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Introduction

In the most recent years we have seen a remarkable development of conformal
field theories and of topological field theories. Both these theories have been shown to
be deeply connected to different aspects of topology, geometry and algebra, including

quantum groups, knot-theory and three-manifold invariants.

In this thesis we are going to discuss some aspects of this interrelation between
mathematics and field theory. In particular we are going to present a collection of
new results concerning link-invariants and quantum groups which are essentially the
content of a series of papers [1], [2] and [3]. These results, which we believe are of
genuine mathematical interest, have been obtained both under the stimulus of some
recent approach to conformal field theories [4] and [5] and under the influence of some
well established methods of statistical mechanics [6] .

The study of link-invariants has always attracted the interest of mathematicians
and physicists, but this interest was somehow dormant before the Jones’ revolution,
which brought into the game new powerful invariants [7], changed dramatically the
perspectives in this area. The Jones invariants consist in the assignment of a poly-
nomial V;(¢) (in the variable t) to any link L in the euclidean 3-space (or in the
3-sphere).

Topologists were intrigued by the fact that these new invariants appeared im-
mediately to be much more sofisticated than the classical link-invariants (like the
Alexander-Conway polynomial [8]. On the other side, physicists discovered that these
new invariants could be related to some exactly solvable models in statistical mechan-
ics (see e.g. [9]).

The interest for these new invariants was further enhanced by the the discovery
that both the classical Alexander-Conway polynomial for links and the Jones poly-
nomial were special cases of a two variable polynomial [10], (see also [11] ), and by
the proof that the two variables polynomials could be explicitly computed by using
quantum groups [12] [13].

Stimulated by a paper of M.F.Atiyah [14] , E.Witten [4] connected the new link-

invariants to Chern-Simons topological field theories and to 2-dimensional conformal
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field theories. Moreover he claimed that the methods of topological field theory in
3-dimensions could suggest a way of constructing new invariants for 3-manifolds.
These invariants have been recently and explicitly constructed by Reshetikhin and
Turaev who used the theory of representations of quantum groups [15] .
In order to be more specific, let us recall that in Witten’s paper, the starting point

is the functional integral
Z(L) = / DA i1 (hol 4(1y ).t (hol a(1))

where L is a link in the three manifold with components ly,...[,. Here C.S(A) denotes
the integral of the Chern-Simons topological Lagrangian (for the group SU(N)), k is
an integer, tr 4(hol(l)) denotes the trace of the holonomy of the loop I, for a given
representation of SU(N), and finally DA is a formal measure for the integral on the
space of connections.

Witten claimed that when the given 3-manifold is the 3-sphere and the group
is SU(2), then Z(L) gives exactly the Jones polynomial of the link I (evaluated at
certain values of the variable ¢ as a function of k). When the three manifold is a closed
manifold, but not necessarily S%, then he claimed that the functional integral above
provides a sort of extension of the Jones polynomial. Moreover, as has been anticipated
above, Witten suggested a way of constructing new invariants for 3-manifolds.

The essential argument used by Witten is based on the relation between the
Hamiltonian version of the Chern-Simons field theory and the 2-dimensional conformal
field theory and on a semiclassical approximation of the Chern-Simons Lagrangian
theory.

Even though the paper by Witten has been seminal in many aspects, the fact
that the functional integral is ill-defined makes very difficult to have a complete (and
rigorous) understanding of the whole subject. In other words Witten’s paper should
be considered as essentially heuristic.

Nevertheless different parts of Witten’s ideas have been investigated, with various
degrees of mathematical rigour, and some very interesting results have been obtained
by many authors. The Reshetikhin-Turaev construction of 3-manifolds invariants,
which has been mentioned before, is a very significant example.

On a more modest ground, the original results contained in this thesis are also



partly related to the circle of ideas which are connected to Witten’s work.
A series of remarkable papers [16], [17], [18][19], [20] [21], [22], [23], [5], which
appeared more or less at the same time as Witten’s paper, greatly enhanced our

understanding of conformal field theories.

But it was a paper by Drinfeld [24] which, in our opinion, allowed a deeper un-
derstanding of the relation between conformal field theories and knot invariants.
In this paper Drinfeld introduced the concept of Quasi-hopf algebras of their

' and constructed a “universal” example of quasi-Hopf algebra.

“twisting ’
As it will be explained in chapter 6 of this thesis, these are the basic ingredients
needed in order to understand why quantum groups arise both in conformal field

theory, on one side, and in knot and' 3-manifolds invariants, on the other side.

One of the characteristics of this thesis is that we discuss with some detail the
structure of link-diagrams on a generic 2-dimensional surface X and we construct
link-invariants for links in £ x [0, 1].

In order to understand why we are interested in such subject, let us recall that at
the same time when Witten was relating the Jones polynomials to Quantum Chern-
Simons theories, V.G. Turaev wrote two papers ([25], [26] ) in which he constructed
“skein algebras” of link-diagrams which can be considered as a quantized version of
the Poisson algebras of loops on a two-dimensional surface. This is more precisely
defined as (a deformation of) the symmetric algebra of the Goldman Lie algebra of
free homotopy classes of loops [27] . Modulo the non trivial differences between the
word “quantization” used in quantum field theory and the same word which appears
in “quantization of Poisson Algebras”, one could claim that Witten’s and Turaev’s ap-
proach are strongly related. The key observation is that there is a Poisson map between

the symmetric algebra of the Goldman Lie Algebra deformed with parameter 1/kN
flat
of SU(N)-gauge

orbits of flat connections over a closed two-dimensional surface, where the standard

and the Poisson algebra relevant to the symplectic manifold

symplectic form is multiplied by the factor k. This symplectic manifold is in turn
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related to a 3-dimensional Chern-Simons theory with level k£ ([28], [29] ).
This the reason why we felt that the structure of link-invariants for ¥ x [0,1]
should be closely related to (a Hamiltonian version of) Witten’s theory and should be

understood as clearly as possible.

We now describe a summary of the content of all the chapters. For the reader’s
convenience at the beginning of each chapter we will give a more accurate description
of the content of the chapter itself.

In chapter 1 we recall briefly some aspects of Hopf algebras, quantum groups and
their representations.

In chapter 2 we describe some basic aspects of conformal field theory, with partic-
ular emphasis on the presentation of rational conformal field theories given by Moore
and Seiberg which is, in our opinion, the closest one to the notion of quasi-Hopf
algebras.

In chapter 3 we describe link-diagrams on any 2-dimensional surface 2 and we
study their properties.

More precisely we consider the module over some polynomial ring generated by
link-diagrams and seek the conditions under which this module can be given the
structure of a coalgebra or of an algebra.

In chapter 4 we use the algebraic structures considered in chapter 3 in order to
construct link-invariants for links in any manifold of the type ¥ x [0,1]. This already
gives an extension of the Jones polynomial when X is not the disc. But we can go one
step further. We extend also the Homfly polynomial (when X is an open Riemann
surface) obtaining a four variables link-polynomial.

We also show why link-invariants are related to the Yang-Baxter equations. In
this respect we introduce the concept of quantum-holonomy for a link, which is a
special kind of partition function. We discuss the condition under which the quantum
holonomy reproduces exactly some of the characteristics of the Witten’s functional
integral.

Also we consider the quantum-holonomy related to the Drinfeld quasi Hopf algebra

and show how to obtain a quantization of the Goldman Lie-algebra of loops on a



surface.

Finally in chapter 5 we construct using the Faddeev-Reshetikhin-Taktajan
method [30] the quantum group, corresponding to the Yang-Baxter matrix related
to link-diagrams. This quantum group is a multiparameter deformation of Ug(sl(n)
(see also [31] ). There are many interesting differences between the multiparameter
quantum-group and the ordinary (one-parameter) quantum group. These differences
include the existence of a non-central quantum determinant and the doubling of the
number of the generator of the quantum Cartan subalgebra.

In chapter 6 we discuss in detail Drinfeld’s quasi-Hopf algebras and the two rep-
resentations of the braid group which are shown to be equivalent by Drinfeld-Kohno
theorem. The relation between rational conformal field theories and quasi-Hopf alge-

bras is finally discussed.

Let us point out, as a final remark that the original contributions contained in
this thesis include the construction of link-invariants for links in % X [0, 1], the proof
that link-diagrams over a 2-dimensional surfaces generate a Hopf-algebra (this is was
a conjecture formulated by Turaev in [25]), the construction of a 4-variables link poly-
nomial for links in ¥ x [0, 1], the construction and the properties of the multiparameter
quantum groups (including the existence of a non-central quantum determinant), the

theorems for the quantum holonomy.

Acknowledgements. I would like to thank for stimulating discussions on this
and related subjects L.Bonora, R.Bott, S.Mathur, N.Reshetikhin, J.Stasheff. Also I
would like to remember that the original part of this thesis are mainly the result of of

the work made in collaboration with Paoclo Cotta-Ramusino.
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1. Hopf algebras, quantum groups and Yang-Baxter equa-
tions

This chapter is a quick review of the basic aspects in quantum groups theory.
Section 1.1 is devoted to the notion of Hopf algebra and of quantum groups, which
are nothing but a particular kind of Hopf algebras. The quantum Yang-Baxter matrix
and ribbon Hopf algebras are introduced. All the material discussed here will be
needed in later sections. Section 1.2 introduces the relatively new notion of quasi-
Hopf algebras, and discuss the category of their representations. This category will

be later on connected to rational conformal field theories.

1.1. Hopf algebras

Recall first the definition of an algebra A over a commutative ring K.

An associative, unital algebra A over K is a K-module A with maps

(1.1.1) m:AQx A — A (multiplication map)
and
(1.1.2) n:K — A (unity map)

such that the following diagrams commute

ARARA
m@id \, d@m
(1.1.3) AQA A®A (associativity)
m \, /S m



and
A®A
n®id / "\ id®n
(1.1.4) K®A lm AQK (unity)
AN Ve
A
in formulae we have
(1.1.5) m(m @ id) =m(id®m) m(n®id) =m(idQn) = id

Recall also that an algebra morphism o : A — B is a K-linear map from the algebra
A to the algebra B such that 0 o my = mp(c ® o). Dually to that we have the
notion of coalgebra. More precisely a K-coalgebra is a K-linear space C together with

K-linear maps

(1.1.8) A:C— CQ®x C (comultiplication map)
and
(1.1.7) €:C — K (counity map)

verifying the dual properties of m and 1. More precisely the following diagrams

commute:
cCeCeC
A®id " d®A
(1.1.8) cCeC C®C (coassociativity)
AN A



and
cCeC
e®id | 1d®e
(1.1.9) Kl TA C®K (counity)
AN =
C
i
In formulae
(1.1.10) (A ®id)A = (id ® A)A
(1.1.11) (e®id)A =1d (id® €)A = id,
Let us now introduce the Heyneman-Sweedler notation [32]: ; for v € C we will (if

needed) denote A(v) = (1) @ (2),

A coalgebra is said cocommutative if
(1.1.12) A'=PA=A

where P is just the permutation of the two factors of the tensor product. Now given
an algebra A, which at the same time is also a coalgebra, we want to investigate when
these two structures fit together. First we define a K-coalgebra morphism dualizing
the definition of K-algebra morphisms. More precisely given a map o : ¢ — D of

two coalgebras this map is a coalgebra morphism if
Apooc=(cQc)Ac epog=cc.

Observe that the tensor product of two coalgebras has a natural structure of coalgebra

given by
Acegp = Pas(Ac ® Ap) ecegp =ec @ €p

where P,3 is the permutation acting on the second and third entry of the tensor

product. We have the following theorem [32]
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1.1.1 Theorem: Suppose we are given a K-linear space H, with K-linear maps
m:HQH —H,n:K — H A:H— H®H, e: H— K such that (H,m,n)
is a K-algebra and (H,A,€) is a K-coalgebra. Then the following conditions are
equivalent:

i) m,n are K-coalgebra morphisms

ii) A,e are K-algebra morphisms.

If the two conditions above are verified, we call H a bialgebra.

Now we will introduce the notion of Hopf algebra. In general given an algebra 4
and a coalgebra C' we can consider the set R of K-linear maps form C to A. Given

two maps f, g in R we can define their convolution

(1.1.13) fxg=m4[(f®g)Ac]

This gives to R the structure of K-algebra provided that we define
TR =T40E€C.

Suppose now we have as K-linear spaces A = C and let 4 have the structure of
bialgebra. If the identity map of A admits inverse in R, i.e if there exists an element
~ such that

(1.1.14) vxid=1idxy=mnoe

then we call v the antipode. We call Hopf algebra a bialgebra with antipode. The
property (1.1.14) can also be written:

(1.1.15) m(y®id)A =m(id®y)A =con

It is easy to verify that the antipode has to be an algebra antihomomorphism. Classical
examples of Hopf algebras are the universal enveloping algebra of a Lie algebra g and
the group algebra of some finite group G. In the first case the comultiplication is given
by

(1.1.16) Ala)=a®1+1Q®a, acy
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and extended as algebra-morphism. The counit is analogously given by
(1.1.17) e(a) =0, a€gyg

and the antipode by

(1.1.18) v(a) = —a, a€g;

both are extended as algebra antihomomorphism. In the second case the comultipli-

cation is given by
(1.1.19) Alg)=9®g, 9€G
and the counit and the antipode

(1.1.20) eg)=1, g€qG

(1.1.21). vg)=9"", ge€@G

We are now going to introduce some more structure on a Hopf algebra, namely
a quasitriangular structure. More precisely given an Hopf algebra H suppose we are

also given an invertible element R € H ® H with the following properties

(1.1.22) A'(a) = PA(a) = RA(@R™ a€ H
(1.1.24) (id ® AR = RisRaz

where R;; denotes that R acts on the i-th and j-th terms of the tensor product.
It follows easily from these definition that R verifies the (quantum) Yang-Baxter

equation.
(1.1.25) R12R13R23 = R23R13Raz.
Useful properties of R are the following [33], [34]

(1.1.26) (Y®7)R=R, (v ®idR=R™, (id®@y )R=R""}
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Suppose we are given a quasitriangular Hopf algebra. Then R can be expanded

as R = Y., @; ® B;. So we can introduce the element
(1.1.27) u= Z’Y(ﬁi)ai
It is easy to show that
(1.1.28) v¥(a) =uvau™!, Vaec H
and that uy(u) is a central element of H. Moreover one can write the inverse of u
(1.1.29) ut = By ().
To give an example of computations let us derive the comultiplication of u. Consider
(RaR)A(w) = (RaaR)A(v(B-))A(er)
= masmae(7 ® 7)A'(B7)R21 @ RA(ar) =

= m13M2q (R34(7 @ 7)A(8r) ® A(ar)RN)

Now using

(A ® A,)R = R13R23R14R24

or equivalently
(Al. ® A)R21 = R31R41R32Raz

and the YB equation
R34R31R41 = RaaR31Raq

we get
= TM13M24 ((’)’ ®7®id®id)(Ra1R31R34R32Raz) - R21> =
= m13m24[(7(,87)7(,30)/86 ® QrOpQy ® 7(ﬁu)7(ﬁ#)a€ ® Cﬁa/}pau]
= [(v(B)7(Bo)Bearapor, ® ')’(ﬁV)’)’(ﬂ#)aeaaﬁpO‘V]
= [(7(Br)er ® 7(By)ou]

having used two times

(BB, ® 0pa, =1® 1.
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So finally we have

The question arise when we can construct a square root of the central element uy(u)
i.e. v € H such that

(1.1.31) v = uqyu;  €(v) = 1;7(v) = v.
and
(1132) A('U) = 732172(1) ® 'U).

When such a v exists then we call the algebra A a ribbon-Hopf algebra [35] . We will
see later (in section 4.2) a constructive way of finding that central element and its

meaning in knot theory.

We recall now also the notion of quantum double. Given a Hopf algebra 4 we can
consider the dual Hopf algebra 4* and endow this with the opposite comultiplication,
thus getting the algebra A*¢°°?, If we take a linear basis e, of A and the dual basis
e* of A* then we can consider the element R =) e, @ e’ € AQ A*?. We can then
consider the double [36], [30] D(A4) of 4 to be

i) isomorphic as coalgebra to 4 @ A*°P;
ii) the algebras A and A*°°°? are imbedded as algebras in D(A4);
iii) let R be the image of R in D(A) ® D(A) under the imbedding 4 ® A**°°? C

D(A) @ D(A); then RA(a) = PA(a)R.

It is easy to check that R gives a quasitriangular structure to D(4). Condition
112) characterizes the product in D(4).

Finally quantum groups are quasitriangular-quasi Hopf algebras obtained as de-
formations of the universal enveloping algebra of some Lie algebra g. Here by de-
formation we mean that we have a parameter A € C such that if we call U,(g) the
quantum group corresponding to g, then Ug = Ux(g)/hUr(g). It turns out that such
deformations are essentially unique. Given a complex semisimple Lie algebra of rank
n it is possible to give explicitly a set of generators and relations and their relevant

comultiplication. If the Lie algebra is presented by a Cartan matrix 4 = (A_’;), then
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there are non-zero integers d; € {1,2,3}, d=1,...,,n such that d,-Aj- = def. Define

™m
=i

H €7
t— ¢

j=1

(1.1.33)

HI

and

(1.1.34) (m) =Mk e

n/, (n)(m—n)

Then Ui(g) is a C [[k]]-algebra with generators H;, EF subject to the relations

(1.1.35) [H;, Hj) = 0; [Hi, E¥] = x2d;AlEF
ehH,‘ . e—hH,’
(1.1.36) [Ef,E = 8w
1— A’ .
(1.1.37) Z“ (~1)* ( J’) (BE)Y 4 *EF(EF) =0 Vi#j
q’a’d,-
(Serre relation). The comultiplication is given
(1.1.38) AEE)=EE@e 5 te3 @EF
(1.1.39) A(H)=H;®1+1® H;

whereas counit and antipode are

(1.1.40) (EE)=0 ;e(H:)=0

(1.1.41) YEF) = —q"*%E; +(H;)=-

Sometimes one consider another presentation, called U (G) = C (E;‘“L,Ki,Kfl) (see
A
2

for instance[37] ), formally related to the previous one through the definitions ¢ = e
and K; = e~ . We have the following relations

(1.1.42) KK7'=K'K;=1 KK;~K;K;=0
K2 K*"
+ = -t —
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(1.1.44) KEFKY = ¢F %4 B
and relation (1.1.37) . The comultiplication is given by

(1.1.45) A(EF)=EFf @K'+ K;® Ef

(1.1.46) A(K,) =K;® K;
whereas counit and antipode are given as follows.

(1.1.47) (EE)=0 ;e(K;)=1

(1.1.48) 1(EE) = —¢TE; y(K;) = K[

Observe that U,(g), also if formally related to Ux(g), is not exactly the same. In
fact in Uy(g) we can set g to be a root of the unity case which has no counterpart
in Uy(g). Moreover for ¢/ = 1 we have also that U,(g) is finite dimensional over its
center, which contains in particular (EF)!, (K');. The representation theory of Uy(g)
for g root of the unit is extremely interesting.

As far as the quasitriangular structure on Ux(g) (or Uy(g) for generic q) we notice
that follows directly from the double construction. In fact the universal enveloping
algebra of the positive and the negative Borel subalgebras b. have corresponding
deformations Uy (b+), generated respectively by H;, E; or H;, E;. It is possible to
show that Uy(b_) = Ux(b4)**°°? and so we have the Yang-Baxter matrix

(1.1.49) R € Un(by) ® Un(b_) C Un(g) ® Un(g).

Let us just add some remark on the quantum and classical Yang-Baxter equation.
Consider equation (1.1.25) . Suppose we have a representation p of the quasitriangular
Hopf algebra H in Endc(V), for some finite dimensional vector space. Then we can
look at (1.1.25) in that representation space, i.e. just as a matrix equation. Defining

Ri; = (p ® p)Ri,; we get
(1'1'50) R12R13R23 = R23R13R12'

This equation (the quantum Yang-Baxter equation) will be the starting point of the

construction of a quantum group to which we will devote chapter 5.
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But now let us suppose also that R depends differentiably on a parameter h € C

and

R=1+rh+O(h?)

Then we easily get the matrix equation

(1.1.51) [r12,713] + [P12,723] + [P13,723] =0

This is the classical Yang-Baxter equationll. Now one can look at this equation as
equation in g ® g @ g, where g is some Lie algebra acting on V and try to find there
solutions. Also if the classification of the solution, under certain hypothesis has been
given[38] , we will here just recall that a solution, relevant for our future aims is

7= € gQ®g, where ( is the Casimir element of gt3l.

1.2. Quasi-Hopf algebras and tensor categories

Sometimes the attention is concentrated more than on the algebra, on its repre-
sentations. More precisely given any Hopf algebra H the comultiplication allows us

to deduce the existence of tensor product of represéntations. Given a (by definition

! Both the quantum and the classical Yang-Baxter equation, can be generalized,
introducing an additional (spectral) parameter as follows; (1.1.50) gets replaced
by |

ng(u)Rm(u + ’U)Rgs('v) = R23('U)R13(’U, + U)Rlz(U),
and (1.1.51) becomes

[ra2(w), r1a(u + v)] + [ri2(w), r23(v)] + [r13(u 4+ v), 723 (v)] = 0.

2 If we want to insert the spectral parameter as in footnote 1 we define r(u) = Q/u.
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coassociative) comultiplication in H we can define tensor product of representations

in this way: if (p;, V?), (pj, V7) are representations of H then

(1.2.1) piei(a)(z ® y) = [(p: ® pj)A(a)l(z ®Y)

Now, instead of proceeding and describing the properties of representations of
Hopf algebra, we will take an alternative way and describe a more general concept,
that of quasi-Hopf algebra, which in fact in our opinion give much more insights on
what is going on.

So let us formulate the definition [24],[39] of quasi-Hopf algebra.

1.2.1 Definition: A quasi-Hopf algebra is an algebra A with a compatible but not
coassoctative comultiplication, such that

i) there exists an invertible element ® € A ® A ® A with the properties
(1.2.2) (1d ® A)A(a) = (A @id) AP
(1.23) (1d®i1dRA)NP)AR®id®id)(®)=(102)(idRA®id)(2)(2®1)
ii) we have an antihomomorphism € : A — K (counit) satisfying (1.1.11) and
(1.2.4) (dR®e®id)® =1

iii) we have an antihomomorphism v : 4 — A (antipode) of the algebra and two

elements a, § € A such that

(1.2.5) m(y @ a)A(a) = ae(a)

(1.2.6) m(id ® Bv)A(a) = fe(a)
and moreover

(1.2.7) m(l1@FyQa)®] =1

(1.2.8) ml(y @ a ® #7)87Y =1

In the Hopf case o, = 1.
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Let us concentrate now on the category of representations of a quasi-Hopf algebra.
Now given three representations of a Hopf algebra the coassociativity of the comul-
tiplication corresponds to associativity of the tensor product of representations. We
can define still tensor product of representations of a quasi-Hopf algebra A exactly as
in (1.2.1) but this tensor product turn out to be not asscciative; & induces explicit

isomorphisms
(1.2.9) B (VIQVI) @V — Vig((ViegVh)

for any three representations V%, V7, V* of the algebra A. Suppose now we are given
an ordered set (V1,...,V™) of representations of A; in order to define the (iterated)
non associative tensor product VI @ V2 ®...Q@ V™ of these representations we will have
to prescribe the order in which we are going to take the tensor products. This in turn
is equivalent to introducing a complete system of parentheses in V! ® .. @ V™. By
complete here we mean that they prescribe uniquely the order in which we are taking
the tensor product. ‘

There are obviously many complete systems of parentheses on V1@ V?Q..@ V™.
But is a general result that if we put different systems of parentheses on the same
n—ple, ® induces an isomorphism ¢ connecting the two representations. Now in fact
it is natural to require that the isomorphism induced by & be unique.

In virtue of the Mac Lane coherence theorem [40] this essentially amounts to

requiring commutativity of the following diagram:

. , (A®1dRid)® | , (1d@id@A)® | ,
(VigVH)eVheV! — (Vievi)eWreV) — Vie(Vie(VFeVh)

\ & ®id /id@®

. . (id@A®Id)® . ,
(Vie(VieVk)e V! —s Vie(VievVk) eV
which is the famous pentagon diagram and is implied by condition (1.2.3). Observe
here that when we put ® over the arrows we mean its image in the relevant repre-
sentations. Note that the previous diagram shows all the five complete systems of

parenthesis on sets of four representations and also the only possible ways of connect-
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ing them with the isomorphisms induced by ®. Also the counit give the representation
I of the algebra A. The property (1.1.11) of the counit mean that we have natural

isomorphism

(1.2.10) VeI=IeVrV
and (1.2.4) is natural from this viewpoint:

(1.2.11) (Ve)eW=Ve(IeW).

Observe that, given any representation M of the algebra, the antipode allows in
general to define two other representations which we will call MY and VM on
M* = Hom(M,C) as follows

(1.2.12) pV = (poy™h)*

(1.2.13) Vo= (po)%;

here * denotes the dual. Moreover the property (1.2.5) -(1.2.6) of the antipode are

such that we have natural maps

VMM — 1

1.2.14
( ) (z,y) — z(p(a)y)
(1.2.15) fr M@ M1
(v, ) — z[p(y 7 (a)(v)]
(1.2.16) foll— M @' M
1= p(Ble,® e’
(1.2.17) il — Mo M

1= e* ® p(y~ (B)(es)
where e, is a basis of M and e’ is the dual basis. From (1.2.7) , (1.2.8) it follows that

the compositions
M— (M MMM ("M M) — M

VM —Y M@ (M QY M)—o("M e M)®¥ M) —Y M
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are the identity morphisms.

So we can consider the category C whose objects are representations of a quasi-
Hopf algebra. Let us call V, W, Z, ... the objects of such a category. We have a tensor

product
®: CxC— C

VW VW

induced by the comultiplication and an associativity constraint

U: CoCRC— CRCeC

VeowW)eZ— VWeZI)
induced by @ verifying the pentagon relation. A category verifying such requirement
is called a monoidal category. If we look instead at the axioms related to counit and
antipode they give, as described, some more informations on representations (existence
of unit and duals). The relevant category is called rigid. Finally suppose we have an
invertible element R € A ® 4, which verifies (1.1.22). Suppose it also verify

(1.2.18) (A @id)R = @3RI (3VPHTIR¥ 3
(1.2.19) ((d @ AYR = (@¥)TIRPPIRE ™!
which imply the quasi-Yang-Baxter equation: |

(1220) R12@312R13(®132)_1R23@ — @321R23(@231)—1R13 @213R12¢’_1

We say then that A is a quasitriangular quasi-Hopf algebra.

Let us come back to the rigid, monoidal category of representations of 4. Given

R, we can consider the operator
(1.2.21) Rij =p® pj[P o] R] % ® Vi— VI @ Ve

The commutativity of the two diagrams below (hexagons) is guaranteed by eq. (1.2.18)
, (1.2.19)
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(id®A)R

§>123
V1eWn)eVs—— Ve (V,®V;) (V20V3)QV;

(1.2.22) ‘L'Rn Té;sln.

$713 R
(Va®@WM)®Vs——ns V(i V) — Ve (Ve W)

-1
Ras 2T

Vie(V2®Vs:) — V1 (V@ V)—— (V1@V5)® W,

(1.2.23) T@m lm

-1

(A®idR )
VheV))®Vs — Vs ® (Vi ® Vz)

(Vs@V1))®@V,

Also here to be more precise in the notation we should had put the image in
the representations both for R and ® and in R we should include the permutation v
operator. The relevant category of representations is called a rigid tensor category. In
the word tensor we encode all the previous property (except for rigidity) and moreover

the existence of the symmetry operator

R: C®C— CRC

VoW —-WeV

which verifies the two hexagons.

As a final remark observe that the definition of ribbon element carries identically
to quasi-Hopf algebras. The corresponding category of representation is called balanced
[41].

The balancing is very important. In fact the comultiplication property of the

ribbon element implies, if we set vy = py(v) for each representation of v in V,

(1224) Vvew = RVV,VRV,W('UV ® ’Ld)(zd ® ’Uw)
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Then one can define the (quantum) dimensions of the representations V,W,... as fol-
lows, generalizing the classical dimension given by the trace of the identity; consider

the map

coev vy Qid coev

Rvy
(1.2.25) 12y v 25 vy eV 2LV @ VY T

Assuming that End(I) is a field then this map defines a particular element of that
field which we call dy.
Due to the property (1.2.24) we have dvew = dvdw and also dv +dw = dvew-

For quasi-Hopf algebras there is a natural notion of equivalence, generated by the

so called twisting.

1.2.2 Theorem: Suppose we have an invertible element F' € A® 4. Let us define
Ala) = FA(a)F™!
& = FB(id @ A)(F)3(A @ id)(F~1)(F?)™
R=F®RF™, '

then A, & and R define another quasitriangular quasi-Hopf algebra.

Proof: Isis easy to check that
(A ®id)A(a)d™! = F?*(1d @ A)F)®(A ® id)(F ™ )(F1z) ' Fiz
A @ id)(F(A(a)F ) (Fi2)  F(A @ id)(F)2 7 (id @ A)(F " )(Faz) ™" =
FB(id @ A)(F)@[(A @ id)(A(a)]2*(id @ AYF|(Fas) ™' =
F3(d ® A)(F)[(id ® A)(A(a)](id @ A)F T (Fas) ™ = (id ® A)(A(a))
For the quasitriangularity we have
(Ba12 Rys(B132) 1 Re3® =
Fia(A @ id)(Fa1)®312[(A' @ id) F 132 Rus[(A @ id) Flasz(P153)
[(1d @ A")(F ™ )125) Ras(id ® A)(F)2(A @1d)(F)(F12) ™" =
Fia(A @id)R(FGY) = (A ®id)R
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where we used the almost cocommutativity (1.1.22) and (1.2.19) . o

We will see later, the importance of the notion of twisting for a quasi-Hopf algebra.
Observe in particular that if & =1

& = F*(id ® A)(F)(A @ id)(F ) (F**) ™

and so we have immediately that if F gives also a quasitriangular structure to A4 then

® =1.



2. Review of Conformal field theory

We will recall briefly some basic aspects of two-dimensional conformal field the-
ories and rational conformal field theories. There are many ways to introduce the
notion of a two-dimensional conformal field theory, the most important being those of
Segal [19] of Friedan and Shenker [20] and the original definition of Belavin, Polyakov
and Zamolodchikov[42] .

The basic fact in two-dimensions is that conformal transformations, i.e. the sub-
group of the diffeomorphisms group which act as local rescaling on the metric is the
same as holomorphic (or antiholomorphic) change of coordinates. So the conformal
group

G=rT@®T

where I'(T) is the group of analytic (antianalytic) change of coordinates. Our attention
will be devoted in section 2.1 to a quick description of conformal field theories in the
spirit of BPZ, whereas section 2.2 will describe the notion of rational conformal field
theories, and some example. In section 2.3 we will describe the braiding and the fusing
and more generally the axiomatic approach to conformal field theories, which will be

resumed in section 6.2.

2.1. Basic formalism of Conformal field theory

In this section we will work at genus 0. A generalization to higher genus has been
described for instance in [43], and using the Krichever-Novikov [44], [45] formalism

has been summarized in [46]. Consider a two-dimensional “euclidean” field theory.
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Let ® describe the set of local fieldsl®l; let S(®) denote the classical action. The

energy-momentum tensor (which has dimension 2)

§S
T, p =
¢ 5gab
satisfies the conservation law
8, T°% =0

due to translational invariance and, in the case of local scale invariance of the model,

it is also traceless. Introducing in a canomnical way complex coordinates
z=z+1y,Z =1 — 1Y,

the 2-dimensional conformal transformations in turn correspond to analytic transfor-
mations

z — £(2)

From now on, we will consider Z as an independent variable from z. On the Riemann

sphere $2, the most general vector field which is regular is

D)o = (1 + oz + £a7)
In fact we have two charts Uy and Us, Un with domain in 5% /northpole and anal-
ogously for Ug with the north pole replaced by the south pole. The transition
function is w(z) = 1 So the vector fields £(2)& = 3,50 &nz" = transforms into
—f(w)% =2 >0 fnwz""g‘% which is regular for n < 2. “The integrated version of
this algebra of vector fields is the global conformal group SL(2,C)
az + b

cz+d

z — w(z) =

acting as Moebius transformations.

The corresponding quantum field theory can be described by the path-integral
Z= / DPe ()

® They will be geometric objects, for instance sections of some bundles on the
surface; a very important concept is that of (classical) conformal dimension; it
describes how a field behaves under dilatations; if the field are forms this notion

coincides with the degree of the form.
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We will see it as a heuristic device from which to derive for instance the Ward-
identities, associated to the symmetry: i.e. some differential equation for the cor-
relation functions If, for instance, we demand conformal invariance, the relevant Ward
identities allow us to deduce that the quantum energy-momentum tensor decomposes

into an analytic and an antianalytic part
fod TZZ(Z); T = 53(2).
Consider now an arbitrary correlation function

< X (21, 0eZny B1y ey Bn) D= /D@e‘s(‘i’)x(zl,..,zn,zl,..,zn);

as a consequence of the Ward identities (it is easy to get the equation below just

manipulating formally the integration) we get

< 6.X >= jidge(g) <T(O)X >

where 6. X is the variation of X with respect to the holomorphic vector field € and
the contour C encloses all singular points of the correlation function. So we see that
insertions of T(z) and T(z) in the correlation functions correspond to the action of
the conformal group. So T and T represent the generators of the conformal group in
the quantum field theory. The most general expression for the variation of the energy

momentum tensor is
1
(2.1.1) §.T(2) = e(2)T' (=) + 2€'(2)T (=) + ﬁce'"(z).

