
'lllE STATISTICAL BOOTSTRAP M)DEL AND ERICSON FLUCTUATIONS 

1. Introduction 

S. FRAUTSCHI 

Since some of you are rather unfamil iar with stati s t ical 

mode ls , I shall b egin by reminding you what is done with the statis­

t ical appro ach in nuclear physics (where it is well e stab l ished ) 
and indicat ing to what extent it has analogues in hadron physi cs. 

Then in the second part of my talk I shall focus in more detail on 

the level densi�y one obtains for hadrons when the stat i s t ical 

approach is supplement e d  by a boot strap assump tion. Finally in .the 
third port ion of the talk I shall re turn to the nuclear analogy and 

use it as a guide for sugge s ting new phenomena in hadron physics -

taking as a particular example Ericson fluctuations. 

2. The analogy be tween nuclear and hadron 
statist ical models 

In 1 936, Be the 1) propo s e d  a stat i st ical model for the density 

of excite d  nuclear levels. He put Z protons and A-Z neutrons in 

a box with the normal nuc lear radius , and cons idered a free fermion 

gas. That i s ,  the p otent ial was used only to provide the walls of 

the box; the res idual nuc le on-nucleon interact ions insi de the box 

were neglected. 
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As the energy is raised above the Fermi level , the number of' 

nuclear states rises very fast 

i ) the first excited single particle level can be filled in a 

number of ways by raising any of the nucleons near the top 

of the Fermi sea; each different way leaves a different 

hole behind and thus a different s tate; 

ii ) the first two excited single particle level s can be filled 

in an even larger number of ways by raising any two of the 

nucleons near the top of the Fermi sea; again each way 

leaves a different pair of holes behind and therefore a 

different state , • • • • • . . • • • . .  ; • • . • • • . • . • . . . • . • . • . • • • • . . . . .  

Studying this problem quantitatively , Bethe foun d that for 

energies such that most of the fermions are still degenerate , the 

density of states 

( 1 ) 
rises as 

(2) 
where c is a constant of order 2.5 MeV. Experimentally , excited 

nuclear levels s how up as resonances . At high excitation energies 

one deduces from nuclear measurements that a rapid rise qualitative­

ly consis tent with Bethe's formula occurs. 

Of course s ince this is a s tatistical model and the potentia l 

has been grossly oversimplified , it does not fit many nuclei in 

detail , especially at low excitation s .  The model has sub sequently 

been refined by ad ding effects of the potential which distinguish 

between even and odd nuclei , put in some shell model effects , etc . 

These modifications improve the fit to specific nuclei . 

To treat reactions statis tically , further a s s umptions are 

needed .  I n  the popular model o f  Bohr , for example , reactions 

proceed via a sum over direct channel resonances which are as sumed 

to add up incoherently . If an _average resonance decays into various 
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final states at a rate proportional to phase space ,  it follows that 
reaction rates are proportional to the phase space of the final 
stat e .  

O f  course there are many cases  in nuclear physics where sta­

tis tical ideas do not work and one uses a "direct  reaction" model. 
It turns out that what the nuclear physicist calls a "direct react­
ion" is none other than what a hadron physicist calls an "exchange 
reaction" , particular examples be ing identifiable as meson exchange , 
nucleon exchange , Pomeron exchange , and photon exchange . The term 
"dire ct" refers he re to t ime : the final state emerges  quickly in 

a direct  reaction,  whereas the particles  in a Bohr reaction spend a 
long t ime in the intermediate resonant s tate .  In  another language , 
the difference is that many direct  channel resonance contributions 
to the ampl itude add coherently in a " direct reaction" , whereas' they 
add incoherently in a Bohr reaction. The direct  reaction,  when 
present , provides a larger amplitude than the Bohr model precisely 
by means of this coherence .  Direc t  reactions are especially pro­
minent when the final s tate is closely related to the initial state. 

Finally , nuclear physics present s  cases  where a mixed des­

cription is most useful . For  example at energie s above 20 MeV the 
production of various numbers of neutrons can be treated  as a � 
reaction which knocks out one or  two neutrons , leaving an excited  
nucleus which boils  off further nucleons with a thermodynamic dis­
tribution. 

It is interesting to note that while Bethe's model of the 
level density depends on fewer assumptions than the models  for 
reactions , it cannot be tested  well without re course to reaction 
models. To be sure , at low excitations a dire ct  count of levels  
with full information on  the degeneracy of each is available , 
analogous to the Rosenfeld Tables .  But this is practicable  only 

up to a certain energy , which is too  low to test  Bethe's asymptotic 
expression very well .  Good information is again available even in 
heavy nuclei  for excitations of about 7 MeV , just above the s ingle 
neutron thresho l d ,  where the average resonance width is still less  
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�an tbe average spac ing. At higher energies the resonances overlap 

apd the level density is deduced only wi th the aid of further hypo­

tib.eses, such as t he "boiling off" picture described above , or Er ic son 

:f'luctua t ions. 

Table I contains a summary of the models we have just re­

viewed. To the r ight of each nuclear model is listed its analogue 

in hadron phy s ics. 

The mos t  familiar ha�ron analogue is of course the non­

s tatis t i cal case of exchange reac tions. 

