THE STATISTICAL BOOTSTRAP MODEL AND ERICSON FLUCTUATIONS

S. FRAUTSCHI

1. Introduction

Since some of you are rather unfamiliar with statistical
models, I shall begin by reminding you what is done with the statis~-
tical approach in nuclear physics (where it is well established)
and indicating to what extent it has analogues in hadron physies.
Then in the second part of my talk I shall focus in more detail on
the level density one obtains for hadrons when the statistical
approach is supplemented by a bootstrap assumption. Finally in the
third portion of the talk I shall return to the nuclear analogy and
use it as a guide for suggesting new phenomena in hadron physiecs -

taking as a particular example Ericson fluctuations.

2. The analogy between nuclear and hadron

statistical models

In 1936, Bethe 1> proposed a statistical model for the density
of excited nuclear levels. He put 2 protons and A-Z neutrons in
a box with the normal nuclear radius, and considered a free fermion

gas. That is, the potential was used only to provide the walls of

the box; the residual nucleon-nucleon interactions inside the box

were neglected.



As the energy is raised above the Fermi level, the number of

nuclear states rises very fast :

i) the first excited single particle level can be filled in a
number of ways by raising any of the nucleons near the top
of the Fermi sea; each different way leaves a different

hole behind and thus a different state;

ii) the first two excited single particle levels can be filled
in an even larger number of ways by raising any two of the
nucleons near the top of the Fermi sea; again each way
leaves a different pair of holes behind and therefore a

different state,ceeeeiieeniiiniienetertiiitnerennonnnnnns

Studying this problem quantitatively, Bethe found that for
energies such that most of the fermions are still degenerate, the

density of states
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where c¢ 1s a constant of order 2.5 MeV. Experimentally, excited

/O(E):—:‘ dn (1)
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rises as

nuclear levels show up as resonances. At high excitation energies
one deduces from nuclear measurements that a rapid rise qualitative-—

ly consistent with Bethe!s formula occurs.

Of course since this is a statistical model and the potential
has been grossly oversimplified, it does not fit many nuclei in
detail, especially at low excitations. The model has subsequently
been refined by adding effects of the potential which distinguish
between even and odd nuclei, put in some shell model effects, etc.

These modifications improve the fit to specific nuclei.

To treat reactions statistically, further assumptions are
needed. In the popular model of Bohr, for example, reactions
proceed via a sum over direct channel resonances which are assumed
to add up incoherently. If an average resonance decays into various
2



final states at a rate proportional to phase space, it follows that
reaction rates are proportional to the phase space of the final

state.

Of course there are many cases in nuclear physics where sta-

tistical ideas do not work and one uses a "direct reaction" model.

It turns out that what the nuclear physicist calls a "direct react-
ion" is none other than what a hadron physicist calls an "exchange
reaction™, particular examples being identifiable as meson exchange,
nucleon exchange, Pomeron exchange, and photon exchange. The term
"direct™ refers here to time : the final state emerges quickly in
a direct reaction, whereas the particles in a Bohr reaction spend a
long time in the intermediate resonant state. In another language,
the difference is that many direct channel resonance contributions
to the amplitude add coherently in a "direct reaction", whereas they
add incoherently in a Bohr reaction. The direct reaction, when
present, provides a larger amplitude than the Bohr model precisely
by means of this coherence. Direct reactions are especially pro=-

minent when the final state is closely related to the initial state.

Finally, nuclear physics presents cases where a mixed des—
cription is most useful. For example at energies above 20 MeV the
production of various numbers of neutrons can be treated as a direct
reaction which knocks out one or two neutrons, leaving an excited
nucleus which boils off further nucleons with a thermodynamic dis-—

tribution.

It is interesting to note that while Bethe's model of the
level density depends on fewer assumptions than the models for
reactions, it cannot be tested well without recourse to reaction
models. To be sure, at low excitations a direct count of levels
with full information on the degeneracy of each is available,
analogous to the Rosenfeld Tables. But this is practicable only
up tc @2 certain energy, which is too low to test Bethe's asymptotic
expression very well. Good information is again available even in
heavy nuclei for excitations of about 7 MeV, just above the single

neutron threshold, where the average resonance width is still less



an the average spacing. At higher energies the resonances overlap
qnd the level density is deduced only with the aid of further hypo-
theses, such as the "boiling off" picture described above, or Ericson

f}uctuations.

Table I contains a summary of the models we have just re-
viewed. To the right of each nuclear model is listed its analogue

in hadron physics.

The most familiar hadron analogue is of course the non-

statistical case of exchange reactions.