Here one considers the fact that the energy momentum tensor has in fact conformal
dimension 2 and since the fields have positive dimensions no other piece is allowed.
Here the prime denotes differentiation and ¢ is some number (equivalently one can
look at the transformation of T'(z) under finite transformation and get T(z) —
(%) 4 5Sc{¢,2}T(¢) where {, } denote the Schwarz derivative)l®l. In the Hamiltonian
formulation, one introduces the coordinate ¢ and 7, 7 playing the réle of “euclidean
time”

z = ezp(T +1i0), Z=exp(r —1i0)

4 QObserve that in fact the transformation rules for 7" are the same as the ones for

the geometric object called projective connection.
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(and so in fact works on the cylinder) The variations of the fields operators are ex-

pressed in terms of equal time commutators
§:8(o,7) =[Te, ®(c, 7))
where

T, = ‘7{ e(z)T(z)dz.
loglz|=7

Observe that T, is independent of 7. In particular the transformation law of the

energy-momentum tensor itself becomes:

(2.1.2) [Te, T(2)] = e(2)T"(2) + 2€'(2)T(z) + i}é—ce"'(z)
Expanding
(2.1.3) T(z)= i 27" L,

(analogously for T'), we get

dz
2.1, = ¢ — 11!
(2.1.4) L. jf 2 ()
and the algebra of the L,’s is
(2.1.5) Ly L] = (m = 1)Lt + 75(m* = m)bmsn

i.e they realize a Virasoro algebra; here c is the same number (central charge) of (2.1.1)

The Hamiltonian (generator of time shift) will be
H = LO + .Eg.

A primary fieldis a field ® y(z, Z) which transforms under a conformal transformations

z — w(z) as

(2.1.6) dn(z,2) = [

An(Ap) are called the conformal weights or dimensions. They are in general positive

real numbers.
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In particular the infinitesimal version of that transformation is

(2.1.7) 6:8,(2) = e(2) 5= a B,(2) + Ape' (2)@n(z)

Oz

one can also reexpress this as
(2.1.8) [Lim, ®n(2)] = zm+1%®n(z) + An(m+1)z2m@,(2)

and also for primary fields the Ward identities of conformal invariance take the simple

form

N A, 1
T(2)21(z1)..2n(zn) >= Z{ (z — 2z;)? * (2 — =) 8

(ZN) >

Associated to each primary field, one has a family of secondary fields (5], and in gen-
eral the family generated by each primary field gives a representation of the conformal
algebra. In order to understand the meaning of these words we recall here the con-
cept of highest weight representation of a complex (possibly infinite-dimensional) Lie
algebra g with a gradation.

So take an algebra g such that g = ®gs with [9a, 98] C Jats-

Consider then a decomposition of the algebra g = ny ® n_ ® h where A is the
Cartan subalgebra and n. correspond to positive (negative) roots of the algebra in
consideration (the Borel subalgebras). Then a highest weight representation V with
highest weight A € h* (h* means just the dual of k) of g is generated by the action
on a particular vector vy which we will call the vacuum by the universal enveloping
algebra of the subalgebran_

V =U(n_)ve

5 Introducing the operators L_x(z) = 39' = z)k+17 secondary fields can be expressed
as ®7Fv o 7En(2) = L_y,(2)...L_k, (2)®,(z) where the contour integral defining
L_x(z) encloses all the integration variables for the L’s to the right. That is
we choose n concentric circles enclosing z, and integrate along them, starting
from the innermost one. In particular @71 Fuen=kn = L_, (2)@ F1ma—hn =

8 —ki-=ka and so the family of secondary fields contains all the derivatives of

6&
the primary fields.
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We have also that: n4(ve) = 0 and A(ve) = A(h)vg. Due to the gradation of g we have
a corresponding gradation of V: V = @.,5¢V_, and the action of the algebra acts on
gradations as follows: go(V_,) C Vu—y,. For each A € h* we have a unique “maximal”
representation M (A) such that all the other representations with highest weight A are
quotients of M () (this is called the Verma module representation) and also we have
“minimal” representations, L(\) = M(A)/I()A) which are irreducible. Moreover given
an automorphism w of the algebra (the contravariant form [47] ), which restricts to
the identity on the Cartan subalgebra and such that w(g,) = g-o, we can define
a bilinear form, say 2, on the algebra with the requirement that Q(vp,v9) = 1 and
Uz, my) = Qw(m)z,y), for any z,y € M, and m € g. Then I(A) = KerQ and
det( |pr_) is equal to 0 iff M(]A) is irreducible.

In the operator formalism, the Hilbert space is constructed out of the vacuum of
the theory along these lines. The contravariant form is given by w(L,) = L_,. Using

the standard conventions we will denote it by |0 >, but it will required to satisfy
(2.1.9) Lp|0>=0, n>-1.

The relation between correlation functions and vacuum expectation values of time

ordered product of fields is given by:
< 81(21)-Bn(2n) >=< 0[T(21(01,71)- (00, )]0 >

From the formulae above we easily get:

c

(2.1.10) <T(2)T(w) >= (;jzw—);

which implies ¢ > 0. The Hilbert space H decomposes into irreducible representation
spaces of the holomorphic and antiholomorphic Virasoro algebras generated by ' and
T.

Given any primary field ®,, one defines formally the vector

(2.1.11) In >=&,(0)|0 >

and the action of the secondary fields on these vectors generates a Verma module (for
the Virasoro algebra). Observe that among the secondary fields corresponding to the

identity we have the energy-momentum tensor. Using the commutation relation of
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the primary fields with the Virasoro algebra we get

(2.1.12) Lpln>=0 m>0

(2.1.13) Lon >= Agxln >

A conformal field theory is completely determined by the central charge ¢, the spec-
trum of primary fields and the operator product expansion of the primary field defined
by

(2.1.14)

®,(2,2)0p(w,w) = (z~w)A7”A“_Aﬂ(2—15)2‘7"5“_5‘3 C’;’ﬁ@.r(w,w)—{—regular terms

Observe that in this section we have often omitted for simplicity the dependence of

the primary fields on the variable Z.

2.2. Rational conformal field theory and minimal models

It is a result of Belavin-Polyakov and Zamolodchikov that in the range ¢ < 1 we
have a special class of CFT with only a finite number of irreducible representations o‘f
the Virasoro algebra and a closed operator algebra (minimal conformal theories). ’k

In the range ¢ < 1, the unitarity constraints restricts the possible values of the
central charge and of the highest weights as follows[48]

6
2.2.1 - 1 — ——e 3
( ) ¢ m(m + 1) >
[r(m+1)—sm]? —1
2.2.2 hprs = 0
(2:2.2) , ppeny e <s<r<m

Observe also that in general if we consider an arbitrary Riemann surface we have
to take into account the moduli space corresponding to deformations of the complex
structures (or equivalently to conformal classes of metrics); this can be realized as
quotient of the Teichmuller group by the mapping class group. Also one can introduce

a complex structure in such a moduli space. Now it is known that the amplitudes of
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the minimal conformal field theories have an analytic structure: the (unrenormalized)
multi-point correlation function of primary fields inserted at point (21, Z1), ..y (21, Zr)

on an arbitrary Riemann surface

(2.2.3) < ®;,(21,21)--Bi, (20, Zn) >= Z Fr(z;me)Fr1(2; )
I

where the summation I ranges over a finite set. (mg,m,) complex coordinates on
the moduli space. The quantities Fr(z;m,) are called the holomorphic blocks and
are meromorphic functions (not necessarily single valued) in the complex variables
(215220, M1, ...M3(g—1)4n). Here the moduli space is essentially the one of a genus g
Riemann surface, with n boundary components obtained by removing parametrized
discs around the points z;; observe that parametrized is equivalent to assign to each
puncture also a non null tangent vector. In the elegant Friedan-Shenker language the
conformal blocks are just section of some line bundle over the moduli space, endowed
with a (projectively) flat connection.

Conformal invariant models whose correlation functions satisfy the finite factor-
ization above will be called rational conformal field theories.

They will have rational central charges and conformal weights. Now we can in-
troduce the notion of chiral algebra, or vertez algebra. An important subset of the
fields (primary or secondary) are the holomorphic fields. Since the operator product
expansion of two holomorphic fields is holomorphic these form a closed subalgebra A,
called the chiral algebra of the theory, including at least I and T'(z). We can choose a
basis O%(z) of fields for .A. The operator product expansion will have a general form
(2.2.4) Oi(2)0%(w) = 3 — — Ok(w) + regular.

= (z —w)"
here A;;r = A; + A; — Ag. At this time is helpful a digression. First observe that on
ground of physical motivation the conformal weights A; of these chiral fields should
be integer. Second the conformal dimensions in (2.2.4) are obviously equal in both
members. In fact the left hand side has dimension A; + A; whereas the right hand
side has the same dimension A + A;; i.e. equal to the right hand side. Also the
right hand side can have just a finite number of non regular terms. It is possible that
the last term be the identity. Given these restraints motivated by physics one can

consider the chiral fields as generating functionals of some infinite-dimensional graded
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Lie algebra. This is done as follows: expand any chiral fields (of integer weight A;) in

Laurent series as follows

(2.2.5) Of =% Of g4
Py

then (2.2.4) can be expressed in terms of the expansion coefficients as

(2.2.6) OLOI, — 0.0} =" R0k,
k

(usually O are called the modings of the operator O%). So in fact we get the universal
enveloping algebra of some graded Lie algebra. Observe that the fact that the grading
is preserved easily follows from the conservation of conformal dimensions in the op-
erator product expansion. The Jacobi identities give in fact some constraints on the
structure constants, but the same constraints follows easily from the associativity of
the operator product expansions of the generating functionals.

It is not difficult to realize that the converse is also true. I.e. given any graded Lie
algebra (and the gradation is essential) then we can construct generating functionals,
an operator product such that their components give rise to its universal enveloping
algebra.

Observe also that if in the right hand side of (2.2.4) we have the identity, then
the algebra will have a central extension. Now the chiral algebra acts on the set of
primary fields, through the operator product expansion (of which we just described

the mathematical meaning) as follows:
(2.2.7) O(2) By (w,B) = ¢ (2 — w)2iet B(w, D) + regular

In this way under the action of the chiral algebra we get orbits of primary fields.
Each orbit corresponds to a irreducible highest weight representations V* of the chiral
algebra. The orbit ¥V of the identity correspond to the chiral algebra itself. We will
from now identify the chiral algebra with its mode expansion, i.e. with the (universal
enveloping algebra) of the Lie algebra it generates. Using the expansion coeflicients of
the chiral fields one can define irreducible representations V* of the chiral algebra over
Verma modules (or quotients) . The Hilbert space decomposes now into irreducible

representations of the chiral algebra (tensor irreducible representations of the antichiral
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algebra). In rational conformal field theories the sum is by definition finite. We can

write
(2.2.8) H=0NohrsV @V"

and the representation V? includes the identity operator and hence all the operatorsin

A; the numbers h, 7 just count the multiplicity, in particular k.o = ér0  hos = 65 0-

Let us now give some examples of chiral algebras.

The simplest case is the chiral algebra consisting just of descendents of the identity
(secondary fields associated to the identity). In particular it contains the energy-
momentum tensor T'(z); in terms of mode expansion, and using the operator product
expansion of the energy momentum tensor itself we realize that the chiral algebra is
exactly the universal enveloping algebra of the Virasoro algebra. Another example is
given by the chiral algebra of the Wess-Zumino-Witten[49], [50] model. In this case it
is the semidirect product of the universal enveloping algebras of the affine Kac-Moody

and the Virasoro algebra. More precisely we have the currents

1
2.2.9 = ¢ J=—>kB,997"
(22.9) J Z JuR* J =—kd.gg

where R, is a normalized (antihermitian) basis of some simple Lie algebra and g is
a map from the disc in the semisimple group whose Lie algebra is g, and the energy
momentum tensor is expressed as

1
2.2.10 = — WALE
(2.2.10) T %+k%:JJ

where :: denotes normal ordering, i.e in the mode decomposition negative modings
have to be placed to the right of positive modings, and ¢, is the dual Coxeter number

of g, given by the value of the Casimir in the adjoint representation
(2211) fC'-Cdfbcd —_ Cv5ab

The relevant operator product expansion are

k5a a.bCJc
b_ f (w)

(2.2.12) PRI~ st T

+ regular
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(2.2.13) T(z)T(w) = 2T (w) + ¢/2 + 1 BT(w)-i»regular

(z—w)?  (z—w)* z—-w 0w

(2.2.14) T(2)J*(w) = ! 3 JH(w) + —1-—J“(w) + regular,
z—w

- w)
where f2%¢ are the structure constants of the Lie algebra. We have so Virasoro algebra

with central charge

k dimg
2.2. =
(2.2.15) c= e
and
(2.2.16) (g2 T8 = faege + %knb‘“"&n+m
and
(2.2.17) Loy J5] = —mdp

The representations correspond to integrable representations of the affine algebra. The
field g will acquire conformal dimension

g
c, + &

where ¢, is the value of the Casimir in the given representation. The correlation

(2.2.18)

function satisfy the KZ differential equation

, o} 1 05
2.2. —— < wg(zn) >=
(2.2.19) (Bzi cv+k;zi—zj)<g(zl) 9(zn) >=0

where Q;; = R} R? and the subscripts ¢ and j denote the factor of the tensor product

on which the normalized basis elements of g, R, act.

2.3. Moore-Seiberg formalism

We will follow now the work of Moore and Seiberg [16], see also [21]. Referring to
(2.2.8) let us denote H = @;V*, where V* are representations of the chiral algebra. A
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chiral vertex operator ®$3(z) is an operator from H to H depending linearly on vectors
B € V. In fact we will consider just its projection into irreducible representations.

So ®(.)(z) can be seen as a map from two representations V* and V7 of the chiral
algebra to a third representation V*. It is then natural to define the weight of a vertex
operator @5 as Ag = A; + Aj — Ag. The z—dependence of the vertex operators is
dictated by the Virasoro algebra:

d
(23.1) 7, 86(2) = 1_15(2)
Moreover the commutation relation with the Virasoro algebra are:
d
(2.3.2) [Ln 25(2)] = ("7 - + (n +1)2"Ap) ()

which essentially amount to say that a vertex operator is an operator valued tensor field
on the surface with (rational) positive weight Ag. Also the Verma module on which
vertex operators acts is graded. Like-wise the z-dependence of the vertex operators
keep track of its grading. So if we decompose the representations into the eigenspaces

of Ly we can decompose accordingly ®z(z). So it can be represented as
(2.3.3). Bp(z) = ) Bpz "0

Also it is easy to write a formal expansion of the vertex operators in terms of its values

at z =1:
(2.3.4) B5(z) = zlodp(1)z~Lom2

In order to say more we have to define tensor product of representations. On physical
ground this is done by introducing a sort of comultiplication on the chiral algebra
(depending on z). This “comultiplication” it cannot be the standard one, whenever
we have central charge, because we want the level (i.e. the value of the central charge)
fixed once for all.

Moore and Seiberg proceed as follows. Consider any chiral fields and expand in
Laurent series not around the pole z = 0, but in Taylor series around any other point

z # 0. In terms of modings we have

: 2 /n+A;—-1 b A —1—k i
(2.3.5) 0l(z) = Z ( L )z +4i-1 kOi—*—k—A;

k=0
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where for (Z) is defined as ﬁk—(—k(fl—)ifz assumed to hold also for n negative. A comul-

tiplication can be defined as follows in terms of modings
(2.3.6) Asy e (00) = Oh(z) ©1+1® OL(2)

Observe in fact that this comultiplication will give tensor product of representations

and the induced rule for the comultiplication of the central charge will be
(2.3.7) Ac=1¢cb(z)®1+1® cd(z)

So if we want to restrict ourselves to representation of fixed central charge we will
have to restrict ourselves to the coimﬂtiplication Az or Ag .. We will choose here

the first alternative. Observe that this “comultiplication” verifies:
(A2 0®1)Az 20 = (1® Az 0)05 0
i.e. a property close to the coassociativity. Define now (jik) as
z
?
(2.3.8) (k> (B©7) = ®p,u(2)ly >
. 7 2
here ¢ denotes the composition of ®5(z) with the projection t : VIQVF = ¥, V* —
Viand B € V7, v € V*. The elements (jik) can be defined as intertwining operators
z .
for the representations of the chiral algebra (p;,V7?) ®,,0 (P, V*) and (p;, V*). (the
subscript in the tensor product refers to the comultiplication used). This means that

they verify:
;
p(0)(},) = (08000

In order for (2.3.1) to hold we have to impose

5) Bon=(5,) Epem

Let Vjik(z) be the space of vertex opera.’ltors of type (jik)z' N;k is by definition the
dimension of such a space. Let for t € V]?k(z) Ay = Aj + 6 — A;. Observe that theis
space is somehow independent of z (provided that z # 0), and so we will often omit
the z in our notation. We will choose a basis (jik) of T/}"k with1l <a< N;k.

z,a
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Recall that (forgetting the z-dependence) we have
(2.3.9) (,z ) L(Vig V) — Vi
IR/ a

As in the physical conformal field theory, there is a correspondence between states and

operators obtained by

o >= @, 1(0)]0 >

where k denotes the unique coupling (kl,co)’ corresponding to the natural map V* @
VY — V* and « € V*. Moreover one can construct conformal blocks explicitly in
term of expectation values of the chiral vertex operators.

By the BPZ axioms we have that for each representation V7 we have a conjugate

representation (VI)¥ = VJ ", So in particular we have an involution
(2.3.10) ViZT~—1T

where T is a set labelling the irreducible representations of the chiral algebra.

(1)

is one dimensional. A map (V*)V @ V* — C fixes a basis in that space. In terms of

The space

this map, define
. . . Y
o35 1 Vi — Vi o1 Vi — Vv
and ¢q33 = oy3072. We will introduce now the braiding and fusing matrices. The
braiding matrix is defined in terms of two different composition of chiral vertex oper-

ators which have to give the same result (as a consequence of duality).

s P J1 Jzqed( 1t P )
2.3.11 ) . = By | ™. . .
( ) (]1?) z1,a <-7 k> z2,b Z P [ ik ]ab (sz’> z2,C <]1k z1,d

p'ye,d
Now composition of chiral vertex operators ®(z;) and ®(z;) is defined for z; —2z, & R_
and moreover in each connected region of the domain of definition of (2.3.11), B is
independent of z. So we will have two maps B(+) (corresponding to the positive half
plane and to the negative half plane) they will also verify B(+)B(—) =1)
B["! *1.eV}

1 k Jip

Vi, — oV, ®V]

J29 Jik
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Introduce also ) ] ;
ﬂ}k(i) 3ka — V;
1 —— eiiﬂAt 0'23(t)

We have Q(+)Q(—) = 1. Define also

A%

ij(i) :Vjik — Vi

$—s 0'13(6ii7rA"t)

The other fundamental ingredient is then the fusing matrix. By duality again we get

the relation

i p J1 J2qedf 1 2
2.3.12 . . = Foo | ( ) ( . )
( ) (]1p> Z1,4 (]2k> Zg,b gd P [ K k ] ab P'k Z2,C ]1]2 zl~22,d

This time there is just one fusing matrix. F' can be regarded as a transformations:

P[P ievi, eV, — eVieV:

i k Jir 2 Jij2
Final data are S and T, obtained in terms of the modular invariance of the theory.
5(7) : &V}, — @V}

is defined as the map which gives the transformations of characters on the torus
(obtained through the identification z = ¢ = €™z on C)

i(a2) = Trfe % () Yo

for the transformation 7 — % where 7 is the modular parameter, and T is a scalar
transformation corresponding to the transformation on characters of the torus induced

by the translation 7 — 7 + 1 of the modular parameter
B P i
T: I/jli i ‘Vji

acting as multiplication by
e27ri(A;—?C;)

This concludes the listing of the basic data of rational conformal field theories, as
stated in Moore-Seiberg. In section 6.2 we will resume these data and examine the

axioms they have to satisfy, in the spirit of the Drinfeld’s quasi-Hopf algebras.
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3. Algebraic structure of Link-diagrams

The study of link-invariants has always attracted the interest of many mathemati-
cians and physicists. the Jones’ revolution renewed dramatically the interest for such
an area. At the same time when Witten was relating the Jones polynomials with the
Quantum Chern-Simons theory, V.G. Turaev wrote two papers [25],[26] in which he
constructed “skein algebras” of link-diagrams which can be considered as a quantized
version of the Poisson algebras of loops on a two-dimensional surface.

In this chapter we follow and generalize the approach suggested by Turaev [25].
Turaev’s ideas, in turn, are based very much on the ideas proposed by Jaeger [51] and
also on the ideas proposed by Jones [52] and by Kauffman [53].

This chapter is organized as follows. In section 3.1 we will review some aspects
of classical knot theory, with particular emphasis on the ones which we will later
generalize.

Then in section 3.2 we define first a link-diagram (in a generalized sense) as a
collection of generic immersed oriented loops on an oriented two dimensional sur-
faces, where at each (transversal) double point a under/over crossing specification is
attached. The only equivalence relation which is initially taken into account is the
equivalence under ambient isotopies of the surface. Then, following [12], we define a
labelling map as a map assigning an integer in {1,...,n} [®} to each edge (connecting
two vertices - or double points - of the diagram). Such labelling maps are required to
satisfy a Kirchhoff’s law. Consider now the four (oriented) edges meeting at a given
vertex; to each of the 6 possible choices of labels (n = 2) we attach an indeterminate
variable. We then consider the module over the polynomial ring in such variables (and
possibly their inverses), generated by link-diagrams.

Any attempt to introduce a coalgebra structure in such a module (i.e. to introduce
a coassociative comultiplication with counit) will require that two of the above 6
variables are equal. So only 5 variables are left.

In section 3.3 we want to introduce a generalized skein relation on the diagram-

module and we want the comultiplication to be compatible with it; we get some

8 In most cases we will consider n = 2.
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restriction on the variables the number of the independent ones being reduced to
4. At this point the framework is general enough to include “link-invariants” (or
better pseudo-link invariants) which may be related to the algebra 4, ; considered by
Drinfel’d in the framework of Quasi-Hopf [24] to some specific models in statistical
mechanics (e.g. 6-vertex model [6]) But to this we will devote the next chapter.

In section 8.4 we demand also the invariance under the three Reidemeister moves.
This will force us to redefine the comultiplication by including some “rotation factors”
in order to take into account the Reidemeister move I. Moreover invariance under the
three Reidemeister moves will require that one of the remaining 4 variables is set equal
to 0, or, in other words, that a specific limitation is forced on the set of labelling maps.
This last condition is the assumption made since the very beginning in [25].

But differently from [25] we have, after having considered the skein relation and
the invariance under Reidemeister moves, an extra variable left. In section 3.4 we
examine also the very special situation when the diagram-module is an Hopf algebra
and prove explicitly the existence of an antipode map for any surface where link-

diagrams are considered. This proves a conjecture by Turaev [25].

3.1. Classical Knot theory

We will recall here some traditional aspects of knot theory, with particular em-
phasis on what we are going to generalize. We will work in the differentiable category.
In this setting!” a link will be a collection of differentiable imbeddings (C;)

C;:8' — M

" So we will avoid pathological cases such as wild knots (as distinguished from the
tame knots, which are, by definition knots ambient isotopyc to a simply closed

polygon in R®) which arise in the topological category.



40

for some three manifold M. The natural equivalence relation is that induced by
homotopies in the class of imbeddings; by that one mean that two links are equivalent
if as imbedding they are homotopic. In this first section we will always consider
always M = R® or 5% unless otherwise specified. This corresponds to the classical
situation. In this case one consider equivalently to that notion of equivalence the
notion of ambient isotopy. This is in turn formulated in terms of the equivalence
relation induced by the connected component to the identity of the diffeomorphisms
group of M. But the two notions turn out to be equivalent.

Now a link projection is a generic immersion of a finite number of circles in the
plane. By generic we mean the absence of triple (or more) crossings, and tangential
crossings. Also for R?® the plane projection of a link is defined simply by projecting
the link along a preferred direction. This plane projection gives a link projection if it
corresponds to a generic immersion. By definition a link-diagram is a link-projection
plus an over/under information at each crossing point.

The number of components of a link-diagram is, by definition, the number of loops
in it. If this number is 1, then we speak of a knot-diagram.

We will always consider oriented loops and oriented link diagrams so the word
oriented will be omitted from now on. The vertices of a link-diagram are by definition
the double points of its projection; the edges of a link-diagram are defined as the lines
joining two vertices. With k vertices we have obviously 2k edges. A link-diagram give
rise to a well defined ambient isotopy class of links in R and every ambient isotopy
class of links can be obtained in this way. In order to make the converse true we
have to consider some additional equivalence on link-diagrams. This equivalence is
generated by some moves on link-diagrams called Reidemeister moves and described
in Fig. 1.

Now it is a classical theorem[54]that two oriented link-diagrams represent ambient
isotopic oriented links if and only if one can pass from one to the other by a finite
sequence of Reidemeister moves. The Reidemeister moves I can be given a different
meaning of Reidemeister moves II and III. One could in fact consider link-diagrams

up to regular isotopy, i.e. by quotienting just by Reidemeister moves II and I11tel,

® The name come from the fact that a regular isotopy projects to a regular homotopy
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Fig. 1 Reidemeister moves

; We will now describe the skein relation. Consider 3 oriented links (Ly,L_, Lg)
which are identical outside a small 3-ball in R?® or S% and look like as follows inside

the ball. . /' ..
. . . /j N

/ \ / . 3 ) ¢ !
( ™ / \‘ N4 S .
' { \\‘ -~ . l\ [

\ ! 4 S \'\ \/ \ v,"j
< N,

N L " L
- ‘—'—n

Fig. 2 Skein triple

Then we say that (L4, L_, Lg) constitute a skein triple. A similar description is
given in terms of link-diagrams in the plane. Just we define a skein-triple to be a
triple of link-diagrams, identical outside a disc and such that they have the behaviour
which look as in Fig. 2 , this time inside the disc (mutatis mutandis). Namely L.
is the configuration in which turning clockwise the outcoming upper edge we meet
the outcoming lower edge, L_ is the configuration where this happens turning coun-
terclockwise and Ly is the configuration in which the vertex is splitted in the only

orientation preserving way [/, By definition the unknot is the trivial knot i.e. is a

of the underlying curve.
® 1f we forget the orientation we can get two different splitting; the relevant config-

uration are called Ly and L.
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contractible map from § to R® or §° (in terms of knot-diagrams this is equivalent
to say that by suitably applying Reidemeister moves the diagram can be reduced to
a diagram without vertices), and the unlink is a collection of unlinked*! unknots (in
terms of link-diagrams we can say that the diagram of the unlink can be reduced to
a diagram without vertices). Let O be the module generated over some polynomial
ring R by ambient isotopy classes of links. Let us introduce an ideal I in O generated

by the relation

(3.1.1) zLy —yL_ = hL,

where z,y, h are elements of R. (3.1.1) is called a skein relation. Given a map
P:0—7R

we say that P is a skein link-invariant if it descends to a map on the quotient space

P-?——»'R

On the sphere or R?® it is well known that every link using the skein relation can
be trivialized (i.e. reduced to a collection of unlinks); moreover (z — y)0 = () as a
particular case of the skein relation; where 0 is the empty knot/!!l and ) is the unknot;
so the more general skein invariant can depend (we can always clearly add variables
with the normalization of the unknot, but this is not a true generalization, because
there is just one unknot) just on three variables i.e. z,y and h. The main point to
establish is that there are no relations between the variables ensuing from different
ways of applying the skein relation to the same link in order to get the collections of

unlinks. Let us now take R = C(z,z~!, k) and consider a skein relation of the type
(3.1.2) ey —z 'L = hL

then it is possible to show, by inductive techniques, that in fact the quotient (of
course unique) by this skein relation exists and does not give further constraints on
the variables. Let us denote by H(z,h) the linear skein invariant corresponding to
(3.1.2) above and normalize it by requiring H(z,h)((O) = 1. Then it is unique and

10 By unlinked we mean that they have zero linking number, see for instance[55] .

11 The knot with zero components.
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coincide with the famous Homfly polynomial [10]. It is then possible to show that out
of the Homfly polynomial there is a natural way to construct a polynomial in three
variables, corresponding to the more general case, so we have not lost any informations.
Moreover if instead of a polynomial ring we consider an abelian ring then[55] we will

not get more informations. Particular properties of the Homfly polynomial are

1) H is invariant under reversing the orientation of all the components of a link-
diagram;

2) H(z,h)(L™") = H(z™,h)(L) where L™" denotes the mirror 1mage of L i.e.
reversing of the over/under information at each crossing;

3) H(L™") = H(L), where L™ denotes the link-diagram with reversed orientation
that L;

4) H(L1U Lp) = (m—m;——QH(LI)H(Lg), where Ly U L, denotes disjoint union

4 H(Li#IL;) = H(Ly)H(L;), where # denotes connected sum for links2].

As particular cases of the Homfly polynomial, i.e. specializing the variables in-
volved one get the Alexander-Conway and the Jones polynomial. More precisely we
can consider the Homfly polynomial evaluated at z = 1,h = t7 —¢~3, With the same

normalization we get the Alexander -Conway polynomial A(?) which verifies
A@(L4) = AE)(L-) = =82 7 H)AR(Lo)
A()0O) =0

Also we can consider V(z) = H(z,2~% —z7) and impose V(z)(Q) = 1. Then we get

a polynomial verifying the skein relation
V() (L) =t V(E)(L-) = (77 — t3)V(2)(Lo)

And this is the well known Jones polynomial [7] Let just add some remarks in the

unoriented case. We can consider a more general skein relation in which the configura-

12 Defined just by removing an arc from L; and L, and identifying in the only orien-
tation preserving way the extremities of this two arcs in Ly with the extremities

in Lz.
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tion Ly is replaced by two configuration Lo and Lo, corresponding to the two possible

ways of splitting a vertex.

~ 1 - I- o L ow

Fig. 3 unoriented case

Then it is possible to show the existence of a two-variable polynomial D(z,h)

verifying the skein relation
D(a,2)Ly — D(a, )L - = 2[D(a, 2)(Lo) — D(a, z)(Le)]

known as the Dubrovnik version of the Kauffman polynomial [11], [56] . This poly-
nomial is not anyway invariant under the first Reidemeister move but if L+ and Ly

denote three configurations related by a Reidemeister move as in Fig. 4 then we have

K(L1) =aK (L), K(L™)=a1K(L)

(.
e
() ()

Fig. 4 Lt L~ and L°

Observe that F(a,z)(L) = a *F) D(a,z)(L) is an ambient isotopy invariant of
oriented links. As a final remark to this section we will briefly discuss another approach
to link theory. Namely the approach based on braids. Let M be a two dimensional

manifold, and consider the manifold
A\

Xn_—.{(zl,....,zn)EMx...xM] z; # z; i#j}

n  times



45

Then the fundamental group of this manifold m1(X,,) is the pure braid group with n
strings of the manifold M. Consider now the manifold M, = ?572 where 5, is the

symmetric group acting as permutation of the coordinates. Then w1 (M) is called
the full braid group of M. The classical braid group [57], [58]is the full braid group
of R%.In this case braid can be described as lines in the strip R X I connecting n
points p; in the upper boundary of the strip to n points g; in the lower boundary of
the strip. Here the points ¢; have the same coordinate in R as the points p;. The
composition of elements of the braid group in this pictorial way corresponds to placing
one braid over the other, i.e. to joining the two strips and the corresponding ends of
the lines (moreover one has to divide by two the parameter measuring the wideness
of the strip). Also for M = R? the braid group on n strings, which we will call By, is
generated by generators o;, ¢ = 1,...,n — 1 which are described as follows: o; consists
of straight lines connecting p; and ¢; for j # 4,7 4+ 1, whereas the i-th lines crosses

over the ¢ + 1-th line reaching the point ¢;1; and vice versa. See Fig. 5

|
[ \%\1\‘”

Fig. 5 generators of the braid group

These generators are subject to the following relations

(3.1.3) o(5)o (i) = o()oli) li—jl=2

(3.1.4) o(i)o(i+1)ea(i) = (i + 1)a()o (i + 1),

and these relations turn out to be the unique ones. In general we will allow the number
of strings to be free, so we will define the braid group as the direct sum over n of the
braid groups B,. The relations with classical knot theory is given by the Markov
theorem. First one introduce the notion of closure of a braid; namely one joins all the

point p;’s and ¢;’s, as described in Fig. 6 .
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Fig. 6 closure of a braid

So the closure of a braid turns out to be a link-diagram in R?. But because many
braids can give rise to the same link-diagram one has to quotient by something more,
the Markov moves. These moves can be subdivided into two sets.

i) Markov move of type 1 as a map: B, C B — B, C B given by conjugation by

any element v € B,,;

ii) Markov move of type 2 as a map: B, C B — B, C B given by multiplication
of an element in B, by o, and it inverse;

The Markov theorem states that two links obtained by closing two different ele-
ment of B are ambient isotopic equivalent iff they differ by sequences of Markov moves
(or their inverses).

The Hecke algebra Hpy(q) is defined as the algebra with the same generators and
relations as the braid group B, plus the additional relation

(3.1.5) (o(i) — q)(c(i) +1) =0

for some ¢ € C. The Hecke algebra can be thought of as a deformation of the (group
algebra of the) symmetric group. The importance of the additional relation of the
Hecke algebra is that it corresponds to the skein relation for the braids closure. Par-
ticularly interesting are the representations of the Hecke algebra for g root of the
unity. In that case in fact they differ from the corresponding representations of the

symmetric group.