Another well-known case is the pure s tatist ical model for 2) hadron react ions populari zed by Fermi The two incoming particle s 

were assumed to coalesce in an interac t ion volume where t hermodynamic 

equ il ibrium at a uniform T was reache d ,  followed by emis s ion pro­

portional to phase space. This p i c ture expla ins many features of 

NN annihilation. However, at higher energies it fails to produce 

suffic ient forward peaking. [liy impos ing angular momentum conserva­

t ion one does find peaking in the model; for example, in a sp inless 

reaction J, = 0 and the peaking i s  due to the fac t  that Legendre 
z 

polynomials have a smaller envelope at 90° than at o0• But this 

p eaking is forward-backward symmetric and is anyway much too small; 

to f it the data it is absolutely essential to introduce coherence 

between d ifferent partial waves, which takes us outside the s tatis­

t ical p ic tureJ 
Hagedorn noted this problem, and also no t iced that it was not 

adequate to count just the phase space for free 'Tf', K, and N. 
One should also include the effects of resonances. But how many ? 
Hagedorn attacked this problem and the reaction problem s imultaneous­

ly , applying a boo t strap hypothesis. 

As far as the level density of resonances is concerned, we 

shall show how it is obta ined a little later , but let us immediately 

note Hagedorn1s result 3) : 

(3) 
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TABLE I 

l.n 

STATISTICAL MODELS 

Application 

1) Level density 

2) Reactions (additional assumptions 
required ) 

a) pure statistical -
rate -. phase space 

b ) mixed -
at higher energies, 
dynamical reaction 
followed by evapo­
ration a( phase space 

c ) purely dynamical -

3) Empirical study of 
level density at high 
energy 

Nuclear 

Bethe 

f' (E )fl( exp (JAE/c ) 

Bohr 

Serber, Le Couteur, 
Jackson 

ndirect reaction" 

requires use of 
statistical models 
of reactions ( boiling off of 

neutrons, Ericson 
fluctuations ) 

Hadron 

Hagedorn, Frautschi 

f ( m )� exp ( bm ) 

Fermi, Hamer (NN annihilation 
near threshold ) 

Hagedorn 

"exchange reaction" 

requires use of 
statistical models 
of reactions ( boiling off of 
hadrons, perhaps 
Ericson fluctuations ) 



This very rapid growth has an important consequence. Consider the 
average energy of a set  of hadron states  in thermo dynamic equili­
brium at temperature T : 

-£.._ J. ... f c ... > J J.3rvr•+ ... •,,.,,.,, (-Vw..• ., ... /H) (4: 
-----·--�����������--������------ . ! J,.,...fc-)fJ-1p -r' (-Vi..•+p• /kT) 
� 

Employ the level density p (m ) = c�nst . ebm (ignoring possible 
p owers of m for simplicity ) and approximate E by m+(p2/2m) , 

a good approximation at high masses  where the important behaviour 
o c curs . Then 

00 

J �� 
""' ..,.... 

2. 

�f (�tt\-:;.)f J}p � (2.-!kT) 
Evidently the integrals are undefined unless  

• 

If we call 

b:: ' 

the condition be comes 

• 

Thus T0 is a maximum temperature .  

6 

(6) 

(7) 

( 8) 



Physi cally , what happens in this model is that if we increase 
the energy in a fixe d  volume , it goe s  into the� of new particles 

rather than into raising the kinetic energy of the particles .  

Turning now to reactions , we re call that the purely statis­
t ical approach of Fe rmi failed at high energies .  I shall describe 
briefly the approach of Hagedorn 4) ( in collaboration with Ranft ) , 
to indicate that it is a mixed description consis ting of a non­
statistical collision followed by thermoC.ynamic "boiling off" , 
somewhat analogous to what is done in nuclear physics at high 
ene rgies .  

In the Hagedorn-Ranft p icture of s cattering the two colli­

ding bodies  never coalesce  into a single inte raction volume . Each 
continues on its way , but "heated" internally by the collision , ·  the 

temperature being higher on the side next to the other pro j e ctile 
where the " friction" has been most intense .  By lo cal energy conser­
vation the cool outer side of each pro j e ctile retains much of its 
original l ongitudinal velo c ity,  while the hot inner side has conver­
ted much of its o riginal longitudinal motion into internal ene rgy. 
This part of the description is evidently non-statistical ( it in­
troduces the essential dis tinction between l ongitudinal and trans­
verse motion ) . However ,  the s e cond step in the de script ion is 
purely thermodynamic - the inte rnally excited pro j e ctiles "boil off" 
hadrons with distribution controlled by the local temperature . 

In this model the momentum and mass  dependence of final state 
particles relative to the de caying pro j e ctile are determined essen­
tially by the Boltzmann factor 

(g) 

with T near T0 for high energy reactions . The longitudinal 
distribut ion in the lab . frame also  depends strongly on the detailed 
as sumptions made about the velocity distribution of the pro j ectile , 
which we do not wish to go into here . But the 14.. and mass  de­
pendence can be read off directly from the Boltzmann factor ,  and 
have the asymptotic  b ehaviour 
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B ) 
f..L ..... 
M, p11 �hrel 

B 

Comparing with data on the p..L 
have deduced  

) ( 10) 

) . 
( 11 ) 

distribution, Hagedorn and Ranft 4) 

(12) 

In my own work on this sub j ect  5), I made more explicit a 
point that was already implicit in Hagedorn1s work : the hadron 
level density can be deduced from jus t  two conditions (a statistical 
condition and a bootstrap c ondit ion on the constituents ) without 
direct reference to s cattering or to 'the assumption that local 
thermodynamic equilibrium is achieved in s cattering. I also intro­
duced  some te chnical modifications ( dis cussed below ) that make it 
pos sible to pin down the level density more precisely. 

