the static Interface
Definition Language (IDL), which is difficult to manage and evolve in large, complex environments
such as CERN. Finally, the community supporting open-source implementations is shrinking. There is
a significant lack of new releases from the major implementations like JacORB, even if the major bugs
have been identified and fixed a long time ago.

2. Update of requirements
In view of a 1-year accelerator shutdown at CERN, starting end of 2012, there is a unique opportunity
for introducing a major new version of RDA, which should solve all the limitations experienced with

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

2

CORBA. On top of that, the period of over 10 years of RDA utilization provided valuable experience
on both common and uncommon usage patterns. Discussions with the library users helped to identify a
few valid, yet previously not foreseen use-cases. In some cases the missing functionality constituted a
serious limitation because of which tricky workarounds had to be applied. Those, in turn, were often
the major source of not easy to find bugs.

Collecting the knowledge of the library developers and experience of the users led to an extension
of the RDA requirements. For example, on the client API level, support for new data types was
requested, as well as an easy to set-up communication policy model, or direct access to
communication statistics. A more detailed list of the library features is provided in the fourth chapter.

In context of the new implementation the main concern was to address problems and limitations
introduced by the usage of CORBA. Therefore, the CMW team launched the middleware review
process, aiming at choosing a new, modern middleware library, to be used for the future version of
RDA. In addition to previously specified general requirements the team expected to find a transport
library that would provide:

• Consistent implementation for C++ and Java.
• Easy to trace peer-to-peer communication with reliable request/reply and publish/subscribe

messaging patterns.
• Synchronous and asynchronous/non-blocking communication.
• Quality of Service (QoS): timeout management, message queues and priorities, various thread

management policies.
• Small library size, low memory and resource usage.
• Certain performance characteristics. Analysing the current usage statistics, it was estimated

that the whole communication process (that is: data serialization by a server, publishing to the
clients, clients receiving and deserializing the data) between a typical server on a new front-
end computer (Inter Core 2 Duo, 1.5GHz, 1GB RAM, GbE) and a client running on a similar
machine, the two communicating over a Gigabit LAN, should handle:

o 4000msg/sec req-rep calls, payload = 4Bytes
o 5msg/sec req-rep calls, payload = 10MBytes
o publish 400 x 8B to 10 clients, in less than 100 msec
o publish 30 x 8B to 10 clients, in less than 20 msec

• No, or only a few, external dependencies that can be linked with an application, preferably no
need for additional services (e.g. brokers, global servers, daemons.)

• Open source, with a license allowing further redistribution; good documentation, and support
from a large active community.

• Simple, easy to learn and use API.

3. Middleware evaluation and prototyping
In terms of gathered requirements the CMW team evaluated several market recognized middleware
products. Short descriptions of each of them, comparison with CORBA, as well as results of
performed tests were presented during ICALEPCS 2011 conference [6]. As an outcome of the
evaluation three libraries were selected for further prototyping: Ice [7], ZeroMQ [8] and YAMI4 [9].

The prototyping process extended the previously performed tests by setting-up more complex
communication scenarios. In particular: number of communicating peers was extended and the
communicating processes were distributed over several machines with different architectures; some of
the peers simulated exceptional or bad behaviour; the data exchanged between entities resembled real
Controls data; in addition, as in the current operational system RDA is responsible not only for the
data transport between remote machines but also for assembling the data, its representation and
serialization, the prototypes provided similar functionality. This functionality, called RDA Data,
allows also to programmatically create a data structure which may contain arbitrary number of entries
of any type (strings, integers, real numbers, Boolean values, or arrays of any of the types) and
exchange those data structures between remote peers without additional specifications like IDLs.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

3

In the case of ZeroMQ, which does not provide any functionality concerning data representation or
serialization, a review of over 20 serialization libraries was performed to fill the gap. This led to
selection of four libraries: Apache Avro, CORBA serialization module (omniORB for C++ and
JacORB for Java,) Google Protocol Buffers and MessagePack. Each of them was used to prototype
need functionality. The performed review and tests led to selection of MessagePack as not only the
most efficient serializer but also because of direct support for dynamic typing, compact binary
serialization, support for all needed data types, operating systems and programming languages, good
documentation, product maturity and active community behind.

The middleware evaluation was finished with rewriting and re-execution of the performance tests
using the new prototypes. The tests were executed in a typical Controls environment, between a
typical server on a new front-end computer (Inter Core 2 Duo, 1.5GHz, 1GB RAM, GbE) and clients
running on similar machines communicating over a Gigabit LAN. The most interesting results were
obtained for the whole process of publish-subscribe messaging pattern. This test corresponds to the
third performance requirement described in the second chapter. This included: server preparing (filling
in) and serializing 400 objects each containing a 64 bit integer and its name of 8 characters; publishing
each of the data structure to up to ten clients; each client receiving and unpacking all the data objects.
The results are presented in figure 2. As one may see:

• YAMI4 does not scale well with a growing number of clients.
• The current implementation of RDA is well optimized and scales better than YAMI4.
• In case of Ice an additional hop through a broker (IceStorm) adds a constant value to the

communication time; the scaling is lightly worse than for the current system.
• Brilliant automatic buffering of ZeroMQ helps it to considerably beat the opponents. ZeroMQ

scales very well with the number of clients, and its base performance is very good.

Figure 2. Publish 400 messages each containing a 64 bit integer and its name o 8 characters.