3.2. Coalgebra structure of the link-diagram algebra
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From now on % will denote an oriented compact connected two-dimensional Rie-
mannian manifold®®. Consider now links in the three manifold & x I where I is the
unit interval. Generalizing the plane projection of a classical link we can project any
link on ¥ thus getting on ¥ a collection of loops. We will consider only links such that
this collection consists of generic immersed loops (all the crossing points have to be
transverse double points, no triple points). A link-diagram on ¥ is, as in the classical
case, any such collection of loops together with the specification at each double point
of a over/under crossing symbol. We can define vertices, edges, etc. as in the classical
case. The projection of a link-diagram will be simply the collection of loops in 2
obtained by forgetting the over/under crossing information.

Given any link-diagram on & we can consider the Reidemeister moves of the
classical knot theory. More precisely we will consider a contractible region in F' and
consider on that region the same moves which are considered in the classical case. Now
we can combine Reidemeister moves and the connected component of the identity in
the diffeomorphism group: essentially due to Goldman [27] we have that the quotient
of the class of projection of link diagrams by the equivalence relations induced by (the
analogous of ) Reidemeister moves and diffeomorphisms connected to the identity of &
coincides with the space of homotopy classes of C° generic immersions. Also observe
that if two link-diagram have homotopic projections (as immersions) the corresponding
links will be homotopic (as imbedding) in F' x I. Hence there will be a diffeotopy of
F x I covering the homotopy (by the Thom theorem([59] ).

From now on we will concentrate on link-diagrams, taking in mind the relation
with links in F' x I as stated now. With an abuse of notation, and unless the contrary
is specified, we will use the term link-diagrams also to denote the equivalence classes
of link-diagrams, meaning that two diagrams are equivalent if they have the same
over/under crossings at the corresponding double points and their projections are
related by an ambient isotopy of &, namely a diffeomorphism of & which is connected
to the identity.

Link-diagrams, as said above, can be thought of as diagrams of links in X x [0,1],

13 % can be either with or without boundary. When I has a boundary, then we will

require that 0% has one component.
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but it should be emphasized that, in the initial setting we are considering, the only
equivalence relation taken into account is the one mentioned above (e.g. we do not
consider, at the beginning, Reidemeister moves) and so the correspondence is not one
to one.

We will now to introduce the module D freely generated by link-diagrams over
some polynomial ring R. In particular our first aim will be to introduce a comultipli-
cation on such a module.

An n-labelling map f (in symbols f € Lbl,) of a link diagram will be a map (see
[25]):

f : Edges — {1,...,n}

satisfying the following requirement [14:

for each vertex v € V, we denote by a, and b, the incoming edges at v and by ¢,
and d, the outgoing edges at v (recall that our link-diagrams are oriented); then we
should have either

flay) = f(ex)and  f(b,) = f(dy)
flay) = f(dy) and  f(b,) = f(c),

for each v € V.

This requirement is just a form of the Kirchhoff’s law; it is equivalent to requiring
that, given any integer number k in [1,n] and any n-labelling map f, then the edges
which belong to the inverse image f~!(k) constitute a new link-diagram, such that the
orientation of all the edges is the same as in the original diagram. We always assume
that at the double points of f71(k) the over/under information is the one inherited
by the original diagram.

To each vertex v we assign a number w(v) = %1 according to whether the type
of the crossing is L1 or L_ (the definition of these configuration is the same as on the

plane).

14 Notice that the requirements on the labelling maps, which are considered in [25],

are stricter than ours.



49

The (finite) set of all the vertices of a link-diagram D will be denoted by the

symbol V(D) or simply by V, when no confusion may arise.

For any link-diagram we denote by the symbol w(D) (the “writhe” in Kauffman’s
terminology [60]) the sum of the numbers w(v;) extended to all the vertices v; € V(D).
More generally if W is any subset of the set V(D) then we will denote by w(W) the

sum of the numbers w(v;) extended to all the vertices v; € W.

Our next aim will be to define a family of comultiplications in such a module;
more precisely we will consider maps: V : D — D Qg D, where K is a given subring
of R Our strategy will be to put different requirements on these comultiplications
(e.g. coassociativity, the compatibility with some equivalence relations like the one
obtained by considering link diagrams modulo Reidemeister moves and/or some kind
of skein-relation, etc.). These requirements will put in turn some constraints on the

indeterminate variables and on the definition of V itself.

Let D be any link-diagram and let f be any 2-labelling map. Consider a vertex
v in D of a given type and assume, for the sake of definitiveness, that it is of type
L. The possible values of the labelling map f on the edges meeting at v, allow six
possible configurations, and to each of these configurations we associate a different

indeterminate variable as follows:
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One can see the pairing of the above configurations with the above set of variables
as something like attaching a weight (or probability) to each possible “interaction”
between vertices and labelling maps.

Following the general arguments leading to the construction of the Homfly poly-
nomials ([12]), we will associate to any n-labelling map f the subdiagrams Dy ) =
f7'(k),k=1,...,n. And again, following and generalizing [25], our comultiplication
will map any link-diagram D into the sum, over all the possible 2-labelling maps f, of
the tensor products of two factors, the first one being proportional to the subdiagram
Dy, and the second one being proportional to the subdiagram Dy ,.

It is clear that the indeterminate variables involved here are z,:’é,z,i,h,ﬁ but
it also clear that they play different réles. The variables z and Z are associated
respectively to the self-crossing of Df; and Dy ,, the variables z and Z are associated
to the crossing of Dy over Dy, and, respectively, to the crossings of Dy over Dy o;
finally both the variable k and A are associated to the splitting of the original diagram
at the given vertex, in the only orientation-preserving way.

We now assume that if instead of a vertex of type L. in the original diagram, we
had considered a vertex of type L_ then we would have had to replace the variables
z,%,z,% with their inverses. As far as the variables A and k are concerned, we notice
that they correspond to configurations where the crossing points are eliminated irre-
spectively of whether the original crossing points are of type L or L_. Hence we will
not consider the inverses of these last variables.

The above arguments lead us to consider the polynomial ring
R=Clz,z 2,57 1,2,271,%,5 1, h, A

Here and below we always assume that z,Z,z, 7 are different from zero. On the
contrary h or h can be set equal to zero. In this case we mean that we want to consider
only labelling maps f which satisfy respectively the following additional condition at
any vertex of a link diagram:

(3.2.1) h=0s f(d)> fla); h=0s f(d) < f(a),
where a and d denote respectively the lower incoming and the lower outgoing edge.
The next question we have to decide is over what subring K we should consider

tensor products. Since the configurations corresponding to the variables =z and Z
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are separately associated to the subdiagrams Dy and Dy, we find it reasonable to
assume that K (i.e. the ring over which we take tensor product) should not contain
Clz,z" 1, z,z71).

It is also clear that on the contrary K should contain C [h, fz] since these last two
variables are not associated separately to D1 or Dy s and should therefore be allowed
to pass freely from one factor of the tensor product to the other. The question of
whether K should include the variables z, Z and their inverses is at this point debatable.
But, as it has been shown in [1] we will have to set X = C(z,271,%,271,h, ;L] in order
to have a possibly coassociative comultiplication.

We are so led to considering the following comultiplication in D:

V(D) = Z (_.1)1(31)4 (_1)](§f)—l plS#1 71341
FELbl2(D)
(3.2.2) sw(Dy,14Dy 2) sz(Df,:-LLDm)wuf(Df.l)'-W(D)Bf,1 ®,

Bk (P12 =wD) D,

In the above formula we used the following notation: for any diagram D, w(D) denotes
as usually its writhe; for any pair of diagrams D and D', w(D | D') denotes the total
writhe of all the vertices where D crosses over D'; for any labelling map f, S; and S ¥
denote respectively the set of vertices where a splitting occurs in the original diagram
corresponding to the configuration associated to k or, respectively, to k (see Fig. T no.
1); (8¢)4 and (gf):i: denote respectively the subsets of S¢ and fj"f which correspond
to vertices in the original diagram of type L.; finally for any finite set X, here and
in the future, we denote by |X| the number of its elements. In particular, for any
diagram D, |D| will denote the number of components, while for any set of vertices
W, |W| will denote the number of vertices in W, whereas W will denote the subset
of vertices with positive (resp. negative writhe).

Notice that in the above definition of the comultiplication, all the terms which
we introduced are justified on the basis of the association of the different variables to
the various configurations, with the exception of the factor 41 in front of everything
(which is not needed in order to define a comultiplication but will be convenient
later on, when we will consider the invariance under the skein relation) and of the

normalization factor —w(D) which appears at the exponent of both z and Z (indeed
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this factor is required in order to have a coassociative comultiplication - see below - ).

To complete the definition of the comultiplication we have to define V(z) and
V(z™!). In order to have a meaningful object we require that for any link dia-
- gram D and for any pair of elements a,b € Clz,z71,%,z7!] we have V(abD) =
V(a)V(b)V(D). Furthermore we assume, for simplicity, that the following relations
hold 31,

V(z) = 2@, 2 V(E)=Z®,4Z,
(3.2.3)

We recall that the comultiplication V is, by definition, coassociative if we have:
(V ® id)V = (id ®, V)V.

We have now the following:

3.2.1 Theorem: The comultiplication defined in (3.2.2) , (3.2.3) is coassociative
fandonlyifz =z

® One could in fact figure out a more general situation where V(z) = z; ® @2 for

some polynomial functions z; and z, depending on the other variables z,z, z, z
and their inverses and similar relations for VZ, etc. Computations become a
little more cumbersome, but one can easily prove that all these more complicated
relations, when different from (3.2.2) , are incompatible with the coassociativity

of the comultiplication V.
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Proof:
(V ®K 1d)V(D) =

Z (_1)I(Sf)—|+|(5f)—| JAEF ];Ilgfl gw(Df,1UDf,z)zw(Df,z»UDf,l)V(ww(Df.l)—w(D) ijl)
fELbl(D)

®, §Pr)=wD) D,

— Z Z (“1)](31)_1‘}"(5})_! BlSs }'ngfl (__1)](59)—[+1(§g)—1 hlsgl}'bls'gl
feLblg(D)gELblg(Df'l)
2 w(DP7,34Dy1,1) ,w((Dy,1)9,2(Ds1)g,1) 5w((D1,1)5,14(Ds,1)g,2) 5w(Dy,14Ds,2)

mw((Df'l)g'l)_W(D)(Df’l )o.1 ®, 7w((Dy,1)g,2)~w(Dy,1) ww(Dfa)—w(D)(Df)l)

9.2

®K :E‘w(Dflg)—w(D) Df,2

Now the pairs of labelling maps (f,g) with f € Lbl;(D) and g € Lbly(Dy,,) are in a
one to one correspondence with the 3-labelling maps p € Lbl3(D). In fact, as in [25],
we can define:

1 ifg(e) =1,f(e) =1;

ple) =< 2 ifgle) =2, f(e) =1;

3 if fle) =2
Hence (V ®, id)V(D) can be written as

Z (_1)|(Sp)_l+l(‘§p)_l h'Sp[ ]‘:Ligpl zw(DP.l)_w(D)
pELbliz D
Zw(D?::”'U‘(DPulUDPﬂ)) zw(DpﬂUDp.l) Ew(DPyl'U’DP,?)

gw((DPJUDP,Z)UDpJ) -Dp,l ®K i“w(DP,l)_w(Dpyl#DPﬂ)

mw(DP,l)—{-w(Dp,z)+w(Dp,1#DP,2)—w(D) Dp,2 ®I{ a‘:‘w(Dp,a)—w(D) DP,B-
Here S, and S'P denote, as before, the set of vertices where a splitting occurs with
p(a) < p(d) and respectively p(a) > p(d), where a and d denote respectively the lower

incoming and the lower outgoing edge. Moreover D, 1# D), 2 denotes the set of all the

common vertices of D, 1 and D, ,.
b, D,
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On the other side we have:

(id ® V)V(D) =

= Z (_1)3(51)_14-[(5})_! RISt j1541 ,w(Dy,24Dy,1) 5w(Dy,14Dy,2) ,,w(Dy,1)—w(D) Dy y
fELbL(D)
® . V(gwPra)=w(D) p. )

= Z Z (=152~ I+1(57)_1 3,155 ﬁ!gfl(_l),(sg)_l+l(§g)_! RiSsl 713l

FELbI(D) g€Lblz(Dy 1)
2@(D#,24D1,1) 5w(Dy,14D4,2) ,w((Df,2)g,24(Ds,2)g,1) 3w((Dy,2)9,14(Ds,2)g,2)

xw(val)—w(D)Df,l ®K 7w(Dy,2)—w(D) L w((Dy,2)g,1)~w(Dy,2)

(Dsa2)gn ®, &“Pra)=PlgelDra)g)=w(Pra) (p oy

We consider again a 3-labelling map p € Lbl3(D) defined as:

(1 if f(e) =1;

ple)= {2 ifgle)=1,f(e) =2

(3 ifgle)=2,f(e) =2

So (id ® .. V)V(D) can be written as

S (~1)ME- )] RiSsl RISl ;w((Ds,2UD5,8)4D5.) s(Dp 4 Dpa)

pELblsD
5W(Dp,1(Dp,2UD5,3)) Z'w(Dp,3U‘Dp,2)mw(Dp,l)_w(D)Dp,l ®K2

7%(Dp,2)+w(Dp,3)+w(Dp,2#Dp,3) ~w(D) 5 ~w(Dp,3)~w(Dy,2#Dp,s)

‘DP!Z ®K; iw(Dp,S)—w(D) Dpis

If we compare the two and (id® X V)V we check immediately that the coassociativity

is guaranteed only if the following conditions hold: z = &, for any z and Z. In this
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case the coassociative comultiplication reads [16],

V(D) = Z (.._]_)st)—| (_1)[(51‘)—1 RIS BISs
(3.2.4) FELbL(D)
2 W(Ds,24D5,1) Zw(Df'1UDf'2)mu}(Df'l)_u,(D)Df,l ®, ww(Df,z)——-w(D)Df,zn

From now on we will omit the specification of the ground ring K over which we
take tensor products. In order to simplify the notation we will write (3.2.4) also as
follows:

(325) V(D)= Y. oD, Nz PIDs @z P D= Y V(D ),
FELbI(D) fELbL(D)

where the identification of (3.2.5) with (3.2.4) provides the values of the scalar
functions @, p1, p2 and of V(D, f) e D D.

Remark.

18 Following [25] we could distinguish, in the two configurations corresponding to
the variables & and *, the two cases when the splitting of the given diagram a)
increases or b) decreases the number of the components of the diagram itself. In
these two cases we may consider respectively the variables:

a) h_ and h_
b) Ay and Ay
and the corresponding coassociative comultiplication would look as follows:
D)= Y (~1iE0-1 (p)ién-] p\|PImIPs, 115D /2

fELbI(D)

(IDI+1Ds, 141/ D)/2 ﬁﬂm—lngfiﬂém/z 5 (11105, 14152

2w(Ds28D51)  zw(Dg14Dy,2)

g@(Pr)-w(D)p. e, g@Pr2)=w(Dp.

Here, and in the future, for any W C V(D), Dy denotes the diagram obtained

by splitting D at the vertices in W, in the only orientation-preserving way.
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The coassociativity of the comultiplication implies that if we consider the following

operator for each N > 2:

(3.2.6) VVN=(VRid®...Qid)o(V®id®..Qid)o...0V
N e D e Ve
N-2 times N-3 times

then we have the following equality for each : with 0 <i: < N —1:

V(D)= (1d®..Qid)®V ® id® ... ®id) VV(D).
R w1

: times N — -1 times
Moreover one can easily prove that:
(3.2.7) viD)= > o(D,)zPI D ®.....@z" P Dy y
fELbiy(D)
where p;(D, f) = w(Dy,;) — w(D) and
o(D, f) =(-1)I5-1 (_1)I(5f)—| RIS:1 R8¢

p2ain; W(DP2i¥D1i) 230 w(Dy, UD:‘J);

where in turn S; and S; denote respectively the set of vertices such that f(a) < f(d)
and f(a) > f(d), when a and d are respectively the lower incoming and the lower
outgoing edge, while (Sy), and (54)+ denote respectively the set of vertices in Sy
and Sy of type L.

Let P be the permutation operator in D ® D. We recall that the comultiplication
V is, by definition, cocommutative if and only if P o V = V. We have now the

following:

3.2.2 Theorem: The comultiplication (3.2.5) is cocommutative if and only if
h=h, z=3.

Proof:
V(D)= (PoV)D) = Z o(D, f)zP P D @2 Df) Dy,
fELbl; (D)

— Z o(D,f)z*PAD;s, @ 21 (PND.
FELbI(D)
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Now if A and k are either both 0, or both different from 0, then to any labelling f
we can associate a labelling f by interchanging the values 1 and 2. Obviously the
possibility of

o(D, f) = (D, f)
being different from zero, is the only obstruction to the cocommutativity. But o(D, f)
is obtained from (D, f) by interchanging h with h and z with 2. So the comultipli-

cation is cocommutative if and only if A =k and z = Z. o

We want now to introduce a counit in D. Let € : D — K be the map
(3.2.8) e(z)=1;¢(D)=0 ifD#0e(0)=1
then it is easily verified that
(e®id)A(D)=(e®id)(P®D)=D
and analogously
(id®@e)V(D) = D.

So € is a counit.

3.3. Skein Invariance

We define now as a (generalized) skein relation any equivalence relation in D of

the following type:
(3.3.1) vyDy —8§D_ = [ Dy,

where 8 € Clz,z7%%,2 k], v,6 € Clz,z7 2,274,571 kk and
{Dy,D_,D4} is a Conway triple, namely is a triple of link-diagrams which differ
only around one point where D, and D_ display respectively a vertex of type Ly
and a vertex of type L_, while in Dy the vertex is eliminated in the only orientation

preserving way.
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First let us notice that the counit (3.2.8) is clearly compatible with any skein
relation of such a kind if e(y) = ¢(6§). So we have to require that the the dependence
of v and § on z,%,z71,771, h, i be the same. In practice v and § should depend just
on z,z” 1. We would like to check now whether the comultiplication is compatible

with the skein relation (3.3.1). More precisely we want to prove the following:

3.3.1 Theorem: Let us consider a skein relation of the form:
(3.3.2) 2Dy —c ' D_ = (h+h)D,

and let us quotient out D by this relation. The comultiplication (3.2.4) gives a co-
multiplication on the quotient module if and only if Z = z7!. Moreover any skein
relation of the type (3.3.1) , different from the above one, is incompatible with the
comultiplication (3.2.4).1"]

Proof:  Given a Conway triple D, with ¢ € {+,—,0}, let us consider the possible
values of a 2-labelling on the edges in the region where these three diagrams differ from

each other. The possible values are described by the six configurations a;,7 = 1,...,6

1" If we distinguish between Conway triples where the splitting of the diagram a)
increases or b) decreases the number of components (see the previous footnote 16),
then the relevant skein relation should read ([25]):

T .D+ b w"l D_= (hs -+ iLe)Do

where € = + for case a) and € = — for case b).
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described below:

a = — — Qg = ) —_— a3 = — ——t]

d
—_—
[N

-t

[ %]
w0

b

p

—_—
fwy

[ %]

Pig. 8
In the above figure, it is understood that the arrows are prolonged in such a way

as to create a crossing of type Ly for Dy and an orientation-preserving splitting for
Dy.

For each € € {+,—,0} we denote by fi the 2-labelling of the diagram D. which,
when it exists 18], assumes the value f on all the edges which are common to all
the three diagrams D, ,D_, Dy and otherwise assumes the value described by the
configuration a; . In order to check the skein-invariance of the comultiplication we

have only to verify the following relation:
(3.3.3) V()V(Dy, 1) = V(EV(D_, fL) = BV(Do, f§),Vi = 1,...,6,VF.
In order to simplify the notation in this proof, we will set:

Di=(D)si ;i pi(fl) =pi(De, fi); forj=1,2%i=1,.,6;.

Otherwise, for the notation, see (3.2.5). We want now to verify equation (3.3.3) in

the different configurations a; (Fig. 8 ):

18 1t is clear, for instance, that f3 and fi do not exist.
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case a;

We have D2 = D? = D? and {D},D.,D;{} is a Conway triple, moreover
o(D+,f1) = o(D—, f1) = a(Do, f3) and p1(f1) = p1(f2) = p1(f3),  p2(fi) =
p2(f1) 2 = pa(f2) ~ 1; hence

V(D+>fi) — U(Do,fol):cpl(fg)D},_ ® :c”Z(fé)”ng

and

V(D_,fl) = a(DO,fg)meé)Dl_ ®.mp2(fg)+1Dg_

So the only skein relation which is compatible with the comultiplication must be

of the type
tD, —z 'D_=pBD,

with 8 € Clz,271, 2,271, h, A

case as

We have D = DY = D},j = 1,2, o(D4, f}) = ho(Do, £§) and o(D_, f3) =
—ha(Dy, f§ ). Moreover we have p1(f3) = p1(f2) =2 =p1(f§) — 1, and p2(f3) =
p2(f3) — 2 = pa(f8) — 1 and so we get

V(D4,f3) = ha(Do,fg)mf’l(fg)‘lD% ® zP2(fo)-1 2
V(D_, f3) = —ho(Dy, £3)z” ()1 Dl @ gr2(fo)+1 p2
and hence
(2 ®2)V(D+, f3) = (27 @ 27 )V(D-, £2) = (b + R)V(Do, £5)

which is only compatible with a skein relation of the type 2D, — z71D_ =
(h + E)Do.

case a3

We have D7 :Df;_; j=1,2.

i '0(Dy, f2) = z0(D_, f2)
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pil L) = pi(f2) -2
which implies

(z® w)V(D+,fjf_) =z7(z7' @ :c_l)V(D_,fi)

and due to the fact that f§ does not exist, the compatibility with the previous

skein relation requires z = z71.

Case ay is completely analogous to case ap, case a4 is completely analogous to
case a3 and finally case ag yields the same conclusion as case as, due to the factor
(—=)IGEHD-1 (=1)I(59)-1 which appears in the comultiplication. o

Notice that the usual skein relation for link-diagrams is obtained by setting h=0.
If the surface T is the disk BZ%, namely if we are considering ordinary diagrams for links
in the euclidean 3-space, then the exponent of z is always the same as the exponent
of %, so there is no loss of generality in setting z = 1. In order to allow ourselves
to be convinced that the above statement is true, we notice that the contribution of
any labelling map f to the exponent of z is given by w(Dsy | Dyy), namely the
intersection number of Ds» with Dy which is 0 when X is contractible.

On the contrary, if & is a surface of higher genus, then the exponent of z needs
not to be the opposite of the exponent of Z (for instance, when loops have an odd-
number of intersection points) and so one cannot set in general z = 1.

In fact, it is ezactly by considering the variable z, that one is able to find link-
invariants for & x [0,1] which are specific of surfaces of higher genus (see below).

We set then z = 27! and denote, by the symbol D, the module obtained from D
by considering the equivalence classes with respect to the skein relation (3.3.2) . Since
the counit (3.2.8) is compatible with the skein relation (3.3.2) , D is a coalgebra with

counit.

3.4. Invariance of the Comultiplication under Reidemeister Moves
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We would like now to discuss the invariance of the comultiplication (3.2.4) under
Reidemeister moves. We restrict ourselves to the situation where the skein-invariance
holds; in fact, as we will see shortly, the invariance under Reidemeister moves is proved
by using the skein-relation. More precisely we want to show that, under suitable
conditions, the comultiplication descends to a comultiplication on the quotient module
where both the skein relation and the Reidemeister moves are taken into consideration.

Hence from now we will set
(3.4.1) F=z"1

in (3.2.4). Moreover, if we want to require the comultiplication to be invariant under
the first Reidemeister move (see below) then we have to take into account the need of
compensating the effect of adding a curl to a link diagram. So we are led to modify
slightly the definition of the comultiplication by introducing an integer r(D) called the
winding number or the rotation factor of the diagram D. We define first the rotation
factor for the diagram of an (oriented) knot and subsequently define the rotation factor
of a link-diagram as the sum of the rotation factors of its (oriented) components. The
rotation factor of a knot-diagram does not depend on the over/under crossings of its
double points, so we are in fact only considering winding numbers (rotation factors)
of loops.

We will consider from now on loops given by regular closed curves which are
contained in the interior of 3. By regular curve we mean a C'®-curve which has a
non-zero tangent vector at each point.

We distinguish two cases:

1. X is a parallelizable surface, e.g. the disk B2, the torus or a surface obtained by

removing the interior of a disk from a closed surface of genus g > 2

2. 2 is a closed surface of genus g > 2.

In order to define the rotation factor in both cases, we recall briefly some facts
from [61], [62], [63], [64] . If T is parallelizable, then given a regular closed curve
9 : §' — ¥ we can choose a parallelization X : ¥ — T'S which at the base point
zg of v assigns a vector parallel (and oriented as) the tangent vector to -y itself.

Now one can consider the circle bundle of normalized tangent vectors in 7% and

pull it back via v to a circle bundle E over S'. On this bundle one has two sections,
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one which associates to each point ¢ € S the normalized tangent vector to v at (¢)

and the other one given by the pullback, via v, of the section of the circle bundle over

3 represented by m, where X is the chosen parallelization. These two sections
represent two elements of the fundamental group of E ~ S x S and since they are
sections, the homotopy exact sequence tells us that the quotient of these two elements
is represented by an integer, which is called the winding number or the rotation factor
of 4 with respect to X.

This winding number does depend neither on the homotopy class of X ( with
fixed base point) nor on the regular homotopy class of v (with fixed base point and
tangent direction).

Regular homotopy classes of (regular) curves are in a one to one correspondence
the elements of with 7;(T'Z) and so they can be given a group structure.

The winding number (rotation factor) considered before is in fact an homomor-
phism from the group of regular homotopy classes with fixed base point, to the integers
[19], Moreover is it possible to find a parallelization X such that the relevant winding
number satisfies the following two constraints:

i) has value 0, when computed over a system of regular simple curves which generate
m1(%) and whose homology classes form a basis of Hy(Z,Z);
ii) has value 1, when computed over a contractible, simple, positively oriented (i.e.

counterclockwise oriented) loop.

The case when X is a closed surface of genus g > 2 needs some modification, due
to the fact that we do not have a parallelization in this case. We can take off a point
v € X (which does not belong to the given curve), and consider a non vanishing vector
field X on ¥\{v}. We now repeat the construction as in the parallelizable case and

we see that, due to the arbitrariness of the choice of the point v we are only able to

1% Here one requires the choice of a fixed point. This does not imply that the
definition of the winding number depends necessarily on the choice of a point
in the given (regular) curve. In particular, it is shown in [63] that two freely
homotopic closed curves (with a finite number of double intersection points),
which do not contain any nullhomotopic loop, are also free regularly homotopic,

and hence have equal winding number, with respect to any given parallelization.
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define a winding number of a regular closed curve as an element of Z/(2g — 2)Z.

Let us now take into account the winding number (rotation factor) in the comul-
tiplication (3.2.4) (see also (3.2.5) for the notation).

We define:
(3.4.2) (D, f) = pi(D, )+ (O =D )r(Dyy5)

Jj>i j<i

where p; is given as in (3.2.4) and (3.2.5), namely p;(D, f) = w(Dy,;) — w(D). For
any diagram D and for any labelling map f, we will use the symbols V,.(D), VY (D)
and V,.(D, f) to denote the elements obtained by substituting p;(D, f) with (D, f)
in V(D), V(D) and V(D, f).

If ¥ is a parallelizable surface, then the above definitions are unambiguous. If on
the contrary X is a closed surface of genus g, then we will have to restrict ourself to
the case when z is a (2g — 2)-th root of 1; namely the ring C [z,z7,2,271, 2,271, h, A]
should be replaced as follows. We consider the abelian (multiplicative) group of the
(29 — 2)-th roots of 1 that we denote by the symbol Ryg_» &~ Z/(2g9 — 2)Z, we then
consider the group algebra C [Rq,_;] and we replace C [z,z1, 2,271, %, 271, h, h] with
C[R2g-2)®c Clz,27%, 2,71, h, k] and we do the same for the other rings containing
the variables z and z~1.

Reinhart gave also a prescription for computing the winding numbers which we
summarize here Consider the following (2,4g) “matrix”

-1 -1 -1
aj T by a; b

al—l az—l cee aTl by by e by a1 ay -+ a bl_l bz‘l bg—1
Here a;,b;, + = 1,..., g stand for a regular generating system of curves homotopic to
the usual homology cycles on a genus g Riemann surface. Now given a generic simple
curve we can represent it as X;...X, (where the generic X is some entry of the previous
matrix) with no subsequence X}1..Xy1, null-homotopic. If X;3...X,; happens to be
null-homotopic its winding number is by definition +1, depending on its orientation.
Now, to each subsequence of two (ciclically) consecutive elements Xy X11 (including
X¢X1) we associate two numbers s and #; as follows. Take the two by two submatrix

with entries given by X and X1 (i.e some a; or b; or their inverses) and put Xz = 0,
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Xp+1 = 1. sy is by definition the determinant (it can take the values —1,1, 0) of such
a matrix. tj is defined as follows: t; = 1 if X Xy41 is given by:

-1
bja;
b0, P>
whereas t;, = —1 for the sequence with inverted order, and ¢; = 0 otherwise. Then we
have
q
winding number = Z Sk + g
k=1

In order to give a feeling let us consider the loop a; b7'a, which can be represented
by a simple loop. Then we have to sum the contribution to s and ¢ coming from
A= albfl, from B = bl_laz and from C = aqaq are 84 = 0;s = —1;8¢ = 0 whereas
tq4 = 0;tg = 0, tc = 0; so the winding number of (alb;lag) is —1.

First we have:

3.4.1 Theorem: Let: =z, Then the comultiplication V. is coassociative and

it is compatible with the skein relation

2Dy —z " D_ = (h+h)Dy.

Proof:  The proof of the coassociativity is a matter of simple calculations, which
are completely analogous to the ones made in section 3.2. As far as the skein relation
is concerned, it is obvious that the introduction of the rotation factor does not alter
the results obtained in theorem 3.3.1. o

The previous theorem guarantees that, when we set z = z~1, then the comul-
tiplication V, descends to a comultiplication on the quotient module D3 given by
D modulo the skein relation. Hence from now on we will consider the comultipli-

cation V, as defined on D° (over the field C[m,:c"l,z,z_l,h,}.z] or, respectively,
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C[R3y—2] ®c Clz,27 %, h, ﬁ]) The comultiplication V, maps then D into D° ® D,

where the tensor product is taken over C [z,271, h, A].

Next we have to check the invariance of V,. under Reidemeister moves. We have to
remind that we are considering in general, a non-contractible two-dimensional surface;
hence we have to point out, as a general caveat, that all the moves we are going to
consider, are meant to take place in a single contractible region of 2.

We proceed as follows: for any link diagram D we denote by D# the diagram
obtained by applying to it the Reidemeister move under consideration. In order to
show that the comultiplication is compatible with the given Reidemeister move we
have to show that for any labelling map f, defined on all the edges of D not involved

in the move under consideration, we have:

ZVT(D7 fz) = Z VT'(D#vf#)7
Fi

iF

where f; and fj* are the different possible labelling maps, relevant to D and, respec-
tively, to D#, which extend f. As a final result we have the following:

3.4.2 Theorem: The comultiplication V, : D° — D5 @ D? is compatible with
the three Reidemeister moves if and only if A = 0

The proof of the above theorem will take the rest of this section. Notice that in
the above theorem the choice between the condition & = 0 and the condition b =0 is
due to the chosen orientation (and convention). Here, our convention is to consider a
contractible, simple, counterclockwise oriented loop, as a loop with winding number

+1.

Proof:  We first consider the Reidemeister move I. This move consists in adding a
curl to an edge of the link-diagram. We can add a positively or a negatively oriented
curl and generate a vertex of type Ly or L_. Of these four possibilities, we will
consider only the case of adding a negatively oriented curl with a L; vertex (see

Fig. 9 ), the other cases being similar to this one.
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e,

J

[l

S

D

Fig. 9 Reidemeister move I

When we consider the first Reidemeister move, the set Lbly(D) (and Lbly(D7#))
splits into two subsets according to the values of the labels on the edge where the
Reidemeister move takes place. Moreover to each labelling f for D we can associate
two labelling maps for D#, call it ff, fz# which assign respectively the values 1 and
2 to the new edge, namely to the added curl.

We have to check that the following equation holds:
Vo(D*, 1)+ Vo(D¥, f]) = Vo(D, f),  ¥F.

Consider now the case in which f assigns label 1 to the edge in which we consider the

Reidemeister move.

We have:
n(D#, fF) =n(D, f) = n(D*, f]) + 2
m(D#, fF) = (D, f) = =(D#, fF) +1
Djff,z = Dj, 5 D%, =D, UQ where O denotes the (contractible) unknot.

o
Moreover we have (up to the first Reidemeister move): D?&# S Dy = D## )
21 10

and o(D#, f¥) = o(D, f) ; o(D#, f¥)=ho(D, f) and hence:
Vo(D¥, 1) + Vo(D#, fF) =ho(D, 2P 2Dy @ 2P D7Dy, U O)
+o(D, f)aPHDs; @™ PN Dy 5.
In conclusion we have
VD, 1)+ Vo(D*, F) = V.(D, f)
if and only if A =0

From now on, in this section, we will assume h = 0.
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We consider now the case in which the edge on which we are applying the Reide-

meister move has label 2. With the same notations as before we have:
n(D*,f7) = 1D, f) = 1 = n(D*, fF) + 5
m2(D*, 1) = 7a(D, ) = ma(D*, 7);
D?},g = Dy ;D?},z = Dy, ;Di#,l =Dyp ;D?},l =D;1UQ ;o(D#,f7) =
ho(D,f) ; o(D¥#,f¥)=o(D,f). In conclusion we have:
Vo(D#, 1)+ Vo(D#, f§) =ho(D, f)a™ P (D U O) @ PP Dy
+a(D, f):ch(D’f)_sz,l ® gcrz(D,f)Df,2
Now we use the skein relation (with » = 0) and obtain
Ve(D#, fT) + Vo(D#*, fF) =0(D, f)a PPNz — 27 )Ds1 @ 2PN Dy,
+ o(D, flen@D2Dp. @ P HD,,
=V(D, f)

This implies the required invariance under Reidemeister move 1.