The s ituation , as reviewed in Table I ,  now di splays a con­
siderable analogy to nuclear physics 

i ) the level density is determined on the basis of a simple 
statistical assumpt ion , plus one assumpt ion concerning the consti­
tuents. 

ii ) some low energy reactions can be understoo d statistically 
[for the latest work on NN annihilation see Hamer 6)]. An extra 
condition must be met in this case - lack of coherence among d irect  
channel resonances .  

iii ) s ome high energy reactions can be understood in terms of a 
more complicated model involving both dynamical and statistical 
assumptions. 
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iv) as in nuclear physics ,  the predicted � (m) cannot be con­
clusively e stablished by direct  count of levels  (although the 
existing spectrum is quite compatible with Hagedorn1s distribution 

as far as it goe s ) .  In fac t , the detailed experimental analysis of 
resonances in the "TI' N 
where levels  for low JP 

channel has been pushed up near the energy 

are predicted to s tart overlapping , making 
further disentangling of individual levels  prohibitively difficult. 
The best  evidence for the Hagedorn spectrum is obtained by assuming 
the Hagedorn-Ranft model for reactions , and comparing the Boltzmann 
factor (9) which occurs in that model with experimental p.L dis­
tributions. 

3. The hadron level density 

Now let  us describe in more detail the model for the hadron 

level density 5). Jus t  as the nucleus i s  considered to be  a com-
' 

pound with A constituents drawn from two varieties  (n and p ) ,  
we consider the hadron to be  a compound with n 2 2 constituents 
drawn from various varieties  ( e . g. , the three varieties  of quark 
in the quark model ,  or the many varieties  of hadron in the bootstrap 

/ 
model ) .  

The p otential is  used explicitly only to define the walls of -1 3 the box - with the radius o f  order 1 0  cm, s ince we know hadron 
s tructure is confined within a distance of this order. Inside the 

box,  constituents will circulate without interacting explicitly. Of 
course this is  the crudest dynamic s  possible , but it does s implify 

the problem enough to yield solutions ,  and it can be improved later 
if some detailed effects  of the interaction are understood , just as 
Bethe ' s  free fermion gas model was l ater improved. 

Mathematically , the counting proceeds  as follows . For .Q1lll. 
particle , the density of states insi de the box is  

V J3r� 
h' 
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For  n indep3ndent particles with total energy m it is 

( 1 3) 

Here we have counted only the density of levels with centre-of-mass 
at re st , be cause this is  the density t o  be ident ified with the 
number of hadron states  per unit interval of rest mass .  

For example , consi der some simple models for the constituents 

i) Quark-antiguark model of mesons . Here n = 2, the integral 

is trivial , and one finds 

( 14) 

ii) Three-quark model of baryons . Here n = 3 ,  and the extra 
Jd3pi increases the density of states  to 

( 1 5) 

iii) Single-elementary particle model of mesons.  Suppose there 
were a s ingle elementary boson x ,  and all mesons were made 
of xx pairs , xxx triplets , xxxx quartets, etc .  (n c =  

10 

= 2 , 3 , • • •  cv ) . In this case the density of state��: vwu·;cl be 

where the factor 1 /n! appears be cause only totally symmetric 
states  of n bosons should be counted.  The integrals in (16) 
can be  evaluated approximately and one finds 

bW\.'3/41 tCw..)""e , ( 17) 



a much more rapid growth than in previous examples be cause 
states of all n are now included .  

All of the preceding example s involved elementary constituents .  
The model we wish to fo cus on,  however ,  is the bootstrap model of 

hadrons , in which the constituents are the hadrons themselves .  The 

model can be represented  schemat ically by 

-
-

�=� ��J �=4 
rnr 

K ,,.. 
KK + + 

The equat ion for the density of states i s  

which can be explaine d a s  follows : 

.. . .  ( 1 8 ) 

( 1 9 )  

i) the integral over mass appears on the right-hand s ide be cause 

each particle in the box can take on not only different states of 

motion with phase space 3 d p i , but also d ifferent states of mass 

with density labelled by �in(m) . Included in the single particle 

density f°in(mi ) are all different states of sp in ,  charge , stran­

geness , baryon number ,  e t c .  For example , 'IT 
states ( ,,.+, "TTo , 'Tf-) , f as nine states 

is counted as three 

each with 
2S+1 spin states )  and so on.  

ii)  note that although we are not taking explicit account of 
interactions , they are included implicitly to a great extent by 
counting as constituents all the resonant states  which result from 
i.nteractions . For example , we count both Tl'lr'IT and ff"('. To 
understand the connection between counting resonances and including 
interactions , consider two particles which attract each other 
moving around in a box. As a result of the attract ion , the wave 
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function involving the relative co-ordinate of the two p articles 
oscillates more rapidly than usual when the two particles  are close 
together. The more rapid oscillation means that more states fit 
into the box; specifically, when there is one extra oscillation 
(phase shift of 180°), one extra state can be fit into the box. In 
this case, although an exact calculation would count states of mo­
tion of the original two particles with their mutual potential, it 
is approximately valid to omit the potential and count states of 
motion of the original two p articles  (treated as non-interacting) 
plus states of motion of the resonance. This is what we have been 
doing by counting all resonances as independent partic les. 

iii) the factor 1/n!, which was required for states consisting 
of n identical p articles, is also needed for states consisting of 
non-identical p articles to avoid double counting. 

iv) we are making one error : the Pauli exclusion principle has 
been ignored. The resulting overestimate of phase space should be 
slight because states containing pairs of the � fermion are 
exp ected to be statistically unimportant in the hadron spectrum 
[this is confirmed in detail in work by Nahm 7)]. 

v) on the le ft side of (19) we introduce the nomenclature 

l°out(m). for the total density of states in the box. In a comple te 
bootstrap theory, �out(m) would be the same as t°in(m), but 
in an approximate model such as ours it is not possible to make them 
c onsistent over the entire spectrum, and we must keep the separate 
labels .  However, we can at least require 

� .L"'"·> � IJ. ("Mo). I •u.r WI._. oo I '"' 
(20) 

At low m our statistic al approach cannot hope to give the exa"t 
self-consistent f (m). 