Another well-known case is the pure statistical model for

hadron reactions popularized by Fermi 2). The two incoming particles
were assumed to coalesce in an interaction volume where thermodynamic
equilibrium at a uniform T was reached, followed by emission pro-
portional to phase space. This picture explains many features of

NN annihilation. However, at higher energies it fails to produce
sufficient forward peaking. [Ey imposing angular momentum conserva-
tion one does find peaking in the model; for example, in a spinless
reaction ,zz==o and the peaking is due to the fact that Legendre
polynomials have a smaller envelope at 90° than at 0°. But this
peaking is forward-backward symmetric and is anyway much too smallj;
to fit the data it is absolutely essential to introduce coherence
between different partial waves, which takes us outside the statis—

tical picture .]

Hagedorn noted this problem, and also noticed that it was not
adequate to count Jjust the phase space for free T, K, and N.
One should also include the effects of resonances. But how many ?
Hagedorn attacked this problem and the reaction problem simultaneous—

ly, applying a bootstrap hypothesis.

As far as the level density of resonances is concerned, we
shall show how it is obtained a little later, but let us immediately

note Hagedorn's result 3) :

P lm) e (3)



TABLE I STATISTICAL MODELS

Application

1) Level density

2) Reactions
(additional assumptions
required)

a) pure statistical -
rate & phase space

b) mixed =
at higher energies,
dynamical reaction
followed by evapo-
ration & phase space

¢) purely dynamical -
3) Empirical study of

level density at high
energy

Nuclear

Bethe
/o(E)-c exp(JAE/¢c)

Bohr

Serber, Le Couteur,
Jackson

"direct reaction"

requires use of
statistical models
of reactions
(boiling off of
neutrons, Ericson
fluctuations)

Hadron

Hagedorn, Frautschi

f (m)d exp(bm)

Fermi, Hamer
(NN annihilation
near threshold)

Hagedorn

"exchange reaction"

requires use of
statistical models
of reactions
(voiling off of
hadrons, perhaps
Ericson fluctuations)




This very rapid growth has an important consequence. Consider the
average energy of a set of hadron states in thermodynamic equili-

brium at temperature T :
@®
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Employ the level density (m)._const.ebm (1gnor1ng possible
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powers of m for simplicity) and approximate E by m+(p2/2m),
a good approximation at high masses where the important behaviour

occurs. Then

E o ™ (5)
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Evidently the integrals are undefined unless
b L ., (6)
kT
If we call
bz L , (7)

kT,

the condition becomes

T«To. (8)

Thus T0 is a maximum temperature.



Physically, what happens in this model is that if we increase
the energy in a fixed volume, it goes into the mass of new particles

rather than into raising the kinetic energy of the particles.

Turning now to reactions, we recall that the purely statis-—
tical approach of Fermi failed at high energies. I shall describe

briefly the approach of Hagedorn 4) (in collaboration with Ranft),

to indicate that it is a mixed description consisting of a non-
statistical collision followed by thermodynamic "boiling off",
somewhat analogous to what is done in nuclear physics at high

energies.

In the Hagedorn-Ranft picture of scattering the two colli-
ding bodies never coalesce into a single interaction volume. Each
continues on its way, but "heated" internally by the collision,' the
temperature being higher on the side next to the other projectile
where the "friction" has been most intense. By local energy conser—
vation the cool outer side of each projectile retains much of its
original longitudinal velocity, while the hot inner side has conver—
ted much of its original longitudinal motion into internal energy.
This part of the description is evidently non-statistical (it in-
troduces the essential distinction between longitudinal and trans—
verse motion). However, the second step in the description is
purely thermodynamic — the internally excited projectiles "boil off"

hadrons with distribution controlled by the local temperature.

In this model the momentum and mass dependence of final state
particles relative to the decaying projectile are determined essen=-

tially by the Boltzmann factor
\’ 2 % L Y
B = anp|- Mpy*pe (9)
kT

with T near TO for high energy rsactions. The longitudinal

distribution in the lab. frame also depends strongly on the detailed
assumptions made about the velocity distribution of the projectile,

which we do not wish to go into here. But the and mass de-—

Ru
pendence can be read off directly from the Boltzmann factor, and

have the asymptotic behaviour



B — _M‘r(-kET! ) (10)

Al
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Comparing with data on the Py distribution, Hagedorn and Ranft 4)

have deduced

T, 2= 166 MeV., (12)

In my own work on this subject 5), I made more explicit a
point that was already implicit in Hagedorn's work : the hadron
level density can be deduced from just two conditions (a statistical
condition and a bootstrap copdition on the constituents) without
direct reference to scattering or to the assumption that local
thermodynamic equilibrium is achieved in scattering. I also intro—
duced some technical modifications (discussed below) that make it

possible to pin down the level density more precisely.