We will consider now the second Reidemeister move. There are essentially two
types of Reidemeister moves: type A where we consider two arcs oriented in the same

direction and type B where we consider two arcs oriented in the opposite direction

(see Fig. 10 ). : - '
\ /5) M Y \‘\\/‘

o Y
D s NI S

Ld
[

Fig. 10 Reidemeister moves I of type A and B L

In each case the set Lbly(D) (and Lbl,( D)) splits into five subsets, according to
the values of the possible labels which are assigned to the edges exiting and entering
the region where the Reidemeister move takes place. The contributions to V,.(D#)

coming from each one of the five subsets of
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Lbly(D#) match separately with the contributions to V,.(D), coming from the
corresponding subsets of Lbly(D). We sketch now the proof of the invariance of the
comultiplication under Reidemeister move II, type A. The region in which the Reide-

meister move takes place is depicted as a rectangular box in Fig. 11

N b

ond_A
Reide-
meis-
ter
move
/ AN
c d

Fig. 11

case  f#(a) = f#(b) = f#(c) = fH(d) =1

The labelling maps f# of D# are in a one to one correspondence with the labelling

maps f, of D. Hence we have
#F o _
Df#,z - nyz
and, up to Reidemeister move 1I A, we have Df# , = Dy1. Moreover one has

U(D#yf#) = U(Duf) and TI(D#7f#) - Tl(D7f)> TZ(D#af#) —":Tz(D,f) and so

VT(D#,f#) = VT(D,f)

case f*(a) = f(c) =2, f7(b) = f#(d) =1
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Again the labelling maps f# of D are in a one to one correspondence with the
labelling maps f of D. We have

D#

Y. =Dsi i=1,2

and o(D#, f#) = o(D, f). Moreover one has
m(D*, f*) =7(D, f), m(D*, %) =mn(D,J)

and so

V. (D¥*, f#) =V (D, §)

case  f#(a) = f#(d) =1, f#(b) = f*(c) =2

In this case there is no corresponding labelling for D since the diagram D does
not have any vertex in the region covered by the box. When we consider the diagram
D%, on the contrary, we have two classes of labelling maps which satisfy the required
condition, namely the ones which assign respectively the value 1 and 2 to the left edge
created by the Reidemeister move. Denote these two kinds of labelling maps by the
symbol fl# and fz# . We have

Dﬁ#’i = D;i#’i i=1,2

1

and, due to the relation z = 271, we have also:

o(D*, ') = —o(D#, £})
Moreover we have:
n(D#, i) = n(D*, f7), m(D¥, fT) = n(D¥, F)
and so

V,.(D#,ff)—%V,.(D#, 2#) =0

The other cases are treated in a similar way.
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We prove now the invariance under Reidemeister move II, type B. The region in

which the Reidemeister move take place is depicted in Fig. 12 .

<y
2B
Reide-
meis-
ter
move
o

Fig. 12

The case f#(a) = f#(b) = 1; f#(c) = f#(d) = 2 is completely analogous to the
case f#(c) = f#(b) = 2, f*(a) = f#(d) = 1 considered previously for the Reidemeis-
ter move of type II A. The other cases are trivial.

Let us now come to the Reidemeister move 111

Fig. 13 Reidemeister move III

The set Lbly(D) as well the set Lblo(D#) splits into twenty subsets [29] each one

of them being characterized by the same label on the incoming and outgoing edges. In

20 Some of these subsets may possibly be empty.
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fact the possible labels of the three incoming edges are (up to permutations): (1,1,1);
(1,1,2); (1,2,2);(2,2,2). The labels of the outgoing edges will be a permutation of the
labels of the incoming edges. Hence the total number of possible labels are 20. Let
now e;, t=1,2,3 be asin Fig. 14 .

1 1
Fig. 14 Labels in Reidemeister move III

A

Given any labelling f* € Lbl(D\U3_, e;) we can extend it to one or more labelling
maps of D or of D#. Call f; and fJ# the relevant extensions. We want to prove that
25 Ve(Dyfi) = ij# V.(D#,f#). We observe now that the proof is trivial when
f* extends to only one labelling map of D and one labelling map of D¥. The only
non trivial cases are the ones when a given labelling f* extends to either two distinct
labelling maps of D and one labelling map of D¥ or vice versa.

This happens only if we have the following configurations: the incoming edges
have label (2,1,1) or (2,2,1) and the same is true for the outgoing edges. These two
cases can be treated in exactly the same way. So we consider only the first one.
In this case we have two labelling maps for D which extend f*. Denote them by
the symbol f; and respectively f;. They give the following labels to the edges e;:
filer) = 15 f1(e2) = 2; fi(es) = 1 and fa(er) = 2, fa(e2) = 1, f2(e3z) = 2. On the
contrary, on D#, f* is extended as follows: f#(e1) = f#(e2) = f#(e3) = 1. We have

Df1,2 = Df2,2 = Df#,z; TZ(Dafl) = TZ(D7f2) = T2(D#’f#)

7(D, f2) = (D, f1) — 1 = n(D#, f#) — 2

O'(Dufl) = hU(D7f2) = hO”(D#,f#)
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moreover

(D# thl’thl)

f#’y
is a Conway triple, as can be seen by applying a Reidemeister move II A to Dy, 1.

Hence we have, by taking into account the skein relation:
Vo(D, f1) + Vo(D, f2) =[o(D¥#, fH)esP*I~2D |
+ ho(D#, F)en 25 F)1p, 1@ sz(D#»f#)Djf#,z
=V .(D#, f#)

The results of this section imply that the comultiplication V.
(3.4.3)
V(D)= Z (=D)ISD-1 (—)IBD-1 ISy
FELbIAD)
LW (D524 Ds 1 —w(Dy,1 4 Ds 2) ww(Df.l)_"w(D)‘*"r(Dj‘,?)_Df,l ®K mw(Df,z)“W(D)_T(Df,l)Dﬁz.

descends to such a quotient module.
Notice that we used the fact that if we apply to any edge of a diagram D a
Reidemeister move I and subsequently we split the diagram at the crossing point,

then the skein relation tells us that:
zD—z"1D =h(DU(Q) VD.

In particular, as suggested by Turaev, by applying the above relation to the empty

knot-diagram, we are led to assuming that:
(3.4.4) | z—z"l=h(.

As a final remark on this section, we recall that by combining together the invariance
of the projection of link-diagrams under ambient isotopies with the invariance under
Reidemeister moves, we are in fact saying that two projections of link diagrams are
equivalent if they differ by a homotopy of generic C'°°-immersions (see lemma 5.6 in

27).
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3.5. Algebra and Hopf algebra structure on link-diagrams

We will now introduce an algebra structure on the set of link diagrams. In the set
of link diagrams we can attempt to define a product of two diagrams D and D' (to
be denoted by the symbol D o D') as the diagram obtained by the union of the two
diagrams D and D', with the additional prescription that at all the intersections of
D with D', D crosses over D'. But if we look at link-diagrams as rigid, i.e. we don’t
take into account 2-dimensional isotopies, then we will meet some pathological cases
for instance the product of two link-diagrams as defined above could be a diagram
with triple points. So we get a product defined not for all pairs of link diagrams.
Nonetheless it is worth to notice, that it is a well defined product on some pair of link-
diagrams. Vice versa if we factor out the 2-dimensional isotopies then the product
is in this case ill defined. In fact it is easy to comstruct pairs of link-diagrams such
that the application to one of them of an ambient isotopy deforms the product by the
second or the third Reidemeister move. So in order to obtain a product one has again
to quotient by at least the second and the third Reidemeister moves. In this case we
get a well defined product with unity 0.

But our essential aim in this section is to relate this product to the coalgebra
structure on the set of link-diagrams. So due to the fact that the first Reidemeister
move gives the same constraints on the variables as the second and the third, when
considering the comultiplication, we will quotient by all the Reidemeister moves. Fi-
nally, as already said, the invariance of the comultiplication under Reidemeister moves
1s proved under the assumption that the skein relation holds.

So we are led to consider the quotient modulo given by D modulo (ambient 2-
dimensional isotopies and) the skein relation and the Reidemeister moves. We denote
this quotient module by the symbol D%, Generalizing [25], first we modify slightly
the product D o D’ as follows:

(3.5.1) D+D' = (z"12)"P*?)po D,

where D | D' denotes the set of all the vertices in the diagram Do D' corresponding to
the intersection points of the projection of D with the projection of D'. The number
w(D | D') coincides with the intersection number of 7(D) with =(D').
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It turns out that both these products are well defined on D%, namely they do
not depend on the equivalence classes. Correspondingly D5'® receive two K (h,z,z71)-

algebra structures; to the products D o D' and D % D' defined above there correspond

two maps
(3.5.2) m: DS)R ® DS,R —_— DS,R
(3.5.3) my : D9F @ DR, DSE

D5 equipped with these products possess a nice unital algebra structure, with unit
given by the empty knot-diagram which will be denoted by the symbol § or simply by
1, and a nice coalgebra structure. We will now found the conditions for the comulti-
plication V, (3.4.3) to be an algebra morphism.

But recall that in what follows one could consider instead (see [1]) the coalgebra
of “rigid” link diagrams with comultiplication (3.2.4) and find conditions under which
(3.2.4) is a morphism with respect to the *-product (whenever this is defined). It
turns out that essentially the quotient we did by Reidemeister moves, skein relation
and 2-dimensional isotopies does not affect the computations. Not only in that case
one get also more general results (see [1]).

We have now the following:

3.5.1 Theorem: The comultiplication (3.4.3)in D% is an algebra morphism with
-respect to the multiplication m, if and only if 2 =1

Prooft  This proof is a generalization of the proof in [25], so we refer that paper
for the omitted details.

To each pair of 2-labelling maps f, f' defined respectively on the edges of the
diagrams D and D', we can naturally associate a 2-labelling map f V f' defined on
the edges a of Do D' as:

(fV f')a)= -either f(a) or f'(a),

depending on whether a is an edge of D or of D'.
It is easy to prove that each 2-labelling map in D o D' can be written as f V f'
because of the fact that & = 0. Given any link diagram D let D; be any subdiagram
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of D, and D, the complement. Each edge of D; can be seen both as outgoing edge

from some vertex of D or as incoming to some other vertex of D. We have
(3.5.4) > (f(ej) — f(35)) =0
v; EV(D1)U(D1# D2)

where e; are the outgoing edges of Dy at the vertex v; and i; are the incoming edges.

Using the fact that at vertices of D; the conservation rule is trivially satisfied we get
(3.5.5) D, (fle) = fGE)) =0
v; €(D1# D2)

Let now D = Dy o D, and let f € Lbl,(D). We have clearly , due to the Kirkhoff
rule that in the vertices in which D; cross over D; f(i;) > f(e;) where i; and e; are

respectively the incoming and outgoing edges belonging to D;. Summing over all such

SN D f(e)

v; €(D1#D3) v; €(D1#D2)

vertices we get:

But this contradicts (3.5.5) unless we require that no splitting occur at intersection
point of Dy and D,. Then

V(D * D) =VH((z~12) " PP T (1)L pisslisy|

FELBIL(D)
fteLbly (D)

zw((DOD'),’V,l_ZU(DOD')_fvf',1)—w((D°DI)fV’”'IU(DOD')ij"2)
mr((DOD’)_fvf’.l’zw((DoD,)fo"l)—w(DoDl) (_D o} DI)fo"l

® &~ ((DoD ) sy g1,1 g0 (DeDyy g1 ) =w(DoD') (DoD")gvsrz =

— Vr((z~1z)w(DlD')) Z (__I)I(Sf)_l+](sf,)_| hleI_HSf'I

fELBIZ(D)
f'eLbla (DY)

2@ ((Ds,20D 41 2)U(Dy10D" 11,1)) = w((Dg,10D 41,1)8(Dy,20D" 11,2))

2" (P1,2)47(Dyy 3) w(Dya)+w(D' g1 1 )+w(Dya LD’ g 1 )—w(DeD') ($—1z)w(Df.1lD'f',1)(D £D") sy s

®w”T(Df,1)—7'(D:u,1)mw(Df,z)-l-‘w(D’f:,2)+w(D;,glD'!/'z)—w(DOD’)(z——lz)w(D.f-"‘lD,f',?)(D % D,)fvf’ ,



~3
-3

_ Z L@(Ds31D" g ) +w(Dy 11D 1 1) +w(Dy 2l D' 11 )= w(D1D")

FELBI(D)
fleLblay (DY)

x 2Pl 20 (D, F) * V(D' ')

== Z Z_W(Dj,l-Lle',Z) z_w(Df‘liD,f”z)Vr(D7 f) * VT'(D'7 f’)

FELbIy(D)
FleLbla (DY)

Hence, the comultiplication becomes an algebra morphism if and dnly fz=2"1=1.

a

We can summarize in the following table the different properties of the comultipli-
cations (V : D — DD, or V, : D5F - DSE QD5 E) and the relevant constraints

on the variables which were previously displayed in Fig. 7 :

Properties of the comultiplication

coassociativity ! cocommutativity ’ algebra morphism

T = ’ z==2;z=%2;h="h l r=2%;z=Z=1;h=0

As it was mentioned before, we will always assume that the minimum requirement
we impose on the. comultiplication is the coassocativity. Let us denote by D the
same object as D%, when we impose z = 1, and we take the niultiplication M. It
is immediate to check that in this way D¥ becomes a bialgebra, the counit defined in
(3.2.8), being clearly an algebra morphism.

Moreover one can define in D¥ an antipode as follows. To each link-diagram D,
we associate the diagram D, obtained by changing in D every undercrossing into an

overcrossing and vice versa. We define now the map
(3.5.6) v(D) = (-1)!P1D and v(2*?!) = 7.

Obviously 4(D) remains when we apply any Reidemeister move to U in the same

equivalence class. Moreover, by applying 4 to any Conway triple we obtain:

Y(z)y(Dy) — v(z2 ™ )y (D-) = k(Do)



78

or:

(~1)P+(o(D_) - 27 0(Ds)) = —h(~1)"Pla(Dy)

or equivalently:

zo(D_)—z"1o(Dy) = ha(Dy)

which shows that 4 preserves the skein relation. In this way we showed that v can be

extended to a unique algebra anti-homomorphism (see [25]):

v :DH — DE,

Now we want to prove that the map (3.5.6), namely the anti-homomorphism with
respect to the product (see [25]): v : D¥ —s DH given by: 4(D) = (=1)!PID and

v(z) = =71, satisfies the conditions
mx(y ® 1d)V.(D) = m,(id®¥)V.(D) =0

for any non empty link diagram [?!l. Here, as before, for any diagram D we denote
by D the diagram where every undercrossing is turned into a overcrossing and vice
versa, while |D| denotes the number of components of D. Once we will have proved
that v verifies the above properties it will be a matter of easy computations to show

that v descends to an antipode defined on D¥.

We first prove some technical theorems and lemmas. For any diagram D we
denote by V = {p1,...,pn} the set of all vertices of D. Any 2-labelling map f of D,

21 This is essentially the content of a conjecture proposed by Turaev [25]
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determines a partition of V into five subsets Xf,):’f, Zg, Zf, S¢ as shown in Fig. 15 :

1 1 ~ 2 2 2 2

X3 ———; Ajy> ————— Lf 3

2
-

1

Fig. 15

We define moreover Q; = X; U Z; U S;.

3.5.2 Theorem: Let V denote the set of all the double points of a knot diagram
D. Let us assume that V is non empty and let Lbl'(D) denote the set of all the

2-labelling maps f for which Sy is not empty. Then for any nonempty subset W of
V, there exists an f € Lbl'(D) with §; C W C ;.

Proof:  We consider any nonempty subset W of V, e.g. W = {p1,p2,"--,0:}. We
start at any given point p; in W, and move in the backward direction along the knot,
beginning with the upper incoming edge at p;. Whenever we meet one of the other
points in W, say p;, we continue our (reverse) path along the upper incoming edge at
p;. If we meet twice a point in W then, the second time, we move backwards along
the only incoming edge which has been not covered yet. We stop when we reach again
our starting point and we assign the label 2 to all the edges we have covered in our
path. We then start again from any point in W, that we have not met in the previous
path, and we move backwards along the knot, repeating the above procedure. At the

end we will have included all the points of W in a collection of circuits completely
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labelled by the label 2 22, We assign the label 1 to each edge we did not cover. In
this way we constructed a labelling map f such that Sy # 0 and Sy C W C Q. In
order to prove that S is in fact not empty, we consider the point p; € W where, in
the previous construction, we start covering the last circuit. Since this circuit is, by
assumption, the last one, two of the four edges meeting in p; will not be labelled by
the label 2, namely Sy # 0. o

Remark.

Notice, first of all, that in the above theorem the specification that D is a knot-
diagram as opposed to a generic link-diagram is quite essential.

With an abuse of notation, given any knot-diagram D and W C V(D), we will
denote any labelling map f such that § # Sy C W C Qs a W-labelling. We con-
structed in theorem (3.5.2) a labelling map which can be defined as a W-mazimal
labelling (i.e. a W—labelling with the maximum number of splitting vertices). More
precisely we notice that, after having assigned the label 2 to the collection of edges
determined by the theorem, we are left with a certain collection of knot-diagrams
{K1,...,K;}. In theorem (3.5.2) we labelled with label 1 all these knots-diagrams.
This gives the maximum possible number of splittings. But we could have proceeded
differently; namely we could have considered 27 —1 different W —labelling maps simply
by choosing any non empty subset X of {Kj,...,K;} and by assigning the value 1
to each knot-diagram K, € X and the value 2 to each knot-diagram K; ¢ X. If K
consists only of one knot-diagram then we say that the relevant labelling map is, by

definition, a W-minimallabelling. It is easy to see that by considering all the possible

22 One may notice that the set of the edges belonging to such collection of circuits,

does not depend on the order in which the points of W have been selected in the
previous construction. In fact the previous construction can also be described
as follows: start by considering simultaneously the upper incoming edge at each
point of W and accordingly move backwards along the knot, up to the moment
in which you reach another point of W. Now you have a collection of edges and
you complete it (in a unique way) as a link-diagram, by moving backwards along

the knot. Then you assign the label 2 to each edge of such a link-diagram.
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(non empty) subsets X of {K1,..., K;} we exhaust the class of W-labelling maps. In
fact it is obvious that in order to have a W —labelling we have to assign the label 2 to
the edges not belonging to {Kj,..., K} as indicated in the proof of theorem (3.5.2) .
Moreover no splitting point should appear in the link-diagram {K3i,...,Kj;}, because
the vertices of this link-diagram do not belong to W.

As a final observation, we point out that, by varying W in the set of all the
subsets of V, we obtain all the possible labelling maps of D, but the constant ones,
as W—labellings.

3.5.3 Corollary: Given a minimal W-labelling f and a general W-labelling g,
either 5y NS, =0 or Sy C 5.

Proof: This follows easily follows from the fact that W-labellings can not have
splittings in the link diagram with components Ky, -+, K; (see the previous remark

for the notation). O

We can now consider some “operations” on the set of W-labelling as follows. For
any labelling f we denote by }C} the set of knot-diagrams in K (see the previous
remark) with label 1 with respect to f. For any pair (f,g) of W—labellings, we can
define a new W-labelling f D, 9 as the only W —labelling satisfying the condition

(3.5.7) ;c}@wg =K;UK,.

Moreover when }C} C K;,K} £ }C; we can define a new labelling g S, f satisfying
the condition

(3.5.8) ic;ewf = ICJ\K}.

The following relations hold: fEBWg = gEBWf; (gve)GBWf = g; Qf@wg =QNQy.

Now we define for each vertex v in a link-diagram D, the diagram o,(D) as the

link diagram obtained by changing the over/under crossing at v. The antipode map
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~ will be then given by:
7(D) = (=) T] o )(D)
v eV

where as usual V will denote the set of all double points (vertices) of D). Furthermore
for each subset W of V (in symbols: W € P(V)), we denote (as usual) by |W] the
cardinality of W, by Dy the diagram obtained from D by eliminating all the vertices
in W in the only orientation-preserving way, by Wy the set of all vertices in W of
type Li. Moreover for any subset P of the set V of all the vertices of D, we use the

following notation:

(3.5.9) | op(D) = ([] o )(D)

uEP

8.5.4 Lemma: For any link diagram D and any subset P of the set V of all

vertices of D, we have:
op(D) = Z (_1)!W+I$2"~D(D)—w(W)hIW1DW_
WeP(P)

In particular when P =V, we have:

(=1)Ply(D) = T (=1)W+lg2e@)=u(MRWID,,

WeP(V)
Proof: The proof is by induction on the number of elements of P. So we
will consider collection of vertices {vyi,vs,...,vs} of D and add an extra point

vs+1. Consequently W will be an element either of P, = P({v1,v2,...,vs}) or of
Ps+1 = P({v1,---,vs+1}). We will also use the following symbols: w; denotes the
writhe w(v;) and P! ; = P,11\Ps.

What we would like to prove is that the following identity holds for any collection

of points {v1,...,vs}:

(=000 = > (—1)W+lg2 2 imwi=e(MpIWip L,
WeP,
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The above expression is true for s = 1; let us now assume that it is also true for a
given s and let us prove it for s + 1.

The skein relation implies:
Ty iy D = 2**+ Dy — 2"V wyp1h Dwvie, 4
for W € Py. Now
(Fv2)( (1) Welg? iy (MR WDy )

WeP,
= Z (_1)!W+imzz::wi_w(W)thlDw-F
WeP,
+ > (—1)’W+':c2ZZSW‘*‘"(WWWIDW
WEeP,

3.5.5 Theorem: Let m, denote the multiplication in D¥. For any non empty
knot-diagram D we have m,(y ® id)V(D) = m.(id @ ¥)V.(D) = 0.

Proof:  Let us start by proving the equation m.(id @ v)V.(D) = 0, for D # 0.

For D # () we have:

(3.5.10)
m(1d @ ¥)V.(D) =
= m,(id @ 7) Z o(D, f)wr(Df,zmpl(D)f)Df’l @ z T Pragr (DD,
FELbI(D)
—_ Z g'(_D’f)(_l)lDf.ZImr(Df,’-’+7'(Df.l)wpl(Daf)“‘PZ(va)Df,l *O-}Z’j (-Df,2) —
fELLL(D)
= T oD, f)(=1)Prle PPN D o (D)
FELbIx(D) '
and

m—w(DfllDf?)Df,l * 0‘5{! (Df,z) = UXfsz (DSJ‘)
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and hence
ma(id ® 7)V,(D) = ™) Z (_1)!(51‘)—](,___1)[Df,2|h|5f|
FELbIy(D)
2% (D1 lsz)+w(Df,1)—‘w(Df,2)o.Xfuzf (DS,:) —
—z"(D) Z (_1)I(Sf)—|(_1)|Df.z|h|5f|

fELbL(D)
mw(Dfl 1Dg, )+w(Dy,1)—w(Dy,2)

Z (_1)|(Ef)_,.lm2’~ll(5ff UZJ‘)"‘”(EI))h‘Ef'Dsquf
Ef E’P(XjUZf)
The above sum can be written as:
— (D) Z Z (_1)|(Ef)+l+l(5'f)—I+|Df.2lhlsf|+lEflx

fELblz(D) E_f E'P(Xf UZf )
2@(Dsy LDg, )+ w(Dy,1)~w(Dy,2)+2w(X UZs ) —w(Ey )DS, UE,

— 27(D) Z Z (_1)I(Ef)+!+|(5f)-|+|Df,2!hl5fl+lEf|
fELbl2(D) Ef E'P(XI UZf)
2 Z1)~w(Zg)+w(Xs)~w(Xs)+2w(X0Z;)+w(Ss)~w(S;UEy) Ds,uE,

— (D) Z E (_1)I(Ef)+!+|(5f)—|+|Df.2fhi5f!+lEfl
FELY(D) By eP(X;UZy)

(3.5.11)

ww(D)—w(Sf UEf) -DSf UEJ;

Now we extract from the above sum, the terms corresponding to the labelling maps
which assign the same (constant) label to all the edges of D. The sum of these terms
is given by

(3.5.12)

2P (gD D — z=#(D) gy (D)) = —z7(PD) Z (=)Wl w(D) = (M pIWI o,

WeP(V), W

Let us now consider a minimal W—iabellings, for each non empty W € P(V). The
relevant term in (3.5.11) exactly cancels the terms corresponding to the labellings

without any splitting. In fact we have in general:

| D1l + |Dfa2| =S¢l +1 mod2
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and for a minimal W —labelling:
Dyl =155 mod2

Suppose now that we are given another W-labelling g. Then, due to corollary 3.5.3,
either 5, NSy = 0 or §f C Sy. In both the above cases we can consider a third
labelling p defined as p = f D, 9 in the first case and as p = ¢ O f in the second
case. We are going to show that the relevant contributions of g and p cancel. We have
in fact: |Dp 1| = £|Dy 1| + | Dy, 1] and hence:

(__1)I(59)_I+ng,z[+I(Eg)+l + (_1)1(5p)_l+le,21+l(Ep)+| -

= (-1)I(59UEQ)+l[(__l)ISgIHDg.zl + (_1)ISpI+IDp,=I]

= —{(=1)/Ss O ((—1) el (~1)/Pral]} = 0

This completes the proof that m,(id ® v)V.(D) is zero for D s . The proof that
m,(v7®1d)V (D) is also zero can be obtained in a completely similar way; it is enough

to reverse the réle of the labels 1 and 2 in all the previous considerations.

Now we can state the following theorem:

3.5.6 Theorem: For any non empty link diagram D we have m.(y®1d)V (D) =
m*(id ® 7)VT(D) =0

Proof: It is done by induction. We know that the theorem holds for knot-diagrams.
We suppose it is true for link-diagrams with up to n components. Our aim is to show
that it is true for link-diagrams with up to n + 1 components. If a link-diagram
D is a o-product of a link-diagram D' (with k components) by a link-diagram D"
(with n + 1 — k components), then we can use the fact that the comultiplication is an

homomorphism with respect to the product. In fact we have (remind that y(z) = z~?
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and forget the rotation factors which do not give any problem):

ma(id ® 7)V(D' 0 D") = mu(id ® v)V(D' * D") =

ma(id & 7){ > o(D', flo(D",g)e P DA P DL« DY
fELbI(D'),g€Lbl(D")
@/ PNt BIDL, « Dy} = Y, (D, et @)
FELbI(D")
>, o(D",g)e PO BNIDY 4 DY y(Dy ) % 7(Dy )
gELbL (D)

which is zero due to the fact that we assumed:
m,(id ® v)V.(D") = 0.

Let us now suppose that D is not the product of two link-diagrams. Then we have
necessarily a vertex corresponding to an intersection point of (the projections of) two
different components of D. Applying the skein relation to this vertex we easily see that
the diagram Dy must have n components. Hence, by assumption, m.(id®7)V (Do) =

0 and the skein relation implies:
(3.5.13) m.(1d @ Y)V (D) = m.(id @ v)V.(D_).

Now we can always change the over/under crossing information at a set of vertices of
D (corresponding to crossings of different components in D) in such a way that D is
transformed into the product of two diagrams D' and D". The previous equation tells
us that

ma(id ® 7) V(D) = ma(id ® 1) V(D' 0 D") = 0.

The proof that the equation m,(y ® id)V,(D) = 0 holds for any (non empty) link

diagram D, is completely analogous to the previous proof. o

Remark.

In the disk B? there is a much shorter proof: observe first that m = m, and
m(id ® v)Vr(z) = 1, and so for any skein triple {D4,D_, Do} we have

m(id ® 1)V (D4) = m(id ® 7)V(D-) + hm(id ® 1)V (Do)
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In order to prove that, for any non empty link-diagram D, one has m(:d®+y)V.(D) = 0,
it is enough to prove that m(id®+)V,.((O™) = 0 where (O™ is the n-component unlink.
But this follows from the fact that

m(ide V(0N = Y  (-)FEHE0)r =0

Xer({1,...,n})
which in turn is due to the fact that there are exactly 2™ distinct terms, of which half
have a plus sign and half have a minus sign. Similarly one can show that m.(y ®

id)V (D) = 0, for any non-empty link-diagram D in BZ.

Finally we have:

3.5.7 Theorem: For any link diagram D we have
(Y @ 1d)Ve(D) = m.(id @ 7)V.(D) = (70 €)(D),

where 1 : C[h] — D¥ is the unit and e is the counit as defined in (3.2.8).

Proof:  After theorem (3.5.6) the only identity to be proved is the following one:
m. (1 @ id)V,(0) = m.(id @ 7)V.(0) = 0,

where () is the empty knot-diagram. The above identity follows immediately from thé
fact that v(0) = 0. o

Hence we have:

3.5.8 Theorem: D¥ is an Hopf algebra.
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4. Link Invariants for Links in T x[0,1]

In the previous chapter we constructed a coassociative comultiplication V, (see
(3.4.3)) which is both invariant under the three Reidemeister moves and under the

skein relation

(ED+ - :13_1 D_ = hDo,

where {Dy,D_, Dy} is any Conway triple. In the last section we discovered also that

for z =1 this comultiplication is also an algebra morphism. But here we will not set

pog—
Progp——

The extra variable contained in the comultiplication (let us call it z) will allow us
to exhibit in section 4.1 link invariants of & X [0,1] which are generalizations of the
Jones polynomials [?3]; the exponent of the variable z being different from zero only
when 2 is non contractible. Moreover when X is non contractible, then the variable
z plays an essential réle in the definition of link-invariants. It is in fact shown that
there exist two different links which have a different invariant only when z # 1. In
order to understand why the variable z can detect the non contractibility of 2, let
us mention only the fact that the exponent of the variable 2z is expressed in terms of
the intersection numbers of some specified sub-diagrams of a given diagram D; these
subdiagrams are in turn obtained by collecting together the edges of D which share a
common value of the label.

Later in section 4.2 we will ulteriorly generalize the construction getting on open
Riemann surfaces link invariants depending on 4-variables. And this polynomial will
reduce exactly to the Homfly polynomial (without any restriction on the variables)
when the surface become the disc. The final section 4.3 will study the correspondence
in the spirit of the statistical mechanics approach to link-invariants, between labelling
maps and the attachment to each vertex of a matrix which describes a sort of scattering

amplitudes for edges meeting at a vertex. We study the property of the inserted

23 They are also generalization of the Homfly polynomials, provided that among the
two variables of these polynomials, we have the same relation which is considered

in [9].
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matrices, and we recover some result of the previous chapter (slightly generalized).
Then we introduce the concept of quantum holonomy, which in our opinion is the
closest one to the formulation of the invariants in the Witten’s paper. The sum over
all labellings map in some sense replaces the Witten’s functional integral.

Also in this section we consider particular examples of matrices attached to each
vertex, in particular we consider the case when these matrices are connected to the
Drinfeld’s example of quasi-Hopf algebra that we will meet later.

This particular case, also if not yet fully understood is the one which in our opinion

appears directly if one try to make computations in the Witten’s Chern-Simons theory.

4.1. Link invariants on X x [

We recall that we started by considering a very general module of link-diagrams
and that subsequently we
a) restricted the ring where this module is defined
b) divided the module itself modulo:
i) a skein relation
ii) the Reidemeister moves.

The main feature of this process has been fact the fact that not only the comul-
tiplication descended to the various quotients which have been considered but also it
“gained” properties while the ground ring was gradually restricted. Now (some) link
invariants are in fact generated by a function which does not descend to the various
quotients, as it will be shown below.

Let us assume first that 2 is parallelizable. We start by considering the module
D, before dealing with the skein relation and the Reidemeister moves. Nevertheless

we restrict the ground ring by eliminating the “tilde variables” or, in other words, by
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setting 7 = z71,& = z,h = 0. We then consider the homomorphism of modules [24],

7
¥ :D® — Clz,z7 !, 2,271, h] determined by the following conditions:
1) &(aD) =a Va € Clz,z7%,2,27Y,h] and for any diagram D;

(4.1.1) . L
i1) $(D1 ® D3) = $(D1)h(D,) VDq,Ds € D.

Recall that, in the above definition, the link-diagrams are the generators of D;
notice moreover that the map 4 is trivially invariant under Reidemeister moves, but
it does not respect the skein relation.

In order to force the map 3 to be compatible with the skein relation, we have to

“eliminate” the variable h by setting:
(4.1.2) h=z—z1.

More precisely we proceed as follows: we introduce in the module D the following

equivalence relation:
(413) D+ - D_ = Dg,

where {D,,D_, Dy} is any Conway triple. We then set A = z — z ™! in this quotient
module and, as a result, we obtain a module over the ring Clz,z71,2z,z71]. We
furthermore divide by the equivalence relation determined by Reidemeister moves and
we obtain a module that we denote by the symbol D'[?3] . The map 2 determines a

homomorphism [28]

(4.1.4) p:D — Cle,z7 %, z,277].

24 The tensor product considered here is meant as the tensor product over the ring
Clz,z71,2z,27, h] itself

25 Notice that it would be enough to consider only the equivalence under Reidemeis-
ter move II B, since the equivalence under the other types of Reidemeister moves
is implied by the relations (4.1.3) and (4.1.2) and by the equivalence under
Reidemeister move IT B.

