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Abstract

SeaQuest is a fixed-target experiment at Fermilab using 120 GeV proton beam from the Main Injector. High-
mass muon pairs from the interaction of proton beam with various liquid and solid targets were detected in
a newly constructed spectrometer. The primary goal of the experiment is to study the sea quark contents
in nucleons and nuclei. In particular, the Drell-Yan cross section ratios for liquid deuterium over hydrogen
will allow the measurement of sea quark asymmetry, d/u, for Bjorken-z ranging from 0.1 to 0.45, extending
the measurements of the previous experiment NuSea/E866. Improved statistics expected at SeaQuest for
x > 0.25 will allow us to check the surprising behaviour of d/u at large x observed in NuSea. Additionally,
SeaQuest data also provide the opportunity to study other very interesting physics. One such physics is the
absolute p+d and p+p Drell-Yan differential cross-section (M3d?c/dMdzxr). The measurement of Drell-Yan
cross section allows improved constraints on magnitude and shape of sea and valence parton distribution
functions (PDFs). In particular, the p+d measurement is sensitive to the d(z) + @(x) distribution. This
quantity is required for extracting d(z) — @(x) from d(z)/t@(x). The current global PDFs for light sea quarks
are very poorly constrained beyond Bjorken-z > 0.3. SeaQuest coverage in dimuon mass (M- ,+) ranging
from 4.2 GeV to 8.8 GeV (equivalently /7 in range 0.3 to 0.9 ) and Feynman-z (zr) ranging from 0 to 0.8
will extend the measurement from NuSea. Current results are presented in chapter 5. A comparison of E866
p+d and E772 p+d measurement is presented in chapter 8

The transverse momentum dependence of the Drell-Yan cross sections has also been presented. Results on
double differential cross sections (d?c/dMdpr and d?c/dxpdpr) from p+d and p+p Drell-Yan data from
SeaQuest are presented in chapter 7. The analysis of pp distribution from SeaQuest data will provide the
value of < py > for the lowest value of /s in the study of dependence of < pr > on /s. Additionally, pr
data from existing Drell-Yan experiments have been analysed and compiled systematically to study possible
dependence such as < pr > on xr and M,,-,+ of dimuon. The only published result on the dependence
of < pr > on xp has been reported by pion induced Drell-Yan experiment, E615. This thesis presents the

dependence of < pr > on xp for proton-induced Drell-Yan data from E866 and E906.
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Chapter 1

Introduction

1.1 100 years of proton

The famous gold-foil scattering experiment, conducted by Rutherford along with Marsden and Geiger in
1909, showed that atoms constituted of positively charged dense core (nucleus) orbited by negatively charged
electrons, thus implying that atom is divisible [9]. Following the discovery of atomic nucleus, Rutherford
conducted series of experiments by bombarding alpha particle on several materials and observed that a
particle (named as H-particle initially) was produced. In subsequent years these observations led to the

discovery of protons in 1919 - 1920 [10].
a+"N=p+170 (1.1)

The Rutherford’s model of atom consisted of protons and electrons thus explaining the observations from
alpha-particle scattering experiments. However, this model was not able to explain why the mass of nucleus
was almost twice of what can be accounted for by the mass of protons itself. This contradiction led the
scientists to speculate that the nucleus also contained neutral particles with similar mass as proton. The
discovery of neutron by James Chadwick in 1932 [T1] was an important step towards the understanding of
atomic nucleus. The discovery of proton and neutron (collectively known as nucleon) was just the beginning.
In the following decades, with the study of cosmic rays it was clear that the universe consisted of plethora of
‘elementary’ particles hinting towards the existence of even smaller sub-particles that made up the observed
‘elementary’ particles. In an attempt to organize the large number of observed particles, Murray Gell-Mann
proposed the ‘Eightfold Way’ in early 1960s which classified these particles (now known as hadrons) in
groups of eight, based on unitary symmetry. The hadrons were sub-divided into two class, baryons (or the
heavy hadrons) and mesons (lighter hadrons). See figure

In 1964, Gell-Mann[I2] and Zweig[13] [14] independently proposed the existence of fractionally charged

point particle called quarks held together by strong force. At the time, this idea was considered more as a
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Figure 1.1: Meson (left) and baryon(right) octet

mathematical construct to arrange hundreds of observed hadrons. In late 1960s, scattering experiments at
SLAC (Stanford Linear Accelerator) began to reveal a much richer picture of proton, the spatial distribution
of charge and current inside it, thus requiring the scattering cross-section to include the structure functions.
The structure function can depend on the scale of interaction which is essentially the momentum-squared of
the virtual photon. They also depend on a kinematic variable z which is a measure of the inelasticity of the
scattering reaction. A striking finding at SLAC[I5] showed that for large momentum transfers, the structure
functions were independent of Q? (a phenomenon later termed as ‘scaling’ [16]), which would be only possible
if the electrons were scattering off point particles. The scattering in this regime is termed Deep Inelastic
Scattering (DIS) discussed in more detail in section 1.2. The SLAC experiment also revealed that these point
particles have spin 1/2. The observations at SLAC confirmed the existence of fractionally charged point-
particles inside protons. Feynman proposed the parton model to explain the scaling phenomenon. According
to parton model, the hadron is treated in ‘infinite-momentum’ frame which is a valid approximation only at
high energies. The choice of this frame Lorentz contracts the hadron and the partons do not interact among
themselves. In the case of DIS the interaction of high-energy photons can be described as an incoherent sum
of photon-parton interaction. At the time it was not immediately clear that Gell-Man’s quark and Feynman’s
parton are the same entities. With further scattering experiments and the development of theory of strong
interaction QCD (Quantum Chromodynamics), quarks in the Quark model were identified as partons in

Feynman’s parton model.



1.2 Deep Inelastic Scattering

The evidence of point-like constituents in nucleons was first observed using deep inelastic scattering (DIS) in
which high energy lepton is inelastically scattered off a nuclear target [17]. It is an extension of Rutherford’s
scattering to high energy, thus providing much finer resolution for probing the internal structure of nucleons.

The differential cross section for DIS is given as

do o’ 1 0 1 0
- o Fal@, Q%) cos® 5 + 1rFi(@, @) sin” 5 1.2
dE'dQ 4E’Sin4g v b(z, Q) cos 2 + i 1(x, Q%) sin 5] (1.2)

where E’ and 6 are energy and angle of scattered lepton in the laboratory frame, M is the mass of nucleon,
and v is the energy transferred by the scattering lepton. Q? and z are Lorentz-invariant quantities, namely,
Q? = —¢?, where ¢ is the momentum 4-vector of the exchanged virtual photon, and x = Q?/2p.q = Q*/2Muv.
Fi(z,Q?%) and Fy(x,Q?) are the structure functions. The fact that structure functions, F; and Fy, become
independent of Q% and only dependent on a single variable z is known as Bjorken scaling [16]. The scaling
behaviour of structure functions implied scattering from point-like charged particle inside nucleon.

As mentioned in Section 1.1 Feynman proposed the parton model in 1969 in order to describe the scaling
behaviour observed in the deep inelastic scattering process [I8]. According to this model, hadrons are
composed of point-like particles called partons (now identified as quarks and gluons). Fig shows the
Feynman diagram for DIS. In a frame where proton has very large momentum , its constituents will have
mostly collinear momentum and each parton of type ¢ has a probability f;(z) to carry fractional momentum
x of the proton. In the parton model, structure functions are expressed in terms of parton distribution

functions (PDFs), fi(z), as shown below

Fi(z) = lzeffi(x) (1.3)

and

Fa(z) =) _elafi(a), (1.4)

where the sum is over quark flavor ¢ with charge e;. Measurement of DIS cross section, which is expressed
in terms of structure functions, is then used to extract PDFs. Fig shows a recent extraction of the f;(x)

based on a global fit to existing DIS data and the Drell-Yan data (to be described next).
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Figure 1.2: Deep inelastic scattering tracted from DIS and Drell-Yan data

1.3 From DIS to Drell-Yan process

In 1970, soon after the discovery of scaling in DIS Christenson et al. reported the first measurement of
massive lepton pairs produced in p + A collision at 29 GeV [I]. Fig shows the dimuon mass spectrum
with a remarkable drop in the cross section with increasing dilepton mass. Soon after Christenson et
al. reported their findings, S. Drell and T.M. Yan proposed a mechanism (Fig for massive dilepton
production [19, 20]. It is an electromagnetic process in which a quark from one hadron annihilates with an
antiquark from another hadron to form a virtual photon which then decays into a lepton pair. A comparison
between Fig[l.2] and Figl[T.5] shows that the Drell-Yan process is closely connected to the DIS. Both are
electromagnetic processes involving an exchange of virtual photon. While the DIS is a t-channel process
with an exchange of space-like (¢> < 0) virtual photon, the Drell-Yan is an s-channel process involving a
time-like (¢ > 0) virtual photon. While the DIS cross section is usually dominated by the contribution
from the abundant valence quarks, Fig[L.5| shows that the Drell-Yan process must involve an antiquark and
is a powerful tool to probe the antiquark distributions in the nucleons or nuclei. Another unique feature of
the Drell-Yan process is that the parton distribution of mesons and antiproton, which cannot be accessed

by DIS, can be measured using meson or antiproton beam via the Drell-Yan process.

1.3.1 Drell-Yan Kinematics

Consider the reaction

A+B =1+ + X, (1.5)
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where hadron A collides with hadron B, producing a pair of charged leptons, [~ and [*, together with a
collection of undetected particles called ‘X’. In the nucleon-nucleon center-of-mass (CM) frame the momenta
of the interacting quark and antiquark are respectively, x11/s/2 and —x2+/$/2. /s is the CM total energy
and x(x2) refers to the momentum fraction of the beam (target) nucleon carried by the quark (antiquark).
The energy is given by x1/s/2 and x2+/s/2, ignoring the mass of quarks. The dilepton energy, F and

longitudinal momentum P, are obtained straightforwardly as

B (x1 +22)V/s

. (1.6)

P - (T1 — x2)V/s
2

(1.7)

The experimental observables M and zp, where xp is the ratio of P, over the maximal value of P, are
related to x; and x5 as

M? = E? — P? = sxy19 (1.8)

and

p (21— 22)V/s/2

= = = -_ 1.9
e T s T o
Equivalently, 7 and x5 can be calculated from M and zp as
Lo M)



and

Lo =

[($%+4M72)1/2 — 5] (1.11)

N =

Equations and show that one could deduce the values of z1 and x5 for each Drell-Yan event, simply
from the mass and momentum of the detected dilepton.
The cross section for ¢ — 71T can be calculated from quantum electrodynamics, and is given as

1 4’ Q?

where M is the invariant mass of the dilepton and the color factor 1/3 is to take into account the fact that
only quark and antiquark of the opposite colors can annihilate to form a virtual photon, and there is 1 in 3
chance of that happening. At leading order, the Drell-Yan cross section is a convolution of the qg — 71+
elementary cross section with the parton densities in the colliding hadrons. Hence, the above equation is
multiplied by ga(x1)dzq, the probability that a quark in beam hadron A has a momentum fraction 1,
and Gp(xe)dxy, the probability that an anti-quark in target hadron B has a momentum fraction zo. The

differential cross section can then be written as
B 4 Q%qa(x1)qp(x2)dr drs

2
d?o = W , (1.13)

where @ is the charge of the annihilating quarks. Similarly, an antiquark from hadron A can annihilate with

quark from hadron B. Summing over the quark flavor i, we have

d*c 4’ 9 _ _
= 91 > Qg a(@0)@,8(x2) + G a(1) s, B(22) ] (1.14)

dxldxg

The above can be rewritten in terms of the measurable quantities M and zp as

d*o dra?  x170 9
— 2(q; Gi Ji i , 1.15
ey — OMi 7+ % Qi [6i,4(21)0,B(22) + Gi,4(21) i, B(2)] (1.15)
which can be rearranged as
d?o 8ra? x1T9
M3 = = Ji G ; , 1.16
Tiden 0 7t > Q7las,a(1)8:,8(x2) + G, a(01) s, B(22)] (1.16)

i
known as the scaling form of cross section. This form of cross section is independent of beam energy

provided it is measured at same value of xp(= 1 — x2) and 7(= z122). An alternative way to write the



scaling form of differential equation is to express it in terms of dimensionless variables 7 = M? /s and rapidity

y = (1/2)in(z1/z2) as

d?o Ao
S =
drdy 97

Z Q71qi.A(21)@i,B(x2) + Gi.a(21)qs,B(22)] (1.17)

1.3.2 Successes of naive Drell Yan process

Drell-Yan process was successful in explaining the large drop-off in the cross-section at high mass as is evi-
dent from equation that cross section is inversely proportional to M3. It also gave several predictions
which were confirmed subsequently in the experiments to follow.

a) Scaling behaviour

As shown in equation the scaling form of Drell-Yan cross section is independent of the centre of mass
energy +/s for a given zp and 7. This was tested by the CFS collaboration with proton beam at three
different beam momenta (200, 300 and 400 GeV/c)[2I]. Another experiment carried out at the CERN ISR
[5] also verified the scaling behaviour at /s of 44 and 62 GeV. Scaling results are shown in Figure

b) Decay angular dependence
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Figure 1.6: Scaling form of cross section plotted as a function of /7 for v/s = 44 and 62GeV/c

Another important initial success of Drell-Yan prediction was the shape of angular distribution of the pro-
duced dileptons. If the lepton pair is produced from head-on collision of quark and anti-quark, the angular

distribution would have the same shape as in case of e"et — p~ut, that is, 1+cos?d. Here, 6 is the angle of



pT in the dilepton rest frame. Such a dependence on 6 was first observed in several early experiments [22] [23].

1.3.3 Inadequacies of naive Drell-Yan process

Despite making successful predictions, the naive Drell-Yan process was still inadequate in explaining certain
observations.

a) Transverse momentum distribution

The averaged transverse momentum of the observed dileptons was too large (>1 GeV/c) [24] to be explained
by the naive Drell-Yan process. According to the naive Drell-Yan process, the dilepton transverse momentum
should be the vector sum of the intrinsic transverse momentum of the annihilating quark and anti-quark.
The mean transverse momentum of the quarks due to fermi motion is ~ 0.35GeV/c which is much smaller
than the observed < pr > of the dileptons. This discrepancy indicated that naive Drell-Yan process was not
enough to explain all the observation.

b) Absolute cross section

A second observation that indicated an adequacy in the naive Drell-Yan process was the absolute cross
section. The data from several experiments [24] showed that the prediction was about a factor 2 lower
than the observation. Table shows a tabulation of the ratio of measured to predicted cross-section

(K = Omeasured/Tnaivepy ) from various experiments[4].

Experiment | Beam+Target | Beam momentum (GeV/c) | K = 0pmeas./OnaiveDy
E288 p+ Pt 300/400 ~1.7
WA39 Tt + W 39.5 ~ 25
E439 W 400 1.6+0.3
p+ Pt 150 2.3+0.4
p+ Pt 400 3.1+£0.54+0.3
NA3 nt + Pt 200 2.340.5
n~ + Pt 150 2.4940.37
n~ + Pt 280 2.2240.33
NA10 T+ W 194 ~2.77£0.12
E326 T+ W 225 2.7040.08+0.40
E537 p+W 125 2.45+0.1240.20
E615 T+ W 252 1.784+0.06

Table 1.1: K factors (0meas./Onaiveny ) for previous Drell-Yan cross section measurements



1.4 Quantum Chromodynamics

Gell-Mann’s quark model was successful in explaining that the large number of observed hadrons are not
fundamental particles, instead they consist of fractionally charged spin 1/2 elementary particles. However,
there were two puzzles that this model was unable to explain: Why were free quarks not observed and the
existence of ATT baryon (which consists of three up quarks each with spin +1/2, which will have symmetric
wavefunction, hence, violating the Pauli’s exclusion principle). To solve this puzzle, a new quantum number
‘color’ was proposed. The existence of ‘color’ quantum number would satisfy Pauli’s exclusion principle in
case of AT baryon by assigning three different colors (red (r), green(g), blue(b)) to the three u quarks.
It should be noted that color quantum number has to satisfy the following two conditions to address the
problem: i) the quarks must carry at least three different types of colors, ii) the quark wavefunction must
by anti-symmetric (for the total wavefunction of AT™ to be anti-symmetric).

To address the issue of non existence of free quarks, the concept of ‘color confinement’ was proposed,
according to which all observed hadrons are ‘colorless’ combination of quarks. Thus, baryons are formed
with three quarks in color neutral combination (rgb) and mesons in color-anticolor combinations (77, ¢g,
bb). On the other hand, the SLAC experiment revealed that for very high energy interaction (high Q?), the
quarks behave freely. A quantum field theory must contain both features: i) strong enough at large length
scales such that the quarks always occur in bound states, ii) weak enough at small length scales such that
quarks behave nearly free. Amongst all the rapid developments to understand the theory of ’strong’ force,
it was the discovery of asymptotic freedom by Frank Wilczek, David Gross[25] and David Politzer[26], that
Quantum Chromodynamics (QCD) was established as the correct theory of strong interactions.

QCD differs from the field theory for electromagnetic interactions, QED, in many aspects. The electric
charge equivalent in QCD is ‘color’ charge. However, unlike electric charge there exists three types of color
charge (r,g,b). The strong force is mediated by vector bosons, called gluons which also carry color charge,
unlike QED where the mediator, virtual photon is electrically neutral. The fact that gluons carry color
charge makes QCD crucially different from QED. The strength of the strong force and its dependence on the
length scale can be qualitatively understood as follows. A quark is surrounded by virtual gluons appearing
due to the quantum fluctuations, which is similar to vacuum polarization (charge anti-charge pairs) in case
of electric charge. The electric charge is ‘screened’ because of the presence of charge-anticharge pairs around
it. The bare charge is only revealed in high energy measurements which probes short-length scales. The
dependence of the strength of the force on the probed length scale is termed as ‘running coupling constant’
a(Q?). Similar screening effect of the color is also observed. However, in case of strong interactions the

gluons themselves carry color. The quark is continuously emitting and reabsorbing the gluons which possess



the property to carry away its color (referred as ‘anti-screening’). Therefore, unlike electromagnetic force,
the strength of strong force decreases with decrease in anti-screening effects at high energy or short-length

scales. This phenomenon is termed asymmptotic freedom.

1.5 QCD corrections

The inadequacy of naive Drell-Yan process to explain the large dilepton pr and the discrepancy between
data and theory on cross section suggested the importance of QCD. Bringing QCD into the picture allowed
the emission and absorption of gluons by quarks and anti-quarks. The hard gluons emitted by quarks can
impart large transverse momentum, thus explaining the large observed pr in early Drell-Yan experiments.
Additionally, with the inclusion of gluons, higher order feynman diagrams will also contribute to the total
cross-section. The next-to-leading order (NLO) diagrams that would contribute to the process are subdivided
into 3 categories, namely, gluon bremstrahlung, gluon Compton scattering and vertex correction (interference
term). The gluon bremstrahlung is still a ¢g interaction, with either quark or anti-quark emitting a gluon
before annihilating into a virtual photon as shown in Figure [I.7} The gluon Compton scattering is different
in terms of initial state interaction. In this case, a quark or anti-quark scatters off a gluon to produce
a virtual photon (Figure . These two subprocesses contribute to large pr of the virtual photon and
eventually the dileptons. Specifically, the Compton process is more dominant when py > M/2, implying
that at high pr Drell-Yan events are more sensitive to gluon distribution than anti-quark distribution [27]
inside the nucleon. The third type of contribution is the vertex correction or the interference term (Figure
which comes from the cross term between O(a?) and O(a?). As depicted in Figure the initial and

final states are the same for both diagrams and should be added coherently.

q v q g

q 9 q gl
Figure 1.7: Gluon Bremstrahlung ¢gg

10



L H

i
>~

g q Y

q g Y

9 q q
Figure 1.8: Gluon compton scattering (gg or gg)

q q

>\/\/W\/w Y }/W\ Y

q q

Figure 1.9: Vertex correction or interference term

1.6 Probing the flavor structure of nucleon

The earliest parton model assumed that the proton sea was flavor symmetric (@(z) = d(x) = 5(x)), even
though the valence quark distributions are clearly flavor asymmetric (u(z) ~ 2d(x)). The assumption of
sea-quark flavor symmetry was not based on any known physics principles. Indeed, the strange-quark sea
was later found to be only about half of the up or down quark sea. This flavor asymmetry was attributed
to the heavier strange-quark mass, suppressing the gluon splitting to quark-antiquark process g — ¢q for
the strange quarks. The similarity between the u and d quark masses suggests that the proton’s sea should
be nearly up-down symmetric, since the ¢ — u and g — dd processes should occur with very similar
probabilities. It is important to note that proton contains two u valence quarks and only one d valence
quark. This up-down asymmetry could lead to asymmetry in the @ and d sea quark distributions. The
quest to understand the light sea quark asymmetry led to several experiments. New Muon Collaboration
(NMC) carried out a DIS experiment to extract the Gottfried integral by scattering muons off proton and
deuteron targets. Their results indicated that indeed there exists asymmetry between d and @. This result
motivated physicists at CERN to conduct another experiment (NA51) using the complementary Drell-Yan
process to verify this observation. Their results also confirmed the NMC observation that d > 4. However,

NAS51 spectrometer acceptance was limited to a region of z = 0.18. NuSea/E866 experiment at Fermilab
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was designed to study the dependence of d/# on z ranging from 0.04 to 0.3. The results from E866 are
shown in figure which shows an intriguing dependence of d/@ on z. The ratio rises with z until  ~ 0.2
and drops beyond that. In fact, the results indicate that @ > d for the highest z. Due to limited statistics
in higher z, it is difficult to arrive at a definitive conclusion. E906/SeaQuest, the successor of E866/NuSea,
was proposed to pin down the behaviour of asymmetry at high x region using 120 GeV proton beam. Since
the differential cross section at a fixed x; and zo depends inversely on centre of mass energy squared, s,
reducing the beam energy from 800 GeV to 120 GeV provides enhancement of a factor ~7 in the cross
section measurement (see equation 1.14).

Although the flagship measurement of SeaQuest/E906 is to measure the sea-quark asymmetry, the col-

0.5

I| III|'|TT'|III

0.25 | E866 Systematic Error N
1%

O;IIIIE: poa by Sl b
[} 0.1 0.2 0.3 0.4 0.5 0.6
x

Figure 1.10: d(x)/u(x) from various experiments and the CTEQG6 global fit. NA51 measured the ratio of
d(z)/u(x) at a single value of x. E866 extended the measurement to a broad range of x. Red dots show
projected sensitivity of SeaQuest at 3.4 x 10'® protons on target (POT).

lected data can very well be used to understand other very important physics. This thesis focuses on two
topics: absolute Drell-Yan cross-section measurement for p+p and p+d interaction and pr distribution from

SeaQuest data and its comparison with existing Drell-Yan data on transverse momentum distribution.

1.6.1 Absolute cross-section measurement

The invariant form of p4+p LO Drell-Yan cross section can be written as

W~

2o 8ra? xiT 4 1 1
3 pp 122

= —d d 18
M Mdey P u(zy)u(xs) + —d(x1)d(x2) + —a(xr)u(xe) + —d(z1)d(z2) (1.18)

Nel

12



In the above expression, contribution from heavier quarks ( s(z)3(z),c(x)é(z) terms) have been ignored.
For large x, the terms where the anti-quark is coming from the beam and quark from the target can be

ignored. Hence the above equation can be approximately written as
d2app 8ra? zizy [4

1
m|xp>>0 5 P §u(x1)ﬂ(w2)+§d(xl)d(:p2) . (1.19)

Due to the charge squared weighting factor and the fact that u(xz) ~ 2d(x)the dominant contribution (> 80%)
in p+p Drell-Yan cross-section is the u(x)@(z) term. Hence, the p+p data can be used to constrain the u(x)
distribution. Similarly, the p+d cross-section is written as a sum of p+p and p+n contribution, ignoring the
nuclear effects in deuterium. For large zp, it can be approximated as

3 d20pd 8ra? xize 1

M°——|, R —
dexF| F>>0 9z +a29

[(4u(z1) + d(z1))(a(x2) + d(z2))] (1.20)

The above equation shows that the p+d Drell-Yan data are sensitive to the d(x) + @(x) distribution in
proton, the knowledge of which is required to obtain d(z) — @(z) from the measurement of d(z)/@(x). The

quantity d(z) — u(x) is a measure of the non-perturbative contribution to the nucleon sea as perturbative
processes are known to produce almost symmetric sea (d(z) ~ @(z))[28].

Uncertainty bands from NNPDF3.0[29] for u(x) and d(z) quark distributions plotted in Figure show
that u(z) and d(x) are reasonably well constrained at least up to z = 0.7 and & = 0.5, respectively. On
the contrary Figure shows that @(x) + d(z) is constrained only up to 2 = 0.3. Data from HERA, E605
and E866 [30) 4] constrained the sea quark distributions at low . However, there are no measurements to

constrain them at intermediate x. SeaQuest data will be able to improve the constraints on light sea-quark

PDFs in this region.

INPDF u(x) uncertainty

D NNPDF d(x) uncertainty

‘0.2‘ . ‘0.4‘ . ‘0.6‘ . ‘0.8‘”“ “‘0.2‘ . ‘0.4‘ . ‘0.6‘ . ‘O.B‘ -
X X

Figure 1.11: NNPDF 3.0 (NLO) uncertainty band for «w(z) and d(x) quark distributions at Q=5 GeV
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Figure 1.12: NNPDF 3.0 (NLO)(left) and CT14 (NLO)(right) uncertainty band for @(z) + d(x) quark
distribution at Q=5 GeV

1.6.2 Drell-Yan py distribution

The parton distribution functions (PDFs) describe the distributions of quarks and gluons as a function of
Bjorken-z which is the longitudinal momentum fraction of the hadron carried by the quark. Hence, PDFs
provide a single dimension picture of the nucleon structure. To get a 3-dimensional picture of the parton
momentum, it is important to understand the momentum of partons in transverse direction. These types
of generalized three dimensional PDFs are referred to as Transverse Momentum Dependent PDFs (TMD
PDFs). Measurements from various experiments using different mechanisms are useful resources in testing
the universality of PDFs and TMD PDFs.

While the study of TMD in general requires transverse polarization of the beam and/or target, SeaQuest
can provide useful information on the pp distributions of the Drell-Yan cross section. In LO Drell-Yan, the
pr distribution reflects the intrinsic kp distribution of the interacting quarks and antiquarks. When gluon
emission is taken into account in the higher-order Drell-Yan, the py distribution is expected to broaden. A
study of pr distribution in unpolarized Drell-Yan could probe both quark/antiquark’s kp distribution and
the effect of QCD from gluon emission.

Double differential cross sections d?c/dMdpr and d?c/dxpdpr from SeaQuest have been analyzed and
preliminary results on possible dependence of < pr > on zp and M will be presented. The SeaQuest data
provide a unique opportunity to explore the py distribution at lowest /s amongst other existing pr data.