The situation, as reviewed in Table I, now displays a con-

siderable analogy to nuclear physics :

i) the level density is determined on the basis of a simple

statistical assumption, plus one assumption concerning the consti-
tuents.

ii) some low energy reactions can be understood statistically
[ior the latest work on NN annihilation see Hamer 6)]. An extra

condition must be met in this case -~ lack of coherence among direct
channel resonances.

iii) some high energy reactions can be understood in terms of a
more complicated model involving both dynamical and statistical

assumptions.
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iv) as in nuclear physics, the predicted (m) cannot be con-
clusively established by direct count of levels (although the
existing spectrum is quite compatible with Hagedorn's distribution
as far as it goes). In fact, the detailed experimental analysis of
resonances in the 9t N channel has been pushed up near the energy
where levels for low JP are predicted to start overlapping, making
further disentangling of individual levels prohibitively difficult.
The best evidence for the Hagedorn spectrum is obtained by assuming
the Hagedorn-Ranft model for reactions, and comparing the Boltzmann
factor (9) which occurs in that model with experimental RL dis—

tributions.

3. The hadron level density

Now let us describe in more detail the model for the hadron
level density‘s). Just as the nucleus is considered to be a com-
pound with A constituents drawn from two varieties (n and p),
we consider the hadron to be a compound with n > 2 constituents
drawn from various varieties (e.g., the three varieties of quark
in the quark model, or the many varieties of hadron in the bootstrap

7/

model). ,

The potential is used explicitly only to define the walls of

the box — with the radius of order 107> ¢

m, since we know hadron
structure is confined within a distance of this order. Inside the
box, constituents will circulate without interacting explicitly. Of
course this is the crudest dynamics possible, but it does simplify
the problem enough to yield solutions, and it can be improved later
if some detailed effects of the interaction are understood, just as

Bethe!'s free fermion gas model was later improved.

Mathematically, the counting proceeds as follows. For gne

particle, the density of states inside the box is

V 4%,
R



For n indep3ndent particles with total energy m it is

é_&nwukr o{: l'l"u'l’c.’) = f"'(M)

dwm
=%‘ mg SEEWSYEF,). oo

Here we have counted only the density of levels with centre—of-mass
at rest, because this is the density to be identified with the

number of hadron states per unit interval of rest mass.
For example, consider some simple models for the constituents

i) Quark—antiquark model of mesons. Here n=2, the integral

is trivial, and one finds

,o(m)—vml, (14)

ii) Three—quark model of baryons. Here n=3, and the extra
depi increases the density of states to

Io(m)»vms, (15)

iii) Single—elementar article model of mesons. Suppose there

were a single elementary boson x, and all mesons wers made
of =xx pairs, =xxx triplets, xxxx quartets, etc. (n =

= 2,3,...&)). In this case the density of states would be

3 _

p)<5. (" T (13, SEE THEF) 0o
'ty ’\.‘ tnl !

where the factor 1/n! appears because only totally symmetric

states of n Dbosons should be counted. The integrals in (16)

can be evaluated approximately and one finds

b M
/o(m) ~e , (17)
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a much more rapid growth than in previous examples because

states of all n are now included.

A1l of the preceding examples involved elementary constituents.

The model we wish to focus on, however, is the bootstrap model of

hadrons, in which the constituents are the hadrons themselves. The

model can be represented schematically by
n=2 =3 n=y
T T TR nTTT
K Kw Ko ‘

1[ = K K + + 4 20 o (18)

-

L
.

. v

. .

The equation for the density of states is

2.4 Z dw. cM)IifJ(ZE-w) (ZT§> (19)

nea \\-‘ “: |'=|

which can be explained as follows

i) the integral over mass appears on the right-~hand side because
each particle in the box can take on not only different states of
motion with phase space d3pi, but also different states of mass
with density labelled by /oin(m). Included in the single particle
density /Din(mi) are all different states of spin, charge, stran-
geness, baryon number, etc. For example, Tr 1is counted as three
states (-n'+,'rro,‘ﬂ_) as nine states (f /0 f each with

2S+1 spin states) and so on.

ii) note that although we are not taking explicit account of
interactions, they are included implicitly to a great extent by
counting as constituents all the resonant states which result from
interactions. For example, we count both WTW and leD. To
understand the connection between counting resonances and including
interactions, consider two particles which attract each other

moving around in a box. As a result of the attraction, the wave

11



function involving the relative co-ordinate of the two particles
oscillates more rapidly than usual when the two particles are close
together. The more rapid oscillation means that more states fit
into the box; specifically, when there is one extra oscillation
(phase shift of 1800), one extra state can be fit into the box. In
this case, although an exact calculation would count states of mo-
tion of the original two particles with their mutual potential, it
is approximately valid to omit the potential and count states of
motion of the original two particles (treated as non—interacting)
plus states of motion of the resonance. This is what we have been

doing by counting all resonances as independent particles.