26 Notice that (4.1.2) establishes an homomorphism between C [z,z7 %, 2,27, A]
and C[z,z71,2,2z7] and between C[Rz,-2] ®c C[z,271,h] and
C[R2y-2] ®c Clz,2z77].
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More generally one can consider, instead of the map %, the map
(4.1.5) Y : D — Cle,z7, 2,271 @z H1 (%, Z),

which associates to each equivalence class of link-diagrams D the element given by
the product of (D) times the product [27] 6f the homology classes of the components
of (the projection of) D. Again the map %y is a homomorphism.

The map 1 can be extended to a morphism:

D% _,¢C [z,27 1, z,27"]

and an analogous statement holds for 7. The case when I is a closed surface of genus
g is similar; we have only to replace C[z,z™1, 2,27 with C[Ray—2] ®c Clz,271].

There exists an obvious homomorphism (projection):
(4.1.6) P p— L

which induces in D' a structure of commutative algebra.
The comultiplication V, does not descend to P'. This is very fortunate since it
allows us to construct non trivial link-invariants in X x [0,1] (see below). In fact we

can consider for any link-diagram and any integer N,

(4.1.7) $N(D) = (A (VY (D)) € Cle,z ™, 2,277
and
(4.1.8) (D) = vua(A®N(VY(D))) € Cle,27, 2,277 | @z H1(X, Z),

where VT],V is defined as in (3.2.6) with the rotation factors included and reads as

follows:
(4.1.9) vVVD)= > oD, P Do P Dpy
FELBIN(D)
where (D, f) = (305 — 25<:)7(Dy,5) +w(Dy,i) — w(D) and
o(D, f) E(__l)l(S;)—!hISfl

zz‘-w W(Df,fin.j);

27 In what follows we think to the first homology group H;(X, Z) as an abelian group

in multiplicative form.
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where in turn Sy denotes the set of vertices such that f(a) < f(d). when a and d
are respectively the lower incoming and- the lower outgoing edge, while (S), denote
the set of vertices in Sy of type L. For ¥ closed, the corresponding quantities are
obtained by replacing C[z,z7 %, z,27] with C[Ray_2] ®c C[z,27!]. We have now
the following:

4.1.1 Theorem: Let D be any link-diagram on Z. For any N € Z, 4™ (D) and

Y (D) are link-invariants for links in  x [0,1]. When & = B?, then v (D) = v N(D)

does not depend on the variables {2,271} and is related to the two variables Homfly
polynomial H(l,m)(D) by the relation:

:BN - CB—N

D)=

o= H(zN,z — z"1)(D).
When ¥ is a non contractible parallelizable surface, then in general #™V(D) depends
non trivially on the variables {z,27'}. When X is a closed surface of genus g > 2,
then ¥V(D) is only defined when = is a (2g — 2)-th root of 1 and in general depends
non trivially on the variables {z,z71}. Finally for any I, ¥X(D) is proportional to
YN (D), the relevant coefficient being the element of Hy(X,Z) given by the products

of the homology classes of the components of D.

Proof:  The comultiplication V¥ satisfies the following skein relation:
2®VVY(D,) — (27BN VY (D) = VY (Dy).

Consequently, when we set h = z — z~! and we consider A®N (V¥ (D)) ¢ D'®N, then

we see that the map ¥V satisfies the following skein relation:
(4.1.10) 2NN (Dy) — 2NN (D) = (2 — =7 )pN(Dy).

Moreover the correspondence D — 3% (D) behaves invariantly under the Reidemeis-
ter moves I, II, III, due to the invariance properties of the comultiplication. Hence
$pN(D) is a link-invariant; (D) is obviously proportional to %™V(D).

Let us now consider the special case when ¥ is the disk BZ. The exponent
of z in ¥™(D) is zero since in this case, by the definition of the comultiplication,

the exponent of z is the opposite of the exponent of 7 = z~}. Moreover thanks to
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(4.1.10) one is able to express the value of ¥™V(D) in terms of PN (D). Now the
relation (4.1.10) , considered when both D, and D_ are the empty knot-diagram,

tells us that we have: ™ (Q) = mN—_—};;i and, by taking into account the fact that
the Homfly polynomials satisfy thz skjin relation [H(I,m)(D+) —I7*H(l,m)(D-) =
mH(l,m)(Do) with H(I,m)(QO) = 1, we obtain the required relation between ¥n(D)
and the Homfly polynomial of D.

If we now consider the case N = 2 then, by setting ¢ = z?, we have ¥*(D) =

t—1¢?
mV(t)(D).

Finally let us consider the case when ¥ is a (closed or open) surface of genus g > 0
and show that there exist very simple link-diagrams whose invariants exhibit a non
trivial dependency on z. Let us consider for instance a link-diagram whose projection
is given by two simple loops a; and b; whose homology classes are in the canonical

basis of H1(X,Z) (see the figure below).

o o ~.
B v b \“"'\._____,_.nf"'/_r >,
—. Y (/_._—————.,‘_
o - —r._.__z:“v ™,
b \
—\3 < ) A
e v

Fig. 16  Loops a; and b;

These two loops have only one crossing point; let us call D and D_ the two
link-diagrams which are obtained by assuming that the only vertex is of type L,
and respectively L_. Only four labelling maps exist for each diagram, moreover the
rotation factors are all zero due to our definition of the winding number. A simple

computation gives:
(D)l = 27 272z 4 2),
YD),z = 22 + 22 (271 + 2).

Hence we see that in general 4™ (D) is not trivial, meaning that it is not the product
of %™(D)|,,1 times a polynomial in 2. o
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In the above description of link-invariants for & x [0,1], (with non contractible X)

the variable z is essential. In fact one has:

4.1.2 Theorem: Let & be a (closed or open) surface with genus g > 0. Then
there exist two link-diagrams D and D' such that for any N > 2 one has ¥ (D)|z1 =

b5 (D")lz,1 and %7 (D) # N (D").

Proof:  Let us consider the two link-diagrams D and D' defined as follows:

i) D and D' have the same projection;

ii) D and D' have five components each, the projection of one component being the
simple loop a; as in Fig. 15 . The projection of the other four components are
simple loops with no intersection points among themselves, two of them are free
homotopic to b;, while the other two are free homotopic to bi_l;

iii) the orientation of the components and the writhes of the vertices of D and D' are
described in Fig. 17 below (where the loop a; has been “o‘pgn‘_up” for graphical

reasons). L 0Ty (—M T, ;} N

-

P -
£ \/ - \"@&_____d // .

lox o
Fig. 17 Link-diagrams D and D’ 2,

An easy calculation shows that we have:

N
PV(D)laye =D (2 + (N —i)z+ (i = 1)z7) (™ + (N —i)z7 + (i — 1)2)°

i=1
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and:
N
N (D)|zz = Z (+ (N —i)z+(GE -1z D@+ (N -4z + (i —1)z)
(z7'+ (N =)z + (s — Dz (e + (N — )z 4+ (i — 1)2).
Hence we have Y (D)]s1 = ¥X(D")]2,1 and V(D) # V(D). o

We may also consider another link-invariant, which is obtained from »p V(D) sim-
ply by a change of variables. Let m®" denote the iterated multiplication defined on
(DSH)®N with values in D> and let

A:DSE LD

be the same morphism of modules constructed before.

We define now, for any link-diagram D, the following element in C[z,z7?,z,277]

(or C[Ry4-2] ®c Clz,271]):
(4.1.11) XN (D) = (% 0 A)(mPN (V(D))).
The “new” invariant xV is simply a rescaling of 47, since one has:

XN (D)are = BV (D)2 =152

In order to have a better appreciation of the rdle of the variable z, we would like to
understand whether there exist two link-diagrams D and D' such that x™(D)|z1 =
¥ la (iee P (D)larams = $V(D")a ams) and $7(D) £ (D).

First of all let us point out that when % is a closed surface then the condition
z = 2”1 forces also z to be a root of 1. So the question we are asking ourselves is
relevant mainly in the case of open surfaces.

The previous example (Fig. 17 ) does not work any more here, since the function
1/JN|M,-1 takes different values on D and D'. But notice that the two links of that
example have all their components with the same (i.e. zero) winding number. Now, in
order to construct examples of link diagrams which are not distinguished by 7.'le2:,3"1
(for some N ), but are distinguished by ¥, one may look for links which have non

trivial rotation factors in some specific components. We consider here an example of
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this kind for N = 2, while the situation for N > 2 looks more complicated and will
be discussed elsewhere. ’

We have now the following:

4.1.3 Theorem: There exist two link-diagrams L and L' such that #?(L) #
$2(L"), ¥*(L)|z,z-1 = %*(L")|z -1 and the corresponding components of L and L'

have the same projections.

Proof: Let L and L' be the two link diagrams as in Fig. 18 :

J‘\
N /H
~
o
r

{
1
i

o )
J*:,«\) +~ S T

\ \

Fig. 18  Link-diagrams L and L’

f\"“\

f

Here the notation is as in Fig. 17 , except that the simple loop a! is like the simple

loop a; only in the region where the intersections with the other components occur

but, differently from a;, has winding number —1 [28],

The calculations yield:
P (D)o, = 2(e+2)(z  +2) (@ +2 7 ) (2+2) 4 etz ) (@ T 2T ) (@ T ) (@2 T
and

h? (LYa,z = z(z+2)(z " +2)(z +2)(z+z7 )4z (z4+z")(z 7 271 Yz 4271 (z+2).

28 We assume that the genus of T is great enough so that such a simple loop exists.
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Hence the difference 92(L) — %?(L') is proportional to
z(z + z)(at:“1 +z)— 93”1(1: + z_l)(az"l + z""l)

which is zero when = = 27! but it is not zero for a general z. =

Finally one may wonder whether one could exhibit instead of Y(D), a more
general link-invariant for links in ¥ x [0, 1] which restricts to V(D) when we consider
diagrams D on the disk B?. We claim that the probability of finding such a more
general invariant is rather slim.

The obvious choice would be to consider, instead of the map 1 defined in (4.1.5)

a new ma.p:
(4.1.12) T,Z : D — C [mym_lazvz_l] ®ZK7

which associates to each (equivalence class of) link-diagram(s) D the element given
by the product of (D) times the product say of w(D). Here w is some function with
values in some (multiplicative) abelian group K depending, for a knot-diagram, on
the free homotopy class of its projection and, for a link-diagram, on the collection of
the free homotopy classes of the projection of its components [29], Tt is apparent that
any such function w would be invariant under the three Reidemeister moves. But this
invariance is not the only property that w should satisfy. In particular in order for

(4.1.12) to be a consistent definition we should have the following identity:
(4113) W(D+) = W(D_.) = w(Dg).

Now, if we assume as a reasonable condition that for any link diagram D with com-

ponents D and D, one should have:
(4.1.14) w(D) = w(D1)w(D2),

then we would have necessarily:
QZ =00 ’ll)H

29 As an example, we can think to the product of the “traces of the holonomy” of

the components of the diagram, computed with respect to some flat connection

defined on X.
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for some homomorphism ¢ : H1(X,Z) — K. In order to see this, let us use the
notation w(D) = w([a1],...,[a;]) when the projection of the diagram D is composed
by 7 loops whose free homotopy classes are respectively given by the conjugacy classes
of a1,...,a; € m(Z). The equations (4.1.14) and (4.1.13) imply that Va;, a2 € m1(X2)
one has w([a;])w([az]) = w([a1az]) which in turn implies that w restricted to the

conjugacy classes determined by the commutator subgroup of m;(X) is zero.

4,1.4 Theorem:

(4.1.15) Yn(z, 2) (D7) = Yo (z, 27 )(D).

(4.1.16) Yz, 2)(D™T) = bn(z ™1, 2)(D)

where mir denotes mirror image and rev the change of orientation.

Proof:  If we reverse the orientation then the labelling maps we had before are
no longer labelling maps. But the map a — N +1—4a, a = 1,..,n induces an
isomorphism of the old labelling maps into the new ones. The rotation factor is
invariant under the simultaneous reversing of orientation and corresponding involution
of labellings. The writhes contributing to = are obviously invariant. But the ones
contributing to z not, because the involution of labellings reverses the z factors. Hence
we have (4.1.16) ; (4.1.15) is due instead to the fact that the mirror image has all the
crossing switched. Hence the involution in the labellings described before works also

in this case. But this time the writhes and the rotation factors get reversed. o

4.2. Generalized link invariants on open Riemann surfaces

Consider a link-diagram D and let n denote its number of components, v the

number of vertices. Then the maximum number of components obtainable from D by
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splitting its vertices is in general n +v. Suppose m > n +v. Then V,(D, f) for each
m-labelling f, will contain at some place the empty knot-diagram. More generally
this tells us that we can construct all the p-labelling maps of D for p > m, just from
the knowledge of all the m-labelling maps f. We express that by saying that V,,
stabilizes for m great enough.

The way is the following: to each f € Lbl,,(D) we can associate a family of (2 ),
p-labelling maps in the following way. Take a ordered subset I = {i; < ... <ip-m} €
{1,..,p} constituted by p—m elements and its complement {j; < ...jm} in {1,...,p}.
Then define a p-labelling f;, .. ; _,. as follows:

Frvripm(€) = jm if f(e) =m.

The collection fi, ....i,_ . exhausts the class of p-labelling maps, but the correspondence

is not one-to-one.

We will now show how it is possible to construct in our approach for the disc the
Homfly polynomial in order to see how to generalize the construction when we will

allow more general surfaces.

Consider again m > n+v. Then V_,(D,) can be expressed using the skein relation
(4.2.1) Vin(De) = (272) 5" Vo (Do) + e(h) (&™) V(Do) ¢ =

we use the fact that iterating the use of the skein relation we can get from any link-
diagram a collection of unlinks. Soiterating the skein relation V(D) can be expressed

as a sum of various terms each of which of the form f(z)V,n((O™). Hence we have

(4.2.2) V(D) = Zﬂ(P)(w-—Ze(P))®m(h)IB(P)(xﬁ(P))(gmv(Ou(P))

P

where p is just a particular summation index corresponding to a particular unlink pro-
duced by the skein relation, €(p) is the algebraic sum of the numbers ¢ corresponding
to the change of a configuration L. into a configuration L_. in order to get the term
p, B(p) is the number of splittings needed in order to obtain the unlink from D after

having changed some crossings. The relevant link invariants, are obtained when we
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consider
= —2e(p)my (o _ o =1\B(P) gmmB(e) (B Ty uls)
m(D) =D B(p)(= Nz —2 1)) g e
(4.2.3) i
= Zﬂ(p)w(‘zf(P)—ﬁ(P))m(m _ z“l)ﬂ(p)—‘u(p)(mm _ m_m)u(p)
P

(e —2~™)
(c—2)

(2: _ m—l)n¢m(D) — Z Qa,b$a+mb

a<m,b

. Now 0 < u < n+ 3 and so we can write

having used ¥, (O*) =

where ¢ is some integer corresponding to the fact that some contributions p and p'
can give the same result. Is clear that the coefficients do not depend on m. Then
by defining ¢ = z™ we obtain a two variables link polynomial. It turns out that
this is exactly the Homfly polynomial normalized as follows H(t,z —z™*)(Q) = (¢t —

t)/(e —=7Y).

Now we are going to see what happens on a genus g Riemann surface to which a
small disc has been removed. The invariant defined in section ( 4.1) can be written

as
D) = - |<sf>_sz,.#,. w(Dy,i)lDs) (-1 |s,|w—Nw(D)mEf_”'=lw(D,,,-)w—(N+1)r(D)+zE
(D) (-1) ( )
FELbIN (D)

(4.2.4)
= Z (__1)1(51«)—!,32,-#,'w(Df,i)lDf.j)(m__wﬂ)]s,|$—Nw(D)$va=1w(Df,;)wa;l(2j—1—N)r(Df,j)

FE€LbIN(D)
We want now to generalize this invariant in the same spirit, also if we cannot now use
the skein relation to reduce it to the trivial knot. Consider for each subset (vy1,..,v5)
of the set of vertices of the diagram the set P,, ., . of labelling maps having precisely
this subset as set of splitting points. This collection can possibly be empty. But any-

way this prescription gives us a partition of the labellings maps. All the labellings in
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k3

Pvl,...,v

responding collection of loops (e, ..., cx) with the relevant rotation factors (P1y s TR)-

split the link-diagram in the same way. So to P,,,.. .+, We associate the cor-

Our consideration will follows the same lines if we wanted to consider the invariant xn.
We have some conditions, on the labels of (ci,...,ck). Precisely for each f € Py, .,
whenever c; cross c; either f(c;) > f(cj) or f(e;) < f(c;). This amount to saying we
have a partial order in the set (ci,...,cx). It is not a total ordering because we could

have not intersecting loops.

In general the sum of the writhes of the various subdiagrams is not an invariant

of P,

V1 gseeyUn "

We introduce now a partition of P,, . ,, for which these factors are invariant.
. . . - .
Precisely we decompose each P,, ..., into various subsets Py parametrized by

map o : (1,....k) C (1,...,k) (remember that k is the number of loops) which are by
definition the largest subsets of Py, ..., for which

(425)  f(e) > fle) if o) > o) and fle)=F(ej) if o) =o().

For each element in PZ . the writhe factors are the same. Now (4.2.4) can be

VL yeray?V

rewritten
(4.2.6)
$™(D) = Z Z(_l)l(sf)-lzz,.# w(Df,ilDf.j)x—-Nw(D)mEf;l w(Df',«)(‘73 _gmhlsel

Yiyey¥n O

{ Z mz;":l(zjq—N)r(Df,j)}
fepy,

Now we can do the sum in the bracket. Observe, and this is the main point of the

computation, that labelling maps in Py are only restricted by the condition

“ln
(4.2.5) : recall again that (i1, ...,4) (the labels of ¢1,..,cx), have to be totally ordered;
hence supposing for simplicity 0 < 43 < i3 < .. < ik < N + 1 (the case in which there

is an equal sign is not different), we have

Z ﬁ m(Zij—l—N)rj

0<iy <oru<ig <N+1 j=1
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Observe that some rotation factors could be zero. We have to use the sum

-1 —2—N)r: —Nr:
Zx(zi—-N-1)r,~ _ £(21=2=N)r; _ ,—Nmi
c 1 m?"{ — m“"'l",'
1=

To give a feeling of what happens let us compute (for 71,72 # 0):

t3—1i3—1
E E m(2i1—N——1)7‘1+(2i2—N—1)7‘2 —
iz 1:121
i3_1 :E-—T'lx(ziz——N—l)T‘x_ _ ~N

T1
T w(zig—N—l)’f‘g _—

ztt — g~
iz=1

—T1 —T1—T2
< T w(Zia—N—l)('l‘l-}"’l‘z)__
pritr2 o p—T1—T2

Tl — p—T1

z—N(ri+r2)
PR pp— 1~ 6rytry) + Orppry (83 — 1)
—Nr —7 —Nr
__= : z p(2ia=N=1)rs _ Lz
T — g™ | g7z — T2 ' — g2

If we iterate now the process and sum over 13, with the relevant factor, and for instance

r3 = 0 then this gives terms proportional to Zi*—l(ig —1) (if ry + 72 = 0) or to

. s i3=1 .
Z::f_:il_l g(3ts=N-1)(ritr2) (if 1 4 p, £ 0) and, in both cases, to E:;;i 1=(ig—1)
(times terms independent from the indices of the sum).

In general, repeating this process we will meet to kinds of sums, precisely:

tj41—1
(4.2.7) Q, = Z (i; — 1) (2 =N=1r
ij=1
411
(4.2.8) Se= . (i —1)°
1j=1

where r can be any partial sum of the r;, ¢ < 7, including r;. These sums can always
be calculated introducing the Bernoulli numbers (or polynomials). In particular (4.2.8)
will give a polynomial in (i; — 1) of degree (¢ + 1). In fact

411 tj41—2

> =1 = 3 () = = Banalisea = 1) = Byra(D)]

i;=1 ij=1
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where the Bgy1(z) are the Bernoulli polynomials. Here

q9

By(e) = D _(})Bia" "
k=0
where By are the Bernoulli numbers. By the Von Staudt Clausen theorem, the Bay’s
are rational number whose denominators is the product of those prime numbers p
such that p — 1 divides 2k. The odd Bernoulli numbers apart form B; = —2% vanish.
In particular (k + 1)! B3y is an integer (and also 2(2%% — 1)Bay). So if we have to do
repeated sum over loops with winding number zero at each sum (for instance over i;)
we we will find as result a polynomial in the next variable of degree increased by 1 (in
this case, in the variable (i;1; — 1)). The coefficients are rational number, but if we
multiply at each stage the polynomial for o(g) = (¢+1)([£]+1)! they become integers,
and, due to the fact that for each diagram we will have a finite number of loops, we
can take IV large enough to be greater than the ][], o(g). Obviously at the last stage
we have 7441 = N and we get a polynomial in N. Now we have to face the problem of

understanding some properties of the sum (4.2.7) . A method for computing (4.2.7)

is the following. Consider the operator D = 210197,- f;; then

ij-{-l—-l 1'j+1—1

(4.2.9) D1 Z p2i—1r _ Z (i; — 1) zz(i,-—1)r’

and so
1 ’
B4t m(2(1j+1—1)-1)1‘ —p=T

m(—N-{—-l)qu Z w2(ij—1)r — m(—N+1)1‘Dq{ }___

m?‘ — m—T‘

1;=1

U= _ 1
2r 1 } =

— a,;(—N-H)T‘Dq{
z

For instance let us compute the first two D-derivatives:

- 1):32({;‘_}_1——1)1" $2rw2(ik+1—-1)r

22 — 1 - (z? — 1)

—p(—N+1)r g1 { (ik-H

3}27‘

MCE
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:w(_N+1)qu_2{('L.j+1 — 1)2m2(ij+1—1)1‘ B (’L‘j.*.l - 1):82(1:,-_*_1—1)1-:327-

22T — 1 (2?7 — 1)2
22rp20i - r (ij-i-l _ l)mgrmz(ij+1—1)r
(z2r —1)2 B (227 — 1)?
2547 22 41— 1)r 227 24T

(z2r — 1)3 + (z27 —1)2 - (z?" — 1)3}
and from the structure we obtain, we can say something about the structure of the
result of the sum (4.2.7) .
a) it does not increase the degree of the polynomial in the variables (¢;41) of the
sum;
b) dividing for #” both numerators and denominators, we will always have the de-
nominator is a power of (2" — 27 "); The degree of such a power can be at most
(¢ +1). Moreover the degree of the power in (i;41 — 1) plus the power in the
denominator of (¢" — ") is at most (g + 1);
c) the coeflicients are all integer, and independent of IV;

d) if (ix+1 — 1) = N we have a polynomial in N.

Now to each link diagram we can associate the set consisting of all the collection
of loops obtained from this diagram splitting in all possible ways its vertices. Then
there will be some element of this set for which the number of loops with rotation
factor j attains its maximum. Call this maximum n(j). Let also rot be the maximum
rotation factor for some loop on the same set. Let M (k) = n(k) + n(—k) + n(0) We

can now state the theorem

4.2.1 Theorem: For any link diagram D, there exists an integer U such that for

any N > U we have:

n(0) rot
II o(m) [[(&* —==*)MEgn(D) = > kya?,
m=1 k=1 vy

where v and k., are integer numbers such that their decomposition in base IV is inde-

pendent from IV,



Proof:  We have to show is essentially
a) That the factor Hn(o) o(m) is enough to make the coefficients k. integers.

m=1

b) That the factor [].(z* — :c_k)M(k) is enough all the contribution of the type

(z® — 27%) in the denominator.

Let us show a). We saw that in the previous “toy” computations that the power
in the variables in which we sum can increase only if we meet a loop with winding
number 0, or possibly a combination of loops with total winding number 0, and in

these cases the denominator is prescribed by the Von Stadt Clausen theorem

Now let us concentrate on b). Referring again to the computations made before

k

stating the theorem we know that the presence of powers of z*¥ — z~*. in the denomi-

nator is due loops with winding number #k or to loops with winding number 0 (recall
the structure of (4.2.4) ).

If we consider the sum only over P;, , ,then the factorization property is clear.
But once this sum is done nothing more depend on N (in the indices of the sum). So

the result clearly extends. The factorization property of the exponents is also clear.o

As a consequence we can state now the following theorem

4.2.2 Theorem: The substitutions z?¥ = ¢ and N = v (in the coefficients) give a

four parameter link invariant, verifying the skein relation

tLy —t'L_ = (z~z"")Lo
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4.3. Coalgebra Structure of Link-Diagrams and Quantum Holonomy

We consider now the module D over the polynomial ring
-] = ==

Clz,z7 1,2,z 1, 3,71, h, k] freely generated by link-diagrams

On the module D we defined in section 3.1 a coassociative comultiplication
v:D—7D ®C[z,z—1,2,2—1,h,77.] D.

Our interest in this section is more on link invariants so we will not require that the
comultiplication be coassociative. Suggested by Reshetikhin [31] we will replace the

comultiplication and its iterated version by more general maps

(4.3.1) VN:D_+?®KD®K®---®KDJ

n times

where K is the extension of C[z,2z71,2,771, h,iz] depending on the variables zx i, Zk,;

introduced as follows

432)  VVD)= > D,z PN Dsi@x.....0x 2P Dy,
FELbIN (D)

where p;(D, f) = w(Dy,;) — w(D) and

&(D, f) =(~1)I5)-1 (_1)1(5})4 RISsL RIS
zj%"" w(Dy,i 4Dy ;) EJ-{;D" w(Df,j'U-D!,i).

For convenience we will set z; = ZZ;:;EA:,Z = E,‘;kl Observe that setting z12 = =z,
Z19 = Z then V3 coincide with the comultiplication already defined in section 3.2.

In the above framework, any vertex v can be seen as the assignment of a (complex,
not normalized) probability to the transitions from the pair of incoming labels to the
pair of outgoing labels. This probability is in turn represented by the indeterminate
variables assigned to each allowed transition.

Now we can represent the same transition probabilities as the entries of a pair of
matrices R, R € End(CN @ CN) as follows.

Let us assume that the lower incoming edge at v has label k£ and that the upper

incoming edge has label I. Then the matrices R and R are defined in a such a way
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that the probability of the outgoing edges having labels ¢ and j (respectively lower
and upper edge) is given by:

(e; @ ej|R(ex ®er)) or (e ® ej|B(er @ er))

according to the writhe of the vertex v. Here e; is a basis in C and (.].) is the
standard inner product in C¥ @ C¥V.

For instance if we consider 2— labellings, then the corresponding matrix R €
End(C?* @ C?) is given by:
(4.3.3)
R = (B} ® B} + E5 ® E3) + 212( B} © E3) + Z12( B3 @ E}) + h(E3 ® E7) + h(E} ® )

and the matrix R € End(C? @ C?) is given by:
(4.3.4)
R=2"Y(E1®@E1+E}®E})+21: " (B1® E})+31; (B3 E})—h(E10 B} ) —h(EI® E3).

Here and in what follows we denoted by the symbol E; the matrix which has all entries
equal to 0 but the entry at the j—th row and ¢—th column which is 1.

More generally, when we consider the Vy given (4.3.1) , (4.3.2) we are led to
consider changes in the IV —labels The corresponding matrices R, Re End(CN @ CM)

are given by:

z fi=73=k=1
Zi; fi=k<l=yg;
Zig fi=k>1=7;

(4.3.5) RM =
hooifi=l<k=j;

o

ifi=1>k=7

0 otherwise
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T fi=j=k=1
Zi ifi=k>1=7j;

R 1fz=k<l=_7,

(4.3.6) .Rﬁ}l = {
—h Hi=Il>k=7;
~h Hi=Il<k=r7;
\ 0 otherwise.

As far as the indices are concerned, here and in what follows we use the following
convention: R(er ® ¢;) = Z R}e’Jl(e1 ® e;).

The above matrices are part1cu1ar examples of matrices of the following type:

(4.3.7) R= Zaik Ei® E}) + ) Bix(EL ® Ef)
ik
(4.3.8) R=> auu(Bi® BN+ fin(Bi® EH}.
ik ik

We call any pair of matrices R and R given by (4.3.7) and (4.3.8) a pair of Kirchhoff’s
matrices. The name comes from the fact that the form of such matrices correspond
to the existence of a Kirchhoff’s law in link-diagrams computations.

In order to obtain the matrices (4.3.5) and (4.3.6) we have to make the following
identifications in (4.3.7) and (4.3.8): a;; =z, Vi; o = zik,fork >4 ;=
Zrisfori > k; Bip=h,fori>k; Bix=h,fork>4 &=z, Vi dy =
Zig,fork <1y Gip = z;,: Jori < ky fir=—h,fori<k; fir=-—h,fork<i.

In order to have a better understanding of the relation between the generalized
comultiplication V,, defined on link diagrams and the matrices R, R, we introduce the
concept of quantum holonomy of the diagram D with respect to the pair of matrices
(R,R). We will use the symbol QholR'R(D) for the quantum holonomy.

Let D be any link-diagram on ¥ and let v € V(D). We consider the associated
matrices (4.3.7) (when w(v) = +1) and (4.3.8) (when w(v) = —1) that we write
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respectively as R=>.2_ H, ® K,, and as R= 1::1]7"[3” ® K,,) B

We denote the edges meeting at v as follows:
dy
N
7N
ay v
If e is any edge belonging to D, we associate to e the collection of matrices T(si), s =

1,...,p according to the following rule:

Tgi)E H, ife=b, for v e V(D) with w(v) = +1
T(= K, if ¢ = a, for v € V(D) with w(v) = +1
Tgi)z K,, if e = b, for v € V(D) with w(v) = —
7= H,, if e=a, for v € V(D) with w(v) = —1
Tff) =1, if eis a closed loop.
Let now T'r denote the normalized trace for N x N —matrices (i.e. T'r = (1/N)tr).
For any diagram D , with components {L;} ; we define the quantum holonomy as

follows:

4.3.1 Definition:

Qhol®BR(D) = Z{H T JT 749003

e€L;

In the above formula the multi-index {sy;} = {5v,, 80, -+, v, t is defined in such
a way that each s,; runs from 1 to p for each v;, while {v;} runs over the set of all the
vertices of D. The sum itself extended over all the possible values of the multi-index.
Finally, according to the previous definition of the matrices Tgi), the edges (denoted

by e in the formula) are supposed to enter at the corresponding vertices (denoted by

’Uj).

30 The explicit dependency of the index s on the vertex v is introduced for future
convenience, since we will need to keep track of all the different vertices. This

does not mean at all that the matrix R or R depends on the chosen vertex.
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We can consider also the case where on 3 we have a principal G—bundle and a
flat connection A. Such a bundle is necessarily trivial and so we can choose a global
section ¢ and consider Holg o(c), namely the holonomy of a curve ¢ with initial p
and final point p', meant as the element g € G such that the parallel transport of
o(p) along c is equal to o(p') times g. If we are given furthermore a representation

p: G — End(C¥) then we can consider also the following definition:

4.3.2 Definition:

Qhot (D) = Y { TT2os7r{ [T A7) Hola o} -

Su; eckL;

The sum in the previous definition is computed with the same rules as in defini-
tion (4.3.1) .

Notice that definition (4.3.2) coincides with definition (4.3.1) if we consider 4
to be the canonical flat connection Ay and o to be the section such that ¢*(4,) = 0.

We will postpone later in this paper the discussion on whether the defini-
tion (4.3.2) is gauge-independent, i.e. independent of the choice of the section o.
For the time being the quantum holonomy we are going to consider will be only the
one considered in definition (4.3.1) .

Denoting by z(Z) the collection of variables zp i,k < [(Zx,k < 1) we
can consider the homomorphism of modules (augmentation): % : T(D) —
Cle,z7 1, 2,271, 2,571 h,h] defined by the conditions:

(4.3.9)
i) ¢(aD)=a Va e Cle,z %, z,27%,%,27,h,h] and V diagram D;

i6) $(D1®g z-1 251,55 D2) = ¥(D1)d(Dz) VD1,D; € D.

We are now able to describe the exact relation between the V, and the quantum

holonomy in the following:
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4.3.3 Theorem: Let R and R be the matrices (4.3.5) and respectively (4.3.6)
and let Vv be the extension of the iterated comultiplication given in (4.3.2) . For any

link-diagram D we have:

H(V (e P) D)) = Qhol™(D).

Proof:  The proof is based on direct computations along the lines described below.

Each matrix T(:,) is given by a coefficient times a matrix EJ*. For such matrices the
following product rule holds: EJ*E? = 5§,ET. We start by considering one component
L; of the link-diagram D. We associate to each edge of L; a matrix of the type EL

times a coefficient and to L itself the product of matrices
(4.3.10) ETERE - BY = 8765+ §YET

times a coefficient. Whenever ¢ # m the above contribution to the trace is zero. So we
may as well multiply the above product of deltas by 6*. To each edge of L we assign,
as label, the common values of the deltas i.e. [ = p;n = r;...;t = m. In particular
we assign the label t = m to the first edge we considered. Now two cases are possible.
The first case is whent =m =] =p=n =r = ... = u and in this case the common
value of all the indices is exactly the value of the label assigned to all the edges of L.
This means that there are no splittings, since any splitting corresponds to a change
in the labels assigned to the edges of L;. The second case is when in (4.3.10) there
are indices different from m = ¢ and these indices correspond exactly to the splittings.
Any constraint on the allowed labelling maps can be translated into the vanishing of
some of the coefficients in (4.3.8) and (4.3.7) . As an example the condition R=0
is equivalent to the requirement that S'f is empty, while the condition h = h=0Iis
equivalent to the requirement that no splittings are possible. Moreover notice that the
Kirchhoff’s law itself is equivalent to the statement that each term E7 @ E} appearing
in (4.3.8) and (4.3.7) haseitherr =t andl=sorhasr=1[and s =+¢.