Additionally, a systematic study of pr distribution from existing Drell-Yan data will also be presented.
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Chapter 2

SeaQuest experimental setup

The E906 apparatus is designed to measure high energy muons produced in forward rapidity region from
interaction of 120 GeV proton beam with various targets. Figure 2.1] shows a schematic of the E906 spec-

trometer. The positive z is chosen along the beam direction, positive y-axis points upward and positive x-axis

Figure 2.1: Schematic of SeaQuest spectrometer

is oriented to form a right-handed coordinate system. The origin of the coordinate system is at the centre of
the front face of the upstream magnet (FMAG). Muons produced from the interaction of proton beam with
liquid or solid targets go through the FMAG, which bend muons horizontally (along x-axis). The FMAG
also serves as a beam dump and a hadron absorber. Further downstream, there are four tracking stations.
Each station is equipped with hodoscope arrays and tracking devices. The fast signals from hodoscopes

at each station are used for events triggers. Additionally, the first 3 stations comprise of drift chambers
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and the fourth one contains proportional tubes. The drift chambers provide high spatial resolution required
for precise track reconstruction. In between stations 1 and 2, there is an analysing magnet (KMAG) for
measuring the momentum and charge of the muon tracks. In between stations 3 and 4, there is a 1 meter
thick iron wall which absorbs background hadrons. Energetic muons can penetrate this wall. Hence, station
4 is used for muon identification.

Details about the beamline, targets, and different components of the spectrometer are described in more

details in the following sections.

2.1 Proton Beam

2.1.1 Main injector

The accelerator complex at Fermilab is shown in Figure SeaQuest receives 120 GeV/c proton beam
from the Main Injector (MI). Before reaching the Main Injector, proton beam goes through the following
stages:

1) An ion source generates 35 KeV proton beam by accelerating ionized hydrogen with a static electric field.
2) A Radio Frequency Quadrupole (RFQ) accelerates the beam to 750 KeV and bunches them into 2 ns long
buckets, each separated by 18.9 ns, which is a direct result of the operating frequency 53.1 MHz of RFQ

3) The beam then enters the linear accelerator (or Linac) where it is accelerated to 400 MeV, preparing
protons for booster accelerator.

4) The booster accelerator is a circular ring of approximately 1500-foot circumference where the energy of
the beam is ramped to 8 GeV. A set of 84 RF buckets called ’booster batch’ is inserted into the Recycler
for the next phase of acceleration. Typically, 6 booster batches are inserted into the Recycler.

5) The Recycler is a 2 mile circumference ring where the proton beam can be ‘slip stacked’, i.e., booster
batches can be inserted on top of one another, hence more intense proton beam can be produced. Recycler
has the capacity to hold 588 RF bucket(7 booster batches), however only 494 (6 booster batches) of them
are filled. The remaining buckets are intentionally left vacant to serve as abort gap.

6) The proton beam then reaches the Main Injector, which is the final stage before it gets delivered to
SeaQuest. The MI sits right beneath the Recycler in the same tunnel and accelerates the proton beam from

8GeV to 120 GeV/ec.

120 GeV/c proton beam is extracted from the MI over a duration of 4 seconds every minute. This is

known as a spill. An electromagnetic septum is used to scrape the beam off MI and deliver it to SeaQuest.
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Figure 2.2: Accelerator Complex of FermiLab

This method is known as slow-spill extraction. The extracted beam retains the 53.1 MHz beam structure.
The protons arrive in 2 ns bunch, known as an RF bucket, every 18.9 ns during each spill. As described

previously there are 588 RF buckets in a single turn. 369k such turns constitute one spill.

369k x 588 x 20ns ~ 4.1s (2.1)

A typical RF bucket has approximately 10* protons, which sums upto 2 x 10'? protons every second leading

to approximately 1 x 10'2 protons per spill.

2.1.2 Beam intensity monitor

Unfortunately, the slow spill extraction method, does not provide a uniform beam intensity for SeaQuest.
The beam intensity distribution peaks at approximately 25k protons per RF bucket. However, some of the
buckets have very high intensity (greater than 100k protons per bucket). Such buckets are termed ‘super-
buckets’. These types of buckets generate events with a large number of hits on detectors. Hence, triggers are
easily satisfied for such events. Once the trigger is satisfied, signals are sent to the Data Acquisition System
(DAQ) to start recording the hits. The deadtime of DAQ is proportional to number of hits. Therefore, for

such events it generates several hundred microseconds of deadtime for the DAQ. Moreover, for events with
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very high chamber occupancy, the tracking software has very low efficiency to reconstruct a true signal, if
present. To get around this issue, a Beam Intensity Monitor (BIM) was installed at SeaQuest. BIM is a
cerenkov counter that outputs fast analog signal proportional to the number of protons. BIM is connected
to a QIE (charge integrated encoder) which converts the signal into a digital output. The cerenkov counter
is synchronized to main injector RF clock. Whenever the number of protons in the triggering bucket or any
of the neighbouring + 8 RF buckets is higher than the preset value, the BIM sends an inhibit signal to the
trigger system to prevent it from firing. Therefore, such high intensity events are not recorded.

x10° 3 Turns starting at 2.0s

= 1 |
8o || | | |

Protons per RF
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Figure 2.3: A plot showing number of protons per RF bucket as a function of RF bucket number (or time).
The red line indicates the threshold setting during the above data taking period. The RF buckets that
exceed the threshold are inhibited. The lower panel shows a situation when most of the RF buckets were
above the threshold.

A diagram of the BIM is shown in figure The cerenkov detector uses Photo Multiplier Tube (PMT)
to detect cerenkov light induced by the interaction of proton beam with a gaseous mixture ( 80% Argon and
20%CO032) at atmospheric pressure. The cerenkov light produced between baffle and mirror is reflected by
the mirror to reach the PMT. Neutral density filters are installed before the PMT to ensure a linear response
over the range of instantaneous intensity that SeaQuest receives.

The output signal from PMT is fed into QIE module which integrates and digitizes it. The high timing
resolution of the QIE module is capable of measuring the proton intensity for each RF bucket. The BIM
measurement is normalized using the Secondary Emmission Monitor (SEM) counter placed upstream of the
Cerenkov detector. The SEM itself is caliberated by activation of a thin foil placed in the beam.

Apart from inhibiting triggers when the instantaneous intensity is higher than the threshold, the BIM also
provides beam intensity information needed to calculate the live proton on each target during data taking.
In particular, it measures

a) integrated beam intensity over each spill (Igrg),

b) integrated beam intensity when trigger inhibit is imposed (I;nnipit)-
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Figure 2.4: BIM Cerenkov counter

c) integrated beam intensity when DAQ is busy excluding the trigger inhibit buckets (Ipagbusy)-
d) intensity information of triggering RF bucket along with + 16 RF buckets around it.
e) complete intensity information of each bucket during a spill.

The above measurements along with SEM measurement are used to calculate the live proton as

I
live proton = —222EM (

QIE

Ig1e — Linkivit — IDAQbusy)s (2.2)

where Igosga is the intensity of the SEM counter. Linear response of BIM measurement has been verified

using SEMR.5]31]
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Figure 2.5: The phototube saturation can result in the QIE response being saturated with G2:SEM (SEM).
The plot here shows the response of QIE as a function of SEM measurement for two runs (9338, 9339). The
mirror in the BIM gets damaged over time due to radiation hence can also affect the QIE response with the
phototube being saturated. Hence it is important for the two analyzed runs to be as close to each other in
time as possible to avoid the effect of mirror damage.

2.2 Targets

The SeaQuest target system is placed downstream of the Beam Intensity Monitor and 129 c¢cm upstream
of the front face of the focusing magnet. There are two liquid targets, hydrogen and deuterium, which are
contained in flasks. A third target is a vacuum filled flask of the same dimensions known as the empty flask.
It is used for background subtraction for the liquid targets. There are three solid targets; namely Iron,
Carbon and Tungsten. A fourth target, known as no-target, which is nothing but solid target holders and
air. It is used for background subtraction for solid targets. Each solid target is divided into 3 discs of equal
length, which are spatially separated along the beam direction to minimize variation in acceptance between
the solid and liquid targets. The targets are mounted on a motorized up-down motion table. The target
control system accurately lines up one target at a time in front of the beam and switches to the next target
position in between spills. Table shows the length, density, interaction length and spills/cycle of each
target position. The spills/cycle is the number of spills during which the beam interacts with a particular

target in one cycle.

Target Position | Density(g/cm?) | Length(cm) | # of Interaction length | Spills/cycle
LH2 1 0.071 50.8 0.069 10
Empty Flask 2 - - 0.0016 2
LD2 3 0.163 50.8 0.120 )
No target 4 - - 0 2
Iron 5 7.87 1.905 0.114 1
Carbon 6 1.80 3.322 0.0696 2
Tungsten 7 19.30 0.953 0.096 1

Table 2.1: SeaQuest target configuration
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A typical cycle lasts for 23 spills before a reverse cycle for another 23 spills. The target rotation is
necessary to reduce any systematic differences between targets that may arise due to any time-dependent

changes in beam or spectrometer. A schematic layout of the target table is shown in figure [2.6

Table =
Motion
Axis
Empty 50.8cm T
25.4cm
Beam l
—> D +
None e
Iron |- a ° o » of —
76 cm
Carbon —
Tungsten

Figure 2.6: Target table layout

2.3 Magnets

SeaQuest uses two dipole magnets, namely, focusing magnet (FMAG) to focus high mass dimuon pairs into
spectrometer acceptance and analyzing magnet (KMAG) to measure the momentum of muon tracks. The
magnetic field of both magnets point in the same direction vertically i.e.; +y direction, which bends muons
horizontally along 4+ direction, depending on the direction of magnetic field and charge associated with the

muon track. Thus, X-Z plane is the bend plane and Y-Z plane is the non-bend plane.

A Perspective drawing of the FMAG is shown in figure It consists of a stack of high purity solid
iron blocks of dimension 43.2 cm(H) x 160 cm(W) x 503 cm(L) with embedded aluminium coils taken from
the E866 SM3 magnet. The coil is excited to 2000 A which is able to generate an almost uniform magnetic
field of 1.9 T within the iron block. This corresponds to a transverse pr kick of 3.07 GeV. The magnetic
field inside FMAG is modeled using a magnetostatic program. The magnetic field calibration is done by
studying the reconstructed mass of the J/¢ (3097) resonance peak. FMAG serves three main purposes:

focusing high mass muon pairs, a beam dump, and a hadron absorber. First, FMAG focuses high pr or
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Figure 2.7: Schematic of focusing magnet

high mass dimuons into the spectrometer acceptance. High mass dimuons also correspond to high z7, hence
a good spectrometer acceptance of such events is valuable. Additionally, it also defocuses low momentum
muon pairs, hence reducing the low momentum muon background. The solid iron block also serves as a
beam dump. Only ~ 10% of the beam protons interact with targets. The remaining 90 % interacts within
the FMAG, thus preventing the proton beam from going through the tracking stations. FMAG also absorbs
hadrons produced via interaction of the beam with the target or beam dump itself.

A 25 cm deep and 5 cm in diameter hole is drilled at the centre on the front face of the FMAG. This increases
the distance between the target cave and interaction point inside the dump, hence lowering the amount of
radiation in the target area produced via dump interactions. This is important as the target cave needs
to be frequently accessed for maintenance work. Additionally, it decreases the possibility of misidentifying
dump events as target events to some extent.

The momentum analysing magnet, KMAG, is positioned further downstream, in between stations 1 and 2.
It is used for analysing the momentum of muon tracks. It is 3 meters long with an open aperture as shown
in Figure 2.1. The coils are excited to 1600 A which produces a magnetic field of 0.4 T corresponding to
a transverse pr kick of 0.41 GeV. The magnetic field distribution is measured using a hall probe and the

calibration is determined using reconstructed mass of J/¢ (3097) resonance peak.

2.4 Tracking stations

The SeaQuest detector system comprises of 4 tracking stations. All four of them have hodoscopes, while only
the first three of them have drift chambers and the fourth one has proportional tubes. The fast signals from

the hodoscopes at each of these stations are used for triggering. The drift chambers provide good spatial
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resolution required for precise track reconstruction of muon tracks. The proportional tubes at station 4 is

used for muon identification.

2.4.1 Hodoscopes

Hodoscope paddles are made of scintillating material with a photo-multiplier tube at their ends. When a
charged particle passes through a scintillator paddle, photons are emitted. The scintillation light is converted
to photo-electron and amplified by the photo-multiplier tube. This electric signal is recorded by the DAQ
(Data Acquisition System). The hodoscopes being fast in response are used to make the trigger decisions.
However, the hodoscope sizes are not fine enough to provide the spatial resolution required to estimate the
kinematics of the charged particle. In addition to serving as input for trigger system, hodoscope hits are
used for finding chamber hits which match the hit pattern of the hodoscope paddles. This helps to reduce
the random hits on drift chamber and hence improve the efficiency of tracking software.

SeaQuest uses 4 hodoscopes, one at every station. Specifications of each hodoscope is given in table
At each station, arrays of paddles are arranged in 2 orientations. Vertical arrays of paddles measure the
track position horizontally (along the x-direction) and are called the X-planes. Similarly horizontal arrays of
paddles can measure the track position in the y-direction and called the Y-planes. There is a slight overlap
of paddles (~ 0.32 cm) to avoid gaps in acceptance. Both X and Y measuring planes are further divided
into two sets each. The X-planes can measure the x-position for tracks with y > 0 (denoted as Top or T)
or with y < 0 (denoted as Bottom or B). Similarly, Y-planes can measure y-positions for tracks with > 0

(denoted as Left or L) or with z < 0 (denoted as Right or R).

Name | # of Paddles Paddle Width [cm] Overlap [cm] Width x Height [cm x ¢cm]  z-Position [cm]
HI1L 20 7.32 0.3175 78.74 x 140.117 654.03
HIR 20 7.32 0.3175 78.74 x 140.117 654.03
H1B 23 7.32 0.3175 162.008 x 69.85 667.118
HIT 23 7.32 0.3175 162.008 x 69.85 667.118
H2L 19 13 0.3175 132 x 241.285 1402.86
H2R 19 13 0.3175 132 x 241.285 1402.86
H2B 16 13 0.3175 203.238 x 152 1421.06
H2T 16 13 0.3175 203.238 x 152 1421.06
H3T 16 14.5875 0.3175 227.518 x 167.64 1958.51
H3B 16 14.5875 0.3175 227.518 x 167.64 1958.51
H4Y1L 16 23.4775 0.3175 152.4 x 365.797 2130.27
H4Y1R 16 23.4775 0.3175 152.4 x 365.797 2146.45
H4Y2L 16 23.4775 0.3175 152.4 x 365.797 2200.44
H4Y2R 16 23.4775 0.3175 152.4 x 365.797 2216.62
HAT 16 19.6475 0.3175 304.518 x 182.88 2235.5
H4B 16 19.6475 0.3175 304.518 x 182.88 2250.68

Table 2.2: Hodoscope specifications during Run 2
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Name | z-Position [cm]
HI1L 653.923
HIR 653.923
H1B 666.681
HIT 666.681
H2L 1404.93
H2R 1404.93
H2B 1421.11
H2T 1421.11
H3T 1958.62
H3B 1958.62
H4Y1L 2130.27
H4Y1R 2146.45
H4Y2L 2200.44
H4Y2R 2216.62
H4T 2234.91
H4B 2251.09

Table 2.3: Hodoscope positions during Run 3

2.4.2 Drift chambers

A drift chamber measures the drift time of electrons created inside the chamber due to ionization of the gas
mixture when a charged particle passes through it. This allows precise measurements of the positions of
charged particles. SeaQuest uses drift chambers in the first three tracking stations to accurately determine
the x and y coordinates of muons passing through it. Table lists the specifications of the wire chambers
used in SeaQuest. Stations 1 and 2 have one chamber each and are referred as D1 and D2. Station 3 has
two chambers, D3p and D3m, where p and m stands for £+ y-direction. Each chamber has six wire planes
categorized into 3 different views with two planes each. The x and x’ are oriented along the y-direction, u
and u’ are tilted 14° , and v and v’ are tilted —14°. The ‘primed’ planes are shifted horizontally by a distance
of half a cell-width (distance between two wires) relative to the ‘unprimed’ planes. This configuration helps
resolve the left-right ambiguity, which is essential to differentiate which side of the sense wire did the muon
track passed through.

The signals from the sense wires are fed to ASDQ (Amplification, Shaper, Discriminator and Charge inte-
grator) cards which are used for amplification and discrimination. The processed signal is sent to the LSB
(Level Shifter Board), which converts it to standard LVDS (low voltage differential signal). These LVDS
outputs are transmitted to the TDC module for digitization and readout by DAQ. Specifications of each
chamber are listed in table 2.4 D1 and D3m were upgraded for later datasets and are listed as a version
number after decimal. The upgrade was done to increase the acceptance in kinematic variable 2 which is

important for the SeaQuest measurements. The dates when these upgrades were installed are given in table
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D1.1 was originally used in the E866/NuSea experiment, while D2 and D3m.1 were built for E605. In
order to use them for SeaQuest, significant work was required to bring them back to working condition.
D1.2, D3m.2 and D3p were built from scratch for SeaQuest.

The gas mixture used for all chambers except D1.2 is Argon : Methane : CF4 (88% : 8% : 4%). This gas
mixture give an electron drift velocity of 20um/ns. D1.2 used ‘fast’ gas mixture Argon : CF4 : Isobutane :
Methylal (68% : 16% : 13% : 3%). The drift velocity for this chamber is 50um/ns. Higher drift velocity at
station 1 is useful for better chamber performance due to high rate at station 1.

The resolution of the dimuon invariant mass spectrum is dominated by multiple scattering in FMAG. To
keep the contribution of position resolution to the overall resolution at less than 10%, the spatial resolu-
tion of chamber planes is required to be better than 400um which corresponds to a momentum resolution

Ap/p = 0.03.p(GeV/c)

Chamber Plane | # of wires Cell width [cm|] Width x Height [cm x cm]  z-Position [cm)]
D1.1 X 160 0.64 102 x 122 617
UV 201 0.64 101 x 122 +20
D1.2 X 320 0.50 153 x 137 617
U, v 380 0.50 153 X 137 +1.2
D2 X 112 2.1 233 x 264 1347
UV 128 2.0 233 x 264 +25
D3p X 116 2.0 232 x 166 1931
U, v 134 2.0 268 x 166 +6
D3m.1 X 176 1.0 179 x 168 1879
U, v 208 1.0 171 x 163 +19
D3m.2 X 116 2.0 232 x 166 1895
U,V 134 2.0 238 x 166 +6

Table 2.4: Drift chambers specifications. The z-positions of the U, V planes are relative to the corresponding
X plane.

Run Dates Stl St2 St3

1 2012 Mar. - 2012 Apr. D1.1 D2 D3p&D3m.1
2 2013 Nov. - 2014 Aug. D1.1 D2 D3p&D3m.2
3 2014 Nov. - 2015 Jul. D1.1 D2 D3p&D3m.2
4 2015 Nov. - 2016 Mar. D1.2 D2 D3p&D3m.2
5 2016 Mar. - 2016 Jul. D1.1&D1.2 D2 D3p&D3m.2
5 2016 Nov. - 2017 Jul. D1.1&D1.2 D2 D3p&D3m.2

Table 2.5: Drift chamber combination during various data-taking periods.
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Figure 2.8: YZ (left) and XZ (right) view of the prop tube

2.4.3 Proportional tubes

Proportional tubes are used in Station 4 for muon identification. There is a 1 m thick iron wall in between
station 3 and station 4 which absorbs any hadron before it reaches station 4. For precise track reconstruction,
there are 4 planes of proportional tubes; first and fourth plane being horizontal and second and third being
vertical. Just like hododscopes, the horizontal arrangement measures the y position and vertical arrangement
measure the x position. Each plane consists of 9 modules with 16 prop tubes each. Each of these sets is
further divided into two staggered sets, with the second layer behind the first one shifted by half a tube
width, to solve the left-right ambiguity as in the case of the wire chambers. A schematic of the proptube
is shown in figure Each tube is made of aluminium tube of 2 in diameter with 1/16 in thick wall. The
sense wire at the centre of the tube is a gold-plated 20um platinum wire, typically set at 1800 V. Table
shows the specifications of each plane. The gas used in the proportional tubes is the same Argon : Methane :
CF4(88% : 8% : 4%) mixture used for most of the chambers. The maximum drift time is 650 ns, which gives
a hit-rate tolerance of up to 2 MHz for a single wire, while the hit rate is in general lower than 1 MHz per

wire. The position resolution was found to be 500um, which suffices for the purpose of muon identification.

Plane Name # of Tubes Tube Width [cm] Width x Height [cm x cm]  z-Position [cm]
P1H 144 5.08 368.3 x 368.3 2100.7
P1V 144 5.08 368.3 x 368.3 2176.6
P2v 144 5.08 368.3 x 368.3 2369.1
P2H 144 5.08 368.3 x 368.3 2392.2

Table 2.6: Proportional tube specifications
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2.5 Trigger

The SeaQuest trigger system is optimized for selecting high mass (4-10 GeV) dimuon events and suppressing
low mass events arising from charmonium and meson decays and other sources of background from target
or beam dump. The trigger system is designed as such, to minimize DAQ deadtime, and hence, maximize
trigger rate on high mass dimuon candidates. Two kinds of trigger systems are used in SeaQuest, namely
NIM-based and FPGA-based. The signals from hodoscopes are used as input to the triggering system. The
time resolution of hodoscopes (determined by the length of the hodoscopes) are of the order of nanoseconds
and therefore is well suited for triggering on RF buckets which are separated by approximately 18.9 ns.

The NIM trigger utilizes Nuclear Instrumentation Module for trigger information. During nominal data
taking, two types of NIM trigger are active, known as NIM-1 and NIM-3. The NIM-1 trigger is a coincidence
of y-measuring hodoscope hits from all 4 stations. This trigger is used for studying the efficiency of the
x-measuring hodoscopes. The second NIM trigger, NIM-3 is also known as the random trigger. It triggers
on the coincidence of two clocks, 7.5 kHz pulses generated by a gate generator and a 53.1 MHz RF clock.
NIM-3 trigger samples the intensity profile of beam, which is utilized for various rate dependence studies.
The hits from random trigger are superimposed on top of true Drell Yan signal hits in the Monte Carlo. Such
samples of Monte Carlo (known as messy MC) are used to study the dependence of tracker efficiency on the

instantaneous beam intensity. This is explained in more detail in the next chapter on Monte Carlo simulation.

Common Sto

RF

s

Hodos

Pulser

Figure 2.9: Schematic of SeaQuest Trigger

The FPGA trigger system uses 9 CAEN v1495 VME modules, Altera EP1C20F400C6 FPGA (Field
Programmable Gate Array), and a “Trigger Supervisor” VME module. A schematic layout of the FPGA
based trigger system is shown in figure [2.9 There are 3 levels of v1495 modules from level 0 to level 2.
Level 0 and level 1 each has four v1495 modules for measuring the top and bottom halves of both x and
y measuring planes. The level 0 operates in two modes, known as pulser mode and production mode. In

pulser mode Level 0 output produces random hit patterns. This mode is used to study the response of Level
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1 and Level 2 modules. In production mode, the level 0 just transmits the output from the hodoscopes to
level 1. The level 1 or the ‘track finder’ is responsible for finding valid muon tracks from hodoscope hits at
each stations in each of the four quadrants. It selects possible tracks by matching the hodoscope hit patterns
with a preselected list of hit patterns known as trigger roads. The trigger road combination is generated by
examining the path of single muons and dimuons from Monte Carlo simulations. A list of roads (known as
roadset) are selected to maximize the signal event rate. The roads which were found to be highly populated
by hits from background events (known as hot roads) are removed from the roadset.

Once the trigger roads are identified, level 1 outputs the road information, charge and transverse kick of the
tracks to level 2. The level 2 has a single v1495 module and acts as ‘track correlator’. At this stage the
tracks are combined in all possible pairs and the combinations are matched with the preselected combination
of roads for dimuon trigger. A list of possible triggers are given in table 2.7 If any of the listed triggers are

satisfied, a signal is sent to Trigger Supervisor which then signals the DAQ to record the event.

Trigger Half Charge pr(GeV) Notes
FPGA1 TB/BT +-/-+ N/A Dimuon trigger for physics run
FPGA2 TT/BB +-/-+ N/A Not used, too many background events

FPGA 3 TB/BT +4+/-- N/A Same sign trigger for estimating combi-
natoric backgroud

FPGA4 T/B +/ - N/A Single muon trigger

FPGA 5 T/B +/ - > 3GeV  High pr single muon trigger

Table 2.7: Level 2 FPGA trigger logic conditions. In the ‘Half’ column, T stands for a track in the top half
and B stands for a track in the bottom half.

2.6 Data Acquisition, Decoding and Storage

The SeaQuest Data acquisition system is divided into four subsystems, namely, Main DAQ, Scaler DAQ,
Beam DAQ and Slow Controls. Main DAQ records spectrometer hits and trigger timing information. Beam
DAQ reads out beam information from QIE. Scaler DAQ records scaler information from beam, triggers and
detectors used for real time monitoring and diagnosis. Slow Controls record various spill level information

like the target position and magnet current.

2.6.1 Main DAQ

The Main DAQ uses VME-based CODA software developed at Jefferson Lab (CEBAF On-line Data Ac-
quisition). Main DAQ consists of multiple VME crates at its front end which receives signal from trigger

supervisor. Depending on the spectrometer configurations, the number of VME crates can vary. SeaQuest
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typically employs 14 VME crates and one crate for trigger supervisor (TS). Each VME crate consists of a
single board processor called ROC (Read out controller), a TT (Trigger interface) and several TDCs. The
trigger supervisor coordinates with each VME crate through its trigger interface. The trigger supervisor can
receive upto 12 trigger inputs. Five of the input channels record FPGA triggers, four of them are for NIM
triggers and the last three for BOS, EOS and flush events. Once the TS receives a trigger, it is set to ‘busy’.
TS interacts with each VME crate through TT to stop the TDCs and to process the collected data. The TS
also talks to the BIM before accepting the trigger. If the BIM detects the triggering bucket or neighbouring
+8 RF bucket intensity to be larger than the inhibit value then the trigger is not accepted. In case the beam
is not inhibited, the TDCs are read out in series by ROC which is sent to CODA via private network. Once
the readout is complete, T1 sends a signal to TS. After receiving readout completion signal from each TI,
TS is reset and ready to accept next trigger.

The time from acceptance of trigger to readout completion is approximately 150us. Each TDC takes 10us
to stop once ‘accept trigger’ signal is received. Additionally each TDC requires a 32us copy-in-progess time
even if there are no stored hits. Although all the VME crates are processed and read out parallelly, TDCs
in each crate are readout in series by the ROC. This means that the slowest VME crate determines the

deadtime during read out.

2.6.2 Scaler DAQ

The Scaler DAQ records beam, trigger and hodoscope data useful for diagnosis during data taking. Scaler
DAQ runs independently of Main DAQ and is controlled by a separate CODA software. It has a single VME
crate with one processor board and four scaler cards installed. One of the VME scaler card is triggered
by coincidence of a 7.5KHz gate generator and a beam spill gate. This records 7.5KHz response of two
unrelated hodoscope and can be used to calculate duty factor of the beam. The other 3 VME scalers are
triggered by BOS and EOS signals and therefore records integrated counts over a spill. The collected data
include number of times each trigger is recorded by Main DAQ), intensity of beam and hodoscope rates. The

Scaler DAQ data are processed real time and displayed on the monitor in the SeaQuest Control room.