iii) the factor 1/n!, which was required for states consisting
of n identical particles, is also needed for states consisting of

non-identical particles to avoid double counting.

iv) we are making one error : the Pauli exclusion principle has
been ignored. The resulting overestimate of phase space should be
slight because states containing pairs of the same fermion are
expected to be statistically unimportant in the hadron spectrum
Ethis is confirmed in detail in work by Nahm 7)j

v) on the left side of (19) we introduce the nomenclature
”But(m) for the total density of states in the box. 1In a complete
bootstrap theory, /ﬂbut(m) would be the same as /Oin(m), but
in an approximate model such as ours it is not possible to make them
consistent over the entire spectrum, and we must keep the separate
labels. However, we can at least require

/0 (m) —> p, (\M.), {20)
OM.+ M=) 00 n
At low m our statistical approach cannot hope to give the exact
self-consistent f (m).

The density of states (19) and the bootstrap condition (20)
define our version of the bootstrap model. From the previous example
(17) of the level density obtained from a single variety of input
particle, it is clear that (m) rises at least as fast as

exp(m3/4).

form

This motivates us to study the self-consistency of the

12



h\,(m) = cm& 2xp (bmr> . (21)

Proceeding in this way, we shall not be able to find a unique solu=-
tion, but we shall be able to establish the main features that any

solution must have at large m.
It can be shown 5) that :

i) for p<1, /°out grows exponentially faéter than /’in’
so this case is not self-consistent.

ii) for p>1, /‘out grows exponentially slower than /oin’

so again this case is not self-consistent.

iii) the remaining case p=1 does allow solutions, self-consis-
tent not only in the exponent but also in the power and numerical

coefficient, provided
ol -5/, (22)

The level density discussed thus far is the total one,
summing over all quantum numbers. The level densities /‘QSB for
particular quantum numbers have also been studied 5 . It is found

that a self-consistent solution for all of them is

&' bwe

/aqss(m) — e (23)

c
™ =) a0 QSBM

f(m):i (m) — ¢ wmr e'b“". (24)
QsSB qub wm-dee

The parameters a' and b are common to all Q, S, B. Whether

a' =a depends on details of the model 8).

Historically, a number of quite different models have yielded

3) was the

this sort of exponential growth (Table II). Hagedorn
first to give the reasoning I have followed. He demonstrated the

existence of a consistent exponential solution (!‘nfin - !‘nfout)

13
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TABLE II MODELS YIELDING A (m) — cm%e
Model a b (v m—1—)
I = exp 160MeV
1) Hagedorn 3>
J?'nlpin - zn/’out @in = ~5/2 T
2) Frautschi 5)
[pin —)Pout a< -5/2 T
. 8)
3)( Hamer and Frautschi a= =3 ~ ‘I/m_rr
(fin: ﬁ)ut above some
fixed mass)
Nahm 7>
4) Duality 9) ————— o
5) Veneziano 10) a={ -5/2 1/196 MeV
1 A=
! B -3 /175 MeV
= -
b 2“[ 2 (2a+1) -7/2 17150 Mev

"

.
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but was not able to obtain consistency between a5, and aut
The reason was that he effectively included the centre—~of-mass phase

space on one side of the equation but not on the other,
3

3
d
Pom S
3 2
with the result that f’out grew faster than /9 in by m or
more (normally in statistical mechanics the extra degrees of freedom
of the centre—-of-mass do not matter, but in the present few-body

case they do affect the wer behaviour).

In my own work g I studied the same model, but calculating
directly in phase space (microcanonical ensemble) rather than thermo-
dynamically (canonical ensemble) as Hagedorn had done. Putting the
centre—~of-mass at rest consistently on both sides of the equation,

I was able to make the powers balance and /’in - /‘%ut' This

stronger condition did not allow the solution a:=—5/2, which had
been allowed by Hagedorn and was in fact the case that had usually
been discussed. This may seem like a very small change, but it has

important congequences which I shall describe later.

Subsequently Hamer and I 8) (with numerical methods) and
Nahm 7 (with analytical methods) tried stronger conditions. For
example, Hamer and I required f in= fout above some finite mass
M. These stronger conditions lead to a=~3 independent of details.
By taking specific models for f’in below the mass where consis—
tency is required, Hamer and I also derived specific values for b.

We tried :
i) input W (M= 2m1r )
ii) input lowest %95 mesons (M ~ 1 GeV)

iii) input lowest 35 mesons and 56 baryons.