We have then constructed the correspondence between labels (assigned to the
edges) and indices of the matrices appearing in (4.3.8) and (4.3.7) . We notice now
that the sum over all the labelling maps corresponds to the sum over the multi-indices

in the statement of the theorem.
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Finally the coefficients of the iterated comultiplication of z*(P)D match, by con-

struction, the coefficients in the r.h.s. of the statement of the theorem. o

Remark.

theorem (4.3.3) can be considered as a generalization of [12], the content of this
generalization being the fact that the a more general class of Kirchhoff’s matrices in
End(CYN @ C¥), is considered here.

Vi defined in (4.3.2) does not lead directly to link-invariants of % x [0, 1]. In order
to obtain from the comultiplication functions which are invariant under Redeimester
moves, one needs to modify the comultiplication V by considering winding number of

link diagrams as seen in section 3.4.

The comultiplication V and the generalized comultiplication V are replaced by
V.(D), VY(D) by substituting in (4.3.2) pi(D, f) with 7;(D, f), as seen in chapter
3.

In conclusion theorem (4.3.3) does not immediately establish a relation between
quantum holonomy and link-invariants. The modifications needed in order to have

such a relation will be discussed later.

Finally we would like to introduce the following terminology: we will refer to the
objects QholR’R(D) and Qholﬁf(l)) as the quantum holonomy obtained by inserting
the matrices R and R in the ordinary (trac;) of the holonomy with respect to the trivial
connection (QholR'R(D)) or with respect to a generic flat connection A4 (Qholizf(D)).
The process of insertion is literally the process of attaching to each vertex of a link-

diagram the matrix R or R, according to the writhe of the vertex.

Let us discuss now the properties of the inserted matrices.

We will now examine carefully all the different properties which are or can be
satisfied by the matrices R and R, provided that a suitable choice of the coefficients

is made.

First we consider the skein (or Hecke) relation, which is defined by the following
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equation:
(4.3.11) R—-PRP =xP,

where P € End(CY @ CV) is the permutation operator. We have then the following:

4.3.4 Theorem: The pair (R, R), given by equations (4.3.5) and (4.3.6) , satisfies
the relation (4.3.11) if and only if z; , = Ei_,,:; z—z"1=h+h.

Proof: The proof is obvious once one recalls that the permutation operator can be
written as P = ), , Ei ® EF (or in components P ?,’jl = §;67). In this case the factor
K is given by = — z 1. o

Notice that, if we set z;, =2 fori <k (Zr =2 fori <k)then the condition

1 i.e. exactly the same which appears in theorem (3.3.1)

Zik = 2:,,: becomes z = Z~
of chapter 3 and that the condition z —z™! = h + h is closely related to the skein
relation €D, — ¢~ 'D_ = (h + h)Dy considered in the same theorem. So, as one
should have expected, skein relation for matrices corresponds to the skein relation for
link-diagrams. .

As a second properties we consider the Yang-Baxter equation. Namely we consider

the equation:
(4.3.12) R1,2R1,3R2,3 = R2,3R1,3R1,2

where R, : CY @ CVN @ CV — CN @ CV ® C¥ is given by the matrix R acting
on the m—th and the n—th factor and by the identity acting on the remaining factor.
In coordinates the Yang-Baxter equation reads:

kd piys pit Lis pkot pi,j
(4.3.13) D RGRNEL., = BRI,

1,45t i,7,t

We have the following theorem:
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4.3.5 Theorem: The matrix R, given by (4.3.5) satisfies the Yang-Baxter equa-

tion if one of the following three cases occurs:

a) E:O;h:w——m;
T
b) h= ;B:w~zz,kzi,k,

Proof: The proof is a matter of simple but lengthy calculations. Observe that
condition b) and ¢) put strong condition on z; k. Namely z; 1 Z; r has to be constant
for each ¢ and %k, which means that Z; ; can be expressed through the z; plus one
additional variable. =

Notice the first two cases in the above theorems are completely symmetric, while
case c) corresponds only to the situation when R is proportional to P .

So one has a multiparameter family of matrices verifying the Yang-Baxter equa-
tion. In fact one can always reduce these parameters by one, by the following rescaling

theorem, whose proof is immediate.

4.3.6 Theorem: let R = R(z',z}, %), k') (2ky # 0) satisfy the Yang-Baxter
equation and let us define ¢ = 4/zi.,kfz'g’l,c; Zig = 4/z§,k/2§’k; z =z'/é h =
z — z7!. Observe that the condition that R verifies the Yang-Baxter equation im-
ply the independence of ¢ from the indices in the right hand side. Then also R =
R(z, zi,k.zi_,,:‘,h) satisfies the Yang Baxter equation and we have: R(z',z] 4,2 ,,h') =
fR(a:,zi,k,zi_’kl,h).

It is of course by no coincidence, that the conditions z = z71; h = 0;z —

271 = h which appear in the construction of link-invariants ( section 4.2), are the
same conditions which guarantee both the skein (Hecke) relation and the Yang-Baxter
equation for the matrix R (modulo the extension we did). This is equivalent to set
Zik = Zh,i-

We would like to consider now the matrix R associated to R.
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4.3.7 Theorem: Let R and R be defined as in (4.3.5) and (4.3.6) and let them
satisfy the further condition h = 0. Then the following two statements are equivalent:
a) R=R 'and h =gz —z7%;
b) the pair (R, R) satisfies the skein (Hecke) relation. Moreover when one of the
above conditions is satisfied, then both R and R satisfy the Yang-Baxter equation.

Proof:  We notice that the matrix R is invertible if and only if p = z;;2; ; — hh # 0.
In this case we have that [R(z, z;,;, Zi,5, b, R)]~! is given by:

™! fio=7=k=1

Ei,j/P ifi=k<l=y;

zij/p Hi=k>1=7;
(4.3.14) [R(:E,z,',j,ii,j,h,h)]—ll-c’-l =

7
—h/p Hi=1<k=y7;

—hjp Hi=1>k=7;

0 otherwise.

The proof of the theorem follows immediately.

Now we would like to consider the extension VX of the generalized comultiplica-
tion V given in (4.3.2) but with the with the rotation factors included in the same
way as in section 3.4 and discuss how to modify theorem (4.3.4) , in order to get
link-invariants. Following Turaev [25] we say that an invertible matrix R satisfying
the Yang-Baxter equation is enhanced Yang-Bazter matrix if there exists a diagonal
matrix g € End(C¥) such that:

a) p ® p commutes with R

b) there exists a complex number a such that

4.3.15 m((Id@ u YPRP)=ald and m Id®p—1 R Y=o Id.
o
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Here m : End(CN ® CN) — Encl(CN) is the multiplication (31],

Moreover we say that the enhanced Yang Baxter matrix has the property R (32] if
the following identity holds:

(4.3.16) R (Id@ uw) (R H)T(Id@ p~!) =1 € End(CN @ CN)

Here the symbol 72 means that the matrix in End(C™ @ C&) under consideration is
transposed with respect to the second factor in the tensor product, i.e. (R )f’”]l = R?,’lj,
The property R is implied when we assume that R7? is invertible. But we will show
later why. We define now a modified quantum holonomy as follows [12]. We choose
a parallelization of ¥ or of \p for some point p € X, depending on whether 9% # 0
or 0¥ = (. The parallelization is chosen in a such a way as to assign winding number
zero to each element of a system of regular simple loops, which generate 71 (X) and
whose homology classes form a basis of H1(Z,Z) (see section 3.4 ). We consider then
link diagrams which do not contain p. To each edge e we associate an integer with sign
v(e), by counting the number of times the vector tangent to the edge becomes parallel
to the chosen parallelization. More precisely, in order to define v(e), one adds +1
whenever the tangent vector, in order to become parallel to the chosen parallelization,
has to perform a counterclockwise rotation and —1 when it has to perform a clockwise
rotation.

Now let us consider the matrix R given by (4.3.5) where the variables satisfy the

following conditions:
(4.3.17) zij=Z 1 h=0h=2—z7"

We define now the modified quantum holonomy with respect to the matrices R and
R = R as follows. Instead of inserting at a vertex v € V(D), the matrices R and
R™!, depending on whether w(v) = +1 or w(v) = —1, we insert respectively the
matrices R(u~"(¢) ® p=*(%)) and R~ (u=*(¢) @ p=¥(%), where, as before, ¢, and d,

are the edges entering in v.

31 The meaning of these conditions will be explained in chapter 5.
32 R stands for Reidemeister, since this properties is connected with the invariance

under a special type of Reidemeister move II (see [12]).
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We then define the modified quantum holonomy QholR’R”‘(D) accordingly.

We associate to VY tn(D) exactly as in section ( 4.1) . But now ¢y (D) will
depend on the parameters z ;.

The following theorem is consequence of the property of the comultiplication

induced by our multiparameter Yang-Baxter matrix

4.3.8 Theorem: (D) is a link invariant verifying the usual skein relation

(4.3.18) wN¢Ar(D+) — Z:_NT/)N(D) = (ZB — w—l)TﬁN(Dg)

We have moreover

4.3.9 Theorem: Let D any link-diagram with total writhe w(D) and total rota-
tion factor r(D). Let the matrix R satisfy conditions (4.3.17) . Then there exists a
diagonal matrix p € C¥, such that R,y becomes an enhanced Yang-Baxter matrix
satisfying (4.3.16) ,(4.3.15) . Moreover the modified quantum holonomy and the link

invariant (4.3.18) are related as follows:

(4.3.19) $N (D) = zV*D) Qrol®BR#(D).

Proof:  The matrix p is given by:

(4320 = diag(am N, S, o)

It is a matter of simple computations to show that u verifies all the required properties
with 7 = z®.

As far as the relation with link-invariants is concerned, the case z = 1 has been
discussed thoroughly by Turaev and there are no essential modifications in our case.
It is enough to notice that the “insertion” of p implies, differently from the ordinary
quantum holonomy, that one has an extra term v(f,e) for each edge e and each
labelling f, defined as the product of as many factors of the form g E(2f(e)-1-N)

as many times the vector tangent to e becomes parallel to the chosen parallelization.
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The modified quantum holonomy is then obtained by multiplying the term T’ (333 , which
appears in the quantum holonomy ( definition (4.3.1) , by the factor v(f, e) (remember
to respect the correspondence between labels and matrix-indices). In this way one

finally obtains the equation:
zNv(D) Qholfifir( D)
- Y D5 220 W(D1) [ 225 23 TP =@+ N)n(D),
FELbIN (D)
=¢™(D),
where the term in square brackets is exactly the term which comes from the insertion

of p. o

As a final remark concerning the previous theorem, notice that the equation:
g V(D) QholR’ﬁ'“(D) = ¢¥(D), tells us that the (modified) quantum holonomy is a
regular isotopy invariant, according to Kauffman’s terminology [59]. On the contrary
the (unmodified) quantum holonomy QholR’R(D) is not a regular isotopy invariant.
So the process of modifying the quantum holonomy by including the matrix p can
be seen as a redefinition of the quantum holonomy aimed at restoring the invariance

under regular isotopies.

We will now consider the quantum holonomy of pair of Kirchhoff matrices which
are not necessarily restricted to be of the form (4.3.7) -(4.3.8) . We will look for pair of
matrices (R, R) which do not necessarily satisfy the Yang-Baxter equation, but which
allow the definition of a gauge invariant quantum holonomy, when flat connections on
2 are included. We have first the following |

4.3.10 Theorem: Let 4 be a flat connection of a principal G—bundle over ¥ and
let p : G — End(CY) be a representation. If, for any g € G, we have [p(g) ®
p(9),R] = [p(g9) ® p(g), R] = 0, then the quantum holonomy Qholif(D) is gauge
independent.
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Proof:  The proof follows immediately from the definition of quantum holonomy.
Any gauge transformation will have the effect of transforming the matrices Tﬁj) into
the matrices g(v)Tgi)g(v)"l where g(v) € G is the value of the gauge transformation at
the vertex v. This is equivalent to considering the insertion of the matrix {( g(v)™)®
(9(v) ")} B{a(v) @ g(0)} or {(9(v) ™) ® (9(v)"")} B{g(v) ® g(0)} ab v (depending on
the writhe of v). Hence the quantum holonomy is the same if for any g € G, we have

~

[9®g, R =[g®g,H] = 0. -

The previous theorem suggests that in order to have the gauge invariance of the
quantum holonomy one should look for matrices R and R given by functions of the
Casimir operator for the given representation of G.

For instance let us assume that we are considering an SU(INV) principal bundle
over ¥ and the fundamental representation of SU(N). An important class of pairs of
Kirchhoff matrices (R, R) for which the gauge invariance of the quantum holonomy is

guaranteed, is the following one:

(4.3.21) R=+vI+pP € End(CN @ CV)
and
(4.3.22) R=+"1+p' P € End(CN @ CV).

In order to convince ourselves that the previous theorem works in this case, it is enough

to recall that the permutation operator P satisfies the following identity:

(4.3.23) P=-> (T:®T:)+(1/N)1,

2

where Zi(Ti ® T3) is the relevant Casimir operator namely {7;} is a basis for the Lie
Algebra of SU(N) satisfying the condition ¢r(T;T;) = —6; ;.

Take from now on in this chapter z = zx; = Zi % in (4.3.5) , (4.3.6) ; the matrix R
(4.3.22) itselfis of the form (4.3.5) since we can make the the following identifications:
z=%2= h=h=p; =7+ p. Vice versa, once R is defined as in (4.3.21) ,
then the corresponding matrix R defined in (4.3.22) , is not of the form (4.3.6) .
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As a particular case we will consider the following example:

(4.3.24) R= emp{kt(z ;1)) = e—kt/N(cosh(kt) I+sinh(—kt) P),

where k € Z, t is a real or complex parameter and {T;} is a basis of the Lie Algebra
of SU(N), as in (4.3.23) . When R is given by (4.3.24) , the matrix R will be defined
as the inverse of (4.3.24) .

There are several reasons why we are interested in this example and they will
be discussed below. We would like now to discuss some formal properties of the pair
(R,R™1) for R given by (4.3.24) .

First of all, it is convenient to consider instead the pair of rescaled matrices
(Ry = e**/NR R, = e"*/NR™1), (R =(4.3.24) ).

Now R; is a matrix of the form (4.3.5) when we set
(4.3.25) z=e*; 2h=2h=2z—z!=2sink(—kt); z=2=cosh(kt).

The corresponding parameters for R, are obtained by sending ¢ into —¢. This implies
that R, is not of the form (4.3.18) , since z(—t) is equal to z(#) and not to z(¢)~?1.

The above consideration tells us that one can look for a comultiplication V on
link-diagrams corresponding to the pair of matrices (R;, R ), but this comultiplication
will be different from (4.3.2) . In particular the exponent of the parameter z = Z must
be independent of the writhe and of the over/under crossing of the given vertex where
and edge of a label 2 crosses an edge of label 1.

We define now V as

V(D) = Z (-1)!(3f)—| RIS#l ,1Ds1# Dy 2]
(4.3.26) FELbIz(D)
;z,w(Df,x)-—w(D)Df,1 ® zw(Df.z)—w(D)Df,z’

where § 7 denotes the total number of splitting points, D#D' denotes the set of com-
mon vertices of the two diagrams D and D' and the other notation is as in (4.3.2) .

We have now the following theorem:

4.3.11 Theorem: The comultiplication (4.3.26) is coassociative, cocommutative,

is compatible with the skein relation:

(4.3.27) gDy —z 1 D_ = 2hDy,
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and it is not compatible with the Reidemeister moves.

Proof:  The calculations are similar to the one performed in chapter 3 and do not

present particular difficulties. =

Even though we cannot hope to recover link-invariants directly from this comul-
tiplication, we still want to relate this comultiplication to the quantum holonomy
obtained by inserting the pair of matrices (R, R™!). Let us consider again the map B
considered in (4.3.9) , i.e. ¥ : D% — Clz,z7, 2, z71,%z,271, b, h] We have now the

following;:

4.3.12 Theorem: Let R be defined as in (4.3.24) . For any link-diagram D, the
following relation holds: QholR’R_l(D) = ektw(D)(N'l/N)QZv(@N(D)).

Proof: It is a matter of computations. =

Let now A be any flat SU(N) connection on % and let the relation among the
variables be as in (4.3.25) . Let T'r be, as before, the normalized trace and let the
holonomy of any link-diagram D with components {L;}, be defined as the holen-
omy of the projection of its components (denoted by the same symbols L;) with the

following rule:
(4.3.28) Hols(D) = Hols(L1) ® Hola(L2)® ... Q@ Hola(Ln).

Moreover let the holonomy of any element 3 a;D; € D, be given by 3. a;(Hola(D;)),
where D; are diagrams and a; € C[z,z7,2,27?]. Furthermore let the holonomy of
any element of D®* be defined, in an obvious way, in terms of the holonomy of the
decomposable elements. Namely such holonomy is simply given as the tensor product
of the holonomies of the corresponding elements of D. We are now equipped to state
the following theorem (for which the proof follows immediately taking into account

theorem (4.3.12) , theorem (4.3.11) and theorem (4.3.3) :
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4.3.13 Theorem: The (gauge independent) quantum holonomy Qholﬁ:f_l(D) is
equal to ¥t (PYN-1/N)Tr Fo] 4 (@N(D)) .

In agreement with theorem (4.3.12) we have:

4.3.14 Theorem: Let R be given by (4.3.24) . The quantum holonomy Qhol®E™"

is not an invariant of regular isotopies. The same is true for Qholi’f
)

Proof: It is done by direct calculations. o

So the quantum holonomy cannot at the same time describe a non trivial link-
nvartant and be a gauge invariant object. It can be shown, more generally, that
from any pair of matrices of the form (4.3.21) -(4.3.22) we cannot obtain regular
isotopic quantum holonomies. In order to understand why we are interested

particularly in the matrices of the form (4.3.24) , we recall some results from [25] and
flat
of flat

SU(N)-connections modulo the group G of gauge transformations. The smooth part

[27]. Given the two dimensional surface & we can consider the space

of this space is a symplectic manifold with symplectic form w given by

Afla.t

(4.3.29) w(a,B) = /Etr(a AB), for a, € Ty ).

According to Goldman, we can give the free Z —module generated by the free homo-
topy classes of [immersed oriented] on I [with transverse intersections], the structure

of a Lie Algebra over the integers, with the Lie bracket defined as follows:

(4.3.30) [L,L']= > elp,L,L")\L,LL,.

pEL#HL!
Here L and L' denote any two [free homotopy classes of] loops, L#L' denotes the set
of the intersection points of L and L', e(p, L, L") denotes the intersection number of
L and L' at p and L,L} denotes the [free homotopy class of the] loop obtained by
starting at p and moving first along L and then along L'.
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We denote the Goldman Lie Algebra with the symbol Z. Its complexified version
7 ®z C will be denoted by Z€. Now we can consider the symmetric algebra S(Z°)
which is a Poisson algebra. Following [27], we modify such a Poisson algebra by
considering the Poisson algebra §(Z), for b € C which is the same as S(Z©), as an
associative algebra, while its Lie bracket is defined as follows on loops, namely on the

generators of S(Z©):
(4.3.31) [L,L'|y =[L,L')— he(L,L')LL',

where €(L, L') is the total intersection number of L and L'.
Any link diagram D determines an element of $(Z€), since we can consider the

symmetric product of the projections of its components. Also any projection of a
flat

G

link-diagram can be seen as an element of C%°( ) ®r C, since we can associate

to it the function:
Afla.t

op([A4]) = trhola(n(D)) [4] € G

We now have;

4.3.15 Theorem: Let (D) be the projection of any link-diagram D and let wy
flat

multiplied by £ € Z. Then the map 7(D) — ¢p is

flat
a Poisson map from 5'(20)7}1v into the Poisson algebra C'%(

g
Afla,t

meant that the relevant symplectic form in G is given by wg.

be the symplectic form on

) ®r C, where is

Proof:  The map w(D) +— ©p is clearly injective. Let us prove that it is a Poisson

map. We consider the real and the imaginary part of pp and we set ¢ = 2Re(¢p)
flat

and ¢4 = 2Im(pp). We denote now by the symbol { } the Poisson bracket in
( when k& = 1, then we simply omit the index k). From [27] we have the following
identities:

- 1 o
{‘P}D,CPID’}}C = ”{‘PZD’SDzD’}k = E;#D, e(wa’D,)lﬁo})},D; + QEN—(‘F‘D(PZD' - ‘10%7(10%)’)] ?
P
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{SO}Dv‘PZD’}k == _{(P_zDa(P.lD'}k = Z e(paDaD’)[_(PzD},D;_i_ ZkN(SaD(PD' +<PD('0D’)]'
peED#D!

Here, as before, ¢(p, D, D') is the intersection number of the projection of D with the
projection of D' at p € D#D'.

Hence we have:

) 1 _
{¢D,pp }1 = Z e(p, D, D')(¢p,p, — ‘ﬁ[‘ﬁD‘PD'D = Q[x(D),x(D")]
pED# D!

L
kN

Let us consider now any subset of vertices I for a link diagram D and let us
assume that the matrix R is as in (4.3.28) . We can consider the quantum holonomy
Qho ZR R_, (D) obtained by inserting the matrix R only at the vertices in I and not at
all the vertices in V(D). Also given two distinct diagrams D and D' we can consider
their product DD' obtained by putting D over D'. We assume that DD’ is also
a diagram (namely no intersection points different from isolated double points are

allowed in DD').

We have then the following

4.3.16 Theorem: Let L and L' be any element of the algebra S(Z€) and let D
and D' two arbitrary link diagrams whose projections are L and L' respectively. Let
moreover K be the matrix given by (4.3.21) , let I be the set of all intersection points
of L with L'. We can define a (generally non associative) new product in S(Z€) as
follows:

YD *R @D =ppyp+
Qhol2E7 ~(DD' ~ D'D)’

Proof:  Consider a generic matrix of the kind R = a P+8T and let R = aP +6I
its inverse. The insertion of the matrices R (or R) at an arbitrary number of crossing
points of a diagram D transforms ¢p into a linear combination of ¢p, for some

subdiagrams D; of D. More precisely for each vertex which is splitted we will have a
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factor a or @ depending on the writhe +1 of the vertex. For each non splitted vertex
we will have a factor 8 or 3. We have to show that the above definition is independent
on the choice of the diagram D and D' once their projection L and L' is given. In fact
at the self-crossing points of D and D' no insertion is made and a self-crossing point
of D cannot be also a crossing point of D and D' since a generic diagram does not
have triple points. But we will have also to take care of the fact that, as we remember
from section 3.3, the product is not well defined. So the product of two diagrams can
differ for a II or III Reidemeister move. The only problem we have now is anyway
the second Reidemeister move (due to the fact that the no insertions at self-crossing
points). But due to the factors we insert at each vertex (as described above) this is

easily proved. Hence the *g—product is well defined in S(Z°). =

And finally we have:

4.3.17 Theorem: Let R be given by (4.3.24) . At the first order in ¢ the com-
mutator with respect to the xg-product is given by the Poisson bracket corresponding

to the symplectic form wy.
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5. Multi-Parameters Quantum Groups related to Link-
Diagrams

It is natural to try to describe the quantum groups which are connected to the
Yang-Baxter matrices which are related to the invariants of oriented links in ¥ x [0, 1],
where I is a non-trivial 2-dimensional surface, as seen in the previous chapter. We
obtain multi-parameter ribbon Hopf algebras that differ in many respects from their
one-parameter counterparts. Among the main differences we mention the existence
of a non-central quantum determinant and the fact that the number of independent

generators is higher than in the one-parameter case.

Since we want to describe a quantum group starting from a Yang-Baxter matrix,
the obvious approach will be to consider the method of Faddeev-Reshetikhin-Taktajan
for the construction of quantum groups [30].

So, as the study of link invariants leads us to considering Yang-Baxter matri-
ces depending on several parameters, the construction of the corresponding quantum
groups is our present concern.

This chapter is organized as follows: in section 5.1 we review and adapt the
construction of [30]. Given any Yang-Baxter matrix we consider the bialgebra Agr
generated by elements tj- (t,7 = 1,-+-,N) with relations depending on the choice
of the matrix R. The quantum group we are looking for, will be then a suitable
Hopf algebra contained in Ug which is, by definition, the bialgebra dual to Ar. We
denote such suitable Hopf Algebra by the symbol Uj. It is generated by four sets of
generators, which are denoted as (A%)} and (£¥)% ( see [65] for a related approach).
These four sets reduce to the ordinary two sets in the one-parameter case, but the
same is not true for the generic multi-parameter case.

Asin [66], we then define an element R € Hom(A4ARr ® Ar, C). This element can
be seen as an abstract definition of the Universal R—matrix; and can be considered
in association to any Yang Baxter matrix R € End(CN @ C¥).

If the Yang-baxter matrix R (with one or many parameters) satisfies the extra
properties connected to the Reidemeister invariance, then we can prove the existence

of a special element in Ur which is in the center of Ugr. In other words we give an
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explicit construction of the “ribbon” element

In section 5.2 we consider the special case of the Yang-Baxter matrix R €
End(CN @ CN) which gives rise to link invariants for oriented link-diagrams on a
non trivial surface. In this case one can define for the bialgebra Ar a quantum de-
terminant which is not in general a central element. If we adjoin the inverse of such
determinant to Ag, then we are able to construct an antipode for such a bialgebra, via
the introduction of left and right comatrices. This allows us to have a factorization
theorem for the universal R—matrix and to show that also in the multi-parameter
case there is a quantum double construction. Analogies and differences between the
multi-parameter and the one-parameter case are discussed.

Finally in section 5.3 an explicit construction is given for the independent gener-
ators of the quantum group. Generally in the multi-parameter case one has N extra
generators with respect to one-parameter case.

We hope that multi-parameter ribbon Hopf algebras could play a réle in the

construction of invariants of 3-manifolds.

5.1. On the Faddeev-Reshetikhin-Takhtajan construction of Quantum
Groups

In this section we want to recall the Faddeev-Reshetikhin-Takhtajan (FRT) [30]
construction of quantum groups. The emphasis of the FRT construction is on the
“deductive” approach: all the algebraic structures which are introduced, are derived
from the properties of a single matrix R € End(CN @ C¥) satisfying the Yang Baxter
Equation and possibly some extra-conditions. In particular it is possible to introduce
(multi-parameter) ribbon Hopf Algebras, by considering this “deductive” approach.
These ribbon Hopf algebras are the ones related to the invariants of link diagrams on
a 2-dimensional surface.

We start by considering a generic matrix R € End(CN @ CV), satisfying the

Yang-Baxter equation.
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In coordinates the Yang-Baxter equation reads:
k pie pit lis pk,t pi,j
Z Ri,’j Rp‘,tRn’m,n - Z Rj’,tRi,,an,,m’
2,45t i,:t
where we have set:

R(ek ® 61) = Z Ri”jl(e,; ® e]'),
i,j
for a given basis {e,} in CV.

Faddeev, Reshetikhin and Takhtajan consider the algebra A which is defined as

the free associative algebra over the complex numbers generated by the N? elements
t¥ (k,1=1,...,N)

and the unit 1. In A there is a natural coalgebra structure given by the following

comultiplication:
(5.1.1) ; A=) thect]
. i
with counit:
(1) =1, €(tF) =6/
We consider now the algebra homomorphism:
AT i A — Mpn(C),
defined by the following action on the generators

(5.1.2) (ATE)m =RET, (ATQ)R =67

ln?

Due to the Yang-Baxter equation, we have that the elements in 4 given by:
(5.13) SR - RN,

.’j .’j
belong to the kernel of A™.

As far as notation is concerned, we consider as in [30], the “matrix tensor product”,
in words ® of two N x N-matrices U and V of elements of 4, which is defined as the
collection of N2 x N? elements of A given by

(5.1.4) (UQV)™P = ULV,

q
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In an analogous way, one could define an iterated matrix-tensor product. The matrix-
tensor product is not a tensor product in the ordinary sense (either of algebras or of
linear transformations).

We collect also, as in [30], the generators {t}} into a matrix T' (with entries in
our algebra A) and define

Ty =T®Id T, =I1dRT
and represent the elements (5.1.3) as the entries of the N? x N?-matrix
RTVT, — T2 K.

We denote now by the symbol Iy the two-sided ideal generated by the elements (5.1.3)

and we consider the quotient algebra
Ap = A/Ig.
The homomorphism AT descends to a homomorphism
Ar — Mn(C),

which can be called the fundamental representation of Ag. When R = 1 then Ap
is the free commutative algebra with N? generators, namely it is isomorphic to
C[z1,...,252], i.e. to the algebra of polynomial functions on My(C). When R = 0,
or R = P then Ag is simply equal to A (with no relations). Observe that in principle
one could add additional relation to the algebra Ap provided they belong to the kernel
of AT,

Here and in what follows, we denote by the symbol P the operator in

End(CYN @ CV) defined as:
Pz®y)=yQe.

For a general R, the ideal I is also a co-ideal,i.e. A(Jr) C IR® A+ A®Ix and
so the algebra Ap inherits the coalgebra structure from 4, i.e. Ag is a bialgebra with
unit and counit.

We consider now the algebraic dual of the bialgebra Ar namely the space

UR = HOTI’L(AR, C)
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of linear homomorphisms from Ag to the complex numbers, endowed with the follow-

ing multiplication and comultiplication:
(1112)(t) = (11 @c v2)(AL), w1, € Ug, t€ Ap

V(v)(t1 ®c t2) =v(titz), v €Ugr t1,1: € Ap.
Here we assume that we can consider a completed tensor product Ur®Ug and see the
comultiplication as a mapl3¥:
V:Ugr — Ur®Uxg.
The counit in A becomes the unit in Ug.

The quantum group we are looking for, will be a sub-bialgebra of Ug.

In order to construct such a sub-bialgebra we proceed as follows. We assume from
now on that the matrix R is invertible. Together with the fundamental representation
AT we define also three other representations, denoted respectively by the symbols
A=, ET and E. The representation A~ is defined as follows on the generators of Ag
and then is extended to the whole algebra Ap as morphism from Ag to My(C):

(5.1.5) (A=) = (PRI P, (A5 = 6T

in >

The representations E* and =~ are defined as follows on the generators of A :

(5.1.6) E*E)R = (PRP), (ET()T =67

Ln 2

33 This assumption is made more for the purpose of having a frame of reference than
for the purpose of satisfying some technical constraints. In fact one could do as

well by considering the map V simply as a map
V :Hom(Agr,C) — Hom(Agr ® Agr,C)

with some suitable properties obtained by rephrasing the usual properties of the
comultiplication. With that approach some further rephrasing would be needed
in the rest of this section. Notice anyway, that the sub-bialgebras of Ur we are
going to consider will be bialgebras in the ordinary sense, no completion of the

tensor product being required in these cases.
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(5.1.7) E-@HHr =@, E)T =6

ILn?

They are then extended to the whole algebra Ag as homomorphisms from Ag to
(Mn(C))°PP, namely to My(C) with the opposite multiplication.
In order to check that the above definition is a correct one, it is enough to apply

2% to the elements of the form (5.1.3) and see that this yields zero.

We now have the following:

5.1.1 Definition: We denote by the symbol U} the sub-bialgebra of Un generated
by the unit in Ugr and by the elements

(AE)E, (€55

defined as the (i,7) entry of the corresponding representation. We refer to the bialge-
bra U%z as to the restricted dual of Ag.

The counit in U} will be given by the map €' : U — C defined as
€(1)=1; (W) =€ ((E5)) = b

For Up (and hence also for U}) we can consider the dual fundamental represen-

tation

(5.1.8) ' T2 Up — Mp(C)
given by the evaluation at the matrix T, namely
(5.1.9) (TON™ = A(@T).

It is now consistent with our previous conventions to use the matrix notation
A% and =% both to denote respectively the representations (5.1.2) , (5.1.5) , (5.1.6)
(5.1.7) and to the collection of elements of U given by (A%) and respectively (%)L

Tt is also immediate to verify that the above definition of (A%) and (¢¥)} can be
rephrased as follows. By adapting the notation of [30] we define:

5.1.10 Rt=PRP; R =R'; R, =R; R_=PR'P
+
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and T as:

(5.1.11) T;=1d®---®Id@TR Id®---®Id.
e R

1—1 times N—1times

The matrices AT and =% can be characterized as the collections of elements in Ug

which satisfy the following equations:

(AE)Ty - Th) = (Ra )y jsr - - (Rdrprs EX(Th e+ Th) = (B g esr - (B 1,04

or, in terms of the entries:

CREE )= Y RREEEE - (R)LE

81,52 yeers8k—1

and

E®p@tz -t2)= > (RE)RRERHEE - (RF)50_.-

8199240038k —1

The comultiplication rules for (A%)% and (£%)} are as follows:

(5.1.12) V((A%)H) Z(,\i) ® (A%)?
and

(5.1.13) V((E5)5) = D (€95 @ (67);.

3

Moreover, if we define AF and for ZF analogously to (5.1.11) , then we have also:
T(AT - AF) = (Ri)rz - (Ra)ipsr; T(EF - ER) = (B2 (B )1en
and more generally:
(5.1.14) (A AT ... Tr) = (Ra)1, k1 (B )2 ket - - - (Rt )k bt

(Ri)1e+2(Rt)z btz oo (Rt )kkrz oo o (Bet)1, b m( Rt )2, kh o (Bt )k ket i

and:
(5.1.15) EF - EQ)D T - Tr) = (B )k pst (BF)ho1 b1 -+ (BF )16

(RE) k2 (R o1 2 - o - (B )1 0wz o - (R ko hr (B ) ke i - - - (RE) 1,54
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Notice that the both members of (5.1.14) and (5.1.15) are in End((CN)®+R)_ As
a consequence of the Yang-Baxter equation, the generators of U}, satisfy the following

constraints (but generally there are other constraints)

(5.1.16) RYASAS = ASASRT, e =2
(5.1.17) RTATA; = AJATRT,
(5.1.18) R ESES = HSESRy, e=+
(5.1.19) R,EFTE; =E;ETR,.