4. User API and functionality of the new system
Interviews with users of the library and direct everyday support provided to them were key inputs that
helped to define requirements for the new RDA, called RDA2. It was agreed that the new version
should provide similar functionality to the current one, and main changes will consist mainly of
exchanging the transport and data representation layers, see figure 3. Thus, the new implementation
should fulfill gathered requirements:

• Running on all Controls architectures and operating systems supported by CERN.
• Implementation of the Accelerator Device Model.
• Consistent API and behaviour of C++ and Java implementations.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

4

• Reliable request/reply and publish/subscribe messaging patterns in both blocking and non-
blocking modes.

• Number of policies controlling the quality of service (timeouts, priorities, reports on
progress/problems.)

• Small library size, low memory and resource usage.
• Performance characteristics as specified for the transport library.
• Support for the current functionality of RDA Data with extensions that would facilitate

operations on multidimensional arrays and embedded RDA Data structures. To exchange
information between a client and a server, a user does not specify any IDL description of the
transferred data. Instead he/she sends and receives the generic RDA Data structure.

• Optimizations and restructuring of the code to minimize data copying both internally and
when user calls are executed.

• Internal integration with Controls role based access control (RBAC) service, directory service
resolving device names and Controls tracing system.

• Providing functionality of remote management and monitoring (similar to JMX) for both
client and server processes regardless of programming language used (e.g. being able to
monitor the number of client-server connections and other communication states and statistics;
issuing a remote request to change logging level of a logger)

• In order to simplify the design, reduce coupling, facilitate testing and future maintenance,
codebase should be properly modularized and should not hold any static states.

• Easy to use but not confining API with good documentation which should clearly state how
the library should be used in multithreaded environment. In case of the C++ implementation
the API itself should advertise who is responsible for resource allocation and deallocation or,
if that is impossible or creates constraints, the documentation should clearly explain any
ownership ambiguity.

Figure 3. The architecture and functionality of RDA has proved its value, hence the new one
resembles the predecessor.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

5

The requirements were used to prepare RDA2 API specification which is currently being verified
by the main library users. To facilitate the verification process several code samples were provided
which demonstrate the usage of the new API. Along the demo code a series of presentations is
prepared to show differences between the old and the new RDA. They will highlight what users gain
with the new version and explain how to upgrade software to use the new library. The upgrade process
should not be expensive as most of the users (on both client and server sides) use the library through
an additional software layer. At the same time, thanks to the new API, those few who use it directly
will have an opportunity to considerable optimize and simplify their code.

5. Plans for the future
After acceptance of the new API the implementation of the core system and of the additional services
will begin. To follow well established modern software engineering practices, in parallel to the
extension of the library code base a set of unit and integration tests will be developed to ensure proper
functioning. The modular design and dependency injection will allow mocking and thus testing of the
new functionality in separation from other system parts.

The CMW team plans to finish the implementation phase and start system testing and system
integration testing at the end of 2012. Soon after proving the interoperability with the existing
operational system, the migration process to the new one will begin.

Even though the long shutdown is planned to last a year and the team will do its best to help the
users to move to the new library, probably not all the software using the current version will be
upgraded during that time. In fact, it is unavoidable that at some point the old and the new systems
will have to interact with each other. Hence, to facilitate the migration process and to cover such cases,
it is planned to provide adapters between the two systems also on the API level.

6. Summary
The paper presented the ongoing work of reimplementation of the current CERN Controls Middleware
library. With the outline of the future plans this describes a whole system-development life cycle.
First, the shortcomings of the current system were identified and listed. This in fact took a few years,
but in the end firmly proved that in a long run it is better to rewrite the system from scratch than to
patch it. Second, system requirements were updated to match the current user needs. Third, in terms of
the new requirements a thorough review of available solutions was performed. This helped to chose a
few middleware products on top of which simplified, but providing core functionality, systems were
prototyped. Through this process the most suitable middleware solution, namely ZeroMQ, was chosen
to handle the transport in the new RDA. Next, an upgraded version of API providing access to the new
functionality was designed and presented to the clients for verification. Finally, an outline of testing,
implementation and integration processes was presented.

References
[1] N. Trofimov et al., “Remote Device Access in the new CERN Accelerator Controls

middleware”, ICALEPCS 2001, San Jose, California, 2001.
[2] Z. Zaharieva et al., “Database Foundation for the Configuration Management of the CERN

Accelerator Controls System”, ICALEPCS'11, Grenoble, France, October 2011.
[3] V. Bagiollini et al., “CERN PS/SL Middleware Project, User Requirements Document”, CERN

Note SL/99-16(CO), Issue 1 Revision 3, Geneva, Switzerland, August 1999.
[4] OMG CORBA http://www.corba.org/
[5] M. Henning, “The rise and fall of CORBA”, http://queue.acm.org/detail.cfm?id=1142044, 2006.
[6] A. Dworak et al., “Middleware trends and market leaders 2011”, ICALEPCS’11, Grenoble,

France, October 2011.
[7] ZeroC Ice: http://www.zeroc.com/
[8] iMatix ZeroMQ : http://www.zeromq.org/
[9] Inspirel YAMI4: http://www.inspirel.com/yami4/

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012017 doi:10.1088/1742-6596/396/1/012017

6

http://www.corba.org/
http://www.zeroc.com/
http://www.zeromq.org/
http://www.inspirel.com/yami4/