Inserting these low mass inputs into the hadron box, we built up
the higher mass states on a computer [@sing (19) and f:in(m) =
:Pout(m) at m > Nﬂ In all cases we obtained

b2 1/ (25)

near the experimental value. Nahm has obtained similar values.

15



Apart from the numerical coefficient of 1/m the value

1,
of b can be understood on dimensional grounds : m’r is essen-
tially the only mass in the input (the lowest input mass is m

. T’
and the radius of the box is of the order h/nHrc).

Recently it has been shown that dual models and Veneziano
models, which involve assumptions quite different from Hagedorn's,

9),10),

lead to the same sort of spectrum In the Veneziano model,

even the possible values of the power "a" are similar (Table II)I

Why do dual and statistical models give such similar spectra ?

An answer has been suggested by Krzywicki and Brout 9)’5).

According
to duality the scattering in each channel can be described in terms
of direct channel resonances. We make the usual assumption that

each resonance has a limited coupling strength in the sense that

< tot> changes only slowly with energy. Then to describe the
scattering in each channel in terms of direct channel resonances,

the number of resonances must be comparable to the number of channels.
By this type of argument, one obtains a mathematical relation with

the structure

f(m)u.::"’[f‘h\)f{u’)luslu-l-}lffff (u‘),(;\)/. (m’un‘&m.lns (26)
$ o e . . - .

where the terms on the right side give the number of two-particle
channels, three-particle channels, etc., and the integrations are
over :E mi < m. This equation for the level density in a dua.
model has the same sort of structure as the statistical model :e-—
lations (19), (20), and therefore has the same sort of exponeniially

growing solution.

This result shows that one does not need the full apparatus
of the Veneziano model to get an exponentially rising spectrum.
Quite possibly the exponentially rising spectrum ié a very general
feature of any bootstrap model which treats all non-exotic channels

on the same footing.

16



Another question suggested by Table II is, what difference
does it make whether a=-5/2 or =3 9 Actually, although the
exponential factor is clearly the most important part of the pre~
dicted level density, the power also makes a significant difference
in several respects. Consider the statistically dominant decays of
a massive resonance with mass m. This is easy because the model
has already provided us with the relative phase space as a function
of the kinetic energy and number of particles. Statistically an
average resonance decay will go to final states in the same propor=
tion as their phase space. 1In practice, there will be a decay chain;j

we consider only the first generation. We find :

i) for any value of a, the phase space for each emitted par-
ticle depends on kinetic energy Qi as exp(—bQi)zexp(-Qi/kTo).
Thus phase space is populated most heavily in a strip of

width several kTO near z: mi ~ m.

ii) for a=-=5/2 there is an appreciable probability for par--
ticles to be anywhere in this strip, but for a < =5/2 only
the corners of the strip (one particle with mass near m,

the others with mass near m1r) are heavily populated.

iii) furthermore the average number of particles is <n> ~ fnm

for a=-5/2, but <n> = 2.4 independent of m for a=-=3.
For a=-3, two-body decays are dominant (69% probability).

The implication of results ii) and iii) for a=-3%3 1is that
a heavy resonance decays in a long chain, emitting typically one
light particle with E = several m“, at e?$§ step. This is hard
to test directly. But Hagedorn and Ranft point out that their
model scales at high energies if combined with this picture of re-
sonance decay (essentially because it predicts the spectrum of low
mass particles emitted in resonance decay is independent of the

total energy).

In another application, Carlitz 12) has pointed out that at
extremely high energy densities such as may occur in the big bang,

the phase space for a macroscopic volume will exhibit the same
feature as we noted above for a single hadron volume - the statis—

tically favoured state will consist of one very heavy resonance

17



surrounded by a crowd of low mass particles. This very uneven dis-—
tribution of energy is the source of the large fluctuations one

3)

1
finds in this model, which may have cosmological significance .

4., Ericson fluctuations in nuclear physics

Let us now retufn to the nuclear analogy in order to borrow
the idea of Ericson fluctuations, which may be of considerable
significance for testing and applying statistical models of hadrons.
We shall begin by describing what they look like and how they are
analyzed in nuclear physics 14).

The general idea is that at energies high enough for reso-
nances to overlap, one still sees peaks and dips. These are attri-
buted not to individual resonances, but to fluctuations in the

number and coupling strength of the overlapping resonances.

The idea can be applied to nuclei even in the presence of
"direct reactions" where the simple Bohr model does not hold.

Consider for example an elastic reaction such as

p+2 — p+2 , (27)

The imaginary part of the non-flip amplitude is expected to dominate

Write it as a sum over direct channel resonance contributions :

:E\M.lkgg :=:[‘“:z;: ¥ 7
~E+E_-ilL/a

N
~ 2
“HI v

where NJ is the number of "overlapping resonances", i.e., the

resonances in an interval a EN'rZ Since we have chosen an elasti

(28)

amplitude, the contributions of individual resonances tend to add
*
up with the same sign . Nevertheless from one energy interval

*) Although each resonance contribution has in general an extra
phase factor when the resonances overlap, which we have
ignored in writing (28).