The density of states (19) and the bootstrap condition ( 20 )  
define our version of the bootstrap model. From the previous example 
(17) of the level density obtained from a single variety of input 
particle , it is clear that {' (m) rises  at least as fast as 
exp(m3/4). This motivates us to study the self-consistency of the 
form 
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( 2 1 ) 

Proceeding in this way, we shall not be able to find a unique solu­
tion, but we shall be able to  establish the main features that any 
solution must have at large m. 

It can be shown 5) that : 

i) for lL:S..-1., /° out grows exponentially faster than />in' 
so this case is not self-consistent. 

ii) for � '  JO grows exponentially slower than I out t°in' 
so again this case is not self-consistent. 

iii) the remaining case P=1 does allow solutions, self-consis­
tent not only in the exponent but also in the power and numerical 
coe fficient , provided 

<l. < - 5/:z. • (22) 

The level density discussed thus far is the total one, 
summing over all quantum numbers.  The level densities  /°QSB for 
particular quantum numbers have also been studied 5). It is found 
that a self-consistent solution for all of them is 

'° (�) f �SB 
b� e. (23) 

(24) 

The p arameters a• and b are common to all Q, s, B. Whether 8) a' =a depends on details of the model 

Historically, a number of quite different models have yielded 
this sort of exponential growth ( Table II). Hagedorn 3) was the 
first to give the reasoning I have followed. He demonstrated the 
existence of a consistent exp onential solution ( .tn fin --+ .tn /'out) 
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TABLE II MODELS YIELDING () (m) 
I 

1 ) 

2) 

Model 

Hagedorn 3) 

Y..nf. __, J,n/' t ln OU 

Frautschi 5) 

fin __,/'out 

s) 
( r. = fc t above some in OU 

3�Hamec and Frautachi 

fixed mass) 
Nahm 7) 

4) Duality 9) 

5) Veneziano 10) 
1 

b = 21T �t-(2a+182 

14 

_§, 

a. < -5/2 in -

a < -5/2 

a -3 

,,,. 
-5/2 a 

-3 
-7/2 

a bm cm e 

11 1 
(bexp�160MeV) 

� 1/m 
'Tf"' 

1/190 �foV 

7:; McV 
1!150 Me·v' 



but was not able to obtain consistency between ain and aout" 
The reason was that he effectively included the centre-of-mass phase 3 space d PcM on one side of the equation but not on the other, 

3 
with the result that f' out grew faster than /'in by m2 or 

more (normally in statistical mechanics the extra degrees of freedom 
of the centre-of-mass do not r:iatter, but in the present few-body 

case they do affect the Ner behaviour). 

In my own work � I studied the same model, but calculating 
directly in phase space (microcanonical ensemble) rather than thermo­

dynamically (canonical ensemble) as Hagedorn had done. Putting the 
centre-of-mass at rest consistently on both sides of the equation, 
I was able to make the powers balance and f . � Al t" This in f ou 
stronger condition did not allow the solution a= -5/2, which had 

been allowed by Hagedorn and was in fact the case that had usually 
been discussed. This may seem like a very small change, but it has 

important con�equences which I shall describe later. 

Subsequently Hamer and I S) (with numerical methods) and 
Nahm ?) (with analytical methods) tried stronger conditions. For 

example, Hamer and I required f in= f out 
M. These stronger conditions lead to a = -3 

above some finite mass 
independent of details. 

By taking specific models for ,Oin below the mass where consis­
tency is required, Hamer and I also derived specific values for b. 

We tried 

i) input + 0 (M = 2m ) 'Jf TT Tr 11' 
ii) input lowest 35 mesons (M "" 1 GeV) 

iii) input lowest 35 mesons and 56 baryons. 

Inserting these low mass inputs into the hadron box, we built up 
the higher mass states on a computer [}ising ( 1 9 )  and f. (m) = in 
= /°out(m) at m>r1}. In all cases we obtained 

b� I/ �TT' ' 
(25) 

near the experimental value. Nahm has obtained similar values. 
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Apart from the numerical coefficient of 1/m'!I'' the value 
of b can be understood on dimensional grounds 
tially the only mass in the input (the lowest input 
and the radius of the box is of the order h/m

'll"'
c). 

m is essen-
11"' 
mass is 

Recently it has been shown that dual models and Veneziano 
models, which involve assumptions quite different from Hagedorn•s, 
lead to the same sort of spectrum 9),1o) In the Veneziano model, 
eTen the possible values of the power "a" are similar (Table II)l 

lrhy do dual and statistical models give such similar spectra? 
An answer has been suggested by Krzywicki and Brout 9),5) According 
to duality the scattering in each channel can be described in terms 
of direct channel resonances. We make the usual assumption that 
each resonance has a limited coupling strength in the sense that 

< t:ot> changes only slowly with energy. Then to describe the 
scattering in each channel in terms of direct channel resonances, 
the number of resonances must be comparable to the number of channels. 
By this type of argument, one obtains a mathematical relation with 
the structure 

t'•>•'hff tl�l,(-,_)J..._l, +f,fffrl"",)/(-Jtf"',)J.-,J.*&J.*, (26) 
.... 

where the terms on the right side give the number of two-particle 
channels, three-particle channels, etc., and the integrations are 
over £ mi :S m. This equation for the level density in a ,:;,;,a., 

model has the same sort of structure as the statistical model »2-

lations ( 19), ( 20), and therefore has the same sort of exponentially 
growing solution. 