2.6.3 Beam DAQ

The Beam DAQ records data from cerenkov detector. It has RF bucket resolution and reads 53.1 MHz
structure of the beam. It measures duty factor of the beam as DF =< I >2 / < I? >. Duty factor provides
a measure of the beam quality and is required by the accelerator divison for tuning the beam. Apart from

measuring the duty factor, Beam DAQ also records the following data: a) Intensity of each bucket b) buckets
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which have instantaneous intensity higher than inhibit threshold ¢) buckets during which the trigger was
busy due to DAQ dead time (excludes the buckets in b). This allows for calculation of live protons on target
during each spill. The Beam DAQ reads data after receiving the EOS signal. In order to read large volume
of data ( 300 MB) in between spills ( 55s), the DAQ program utilizes multithreading. Three threads are
used to read data from BIM’s three ethernet chips. Additionally, eight threads are used to analyse the data
realtime, so that it can be displayed on the monitor in the control room. Realtime analysis of the Beam

DAQ data is useful for monitoring and diagnostic purposes during data taking.

2.6.4 Slow Controls

Slow Controls refer to several different programs or scripts to synchronize DAQ data stream, to monitor
various systems during data taking, and to record process variables which have a frequency of a spill or larger.
These scripts utilize EPICS (Experimental Physics and Industrial Control System) software to communicate
process variables with other systems across servers.

Each DAQ system writes its respective output on separate files and the decoder must know the spill ID
(which is a unique number to identify each spill) to which each data corresponds to, in order to synchronize
the data collected by each DAQ. Each DAQ is assigned a spill ID. A master spill ID is stored in a text which
is incremented at each EOS signal. It is then inserted into the CODA file of both Main DAQ and Scaler
DAQ. The master spill ID is also written on the easily accessible but volatile memory of EPICS server.
Scripts that perform realtime analysis, read the spill ID from EPICS server and attach it to their output.
The data from Slow Control system is collected after the EOS signal has been received. It includes beam
parameters such as quality and intensity of beam, configuration of accelerator and status of magnets. These
data are read via Fermilab accelerator control network (ACNET). Additionally, the target in the path of
beam, target rotation and temperature and pressure of the cryogenic system are also recorded. A multi-
channel digital meter is used to record the environmental conditions such as temperature, humidity and
pressure inside the experimental hall. Slow control system also alerts the shifters about low disk space, or if
any of the DAQ has stopped working. It is critical in monitoring the status of the experiment and helpful

in smooth collection of good quality data.

2.6.5 Decoder

Typically, one run of physics data taking is about an hour long. The approximate size of the raw data file
collected is ~ 1 GB. The raw data is in hexadecimal format. The raw CODA file from Main DAQ along with

corresponding information from other DAQ systems is stored on the SeaQuest servers and backed up on
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tape storage provide by FermiLab computing division. The Main DAQ raw file contains TDC information
from hodoscopes, drift chambers and proportional tubes of each triggered event. Bucket by bucket intensity
information from the Beam DAQ is also attached to the MainDAQ CODA file.

These raw data files are processed by a custom C++ software known as ‘decoder’. The decoder converts
the data from its original format, calculates additional information and fills the MySQL database with the
decoded data. Data from each run is stored in separate MySQL schema.

The Decoder also runs in sampling mode during data taking and quickly decodes the sampled raw data which
is displayed on SeaScape, a web based tool to access the collected data in real time. This important feature
of decoder provides easy access to the data being collected and facilitates monitoring of the experiment

during data taking.
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Chapter 3

GEANT Monte Carlo

SeaQuest utilizes two Monte Carlo programs to simulate the performance of the spectrometer, namely,
FastMC and GMC. FastMC is a fortran-based simulation code inherited from E866 and modified according
to SeaQuest’s experimental configurations. The algorithm from FastMC was adopted for another simulation
code for SeaQuest, which is based on GEANT to perform more detailed simulations. I have been responsible
for running, maintaining and updating the GMC simulations for the collaboration. This chapter describes
the GMC program and the improvements made to it during the time period I was responsible for it. As the
name suggests GMC is based on the GEANT4 package which is a toolkit to simulate passage of particles

through matter. The GMC follows the following architectural setup [32].

e Set the physics processes list. For SeaQuest, the physics list was set to FTFP_BERT_EMX.

e Initialize the construction of spectrometer with the help of geometry files. These geometry files include
information about the size, orientation, material of detector components, magnetic field information

etc. These files are produced and updated based on the survey results (details in Section 3.3).

e For GEANT to start simulation of an event, it needs a particle to begin with. Specifically, it needs a par-
ticleID, its position and momentum along with the geometry description of the spectrometer. Based on
the GMC settings specified at runtime, it will use one of the two generators, namely, gun(background)
or dimuon generator, to generate primary particles (to be discussed in the section 3.1 and 3.2).

e Initialize a run. A run is defined as a collection of events. Within a run, the settings such as generator,
physics process etc. cannot be changed. This step ends after the number of specified events are
processed. It is represented by G4Run class.

e Each event in a run is processed by generating primary particle and all the subsequent secondary and
tertiary particles. It is represented by G4Event class.

e A step in GEANT is defined by particle’s point of start and end. It contains information such as
energy loss in that step. After each step the track information is updated. It is represented by G4Step

class.
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e A track is defined in GEANT as a snapshot of the particle’s status after a step has been completed.
A track is deleted or killed if certain criteria are not satisfied, e.g., for SeaQuest it is deleted if the
particle’s energy is less than 1 GeV, or has a negative z momentum, or could not make it past z=350

cm. It is represented by G4Track class.

3.1 Gun generator

Gun generator starts with 120 GeV proton incident at the target along the beam-axis. The incident proton
interacts with the target or dump (as specified in the settings) to create pions and kaons, which further decay
into muons and electrons. It is a tool to understand the background tracks and its properties. Unfortunately,
it is not very efficient at generating a large background sample, as only a small fraction of background tracks
make it all the way through the detectors. A sample of 40 million protons was generated in a period of 1 week
of running. The tracking software was able to find ~ 200 tracks in this sample out of which only ~ 30 survived
the target selection cuts. SeaQuest, being a high beam intensity experiment receives ~ 2el2 protons every
second. Even producing a sample equivalent to 1 second of beam would take thousands of weeks. Hence,
it is not feasible to use gun Monte Carlo to generate adequate background sample. However, the generated
samples are useful for exploring the regions in our detectors which are more prone to background tracks by
studying the hit distribution due to these tracks on the detectors. For example, a comparison of the shape
of the hit distribution from gun MC simulation and random trigger (NIM3) data shows a good agreement

(Figure . This supports the usage of NIM3 trigger data for investigating accidental dimuon background.
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Figure 3.1: H1B (left) and HIR (right) hit distribution comparison between NIM3 data (blue) and gunMC
data (red). The x-axis is the hodoscope paddle number. H1B (x-measuring) has 23 paddles, of which 4
paddles were turned off on each side during data taking. HIR (y-measuring) has 20 paddles.
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Gun MC samples are also useful in studying the characteristics of the background tracks as well as
the effectiveness of the analysis cuts in removing contamination coming from dump and upstream events.
Figure shows the distribution of types of particles that hit each hodoscope. This study was done using
32 million gun monte carlo sample (which is approximately equivalent to 1300 RF buckets assuming 25000
protons per bucket). Under the mentioned assumption, one can qualitatively estimate that there are about

3 background (~ 4000/1300) muon tracks per RF bucket that hit Station 1. One can also look at the
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Figure 3.2: Histogram depicting different types of ‘particle’ that hit hodoscopes at all four stations. This
plot was generated using 32 million gun MC events. The Monte Carlo uses FTFP_BERT_EM X physics
process list and outputs the creation process for each of the generated particle. Pions and Kaons are
created in ‘Protonlnelastic’ process. The muons are created from ‘Decay’ process of Kaons and Pions.
The electrons are created from conversion of photon to e~ e™ pair (‘conv’) and bremstrahlung radiation from
muons (‘bremstrahlung’). e~ is also created by ionization process when a muon passes through gas chambers
(‘muloni’)

locations from which these particles originate. Figure [3.3]shows the z distribution of the origin of muon and
electron tracks. One can immediately notice that there are more u+ than p~, which is reasonable given the
proton beam is positively charged. There are muons produced upstream of target which can be explained
by the decay of ws and K's produced from the interaction of proton beam with the instrumentation package.
The total interaction in the upstream instrumentation is approximately ~ 0.985% [33]. The plot also shows
muons being produced in between target and dump indicating the presence of decay-in-flight pions or kaons
which are produced inside the target region. The generated gun MC sample was tracked using the same

requirements applied to real data. Approximately 200 tracks were found from a sample generated using 40
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Figure 3.3: z-position (zp) of the origin of muon and electron tracks that hit hodoscope 1. The dashed
vertical lines in the left plot shows the location of the centre of the target and front face of the beam dump.
In the right hand plot the vertical dashed lines are drawn to show the end of the dump, the location of
station 1 hodoscope and drift chamber.
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Figure 3.4: Initial z momentum of the muon tracks.

million protons. The target selection cuts were applied on the tracked data. Studies show that the cuts are
effective in removing background tracks generated inside beam-dump (Figure [3.5). However, there are still

some muon tracks coming from decay-in-flight pions that survive the cuts.

3.2 Dimuon event generator

There are three types of dimuon generator: Drell-Yan, J/¢ and v'.
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Figure 3.5: Origin(z0) of background tracks before and after target selection cuts

3.2.1 Drell-Yan event generator
Input distributions

The Drell-Yan dimuon generator generates two unlike sign muons with Drell-Yan kinematics. It samples
dimuon mass (M) from a flat distribution ranging from 2 GeV to 10 GeV. Similarly, the Feynman-z (x ) is
also picked from a flat distribution in the range -0.95 to 0.95. The M and x g of the dimuon are sampled from
a uniform distribution to ensure equal statistics for the entire M and xr range. Dimuon pr distribution is

sampled from the Kaplan functional form [34] given in equation

_ pr
fler) = (1+ (pr/p1)»)®’ (3.1)

where parameter p; is a measure of the broadness of the pr distribution. It is related to the mean of the pr

distribution as shown in the following equation,

< pr>= T (3.2)

The default value of p; used in MC was 2.8 GeV /c. This value was inherited from the previous Drell-Yan
experiment at Fermilab, known as E866/NuSea. E866 used 800 GeV proton beam which corresponds to
Vs = 38.8 GeV [35]. However, the /s for E906/SeaQuest is 15.01 GeV. Data from previous Drell-Yan
experiments show that mean pr of the dimuon increases with increasing /s for a given /7 [24]. Hence,

mean pp for E906 should be smaller than E866. Additionally, early data from pion induced Drell-Yan show a

36



clear dependence of < pr > on zp of the dimuon|36]. Based on the above observations, the parameter p; was
adjusted using the ‘reweighting method’ until the py distribution from GMC agree with the SeaQuest data.
The Drell-Yan angular kinematics is considered in dimuon rest frame (Collins-Soper frame [37]). The polar
angle of 1~ in the Collins-Soper frame follows a 1 + cos?6 distribution with a uniform azimuthal angular
distribution in ¢. Therefore, the angular kinematic variables, 6 is chosen from 1 + cos?6 distribution and ¢

from flat distribution ranging from 0 to 2.

Transformation from Collins-Soper frame to Laboratory frame

Due to the consideration of dimuon in Collins-Soper frame, the transformation of the kinematics to lab frame
requires three lorentz transformations: one along the virtual photon’s —p7 direction to an intermediate frame
(here, dimuon z-momentum is 0), second transformation is along negative z-direction from the intermediate
frame to hadron-hadron centre of mass(CM) frame and final transformation is also along negative z-direction
from hadron CM frame to lab frame.[38]

In Collins-Soper frame (Figure , the z-axis is chosen along the bisector of P, and 7132, where P, and
P, are the beam and target hadron vector momenta, respectively. The plane formed by P, and P, is called

hadron plane and it makes an angle ¢ with the lepton plane.

& 2y
h/
P] “\ P2 o f o
-._\_\_\_\_‘__\_\_;:\ ‘__'_'_._,_,_.-o—'—"'_'_ s

o

# g I:I z/ A
. - I z/ Z.
//" /
lepton plane (cm)

Figure 3.6: Illustration of angles § and ¢ in Collins-Soper frame. Figure taken from [2]

The direction of x-axis in case of Collins-Soper frame is along the virtual photon pr direction which

makes this frame very useful. The energy-momentum vector for the muons in this frame is written as

Pyt = (Eu+s (pu+)zs 0p+ )y (0p+)z) = (M/2,py+ sinbcos, p,+ sinfsing, p,,+cost) (3.3)

Pu- = (Epﬁa (pu* )ZE7 (pu* )ya (p,u* )z) = (M/Qa —Pu+ 5in0008¢’a —Pu+ SinHSin(ba —Pu+ 6050) (34)
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Lorentz transformation is applied to boost from

CS frame along —p7 direction, which is essentially the x

axis in this frame. The ycg and Bgog for the boost are given as

2 2

o pp+ M
Yos = i (3.5)

pr
_ 3.6
Bes ERTE (3.6)
The resulting momentum vector in the intermediate frame (denoted by ’) are given by
/ / / / /

b+ = ( ) (p,ﬁ-)zv (P,ﬁ)y, (P,ﬁ)z) (3.7)
= (ves(Eu+ + Bes®u+)z), ves((Pu+ )z + BasEu+ ), pu+ sinfsing, p,+ cost) (3.8)
p;— = (E,IL—v (p;— )y (p;—)y» (p/u—)z) (3.9)
= (ves(Eu+ — Bes®u+)z), ves(—(pu+)e + BosE,+ ), —p,+ sindsing, —p,cos)  (3.10)

Before boosting to hadron-hadron CM frame along z-direction the x-y axis is rotated (¢,) to match the x-y

axis in lab frame.

(p;+ )m |Totated
(p:fr)y |rotated
(p;— )m |Totated

(p'/u* )y |rotated

€050 (P+ )a — SinGn (D)4 )y (3.11)
08~ (P4 )y + 85I~ (D)4 )z (3.12)
cosd (D), )z + sing (p),- )y (3.13)
—c05¢(p),- )y + i~ (P, )a (3.14)

Next the lorentz transformation is performed along z-axis to obtain the energy-momentum 4-vector in hadron

CM frame using,

YoM

Bem

where py, is defined as

pL =

_ Vet (3.15)
A /M2
PL
_ : 3.16
EENTE (3.16)
M2
xFQ\/ga -=) (3.17)
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The x and y component of the momentum remains unchanged. The energy and z-momentum transform as,

(Pt )zlomr = vom((P)+): + BomE,+) (3.18)

Eulem = vom(E .+ + Bom(p),+)-) (3.19)

Similarly, the final transformation to lab frame is performed using

Ebeam + Mproton
= 3.20
Yiab NG ( )
Blab = Pheam (3.21)

Ebeam + Mproton

as,

(Pu+)zlia = Yav((Put )zl + BiavEu+lonmr) (3.22)

Etliaw = Yao(Eutlom + Biav(Pu+)=lom) (3.23)

Cross section weighted calculation

Each event is assigned a weight based on its cross-section which is proportional to the probability of that
event happening. Based on the kinematics of the sampled dimuon, beam and target fractional momentum

xp(or 1) and zr(or z3) are obtained using the following definition [39]

.

.Q vy P.Q
P’ 2T p.pP

Tr1 =

(3.24)

>

where, P; and P, are beam and target 4-momentum vector, P is the total momentum defined as P = P; + P,
and Q is the 4-momentum of the lepton pair. The Monte Carlo computes Leading-order (LO) Drell-Yan

cross section as,

dMdzr  9M3 x4 + 29

5 |t (G + Faten)) + o) (Gt + Fute) + 25()ste)| | 325

d’0p0 _ 8ma® @13 E {u(xl) (iu(@) T Zd(xz)) +a(zy) <iu(x2) + Zd(m)) + 26($1)C($2)} +

where Z/A and N/A are fractions of protons and neutrons, respectively, in the target nucleus.

To get the next-to-leading-order (NLO) cross section for each dimuon, the LO cross section is multiplied by
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the K-factor based on its x1 and xo(described next).

dQJLO
de.Q?F

d*onro

Doy K factor(z1, z2)

(3.26)

K-factor and NLO calculation

It has been known that LO calculation is inadequate in describing the data. Hence, Next-to-Leading-Order
(NLO) cross section calculation is required to take into account QCD effects at order a,. To obtain NLO
result, each dimuon is assigned a factor, known as K-factor. The K-factor is defined as the ratio of cross
section at NLO to cross section at LO. The K-factor values used in the code initially were based on E866.
SeaQuest being a completely new experiment with different beam energy, required the K-factor calculations
to be revised. The earlier K factor was not only 1-dimensional (dependent on dimuon mass), but also had
incorrect shape for our case. A thorough study using NLO code from INFN group [40, 411, [42], to calculate
a 2-dimensional K-factor (dependent on x1,z2 or M,zr)[43]. Based on this study the MC was updated
to utilize a 2-dimensional K-factor as a function x; and zs by Bryan Kerns. This study also improved the

agreement between data and MC. The K-factor is calculated from a separate NLO code [3] as:

dQO'NLo/dxldJJQ

K factor(xzy,22) = d?o10/dx1dxs

(3.27)

The K-factor can become significantly larger than 1 and can also modify the shape of the LO cross section
(See figure . The K-factor is saved in 100 x 100 grid in x1-z2 phase space, with both z; and x5 ranging
from 0 to 1.

Additionally, to account for the luminosity, beam current (by default this value is set at 2el2 pro-
tons/second) and nucleon density of the target nucleus is included in the weight. Additionally, the weight
includes the factor 1/((Mmmaz — Mmin) (€ Frmaz — T Fmin)) to account for the thrown event density in the phase
space.

Thus, event rate (assuming 2el2 protons per second) in a particular kinematic range is calculated by

summing up the weights of all events in that kinematic range and dividing by the number of events thrown.

3.2.2 J/¢ and ¢/ dimuon generator

Unlike the Drell-Yan generator, the mass of dimuon from charmonium is set to their corresponding mass.
The angular distribution (cosf and ¢) is thrown flat. The differential cross-section of J/1 has a gaussian

form in zr obtained from a fit to the Color-Evaporation-Model calculation, and the normalization is obtained
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Figure 3.7: K factor as a function of 5 for shown values of 1. The calculation[3] is performed using CT14
LO and NLO PDFs

from a parametrization to the E789 paper taken from [44]

dUJ/\D Bf e_zi“/&j%/\ll
=Ae VT [ —— 3.28
dxF GJ/\I/ vV 2 ( )

where A = 1464 nb, B = 16.66, 0,;/4 = 0.2398. Additionally, branching ratio B(J/¥ — p~pu*) = 0.0594
is also multiplied to the total cross section. For ¥’ cross section, the J/¥ cross section is multiplied by a
scale U, = [B(Y — p~pt) xow]/[B(J/¥ = p~pt) x0,/9] = 0.019. Just like Drell-Yan generator, the

weight of each dimuon also includes luminosity (beam current and nucleon density) and phase space factor

1/($Fmax - me'Ln)

3.3 Geometry

The geometry is defined in two parts in the Monte Carlo.

a) First part consists of construction of the spectrometer and magnetic fields that need to be fed to GEANT
for simulating particle passage through it.

b) Second part consists of information that digitizes and translates the output from GEANT simulation to
a format that mimics the collected data format.

The former section of geometry requires construction of the following objects:

1) G4Material: This object contains information about material density, element composition and its per-

centage fraction in mass.
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2) G4VSolid: This object contains the dimension and shape of each component of the spectrometer.

3) G4LogicalVolume: Connects each G4VSolid with a G4Material and contains information about whether a
volume is a detector or not. Each logical volume is connected to one or more physical volume which contains
information about the position and orientation of the spectrometer components.

The latter part of geometry contains detailed information about detector planes in each physical volume.
It includes information such as centre of each plane, its orientation, number of wires and cell width of drift
chambers, number of paddles and paddle overlap width of hodoscopes. These details are required for con-
verting the hit information on a detector to the corresponding chamber wire and hodoscope paddle number.
This part of geometry description also includes files that are required to link the hodoscope paddles or

chamber wires to their associated DAQ electronic component, such as rocID, boardID and channellD.

3.4 Running GMC

In order to run GMC, a couple of pre and post helper programs need to be executed for the entire GMC
production to be ready. A TableLoader program is run before running GMC. This program reads geometry
and magnetic field files and saves them in the MC schema on MySQL database. These tables are used by
GEANT during simulation. Once the geometry tables are ready, the GMC is ready to run. The GMC
productions are run by submitting 350 sub-jobs parallely to the open science grid. More details on the exact
procedure for submitting jobs on grid are found here [45]. Each sub-job (submitted with a different seed
to avoid repetition) has 100,000 MC events, out of which approximately 3000 (for DY) dimuons pass the
spectrometer acceptance cuts. Thus, combining all instances of GMC together, there are about 1 million
dimuon events (DY) per GMC production. Since the GMC instances are run in parallel, it takes about 3
hours for the sample to be ready for post production steps. There are 2 post production steps. First, the
TableMerger program is executed to combine the tables from all sub-jobs into 1 giant table. For example,
mTrack_1, mTrack 2, ..., mTrack_350 are combined together into a single table called mTrack. The last step
is to index the tables. This step is important to improve the querying time so that required MC data can

be accessed quickly.

3.5 GMC Output

The output from GMC is stored in MySQL database. The GMC output table names have a prefix m,
like mRun or mTrack. The mRun table lists the settings such as number of generated events, magnetic

field strength, PDF, range of kinematic variables etc. The mTrack table contains the track information like
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particlelD, its position and momentum at certain z-positions, parent particleID (for secondary and later
generation of tracks) and generation method. The mDimuon table contains dimuon variables like M, zp,
xg, x1, cosbcg and ¢cg. It also includes information about dimuon momentum and positions. GMC also
outputs mHit table. It contains information such as the momentum of particle when it hit different detectors.
Such information is not available in the real data. These mTables are used to compare the reconstructed
values with the "truth” (or thrown) values. In addition to the truth tables the MC also outputs Hit table. It
is formatted such that its structure is same as data. This table is utilized by the tracking software (kTracker)

for MC reconstruction.
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Chapter 4

Data analysis

4.1 Data set

SeaQuest first received the proton beam in the beginning of 2012, which allowed the commissioning data to

be taken. Soon after a short period of running, the Main Injector was shut down for upgrade. After the

Main Injector restarted in late 2013, the collection of physics data started in 2014. A timeline of SeaQuest

data taking is depicted in figure This thesis includes data from run 2 and run 3. A brief summary of

First
proton New
beam chambers
MI upgrade run2 run3 run4 run5 runé
T T T T T T T
2012 2013 2014 2015 2016 2017 2018
Figure 4.1: Timeline for SeaQuest data taking

run 2 and run 3 data is tabulated below

Run period | Roadset | Run range | Beam offset (cm) | B orientation
2 57 8912-10420 0.4 +
2 59 10421-10912 0.4 +
3 62 11075-12435 1.6 +
3 67 12525-15789 1.6 -
3 70 15793-16076 1.6 -

Table 4.1: Summary of Run period 2 and Run period 3 data. A typical run is an hour long collection of
data ~ 1 GB in size. Roadset column refers to the version of trigger matrix used for that duration. Beam
offset and B orientation column lists the offset of the beam (in y-direction) and the orientation of magnetic

field, respectively.
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4.2 Track reconstruction

The tracking software used in SeaQuest is called ‘kTracker’ where the prefix ‘k’ stands for Kalman filter
method [46] which is used in the code to find tracks. The tracking software was developed by Kun Liu, one

of SeaQuest collaborators. The code consists of three main parts, which are briefly described as follows:

4.2.1 Pre-tracking cuts

There are four types of hit removal criteria applied to each event before the tracker attempts to find tracks.
This step is very important for several reasons. Getting rid of hits that are most likely not a part of muon
tracks, makes it easier for the tracker to identify potential signal muon tracks. Furthermore it reduces
the runtime of tracking software as there are less number of hit combinations that the tracker needs to go
through.
In-time cut: All the chamber hits that fall within a time window around a triggered event pass this cut.
Since the drift times for chambers are relatively long compared to the periodicity of beam buckets, the
in-time window can be as large as 600 ns (corresponding to +15 beam buckets).
After pulse cut: Due to electronic noise, the drift chamber wires tend to have multiple pulses after the
first hit. In such a case, only the first pulse of each channel is accepted and the after pulses are discarded.
Cluster removal cut: The third category of hit removal cuts is called the cluster removal cut. This cut is
further divided into three subcategories, namely, electronic noise, cell-edge hits and delta rays. Delta rays
are electrons knocked off by primary ionizing particle when passing through wire chamber. The knocked
off electron is capable of producing secondary ionization. Some of these electrons scatter at large angles
and travel parallel to the X-Y plane and fire several wires. In this case, only the edge hits are retained as
potential true hits caused by muon tracks and the central chunk of wire hits are dropped.
When a muon track passes a wire plane close to the cell edge, it will often cause two adjacent wires to fire.
For this case, the wire with larger drift distance is removed.
The drift chambers are prone to electronic noise which leads to the third category of cluster hit removal
criteria. It takes into account the hit clusters caused by electronic noise. If the hit clusters are recorded
with similar TDC time (within 10 ns), then they are identified as electronic noise and thus removed. Figure
depicts the algorithm for cluster removal.

Trigger Hodoscope masking: The hodoscopes have a time resolution shorter that the RF bucket
periodicity and hence are used for triggering. Only the chamber hits that fall behind the fired hodoscope
paddles are retained and others are discarded. The in-time hodoscope hits on all 4 stations are combined to

form all possible road combinations. These combinations are checked against the active trigger road setting
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Figure 4.2: Flowchart depicting the cluster removal algorithm
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during that data taking period. Using the trigger road setting information further reduces the random cham-

ber hits by removing chamber hits that fall behind fired hodoscope paddle but are not a part of trigger roads.

4.2.2 Track finding

Track finding is the next step after dropping random hits. This step proceeds in four steps, namely, tracklet
formation at each station, connecting tracklets from stations 2 and 3, projection to station 1 and global
track construction.

Tracklet is a small segment of track formed by joining hits from each view in a chamber. The track finding
stage starts from finding hit triplets in both station 2 and 3. The steps to find triplets are depicted in figure

[4:3] First, the hits in both primed and unprimed X-plane are picked. Based on X plane hit pairs, overlapping

Step 1: X view Step 2:associate [X-U Step 3:assockte K—.L'}f\)

A

Figure 4.3: Schematic representation of triplet reconstruction

U-plane hits are selected in a narrow window around the X-view. The X-U overlap hits are then used to
select V-plane hits. The search window in each plane is determined by the cell width and the maximum
allowed tracklet slope (The slope is determined such that the tracklet is pointing towards target). Thus, the
X-U-V triplets are selected and joined to form tracklets by fitting a straight line through all the selected

hits. Several tracklets can share the hits. A tracklet is discarded if,
o the x? is more than 40
o there are less than 4 hits
e the tracklet does not have at least 1 hit from each view
e the tracklet does not point to target (i.e., x and y slope of tracklet is greater than (0.15,0.1))
e the tracklet points toward a hodoscope paddle that did not fire
e the absolute value of x, y position is greater than (150 cm, 50 c¢m)

The tracking fails if no tracklets were found in either station. If tracker was successful in finding tracklets, it

proceeds as follows. All combinations of stations 2 and 3 tracklets are then picked and attempt is made to
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connect them to form partial tracks. Loose cuts on the slope of the partial track and x2 of the fit are applied
to select potentially good partial tracks. If two partial tracks share more than 34% of hits, the partial track
with worse x? is removed. An additional muon identification cut is applied to find corresponding hits on the
proportional tubes (station 4). The multiple scattering of track due to the iron wall placed before station 4
is taken into account.