To prove these relations it is enough to remember what we said in section 1.2 about
tensor product of representations of a bialgebra. Objects of the kind Uy V2, where U
and V can be either A or E* define the tensor product of the representations U and

V. This follows from the fact that
(5.1.20) U Ux(t) = [U ® VI(A(2))

Hence relations (5.1.16) -(5.1.19) are simply relations between tensor product of
representations. In order to prove them it is so enough to work with generators. And

in turn applying them to generators they become exactly the following four variants

of the YBE

(5.1.21) (B)12(B)13(R)z2 = (B)23(R)13(R )1z
(5.1.22) (RM)12(R*)13(R 7 )2s = (B )2s(B T )1a (BT )as
(5.1.23) (R4 )12(Re)1s(Re)os = (Be)aa( Btz
(5.1.24) (R )12(B4)13(R-)os = (R-)za( Ry )1a(B )12

Now in turn these equations tell us that
RY(AT @ AT)(A(a)) = (AT ® AT)(A' (@) RT

and so on. So the map PRT for instance gives the isomorphism between the two

representations

Af @A — AT ®@ AT
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(the subscript here is just to make clear the action) Also we have (related to that) a
graphical way of depict equations (5.1.14) -(5.1.15) . Namely they correspond respec-

tively to the following permutations
Ry
(5.1.25) [(1,2,...,k),(k+ Ry k+2,k+1)] ——[(k+h,...k+2,k+1),(1,2,...,k)]

(5.1.26) [(kyk —1,..01), (B + by ooy o+ 1)] R—i.»{(k Fhynk+ 1), (kk—1,...,1)]

where to each permutation in (5.1.25) ,(5.1.26) we associate respectively the matrices
Ry and R*. Observe that (5.1.26) can also be represented as

R
(5.1.27) [(k+ Ry + 1), (ko ke — 1,00y 1)] ———[(ky b — 1,00 1), (B + oy ooy ko + 1]

due to the fact that RTR, = 1. The independence of this notation on the order
of permutation is consequence of the Yang-Baxter equation. Now given any two
representations U and V of A in Mn(C) and M,(C)°?, then we can consider (out
of the entries of these representations) U;-'V,Z . It is easy to show that if U;Vlg (t1) =
6181 = €'(¢4)6%, then U}V,g acts in the same way on products of generators. Now let

us consider
@) = (D)5 @ (6%
(Us)i = (€50
They are ¢ &% on generators (the corresponding matrices are inverses) and so we get

(5.1.28) (AEED = 8ie (€T);(0%) = sie

We would like to construct an antipode v on the bialgebra U}, namely an anti-

automorphism of U}, which is required to satisfy the following condition:
(5.1.29) m(Id®)V(v) = m(y ® Id)V(v) = € (v)1, v e Ug,

where m is the multiplication and € is the counit in Uj.

First we set in the above equation v = (A*)% and obtain as a consequence:

Y(AE)HOE): = AE)i(y(2H)3) = 6i1.
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So we can set

(5.1.30) A = (€9)5

We consider now the antipode of the elements (§i); The relevant equation is
F((ED)NER) =D (E5)31(6%); = 851

For any matrix 4 € End(CV ® C™) we denote by the symbol AT> the matrix 4

transposed with respect to the second pair of indices namely:

A:ZM5®N3@ATZ EZM‘,,@N? M87N8 EMI‘J(C)'

Now, following [30], we consider the following sequence of matrices:
R =Ry W =r% ®RHM=@ITHT m2
R{M = (BT m2 2
and the corresponding representations (AE)imd, (E%){m} defined by the relations:
(W5 = REY; (850 = (BHT.

Observe that they are respectively representations in My(C) and M,(C)°? Due to the

their definitions we immediately get:

5.1.2 Theorem: Let us denote by the symbol ﬁ}z the sub-bialgebra of Ur gen-
erated by all the entries of the representations (Ai){m} and (Ei){m}. Then U}lz is a
Hopf algebra, the antipode « being defined by setting:

(M) = @F)imY; 4 (EF)I) = (AT

The situation simplifies considerably, if we can express say (Ai){m"} in terms of
(A*)1™} with m; < mg. This is in particular what happens, if we assume, as in [12]

that there exists an invertible diagonal®¥l N x N —matrix

(5.1.31) p= pnbl

3¢ The diagonality is not necessary. We assume it now just for simplicity.
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such that g ® p commutes with R and such that the following equation (property R

considered in section 4.3) is satisfied:
(5.1.32) RT(Id@ u)(R™HT(Id@ p™ ') =1 € End(CY @ CV).

In this case we can consider the representation V, : Ap — My(C) defined on the

generators of Ay as (35]

V#(t:-z.n) = /‘ﬂn‘srTl)
and its inverse V“_1 defined as

Vo) = pr 67

When we consider the matrix elements of these two representations, we obtain two new
elements of Ur which generally do not belong to Uj. We denote these two elements
by the symbols v, and v;l.

We can consider then the representation
AT =V ARV, 1 Ap — M,(C)
It is possible then to construct, out of the entries of the representations AT and B+
FEV — ATV
(U=); = (A%)iE;.

This due to (5.1.32) is 1 on generators. Also the product with the inverse order is 1.
So, as [ ® u, R] = 0, we can set '

(5.1.33) V(AF) =4(E%) = AT =V IATY,

theorem (5.1.2) implies
(5.1.34) T(AF) = (EF) = pA*p™l; P(EF) = pEFp

In conclusion we have [*%! (see also [67] ):

35 The equation [p ® p, R] = 0 implies that V,, is in fact a representation of A and
not simply of A.

3¢ An “intermediate” situation can be considered, at least in principle, when for a
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5.1.3 Theorem: When the matrix R satisfies the condition (5.1.32) , then the
bialgebra U} is a Hopf algebra.

If, for any matrix with entries in U4, we denote by the symbol T its transposed
(371 then (5.1.34) tells us that we have also the following relation among the generators
of U} (compare (5.1.28) ):

(5.1.35) [,LLAi/.L”l]T(E:F)T = (57T [,LLA:F;L_I]T = 1.

5.1.4 Definition: We denote by the symbol U} the sub-bialgebra of Ur generated

A EE VEL

by the matrix elements of the representations A™, =7,V

We have now immediately that:
V(vfl) = vfl ® vffl; and e'('vfl) = 1.
So if we set

(5.1.36) *y(vfl) = vfl,

we obtain an antipode for U%, and U}, becomes a Hopf Algebra. Moreover the antipode
is such that y*(v) = vy lvv,, WwE Uz.
We now consider four maps (see [68]) R+ and RE from Ag to U}, which are

defined as follows on the generators

(5.1.37) Relts) = (), Ra() =1

given matrix po and a given moy € 4 we have:
(RN {(Id® po) Re(Id® py '] = 1.

In this case we can define an antipode in the sub-bialgebra of Ur generated by
all the entries of the representations (A*){™} and (EF)mHm < my).
37 Remember that the entries are non commutative, so the usual computational rules

for transposed matrices may not apply.
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and
(5.1.39) RE() = (€5, REL) =1

and are extended respectively as algebra anti-homomorphisms (5.1.37) and as algebra
homomorphisms (5.1.38) . Notice that in this way (5.1.37) is a coalgebra homomor-
phism and (5.1.38) is a coalgebra anti-homomorphism.

The above maps give rise to elements of the bialgebra dual to the bialgebra Az ®
AR, since one can associate to the two pairs of maps (5.1.37) and (5.1.38) respectively
the elements R, R* € Hom(Agr ® Ag, C) defined as follows:

(5.1.39) Ri(ta ®15) = (Ri(ts))(ta) tarts € Ar
and
(5.1.40) RE(te ®ts) = (RE(t5))(ta) tasts € Ar.

We have now the following:
5.1.5 Theorem: RT is theinverse of Ry in Hom(Ar ® Ag, C).

Proof:  We have:
(Re)RINTy ... T @ Ty ... Th) =

= [(AF .. AP TOETF . ERT ... W) =1

where the above identity is meant to be an identity between elements of
End((CN)®(*+h)) and, in order to prove it, we used (5.1.14) and (5.1.15) . o

From (5.1.14) and (5.1.15) it follows also:

5.1.6 Theorem: For any t1,?2 € AR, we have:

Rai(ts, i) = RE(tg, ).
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For any element S € Hom(Ar ® Ar,C) we can define in an obvious way 51,2,
S1,3, S2,3, as elements in Hom(Ar ® Ar ® Ar). Also in this space we can consider
(Id® V)S and (V ® Id)S defined as:

(Id® V)S(fl R @ t3) = S(tl ® tgts); (V ® Id)S(tl R @ t3) = S(tltz ® t3).

We have then the following theorem, whose proof is obvious.

5.1.7 Theorem: The following relations hold:

(5.1.41) (Id®@ V)Rx = (R1)13(Ra)1z; (VOIDR: = (Ri)1,3(Ra)2,s;

(5.1.42) (Id® V)RE = (RE);2(RF)1,8; (VO IDRE = (RE)25(R¥)13-

From now on we will denote the element R also with the simpler symbol R.

5.1.8 Theorem: Let us denote by the symbol V' the opposite comultiplication
in Hom(Ag,C). Then the following identities holds in Hom(Agr ® Ag,C) for any
v € Hom(ARg, C)

(5.1.43) V'(v) = RV(V)R™.

(5.1.44) V() =RV () (RT)
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Proof:  The proofis by induction on the degree of the monomials of Ar to which we
apply both sides of (5.1.43) (the proof for (5.1.44) is completely analogous and will

be omitted). If we take two generators t_?;- and t§ we have: Let us prove on generators.

[V'@#)R - RVt ®t) = [V'(¥) 8 R - RO V)](t, @ t; @ ®1]) =
v(tht, Ry — v(RyKE3t:) = 0
Now consider monomial of generators we assume that equation (5.1.43) is true for
any two monomials {¢1,?2} with degree respectively < k; and < k, and we prove it

for the pairs of monomials {¢f¢1,%5} and {¢1,%5¢F}. In fact we have:
[RY(@))(tft: @ 82) = [(V @ Id)(R(VV))|(t; ® 11 ® t2) =
[R1sRas{(id ® V)(@)}(tf @ t1 @ t2) =
Using the Heyneman- Sweedler notation we have

(D)D) @ (LD g L) = M) g (LD g (D)D),

Hence

[R13R2s{vV @ ()M @ (B)D}(tf @ 11 @ 1)

Using coassociativity and the almost cocommutativity on monomial of degree less than

k1 and ky we get
[R1a{(#)P @ () @ (DN Ros(tF @ 11 @ 15) =
(W) @ (@) @ (W)Y R1Ras(tF @ ¢ @ 1) =
which using again coassociativity can be written
[({z®)D © (1)) @ (LI} R1sR2s(t @ 11 @ 12) =
(VRid)(V'(V)R)(tf ®t1 ®1y) = V'(1)R(t{t: @ t5)

Analogously we have:

[RV(v) — V'(0)R](t; @ totf) =0
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5.1.0 Corollary: For any v € Hom(ARr,C) we have the following commutation
rules:
[R¥*RL,V(v)] =0; [RzR¥,V'(v)] =0

We now set (V' ® Id)R(t1 ® tz ® t3) = R(t2t1 ® t3) and similarly we define
(Id® V')R.

5.1.10 Corollary: We have the following equations:

(5.1.45) R12[(V® IR] = (V' ® Id)R]R1 2
(5147) RI,ZRI,BRZ,B - RZ,BRI,SRI,Z'

Proof: In order to prove (5.1.45) it is enough to notice that:

(V@ Id)R](t: ® t2 ® t5) = [V(R(t3))](t1 ® 1)

and
(V' @ IA)R](t: @ t2 ® 15) = [V'(R(t3))](t1 ® 1)

and apply theorem theorem (5.1.8) . In order to prove the Yang-baxter equation

(5.1.47) we consider the following identities:
(R12R13R23)(t1 @12 ®t3) = [R12(V ® Id)R|(t1 ® L2 R t3) =
(V! @ Id)RIR12(t ® 12 ® 1) = > R(#V15) @ ta)R({” © #2) =
S RED @ ERED @ )R(ED ©17) = (RasR13R12)(1 @ 12 B ts).

Here we have used the Heyneman-Sweedler notation. Equation (5.1.46) is an imme-
diate consequence of (5.1.47) and (5.1.41) . a

Remark.
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It is easy to check that also R_ and RT satisfy the Yang-Baxter equation.

We now assume, as in [12], that R satisfies a further condition, namely that there

exists a complex number « such that
(5.1.48) m((Id®@ p ) PRP) =ald and m((Id®p ')R™!)=a 'Id,

where p is the diagonal matrix considered above and m : End(CN @ CV) —
End(C¥) is the multiplication.
In local coordinates, the equation (5.1.48) reads:

SR p 6t =abl; and D (R7)Mu7'8l=o7l6.
7.9 hq
Observe that if we write R = 3. 4; ® B; and R™! = 3. 4; ® B; then the property
(5.1.31) implies
AA; @ (p BuB)T =id®@id
and from this
AAj(pT BipBy) = id
and
BipBip~ A4 = id
whereas formulae (5.1.47) -(5.1.48) can be written also as
Aip™'B; = o™
and
Bip A=«
and so we get
AipB; =a m[(id® p)R] = aid
and
Bipd; =o' m[(id® p)PR™P] =" 'id

Suggested by Reshetikhin [64] we will show an alternative way of presenting the
conditions on p. The condition (5.1.32) (property R) is equivalent to the condition



that RT2 be invertible. In fact if this is the case, we can define
r T =m(§) ,7=m(T)
where S = (((R=1))~1)%) and T = (((R)*)~?)t2. First let us prove that 7771 = 1.
7710 = maamia[Ti2823] = masmiz[Ris Ry; Th2S2s]
Observe now that

(5.1.49) R385 = Sa3Ti2Ry;

as an immediate consequence of the Yang-Baxter equality for S. In order to prove

that let us write R;31T12 So3 as
(R (((R)™) ™) )1a(((R™H)) ™)™ )2s] = [RGH((R™)®) ™ as((B™) )] ™ =

{[(th )12((R_1)t1)23R13] —1}Tz - {[[(R—l )23R12R13]T2]~1 }T2

so now applying the “standard Yang-Baxter” we prove (5.1.49) .
717 = maamia[R13S23Ti2 Ry ) =1
It is easy realized that
(d@T)(RT)y ) (ide ™)
can be expressed as

241012 [leTsz 524] = TNn24MM12 [Rs4T12R3_41 T3, 524]

Now applying
Ry} T32804 = S24T33 R34

which is proven exactly in the same way as before we get
maamaz[RasTh2S24Ts2 Ry
= mygmaa[Ti2S2a R34 ] = R

So we have shown that 7 verifies (5.1.32) and using similar arguments we can prove

that [r ® 7, R] = 0. Now we will discuss condition (5.1.48) . Define first

w=m(id® T-—I)PRP
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It is immediate to verify that

m(id @ T_I)R"‘l = Id.

and
(5.1.50) w®id,R] = [id®w,R =0
We can define [64] a matrix v such that v® = w. It is possible to choose v such

that commutes with every matrix commuting with w. And v can fixed uniquely (the

principal value of w!/2.) Then if we define
H=TOV
we observe first that also p verifies (5.1.32) and moreover we get
m(id® p ')PRP=m(id@ 7t v ) )PRP =wr™ ! = v
and
m(id@p )R =m@Ed®r v )R = 7!

and

m(id@T)R=Id m(id®T)PR™'P=w"!
If the equations

R,1@uw]=[R,w®1] =0

has no other solutions than the identity then we can do the following identification:
v = ald.

We consider now the following four elements of Ug:
(5.1.51)
gbf =RL(1® v;l)A' = (v;l Q1d)RLA = (1d ® v;l)'Ri oA = Ri(v;l ®d) o A;
XE=R¥(id@v.) 0 A' = (v, ®id)yRT 0 A' = ({d @ v,)R1 0 A = Ru(v, @id) 0 A

where A’ is the opposite of the comultiplication A on Ar. We have then the following:
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5.1.11 Theorem: The comultiplication of Xf and z/Jf is given by the following

formulas:
(5.1.52) V() = (¥ @ i )R* R
(5.1.53) VixE) = (xFf ® x5)RF R+

Moreover the following identities hold:
= _ . + —\y—1
Tp#"‘Xp,, ¢#_(¢y) H

and 'z/f is in the center of Ug.

Proof:  The proof will be by induction on the degree of the monomials in Ag.

For one generator ¢} we have:

(5.1.54) PEE) =Y pr (Re)fy = o6
k

(5.1.55) xE(th) = }:#k (RE)hi = o™ 6

From (5.1.55) and (5.1.54) it follows that once we have proved the comultiplication
rules (5.1.52) and (5.1.53) , then we will have also automatically proved the identities:

¢i: = Xf- First we consider the equations:

(5.1.56) XE,v(t) =0, [x&,v)(t)=0 velUr Vi€ Ap

in the case when ¢ is given by t} and equations (5.1.54) ,(5.1.55) in the case when
both members are applied to ¢; “ ' ® t”

Namely we have:
S [t (th) — vt (th)] = S [pr Riev(th) — v(thuy Bix] = 0.
l k,l

Analogously we prove
[X:,i::’/](tj') =0

It is also immediate to see that, given two generators tj and t¥ we have S(Id ®
YENT} @tF) = (1d® PE)S(ti @ t}) for any S € Hom(Ar ® Ag,C) and a similar
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equation with Id® d)i replaced by ”(,bi ® Id) or ’l/Ji replaced by xi Next we consider
the comultiplication rules:

(V00 ®t%) = [Re(L@ v, (A (E1E72)) =

D AR @ v )2 @i} = > {up Ra (it @t} =

31,82 81,92
= Y {u et (id ®id® V)(V @ id)Ra(ty @15 @ 11 @ t12)} =
= > {u7 e RE)14(Re)1,5(Re)2,a(Ra)2s] (15 @ 17 @ 1 @ 112)}

= [(R)1,4(Rat)1,3(Rt)2,4(Rat )23 (v )s(vy )a] A s A) (13 ®132)
= [(Ra)1,2(Ra)1,3(Rat)2,3($F)2 (v )s] AL (8 @ 52)
= [(#5)1(PF)2)(Rt)2,1 (R )12 @ 12).

Here the subscript numbers in (F');,... ; denote the corresponding factors of the tensor

product on which the multilinear functional F acts.

Now let’s apply xi: to a pair of generators:

RE(1®v,) 0 A'(t2¢7) = RE(1 @ v,)(1)}17 @ tht2) =

J17J2 317382
Poabhsy RE(E1E5 @ 1243) =

J1 J2 41782
= po, s, (14 @ 1d @ V)(V @ id)RE(]! @ 132 ® @111 ) =
= for oz (RT)23(RF )2a(RF)1a(RF)14(25 ® 157 @ @1i122)
= [(RF)23(R*)2a(R*)13(RF)14(vy)s (v)a) (£ ® )AL Al
= [(R*)21(RF )24 (x4t )T (R )14(vu)a] Al (3 @ £32)

()T (")l ((RF)12(R¥)aa (8, @ 132)
We now assume that (5.1.56) is true when applied to any monomial ¢t of degree less or
equal than k and that (5.1.54) is true when applied to any pair of monomials ¢; and
t2 whose degrees k; and k; are such that k; + k; < k + 1. Now (5.1.56) is satisfied

for any monomial of degree k + 1, since we have:

(@u)(50) = [V ®1) = (4 @ $5)VE)RTRL(t ©1) =
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(V)5 @ ¥ RERL(t @ 1) = (v95)(451)-
Since (5.1.56) is now true for any monomial of degree < k 4+ 1, it is easy to check
that the previous proof of the comultiplication rule (5.1.52) extends automatically to

the case when we apply both members of (5.1.52) to any pair of monomials #; and %,
with total degree < k + 2.

Exactly the same applies to xf. Finally (¢2‘¢;) is a group-like element which

coincides with the counit of Agr, whenever it is applied to one generator. Hence

vF =) o

Notice that 1,bf satisfies in particular the following equation:

(5.1.57) (¥E @ ¥E)Rs = Re(dF @ ¥7).

and is 1 on generators. o

Now we can consider

(5.1.58) cF =vxE =Re(1® 5)A
and
(5.1.59) . =0 xE = Ri(S? @id)A

In particular we could consider ¢+ and 7~ which are clearly inverses. We have
R_(S? @id)A = RT(S ®@id)A = R (id ® S)A'

We will discuss later on that.

We now summarize the content of the Faddeev-Reshetikhin-Takhtajan construc-

tion exposed in this section as follows;

5.1.12 Theorem: Let R € End(CN ® C¥) be an invertible matrix satisfying the
Yang-Baxter equation and let Ap be the bialgebra defined before, with its dual Ug, its
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restricted dual U}. Then there exists an element R € Hom(Agr ® Ag, C), satisfying

the Yang-Baxter equation, and the following equation:
(5.1.60) RA(v) = A'(v)R
for any v € Uj.

If, furthermore we assume that there exists a diagonal invertible matrix p €
End(CMN) such that g ® p commutes with R and such that equation (5.1.34) is
satisfied, then U}, is a Hopf Algebra.

Finally if R and p are such that equation (5.1.50) is satisfied, then there exist
an invertible element 1, € Ur which commutes with U} and is such that %, ® ¥,

commutes with K.

For future use we define also the following bialgebras:

5.1.13 Definition: We denote by the symbol U7 the Hopf Algebra generated by
the entries of {A*} and {£7} and by the symbol Uy the Hopf Algebra generated by
the entries of {A™} and {E1}.

As far as link invariants are concerned we recall ([12], see also section (4.3) ) that
condition (5.1.48) corresponds to the regular isotopy invariance of suitable complex-
valued functions of link-diagrams under the first Reidemetster move, condition (5.1.32)
corresponds to the invariance of the same functions of link-diagrams under the second
Reidemeister move, while the Yang-Baxter condition itself corresponds to the invari-
ance under the third Reidemeister move, once the invariance under the previous moves

is already established.

5.2, Multi-parameter quantum groups and quantum determinants
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In this section we want to apply the FRT construction to the Yang-Baxter matrix
R € End(CN ® CV) given by:
T fi=j=k=1

zi,l ife=Fk+#1=y;
(5.2.1) R;c’fl(:c,zk,z) =
22 —z7% Hi=10>k=7;

0 otherwise,

where z and zp,; are non-zero complex numbers with 2z, = z",:’} Observe that this
matrix is the same as (4.3.5), with the conditions (4.3.17), modulo the sostitutions of
r— 2?25 — z,zcl, which we have done for convenience. When weset 2z, =1 Vk,I
we obtain the Yang-Baxter matrix relevant to the fundamental representation of
Uz (sl(N)). Such multi-parameter Yang-Baxter matrices are considered by Reshetikhin
in [31].

On the other side the matrix R(z,z;,) is obtained by “twisting” the matrix
R(z) = R(z,zx; = 1) with the the following diagonal matrix M = M(zx,;) €
End(CN @ CV) :

1 fi=j=k=1

(5.2.2) Mz”jl(zk,z) =9z Hi=k#FIl=73;,

0 otherwise.
(216 = 21)-

By “twisting” we mean that the following equation holds: R(z,zx;) =
M(z,1)R(z)M (zk,1). The matrix M satisfies the Yang-Baxter equation and the fol-
lowing obvious propertiess PMP = M~! and m(M™) = 1 for any n € Z; here
m : End(CY @ C) — End(CY) is the multiplication.

In a more general setting we have the following simple statement [31]:

5.2.1 Theorem: Let R € End(CN @ CV) be a Yang-Baxter matrix and let M
defined as in (5.2.2) . Then M RM is also a Yang-Baxter matrix. Moreover if there
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exists a diagonal invertible u € End(C¥) such that 4 ® u commutes with R and
equations (5.1.32) and (5.1.48) are satisfied, then p ® p commutes with MRM and
(5.1.32), (5.1.48) are satisfied with R replaced by M RM (without changing the nu-

merical coeflicient a).

Proof:t It is due to the following identities:

(MRM)™» = MRT:M; PMEM)P=MT7'PRPM™.

In the case of (5.2.1) the diagonal matrix u can be chosen as
(5.2.3) p = diag(z?NV-1 g2N-3) ... m2(1~N))_

Now we have the following theorem, whose proof is immediate

5.2.2 Theorem: Therelationsin Ag ensuingfrom RT1T; = 15T R can be written

as

(5.2.4) 2?th k=22 5k mo>an

(5.2.5) zpphtl =2tk 1>k

(5.2.6) 2kt =22 itk IS Em>n

(5.2.7) 22 R el — 22 qltk = (2 — )tk IS kn>m

The Hecke relation for R(z, zx,1) (5.2.1) is the same for any value of the parameters

z,1, namely we have:

(5.2.8) PR(z,zr)) — R(z,z5,1) ' P = (2 — 27?1
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From now on, we assume that the parameter z satisfies the following condition:

z* # —1.

We can now consider the following two projection operators [30] in End(CN @ CV):

: PR+ z?
2. PL=—
(5.2.9) R
—~PR+ 2?

5.2.10 P =——

where we set here and from now on, R = R(z, zx,1)-
The above projection operators are the quantum analogues of the symmetriza-
tion and, respectively, of the antisymmetrization operator; they satisfy the following

relations:
(5.2.11) PR = m2P+ —z7?P; P,+P_=1, PP =P P =0
and also

Py = M_I(Pﬁ:)zh,l=1M.

Following Gurevich [69] we consider the quantum ezterior algebra A2(CN) defined as
the quotient of the tensor algebra of the vector space CN with respect to the two-sided
ideal generated by the image of Py.

The quantum exterior algebra is obviously a graded algebra:
* N k N
A (CNy = AL(Ch).
k
Analogously to the ordinary exterior algebra case we denote by the symbol a A, b the

image of a @ b in A,(C¥). We have now:

5.2.3 Theorem: A basis of Aé‘(CN) is given by {e;, Ag ei, Ag +-- Ag €, } With
i <dg < e < Bpe
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Proof:  From the equations:

S RP(ejAge) +a 7 (er Ager) =0 Yk, !
%]

we have immediately:
erNg e =10, Vi

and also:
(5.2.12) ex Ng er = —z’ 2z} ((e1 Ag ex), Yk >,

and there are no further relations between the elements {e; Aqe;}. Hence the quantum
exterior algebra is not alternating and in particular given any a € C¥, a A, @ is not

necessarily zero (28], o

We consider now the quantum analogue of the antisymmetric tensor; it is denoted

by the symbol u,(1)o(2)...o(sv) and, by definition, it satisfies the equation:
(5.2.13) €a(1) Ng €a(2) Ng *** Ng Ea(N) = Uo(1)o(2)-o(N)E€1 Ng €2 Ng =+ Ng €N,y

for any permutation ¢ of 1,2,--+, N.

5.2.4 Theorem: The quantum antisymmetric tensor is given by the following ex-

pression:

(5.2.14) Uoe@-o) = (=) ] 2,

trans(c)

39]

where [(o) is the length of the permutation o [*%! and the product is extended over

the all the transpositions e Ay e; — e; Ag ex which are needed in order to transform

3 As a comparison, note that the quantum analogue of the symmetric algebra sat-

isfies the following relations (the notation is evident):
€L ®3]q e] = :z:_zzz’l(ez ®-"l‘1 ek) Vk > 1

and so the quantum symmetric algebra is not commutative.

39 i.e. the minimum number of transpositions of contiguous vectors which are needed

in order to transform eq(1y Aq €(2) Ag *** Aq €x(v) into e1 Ag ez Ag -+« Ag en.
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ex(1) Nq €a(2) Ng "+ Aq eo(vy into e1 Ag e2 Ag ++- Ag en, irrespectively of the chosen

sequence of transpositions.

Proof: It is immediate from (5.2.12) and from the fact that z;x = z,:’ll. i

We consider also the tensor v?(1e(2)o(N) defined as:

(5.2.15) v () (2)o(N) = (_g)2H) H i3,
trans(c)
where the product is extended exactly as in (5.2.14) .

The definition of both u and v is then extended to the case when we are given an
arbitrary set of indices; we simply set both the above tensor to be equal to zero when
two repeated indices appear.

In the following, given any permutation o, we will use the shortened notation u,
and v° instead of us(1)0(2).--0(v) and po(1)e(2)o(N),

We now have the following:

5.2.5 Definition: The quantum determinant Dy in Ap is defined as:

(5.2.16) Dy = ut{Mig® .7,

o

We have then the following

5.2.6 Theorem: For any set ofindices 1,12, +,1, we have the following identity
in AR:
o(2 (N
(5.2.17) Uiy igeripy Dq = Z uatz(l)tiz( ). 'tilfr ).
[+

where the sum is extended over the set of all permutations o of {1,2,---,N}.
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Proof:  Consider the effect of one exchange in the definition of the determinant.

o(1) Lo(i) Lo(i+1) Lo(n)
(5.2.18) Zt,r(1)-"t7r(i+1)t7r(i) "'tvr(n)u"

This can be written as

5(1) ,5(i+1),83G) L&(n)
Z OO L e OO S L

where & coincides with o except
(i) =c(i +1)
G(i+1)=0c(2)
This can be rewritten using the relation

thtl =22 otk 22 (22—t E>Ln>m

as
5(1) ,5(),6(+1) L5(n)
(5.2.19) | Ztr(l)...tw(i)tw(i HEAI T
2 -2 o(1) Lo(i),o(i+1) ,o(n)
2R 1), () (1) T D 1) (i (i 1y iy X

[=6(c(?) — o(i + 1)0(x(i + 1) — (i) 27 (i1 m(iy (& — 277+

F8(o(i +1) = o (0))0(r() — 7 + D)1y o2 — 27%] =
Use now
(5.2.20) Ug = —uéwze(a(i)_a(i+1))z§(i),a(i+1)

(5.2.19) can be rewritten

_ (1) L5(8),8(i+1) ,&(n) _2e(a(i)—o(i+1))
Z tﬂ_(l)...tﬂ_(i)tr(i_'_l)...tﬂ(n)ug:c

2
Zr(i+1),m(i)
o(1) Lo(i),o(i+1) Lo(n)
D DA S e b
[-0(e(@) — (i +1))0(m(i +1) — Tr(i))z;(";+1)’w(i)(w2 — %)+
+0(o( + 1) — &(2))0(m(?) — m(z + 1))z;zi+l)’7r(i)(w2 —z7 %)) =
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- o(1) Lo(i),o(i+1) Lo(n) 2e(a(i+1)—0o(3))
= = Y ATt it 1)y Yo ®

2 of1) Lo(i),o(i+1) Lo(n)
2 i m() T D ety a(iy el 1) Ea(m Yo
[—8(0(5) — (i + 1))O(m(i +1) = ()22 (irn),m(ey(2* =27 )+

+0(o(i +1) — 0(5))8(m(5) — (i + 1))z (i1 (i (2 —2 7)) =
Now consider the contribution for these four cases:
1 o(i) > o(i +1),7(i) > m(i + 1) The only contribution here is —w~2z721'(i+1),7r(i)'
2 o(i) < o(i+1), (i) > w(i+1) The contribution now is zfr(i+1)’w(i)(—:c2+zz——a:‘2).
3 o(i) <o(i+1),n(x) <72 +1) Now —:z:zzfr(iﬂ)m(i).
4 o(i) > o(i +1),7(i) < w(z + 1) The contribution now is z72r(i+1),7r(i)(_w_2 —z? +
z7?).
Now consider the case in which 7 is not a permutation. We can suppose, by

commuting possibly as before that there exists an index ¢ such that n(7) = (i + 1).