This result shows that one does not need the full apparatus 
of the Veneziano model to get an exponentially rising spectrum. 
Quite possibly the exponentially rising spectrum is a very general 
feature of any bootstrap model which treats all non-exotic channels 
on the same footing. 
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Another question suggested by Table II is, what difference 
does it make whether a= -5/2 or -3 ? Actually, although the 

exponential factor i:3 clearly the most important part of the pre­
dicted level density, the power also makes a significant difference 

in several respects. Consider the statistically dominant decays of 
a massive resonance with mass m. This is easy because the model 
has already provided us with the relative phase space as a function 
of the kinetic energy and number of particles. Statistically an 
average resonance decay will go to final states in the same propor­

tion as their phase space. In practice, there will be a decay chain; 
we consider oniy the first generation. We find : 

i ) for any value of a, the phase space for each emitted par­
ticle depends on kinetic energy Q. as exp(-bQ. )=exp(-Q./kT ). l l l 0 
Thus phase space is populated most heavily in a strip of 
width several kT0 near � mi � m. 

ii) for a= -5/2 there is an appreciable probability for par-· 

ticles to be anywhere in this strip, but for a <  -5/2 only 
the corners of the strip ( one particle with mass near m, 

the others with mass near mir ) are heavily populated. 

iii) furthermore the average number of particles is <n> � Ln m 

for a= -5/2, but <n> = 2.4 independent of m for a=-3. 
For a=-3, two-body decays are dominant ( 6 9% probability) . 

The implication of results ii) and iii) for a= -3 is that 

a heavy resonance decays in a long chain, emitting typically one 
light particle with E = several m at each step. This is hard 
to test directly. But Hagedorn a:d Ranft 11) point out that their 
model scales at high energies if combined with this picture of re­

sonance decay ( essentially because it predicts the spectrum of low 
mass particles emitted in resonance decay is independent of the 

total energy) . 

In another application, Garlitz 12) has pointed out that at 

extremely high energy densiiies such as may occur in the big bang, 

the phase space for a macroscopic volume will exhibit the same 
feature as we noted above for a single hadron volume - the stati.s­
tically favoured state will consist of one very heavy resonance 

17 



surrounded by a crowd of low mass  particle s .  This very uneven dis­
tribution of energy is the source of the large fluctuations one 

1 3) finds in this model , which may have cosmological significance 

4. Ericson fluctuations in nuclear physics 

Let us now return to the nuclear analogy in o rder to borrow 
the idea of Ericson fluc tuations , which may be of considerable 
s ignificance for testing and applying statist ical models of hadrons . 

We ahall b egin by describing what they look l ike and how they are 
analyzed in nuclear physics 14). 

The gene ral idea is  that at ene rgies high enough for re so­
nances  to overlap , one still sees peaks and dips .  These  are attri­
buted not to individual resonances , but to fluctuations in the 
number and coupling strength of the overlapping resonance s .  

The idea can b e  appl ied t o  nuclei even in  the p re sence o f  
"dire ct reactions" where the s imple Bohr model d o e s  not hold. 
Consider for example an e last ic reaction such as 

(27) 

The imaginary part of the non-flip amplitude is expected to dominate 
Write  it as a sum over  direct  channel re sonance contributions : 

E + E\.\, -i r:,/.z. 
(28) 

where NJ is  the number of "overlapping re sonances" , i . e . , the 
re sonances in an interval A E � r. Since we have chosen an elast i1 
amplitude , the contributions of individual resonances tend to add 

* ) up with the same s ign Nevertheless from one energy interval 
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,A E '.::::: r to  the next there will be statistical fluctuations in the 
strength of 1:.- \' 2 , of relat ive order 1 /jNJ. Thus el AJ can be 
expressed  as  the sum of a dominant (mainly imaginary) coherent term 
AC and a smaller fluctuation term F 

J AJ : A,.., =Ac +A� ( 29) j j 
Similarly , adding all partial waves ,  we have 

(30) 

At G = o0 where all partial waves add coherently , AF/AC is 
expected to be of order 1 /JN where 

• ( 31 )  

The dominant term AC (G) will exhibit the usual sharp dif­
fraction peak ,  possibly with diffraction minima at angle s  determined 
by the nuclear radius. This structure varies only slowly as a func­
tion of ene rgy. By contrast AF varies  rapidly , on a s cale 
6 E ::::: r . One looks for these  fluctuations in interference with 
the dominant ccherent term. The search is  aided by the angular 
dependence of AF , Rhich is  on  the average weak and symmetric 
about 90° because partial waves do not add coherently in AF ( re­
call our discuss ion of the Fermi model in Section 2) . What angular 
dependence <AF> does have comes e s sentially from the envelope of 
the Legendre p olynomials which is less at 90°. Thus AF is  rela­
tively easier to see  at large angle s  where AC has fallen far below 
its  peak value . 

A classic example is 

(32) 

which has been studied 1 5) over the range Ep = 9.3 to 9.6 MeV 
at intervals of 2 to 5 keV, at each of several angles  between 63° 

and 1 7 1 ° .  The very close spacing of points in energy is  necessary 
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to resolve the Ericson fluctuations, which have a width comparable 
to the average resonance width f" � 3 keV. The data on dO-/dJ'l.., 
are shown in Fig. 1 .  At fixed energy, the dependence on angle i s  

characteristic of a diffraction peak with minima. But at fixed 
angle, the cros s-section exhibits rapid Ericson fluctuations as the 
energy is varied. 