The next step involves connecting the DC2-DC3 partial track to the appropriate tracklet at station 1. This
step is quite complex as station 1 being the most upstream station usually contains many hits. Furthermore,
the KMAG is situated between station 1 and 2. Hence appropriate magnetic kick due to KMAG needs to
be taken into account. The search window at station 1 is determined using the sagitta ratio method. As
shown in figure sagitta is defined as the distance between track and the line connecting station 3 triplet
to dump or target location. sl and s2 are the sagitta at station 1 and 2 location, respectively. The idea
behind this method is that the ratio of sagitta s1 and s2 should be a constant as the z locations of station 1
and 2 as well as the transverse momentum kick due to magnetic field is fixed. The sagitta ratio is calculated
from MC simulations and set as rq = 1.5 and r; = 1.85 if track vertex is dump and target, respectively. The

search window is determined as a percentage of s2 (sagitta at station 2).

Ayir = [sae.wel, (4.1)

where Ayy; is the window width perpendicular to the expected location of tracklet at any station 1 plane
(y1¢) for interaction happening inside target. In the above equation w; = 0.25 The search window, Ay is
also calculated assuming the interaction happens in the dump with the expected tracklet position being y14.
In this case the wgy = 0.3. Station 1 hits that fall in the window around the projected centre are used to

form tracklets and paired with partial track to form global track candidates.

In the global track construction step, bad hits are iteratively removed if their residual is 3 times larger
than the resolution, refitting the track after each iteration. Once convergence is reached, the track has to

go through the following selection criteria,
e It should point to fired hodoscope paddle at each station.
e The momentum should be in between 5 GeV and 100 GeV.

e It should have at least 4 hits on each wire chamber with 1 hit at each view.
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sagitta ratio = si/s; ~ constant _
station-3

Figure 4.4: Schematic of sagitta method used for track finding. The plot is showing the X (or bend plane)
view. The ratio of sagitta is a constant. The value of the constant is determined from Monte Carlo study
and is determined to be 1.85 for target and 1.5 for dump.

4.2.3 Track fitting

The tracks that pass all the conditions are passed on to Kalman Filter. The Kalman Filter method is used
for fine-tuning and smoothing of the muon tracks. Kalman filter is a recursive method that uses series of
measurements over time to find the optimum solution [46]. Figure shows the flowchart of the algorithm
for track finding. In case of SeaQuest these series of measurements are the recorded hits at each plane. The
Kalman filter method starts with an initial estimate of state vector (to describe the tracklet) and covariance
matrix (to describe the uncertainty) at DC3. The Kalman filter algorithm propagates the initial estimate
to predict the state variable at DC2. The propagation steps require the knowledge of specified physics
model. kTracker uses GEANT to simulate the physics process and propagation of muon tracks through
the spectrometer. The prediction is combined with the measurement using weighted average with more
weight given to the one with lower uncertainty. Similarly, the updated state variable at DC2 is used to make

prediction for DC1 and target location.

. 4

Initial estimation ~]

v
I—' Predict » Filter '—I

Loop over all hits

Smooth

If x* converges

Vertex fitting

Figure 4.5: Flow chart of Kalman filter algorithm for track fitting
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k k-1

i Q.

Figure 4.6: Schematic representation of Kalman filter workflow. The estimate and measurement are denoted
as i; and m; respectively. The subscript j represents the j-th detector plane and superscript i represents the
detector (j-1) whose state variable was used as input to make prediction for j-th detector. The combined
estimate of state variable by taking into account the measurement m; and prediction 5:3 is represented by
Z;j

4.2.4 Vertexing

After the p~ and u™ tracks are found by the tracker, they are combined to form dimuon pairs. The vertexing
process also involves Kalman Filter method for dimuon vertex extraction from the dimuon pairs. Before the
vertex can be extracted, each muon track needs to be traversed upstream towards the target area. This is
achieved by slicing the FMAG into segments. For each FMAG segment the transverse (pr) kick and energy
loss is applied to the tracks. After traversing through the FMAG, the tracks are extended to the target
region along a straight line and the location of track’s closest approach to the beamline is obtained. The
initial dimuon vertex is estimated as the average of both muon’s distance-of-closest-approach location. The
dimuon vertex estimate is fed into Kalman filter and the track’s state variables at Station 1 are readjusted

to get an updated vertex location. This process is iterated until convergence is reached.

4.3 Drell-Yan dimuon selection

Several quality and analysis cuts are applied to the reconstructed dimuons to filter out the signal dimuon
events. These cuts are categorized into different levels: Spill level, event level, track level and dimuon level

applied in that order.
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4.3.1 DataQuality/Spill Cut

At the spill level, Data quality cut is applied. It is actually a bunch of cuts clustered together into a single

quantity termed as DataQuality which is zero when all the listed cuts are satisfied. The cuts are tabulated

in table [4.2]
Roadset

Quantity 57, 59 62, 67, 70
TargetPos [1,7] [1,7]
TargetPos2 TargetPos | TargetPos
TSCo [Me3,8¢3] | [100,6000]
AcceptedFPGA1 [1e3,8e3] [100,6000]
AfterInhFPGAT [1e3,30¢3] | [100,10000]
AcceptedFPGA1/AfterInhFPGA1 [0.2,0.9] [0.2,1.05]
FMAG (in Amps) [1950,2050] | [1950,2050]
KMAG (in Amps) [1550,1650] | [1550,1650]
G2SEM 2c12,1c13] | [2e12,1e13]
QIESum [4e10,1e12] | [4e10,1e12]
Inhibit [4e9,1el1] [4e9,1el1]
Busy [4e9,1e11] [4e9,1e11]
DutyFactor [15,60] [10,60]
N of tracks/spill >0 >0

Table 4.2: DataQuality cuts for run 2 and run 3 data

A brief description of each of the variables is as follows: TargetPos is the identification number of the
target which is in the beam path. TSGo is the number of triggers (irrespective of the trigger type) collected
by the trigger supervisor. AcceptedFPGA1 and AfterInhFPGAT1 is the number of accepted and inhibited
FPGAL triggers, respectively. KMAG and FMAG is the current setting (in Amps.) of the magnets. G2SEM
is the total beam intensity measured by the SEM located at the NM3 area. QIESum is the sum of beam
intensity (in QIE units) measured by the BIM. Inhibit and Busy are the sum of inhibited protons and sum

of protons when trigger was busy. Duty factor defined as < I >? / < I? > is a measure of beam quality.

4.3.2 Event level cut

The only cut that is applied at this stage is the M AT RIX1 = 1 which is essentially selecting the dimuons

that triggered the FPGA1 trigger (dimuon physics trigger)

4.3.3 Track level cuts

The track level cuts that are applied to both p~ and u™ tracks are listed in table
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Variable

Variable description

Good range

20

z position of track’s closest
approach to beam line

(-320 cm,-5 cm)

72 + (yr — beamOffset)?

radial distance of track
from beam line at z=-129 cm

< 320 cm?

2%, + (yp — beamOffset )?

radial distance of track
from beam line at z=42 cm

(16 cm?,1100 cm?)

abs(abs(px1 — pxs) — 0.416) difference in x momemtum at st.1 and st.3 < 0.008 GeV
(offset by KMAG kick)

abs(py1 — pys) difference in y momemtum at st.1 and st.3 < 0.008 GeV

abs(pz1 — pz3) difference in z momemtum at st.1 and st.3 < 0.08 GeV
Xtarget < LBXopstream x? when the track is forced to pass through N/A

Xiarget < 1'5X<2iump z=-490(upstream), z=-129(target), z= 42(dump)
Xfmget X2 when track is forced to pass through z =-129 <15
abS(X?aTget(:u’_) + X%arget (M+) — Xgimuon) <2
numHits total number of hits on wire chamber > 13
by each muon track
x%/(nHits — 5) X?/NDF > 12
pz1 z momentum at station 1 (9 GeV,75 GeV)

Y1/Ys y position of track at St.1 and St.3 <1
Y1 X Y3 >0

abs(py1) absolute value of track y momentum at St. 1 > 0.02 GeV

Table 4.3: Track level cuts

4.3.4 Dimuon level cuts

The cuts applied to the reconstructed dimuons are listed in table In addition to the above selection cuts

there are also cuts applied to reject very high occupancy and high intensity events listed in table
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Variable

Variable description

Good range

dz z position of dimuon vertex (-280 cm,-5 cm)
dx x position of dimuon vertex (-0.25 cm,0.25 cm)
dy- beamOffset y position of dimuon vertex (-0.22 ¢m,0.22 cm)
dz? + (dy — beamOffset)? radial distance of dimuon vertex < 0.06 cm?
abs(dpx) absolute value of dimuon x momentum < 1.8 GeV
abs(dpy) absolute value of dimuon y momentum <2 GeV
dpz absolute value of dimuon z momentum (38,116)
dpx? + dpy? dimuon transverse momentum squared <5 (GeV)?
mass dimuon mass (4.2 GeV,8.8 GeV)
TR Feynman x (-0.1,0.95)
xr Bjorken x of target (0.1,0.58)
cos(0) polar angle in Collins-Soper frame (-0.5,0.5)
abs(trackSeparation) distance (in z)between points of closest approach < 270 cm
between p~ and ™
numHits(p ™ )+numHits(u™) sum of total number of hits by > 29
u~ and pt track
numHits1 (g~ )+numHits1(u™) sum of number of hits by > 8
p~ and pt track on DC1.1
ys(u™) x ys(u™) <0
X imuon xZ when both g~ and T tracks are <18
forced to pass through dimuon vertex
abs(xy (™) + z1 (™)) sum of x position of tracks at St. 1 > 42 cm
abs(xgarget(:u’_) + X%arget (M+) B Xiimu(m) < 2

Table 4.4: Dimuon level cuts

Variable Variable description \ Good range
D1 Total intime hits on DC1.1 < 400
D2 Total intime hits on DC 2 < 400
D3 Total intime hits on DC 3 < 400
D1+D2+D3 Total intime hits on all chambers < 1000
Trigger intensity | Number of protons in the triggering bucket (0,80000)

Table 4.5: Cuts on occupancy and intensity

4.4 Drell-Yan Monte Carlo analysis

The cuts described in the above section are applied on LD and LH3 Drell-Yan Monte Carlo. The kinematic

distribution, residual and differential acceptance for xr, zg, x7, mass and pr are shown in this section.

4.4.1 Kinematic distribution from Drell-Yan Monte Carlo

The plots in [4.7] show the kinematic distributions of LDy messy Monte Carlo after applying all the standard

cuts except mass cut.
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Figure 4.7: Kinematic distribution from MC analysis

4.4.2 Spectrometer acceptance

The plots in figure [I.8)show the spectrometer acceptance as a function of various dimuon kinematic variables.

The acceptance here is calculated as

Messy MC (Standard analysis cuts)

t =
acceptance 4rMC (xF cut)

This definition of acceptance takes into account the inefficiency of the tracker in high occupancy events. The

messy MC has embedded NIM3 hits. The Addition of NIM3 hits to true MC signal hits makes it difficult

for the tracker to find signal tracks leading to the inefficiency.

4.4.3 Spectrometer resolution

The plots in figure [4.9] show the spectrometer resolution as a function of the dimuon kinematic variables.

The resolution for each variable is also listed in table [£.6]

Variable | Resolution
M-+ 0.27 GeV
TR 0.03
B 0.02
xrr 002

pr 0.2 GeV

Table 4.6: Spectrometer resolution for different kinematic variables
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Figure 4.8: Spectrometer acceptance

4.5 Drell-Yan kinematic distributions from data

In order to obtain the final Drell-Yan events from the data, the mass-fit method has been used. The mass-
fit method uses the component (J/¥, ¥’ and DY) mass distribution generated from the MC simulation,
background shape generated by mixing the single muon trigger (FPGA4) data, and empty flask data. Before
proceeding with the mass fit, the Drell-Yan Monte Carlo shapes need to be revisited as described in section

3.2.1.

4.5.1 pr re-weighting in DY Monte Carlo

The input pr distribution shape in DY Monte Carlo uses the Kaplan functional form

f(pr) o< (lfizT)fi (4.3)

5
where, p; = 2.8 GeV. The parameter p; is related to the broadness of the pp distribution. The SeaQuest
data indicate that the p; value used in MC is broader than what it is. Additionally, the value of p; is
dependent on xp. The dependence of p; on xp has also been reported in pion induced Drell-Yan experiment
E615 [36]. Hence, the tuning of pr distribution is required to achieve appropriate kinematic distributions
(which are integrated over pr). Getting the correct pr shape from the data is challenging as an iterative

procedure needs to be followed, ideally. The empty flask, charmoniums (J/¥, ¥’) and accidental background
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Figure 4.9: Spectrometer resolution for different kinematic variables. For each MC event the difference of the
reconstructed and the true value for any given variable is plotted as histogram. The RMS of this distribution
is the resolution.

contribution needs to be subtracted from the data to arrive at the Drell-Yan contribution. However, the
normalization of each contribution (except empty flask) is obtained from mass-fit method. The mass-fit
method itself relies on the shape of each component including the Drell-Yan, the shape of which is not
precisely known due to the unknown pp distribution at /s = 15.01 GeV/c. Additionally, the uncertainty in
the PDF shape also adds to the shape uncertainty of the Drell-Yan component.
First order pr reweighting was performed using SeaQuest data. Standard analysis cuts are applied on the
data (LDs and flask). Normalized flask yield is subtracted from LDy data in three zp bins. The yields
are corrected for acceptance in each pr bin for all three z bins. It should be noted that the incorrect pr
shape in the MC should not affect the acceptance calculation as a function of py. The quantities which are
integrated over pr are affected by the incorrect pr shape. The acceptance corrected pr distribution is fit
with Kaplan functional form (equation 4.2) and the parameter p; obtained for all three xp bins are
used to get p; as a function of zp (figure

The p; parameter is plotted against the mean x g value for each zx bin. A linear fit through these data
points are used to get p; value as a function of zp (figure , which is used for 'reweighting’ the MC

events: The MCs are reweighted’ as follows.

2
(1+ 5%)° 2.82
p2 27
(1+ m)ﬁ (p1(zr))

pr reweight(zp) =
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Figure 4.10: Kaplan functional form fit to SeaQuest data to obtain xp-dependent pp distribution at
SeaQuest’s beam energy.
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Figure 4.11: The data points are the p; plotted versus mean xz. The line is a fit through the data points
to get the dependence of p; on zp.

where p1(zp) = 2.46 — 0.745x .

4.5.2 Mass spectrum fitting

Mass spectrum fitting method is used to extract the contribution of different components to the reconstructed
dimuon sample. Broadly the dimuons come from three different types of components: a) physics sources (
charmonium (J/¥ and ¥’) decay and Drell-Yan process) b) accidental background (two single muons from
two different interactions can conspire to look like a dimuon produced from a single interaction of beam and
target) ¢) Contribution from empty flask data (which includes contribution from flask walls, upstream and

dump interactions).

Physics sources

The shape of J/¥, ¥’ and Drell-Yan are determined from Monte Carlo simulation (as described in chapter
3). In order to make the simulation data resemble as closely as possible the real data, the Monte Carlo
events are embedded with NIM3 (random) trigger data. The random hits are sampled from NIM3 data such
that the detector occupancy distribution of the Monte Carlo is close to FPGA1 data (after analysis cuts).

The addition of random hits on top of true hits generated in the simulation is helpful in extracting the
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Figure 4.12: The reconstruction efficiency plotted as a function of station 1 occupancy. The efficiency is
calculated by taking the ratio of messy MC events over clean MC events in each occupancy bin. Standard
cuts were applied to both numerator and denominator (except the occupancy cut on clean MC). The data
is fitted with a quadratic functional form.

performance of kTracker with increasing number of hodoscope and chamber hits. The NIM3 hits embedded
Monte Carlo are referred to as ‘messy’ MC. Since the reconstructed data suffer from similar reconstruction
inefficiency caused by random hits, messy MCs are used for fitting the data. Figure[.12]shows reconstruction

efficiency as a function of Station 1 chamber occupancy (D1).

Empty flask subtraction

The empty flask data is collected by placing just the empty flask in the path of beam. It is used for
subtracting contribution from interaction of beam with flask walls, or upstream instrumentation, or dump.
The normalization of empty flask contribution is obtained from the ratio of live protons for the liquid target
(LH3 or LD5) and empty flask. The empty flask normalization thus obtained is kept fixed in the fit to mass

spectrum. Other components (DY, J/W¥, ¥ and mix background (explained next)) are allowed to float.

Accidental/Mixed background correction

The origin of the accidental background is random combination of single muon tracks to look like a true
dimuon. Such a sample was generated by a SeaQuest collaborator, Jason Dove, by using single muon trigger
data (FPGA4). These single muon tracks were divided into 3 occupancy bins before mixing. This was
done to ensure that similar occupancy single tracks are mixed together. One of the many challenges of this
experiment is low statistics of background data (FPGA4/single muon trigger). To partly solve this problem
the single tracks have been reused during mixing. However, same combination of 2 tracks are removed to

avoid repetition. The mixed background sample still suffers from low statistics problem. Hence, to enhance
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Figure 4.13: Mass distribution of mix background sample for solid targets (black solid circles) and liquid
targets (red solid squares).

the statistics, mixed background sample generated from all targets are used in mass fit method. Figure
shows mass distribution of accidental background sample for solid and liquid targets.

Figure shows the fit to the mass spectrum for LH(top) and LD (bottom) data from run 2 and run
3. The normalization of each component is allowed to float and the fitter utilizes maximum log-likelihood
estimator to determine them. Only the flask normalization is provided to the fitter as the ratio of live protons
on LDy or LH> target and empty flask target. The number events for each component and its statistical

uncertainty is shown in the figure.

4.6 Comparison of Data and messy MC

Several improvement were made to MC simulations before getting a reasonable comparison with data. In
this section, ratio of data and MC as a function of several dimuon kinematic variable are shown. For this
analysis, I have chosen roadset 67 deuterium data and M026_S002 messy LDs MC. Using messy MCs already
takes care of acceptance and rate dependent effects caused tracker inefficiency at high occupancy. Thus, the
data need not be corrected for kTracker’s efficiency and acceptance effects. As described in previous section,
mass fit method is used to get normalization of each component. The normalization of each component is
used to project its contribution for other kinematic variables. The Drell-Yan yield from data is calculated
by subtracting away all the non Drell-Yan component (J/Psi, ¥/, empty flask and mixed background) from
data.

The yield from messy MC is then obtained by applying all the standard cuts that were applied to the data.
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Figure 4.14: Fit to the dimuon mass spectrum from LHs(top) and LDy (bottom) data.The shape of each
component is obtained as described in section 4.5.2. A mass cut at 4.2 GeV is sufficient to eliminate the
contribution of charmonium. However, the mix-background contribution(green) extends all the way up to 6
GeV. Hence, mix background subtraction is important.

The yield in each bin is normalized as follows to match the live protons on LD, target.

live protons on target
GMC normalization = P g

4.5
sum(eventsThrownPhysical) x beamCurrent’ (45)

where live protons on LD target for roadset 67 is 7.70196e16, sum (eventsThrownPhysical) for LD2_M026_S002
MC is 2.8297342¢e7 and the beam current is 2el2.
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normalization for each component is obtained from mass-fit.
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good agreement between data and Monte Carlo. The error bars are statistical only.
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4.7 Differential cross section calculation

The differential cross section for any process is defined as the number of measured signal events, Neyents, in

kinematic bin  and Q + AQ per number of incident particles per areal density of target particles.

di o Nevents
dQ AQ(NincidentNtarget>

(4.6)

Here, Nincident is the total number of of incident protons, Nigrge: is the number of target nucleus per unit

area after taking into account the beam attenuation factor. Ni.rget can be calculated as

[N
Ntarget = pTA (47)

where p is the density of target (g/cm?), A is the atomic mass (g/mol), N4 is Avogadro’s number and [ is
the attenuated target length derived as A(1 —e~%/*), X and L being the nuclear interaction length (¢m) and

target length, respectively. Hence, the scaling form of the cross section can be written as

d?c N,
3 _ M3 events 4.

where, several quantities are combined together and expressed as £, known as total integrated luminosity

_ NapA(1 - e ENY Nipcident

£ A

(4.9)

In equation Neyents is the total number of Drell-Yan dimuons coming from deuterium or hydrogen target
in a certain M and zp bin. In ideal case where there is no background and a detector with 47 steradian
coverage, Neyents Would be the recorded number of events in each bin. However, we do know that the dimuon
event sample is contaminated with muon pairs coming from flask walls (flask that contains the liquid target)
and other sources of accidental background which needs to be subtracted. Additionally, the spectrometer
coverage and inefficiency introduced during reconstruction of muon pairs should be taken into account and
equation [£:8 would be modified as

2
5 dc 3 Npy

= I S 4.1
de:EF AMA:EF,CE’ ( 0)

where Npy is the number of Drell-Yan events obtained by subtracting away the background muon pair

coming from empty flask, mixed background and charmonium decays (Npy = Neyents — IV, Bkg,). The €
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represents the acceptance and reconstruction inefficiency corrections.

€= 6tzcc.(]w'a iCF) X €recon.ef f. (411)

4.7.1 Raw Drell-Yan Yield

The standard analysis cuts listed in section 4.3 is applied to the dimuon data. These cuts are designed to
select target Drell-Yan dimuon events. However, there are events coming from charmonium decay, empty
flask and mixed background that survive these cuts. To eliminate the contribution from such events, a fit

to mass distribution is performed (described in section 4.5.2)

TlDy(M, :EF) = nData(Ma xF) - nJ/\I/(M7 JUF) — Ny (M7 xF) - nmink’g.(My xF) - nemptyflask’(Ma xF) (412)

In each mass and zp bin the Drell-Yan yield is computed by taking the difference between raw data and

sum of all other components except DY.

4.7.2 Acceptance correction/Bin migration

The acceptance in this analysis is defined as follows:

NaccptA (M7 xF)

Naw(M, 27 (4.13)

€ace.(M,xp) = Acceptance(M, xp) =

where Nycep. (M, 2 ) is the number of Monte Carlo events obtained in a given M and zp bin, by analysing
the Monte Carlo data through the same analysis code applied to the real data, while Ny, (M, zF) is the total
number of thrown/generated Monte Carlo events in that particular M and zp bin. The 47 MC did not go
through the analysis procedure.

The accepted MC histogram in the numerator is filled using the reconstructed value of mass. The 47 MC
histogram in denominator is filled using the ‘true’ value of mass. It is important to use the reconstructed
value in the numerator instead of ‘true’ values especially for the edge bin (4.2-4.5 GeV in this case) because
of the strict mass cut applied at 4.2 GeV. This cut is applied on the reconstructed mass. Hence, using the
true MC in numerator will result in artificial drop in the number of events in the first mass bin since it
misses the contribution from M < 4.2 GeV.

Using reconstructed mass histogram in the numerator makes sense because, firstly, the real data always
contains reconstructed values and secondly, effects of bin migration are included in this definition. An

important but subtle point is that by using the definition of acceptance as reconstructed/true, the final cross
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section is now obtained as a function of true mass.

The effect of using either true mass or reconstructed mass was studied using MC data. The Drell-Yan cross
section in the 47 MC was compared with cross section obtained by correcting the accepted MC using both
options (true and reconstructed mass values) in the definition. Figure shows that when true value of
mass is used in the numerator of acceptance, the bin migration effects are not taken care of. The edge bins is
showing enhancement in the calculated cross section from accepted MC analysis. However, if reconstructed
values are used in the numerator, figure the agreement between the cross section from 47 MC and

analysed accepted MC is very good.
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Figure 4.17

Additionally, the above definition of acceptance takes into account the average chamber efficiency and
selection cut efficiency. The accepted MC in the numerator goes through the same analysis chain in the
tracking software as real data. However, for Monte Carlo analysis the tracking software artificially introduces
wire chamber inefficiency by randomly dropping 6% of hits and introducing a gaussian smearing of the hits

with a width of 400 pm[47]. The GMC itself does not have the chamber efficiency or resolution included.

4.7.3 Tracker Efficiency
The tracker finds it difficult to reconstruct tracks as the number of hits on wire chambers increases. The
efficiency is calculated by taking the ratio of reconstructed messy to clean events present in the Monte Carlo
as a function of Station 1 chamber occupancy. Figure shows the reconstruction efficiency. The data are
fit to a quadratic functional form resulting in the following dependence of reconstruction efficiency on D1.
D1 is defined as the occupancy (number of hits) of Station 1 wire chamber after the removal of out-of-time
hits.

kpg, = 0.9917 — 0.001492 x D1 — 0.000002215 x D1? (4.14)
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The rationale behind not using messy Monte Carlo in the acceptance correction (described earlier) is that
although the messy Monte Carlo has been embedded with random hits to simulate the ‘messiness’ in the real
data, it does not accurately represent the occupancy distribution of the data. Hence, using messy Monte
Carlo in the acceptance correction would result in incorrect rate dependence correction. Instead we use the
tracker efficiency equation to plot the inverse of kTracker efficiency 1/kEf f for real data (Figure .
The average efficiency from the occupancy distribution of LD and LH> data is used as the reconstruction
efficiency correction (€recon.rfr.). The average tracker efficiency is different for both targets because the
occupancy distribution of LDy is slightly higher than LHy (Figure owing to the higher target density

of deuterium.
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Figure 4.18: Station 1 Occupancy distribution of LDy (blue) and LH> (red) target for roadset 57-70 after
applying the selection cuts. Both histograms are normalized to by their respective area under the curve.
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Figure 4.19: 1/kEff is calculated using equation based on the D1 for each dimuon after applying
standard analysis cuts. The LD target average occupancy is slightly higher than LHs, hence the tracker
efficiency is lower for LD,. Alternatively, the average 1/kEff (€recon.ryys.) is higher for LDy as compared
to LH2
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Figure 4.20: The efficiency of each hodoscope paddle from analysis of special run (with NIM1 trigger). Each
station has 2 x-measuring hodoscope (top and bottom). The hodoscope name is labeled on top of sub-plots.

4.7.4 Hodoscope Efficiency

Independent measurement of bend plane (x-measuring) efficiency was obtained by using special trigger
(NIM1) which requires coincidence of y-hodoscope hits on all 4 stations. Reconstruction of tracks from
NIM1 trigger was utilized to get the expected position of hit on X—hodoscopes. The efficiency of each paddle
was calculated as the ratio of total hits recorded on the paddle to the total number of expected hits. For
this analysis, the hits whose expected position lied in the overlap region between two x-measuring paddles
or the overlap region between top and bottom hodoscopes were removed. This was done to eliminate events
where the expected hit position lied on the overlap region but the actual hit was on one of the two adjacent
paddles, which would result in underestimating the efficiency of the paddle which did not have the true
recorded hit. The details of the analysis can be found in [48]. Unlike chamber efficiency, the hodoscope
efficiency was not included in the tracking software. Hence, the acceptance calculation does not include this

correction. Studies are underway to include the inefficiency of hodoscopes in the Monte Carlo.
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4.7.5 Integrated luminosity

The target density and the attenuation factor depends on the composition of the target. The hydrogen
target at SeaQuest was a pure sample hence it is straightforward to calculate these quantities for hydrogen

target. The luminosity for hydrogen target can be written down as

NA(PHL)’\TH(l — e LAY NG cident ) _ NaTy XuNu

L= An Ag ’

(4.15)

Using pg = 0.0708g/cm?, Ay = 734.5¢m and L = 50.8cm, Ty (thickness of H)=3.5966g/cm? and Xy (beam
attenuation factor)=0.966. However, the deuterium target was contaminated by HD molecules for part of

the data.(See table [£.7)).