18



AE ~ r to the next there will be statistical fluctuations in the
strength of i; 3'2, of relative order T/Jﬁ;. Thus A;l can be
expressed as the sum of a dominant (mainly imaginary) coherent term
Ag and a smaller fluctuation term A? :
el C F
AJ" = AJ’ + A T (29)

Similarly, adding all partial waves, we have

C F
Ae(I.) = A (o) + A o) . (30)

At 0=0° where all partial waves add coherently, AF/AC is
expected to be of order 1/,/N where

N=ZJ;N3_3F/,, (31)

The dominant term AC(G) will exhibit the usual sharp dif-=
fraction peak, possibly with diffraction minima at angles determined
by the nuclear radius. This structure varies only slowly as a func-~
tion of energy. By contrast AF varies rapidly, on a scale
AE ~ r . One looks for these fluctuations in interference with
the dominant ccherent term. The search is aided by the angular
dependence of AF, which is on the average weak and symmetric
about 90O because partial waves do not add coherently in AF (re—
call our discussion of the Fermi model in Section 2). What angular
dependence <AF> does have comes essentially from the envelope of
the Legendre polynomials which is less at 900. Thus AF is rela-
tively easier to see at large angles where AC has fallen far below

its peak value.
A classic example is
5é 56
p+ Fe ——)P-i- Fe (32)

which has been studied 15) over the range Ep:=9.3 to 9.6 MeV
at intervals of 2 to 5 keV, at each of several angles between 63°

and 1710. The very close spacing of points in energy is necessary

19



to resolve the Ericson fluctuations, which have a width comparable
to the average resonance width r- ~ 3 keV. The data on dcﬁ/di‘.
are shown in Fig. 1. At fixed energy, the dependence on angle is
characteristic of a diffraction peak with minima. But at fixed
angle, the cross-—section exhibits rapid Ericson fluctuations as the

energy is varied.

This example illustrates several points

i) not every peak or dip is an Ericson fluctuation. In the
example, the two large dips in the angular distribution are iden-—
tified as diffraction minima rather than Ericson fluctuations because

they persist at all energies.

ii) it is in fact ﬂard to distinguish Ericson fluctuations in the
angular dependence atla single energy. The average width 4 © of
a fluctuation peak or dip cannot be much less than 156)211800/Zma,
where zmax ~ pR 1s the largest strongly scattered partial wave.

In many cases this is not much smaller than the spacing between

diffraction dips in Ac.

iii) at fixed © or t one sees the Ericson fluctuations more
easily. Their typical width AE 1is of order (is in fact a mea-
sure of) r‘ ¢ in the example above an interval of =~ 100 [- was

surveyed, allowing many fluctuations to be seen.

It is the relative height of the fluctuations which is
sensitive to AF/Ac and thus to N::r}o . Nuclear physicists
have devised the following quantitative measure 14) to be applied
at fixed © or t. One measures the differential cross-section,
denoted by C'(E), at evenly spaced intervals over a range
E1 <E < E2. The average <&> is formed over this range. Then

one forms the normalized correlation function

C  -/(rlE)-<ed)" (53)
ELxr» <La_>3.

as a measure of fluctuations. Theoretically, if AC(Q) is essen—

tially constant over the range of energies considered, <@ > can

be expressed as

20
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<oy = ¢ A AR D

(34)

= |ACIP ARy 2 o C L

since the interference term averages to zero. In terms of these

14)

quantities, one can show that

C

2
= (ch) +2 0 o (35)
F e ~S)*

+
Y (T r o

which in our case (AF interfering with larger AC) is approxima-
tely C=26'F/a-c. comparing (35) and (33), one deduces a'F/a-C
from the data. This information, plus the independent determination
of r‘ from the average width of fluctuations in energy, allows an

estimate of the level density

P Nz r oy / Ceo)

5. Ericson fluctuations in hadron physics

Historically, Ericson fluctuations were searched for by

Allaby et al. 16), who studied

p+p—> p+p (36)

at 16.9 GeV/c at centre—of-mass angles 67° to 90°. They found the
cross—section fell off smoothly. Another relevant experiment was
that of Akerlof et al. 17) who studied reaction (36) at fixed
QCM==9OO, varying E in small steps. Once again, no evidence for
fluctuations was found. These negative results discouraged further

searches for Ericson fluctuations in hadron physics.