This example illustrates several points : 

i ) not every peak or dip is an Ericson fluctuation. In the 
example, the two large dips in the angular distribution are iden­
tified as diffraction minima rather than Ericson fluctuations because 
they persist at all energies. 

ii ) it is in fact 1-\ard to di stin1�uish Ericson fluctuations in the 
I 

angular dependence at a single energy. The average width A G of' 
a fluctuation peak or dip cannot be much less than AG� 180°/t max 
where P, max pR i s  the largest strongly scattered partial wave. 
In many cases this is not much smalJer than the spacing between 
diffraction dips in Ac. 

iii ) at fixed G or t one sees the Ericson fluctuations more 
easily. Their typical width AE is of order ( is in fact a mea-
sure of) r : in the example above an interval of "' 100 r was 
surveyed, allowing many fluctuations to be seen. 

It is the relative height of the fluctuations which is 
sensitive to AF/AC and thus to N=f .f . Nuclear physicists 
have devised the following quantitative measure 14) to be applied 
at fixed 9 
denoted by 
E1 :S E :S E2• 

or t. One measures the differential cross-section, 

tr (E), at evenly spaced intervals over a range 
The average <ii> i s  formed over this range. Then 

one forms the normalized correlation function 

(33) 

a s  a measure of fluctuations. Theoretically, if AC(g) is essen­
tially constant over the range of energies considered, <0-> can 
be expressed as  
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63" 81" 

!56 . Fe (P.Pci 

d<r/d.0.. for p+56Fe __, p+56Fe measured in steps of 
2-5 keV around 9.4 MeV [j;aken from Ref. 15LJ. 
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<. er> - <I Ac+ A � l 2 > 
I Ac., i +< I AF 12> :: ere+ ,F (34) 

since the interference term averages to zero. In terms of these 

quantities, one can show that 14) 

which 

tely 

( o-F) 2. + 
� c. c+k 

= 

.2.. c- er 

( er� 0-c. )2. + 
in our case (AF interfering with larger F C C=20" le- . Comparing (35) and (33), one 

AC ) 
is 

deduces 

(35) 

approxima-F/ C <r ,,-
from the data. This information, p1us the independent determination 

of r from the average width of fluctuations in energy, allows an 
estimate of the level density 

5. Ericson fluctuations in hadron physics 

Historically, Ericson fluctuations were searched for by 

Allaby et al. 16), who studied 

p+ p � p+ p (36) 

at 16.9 GeV/c at centre-of-mass angles 67° to 90° . They found the 
cross-section fell off smoothly. Another relevant experiment was 
that of Akerlof et al. 17) who studied reaction (36) at fixed 

0 �CM= 90 , varying E in small steps. Once again, no evidence for 
fluctuations was found. These negative results disc.:iuraged further 
searches for Ericson fluctuations in hadron physics. 

On the other hand, the motivation given earlier for Ericson 
fluctuations is very general and should apply also to hadrons. But 
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not necessarily to all hadron reactions; if the pp channel lacks 
resonances, no fluctuations need occur there So the early sear-

ches may simply have had the bad luck to look in the wrong place. 

It is important then to continue the search for Ericson 

fluctuations, because : 

i) in principle if one believes in a statistical model at all, 
then it must be possible to find fluctuations. 

ii) the study of fluctuations could provide a practical tool 

giving information on f (.E) at energies where resonances overlap 

and a direct count cannot be made. This approach would supplement 

the only existing method - Hagedorn1s analysis of the p..L. 
but ion. 

distri-

Thus motivated, we proceed to look for fluctuations in 
channels where resonances exist 18). We shall borrow the whole 

mathematical apparatus of the nuclear analysis, always remembering 
that it will be less convincing for hadrons because whereas 

(""" was very small on the scale on which the nuclear level nuclear 
density varies (� 1 MeV), f""" � m hadron tT' is the 
scale on which the hadron level density varies. 

same as the 

In practice, one has the choice of studying reactions such 
as backward K-p - K-p where AC is small (here we expect large 

fluctuations, but the data are usually quite incomplete) or react­
ions where AC is large (smaller fluctuations, but better data). 

We shall focus first on the later type of case as exempli_fied by 

ir+p �"Tr+p. 
The Coheren-t term I Ac [ 2 . d . t t 1 t th e r· "rd is ominan , a eas near - e io. wo 

and backward directions, and is therefore easy to estimate ·from the 
experimental cross-section. 

To obtain a crude estimate for the number of overlapping 
resonances 

(38) 
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we take 

(39) 

and 

(40) 

Equation (40) is the Hagedorn level density with a=-3 and with 
1 

an extra m
-2 which occurs because only that fraction of interme-

diate states with J =J (initial), contributes to each amplitu de. z z 
4) We use Hagedorn an d Ranft1s value 

and 

kT :16c"'1e.V 
• 

Sia.. c: = """x 
3 

( 41) 

(42) 
which is roughl) conniutent with the numerical studioo of Ho.mer 
an d Frautschi 8 

• 

If the elastic amplitude were ma de up entirely of direct 
channel resonances, one would estimate 

in which case 

with 2 x of order 
only a fraction 
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I A�co•>\ � x� Ac (o•) 
'{F:[ 

= I N 

(43) 

(44) 

1 • However, according to Freund and Harari 19) 



y : er +o-t ( E ) - r +o+ ( oo) 
o-+o+(E ) 

( 45 )  

o f  t he fo rward amp l itude c o up l e s  t o  d i re c t  channe l re s o nan ce s ,  S o  

t h e  amp l i tu d e  A
F 

mu s t  b e  JJi Ltl t i p l i e d  by t h i s  sma l l  f ra c t io n  and , 2 2 
in what fo l l ows , we take x = y . 