Target Contamination

Sample no. D2 bottle no. Sample date description
1 Fermilab | 53 4/12/18 95.6% D;4.4 %H, 92%D2; 8%HD
2 Fermilab | 113 4/12/18 96% D;4 %H, 93%D2; T%HD
3 Fermilab | 53 4/12/18 just air; gas must have leaked
4 Matheson | 127 4/12/18 about half air; remaining 99.7% D;0.3 %H
5 Matheson | 2 4/12/18 sample for test purposes; not analyzed
6 Matheson 7/28/16 more than half air; remaining 99.3% D;0.7 %H
7 Matheson 5/28/17 99.8% D;0.2 %H; 99.6% D2;0.4%HD

Table 4.7: Summary of LD2 contamination

The proposed value to be used for roadset 57, 59, 62 and part of 67 is 91.8% D and 8.2% HD. Remaining
data (part of 67 and 70) is from pure LD, sample. Hence weighted average is used to calculate effective

contamination fraction based on the number of protons with and without contaminated sample.

Ceontam. X raw protons LDs(contam.)

C:

= 0.0595 4.16
total raw proton LDy (4.16)

The volume of contaminated LD5 relative to pure LD5 is modified as Vi p, (contam.) = f x Vi p, (pure),

where

f = fraction of Dy x 1.0 + fraction of HD x 1.094
(4.17)
=(1-C)+1.094C.

The factor 1.094 in the above equation accounts for HD being 9.4% larger than Dy molecule [49] Therefore
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the thickness of D in contaminated sample with HD contamination fraction C is

D = LPTD((l —C)+C/2) = LPTD(l —C/2) (4.18)

and the thickness of H in the sample is,

L = Lp7DC/2 = LpTD(C/Q) (4.19)

Using pp = 0.1634g/cm?, C = 0.0595, Tg and T}? are calculated as 8.0092g/cm? and 0.24538¢g/cm?. The

attenuation factor Xp in contaminated deuterium is modified as

)\contam. L
Xp=—-—""(1- ——) ]| =094 4.2
b L ( exp( Aconttnn. )> 0 9 3’ ( O)
where Acontam. is derived as
1 %ofH %ofD
= = 432.4cm. 4.21
)\contam. )\H * >\D cn ( )

The hydrogen and deuterium Drell-Yan yield can therefore be written as

YLH2 = TgNAPHXHUppCH/AH
(4.22)
YLD2 = TgNAPDXDO'pdED/AD + TgNAPDXDUpZ,ED/AH

The second term in Y7, p, is the contribution coming from the H contamination inside the target. Therefore,

o Yo,

pp TfII{NAPHXHEH/AH

L Yp,  THAp
TBNAPDXDGD/AD Tg AH pp

(4.23)

Opd

N4 is the Avogadro’s number (6.023e23), Ay and Ap are the atomic mass of hydrogen and deuterium,
Py and Pp are the number of incident proton(live) on hydrogen and deuterium target, and ey and ep

includes acceptance and reconstruction efficiencies for hydrogen and deuterium. Therefore, the differential
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cross-section in scaling form is given by

3 dzopp :M3 YLHQ(AM, Al’p) 1
del‘F T}}IINAPHXHGH/AH AMA.’L‘F (424)
5 d%0pa — M3 Yip,(AM, Azp) 1 _ EA—DM?’ oy .
de{EF T[[))NAPDXDGD/AD AMAI’F Tg AH de(EF

4.7.6 Systematic uncertainties

The sources of systematic uncertainty include

e Mixed background normalization
Low statistics of mixed background sample possibly results in the mass-fit algorithm (using RooFit)
to under estimate the amount of mixed background. An uncertainty of +20% has been assigned to
the normalization of mixed background. This uncertainty affects the mass bin up to 6 GeV. A study
performed by Ching-Him Leung [50] used a different fitting algorithm (TFractionFitter) which resulted

in 20% more mixed background.

e Proton beam normalization
As described in section 2.1.2, the QIE module attached to the beam intensity monitor (BIM) measures
the intensity of the beam. The QIE measurement is converted to the live proton using the calibrated
SEM monitor (G2SEM). The SEM response was calibrated by studying the rate of 1368 keV s emitted
by the produced 2*Na using Cu foil activation method. The estimated random uncertainty (~ 1-2
%) in the calibration takes into account the uncertainty arising from the counting statistics and the
extraction of 1368 keV 2*Na ground state decay to 4T excited state of ?Mg. Additionally an +8%
systematic uncertainty is estimated to arise from the uncertainty in the production cross section of

24 Nq from the irradiation of copper foil by 120 GeV proton beam. [511 52].

The systematic uncertainty contributions are added in quadrature. For example, the lower bound estimate

of mix background and beam normalization would contribute to upper (4) systematic uncertainty.

(AUS st. +))2 = (Aamiwbk . —))2 + (Agbeamnorm.(—))2
yst.( g.( (4.95)

(Aa-syst.(f))2 = (Aamixbkg.(+))2 + (Aabeamnorm.(+))2

4.8 NLO theory calculation

The NLO theory calculation is performed using the parton level Monte Carlo code developed by INFN

group [40} [41]. This program is originally written to compute cross-section for vector boson production from
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p+ p and p + p collisions. It was modified by Wen-Chen Chang, Ching-Him Leung and Shivangi Prasad to
perform p—+n calculation therefore one can obtain p+ d cross-section by summing up p+p and p+n results.

Additionally, the definition of xr was modified to be consistent with SeaQuest’s definition of xp.

o= —1r (4.26)

The calculations were performed upto next-to-leading order (NLO). For NLO corrections, two kinds of
diagrams contribute, (i) gluons emission of a parton, (ii) loop diagram contributions in interference term.
Both these contributions are separately IR divergent, but the divergences cancel out in the sum[40, 4T].
The program requires /s, Order (LO, NLO etc.), PDF name, mass range, process ID, beam and target
particle ID as input. The program outputs 1-D histograms in several kinematic quantities. For the purpose
of comparison with scaling-form cross-section, do/dM is required. For each zp bin, the do,,/dM and
dopn/dM histogram is calculated. For the case of deuterium, p+p and p+n histograms are added in each
mass bin and there corresponding errors are added in quadrature. To get the scaling form of cross-section,
each bin is multiplied by M?> where M is the bin centre and also divided by Az i.e., the zz bin-width
(which is equal to 0.05 for the calculations shown in this thesis). Additionally, a factor of le-6 is multiplied
to convert the cross-section from femtobarn (fb) to nanobarn(nb). The error band calculation was performed
by Ching-Hum Leung. NLO code was run for each member of the chosen PDF in each xz bin. In case of
CT14NLO[53] and NNPDF30 NLO|29] there are 57 and 107 members, respectively. The error band in each
mass bin is the maximum (upper bound) and minimum (lower bound) of the cross-section obtained from all

the PDF members.

variable setting
sroot 15.01
ih1, ih2 1,1(for p+p);1,2(p+n)
nproc 3 (Z/yx — u—pt)
mur, muf 6.0,6.0 (factorization and renormalization scale)
order 1 (NLO)
part "tota’ (for complete calcultion, real+virtual)
mwmin,mwmax 4.0,9.0
itmx1, ncalll 15,1000000
itmx2, ncall2 30,1000000
rseed 30
set, member CT14nlo, O(for central value)
member no. (for error band)
xFcut true.
xFmin xF bin low
xFmax xF bin high

Table 4.8: List of variables and their settings for NLO calculation
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Chapter 5

SeaQuest Results

5.1 Absolute cross section results

This section consists of tables and plots showing absolute Drell-Yan cross section (scaling form M3d? /o /dMdz )
for Deuterium and Hydrogen data from SeaQuest/E906. The results are presented as a function of mass in

range 4.2 GeV to 8.7 GeV in z bins ranging from 0 to 0.8.
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5.1.1 Deuterium absolute cross section

Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

6.981630
8.469470
3.796700
2.979740
2.172180
1.878820
1.743900
0.669427
0.832782
0.750034
0.117855
-0.006599
0.000000
0.000000

21.029500
4.128100
2.412110
1.094640
0.637578
0.577268
0.362662
0.207319
0.254222
0.274599
0.126358
0.006625
0.000000
0.000000

5.645100
1.881600
0.919370
0.564971
0.321968
0.300901
0.241713
0.114798
0.124520
0.097649
0.023396
0.009332
0.000000
0.000000

6.479820
0.967758
0.713182
0.326210
0.165598
0.169372
0.128480
0.045106
0.058104
0.058388
0.008710
0.009332
0.000000
0.000000

Table 5.1: Deuterium Drell-Yan scaling form cross section M3d?c/dMdzr (GeV?nb) for 0.0 < xp < 0.05
bin. Statistical and systematic error are also shown in the respective columns.

1072

W 4+ E906

[ iy

L S ~+~ NNPDF

B y —= CT14

B *&3

- b

= |

- ___E g

B T E—

i il

= Ny

E\ ! | |“h‘~ -\\“-\-

4 B 7 8 9
M (GeV)

Figure 5.1: p+d absolute Drell-Yan cross section measurement in zr = [0.0,0.05)
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Mass bin (GeV)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

M3d?c/dMdzr(x1071) | Stat. error(x10~1)
3.443820 10.813400
7.500030 2.386270
6.530890 1.253780
5.396090 0.839860
3.408610 0.661027
1.706820 0.367789
1.864610 0.311974
1.114220 0.233166
0.333038 0.276485
0.325292 0.150757
0.381444 0.201633
0.217261 0.166724
0.000000 0.000000
0.000000 0.000000

3.972070
1.818010
1.064250
0.788197
0.469841
0.282820
0.250431
0.143045
0.064875
0.046568
0.064572
0.046110
0.000000
0.000000

3.589540
0.978490
0.456672
0.374682
0.270061
0.099183
0.141118
0.087882
0.046357
0.023367
0.025667
0.017452
0.000000
0.000000

Table 5.2: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.05 < zp < 0.1
bin. Statistical and systematic error are also shown in the respective columns.

M® d*o/dMdx.. (nb GeV?)
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Figure 5.2: p+d absolute Drell-Yan cross section measurement in zp = [0.05,0.1)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1) | Syst. err(-)(x10~1)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

8.148940
9.401260
7.410540
3.729020
2.359510
2.512210
1.223720
1.688640
0.775320
0.414149
-0.008720
0.079242
0.283884
0.000000

4.118380
1.977410
1.105090
0.711054
0.530481
0.342960
0.281131
0.272056
0.190602
0.151742
0.004389
0.085332
0.208679
0.000000

2.947340
1.782850
1.178680
0.616052
0.410399
0.388923
0.182256
0.226370
0.106397
0.058246
0.012332
0.016350
0.042447
0.000000

2.352450
1.054710
0.581015
0.352300
0.186288
0.162203
0.082056
0.128013
0.057597
0.030156
0.012332
0.006130
0.019807
0.000000

Table 5.3: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.1 < xp < 0.15
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.3: p+d absolute Drell-Yan cross section measurement in zp = [0.1,0.15)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 14.256800 2.548230 2.601890 1.290640
4.80-5.10 10.803100 1.262550 1.745920 0.666489
5.10-5.40 7.895290 0.861893 1.243790 0.499019
5.40-5.70 4.885780 0.615830 0.730210 0.345509
5.70-6.00 3.150490 0.432706 0.497097 0.201732
6.00-6.30 2.066170 0.346122 0.303426 0.140223
6.30-6.60 1.795420 0.266748 0.251647 0.131087
6.60-6.90 1.143970 0.203887 0.155552 0.085652
6.90-7.20 0.551947 0.181500 0.090457 0.037186
7.20-7.50 0.202207 0.169812 0.030842 0.013954
7.50-7.80 0.451037 0.163141 0.056857 0.036198
7.80-8.10 0.078792 0.081407 0.011720 0.005515
8.10-8.40 0.104492 0.104701 0.011610 0.009499
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.4: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.15 < zp < 0.2
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.4: p+d absolute Drell-Yan cross section measurement in zp = [0.15,0.2)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 14.613000 2.040810 2.336120 1.506720
4.80-5.10 9.928910 1.149570 1.618620 0.789370
5.10-5.40 7.453230 0.760436 1.107360 0.536569
5.40-5.70 5.027120 0.516373 0.735864 0.345279
5.70-6.00 3.057280 0.409108 0.461974 0.215135
6.00-6.30 2.616430 0.303814 0.352523 0.197466
6.30-6.60 1.548610 0.216608 0.231501 0.108063
6.60-6.90 0.596618 0.144817 0.090971 0.041178
6.90-7.20 0.622141 0.141942 0.089412 0.044563
7.20-7.50 0.338635 0.155707 0.038128 0.030380
7.50-7.80 0.180351 0.097171 0.036607 0.013671
7.80-8.10 0.139775 0.100467 0.017640 0.011205
8.10-8.40 0.000000 0.000000 0.000000 0.000000
8.40-8.70 -0.004113 0.004123 0.005817 0.005817

Table 5.5: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.2 < xp < 0.25
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.5: p+d absolute Drell-Yan cross section measurement in zp = [0.2,0.25)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1) | Syst. err(-)(x10~1)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

12.833900
9.069020
6.380560
4.601670
3.337990
2.302090
1.418580
0.674957
0.755658
0.585872
0.238431
0.056041
0.000000
0.000000

1.424580
0.860092
0.576810
0.438541
0.289372
0.258824
0.203797
0.199071
0.146970
0.138340
0.099016
0.056105
0.000000
0.000000

2.230010
1.380850
0.961338
0.671629
0.496995
0.333007
0.198848
0.109121
0.107505
0.074548
0.029485
0.006227
0.000000
0.000000

1.049460
0.649653
0.425091
0.313771
0.233488
0.159940
0.103565
0.041675
0.054536
0.046601
0.019493
0.005095
0.000000
0.000000

Table 5.6: Deuterium Drell-Yan scaling form cross section M?3d?c/dMdxr (GeV?nb) for 0.25 < zp < 0.3
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.6: p+d absolute Drell-Yan cross section measurement in zp = [0.25,0.3)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 13.109200 1.149120 1.973460 0.929509
4.80-5.10 9.353010 0.758214 1.421380 0.641271
5.10-5.40 5.786790 0.471191 0.877552 0.376938
5.40-5.70 4.024580 0.382738 0.608252 0.263445
5.70-6.00 3.268790 0.314715 0.453884 0.237468
6.00-6.30 2.153780 0.234741 0.313102 0.148997
6.30-6.60 1.593330 0.202644 0.225343 0.115513
6.60-6.90 1.059040 0.161117 0.158719 0.073789
6.90-7.20 0.473227 0.133559 0.066389 0.034526
7.20-7.50 0.317486 0.132835 0.037267 0.027324
7.50-7.80 0.275755 0.149961 0.034674 0.022184
7.80-8.10 0.125477 0.076587 0.022342 0.008542
8.10-8.40 0.182039 0.109284 0.028058 0.012498
8.40-8.70 0.097122 0.097291 0.010791 0.008829

Table 5.7: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.3 < xp < 0.35
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.7: p+d absolute Drell-Yan cross section measurement in zp = [0.3,0.35)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 11.222300 0.888990 1.757090 0.773069
4.80-5.10 9.554130 0.676913 1.363180 0.673738
5.10-5.40 6.461790 0.445358 0.949548 0.443987
5.40-5.70 3.587320 0.314927 0.499415 0.258065
5.70-6.00 2.736480 0.254792 0.400135 0.189523
6.00-6.30 1.846420 0.200720 0.263223 0.133052
6.30-6.60 1.259450 0.184697 0.179919 0.090613
6.60-6.90 0.968037 0.141874 0.137057 0.070122
6.90-7.20 0.461695 0.100452 0.067696 0.032612
7.20-7.50 0.513777 0.121965 0.070488 0.038176
7.50-7.80 0.368536 0.111049 0.056487 0.025370
7.80-8.10 0.087097 0.064399 0.014359 0.005864
8.10-8.40 0.113105 0.081454 0.014686 0.008827
8.40-8.70 -0.002512 0.002515 0.003552 0.003552

Table 5.8: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxpr (GeV?nb) for 0.35 < zp < 0.4
bin. Statistical and systematic error are also shown in the respective columns.

< N\_&v —— E906

Rl B =~ NNPDF

o i G —— CT14

N

>

©

=10

° =

© B

“c [

- |

=

1072? \x_\

B o
| \‘||||‘||||||||||‘.“‘
4 5 6

8 9
M (GeV)

Figure 5.8: p+d absolute Drell-Yan cross section measurement in zp = [0.35,0.4)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 10.638900 0.704015 1.609040 0.695027
4.80-5.10 7.983320 0.547969 1.206930 0.521560
5.10-5.40 5.246620 0.372582 0.755911 0.366467
5.40-5.70 3.814650 0.312167 0.552637 0.263393
5.70-6.00 2.774400 0.264613 0.377381 0.204742
6.00-6.30 1.817150 0.208020 0.278669 0.119891
6.30-6.60 1.377800 0.165198 0.201448 0.097507
6.60-6.90 0.754537 0.141176 0.104935 0.055437
6.90-7.20 0.353849 0.123757 0.045349 0.027955
7.20-7.50 0.359050 0.120580 0.047786 0.027395
7.50-7.80 0.115598 0.059850 0.017312 0.008058
7.80-8.10 0.031045 0.114122 0.002441 0.005360
8.10-8.40 -0.003027 0.002144 0.004281 0.004281
8.40-8.70 0.070176 0.070262 0.007797 0.006380

Table 5.9: Deuterium Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.4 < xp < 0.45
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.9: p+d absolute Drell-Yan cross section measurement in zp = [0.4,0.45)

81




Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

9.653780
6.547850
4.799760
2.963270
2.345380
1.640920
1.188460
0.547846
0.575059
0.307998
0.143668
0.136669
0.139864
0.000000

0.648818
0.415911
0.343633
0.261030
0.201434
0.176018
0.146243
0.111213
0.108145
0.086352
0.067031
0.070267
0.082652
0.000000

1.441630
0.967275
0.662839
0.431269
0.330750
0.221838
0.168498
0.073965
0.084583
0.049329
0.022894
0.019165
0.018886
0.000000

0.649382
0.442238
0.348554
0.202562
0.170415
0.123477
0.085996
0.041273
0.040536
0.020848
0.009739
0.009975
0.010536
0.000000

Table 5.10: Deuterium Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.45 < zp < 0.5
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.10: p+d absolute Drell-Yan cross section measurement in xp = [0.45,0.5)
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Mass bin (GeV)

M3d?c/dMdxr(x1071) | Stat.

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

8.061030
5.132000
3.516390
2.375990
1.670830
1.395110
0.718617
0.767950
0.433715
0.337953
0.124972
0.172587
0.039928
0.111459

error(x1071) | Syst. err(-)(x1071)
0.529713 1.124740
0.331645 0.730985
0.268716 0.523406
0.215388 0.348266
0.183768 0.232404
0.157982 0.188091
0.114704 0.107841
0.116245 0.097774
0.093191 0.057164
0.089629 0.044600
0.059034 0.022142
0.078953 0.022949
0.042496 0.007630
0.080350 0.014637

0.580037
0.365221
0.235650
0.162761
0.120767
0.105231
0.050032
0.061049
0.033384
0.025983
0.008491
0.013179
0.002843
0.008608

Table 5.11: Deuterium Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.5 < zr < 0.55
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.11: p+d absolute Drell-Yan cross section measurement in xp = [0.5,0.55)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 5.102610 0.375346 0.799865 0.318574
4.80-5.10 4.468730 0.303053 0.616293 0.325795
5.10-5.40 2.564620 0.220668 0.389129 0.167328
5.40-5.70 2.075650 0.171809 0.292195 0.151026
5.70-6.00 1.102600 0.156854 0.158541 0.076590
6.00-6.30 0.922566 0.143240 0.124812 0.069378
6.30-6.60 0.598144 0.101774 0.085581 0.042985
6.60-6.90 0.483784 0.092035 0.068780 0.034933
6.90-7.20 0.350973 0.081189 0.048919 0.025740
7.20-7.50 0.148791 0.058872 0.024190 0.010037
7.50-7.80 0.169350 0.065182 0.021479 0.013511
7.80-8.10 0.061771 0.044406 0.007953 0.004859
8.10-8.40 0.036234 0.037559 0.005590 0.002487
8.40-8.70 -0.003250 0.002303 0.004596 0.004596

Table 5.12: Deuterium Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.55 < zp < 0.6
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.12: p+d absolute Drell-Yan cross section measurement in xp = [0.55,0.6)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

4.745350
2.587740
2.025360
1.330700
0.940483
0.775924
0.511816
0.362222
0.132603
0.124017
0.046598
0.057957
0.108811
0.050495

0.327720
0.204594
0.169657
0.132961
0.122042
0.114262
0.085808
0.087886
0.048958
0.052139
0.035172
0.041671
0.062976
0.052314

0.664606
0.380556
0.286132
0.190636
0.135802
0.107003
0.073361
0.051803
0.021151
0.017546
0.009080
0.007474
0.012090
0.007745

0.339056
0.177361
0.146958
0.095539
0.067137
0.057406
0.036732
0.026039
0.008986
0.008988
0.003378
0.004552
0.009892
0.003475

Table 5.13: Deuterium Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.6 < zr < 0.65
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.13: p+d absolute Drell-Yan cross section measurement in xp = [0.6,0.65)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 2.633900 0.214143 0.389845 0.177071
4.80-5.10 1.913380 0.176877 0.268825 0.136434
5.10-5.40 1.188750 0.126864 0.185984 0.081094
5.40-5.70 1.051250 0.112181 0.156003 0.073683
5.70-6.00 0.678980 0.099614 0.092745 0.050639
6.00-6.30 0.371705 0.083415 0.057021 0.025578
6.30-6.60 0.229882 0.071712 0.035420 0.015786
6.60-6.90 0.198536 0.057036 0.028795 0.014129
6.90-7.20 0.058161 0.033387 0.017759 0.008613
7.20-7.50 0.081935 0.042332 0.012099 0.005761
7.50-7.80 0.138990 0.058498 0.019885 0.009989
7.80-8.10 0.031426 0.031445 0.003492 0.002857
8.10-8.40 0.049122 0.049163 0.005458 0.004466
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.14: Deuterium Drell-Yan scaling form cross section M3d?s /dMdzpr (GeV?nb) for 0.65 < zp < 0.7
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.14: p+d absolute Drell-Yan cross section measurement in zp = [0.65,0.7)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071) | Syst. err(+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

1.637320

1.190920

0.799661

0.607620

0.436197
0.212258
0.111894
0.072894
0.049863
0.068319
0.028912
0.063265
-0.000354
0.000000

0.170258
0.134728
0.093516
0.084819
0.072154
0.052910
0.054338
0.054740
0.029177
0.040261
0.029960
0.044849
0.000355
0.000000

0.248101
0.172774
0.112390
0.085535
0.061328
0.035930
0.022534
0.010138
0.006165
0.009099
0.004452
0.007029
0.000500
0.000000

0.106626
0.082625
0.058258
0.044211
0.031769
0.014282
0.008403
0.005355
0.004077
0.005209
0.001986
0.005751
0.000500
0.000000

Table 5.15: Deuterium Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.7 < zp < 0.75
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.15: p+d absolute Drell-Yan cross section measurement in g = [0.7,0.75)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

0.810564
0.642336
0.595968
0.378078
0.234967
0.167463
0.139475
0.111844
0.035692
-0.000886
0.002265
0.000000
0.000000
0.000000

0.121057
0.097489
0.081022
0.070492
0.052291
0.046776
0.045053
0.046802
0.026669
0.000629
0.001173
0.000000
0.000000
0.000000

0.110761
0.088905
0.081301
0.050674
0.034916
0.026090
0.017992
0.015186
0.006407
0.001253
0.000252
0.000000
0.000000
0.000000

0.059513
0.046501
0.044497
0.028666
0.016455
0.011443
0.010951
0.008385
0.002438
0.001253
0.000206
0.000000
0.000000
0.000000

Table 5.16: Deuterium Drell-Yan scaling form cross section M3d%0/dMdzp (GeV?nb) for 0.75 < zp < 0.8
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.16: p+d absolute Drell-Yan cross section measurement in xp = [0.75,0.8)
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5.1.2 Hydrogen absolute cross section

Mass bin (GeV)

M3d?c/dMdxr(x10~1

D)

Syst. err(+)(x10~

D)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

-6.290930
4.690440
1.019910
1.135140
0.719076
0.585446
0.655616
0.526382
0.429114
0.199181
0.130714
0.107804
0.000000
0.000000

) | Stat. error(x10~1) [ Syst. err(-)(x10~
20.735400 19.083400
3.335370 6.794290
1.113430 4.146170
0.716161 2.300470
0.449569 1.336830
0.334332 0.495076
0.218294 0.280498
0.135237 0.056848
0.126509 0.046343
0.100493 0.021511
0.092974 0.014117
0.108230 0.011643
0.000000 0.000000
0.000000 0.000000

11.224700
4.498380
3.295380
1.709100
1.044610
0.274477
0.166632
0.049232
0.040135
0.018629
0.012226
0.010083
0.000000
0.000000

Table 5.17: Hydrogen Drell-Yan scaling form cross section M3d?c/dMdxr (GeV?nb) for 0.0 < zp < 0.05
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.17: p+p absolute Drell-Yan cross section measurement in zr = [0.0,0.05)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 2.811960 5.274590 12.649100 9.195900
4.80-5.10 4.438710 1.673600 3.027440 1.148070
5.10-5.40 2.969780 0.811371 2.507150 1.616390
5.40-5.70 2.085680 0.401952 0.887770 0.446039
5.70-6.00 0.862470 0.365548 1.141810 0.843397
6.00-6.30 1.078270 0.214765 0.257033 0.080762
6.30-6.60 0.596568 0.160449 0.206103 0.108628
6.60-6.90 0.268941 0.078907 0.029045 0.025154
6.90-7.20 0.083524 0.141331 0.025120 0.025162
7.20-7.50 0.141341 0.071147 0.015265 0.013220
7.50-7.80 0.289726 0.119696 0.031290 0.027098
7.80-8.10 0.275896 0.139406 0.029796 0.025805
8.10-8.40 0.000000 0.000000 0.000000 0.000000
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.18: Hydrogen Drell-Yan scaling form cross section M3d?c/dMdzr (GeV?nb) for 0.05 < zp < 0.1
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.18: p+p absolute Drell-Yan cross section measurement in xp = [0.05,0.1)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

3.498670
3.445380
2.785450
1.181950
1.079110
1.374750
0.525741
0.534661
0.277647
0.166579
0.142452
0.095162
0.146279
0.000000

3.035200
1.119520
0.573746
0.410870
0.346520
0.178560
0.156032
0.103935
0.081330
0.068589
0.071699
0.067572
0.103979
0.000000

8.910630
3.741310
1.665050
1.240130
0.918764
0.148733
0.177336
0.057742
0.029985
0.017990
0.015385
0.010277
0.015798
0.000000

5.436070
2.198850
0.851111
0.760458
0.559739
0.129703
0.072330
0.050007
0.025968
0.015580
0.013323
0.008900
0.013681
0.000000

Table 5.19: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.1 < zp < 0.15
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.19: p+p absolute Drell-Yan cross section measurement in xp = [0.1,0.15)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

6.297040
5.684980
3.931100
1.870650
1.531080
0.926347
0.711057
0.390969
0.382864
0.111817
0.094758
0.039825
0.000000
0.000000