On the other hand, the motivation given earlier for Ericson

fluctuations is very general and should apply also to hadrons. But
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not necessarily to all hadron reactions; 1if the pp channel lacks
resonances, no fluctuations need occur there ! So the early sear-

ches may simply have had the bad luck to look in the wrong place.

It is important then to continue the search for Ericson

fluctuations, because :

i) in principle if one believes in a statistical model at all,

then it niust be possible to find fluctuations.

ii) the study of fluctuations could provide a practical tool
giving information on (E) at energies where resonances overlap
and a direct count cannot be made. This approach would supplement
the only existing method - Hagedorn's analysis of the Py distri-

bution.

Thus motivated, we proceed to look for fluctuations in

channels where resonances exist 8 . We shall borrow the whole

mathematical apparatus of the nuclear analysis, always remembering

that it will be less convincing for hadrons because whereas

r

nuclear
density varies (m 1 MeV), r- ] m"_ is the same as the

was very small on the scale on which the nuclear level

hadron
scale on which the hadron level density varies.

In practice, one has the choice of studying reactions such
as backward K—p - K—p where Ac is small (here we expect large
fluctuations, but the data are usually quite incomplete) or react—
ions where Ac is large (smaller fluctuations, but better data).

We shall focus first on the later type of case as exemplified by
T+p —>T+p . {37)
The coherent term |AC|2 is dominant, at least near the forward

and backward directions, and is therefore easy to estimate from the

experimental cross-section.

To obtain a crude estimate for the number of overlapping

resonances

N(m):rtm)/c(m) (38)
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we take

[ (w) 2w (39)
-

and

m/kT
/O(w»):.c. e ¢
7/a

(40)

Equation (40) is the Hagedorn level density with a=-=3 and with

1
an extra m ® which occurs because only that fraction of interme-
diate states with JZ:=JZ(initial) . contributes to each amplitude.

We use Hagedorn and Ranft!s value

k-': =I$OM¢V (41)

and

5/a
C = "WI (42)
3

which is roughlg congsistent with the numerical studics of lamer

and Frautschi 8 .

If the elastic amplitude were made up entirely of direct

channel resonances, one would estimate

(Aﬁo’)\ o~ ImVA_C (c*) (43)
N

in which case

E—F(o‘) = L ig_"c(o‘) x>
dt N d+

(44)

19)

with x2 of order 1. However, according to Freund and Harari

only a fraction
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- 0‘+°+ (E) - a_+a+(°°) (45)
r+°+{E)

of the forward amplitude couples to direct channel resonances. So

the amplitude AF must be multiplied by this small fraction and,

in what follows, we take x2= y2.

There is accurate elastic =T N data of the type we require
(E varied over a considerable range in small, equally spaced steps
at fixed 6 or momentum transfer) only at 0° and 180°. At 0° the
data are in the form of total cross~section measurements; for the
purposes of our analysis we converted these data into ImA (OO) by
means of the optical theorem and squared to form an effective
"dr(OO)/dt". The data 20)-24) for M p~— Trp and 11'+p-' TT+P
are displayed in Figs. 2-4.

Also displayed is de-F/dt, calculated at OO by means of
Eqs. (38)-(45). We recall that drF/dt takes the same value at
180° as 00, and we give it the same value for 17+p and Tr—p
elastic scattering. Thus (irjydt is the same for all cases in

Figs. 2-4.

The peaks and dips in the data of Figs. 2-4 are traditionally
interpreted in terms of individual (high J) resonances interfering
with a smooth background. We are proposing a somewhat different
interpretation in terms of numerous overlapping resonances with
fluctuating level density and coupling strengths. To show whether
the peaks and dips are commonly due to fluctuations in more than
one JP state, as required by our interpretation, comparable data
at angles other than 0° and 180° will be needed. Lacking such in-
formation, the best we can do at present is to show that our inter-

pretation is consistent with the existing data.

It is immediately clear from Figs. 2-4 that our interpretation
is qualitatively consistent with the data. Through interference

terms, the fluctuations in de-/dt are expected to be of arder 10%

25



[ub/(GevicY]

da/dt

105

104

103

3
~

[e¥e} OOOOCDOOOOOOOOOO

OOOOOOOOOOOOOOOO

do*
10° S8
it G
mp=——Tnp
. w0798
o "da(0°)/dt" *ai
e do (180°)/dt
I 1 \\ I 1 S—
2 3 4 5 6
p (GeVic)
Fig. 2 : Comparison of data on Tp- 'rr_p at ‘180O and 0 with

26

the theoretical cross—section drF/dt 2t which fluc-—
tuations would reach 100%. The experimental values for
de (180°)/dt are from Ref. 20), "de-(0°)/dt" is cal-
culated from data of Refs. 21) and 22), and da-F/dt is
calculated from Egs. (38)—(45) of the text.
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4drF/dt.