There is ac cura t e  e las t ic "IT' N  data o f  the t yp e  we re quire 

(E var i e d  o v e r  a c o n s i d e rab l e  range i n  smal l ,  e qually s p a c e d  s t e p s  

at f ixe d G o r  momentum t rans f e r ) only at o
0 

and 1 80° . A t  o
0 

the 

data are i n  the f o rm of t o t al cro s s- s e c t i o n  measurement s ;  f o r  the 

purp o s e s  of our anal ys i s  we c onve rt e d  t he s e  data into Im A (o
0 ) by 

means o f  the o p t i c a l  t h e o re m  and squar e d  to f o rm an e f f e c t ive 

" d r (o
0 )/d t " .  The data 

20 )-24 ) 
f o r  '1t p ..... 'IT' p and TT\1 --+ TT+P 

are d i splayed in Fig s .  2-4 .  
F/ o 

A l s o  d i sp l aye d  is d r  d t ,  cal cul a t e d  at 0 by means o f  

Eq s .  ( 38 )-(  45 ) .  W e  re c a l l  that d r
F /d t  take s t he same value a t  

1 80° as o
0

, and w e  give i t  t h e  s am e  value f o r  7T +P and 1T'
-

p 

e la s t i c  s c a t t e ring .  Thus d r
F /d t  is t he same f o r  all c as e s  in 

Fi g s .  2-4 .  

The p e ak s  and d i p s  in t he data o f  Figs . 2-4 are trad i t i onally 

int erpre t e d  in t e rms o f  individual ( ll igh J )  re s o nanc e s  int e rf u r i ng 

wi th a smo o t h  b ackground . We are p ro p o u j_ng a s o me what d i f f e re nt 

inte rp r e t a t i o n  in t e rms o f  nu m e ro u s  o ve rlapp ing re s onan c e s  wi t h  

f l u c tuat ing l eve l d e n s i t y  an d coupl ing s t rengths . T o  show whe t h e r  

t h e  p e aks and d i p s  are c ommonly due t o  f luc tua t i o ns i n  mo re than 

one JP s t a te , as requ ire d by our i nt e rp r e t a t i o n ,  c omparab l e  data 

at angle s o t h e r  than o
0 

and 1 so0  will b e  n e e d e d .  Lacking such in­

f o rmat ion , the b e s t  we can do at p re s ent i s  t o  show that our int e r­

p re ta t i o n  i s  c o ns i s t e nt with t he exi s t ing d a t a .  

It is imme d i a t e l y  c l e ar f r o m  F igs . 2-4 t h a t  our i nt e rpretation 

is qua l i t a t iv e l y  c o ns i s t ent with the dat a .  T hrough inte rfe re nc e  

t e rms , t h e  fluc tuat i on s  i n  d o-/d t  are e xp e c t e d  t o  b e  o f  ar de r  1 0% 

25 



104 

103 
'N"' 
.!,! > C1> 
8 
:0 ..2:. 

i5 102 
� 1J 

10 

oo oo o o Cl:>COo Cb o o o o o 

• 

' 
' 

' 
f f  . 

TT_p _  TT_ p 
o "do (0°) /dt" 
• da (180°)/dt 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

,..;. dOF lu •­dt 

.. , 
�---�------�--- --��- ---'----- ---···L ____ J 

2 

26 

3 
p (GeV/c) 

4 5 

Comparison of data on 'TT" -p -., Tr-P at 1 80° and O G  with 

the t he o re t ical cross-section d o-F /d t at which fluc­

tuations woul d reach 1 00%. The experimental values for 

d r ( 1 80 ° )/dt are from Ref. 20 ) ,  " d 1r ( o0 ) /dt"  is  cal­

culate d  f rom data of  Refs . 2 1 ) and 22 ) ,  and d crF /dt is 

calculated from Eqs . ( 3 8 )
-

( 45 )  of t he text . 
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Comparison of data on 'TT +P _, 7f+p at u = O  and o 0 

with d ,- F(o 0 )/dt .  The expe rimental value s for 

d r ( u=O ) /dt are from Refs . 23 )  and ( 24 ) ,  and 

" d o- ( o 0 ) /dt"  is  calculate d  from data of Re fs .  21 )  and 

2 2 ) .  
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dt 

2 dcl l!l •--d'. 

'Tf N elastic  s cattering : comparision of  " d cr ( o0 )/dt"  

for I =  1 exchange and I =  O Regge exchange [calcula­

t e d  from data of Re fs . 21 ) and 2 2 2]  wi th d o-F/d t .  
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when 2 F dr/dt = 1 0  d O"" /dt , and of  order 1 %  when 4 F d r/dt = 1 0  d o- /dt .  

The experimental fluctuations are indeed  of this o rder of magnitude ;  

they are greater for the smaller cross-sections and die  away more 
slowly for d 0"' ( 1 80° )/dt � s-2 · 5 than for "d r(o0 )/dt" � constant . 