1.492780
0.812426
0.556727
0.312897
0.252272
0.229763
0.159254
0.078341
0.136616
0.142127
0.054944
0.039892
0.000000
0.000000

4.312100
3.048490
1.986840
0.816748
0.467369
0.694052
0.284466
0.042224
0.174904
0.189430
0.010234
0.004301
0.000000
0.000000

2.096110
1.695330
1.075470
0.378268
0.146571
0.486857
0.163289
0.036567
0.107160
0.156090
0.008863
0.003725
0.000000
0.000000

Table 5.20: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.15 < zp < 0.2
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.20: p+p absolute Drell-Yan cross section measurement in xp = [0.15,0.2)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

3.464560
3.886950
2.736380
2.008290
1.202520
0.851740
0.797307
0.329557
0.274774
0.007338
0.209491
0.029645
0.000000
0.067199

0.871899
0.577529
0.398322
0.269159
0.232731
0.179344
0.135624
0.103312
0.067591
0.098748
0.074782
0.029682
0.000000
0.067348

4.592560
2.149810
1.633820
0.766770
0.556635
0.507146
0.237552
0.131173
0.029675
0.132692
0.022625
0.003202
0.000000
0.007257

2.998970
1.018070
0.926951
0.350476
0.260933
0.344035
0.113196
0.075091
0.025700
0.118967
0.019594
0.002773
0.000000
0.006285

Table 5.21: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.2 < zp < 0.25
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.21: p+p absolute Drell-Yan cross section measurement in xp = [0.2,0.25)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 5.643890 0.777430 3.815100 2.022190
4.80-5.10 3.515390 0.442803 2.147660 1.223600
5.10-5.40 2.784590 0.314925 1.137370 0.542337
5.40-5.70 1.916880 0.246659 0.919370 0.521894
5.70-6.00 1.693390 0.159707 0.241170 0.122113
6.00-6.30 0.999085 0.144879 0.248137 0.091512
6.30-6.60 0.562066 0.117463 0.209215 0.115368
6.60-6.90 0.354759 0.112532 0.125615 0.051652
6.90-7.20 0.319723 0.066386 0.034530 0.029904
7.20-7.50 0.132453 0.047152 0.014305 0.012388
7.50-7.80 0.042326 0.029992 0.004571 0.003959
7.80-8.10 0.000000 0.000000 0.000000 0.000000
8.10-8.40 0.000000 0.000000 0.000000 0.000000
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.22: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.25 < zp < 0.3
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.22: p+p absolute Drell-Yan cross section measurement in xp = [0.25,0.3)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 5.058590 0.552202 3.085130 1.802670
4.80-5.10 3.877920 0.408254 1.925170 0.991644
5.10-5.40 2.727350 0.269051 0.983165 0.445275
5.40-5.70 1.965290 0.227154 0.856052 0.473253
5.70-6.00 1.203910 0.174505 0.558761 0.334760
6.00-6.30 0.954828 0.119025 0.160092 0.059584
6.30-6.60 0.657022 0.114161 0.207631 0.103159
6.60-6.90 0.550340 0.081807 0.059436 0.051473
6.90-7.20 0.188201 0.081793 0.104449 0.069186
7.20-7.50 0.028662 0.085624 0.115166 0.100227
7.50-7.80 0.056757 0.116644 0.156491 0.133775
7.80-8.10 0.108613 0.054572 0.011730 0.010159
8.10-8.40 0.104311 0.060450 0.011265 0.009756
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.23: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.3 < zp < 0.35
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.23: p+p absolute Drell-Yan cross section measurement in xp = [0.3,0.35)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

4.840350
3.505610
3.009380
1.281830
1.258300
0.788144
0.542380
0.401094
0.221000
0.183755
0.207243
0.061457
0.029509
0.041030

0.507323
0.315395
0.238777
0.189480
0.150961
0.114113
0.127992
0.065627
0.052672
0.051413
0.060361
0.035579
0.029538
0.041089

2.436710
1.489140
0.774243
0.785818
0.404421
0.247806
0.327343
0.043317
0.023868
0.019845
0.022382
0.006637
0.003187
0.004431

1.205960
0.758094
0.303942
0.511516
0.193438
0.122686
0.223030
0.037514
0.020670
0.017187
0.019383
0.005748
0.002760
0.003838

Table 5.24: Hydrogen Drell-Yan scaling form cross section M3d?c/dMdzr (GeV?nb) for 0.35 < zp < 0.4
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.24: p+p absolute Drell-Yan cross section measurement in xp = [0.35,0.4)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 4.988340 0.385753 1.732670 0.755823
4.80-5.10 3.756110 0.303385 1.225840 0.509989
5.10-5.40 2.248770 0.205181 0.839666 0.440209
5.40-5.70 1.640590 0.162738 0.504026 0.222606
5.70-6.00 0.889305 0.136461 0.394759 0.221808
6.00-6.30 0.982255 0.115374 0.204517 0.069667
6.30-6.60 0.652238 0.087618 0.119810 0.045104
6.60-6.90 0.288220 0.092951 0.169592 0.114602
6.90-7.20 0.084356 0.093742 0.177184 0.148739
7.20-7.50 0.109131 0.077655 0.101847 0.077312
7.50-7.80 0.059917 0.030045 0.006471 0.005604
7.80-8.10 -0.036725 0.100668 0.138298 0.130020
8.10-8.40 0.049451 0.035030 0.005341 0.004625
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.25: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.4 < zp < 0.45
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.25: p+p absolute Drell-Yan cross section measurement in xp = [0.4,0.45)
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Mass bin (GeV)

M3d%0]dMdz (%10 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(4+)(x1071)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

4.101260
3.020220
1.667550
1.251270
0.954889
0.543989
0.495423
0.180322
0.278613
0.199531
0.091639
0.054247
0.046071
0.000000

0.315042
0.221938
0.162527
0.135544
0.097209
0.094975
0.063855
0.062465
0.055415
0.048881
0.037557
0.031397
0.032665
0.000000

1.332600
0.765845
0.641103
0.350282
0.183709
0.207592
0.053505
0.080559
0.030090
0.021549
0.009897
0.005859
0.004976
0.000000

0.510792
0.275733
0.334043
0.131642
0.068394
0.116117
0.046337
0.048855
0.026059
0.018662
0.008571
0.005074
0.004309
0.000000

Table 5.26: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzr (GeV?nb) for 0.45 < zp < 0.5
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.26: p+p absolute Drell-Yan cross section measurement in xp = [0.45,0.5)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

2.769150
2.135930
1.669340
1.083130
0.612465
0.455751
0.375217
0.174402
0.124435
0.097719
0.106860
0.052178
0.040775
0.031270

0.262616
0.171938
0.146670
0.130991
0.111372
0.079467
0.067762
0.037587
0.033493
0.034729
0.037971
0.030200
0.028879
0.031303

1.516140
0.715045
0.463388
0.442784
0.333739
0.143936
0.088719
0.018835
0.013439
0.010554
0.011541
0.005635
0.004404
0.003377

0.912246
0.357006
0.184411
0.243919
0.211986
0.071481
0.035652
0.016312
0.011638
0.009140
0.009995
0.004880
0.003814
0.002925

Table 5.27: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.5 < zp < 0.55
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.27: p+p absolute Drell-Yan cross section measurement in xp = [0.5,0.55)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

2.751080
1.572170
1.277130
0.838409
0.455350
0.307018
0.259297
0.204107
0.135473
0.100824
0.037355
0.015220
0.020827
0.053087

0.229680
0.140382
0.123414
0.092648
0.090843
0.092166
0.060220
0.041329
0.036477
0.033786
0.021605
0.015230
0.020842
0.037624

0.952538
0.496973
0.286651
0.204170
0.220762
0.267190
0.077584
0.022043
0.014631
0.010889
0.004034
0.001644
0.002249
0.005733

0.430516
0.228917
0.088597
0.083741
0.131297
0.200048
0.037084
0.019090
0.012671
0.009430
0.003494
0.001424
0.001948
0.004965

Table 5.28: Hydrogen Drell-Yan scaling form cross section M3d%0/dMdzp (GeV?nb) for 0.55 < zr < 0.6
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.28: p+p absolute Drell-Yan cross section measurement in xp = [0.55,0.6)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1) | Syst. err(-)(x10~1)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

1.735690
1.204530
0.831167
0.579958
0.423531
0.284658
0.223554
0.156728
0.084829
0.051228
0.049673
0.014438
0.000000
0.028466

0.155351
0.121035
0.093282
0.069146
0.078712
0.063598
0.040128
0.056638
0.028421
0.022988
0.024893
0.014447
0.000000
0.028491

0.624841
0.368827
0.256152
0.127104
0.173689
0.114249
0.024143
0.073184
0.009161
0.005533
0.005365
0.001559
0.000000
0.003074

0.304760
0.166371
0.125051
0.048808
0.101005
0.065693
0.020909
0.045278
0.007934
0.004791
0.004646
0.001350
0.000000
0.002662

Table 5.29: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdxzp (GeV?nb) for 0.6 < zp < 0.65
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.29: p+p absolute Drell-Yan cross section measurement in xp = [0.6,0.65)
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Mass bin (GeV) | M3d?0/dMdxr(x1071) | Stat. error(x10~1) | Syst. err(-)(x10~1) | Syst. err(+)(x1071)
4.50-4.80 1.211530 0.117751 0.319263 0.117000
4.80-5.10 0.721451 0.090208 0.235313 0.108109
5.10-5.40 0.715561 0.086937 0.217106 0.104817
5.40-5.70 0.526777 0.056596 0.056891 0.049269
5.70-6.00 0.237531 0.054257 0.096930 0.056223
6.00-6.30 0.209621 0.062189 0.113110 0.074168
6.30-6.60 0.131584 0.048047 0.061427 0.037999
6.60-6.90 0.091021 0.026434 0.009830 0.008513
6.90-7.20 0.135744 0.035338 0.014660 0.012696
7.20-7.50 0.040303 0.020212 0.004353 0.003770
7.50-7.80 0.060232 0.027014 0.006505 0.005633
7.80-8.10 0.000000 0.000000 0.000000 0.000000
8.10-8.40 0.000000 0.000000 0.000000 0.000000
8.40-8.70 0.000000 0.000000 0.000000 0.000000

Table 5.30: Hydrogen Drell-Yan scaling form cross section M3d?s/dMdzp (GeV?nb) for 0.65 < zr < 0.7
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.30: p+p absolute Drell-Yan cross section measurement in xp = [0.65,0.7)
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Mass bin (GeV)

M3d20 JdMdz (<10~ 1)

Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

0.780247
0.524857
0.320676
0.245414
0.175208
0.161202
0.127879
0.027857
0.008836
0.020848
0.016511
0.000000
0.005778
0.000000

0.091080
0.073890
0.049324
0.044618
0.031508
0.032029
0.044683
0.043041
0.008840
0.014758
0.016523
0.000000
0.005795
0.000000

0.179521
0.176245
0.065883
0.057152
0.018922
0.017410
0.056206
0.056456
0.000954
0.002252
0.001783
0.000000
0.000624
0.000000

0.051308
0.086100
0.024671
0.022737
0.016387
0.015077
0.033827
0.047260
0.000826
0.001950
0.001544
0.000000
0.000540
0.000000

Table 5.31: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.7 < zp < 0.75
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.31: p+p absolute Drell-Yan cross section measurement in xp = [0.7,0.75)
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Mass bin (GeV)

M3d%0/dMdzr(x1071) | Stat. error(x10~1)

Syst. err(-)(x1071)

Syst. err(+)(x10~1)

4.50-4.80
4.80-5.10
5.10-5.40
5.40-5.70
5.70-6.00
6.00-6.30
6.30-6.60
6.60-6.90
6.90-7.20
7.20-7.50
7.50-7.80
7.80-8.10
8.10-8.40
8.40-8.70

0.263829
0.220230
0.207120
0.119593
0.118332
0.099435
0.034818
0.037931
0.031516
0.014474
0.000000
0.000000
0.000000
0.000000

0.072385
0.053483
0.032812
0.038440
0.025541
0.025085
0.015612
0.019019
0.018244
0.010268
0.000000
0.000000
0.000000
0.000000

0.199215
0.089214
0.022368
0.049952
0.012780
0.010739
0.003760
0.004096
0.003404
0.001563
0.000000
0.000000
0.000000
0.000000

0.139059
0.046241
0.019372
0.029322
0.011068
0.009300
0.003256
0.003548
0.002948
0.001354
0.000000
0.000000
0.000000
0.000000

Table 5.32: Hydrogen Drell-Yan scaling form cross section M3d%c/dMdzp (GeV?nb) for 0.75 < zr < 0.8
bin. Statistical and systematic error are also shown in the respective columns.
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Figure 5.32: p+p absolute Drell-Yan cross section measurement in xp = [0.75,0.8)
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Chapter 6

Features of kinematic dependence of

< pr > from analysis of existing
Drell-Yan data

6.1 Introduction

In parton model, quarks carry a fraction of the total longitudinal momentum of the hadron in the infinite
momentum frame. Uncertainty principle implies non-zero intrinsic transverse momentum of quarks arising
from the confinement of quark inside hadron. The size of the hadron is of the order of ~ 1 fm. This leads to a
mean momentum in transverse direction < pp > ~ 0.2 GeV/c. A virtual photon produced from annihilation
of two such partons in the Drell-Yan process is expected to have a < pr >~ 0.3 GeV/c. However, it
was observed in Drell-Yan experiments that the dimuon mean pr (~ 1 GeV/c) is significantly larger than
0.3 GeV/c. This observation provided a strong evidence for the important role of QCD in the Drell-Yan
process.

With the emission of gluons, the quarks acquire a transverse kick, thus providing additional transverse
momentum to the dileptons produced in the Drell-Yan process. The focus of this chapter is to provide a
systematic study of the transverse momentum data from existing Drell-Yan experiments and to search for

universal behaviour pertaining to the transverse momentum distributions such as,
e Dependence of pr distribution on /s
e Dependence of pp distribution on Feynman-x (zp) and dimuon mass (M)
e Dependence of pr distribution on the type of quarks (valence or sea)

e Dependence of pr distribution on the type of beam hadron (baryon or meson)

6.2 Existing fixed target Drell-Yan experiments

This section presents the analysis details and results from available fixed-target Drell-Yan pr data. Table

lists the experiments, their beam energies and the corresponding beam and target types. The data for
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all the listed experiments have been taken from [54] except for E866 and NA10, which have been taken from

respective thesis referenced in the table below.

Experiment  Pyegm (GeV) Vs (GeV) Beam Target Reference
E366 800 387 p  Hs,Ds ]
E772 800 38.7 p D, 17, §]
E288 200,300,400  19.4, 23.7, 274 p Pt [6]
E605 800 38.7 p Cu [30]
E537 125 15.3 D w %)
E615 252 21.7 T W 361
E537 125 15.3 o W [55]
NA10 194,284 19.1, 23.1 " w [56]

Table 6.1: Summary of analysed pr data

6.2.1 Method

Typically, the Drell-Yan pp distribution is fit either with gaussian functional form or Kaplan functional

form. The gaussian functional form is

do p3

— (zp, M) = ppexp(——3) (6.1)
dp3. " 0 s

where parameter pj is related to the mean of the distribution.

Similarly, the Kaplan functional form is

do P2 -0
—(zp, M) =p (1 + T) 6.2

In the case of Kaplan distribution parameter p; is related to the mean of the distribution. Figure shows
a shape comparison of both functional form. They have very similar shape for low pr. At low pr, the
equations and can be taylor expanded and pjand p| are related as p? = 6p2. At high pr gaussian

has a sharper fall-off while Kaplan functional form has a high pp tail.
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Figure 6.1: A comparison of shape for Kaplan and Gaussian function. At low pr, shape of both the functions
are very similar. However for large pr, the shape differs. The gaussian function has a sharper fall-off, while,
Kaplan has a high pr tail.

For the purpose of this analysis, the Kaplan functional form is chosen to fit the available data. The

parameter p; in Kaplan form, equation is related to the mean pr and mean p2 as follows,

pr g —-dpr p
<pr>= / de < pp >= It Td‘ipT (6.3)
de —dpr dpr dpr
Using analytical expressions,
i s  Tra/? % 3 2
/%dw = i, / ) =T , and /xizdx =L (6.4)
(1 + %)6 10 1 +Z - 512 (1 + %)6 40
0 0 0
We obtain from equations [6.3] and
3511 9 p?
< pr >= T and < pp>==— (6.5)

Proton induced Drell-Yan

e E866 p+p/d — pt +p~ + X at 800 GeV/c
The relevant E866 data are unpublished but available from Jason Webb’s thesis [4]. The invariant form

of cross section, E‘jl%‘g is provided as a function of ppr for mass range 4.2 — 8.7 GeV and 10.85 — 16.85
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GeV and xp varying from —0.05 to 0.8.

d?l 2K d?o (6.6)
dp3 /s drpdp? ’

Using the functional form proposed by Kaplan, the data are fitted to obtain mean pp for each data set.
The data also contain information about the < M > and < zp > for each py distribution. Solving
the following two equations for a given mass and zp to obtain a quadratic equation whose roots are

z1 and o

M?
T=—"=X21%2 Tp = T1 — X2
S

Thus one obtains

T3+ xpry — M?/s =0
where /s = 38.763 GeV for ppeam = 800 GeV

1 4M? 403
a1 = Z[zp + (2% + —)'7 x2 = Z[—ap + (27 + —)'7] (6.7)

2

DO =

Table and presents < pr > and < p2. > obtained from Kaplan fit to hydrogen and deuterium

data. respectively.
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< pr >

<pr >

42 <M <52; <M >=4.65or 7 =0.01439

0.12
0.25
0.43
0.62

0.194
0.298
0.461
0.642

0.074
0.482
0.031
0.022

1.216 £ 0.043
1.192 £+ 0.021
1.083 £+ 0.021
0.986 £ 0.036

2.007 £ 0.143
1.927 £+ 0.069
1.593 £ 0.063
1.321 + 0.098

5.

2<M<62;<M>=5680rT

= 0.02147

0.12
0.27
0.44
0.62

0.218
0.334
0.484
0.652

0.098
0.064
0.044
0.032

1.214 £+ 0.066
1.215 £ 0.021
1.122 £ 0.019
1.020 £ 0.026

2.002 £ 0.218
2.005 £ 0.071
1.709 £ 0.058
1.413 £ 0.073

2<M<72;<M>=669o0r T

= 0.02978

0.11
0.28
0.44
0.63

0.236
0.362
0.499
0.674

0.126
0.082
0.059
0.044

1.138 &+ 0.093
1.206 £ 0.023
1.179 £ 0.013
1.045 £ 0.027

1.758 + 0.289
1.974 £+ 0.076
1.886 £ 0.043
1.483 £ 0.078

7.

2<M<87T;<M>=8050rT1

= 0.04312

0.10
0.26
0.44
0.62

0.263
0.375
0.522
0.683

0.163
0.115
0.082
0.063

1.239 £ 0.044
1.277 £ 0.023
1.212 £ 0.019
1.0563 £ 0.028

2.085 + 0.148
2.214 + 0.080
1.993 £+ 0.064
1.506 £ 0.081

10.85 < M < 12.85 ;

< M >=11.25 or 7 = 0.08423

0.10
0.26
0.44
0.62

0.350
0.462
0.584
0.726

0.240
0.182
0.144
0.116

1.453 £+ 0.741
1.407 = 0.109
1.336 = 0.071
1.271 + 0.103

2.864 + 2.922
2.686 + 0.417
2.424 + 0.260
2.193 £ 0.357

12.8

5< M <1685; <M >=13.18

or 7 = 0.1156

0.27
0.45
0.64

0.500
0.632
0.786

0.230
0.182
0.146

1.833 + 0.584
1.261 £ 0.319
0.864 £ 0.428

4.558 £ 2.905
2.159 + 1.092
1.013 £+ 1.005

Table 6.2: < pr > (in GeV/c) and < p? > (in GeV?/c?) for E866 p+p Drell-Yan in different mass and zp
bins; the x1 and x5 are calculated using the tabulated < xp > value and < M >

109



|

< pr >

<pr >

42 < M <5.2;< M >=4.65 or 7 = 0.01439

0.12 | 0.194 | 0.074 | 1.173 + 0.028 | 1.867 £ 0.090
0.25 | 0.298 | 0.482 | 1.221 + 0.016 | 2.023 + 0.053
0.43 | 0.461 | 0.031 | 1.085 #+ 0.016 | 1.597 £ 0.048
0.62 | 0.642 | 0.022 | 1.035 + 0.027 | 1.454 + 0.077
5.2 < M <6.2;< M >=5.68 or 7 =0.02147
0.12 | 0.218 | 0.098 | 1.191 + 0.054 | 1.926 + 0.177
0.27 | 0.334 | 0.064 | 1.201 4+ 0.018 | 1.958 + 0.058
0.44 | 0.484 | 0.044 | 1.123 + 0.013 | 1.710 £ 0.041
0.62 | 0.652 | 0.032 | 1.035 + 0.018 | 1.504 + 0.053
6.2 < M <T7.2;< M >=6.69 or 7 =0.02978
0.11 | 0.236 | 0.126 | 1.211 + 0.065 | 1.990 + 0.216
0.28 | 0.362 | 0.082 | 1.249 4+ 0.018 | 2.117 + 0.061
0.44 | 0.499 | 0.059 | 1.170 + 0.014 | 1.857 £ 0.045
0.63 | 0.674 | 0.044 | 1.021 + 0.017 | 1.414 + 0.048
72< M <87,< M >=8.050r 7=0.04312
0.10 | 0.263 | 0.163 | 1.292 + 0.030 | 2.266 + 0.108
0.26 | 0.375 | 0.115 | 1.281 + 0.016 | 2.229 + 0.059
0.44 | 0.522 | 0.082 | 1.203 4+ 0.014 | 1.965 + 0.046
0.62 | 0.683 | 0.063 | 1.086 + 0.018 | 1.600 + 0.055
10.85 < M < 12.85; < M >=11.25 or 7 = 0.08423
0.10 | 0.350 | 0.240 | 1.730 &+ 0.513 | 4.060 £ 2.407
0.26 | 0.462 | 0.182 | 1.286 + 0.059 | 2.244 + 0.206
0.44 | 0.584 | 0.144 | 1.226 + 0.043 | 2.042 + 0.145
0.62 | 0.726 | 0.116 | 1.167 4+ 0.070 | 1.849 + 0.223
12.85 < M < 16.85; < M >=13.18 or 7 = 0.1156
0.27 | 0.500 | 0.230 | 1.529 + 0.452 | 3.171 + 1.878
0.45 | 0.632 | 0.182 | 1.263 + 0.121 | 2.165 + 0.416
0.64 | 0.786 | 0.146 | 1.156 + 0.127 | 1.813 + 0.400

Table 6.3: < pr > (in GeV/c) and < p? > (in GeV?/c?) for E866 p+d Drell-Yan in different mass and zp
bins; the x1 and x5 are calculated using the tabulated < xp > value and < M >

e E7T72p+d— pt 4+ p~ + X at 800 GeV/c
The invariant form of cross section Ed3c/dp® (in units pb/GeV?/nucleon) is tabulated for different
mass bins with zp in the range [0.1,0.3] [7,[8]. The pr distribution was analysed in each mass bins to

obtain the mean pp. The result is tabulated in table
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Figure 6.2: Kaplan fits to hydrogen data (left) and deuterium data (right) for 0.15 < zp < 0.35 and
4.2 < M- ,+ < 5.2 GeV/c* bin. Similar fits have been performed for all the zz and M-+ bin to get the

(a) Hydrogen

0.35<x:<0.55, 4'2O<Mu'»‘<5'20

> ~
L — =3
T T T

Ed’s/dp® (pb/GeVZ/nucleon)

=
s
T

%2/ ndf 9.842/ 11
p0 10.56 +0.4143
pi 2.528 +0.03822

the value of < py > and < p% > shown in table and

Table 6.4: < pr > (in GeV/c) and < p2 > (in GeV?/c?) for p+d Drell-Yan in different mass bins for E772

experiment

2
M, =7.5 GeV/c?, 0.1<x_<0.3

‘1““2““3

(b) Deuterium

Ed’s/dp® (pb/GeV?/nucleon)
S

>
S
T

%2/ ndf
p0 1.328
p1 2.763

13.89/12
+0.03427
+0.03655

L l L L L
b, (GeVic)

Figure 6.3: Kaplan fit for M, ,+=7.5 GeV/c? bin (E772).

M P1 <pr > <p7 >

5.5 | 2.758 & 0.029 | 1.184 4+ 0.012 | 1.901 4 0.040
6.5 2.660 £ 0.025 | 1.142 + 0.011 | 1.768 + 0.034
7.5 | 2.763 £ 0.036 | 1.186 + 0.015 | 1.908 4 0.050
85 | 2.728 £ 0.043 | 1.171 £ 0.018 | 1.860 + 0.058
11.5 | 2.746 &= 0.136 | 1.179 4 0.058 | 1.885 £ 0.187
12.5 | 2.694 + 0.197 | 1.157 + 0.084 | 1.814 4+ 0.265
13.5 | 2.753 & 0.492 | 1.182 4+ 0.211 | 1.894 £+ 0.678
14.5 | 3.137 £ 1.570 | 1.347 £ 0.674 | 2.460 £ 2.462

111

T T Y
b, (GeVic)



e E288 p+ Pt — put 4+ p~ + X at 200/300/400 GeV /c
The invariant form of cross section Ed®c/dp® (in units cm?/GeV? /nucleon) is tabulated for different

mass bins at three different proton beam energy [6]. The pr distribution was analysed in each mass

bin to obtain the mean pp. The result is tabulated in table (6.5

2

M ] 1 | <pr> | <pi> | /7=M(bin center)/\/s [ xp=y/T(e<V> — e <V>)
Deam = 200 GeV/c, < y >= 0.40
4-5 2.268 £ 0.040 | 0.974 £ 0.017 | 1.285 + 0.046 0.23 0.191
5-6 2.283 £ 0.050 | 0.980 £ 0.021 | 1.303 £ 0.058 0.28 0.234
6-7 2.322 £ 0.058 | 0.997 £ 0.025 | 1.347 + 0.067 0.34 0.277
7-8 2.269 £+ 0.101 | 0.974 £ 0.043 | 1.287 + 0.115 0.39 0.319
8-9 2.246 £ 0.198 | 0.964 £ 0.085 | 1.261 + 0.223 0.44 0.362
9-10 | 2.742 4+ 0.438 | 1.177 £ 0.188 | 1.879 £ 0.601 0.49 0.404
DPoeam = 300 GeV/c, <y >=0.21
4-5 2.458 £+ 0.052 | 1.055 £ 0.022 | 1.510 + 0.064 0.19 0.08
5-6 2.447 £+ 0.042 | 1.051 £ 0.018 | 1.496 £ 0.051 0.23 0.098
6-7 2.590 £ 0.050 | 1.112 £ 0.021 | 1.677 + 0.065 0.27 0.116
7-8 2.594 £ 0.071 | 1.114 £ 0.030 | 1.682 + 0.092 0.32 0.133
8-9 2.457 £ 0.085 | 1.055 £ 0.036 | 1.509 £ 0.105 0.36 0.152
9-10 | 2.423 4+ 0.099 | 1.040 4+ 0.042 | 1.467 £+ 0.120 0.40 0.169
10-11 | 2.454 4+ 0.211 | 1.054 £ 0.090 | 1.505 =+ 0.259 0.44 0.187
11-12 | 4.028 £ 2.718 | 1.730 £ 1.167 | 4.056 + 5.474 0.48 0.205
Dbeam = 400 GeV/c, < y >=0.03
5-6 2.746 £ 0.034 | 1.179 £ 0.014 | 1.885 + 0.047 0.20 0.012
6-7 2.744 £+ 0.018 | 1.178 £ 0.007 | 1.882 + 0.025 0.24 0.014
7-8 2.853 £ 0.022 | 1.225 £ 0.009 | 2.034 + 0.032 0.27 0.016
8-9 2.809 £+ 0.028 | 1.206 £+ 0.012 | 1.972 + 0.039 0.31 0.19
9-10 3.019 £ 0.034 | 1.296 £ 0.014 | 2.278 + 0.051 0.35 0.021
10-11 | 3.003 £ 0.046 | 1.289 £ 0.019 | 2.254 + 0.069 0.38 0.023
11-12 | 2.732 £ 0.041 | 1.173 £ 0.017 | 1.865 £ 0.057 0.42 0.025
12-13 | 2.960 £ 0.153 | 1.271 £ 0.065 | 2.190 + 0.226 0.46 0.027
13-14 | 2.809 4 0.262 | 1.206 £ 0.112 | 1.972 £ 0.368 0.49 0.029

Table 6.5: < pr > (in GeV/c) and < p2 > (in GeV?/c?) for p+d Drell-Yan in different mass bins for E288
experiment for ppeam = 200 GeV, 300 GeV and 400 GeV.
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e E605 p+ Cu— u™ + p~ + X at 800 GeV/c

The invariant form of cross section Ed®c/dp? (in units em?/GeV?/nucleon) is tabulated for different

mass bins with 2 in the range (—0.1,0.2) [30]. The pr distribution was analysed in each mass bin to

obtain the mean pp. The result is tabulated in table

Table 6.6: < pr > (in GeV/c) and < p2 > (in GeV?/c?) for p4+Cu Drell-Yan in different mass bins for E605

experiment

M VT | <zRp > 1 <pr>

7-8 0.194 0.1 3.24 £ 0.12 | 1.39 £+ 0.05

8-9 0.219 0.1 3.16 £ 0.04 | 1.36 £ 0.02
10.5-11.5 | 0.284 0.1 3.06 £ 0.04 | 1.31 £ 0.02
11.5-13.5 | 0.323 0.1 3.09 £ 0.04 | 1.32 £ 0.02
13.5-18 0.400 0.1 2.96 £ 0.08 | 1.27 £ 0.04

Figure 6.4: Kaplan fit for M, ,+=8-9 GeV/c? bin for E605 experiment.