The experimental fluctuations are indeed of this order of magnitude;

when dr/dt:102de—F/dt, and of order 1% when de=/dt=10

they are greater for the smaller cross-—sections and die away more

slowly for de-(180°)/dt ~ s72*7  than for "de~(0°)/dt" ~ constant.

To show that our interpretation is guantitatively consistent
with the data, we must study the correlation function, generalized
to the present case where the non-fluctuating part of the cross—

section varies strongly with E. An appropriate generalization is

C =/(zlE)- o—suz>)z (+6)
e*p a's(E) ,

where c'S(E) is a smooth curve drawn through the data. The curve

is subjective, but constrained to have the same average as C‘(E).
In practice we always used a simple monotonically decreasing form
for o~ S(E).- The resulting values of Cexp for elastic Tr_p
and Tr+p scattering, backward and forward, are displayed in
Table III.

Also displayed in Table IIT are theoretical values for the
correlation function. These are computed using the appropriate

generalization of Eq. (35),

C = (o—F(E))z-r—z rF(E)rC(E) (47)
b (a—F{E)+a-C(E))L

with a-F(E) given by Egs. (38)-(45) and rC(E) estimated from
the (smoothed-out) data.

The agreement in Table III between Cth thus computed and

Cexp is quite good. The important result here is not the agreement

in over-all magnitude, which could easily be adjusted by varying
o and [ . Rather, it is

the agreement with the non-adjustable features of Cth -~ that Cth

is less for larger de-/dt, and decreases rapidly with energy -

the imperfectly known parameters ¢, T

which establishes the consistency of our interpretation.
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TABLE III

ANALYSIS OF FLUCTUATIONS IN TN

SCATTERING

Reaction

np-np (180°)

'y - wp (u=0)

U’tOt(

1) - e )
2

et & () - 20" (@)

2

Momentum Range
p_in GeV/c
1.7 = 3.4

[50s - 505
1.7 = 5.3
1.75 = 5.25
1.5 = 3.4

{ 3.5 - 5.3

T 1.5 - 5.3
1.5 - 3.9

0.15

0. 41
0.00
0.23

0.48
0,04
0.27

0.44
0.00
0.24




We now turn to reactions with small AC. Recall that we
did not consider such reactions immediately because the data are
generally less complete; nevertheless they are important because

statistical ideas appear in their purest form here.

To find examples of small AC we look at reactions where

only exotic exchanges are present, such as

K"+ p— K7+ p (48)
and

FepoF-p w

at small wu. Here AC consists of Regge cut contributions plus
possible exotic Regge pole exchanges, both of which may be quite

small. Indeed, de=/du jlpically falls like 5_10 (or, as we
)

-b
e

shall suggest below, in such cases.

25)

For the particular case K—p—*K-p at u=0, Michael
has estimated that the Regge cut contribution is less than the
experimental de-/du at laboratory momenta less than ~ 5 GeV/c.
Above 5 GeV/c the Regge cut term, falling only as 5-3 compared
to the more rapid decrease of the lower energy cross—section, is

26)=28)

expected to dominate. The existing data and Michael'!s

estimate for the cut contribution are shown in Fig. 5.

Michael's interest was in finding the Regge cut term
above 5 GeV/c. Our main interest is in the region below 5 GeV/c
where this form of coherent term is relatively very small. Of

-10
s corres—

course, the data may still be dominated by IAC|2 ~
ponding to an exotic Regge pole exchange with oL =~ —4. But it is
also possible that the dominant term is |AT|% ~ e*bVE, i.e., the
incoherent part of the sum over direct channel resonances with a

Hagedorn spectrum.

This possibility can be tested in several ways :
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i) one can predict da'F(1800)/dt in the same way as for
N scattering, making small changes appropriate for the slightly
different kinematics and level density in the K—p channel. The
predicted da’F(1800)/dt, as shown in Fig. 9, is quite close to
the data.

ii) the crucial test would be to measure do-(1800)/dt with good
accuracy at small intervals over a broad range of energies, as in
the backward I p measurements of Kormanyos et al. 20), and look
for fluctuations. Large fluctuations are expected in our theory
since de/dt is so close to de=/dt. It must be admitted that
no fluctuations are visible in the present data below 2.5 GeV/c,
but closely spaced measurements over a broader range of momenta are

needed to settle the question.

Similar comments apply to a number of other exotic reactions,

such as backward pp—pp and backward pp—RKK.

In summary, we have given a quantitative framework for
estimating when a reaction is dominated by statistical factors, and
at what level Ericson fluctuations are expected. These considera-—
tions should aid in testing statistical models and, hopefully, will
help us understand a broad range of data in the intermediate energy

rarge.
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