To show that our interp retation i s  guantitatively consistent 
with the data ,  we must study the correlation funct ion , generalized 
to the p resent case where the non-fluctuating part of the cross­
section varies strongly with E .  An app ropriate generalization is 

c =((rr (E) a-5 ( E9) ( 46 )  

e.>c p o-S(E ) 
where (!'" S ( E )  i s  a smooth curve drawn through the data. The curve 

is sub j e ctive , but constrained to have the same average as o- ( E ) . 
In practice we always use d  a simple monotonically decreasing form 
for (!'" S ( E )  • ' The resulting values of c for elastic  1T' p 

TT+p 
exp 

and scattering , backward and forward,  are displayed in 
Table III. 

Also displayed in Table III are theoretical values for the 
correlation function. These  are computed  using the appropriate 
generalizat ion of Eq .  ( 3 5 ) , 

with er F( E )  given by Eqs .  ( 3 8 )- ( 45 ) and 
the ( smoothe d-out ) data. 

( 47 )  

O'"' C ( E )  estimated  from 

The agreement in Table III between Cth thus computed and 
C i s  quite good .  The important result here is not the agreement exp 
in over-all magnitude ,  which c ould easily be adjusted  by varying 
the impe rfectly known parameters c , T0 , and r Rather ,  it is  
the agreement with the non-adjustable features of cth - that cth 
is less for larger d cr/dt , and decreases rapidly with energy -
which establishe s the consistency of our interpretation. 
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w 0 

TABLE I II ANALYSIS OF FLUCTUAT IONS IN  'ITN SCATTERING 

Reac t ion 

'7f -P � n -p ( 1 80° ) 

1T +p � 'TT'+P ( u = o )  

t o t ( + ) t o t ( V- ) O" :!I P - o- p 
2 

er t o t ( 'lf+p ) + .,..t o t ( tr- p ) - 2 0-to t ( m )  
2 

Momentum Range (p in GeV/c ) 

I 1 .  1 - 3 . 4  
l 3 . 5  - 5 . 3 

1 .  7 - 5 . 3  

1 . 7 5  - 5 . 2 5 

{ 1 . 5 - 3 . 4  
3 . 5 - 5 . 3  

' 1 . 5 - 5 . 3  

1 . 5 - 3 , 9  

c c th � 

o .  3 1  0 . 48 
0 , 0 4  0 , 0 4  
0 . 1 7  0 . 27 

0 . 1 5 o .  23 

o .  4 1  0 . 44 
o . oo 0 . 00 
0 . 2 3 0 . 24 

0 . 0 2  0 . 02 



We now turn to reactions with small Ac . Re call that we 

did  not consider such reactions imme diately be cause the data ara 
generally less  complete ; neverthe le ss they are important be cause 

statist ical ideas appear in their  purest  form here . 

To find examples of small AC we look at reactions where 
only exotic exchanges are p resent , such as 

( 48 )  

and 

( 49 )  

at small u .  Here AC consists  of Hegge cut contributions plus 

po ssible exotic  Hegge pole exchanges ,  both of 
small . Indee i ,  d ir/du t;y-p ically falls l ike 

-b,jS \) shall suggest b elow, e in such cas e s .  

which may be  quite 
-1 0 ( s or ,  as we 

For the p articular case K-p _. K-p at u = O , Michael 25 )  

has e s t imated  that the Hegge cut contribution i s  less  than the 
experimental dcr-/du at laboratory momenta less  than � 5 GeV/c . 
Above 5 GeV/c the Hegge cut term ,  falling only as s-3 compare d 

to the more rapid  decrease of  the lower energy cross-section, i s  
expected  to dominate . The existing data 26 )-28 )  and Michael ' s 

e stimate fo r the cut contribution are shown in Fig. 5 .  

Michael ' s  interest was in finding the Hegge cut term 
above 5 GeV/c . Our main interest  i s  in the region below 5 GeV/c 
where this form of cohe rent term is relatively very small .  Of  

cours e ,  the data may st ill be dominate d  by I Ac 1 2 s-1 0 corres-

ponding to an exotic  Hegge pole exchange with Cl(.. � -4.  
I AF / 2 _. e-bJ'S ' also possible that the dominant term is · �  

But it is 
i . e . , the 

incoherent part of the sum over dire c t  channel re sonances with a 
Hagedorn spec trum. 

This possib il ity can be tested  in s everal ways 
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Comparison of data on K-p _. K-p at 1 80 ° with d crF/dt . 

The data are from Refs . 26 ) ,  27 ) and 28) . 



i ) one can p redict  d o- F( 1 80° )/dt in the same way as for 

1T' N  s cattering , making small changes appropriate for the sl ightly 

different kinematics  and level density in the K-p channel. The 
predicted d rF( 1 80° )/dt , as shown in Fig. 5 ,  is quite close to  

the data. 

i i )  the crucial test  would be to measure do- ( 1 80° )/dt with goo d  

accuracy a t  small intervals over a broad range of energies ,  a s  in 
20 ) the backward ;r p measurements of  Kormanyos e t  al . , and look 

for fluctuat ions. Large fluctuations are expe cted in our theory 
s j nce d rF /dt is so close to  d r/dt .  It mus t  be admitted that 
no fluctua t ions are visible in the p resent data below 2 . 5  GeV/c , 
but closely spaced measurements over a broader range of momenta are 

needed to se ttle the quest ion. 

Similar comments apply to a number of other exotic reactions , 
such as backward pp -> pp and backward pp -> XK. 

In summary , we have given a quantitative framework for 

estimating when a reaction is dominated by s tatist ical factors , and 
at ?ihat level Eri cson fluc tuations are expected .  These considera­
tions should aid in tc;st ing stat i s t ical models and , hopeful)Jr , will 
help us unders tand a broad range of data jn the intermediate energy 

ral"ge . 
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