Ed’s/dp® (pb/GeV/nucleon)

8<M,,.<9 GeV/c?, -0.1<x_<0.2

¥ / ndf 34.08/12
pO 0.4344 +0.009659
p1 3.165 + 0.04942

%

. (GeV/c)

o
13
o)
ol
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Antiproton induced Drell-Yan

e E537p+ W — ut 4+ pu~ + X at 125 GeV/c
d*c /dmdp3- (in units cm?/GeV?3 /nucleon) and d?c /dzdp3. (in units cm?/GeV? /nucleon) as a function
of p2 is tabulated for different mass bin and zy bins [55]. The pr distribution was analysed in each

mass bins to obtain the mean pr. The result is tabulated in table

M P1 <pr> <pp >
4-4.5 | 2.123 £ 0.090 | .911 £ .038 | 1.127 £ 0.095
4.5-5 | 1.872 £ 0.136 | .804 £ .058 | 0.876 £ 0.127
5-5.5 | 2.109 + 0.179 | .905 + .076 | 1.112 £ 0.188
5.5-6 | 1.577 £ 0.422 | .677 £+ .181 | 0.621 £ 0.332
TE P1 < pr > < p?r >
-0.1-0 | 2.353 £ 0.296 | 1.010 &+ 0.127 | 1.384 4+ 0.348
0-0.1 2.095 £+ 0.193 | 0.899 + 0.083 | 1.097 + 0.202
0.1-0.2 | 2.238 £ 0.177 | 0.961 £ 0.076 | 1.252 + 0.198
0.2-0.3 | 1.979 £ 0.143 | 0.849 £ 0.061 | 0.979 + 0.141
0.3-0.4 | 2.102 £ 0.157 | 0.902 £ 0.067 | 1.105 £ 0.165
0.4-0.5 | 2.048 £ 0.222 | 0.879 £ 0.095 | 1.048 £ 0.227
0.5-0.6 | 2.193 £ 0.419 | 0.941 £ 0.180 | 1.202 + 0.460

Table 6.7: < pr > (in GeV/c) and < p2. > (in GeV?/c?) for 5+W Drell-Yan in different mass and zp bins
for E537 experiment

4.0<M,, <4.5 GeV/c® 0.2<x.<0.3
T f 22/ ndf 11.29/13 B 2/ ndf 4613/13
st PO 112+13.26 L el PO 301.8 +55.96
2 | Pl 2.123+0.09024 2 f pi 1.979 +0.1427
3 10E >
Q9 k g
= B E 1o
e S F
- -
T 1 T,
= = NS
= F ke
% r NB 1
B i ©
%
107= ‘2“‘4“‘&‘3“‘ ui“‘z“‘4“‘t‘s“‘
P2 (GeV?/c?) p2 (GeV?/c?)
(a) Kaplan fit to E537 antiproton data in (b) Kaplan fit to E537 antiproton data in
M, - ,+=4-4.5 GeV/c* bin. xp=0.2-0.3 bin.
Figure 6.5
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Pion induced Drell-Yan

e ES37 7= + W — ut +u~ 4+ X at 125 GeV/c
d*o /dmdp3- (in units cm?/GeV?3 /nucleon) and d?c /dzdp3. (in units cm?/GeV? /nucleon) as a function
of p2 is tabulated for different mass bin and zr bins [55]. The pr distribution was analysed in each

mass bins to obtain the mean pr. The result is tabulated in table

M P1 <pr > <p3 >
4-4.5 | 2.245 + 0.059 | .964 + .025 | 1.260 + 0.066
4.5-5 | 2.235 4+ 0.091 | .959 + .039 | 1.249 + 0.102
5-5.5 | 2.23 + 0.138 957 £ .059 | 1.243 £ 0.154
5.5-6 | 2.363 £ 0.164 | 1.014 £ .070 | 1.396 4+ 0.194
TE P1 < pr > < pc2p >

-0.1-0 | 2.104 £+ 0.232 | 0.903 £+ 0.099 | 1.107 4+ 0.244
0-0.1 1.914 + 0.156 | 0.822 4+ 0.067 | 0.916 + 0.150
0.1-0.2 | 2.384 £ 0.122 | 1.023 £ 0.052 | 1.421 + 0.146
0.2-0.3 | 2.238 £ 0.099 | 0.961 £+ 0.043 | 1.252 £+ 0.111
0.3-0.4 | 2.303 £ 0.100 | 0.989 + 0.043 | 1.326 £ 0.116
0.4-0.5 | 2.262 £ 0.106 | 0.971 £ 0.045 | 1.279 £ 0.120
0.5-0.6 | 2.487 £+ 0.143 | 1.068 £+ 0.061 | 1.546 + 0.178

4.0<M,, <4.5 GeV/c®

(cm?GeV*/nucleon)

2
T

PoldM,,.dp

o
L

%2/ ndf
p0
p1

18.18/13
93.54 £6.752
2.245 +0.05917

CH‘
N

(a) Kaplan fit to E537 pion data in M- ,+=4-

4.5 GeV/c? bin.

—1 ‘
p2 (GeV?/c?)

0.2<x.<0.3

Table 6.8: < pr > (in GeV/c) and < p2 > (in GeV?/c?) for 7~ +W Drell-Yan in different mass and 25 bins
for E537 experiment

(cm?/GeV?/nucleon)
T

2
T

Po/dx dp

=

%2/ ndf
p0
p1

10.65/13
894.3 +106.9
2.238 +0.09945

0

%

p2 (GeV?/c?)

(b) Kaplan fit to E537 pion data in z=0.2-0.3

bin.

Figure 6.6
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e E615 7~ + W — ut +u~ 4+ X at 252 GeV/c
d*o/dmdpr (in units cm?/GeV/nucleon) and d*>c/dxdpr (in units em?/GeV/nucleon) as a function
of pr is tabulated for different mass bins and z bins [36]. The tabulated cross section was divided by
2pr to get the cross section as d?c/dmdp% and d?c/dxdp?. The pr distribution was analysed in each

mass and xp bin to obtain the mean pp. The result is tabulated in table

M VT D1 <pr > <pt >
4.05-4.50 19 | 2,553 £ 0.015 | 1.09 £ .01 | 1.63 £ 0.02
4.50-4.95 .22 | 2.607 £ 0.019 | 1.11 &£ .01 | 1.70 £ 0.02
4.95-5.40 24 | 2.645 + 0.022 | 1.14 £ .01 | 1.75 £ 0.03
5.40-5.85 .26 | 2.737 +£0.031 | 1.17 £ .01 | 1.87 £ 0.04
5.85-6.75 229 | 2.723 £ 0.031 | 1.16 £ .01 | 1.85 £ 0.04
6.75-7.65 .33 | 2.685 £ 0.043 | 1.15 £ .01 | 1.80 £ 0.06
7.65-9.00 .38 | 2.805 + 0.045 | 1.20 £ .01 | 1.96 + 0.06
9.00-10.35 44 | 2.587 £ 0.056 | 1.11 £ .02 | 1.67 £+ 0.07
10.35-11.70 | .51 | 2.660 + 0.138 | 1.14 4+ .06 | 1.77 £+ 0.18
11.70-13.05 | .57 | 2.475 £ 0.252 | 1.06 £ .12 | 1.53 £ 0.31

TE y41 < pr > < p% >
0.00-0.10 | 2.67 = 0.05 | 1.14 4+ .02 | 1.78 4+ 0.07
0.10-0.20 | 2.70 & 0.04 | 1.16 4+ .01 | 1.82 4+ 0.04
0.20-0.30 | 2.68 + 0.03 | 1.15 4+ .01 | 1.79 £+ 0.04
0.30-0.40 | 2.75 + 0.03 | 1.18 &+ .01 | 1.89 £+ 0.04
0.40-0.50 | 2.65 + 0.02 | 1.14 &+ .01 | 1.76 £+ 0.03
0.50-0.60 | 2.54 + 0.02 | 1.09 & .01 | 1.62 £+ 0.03
0.60-0.70 | 2.45 + 0.02 | 1.05 & .01 | 1.50 £ 0.02
0.70-0.80 | 2.31 + 0.02 | 0.99 + .01 | 1.33 £+ 0.02
0.80-0.90 | 1.92 + 0.03 | 0.82 4+ .01 | 0.92 £+ 0.02
0.90-1.00 | 1.37 & 0.04 | 0.58 4+ .01 | 0.46 £+ 0.03

Table 6.9: < pr > (in GeV/c) and < p2 > (in GeV?/c?) for 7~ +W Drell-Yan in different mass and z bins
for 615 experiment

4.95<M,,.<5.4 GeV/c® 0.4<x.<0.5

s f 72/ ndf 46.09/15 s F 7/ ndt 3468/ 15
S 1ok p0 37.12 +£0.782 2 10k p0 287.4 +6.383
2 F pi 2,645 +0.02295 2 F p1 2.656 +0.02375
> F =
9 1 3 10
e g |

. F ~
Q B Qo
il 2 b
5 F 8 F
N§ B & F
JhozEe * =10
8 F E
T f 4 : ; ; s ; ; :

p, (GeVylc) P, (GeVrc)
(a) Kaplan fit to E615 pion data in (b) Kaplan fit to E615 pion data in 25=0.4-0.5
M, - ,+=4.95-5.4 GeV/c® bin. bin.
Figure 6.7
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e NAIO m~ + W — pt + = + X at 194/284 GeV/c
1/prd3c/dmdydpr (in units nb/GeV3 /nucleon) as a function of pr is tabulated for different mass bins
and y bins [56]. The pr distribution was analysed in each mass and y bin to obtain the mean pr. The

result is tabulated in table [6.10]

M ] P | <pr> [ <p3> M ] P | <pr> [ <p3>
Pbeam=194GeV/c Pbeam=284GeV/c
y=0.0—0.2 y=0.0—0.2

45—-551]236+£0.02 | 1.01 £.00 | 1.39 £0.02 || 45—-5.5 | 2.76 £0.02 | 1.18 £ .01 | 1.90 £ 0.03
5.5—6.5|264+002|113£.00| 1.74£0.02 || 55—-6.5| 2.86 £0.03 | 1.22 £ .01 | 2.04 £ 0.04
6.5—751272+003| 1174+ .01 | 1.85 +£0.04 || 6.5—7.5 | 298 £0.04 | 1.28 £ .02 | 2.21 £ 0.06
7.5—85|262+0.02| 112+ .01 | 1.724+0.04 || 7.5 —-8.5 | 2.91 £0.06 | 1.25 £ .02 | 2.11 £ 0.08
11 -15 258 £04 | 1.11 £ .17 | 1.67 £ 0.52 11-15 | 268 £0.13 | 1.15 + .06 | 1.80 + 0.18

y=02-04 y=02-04
45—55 ] 260 +£0.00 ] .12+ .00 | 1.70 = 0.01 |[ 45—5.5 | 2.80 = 0.02 | 1.20 = .00 | 1.95 & 0.03
55—6.5 | 2.66 + 0.01 | 1.14 = .00 | 1.76 + 0.02 || 5.5 —6.5 | 2.92 + 0.03 | 1.25 + .01 | 2.12 + 0.04
6.5—75 | 2.65+0.02 | 1.14 + .00 | 1.76 + 0.02 || 6.5— 7.5 | 2.86 + 0.04 | 1.23 & .02 | 2.05 + 0.06
75—85 | 2.66 + 0.03 | 1.14 &= .01 | 1.76 + 0.04 || 7.5— 8.5 | 2.99 & 0.06 | 1.28 + .02 | 2.24 + 0.08
11—15 | 266 +0.12 | 1.144+ .05 | 1.77 £ 0.16 || 11 —15 | 2.83 + 0.14 | 1.22 & .06 | 2.00 & 0.20

y=04-0.6 y=04-0.6
45—-551262£001 | 112+.00 | 1.72£0.01 || 45—-5.5 | 272 £ 0.02 | 1.17 + .01 | 1.86 £+ 0.04
5.5—6.5 | 264 +£0.02 | 1.13+£.00 | 1.74 £0.02 || 55—-6.5 | 2.85 £0.04 | 1.22 £ .01 | 2.03 £ 0.05
6.5—751]260+0.02| 112+ .00 | 1.68 £0.02 || 6.5—7.5 | 2.90 + 0.05 | 1.24 + .02 | 2.10 £+ 0.08
75—85|261+£0.04 | 1.12+£ .02 | 1.70 £ 0.04 || 7.5 —8.5 | 2.90 £ 0.07 | 1.24 £ .03 | 2.10 £ 0.10
11—-15 | 238 £0.2 | 1.02 + .08 | 1.42 + 0.24 11—-15 | 294 £0.37 | 1.26 & .16 | 2.17 £+ 0.55

Table 6.10: < pr > (in GeV/c) and < p% > (in GeV?/c?) for pi~+W Drell-Yan in different M and y bins
for two different beam energies.

M,,.=5.5-6.5 GeV/c?, 0.0<y<0.2 M,.,-=5.5-6.5 GeV/c?, 0.0<y<0.2

%2/ ndf 16.71/18 %2 / ndf 9.169/18
p0 0.3459 £ 0.006639 p0 0.3368 + 0.009912
pt 2.639 £ 0.01859 p1 2.861+0.03548
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(a) Kaplan fit to NA10 194 GeV pion data in (b) Kaplan fit to NA10 284 GeV pion data in
M, - ,+=55-6.5 GeV and y=0.0-0.2. M, - ,+=55-6.5 GeV and y=0.0-0.2..

Figure 6.8
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6.3 /s dependence of < pr >

Vt~0.23
7>\5 1.2 1 42/ ndf 2,665 /1
e C | po 0.4471 0.05736
= 1.15)— | p1 0.0266 + 0.002198
/\'_ r
o L
\Y L
1.1
1.05|-
1;
0.95F
. L | L L L | L L L | L L L | |

26 28
Is (GeV/c)

Figure 6.9: < pr > plotted as a function of /s at /7 ~ 0.23 for E288. The data points correspond to

the highlighted rows in table The points are fit with a straight line, 0.45 + 0.027/s. The < pr > is

increasing with /s. However, it should be noted that the corresponding x g values are also decreasing; data
from E866 show increase in pr with decreasing zp.

The results shown in figure have been taken from E288 data at three different beam energies for
similar values of scaling variable /7. Similar plots have been presented in various references [24) [54) [6], [5].
The constant term in the linear fit is interpreted as coming from the intrinsic transverse momentum of the
quarks kr. In Kenyon’s paper /s dependence of < pr > has also been reported for E288 data combined
with Omega collaboration data for /7= 0.22 [24]. The fit parameters are 0.45 + 0.025,/s similar to the
results shown in Additionally, results exist from a conference presentation by Corden et. al. [57] for /7
= 0.28. According to this result, < pr > is fitted as 0.54 + 0.029+/s. The constant term is slightly higher

for /7 = 0.28.
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6.4 M dependence of < pp >
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0] B —— p+Pt 400 GeV (E288)
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(b) Pion-induced Drell-Yan

Figure 6.10: The < pr > obtained in different

Yan measurements. The bottom plot shows d

M,,~ .+ bin plotted as a function of M,
colors correspond to data from various experiments. The top plot is for proton and antiproton induced Drell
ata from pion induced Drell Yan measurements. The data

does not show any clear dependence on M,,—,,+.

The results does not show significant mass

shown in figure and Firstly as the beam energy increases the < py > value increases. Secondly,

the heavier targets have higher < pp >. Results from several experiments have shown the effect of pp

broadening in heavier targets [58), 59) 60

dependence. However, there are some interesting features
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6.5 zp dependence of < pp >

o = W 74W 252 GeV (E615)
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Figure 6.11: < pr > as a function of zy obtained by analysing pion induced Drell-Yan data from E615 and
E537.

The < pr > was first shown to have 2 dependence by pion induced Drell-Yan experiment E615 [306].
The < pr > is flat up to g ~ 0.4. Beyond xr ~ 0.4 there is a strong dependence on xz. Pion data

from E537 is extending only up to 0.6 and also have poor statistics. Analysis of E866 data shows a similar

o 14 ¥ 4.2<M<52 o 14 ¥ 42<M<5.2
% r 5.2<M<6.2 % r 5.2<M<6.2
(O] = k- 6.2<M<7.2 O] - k- 6.2<M<7.2
A8 i @ 7.2<M<8.7 A3 + é @ 7.2<M<8.7
a L { I ¢ [o) L !
Vv L T v L ? +
12f- Y % i 12f- ; (]
- t N \ b
14 11 ;
r ‘ Y ﬂ' r Y *
- £ Iy
0.9 I L L L I L L L ! L 0.9 I L L L I L L L !
) 0 0.2 0.4 0.6 . 0 0.2 0.4 0.6
Xe Xg

(a) < pr > plotted as function of xp for LH, target (b) < pr > plotted as function of zr for LD, target

Figure 6.12: The < pr > obtained in different M,,- ,+ and xr bin from E866 [4] plotted as a function of z .
The data clearly shows decrease in < pp > with increasing xp. The different colors correspond to different
mass bins. For low zp values the < pp > does not seem to have any mass dependence. However, for higher
zp bins, < pr > is increasing with M, ,+.

strong dependence of < pyr > on xp. This result is observed for first time for proton induced Drell-Yan. A
hand waving argument for understanding this trend is that as xp (~ 2p;/+/s) increases, the total centre of

mass energy is used up in the longitudinal momentum, hence the transverse component of the momentum
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decreases. This trend is supported by NLO calculation performed by Ching-Him Leung [61].

6.6 Beam-type dependence of pr
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Figure 6.13: The < pr > obtained in different M,,-,+ bin is plotted as a function of xr for 77, p and p
beam at comparable beam energies. The left figure shows a comparison of < py > from 125 GeV 7~ and p
beam induced Drell-Yan. Right figure shows a comparison of < py > for 200 GeV p and 194 GeV 7~ beam
induced Drell-Yan.

At similar beam energy, the < pr > for 7 induced Drell-Yan is higher as compared to the p induced
Drell Yan, and < pp > for p is lower than 7—. The difference between antiproton and pion < pr > is
not as significant. 120 GeV SeaQuest pr data from p + W interactions can add important information in

understanding the dependence of pr on beam type.
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Chapter 7

Transverse momentum distribution
from SeaQuest

7.1 Introduction

The study presented in this chapter was motivated by the analysis of existing Drell-Yan transverse momentum
data described in chapter 6. It focusses on analysis of transverse momentum data from SeaQuest for LDs
and LH,. The centre of mass energy /s = 15.01 GeV/c for SeaQuest experiment makes the transverse
momentum data interesting as it is the lowest /s amongst the existing Drell-Yan data. There are several

exciting physics topics that can be studied from the SeaQuest data.

e Dependence of < pr > on /s
The LDy and LH, data are analysed to get < pr > at 1/s=15.01 GeV. The SeaQuest data along
with data from existing Drell-Yan experiments at similar values of scaling variable /7 is utilized to
extrapolate the < py > to the intercept value which is interpreted as originating from the intrinsic kp

of the quarks.

e Dependence of < pp > on xp and M
Study the possible dependence of < pr > on zp and M. There is only one published result on possible
dependence of pr on zp from pion induced Drell-Yan in E615 experiment[36]. Similar trend was also
observed in unpublished E866 p+p and p+d data. The analysis from E866 pr data is shown in chapter

6. SeaQuest data also exhibit similar behaviour (discussed in this chapter).

e Nuclear dependence of pr distribution
Studies are being done by other members in SeaQuest collaboration to obtain A < p2. >(=< p% >4
— < p2 >1pa2), which is the measure of broadening of pr distribution (as compared to LDs) in nuclear
targets due to multiple scattering of quarks/anti-quarks in nuclear medium. Here A refers to the
nuclear targets, Tungsten, Iron and Carbon. The expression of A < p2. > requires information about
< p% > from LD,. Hence, the methods and preliminary results presented in this chapter will be useful

for studying the pr broadening effects in nuclear targets.
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7.2 Method

The methodology used for analysis is the same as described in chapter 4. The only difference is that the

mass fit results are now projected onto py and the DY yield in each pr bin is obtained as

Npy (pr) = Naata — Nytask — Nyjw — Nur — Ninizbrg. (7.1)

The yield in each bin is corrected for acceptance in that pr bin.

7.3 Results

7.3.1 pr distribution for Deuterium and Hydrogen data integrated over all zp

and M range
s F 2 / ndf 2121/7
pr bin (GeV) da/de(Xlo_Q) Stat. error(xlO_Q) § 0'01; S zo 0.01313+ 0.00020
0.00-0.25 0.300513 0.009203 S oos & 2
0.25-0.50 0.785850 0.015833 13 ¥
0.50-0.75 1.036640 0.019370 cooot
0.75-1.00 0.968041 0.020953 voodh
1.00-1.25 0.696715 0.021366 -
1.25-1.50 0.423877 0.022389 0.002f
1.50-1.75 0.222041 0.025673 . ‘ ‘ ‘ ‘
1.75-2.00 0.167534 0.023301 0 0s ! e ® b, (GeV)’
2.00-2.25 0.065445 0.028757
Figure 7.1: Kaplan fit to p+d data for xp =
Table 7.1: p+d Drell-Yan pr distribution (in (—0.1,0.95) and M = (4.2 GeV,8.8 GeV). The
nb/GeV) for zp = (-0.1,0.95) and M = < pr > value obtained from the fit using equa-
(4.2 GeV,8.8 GeV) tion 6.7 is 0.901 £ 0.008 GeV.
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= 2/ ndf 16.6/7
pr bin (GeV) | do/dpr(x10~2) | Stat. error(x10~2%) §0004 PO 0.006164:0.000116
0.00-0.25 0.142483 0.005122 e a 2066 0025
0.25-0.50 0.355969 0.008761 !:'o.ooa:
0.50-0.75 0.456982 0.011045 c ot
0.75-1.00 0.431939 0.011965 oo
1.00-1.25 0.309736 0.013173 ook
1.25-1.50 0.167725 0.014260 v
1.50-1.75 0.104554 0.015176 e
1.75-2.00 0.088655 0.014923 08 ! ' “ b, (GeV)’
2.00-2.25 0.008963 0.017207
Figure 7.2: Kaplan fit to p+p data for zp =
Table 7.2: p+p Drell-Yan pr distribution (in (—0.1,0.95) and M = (4.2 GeV,8.8 GeV). The
nb/GeV) for zp = (-0.1,0.95) and M = < pr > value obtained from the fit using equa-
(4.2 GeV,8.8 GeV) tion 6.7 is 0.887 £ 0.011 GeV.

The mean pr obtained is plotted below as a function of /s including data from E288 for similar value

of \/7 ~0.32+0.01.

Vt~0.33
g F T %2/ nat 3.872/2
8 | | PO 0.6304 + 0.02272
= et 0.01816 + 0.001145
Al— -
o
Y L
1~
0.9}
L. ! | |

° s (GeV/c)
Figure 7.3: < pr > plotted as a function of /s at /7 ~ 0.32 — 0.33 for E906 (lowest /s) and E288. The

data points for E288 are taken from analysis of E288 transverse momentum data (table [6.5). The data are
fit using a linear function, resulting in straight line given by 0.63 4+ 0.0184/s. The < py > is increasing with

N
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7.3.2 pr distribution for Deuterium and Hydrogen data in different z bins

This section presents results from analysis of transverse momentum data for LDy and LH in four zp bins.

Deuterium

%2/ ndf 559/7

pr bin (GeV) [ do/dpr(x10=2) | Stat. error(x10~2) PO 0.00376 +0.00027

0.00-0.25 0.092351 0.011926 i SUELLALL

0.25-0.50 0.214132 0.020709

0.50-0.75 0.292736 0.024647

0.75-1.00 0.311301 0.032344

1.00-1.25 0.230786 0.037882

1.25-1.50 0.126533 0.039617 ‘\‘

1.50-1.75 0.058446 0.043752

1.75-2.00 0.103070 0.036111 05 ' B > b (GeV)’

2.00-2.25 0.016981 0.056746

Figure 7.4: Kaplan fit to p+d data for zp =
Table 7.3: p+d Drell-Yan pr distribution (in (—0.1,0.15) and M = (4.2 GeV, 8.8 GeV).The <
nb/GeV) for zp = (-—0.1,0.15) and M pr > value obtained from the fit using equation

(4.2 GeV, 8.8 GeV) 6.7 is 0.933 £ 0.044 GeV.
S [ 2/ ndf 10.09/7
pr bin (GeV) | do/dpr(x10=2) | Stat. error(x10~2) §0-0037 iy PO 000407000013
0.00-0.25 0.089811 0.005829 <0 i 207020040
0.25-0.50 0.234177 0.009467 150_002
0.50-0.75 0.319816 0.012089 ©
0.75-1.00 0.276019 0.012431 i
1.00-1.25 0.184998 0.012846 0.001-
1.25-1.50 0.107834 0.014568 i
1.50-1.75 0.052784 0.020219 S e
1.75-2.00 0.062100 0.016540 05 ‘ E A
2.00-2.25 0.025087 0.018614
Figure 7.5: Kaplan fit to p+d data for zp =
Table 7.4: p+d Drell-Yan pr distribution (in [0.15,0.35) and M = (4.2 GeV,8.8 GeV).The <
nb/GeV) for zp = [0.15,0.35) and M = pr > value obtained from the fit using equation
(4.2 GeV, 8.8 GeV) 6.7 is 0.865 £ 0.017 GeV.
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pr bin (GeV)

do /dpr(x1072%)

Stat. error(x10~2)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.068699
0.180572
0.228834
0.207071
0.155051
0.082505
0.039961
0.024352
0.010615

0.003384
0.005832
0.006734
0.006939
0.006632
0.006087
0.005207
0.004681
0.006676

Table 7.5: p+d Drell-Yan pr distribution (in

nb/GeV) for zp =

(4.2 GeV,8.8 GeV)

[0.35,0.55) and M =

pr bin (GeV)

do /dpr(x10~2)

Stat. error(x10~2?)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.030706
0.077741
0.092259
0.084207
0.048255
0.031740
0.015347
0.007392
0.001709

0.001555
0.002696
0.003088
0.002979
0.002572
0.002275
0.002091
0.002321
0.001870

Table 7.6: p+d Drell-Yan pr distribution (in

nb/GeV) for zp =

(4.2 GeV, 8.8 GeV)

(0.55,0.8) and M =

126

nb/GeV)

o

0.001F

0.0005-

0.002]-

Footsf
s [

%2/ ndf 19.59/7
Y 0.003068 + 0.000073
p1 2.003 +0.025

6.7 is 0.860 £ 0.011 GeV.

do/dp.. (nb/GeV)

10°

5Tz 375
p, (GeV)

Figure 7.6: Kaplan fit to p+d data for xp
[0.35,0.55) and M = (4.2 GeV, 8.8 GeV). The <
pr > value obtained from the fit using equation

%2/ ndf 11.52/7
po 0.001319 + 0.000035
p1 1.908 + 0.025

6.7 is 0.819 £ 0.011 GeV.

- T SR R SR
15 2 5
P, (GeV)

Figure 7.7: Kaplan fit to p+d data for xp =
[0.55,0.8) and M = (4.2 GeV,8.8 GeV). The <
pr > value obtained from the fit using equation



Hydrogen

pr bin (GeV)

do /dpr(x1072)

Stat. error(x1072)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.048919
0.110836
0.138999
0.113862
0.072359
0.022840
-0.006597
0.067248
-0.032670

0.007188
0.011941
0.015179
0.017659
0.021387
0.026644
0.029923
0.022022
0.062112

Table 7.7: p+p Drell-Yan pr distribution (in

nb/GeV) for zp =

(4.2 GeV, 8.8 GeV)

(=0.1,0.15) and M =

pr bin (GeV)

do /dpr(x10~2)

Stat. error(x10~2?)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.038017
0.099680
0.123768
0.123017
0.078648
0.038177
0.022717
0.015798
0.006599

0.002900
0.004893
0.006093
0.007036
0.007820
0.008078
0.009679
0.009034
0.008475

Table 7.8: p+p Drell-Yan pr distribution (in

nb/GeV) for zp =

(4.2 GeV, 8.8 GeV)

[0.15,0.35) and M =

127

2

%.00157 %2/ ndf 8.509/7
€} po 0.00211+0.00019
g p1 1.838+0.115
Q_>9.001

°

©

©

0.0005

-0.0005|-

‘ ‘0.5‘ — 1 — ‘1.5‘ — 2|‘C)T‘(G‘e‘\i55
Figure 7.8: Kaplan fit to p+p data for zp =
(—0.1,0.15) and M = (4.2 GeV,8.8 GeV). The
< pr > value obtained from the fit using equa-
tion 6.7 is 0.789 4+ 0.05 GeV.

X2/ ndf 8.519/7
po 0.001752 + 0.000068
p1 1.998 + 0.050

e L
0 05 1 15 2

P, (G‘e‘VZ)'5
Figure 7.9: Kaplan fit to p+p data for zp =
[0.15,0.35) and M = (4.2 GeV,8.8 GeV). The <
pr > value obtained from the fit using equation
6.7 is 0.858 + 0.021 GeV.



pr bin (GeV) | do/dpr(x10=2) | Stat. error(x10~2)
0.00-0.25 0.031526 0.001792
0.25-0.50 0.075037 0.002917
0.50-0.75 0.095177 0.003503
0.75-1.00 0.080764 0.003459
1.00-1.25 0.061081 0.003511
1.25-1.50 0.029939 0.003605
1.50-1.75 0.019028 0.003274
1.75-2.00 0.018280 0.003014
2.00-2.25 -0.001256 0.003721

Table 7.9: p+p Drell-Yan pr distribution (in

nb/GeV) for

TF

(4.2 GeV,8.8 GeV)

[0.35,0.55) and M

I ¥/ ndf
PO
p1

10.56/7
0.001317 £ 0.000039
1.986 + 0.033

_|_

0 0.5 1 15

|
* p, (GeV)’

Figure 7.10: Kaplan fit to p+p data for zp =
[0.35,0.55) and M = (4.2 GeV,8.8 GeV). The <
pr > value obtained from the fit using equation
6.7 is 0.853 £ 0.014 GeV.

o1

%2/ ndf
po
p1

9.74717
0.0005516 + 0.0000177
1.94+0.03

’ P, (GeV)’

Figure 7.11: Kaplan fit to p+p data for zp =

pr bin (GeV) [ do/dpr(x10=2) | Stat. error(x10~2)
0.00-0.25 0.012958 0.000796
0.25-0.50 0.030805 0.001370
0.50-0.75 0.038426 0.001721
0.75-1.00 0.035560 0.001560
1.00-1.25 0.021979 0.001491
1.25-1.50 0.013384 0.001303
1.50-1.75 0.006772 0.001194
1.75-2.00 0.002430 0.001220
2.00-2.25 0.001467 0.000885
Table 7.10: p+p Drell-Yan pp distribution

0.55,0.8) and M = (4.2 GeV,8.8 GeV). The <

(in nb/GeV) for zp =
(4.2 GeV, 8.8 GeV)

[0.55,0.8) and M =

128

pr > value obtained from the
6.7 is 0.833 = 0.013 GeV.

fit using equation
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Figure 7.12: zp dependence of < pr > for SeaQuest p+d data. It is compared with p+d data from E866.
The SeaQuest < pr > is expected to be lower than E866 because of lower +/s.
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Figure 7.13: xp dependence of < pp > for SeaQuest p+p data. It is compared with p+p data from E866.
The SeaQuest < pr > is expected to be lower than E866 because of lower 4/s.

Differential cross section do/dpr were calculated in four zp bins using the NLO code [42] to check any
systematic dependence of < pr > on xp. The NLO code used for this calculation does not take care of
infrared divergences at low pr region arising in the QCD calculation. Hence, while fitting the pp distribution
from NLO calculation, low pr region has been ignored. To get better estimate of pr distribution shape,
especially at low pr, the resummation code provided in [62] should be used.

Figure and shows do /dpr in four zF bins. The calculation was performed at 1/s=15.01 GeV with

mass cut from 4.2 GeV to 8.8 GeV. The fit result (p;) shows decrease with increasing .
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Figure 7.14: pp distribution from p4+d NLO calculation in different xr bins also suggest dependence of
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< pr > on xp. The distribution with Kaplan functional form in pr range 1 GeV-3.5 GeV.
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Figure 7.15: pp distribution from p+p NLO calculation in different xr bins also suggest dependence of
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< pr > on xp. The distribution with Kaplan functional form in pr range 1 GeV-3.5 GeV.
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7.3.3 pr distribution for Deuterium and Hydrogen data in different M bins

This section presents results from analysis of transverse momentum data for LDy and LHs in four M bins.

Deuterium

)

> %2/ ndf 18.81/7
pr bin (GeV) [ do/dpr(x10=2) | Stat. error(x10~2) éo_ooa; PO 0.01133:+0.00024
0.00-0.25 0.264061 0.010992 <! d 2000
0.25-0.50 0.684132 0.019016 !:0-006:
0.50-0.75 0.873793 0.022824 C o
0.75-1.00 0.791620 0.024096 00047
1.00-1.25 0.582572 0.025095 C
1.25-1.50 0.287964 0.026624 oot
1.50-1.75 0.156116 0.032908 e e
1.75-2.00 0.141301 0.025983 o ‘ " * b, (GeV)’
2.00-2.25 0.067996 0.056541
Figure 7.16: Kaplan fit to data for M =
Table 7.11: p+d Drell-Yan pp distribution (in (4.2 GeV,5.2 GeV) and zp = (—0.1,0.95). The
nb/GeV) for M = (4.2 GeV,5.2 GeV) and zp = < pr > value obtained from the fit using equa-
(—0.1,0.95) tion 6.7 is 0.898 + 0.012 GeV.

o014~ 2/ ndf 15.63/7
pr bin (GeV) da/de(Xlo_Q) Stat. eI"I“OI“(XlO_Q) Qoomi PO 0.00173 +0.00004
0.00-0.25 0.039243 0.002121 ﬁ; ; i 21%700%
0.25-0.50 0.104561 0.003473 £
0.50-0.75 0.135456 0.004080 800081
0.75-1.00 0.128306 0.004433 0.0006f
1.00-1.25 0.088042 0.004512 0.0004f
1.25-1.50 0.061142 0.004034 :
1.50-1.75 0.029735 0.004090 | = -
1.75-2.00 0.012515 0.004575 T el
2.00-2.25 0.007154 0.004133
Figure 7.17: Kaplan fit to data for M =
Table 7.12: p+d Drell-Yan pr distribution (in [5.2 GeV,6.2 GeV) and zp = (—0.1,0.95). The
nb/GeV) for M = [5.2 GeV,6.2 GeV) and zp = < pr > value obtained from the fit using equa-
(—0.1,0.95) tion 6.7 is 0.915 4+ 0.005 GeV.
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pr bin (GeV)

do /dpr(x1072%)

Stat. error(x10~2)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.008068
0.017078
0.022509
0.020400
0.014321
0.011451
0.005381
0.003925
0.002381

0.000658
0.001023
0.001201
0.001216
0.001238
0.001029
0.000741
0.000787
0.000886

Table 7.13: p+d Drell-Yan pp distribution (in
nb/GeV) for M = [6.2 GeV,7.2 GeV) and zp =

(—0.1,0.95)

pr bin (GeV)

do Jdpr(x10~2)

Stat. error(x1072?)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.001546
0.003124
0.003387
0.003820
0.002703
0.002435
0.001408
0.000329
-0.000009

0.000307
0.000461
0.000528
0.000542
0.000488
0.000498
0.000363
0.000205
0.000009

Table 7.14: p+d Drell-Yan pp distribution (in
nb/GeV) for M = [7.2 GeV,8.8 GeV) and zp =

(=0.1,0.95)
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po 0.0002911+0.0000120

pl

2.142+0.045

do/dp.. (Nb/GeV)

o5 T 15 Z‘pT‘(G‘e‘\;SS
Figure 7.18: Kaplan fit to data for M =
[6.2 GeV,7.2 GeV) and zp = (—0.1,0.95). The
< pr > value obtained from the fit using equa-
tion 6.7 is 0.919 + 0.019 GeV.
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Figure 7.19: The fit for last mass bin failed.



Hydrogen

pr bin (GeV)

do /dpr(x1072)

Stat. error(x1072)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.127478
0.322851
0.401092
0.370814
0.258507
0.116959
0.072334
0.077520
0.001606

0.005945
0.010686
0.012870
0.014120
0.014870
0.017469
0.018552
0.016559
0.025135

Table 7.15: p+p Drell-Yan pr distribution (in
nb/GeV) for M = (4.2 GeV,5.2 GeV) and zp =

(—0.1,0.95)

pr bin (GeV)

do /dpr(x10~2)

Stat. error(x10~2?)

0.00-0.25
0.25-0.50
0.50-0.75
0.75-1.00
1.00-1.25
1.25-1.50
1.50-1.75
1.75-2.00
2.00-2.25

0.017936
0.051063
0.059694
0.058268
0.039750
0.025379
0.013370
0.008073
0.000062

0.001251
0.002030
0.002386
0.002582
0.002920
0.002599
0.002834
0.002787
0.004396

Table 7.16: p+p Drell-Yan pr distribution (in
nb/GeV) for M = [5.2 GeV,6.2 GeV) and zp =

(—0.1,0.95)
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> 0004 x2/ ndf 1559/7
9} pO 0.00536 +0.00014
2 p1 2.061+0.035
o8003
°
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© L
0.002-
0.001f
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| | | PR BT
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Figure 7.20: Kaplan fit to data for M =

(4.2 GeV,5.2 GeV) and zp = (—0.1,0.95). The
< pr > value obtained from the fit using equa-
tion 6.7 is 0.885 £ 0.015 GeV.

S %2/ ndf 724817
O 0.6[—
Q L p0 0.0008057 + 0.0000252
g pl 2.104 £0.041
o [
T 04
©
©
0.2
ol
0\ 4\\1‘\\\‘2\\\\2
0 5 5 .5
p, (GeV)
Figure 7.21: Kaplan fit to data for M =

[5.2 GeV,6.2 GeV) and zp = (—0.1,0.95). The
< pr > value obtained from the fit using equa-
tion 6.7 is 0.903 £ 0.018 GeV.



> X2/ ndt 8.391/7
pr bin (GGV) dO’/de(X1072) Stat. error(xlO*Q) § 01 PO 0.0001453 + 00000072
0.00-0.25 0.004014 0.000350 < i o
0.25-0.50 0.008714 0.000584 gomr
0.50-0.75 0.010414 0.000758 ® oosf
0.75-1.00 0.010062 0.000738 r
1.00-1.25 0.006590 0.000817 "
1.25-1.50 0.004697 0.000568 002} 4
1.50-1.75 0.003419 0.000493 | A
1.75-2.00 0.000913 0.000459 08 ! ' “ b, (GeV)’
2.00-2.25 0.001506 0.000510
Figure 7.22: Kaplan fit to data for M =
Table 7.17: p+p Drell-Yan pr distribution (in [6.2 GeV,7.2 GeV) and zp = (—0.1,0.95). The
nb/GeV) for M = [6.2 GeV,7.2 GeV) and zp = < pr > value obtained from the fit using equa-
(—0.1,0.95) tion 6.7 is 0.900 = 0.023 GeV.

pr bin (GeV) | do/dpr(x1072) | Stat. error(x10~%) s = et sat6r7

0.00-0.25 0.000569 0.000135 % 2ok + Z:’ 2‘004”51:';41‘:)3

0.25-0.50 0.001112 0.000251 e

0.50-0.75 0.001419 0.000347 3

0.75-1.00 0.002038 0.000330 °©

1.00-1.25 0.001411 0.000318

1.25-1.50 0.000924 0.000313

1.50-1.75 0.000650 0.000181

1.75-2.00 0.000437 0.000179 R

2.00-2.25 0.000152 0.000152 * b, (GeV)’
Table 7.18: p+p Drell-Yan pr distribution (in Figure 7.23: Kaplan fit to data for M =
nb/GeV) for M = [7.2 GeV,8.8 GeV) and zp = 7.2 GeV,8.8 GeV) and zp = (—0.1,0.95). The
(—0.1,0.95) < pr > value obtained from the fit using equa-

tion 6.7 is 1.022 £ 0.06 GeV.
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Figure 7.24: Calculated < py > for p+p and p+d SeaQuest data plotted as a function of dimuon mass M.
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Chapter 8

Discussion

In this chapter, the p+d cross section from SeaQuest is compared with existing DY cross section results
from E866 (p+d) and E772 (p+d) data. Cross section ratio (o,q/20,,) versus za obtained from double

differential absolute cross section in x; and x5 is also presented.

8.1 Comparison with other experiments

The scaling form of Drell-Yan cross-section is useful in comparing experimental measurements at different
\/s. The right hand side of equationdepends on the value of x5 (1) and 1 (x2) and the parton density

function for a given set of xp and x7.

3 d%o 8ra? zprr

Dider = 0 7 1 an 2 Qlan@e)Gr(@r) + .p(78)qi (v7) (8.1)

i

For identical values of 2 (= x5 —27) and 7 (= xpxr), itrespective of /s, the cross section M3d%c /dMdx
is predicted to be identical if scaling holds true. Figure shows the scaling test results from CERN ISR
experiment [5]. The CERN ISR measurements are at /s = 44 GeV and 62 GeV. Within experimental
uncertainty, the data from this experiment validate the scaling behaviour. Similarly, measurements from
E288 experiment at three different /s = 19.4, 23.8, and 27.4 GeV have been reported in [0, 2I] (Figure
and within experimental uncertainty, the scaling behaviour is observed. Absolute cross sections from
p+A interactions have also been measured in experiments such as NA3 (p+Pt at /s = 27.3 GeV[63]) and
Fermilab experiment E605[30] (p+Cu at /s = 38.8 GeV). SeaQuest nuclear target absolute cross section
measurement can provide interesting comparison with these measurements and test for scaling.

This thesis is focused on p+d and p+p absolute cross section measurements. p+d absolute measurements
were also reported by Fermilab experiment E772 [7, [8] and E866 [4]. These absolute measurements are
compared with preliminary cross section measurements from SeaQuest tabulated in Chapter 5. It is crucial
to note in the above comparison that the definition of zp used for E866 and E772 are different from E906.

The definition zp = 2p;/v/s/(1 — M?/s) used in E906 takes into account the fraction of center of mass
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Figure 8.1: Scaling form of cross section from CERN ISR plotted as a function of /7 for x = 0. The figure
is taken from [5]

energy +/s used up in the mass of dimuon M. The denominator 1 — M?/s or 1 — 7 cannot be ignored in
the case of SeaQuest where 7 values are large enough to not be dropped. Even in the case of E866 or E772,
for high mass or high /7, the xp value would increase. Table shows a tabulation of the change in zp
at different values of M at E866 and E772 /s value. The xr for low mass (or low +/7) is not affected as
much. However, the xr value for high mass data are affected significantly when SeaQuest definition of xp
is considered. In short, the xr value would increase if the E906 definition is to be used for E866 or E772
data. Hence, the dimuons contributing to certain zy bin in the shown figure would migrate to higher zp
bin. Part of the discrepancy between E906 and E866 or E772 can be attributed to the inconsistent definition
of zr being used. Hence, the comparison shown in Figures and should be repeated by changing the
2 definition in either E906 data or E866/E772 for consistency.

Figure shows that for the low zp regions (0.05 < xp < 0.5), the E906 results are in good agreement
with the E866 and E772 results, consistent with ‘scaling’. It is also noteworthy that the E906 data extend

the coverage in /7 to significantly higher values.
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Figure 8.2: Scaling form of cross section from E288 plotted as a function of /7 for y = 0.2. The figure is

taken from [0]
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Figure 8.3: p+d scaling form cross section M3d?c /dMdzxr plotted Vs /7 for E866 (open blue triangles)[4],
E772 (open red circles)[7, 8] and E906 measurements (open black squares) in xp range 0.05-0.5. The error
bars are statistical. E906 systematic error can be found in chapter 5.
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Figure 8.4: p+d scaling form cross section M3d?c /dMdxr plotted Vs /7 for E866 (open blue triangles) 4,
E772 (open red circles)[7, 8] and E906 measurements (open black squares) in zp range 0.5-0.8. The error
bars are statistical. E906 systematic error can be found in chapter 5.

TF e
M=5GeV | M=6GeV | M=7GeV | M=8GeV | M =11 GeV | M = 13 GeV

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 0.05 0.05 0.05 0.05 0.05 0.06
0.10 0.10 0.10 0.10 0.10 0.11 0.11
0.15 0.15 0.15 0.16 0.16 0.16 0.17
0.20 0.20 0.20 0.21 0.21 0.22 0.23
0.25 0.25 0.26 0.26 0.26 0.27 0.28
0.30 0.31 0.31 0.31 0.31 0.33 0.34
0.35 0.36 0.36 0.36 0.37 0.38 0.39
0.40 0.41 0.41 0.41 0.42 0.43 0.45
0.45 0.46 0.46 0.47 0.47 0.49 0.51
0.50 0.51 0.51 0.52 0.52 0.54 0.56
0.55 0.56 0.56 0.57 0.57 0.60 0.62
0.60 0.61 0.61 0.62 0.63 0.65 0.68
0.65 0.66 0.67 0.67 0.68 0.71 0.73
0.70 0.71 0.72 0.72 0.73 0.76 0.79
0.75 0.76 0.77 0.78 0.78 0.82 0.84
0.80 0.81 0.82 0.83 0.84 0.87 0.90

Table 8.1: Table showing the change in xr is using the definition as 2, = zp/(1 — M?/s) for M = 5, 6, 7
GeV at /s = 38.8 GeV
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8.2 p+d/2(p+p) cross section ratios

The main goal of the SeaQuest experiment is to measure the ratio of d/@ up to Bjorken-z = 0.45. The

ratio d/u can be accessed by measurement of the cross-section ratio opq/20p,. Preliminary results on cross

section ratio obtained from SeaQuest have been presented in several conferences and thesis [64. [65], 66, [67].

The cross section ratio results have been presented as a single differential in za(z7).

In this section, the method from chapter 4 has been used to obtain cross section ratio as double differential

(d?c /dxydzy) by analysing hydrogen and deuterium target in z1(xp) and xo(x7) bins. Tables and

shows d?c /dx1dzs (d*0/dxpdrr). The ratio opq/20,, is shown in figure Within statistical uncertainty,

there doesn’t appear to be any dependence of cross section on x1(xg). Addition of data from later runs

will enhance the statistical accuracy of the result shown here and will facilitate a better insight into the

dependence of cross section ratio on both z; and x».

dzd/ded.’ET (X1072)

7 bin xp =[0.3,0.5) xp =[0.5,0.6) xp =1[0.6,0.7)
0.100-0.130 0.834371 £ 0.068378
0.130-0.160 5.088020 + 0.359591 | 3.835650 + 0.163377
0.160-0.195 | 3.149650 + 0.320281 | 10.696600 + 0.453850 | 1.924650 + 0.076142
0.195-0.240 | 7.859360 + 0.503432 | 5.020560 £ 0.207921 | 0.751637 £ 0.035928
0.240-0.290 | 8.871130 £ 0.549769 | 1.859900 £ 0.100920 | 0.329766 £ 0.019791
0.290-0.350 | 4.502340 + 0.321136 | 0.860698 £ 0.050343 | 0.124609 £ 0.010202
0.350-0.450 | 1.107910 £+ 0.119319 | 0.229091 +£ 0.018760 | 0.029493 £ 0.004700

Table 8.2: Hydrogen Drell-Yan cross section d2a/dm3de (nb) for different zp and zp bins.

statistical only.

Errors are

dQU/dSUdeT (X10_2)
xr bin zp =1[0.3,0.5) zp = 1[0.5,0.6) xp = [0.6,0.7)
0.100-0.130 1.897940 + 0.138847
0.130-0.160 12.717800 £ 0.745401 | 8.277990 4+ 0.286185
0.160-0.195 | 8.332100 % 0.645055 | 22.519000 £ 0.815922 | 4.407420 + 0.139311
0.195-0.240 | 17.763800 &+ 0.947621 | 11.589000 £ 0.371875 | 1.796310 £ 0.064830
0.240-0.290 | 18.880000 % 0.895770 | 4.279400 £+ 0.168207 | 0.769669 + 0.034144
0.290-0.350 | 10.267200 + 0.528367 | 1.831810 + 0.081070 | 0.279931 + 0.016803
0.350-0.450 | 2.441290 + 0.189815 0.485203 £ 0.031854 | 0.080462 £ 0.007889

Table 8.3: Deuterium Drell-Yan cross section d?c/dzgdxr (nb) for different xp and zr bins. Errors are

statistical only.

Figure shows that opq/20,, are all greater than unity, consistent with d > 4. It is expected that

future PDF global fits can include the double differential cross sections of o(p 4+ d) and o(p + p) from this

analysis to determine the precise x dependence of d(x)/u(x) (as well as d(z) — @(x)).
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Figure 8.5: 0,4/20,, obtained from ratio of absolute double differential cross section d*c/dzidzs for p+d
and p+p.
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Chapter 9

Conclusion and Future Prospects

Since its discovery the Drell-Yan process has been an interesting and active area of research for studying
the dynamics of partons and has established its importance for validating QCD as the theory of strong
interaction. Several beam types have been utilized to explore PDFs of valence and sea quarks using Drell-
Yan mechanism. For example, as proton does not contain valence antiquarks, the Drell-Yan process with a
proton beam is sensitive to antiquark (sea) distribution in the target nucleon. On the other hand, beams such
as antiproton or pions contain anti-up or anti-down as valence quarks, and these beams are used to probe the
valence quark distribution in the target nucleon. Hence, together with DIS data, Drell-Yan measurements
play a crucial role in constraining the parton distribution functions (PDFs). Improvements in PDFs help
in making more precise predictions for future measurements, which in turn validate and/or further improve
the PDFs.

In this thesis, absolute differential cross sections have been obtained from p+p and p+d Drell-Yan interaction
measured at SeaQuest (using run IT and run IIT data). These results from SeaQuest cover kinematic region
at large x and complement existing Drell-Yan data for future global PDF analysis. The error bands from
NLO calculations of cross sections demonstrate large uncertainties in the PDFs at large Bjorken-z. SeaQuest
data will have significant impact in constraining both sea and valence quark PDF's, specifically, improved
constraints on d(z) + @(x) together with d(x)/u(x) measurement will provide better estimate of d(z) — @(x).
Results on Drell-Yan transverse momentum distribution from SeaQuest have also been obtained. These
data provide the opportunity to study the pr distribution at lowest value of /s to date. The dependence of
< pr > on 4/s is in agreement with QCD predictions that < pr > increases linearly with +/s.

Dependence of < pr > on M and xp have also been presented. The < pr > does not show any clear
dependence on M which is in agreement with results from existing Drell-Yan data. However, < pp > shows
a clear dependence on x g, especially for the L Do data. The analysis of E866 p+p and p+d data performed
in this research also shows this trend. The xr dependence of < pr > is also supported by NLO calculations.

The results presented in this thesis include run II and run III data which are approximately 50% of the

total collected data at SeaQuest. The analysis of run IV, V and VI data are underway. The data from the
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later runs are expected to have wider acceptance due to the installation of a new wire chamber aimed to
further extend the range in zr.

The FPGA4 (single muon trigger) data in later runs have been collected with lower prescale value, unlike
run IT and III data, where the high prescale value resulted in poor statistics in single muon trigger data.
With improved statistics, the mix background shape will be more reliable and result in reduced systematic
error arising because of the uncertainty in the normalization of mix background.

The absolute measurements provide an opportunity to check for scaling violations in Drell-Yan process. The
evidence of scaling violations is observed in DIS measurements, however such an observation remains to seen
in DY process. One of the main reasons is that fixed target Drell-Yan process is generally dominated by
contribution from valence quark(high-z) annihilating with antiquark from sea (low z). Hence the effect of
scaling violation is partially canceling the scaling violation effects. Improved statistical precision and better
knowledge of mix background sample will be able to improve the cross section measurements and hence can
provide useful insights on scaling violation in Drell-Yan process.

Additionally, better knowledge of mix background normalization and shape will also improve the under-
standing of transverse momentum distribution from Drell-Yan process. The shape of transverse distribution
and hence the mean value of pr is sensitive to both the shape and normalization of mix background.
Improvements in both statistical and systematic errors will make SeaQuest results, on absolute measurements

as well as ratios, a significant contribution in enhancing our knowledge about QCD.
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