Then we proceed as before using the commutation relation
th gk = g2e(k=D 2 gk 2l
(5.2.18) can be written

(1) w (i) w(i+1 W(n)ua Zcr(i-{-l),g(i)ua

Zta(l) to'(i'l'l)ta(i) )...t&(n) mze(o‘(i—!-l)—d(i)) 2

Introducing & as before and using (5.2.20) we get

— o(1) Lo(i),o(i+1) Lo(n)
(5.2.21) == > Tt in iy b
which means that (5.2.21) is zero, being equal to its opposite. o

5.2.7 Corollary: D, is group-like.
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Proof:  From (5.2.17) we have immediately:

a' o2 0' N 1 2 N
A(Dq) = Z p((ll))tp((")) ) p((N)) ®t§( )tp( ). tf\; ) = Dy ® D,.
ap

Also we have:

5.2.8 Theorem: For any set of indices 1,13, --,in, the following identity holds:

(5.2.22) A VP Z atff(n :7(2) -ty

o

Proof:  For convenience let us write
vP(z, z11) = vP(2)v?(211) = (—2)* P vP(2))
uo(Z, 2k1) = up(T)u,p(zr1) = (_‘m)zlpup(zkl)
The proof is subdivided in two steps. First we want to proof that

(5.2.23) Dy =Y v thaytae o)

(=3
Then it will be trivial to show (5.2.22) using completely analogous arguments to the

ones used in proving theorem (5.2.7) . From the definition of the determinant we

Z Zt;g)).... T ueuzl = NID,

Let us consider the sum over ¢. We want to reduce o to the trivial permutation. In

easily get

order to do that use the commutation relation
(5.2.24) tj-t{" = zjz-,lzﬁ,itft; — z;‘;,i(mz - w"z)t;‘?tf
It is easy to see that each permutation o give rise to a term of the type

a(1) () -1
Z tma_l(l) ma_l(n)uauﬂ_
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plus a lot of other terms coming from the second term in (5.2.24) . Now we will
consider the terms contributing for fixed 7 to a lower permutation p. We can define

a permutation o as the permutation such that p = mo o1,

Then o contributes
to the lower permutation p, but to the same lower permutation contribute all the
transpositions & which contains some additional transpositions with respect to o.
More precisely the permutations & can contain any of the permutations ¢;; such that
7(i) > 7(j). Now consider the z dependence of any term contributing to p. We have

2 -2 —2 2
IT & I =% I =i I1 =

trans(&) trans{w) trans() trans(o)
and this is exactly equal to
_2 2 -2 >
H %,n H znq = H zk,l = UP(ZZJ)
trans(w) trans(o) trans(p)

Now let us concentrate on the z-dependence. Let k = Iz — [, We have usuyt =

(—z)?% (—z)~ 2 then form (5.2.24) came the additional factor (z™% — 2?)*~*. So
we have to compute 3., (—a? 4+ z72)le ~le (—z) 22l = (—z)%e = vP(z). So we get
a term independent of 7 call it D). Summing over 7 we have V1D, = N!D; and hence

the theorem. o
5.2.9 Theorem: If z;;+# 1, then D, is not a central element
Proof: In fact we have:

(5.2.25) 4Dy = (][] 22.,22,1) Datic

3

We denote now by the symbol Aﬁ the bialgebra obtained from the bialgebra 4g
by adjoining the group-like element (D,)~!. We want to prove that Aﬁ is an Hopf
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algebra. In order to define an antipode in Aﬁ we need to consider a quantum comatrix,

namely a collection of N? elements of Ap denoted by (O’of); satisfying the equation:
(5.2.26) > ti(Col)] = D,éi.
J

The previous equation defines in fact a right quantum comatrix. The corresponding
left comatrix (Coé)j is, by definition, the collection of N? elements of Ag satisfying
the equation:

(5.2.27) > (Cok)it] = D,éi.

j

5.2.10 Theorem: The right and left comatrices exist and are unique. They are
given by the following expressions:

(5.2.28) (CoB)i = (—2)2¢=9 [T 22, [] (Do),
k<j k<i

(5.2.29) (ColYi = (—2) D [T 22, T] #2u(Do)i,

k>j k>i

where in both the above expressions the symbol (Dq)j~ denotes the quantum determi-
nant of the matrix obtained from the matrix T by eliminating the :—th row and the

j—th column.

Proof: ‘We set:

vt = vz,l,---,z—l,z-}—l,---,N — H(_mZzz,i)‘

k<i
For any permutation o satisfying the condition (1) = j, we have v° =
v (2)e(®)yo(N) Hence from (5.2.22) we have:
(5.2.30)
— 1\— 41 ,0(3), (N t—1 4141 N
Dy =3 (o) oIti[ D0 ot NI g ot A et s

J os.t.o(1l)=j
where the term in square parentheses is the quantum determinant of the matrix ob-

tained by deleting the i—th row and the j—th column.
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Also from (5.2.22) we have:
_ j 4k o(2),0(3),-c(IN) ;1 2 i—1 411 N ;.
0=2 [ 3 oI ey o ey o] Tork #1
J o s.t.o(l)=j

This proves (5.2.28) .
In order to prove (5.2.29) we have to perform completely analogous calculations

in which we first define:

— _ 2.2
Ui = U2, i—1,i+1, Ny = H(—m Zk,i)
kE>i

thus obtaining:

_ o(1),0(2 o(i—1),0(1 o(N-1)1.,7
Dy = Z(ui) luJ'[ Z ua(l),a(2),---,o’(N—1)t1( )tz( ). 'ti—(-l )ti—l(-l) see tNg ]tg,
J o s.t.o(N)=j

where again the term in square parentheses is the quantum determinant of the matrix

obtained by deleting the j—th row and the i—th column. o

5.2.11 Theorem:

(5.2.31) D, (Cof)i = (Cop); Dy.

Proof: It is a direct consequence of (5.2.25) . o

The previous theorems allow us to define an antipode S in A?ﬁ;. In fact we can set
(5.2.32) S(t;) = (Cof)j- (D)™ = (Dq)—l(C'oé’);'-.

(5.2.26) and (5.2.27) guarantee that (5.2.32) is consistent with the requirement for

an antipode. In particular we have:
(5.2.33) D OES() = > S, = 6.
J j

Also from (5.2.26) and (5.2.27) we deduce the following
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5.2.12 Theorem: We have:

(5.2.34) A(Cof)i = > (Cof); ® (Cof);

38

(5.2.35) A(CoE)e = (Cok); @ (Cof):.

We have also the following identities:
(Dl =1;  nl(Col);)] = nl(Cog)})] = 6.
This forces us to set:
W[(Dq)—ll =1

and hence:
(5.2.36) S(D)*) = (D).

The problem now is to compute S((Cof)%). From the previous equations we have the

following

5.2.13 Theorem: The following equivalent equations are true:

(5.2.37) 5(Cog) = (Dg) ™ (u™'T),
(5.2.38) 5(Cog) = (k7 Tu)(Dy) ™,
(5.2.39) S*T) = p~ Ty,
(5.2.40) S*(Cof) = p~*Colu,

(5.2.41) S*(Co?) = p*Cof p.



Proof:  We prove (5.2.39) namely we consider S2(tk) = DqS((C’of)j).
It is given by:
(5.2.42)
Zt"(” TS S AR AR AR PRE S LD (PR R
o 5.t o(i)=3
here we have used the symbol o[i, 5] to denote the permutation of {1,2,-+-,7—1,7+
1,-+-, N} associated to each permutation o satisfying the requirement o(z) = J.

We define now
2 2
U; = 4,12, N = l i("w Zi,k)

k<i
(5.2.42) 1is in turn equal to:

n(1)ym(2) (@) (il () -1,
Z Zt to(1) " “to(iz Dle(it1) a(N)(vJ) (“j) VlUx

gstoo(i)=j T

SIS - SEEEISEETY) - SEE™)

_th(l)é-vr(N) . 5:’_*(_zl+1)57r(1) . 5;\'(2)(1);,’)—1(&]_)—1”1'1(‘7‘_

= (o) (@) e = 4 EIE =
i.e.

SHT) = p Ty

In conclusion we can state the following:

5.2.14 Theorem:  The bialgebra Aﬁ is a (non involutive) Hopf algebra with

bijective antipode.

We now have to define the action of the elements of U3 on Aﬁ, namely we have
to define the action of U% on (D,)~!. In this way we will establish a natural pairing
between the two Hopf Algebras Aﬁ and U%.
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First notice that we have
(AF)i(Dg) = pi8;  (65)i(Dy) = (p7) 7165,
+ . .+

where p;” = z*2 I1;.. z .

This implies that we have to set:
(5.2.43) (AE)((Dg)™) = (pF)16% (65)L(Dg)™) = pF 61
Also notice that

v (Dy) = det™ () = 1
so we have to set
(D)) = 1.

It is immediate to prove the following:

5.2.15 Theorem: Lety bethe antipodein U3 andlet S be antipodein Aﬁ defined
before. We have:
))(8) = vISE), Yt e A, W e Uk

It is useful at this point to characterize more precisely the Hopf algebras U}, U3,
Ug and Ug (see definition (5.1.13)}, when R is given by (5.2.1). This is done in the

following theorem whose proof is again immediate:

5.2.16 Theorem: When R is given by (5.2.1), then the matrices A* and E* are
triangular, namely for ¢ > j we have {A%)% = 0 and (£7)% = 0, while for ¢ < j we have
(A7)i = 0 and (¢1)i = 0. Finally all the elements (¢¥)f and [(A*)! are group-like,
. they commute with each other and (fi): = [(AF)i1.

We consider now the set Kp C Aﬁ defined as follows:

(5.2.44) tec Kpow(t)=0, VveU:.
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It is immediate to check that Kg is a two-sided ideal and that we have: ¢ € K =
S(f) € Kpg.

Hence the antipode S descends to Aﬁ/KR and the latter algebrais a Hopf algebra.
Furthermore we have, as a consequence of the previous considerations, that the Hopf

algebras Aﬁ/KR and U3 are dually paired and that the pairing is non singular.

Here we use the same definition considered by Majid [70] , namely two Hopf
Algebras H; and H, are said to be dually paired if there exists a bilinear form < .,. >
such that for any a,b € Hy, z,y € Hy we have

<abyz >=<a®b,Ax(z) > <Aia),z@y>=<a,zy >;
and
<lLiz>=m(e); <a,1>=mla); < Si(a),z>=<a,5(z)>.

Here A;, n; and §; denote respectively the comultiplication, the counit and the an-
tipode in H; for: = 1,2.
Now we want to consider the morphisms R+ (5.1.37) and R* (5.1.38). Due to

the triangularity of the matrices A* and Z* we have:

A N . ~ N .
Ri(Dq) = H(/\i)é; ’Ri(Dq) = H(éi):

Hence we can set:
ﬁ'i((Dq)_l) = 7%':F(Dq)3 ﬁi((Dq)_l) = 7%‘:F(DQ)'

From the definition above we can straightforwardly extend the definition of Ry, R=E

and of ¢f so to include their action on elements of Aﬁ ® Ag and respectively of Aﬁ.

5.2.17 Theorem: The following identities hold:

(5.2.45) Rz =RE o 5; RF¥ =Rxo8L
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Proof: It is a simple consequence of (5.1.28) and (5.2.33) . =

The existence of a bijective antipode in Aﬁ and the ensuing equations (5.2.45)
allow us to express the four homomorphisms R+ and R in terms only of 7%,_;_ and
R— (or in terms of R4 and R* if one prefers).

From (5.2.45) and from the identity: v o R4 = RF other useful identities follow.

In particular we have:

(5.2.46) yoRe=RsoS L v 1oRL =Rio0S;
(5.2.47) yoREF=RE085™! 4 loRE=RE0S.

Moreover for any t,,t, € Aﬁ we have

(5.2.48) R+(S(t1),t2) = RT(t1,82);  R¥(t1,5(t2)) = R(ta,1:)
and
(5.2.49) R(S(t1), 5(t2)) = Ra(t1,82);  RE(S(t1), S(t2)) = RE(ta, ta).

As far as the ribbon element is concerned, notice that by setting u = v;lfl,b; we
have, Vt € Aﬁ:

u(t) = 7?,_(52 QR Id)A(t) = R4 (Id® S)A'(¢); « (1) =~7?,+(Id® SHA(2),
and moreover:
Vi (S(t) = [Re(Id@vy M)A (S(2) = [Re(TdRv;)(S®S)A(E) = [(1d®v,)R]A() = $E(2).

Given any Hopf Algebra H, we denote now by the symbols H°PP and H¢°°P the Hopf
algebras with opposite multiplication and, respectively, opposite comultiplication.

We consider now the following two-sided ideals of Aﬁ :
Kf=Ker(Ry); KE = Ker(R_)= Ker(RH).

As a consequence of the previous identities we have:
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5.2.18 Theorem: The homomorphisms of Hopf Algebras:
(5.2.50) Ryt AL /KL — (US)??; R : AL/KE — (Ug)*

are isomorphisms.

For any ¢t € Aﬁ we denote now by [t]; and by [t]77 the corresponding equivalence
classes in Aﬁ/K;’z and, respectively Aﬁ/KﬁI. We define:

(5251) < [tg]II, [tl]f >R= R.;.(tz,tl) = R+(t1,t2) = R_(S(tl),fg).

Hence we have the following:

5.2.19 Theorem: The pairing < .,. >x defines a non singular bilinear form for
the two Hopf algebras Aj@";/K}2 and Aﬁ/KﬁI (and consequently for the two Hopf
Algebras (UZ)°?? and (Ug)°?.)

Notice that < .,. >g gives only a non singular bilinear form, not a dual pairing
of Hopf Algebras. On the other hand the following theorem follows immediately from
the isomorphisms (5.2.50) :

5.2.20 Theorem: The dual pairingof the Hopf Algebras Aﬁ/KR and U3 descends
to a non singular dual pairing < .,. > between the Hopf algebras Uf and (Ug)eo°?
and between the Hopf algebras Uz and (U )°°°%.

In other words if, according to the pairing < .,. > of the previous theorem, we
denote by the symbol * the (restricted) Hopf-Algebra dual, we have:

(5.2.52) (Ug) = (UE)er; (UF) = (Ug)™,
and the obvious relations:
Uiy~ =U%; (Ug)*=Uz.

These Hopf algebras are then the multi-parameter generalization of Uz(b+), where by
are the Borel subalgebras of sI(IV).
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The previous two theorems yield the following factorization property:

5.2.21 Theorem: R is represented by an element of Uf ®U5 where @ denotes a
completed tensor product (so that formal power series [40] of ordinary tensor products

are included).

By using the standard terminology, we call R € Uz ®Uy C UL®U} the Universal
R—matrix. Once we are given linear bases in U7 and in Uz which are mutually dual
under the pairing < .,. >, then we can compute explicitly the universal R—matrix
for the multi-parameter quantum groups. A P.B.W. theorem can be proved in this
case by adapting the arguments of Rosso [71]. This explicit calculation will be given
in a forthcoming paper. Before considering the explicit expression of the universal
R—matrix, we need to express the algebra U}, in terms of generators and relations.

This will be done in the next section.

For the time being, taking into account the results obtained so far, we can state

the following:

5.2.22 Theorem: The FRT construction applied to the matrix (5.2.1) provides a
multi-parameter family of quasi-triangular ribbon Hopf Algebras.

Let us now compare briefly the situation when the matrix R (5.2.1) depends on
generic parameters & and zj; vs. the situation when z is generic and z,; = 1, VE, 1.

In the second situation (i.e. in the ordinary one-parameter quantum group) we have:
(5.2.53) (V) = (€2)iVi (s = 1)

In the one-parameter case usually the matrix R € End(CN @ CI) is normalized
by a constant factor, i.e. one consider, instead of R the matrix R = z 2/NR [30] so

that det(R) = 1. Let us denote the corresponding generators in Ull-{ by the symbols

4% The variable h for this power series expansion is obtained by setting z =

exp(—h/2).



167

A* and E*. As a consequence of the normalization we have the following constraint

on the generators of U 115L:

N
(5.2.54) IO =1 (20 = 1).

i=1
In the generic multi-parameter case the equation (5.2.53) is not valid any more.
Moreover if we multiply the matrix R given by (5.2.1), by the same factor 272/ (so
that again we have detR = 1) then we obtain a constraint different from (5.2.54) ,

namely we obtain:

N N
(5.2.55) H(Rﬂ:ﬁ = H(i—);;

Hence in the one-parameter case Ug and Ug have in common the set of N generators
(AH)i = (1), subjected to the relation (5.2.54) , and their inverses (£7): = (A7),

while in the generic multi-parameter case Ug and Uz have in common only the element

(5.2.55) and its inverse Hfil(é—)g = Hil(f—+): Since the element (5.2.55) is given
by R(D,) = R_(D,) (with R replaced by R) , we will refer to it as the dual quantum
determinant and denote it by the symbol A,. Like Dy, A, is not a central element in

the generic multi-parameter case.

The differences between the one-parameter and the multi-parameter case dis-
cussed above, may be relevant as far the construction of the quantum double is con-
cerned. We can in fact consider the quantum double of Ug (see [30]) which will be
isomorphic to Ug ® Uy as a coalgebra, while the multiplication and the antipode
will be “twisted” according to the prescriptions of [30]. In the ordinary (i.e. one-
parameter) case, one has that the quantum double is isomorphic, as a Hopf Algebras,
to the tensor product of the quantum group times the Universal enveloping algebra of
the Cartan subalgebra of the given Lie Algebra (in this case si(N)).

In the generic multi-parameter case, instead, the quantum double will be isomor-
phic to some tensor product of the quantum group times the abelian algebra generated
by the dual quantum determinant A, and its inverse. In other words the introduction

of many parameters removes a “ degeneracy” of the quantum double.
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5.3. Generators and Relations

In this section the Yang baxter matrix R will be always given by (5.2.1). In fact
we will mainly consider the matrix R obtained by dividing R by its determinant.

We will give now an explicit presentation of U;—; in terms of generators and re-
lations. From this construction it will be apparent that, for generic values of the
parameters:

a) the number of independent generators of U % is given by the same number of
independent generators of U(sl(N)) plus N. This extra number of generators
is due to fact that corresponding to each generator of the Cartan subalgebra of
sl(N) we have two generators in U}% and moreover we have the dual quantum
determinant;

b) the relations among generators correspond to a multi-parameter quantum version

of the Serre relations. Moreover when z;; — 1 then U%z' becomes U, (sI(IV)).

For those reason we replace, from now on, the symbol U—lﬁ with the symbol
Us 2, (sI(N)). In terms of the quantum double construction, as we anticipated in the
previous section, the multi-parameter QUE, U, ;, ,(sl(N)) tensored by the abelian
algebra generated by the dual quantum determinant A, and its inverse will be iso-

morphic to the quantum double of U}—%.

We can formulate the following edsy theorem.

5.3.1 Theorem: The relations for the generators of U}, following from the basic
relations (5.1.16)-(5.1.19) can be expressed as

(5.3.1) L2 AE)p(AE)G = 25, (M)A d>b
(5.3.2) 22 JOF)FOH)E =2 AFEOHT m>n
(53.3) 2 (EPOR)E = A,05057 m>n,d>b

(5:34) 22 (AE)FOH)F = 25, AEFOHT + (2° — 2 )OFROHT m>nb>d
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(5.3.5) Z(AH)p(AT)E = 23,(A ey b>d
(5.3.6) [(AT)5 (A7) =0
(5.3.7)

2 NP2, O = (67— A TFONP-(FADF| > din>m
(5.3.8) 2 OO =2 (RO a>m

(5.3.9) 22 AT )E = 25 (AT d>bn>m b>dim>n
plus the exactly analogous for the ¢ * and

(B (ETY = 60 (€D = 8

Moreover we have

5.3.2 Theorem: For j >k > ¢ we have:
(5.3.10)
(V)i = 2?(2? —2 =) T ()EEEAT)L — 272 (2 — =) T O L(ET RS

while for 7 > k > j we have:
(5.3.11)
(A =2 (z? —2 )T ATRENEIAT)] — 2T (=" - 2T ATEED RO )i

Proof: It is shown by direct calculation that these relations applied to generators .
of Ag yield identically zero. Then by inductive techniques it is possible to extend the

result to monomial of generators. Q



170

5.3.3 Corollary: Each one of the generators ()\+)§, i1 < j can be expressed in
terms of the generators (A1)i,; and (¢7)F and similarly each one of the generators

(A7)%, i > j can be expressed in terms of the generators (A7)iT! and (€1)%.

Proof:  Obvious by recursion. o

Similarly one can prove:

5.3.4 Theorem: Each one of the generators (é");, ¢ < j can be expressed in
terms of the generators (€7)%,; and (AT)* and similarly each one of the generators

(§+)§-, i > j can be expressed in terms of the generators (¢1)it? and (A ™)E.
Moreover we have:

5.3.5 Theorem: The generators (£7)i,; and (£¥)i"! can be expressed in terms
of the generators (¢7)z, (E_)fﬁ, (AT)i,, and respectively (f'*‘)::ii, (6T)E, (A7)iH,

Proof: Eq. (5.1.28) and the triangularity imply:

E)HAT )i + (€)M D)L =

and a similar equation for (£7)i12, o

We are now left only with the following independent generators: (X*’)::_H, (x\")::'H
(M%)} and the inverses of the latter ones (¢F)i. In the one-parameter case one has
(€1)i = (M%), while in the generic multi-parameter case, this is not true any more
and that is the main difference between the two cases.

Now we are in position to construct explicitly generators and relations for

Uz ,z, ,(81(N)). From now on we consider the renormalized matrix R.
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In order to have a better picture of the relation between the generators of the
multi-parameter quantum group and the corresponding one-parameter generators, ex-

pressed in the most common form, we find it convenient to consider the square roots
of (A*)} and of (£¥)L,
More specifically we set for any ¢ € Aﬁ:

(AH)i(t) = /(32)i(),

that is:

VODIEE) =27V afzuk £ /(i) = oV skas(h £ 4 4/(5)i(th) = sia=0-2/0,

A similar definition is given for 4/ (fﬂ:):
The introduction of such square roots does not create any serious problem, since
they are group-like elements. In fact it enable us to express the element v, in terms

of these square roots as follows:

0 [Vene]

We are now ready for a redeﬁmtlon of the generators. We set:

1

(5.3.12) Ef = wmzi,iﬂ(:\ﬂg“ (5_):(5_)2117

1 - -+
(5.3.13) E[E—w_lm ir1,i( A7 )IH (f+)1+i(f )u
(5.3.14) K = /(A5

(5.3.15) K =]y

=1

Hence the independent generators of ¢, -, , (s{(N)) are (43I
Ef KF (KH)" S K, K™Y i=1,--,N—1

41 With the above definition of the Eii’s we have E’f(tf") = 5f+16li and E:(t{“) =
kst
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(In the one-parameter case we have Kif =(KF)"! and K =1).

th satisfy the following comultiplication rules:
(5.3.16) V(EE) = Bf ® (KF)™ + K ® EF,

the other generators being group-like. Using also the easily established commutation

relations (they follow directly from theorem 5.3.1)

(5.3.17) EF O™ =222 (AR ES

(5.3.18) EXON Tt =2 %2k (R ES

(5.3.19) Ef (=22 2h JATREL m>n and n—m>1
(5.3.20) (), (ARl =0

(5.3.21) E; ()t =2 WA R B

(5.3.22) Er (A )n =2tz (AT )REL

(5.3.23) EZ- (A7) = 22 o i_HmEm()\ b om-—n>1 n>m
(5.3.24) Ef(A ) =272 na (A )RES

(5.3.25) EX(z)rtl =222 (\HES

(5.3.26) EX (A7) = zn mZmmr1 (AT ) B m>nin > m+ 1
(5.3.27) By (A )n =220 (AR E,

(5.3.28) By (M)l = 22 ()R By

(5.3.29) E;0N)m =22 2t JANRE; n>mim>n+1

The commutation relations become:

(3.30) [BL,ES|=0; [i—jl>2,(e=%); [BfE;]=0Vij;
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(5331) [Ki,Kj] - OV‘L,] (6 - i): [Kz )Kj ] - [Kz 7K] - 07 VZ,],

(5.3.32) [Ef, By = (2% —e ) (BT KD - KS(KD)7Y), V5

In order to get these relation it is enough for the ones involving the Kii’s just to apply
on one graded generators. For the others a little more work is needed. Finally we

have the “quantum Serre relations”:

(5.3.33) EF(BL) + (BLL)PEf = (2 + = ) EL, Ef ELy, V5

(5.3.34) E L (ET) 4+ (E7VEL, ==+ ?)E EL, E7, i

1]

In order to get the last ones proceed as follows: consider the commutation relation
(5.3.35) (A+)2+1(A+)Z+z = w‘22i+z,n+1(k+)ﬁ+z(k+)Z+1
rewrite (5.3.35) as

O { TN  — OO0z

= 2’_22721+2,n+1{(’\+)2i§(§— Zii(k+)2+1 - (/\+):+1(§_ Z‘ii(A+)Zi§}(A+)Z+1
Using the redefinition of the generators we have

B O RO B O RO R R OORO T -

o~ B OO R By O EROTR

= 72| B JOHONRE 1B OO -

22 EF /(0 )n () mH (6)2HEL,
YORRONEE b a o eeRT
Using now the commutation relations
VONRE, = Znt2,nZnmni1 B vV (AT)2
VORES =2 2001 2 BF V(AT)R




174

VONRHEED = 2z n B/ (V)0

AFREIEY = zng2 nznta e B A/ (AT) 013

we easily get

E:{wzn+2,nzn,n+1zn+2,n+1E§+1 \/(“)Z(AJ’)Q:E%E: \/(/\“L)Z(M')Zii—

R Y (O P ]

_ =22 + + n+2
= zn+2’n+1{mzn,n+lzn+1,n+23n+2,nEn+1En \/(A+)2(A+)n+2_

+ i i mrsonama B B RORTE L B 0RO

+ -
E: {zn+2,nzn,n+lzn+2,n+lzn+1,n2n+2,nzn+1,n+2En+1E; -

—2 -+ n+1 n2 +\n
- n+1 n n+2 n%n n+1E En+1}\/()\+)n+l()\+)n+2(>\ )n

-2,2 -+ -+
=T zn+2,n+1{zn,n-i-lzn—l-l,n+2zn+2,nzn+1,nzn+2,nzn+1,n+2En+1En -

-2
—Z  Zn+2,nfn,mn+1Zn+1,n4+22n41 ,nzn+2,nzn+1,n+2E:E:+1 }

EF /OO ()
And so

(E+)2E +1 T En+1(E:)2 = (fc_z 2)E+En+1E1—:

Finally the commutation relations between the group-like generators and the non

group-like ones read as follows:

(5.3.36) EtKf =*K}YEr;, EXKT =<K Ef, ¥
(5.3.37) E K] =2*K[E]; E K =z*KIE], Vi

1

-2 .
(5.3.38) Ef Kt =272z 20000200, K5 B, Vi
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(5.3.39) EfKf =2 %z 1 mziim1zip,: K B, Vi
(5.3.40) Ef K, =2 zig1izive,im1zia K B, Y
(5.3.41) EfK[, =z zip1i-17ic1:%im K B, V5
(5.3.42) Ef K, = zzi i1 zig1ipezire i K B Y5
(5.3.43) Ef K, =ezi 1z zi01,: K B, VY5
(5.3.44) E; K} = 2zipyizipe i1 ziie KL B,V
(5.3.45) E:Kj'_l = wzi+1,i—1zi—1,i3i,i+1Kf_1E,'_, Vi;
(5.3.46) EfK =22 [1 (zariz)KES, V5
joi,i41

(5.3.47) EfK =z, || (zazr1)KED, ¥

‘ G+l
(5.3.48) Ef K} = zjipizijziin iz KBS, =712 2
(5.3.49) EiK; = zip1iziaz 200 K B, li— gl 22
(5.3.50) EfK; = Zj,i—i—lZi,jzi-{-l,j-i-lzj-}-l,in_E;_7 li—J=2
(5.3.51) EBi K = ziy1,5255%5 1 im 50 K B, li— g1 > 2.

Notice that if we assume, as in the case of invariants of links in X x [0,1] (2 being a

non trivial 2-dimensional surface), that

ziy =2z fori>k; and z;= z71 fori <k,
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then all the coeflicients in equations (5.3.48) , (5.3.49) , (5.3.50) , (5.3.51) become
simply 1. Observe finally that in terms of the generators

(5.3.52) M7 =/ K (Em)™?

(5.3.53) M, =+ KLiKx

we get the following commutation relations

(5.3.54) [EE, MY]=0 |n—m|>1

(5.3.55) EBIMt; =M ES

(5.3.56) EEXMY =T M} EE

(5.3.57) EEMT  =F'MTEE

(5.3.58) Ef M, = {zmnt1%n,mZnt1,mi1%mt1,n M EF,
(5.3.59) EXM7 = M7 E}

(5.3.60) EFM7,, = {zZnnt17ns1,ntr25nt2,n M BF
(5.3.61) Bf My = {zn-1,nt12n,n-17nt1,n} My, EF
(5.3.62) B M, = {znt1,m%mn%m+1,n+1%n,m+1 M EL
(5.3.63) | E7M7 = M E;

(5.3.64) EZ My = {znt1,n%n42,n4 120,042 M B

(5.3.65) E; M. ={znt1,n-12n-1,nZnnt1} M, _ E;
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6 . Quasi-Hopf algebras and Conformal field theory

In this chapter we will discuss some subject appeared through this thesis, mostly
in an informal way.

In section 6.1 we will first present the Drinfeld’s example of quasi-Hopf algebra,
and the theorem of Drinfeld itself on the universality of such example.

We will also recall the two representations of the braid group (see [72],[23] [73])
which the Drinfeld’s theorem shows to be equivalent.

In section 6.2 we will consider the Moore-Seiberg axioms for rational conformal
field theories and we will give some idea toward their interpretation in the spirit of

quasi-Hopf algebras.

8.1. Drinfeld’s example and braid group representations

Consider a Lie algebra g over C[[h]], and let ¢t € ¢ ® g a g-invariant symmetric
tensor. Suppose moreover that g is a deformation of a complex Lie algebra gq i.e.
go = g/hg. Starting with these data Drinfeld [24],[39] constructed a quasi-Hopf algebra
Ag 4. For simplicity we assume now that g = go[[k]] be the loop algebra of gg, h being
the parameter of the loop, in this case ¢ € gy ® go; and ¢ becomes a solution of the
classical Yang-Baxter equation. Now as algebra A4, ; is isomorphic to Ug. In particular
if g = gol[A]], then U'g = Ugo[A]).

Now define the comultiplication as usual on elements in ¢:
(6.1.1) Ala)=a®1+1Qa,
but set

(6.1.2) R = eM/2,



178

Because R commutes clearly with A(a) = A'(a), for any a € Ug the almost cocom-
mutativity (1.1) is satisfied. We have to find & which satisfies the other properties, in
particular the pentagon relation. Let G € Ug®? a solution of the differential equation:
aG t12 t23
CA NN L
Oz z =z-—1

and let G; a solution characterized by the asymptotic behaviour at 2 — 0 as

|G

Gi(z) — ght
and let G2 defined by the behaviour
Gy(z) — (1 —z)™ 2z —1
Then define
$ = GZ—IGl.
Clearly & does not depend on z. It is clear that ® commutes with (A ® id)A and
so verifies the almost coassociativity (1.2.1). We want now to show that ® as defined
satisfies the pentagon condition.
In order to do that consider now solutions of the equations:

(6.1.3) 8W =h >

t4

-W

In general we have solutions Wy, Wy, W3, Wy, W5 of (6.1.3) characterized by their
asymptotic behaviour in some asymptotic zones. Each asymptotic zone moreover
corresponds, as we will see, to a possible way of putting brackets in 4 objects. We
will describe the asymptotic zones by a line in which we put the 4 variables z; in
such a way that their distance “represents” their (relative) asymptotic behaviour. For

convenience recall the asymptotic zones:
z1.20..23....24 (W1)
212202324 (W2)
21....22..23.24 (W3)
Z1ee22.23.28  (W4)
z1..29.23....24 (W5)
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(here for instance in W1 we have z; — 2o << 21 — 23 << z1 — z4) and the behavior of

the solutions in these zones

Wy — (23 — 21)42 (25 — 29 )bzt ta2) (5, 2y )Ptaattasttan),
Wy — (22 — z )Pz, — za)ht34(z4 — zl)h(t“"“"13“14“‘*24)7
W3 — (24 — za)h‘3*(z4 _ zz)h(t23+t24)(z4 — zl)h(t12+t1s+t14),
Wy — (25 — zz)htzs(z4 _ zz)h(t“"'t“)(z,; - zl)h(t12+t13+t14),

Wy — (23 . zz)ht”(z:; _ zl)h(t12+t13)(z4 . zl)h(fze-{'tu‘i—tu)'

We want to show the relations

(6.1.4)
(6.1.5)
(6.1.6)
(6.1.7)

(6.1.8).

Wi = Wa(A ®id @ id)®,
Wa = Ws(id @ id ® A)3,
Wy = Ws(® ®id),
Ws = Wa(id ® A ® id)?,

Wi = Ws(id ® ®)

Let us first show (6.1.6) . Consider the four-point equation (6.1.3) and introduce the

new variables:

or else
Z]

Then we get:

Y1 =23 — 22, Y2 =21 —2Z3, Y3 =21 24, Y4 = 24,

=Ys+Ys, Z2=YstYs—Y1, Zz=Ys+Ys— Y2, Z4=7Y4.

ow 1 12 A

Fo- =l e W,
Y1 Y1 Y1 — Y2 Y1 — Y3

ow t 12 t

o T h[_s‘l_ + z + i ]W7

5?;2 Y2 Y2 — 1 Y2 — Y3

ow to4

t ¢
=h[-2 + 22— W,
0y3 Ys Y3 —Y1 Y3 — Y2
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19174
— = {.
Oya
Introduce now the variables
Y1 Y2 _
’w1=‘y—2, wy = —, W3 = Y3,
or
Y1 = wWiwawW3 Y2 = weawz Y3 = W3,
then we get
ow ¢ ¢ ¢ )
V _ pilzt 23 24 w]W,
6w1 w1 wy — 1 wiwe — 1
ow h[t'n + 123 + 113 n 24 134
Ow, Wy wy —1  wow; —1
ow t21 + 23 + 113 + 114 +fog + 34 W
a = h[ ] 3
W3 w3
Let
h Lt
W(wl,’LU2,‘lU3) = ('LU3) Z’<" Jkl‘-"(’w],'LUz).
S0 5
F A 14 1
— 2t 23 24 ws]F,
8?1)1 wrq wy — 1 wWiWe — 1
oF h[t21 + t23 + 113 + 124 34 w
8'11)2 Weo Weq - 1 wWaWy — 1 !
Now reexpress w; in terms of z;.
zZ1 — 22
wy = )
Z1 — 23
21 — 23
Wy = )
Z1 — 24

w3 = (21 —_ 24).

wy W,

|F.

Compare the asymptotic zones (W1) and (W5): then in both cases wy — 0 and so

the differential equation becomes

6F t21 t23
1. —— = h|— F.
(6 ! 9) 6'11)1 wy wy — 1] ’
OF _ h[tm + 123 + t13]F’
8w2 Wo
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and so a solution (due to the classical YB equation) is of the form
F('LU1,‘UJ2) = wy h(iz1+t23+t13)G(w1))

where G verifies the differential equation (6.1.3) above and in order to recover the
correct behaviour for the asymptotyc zones (W1) and (W5) we have to choose two
different solutions of (6.1.3), Gy and G such that Gi(w,) — (wl)hi” as wy — 0
(i.e. in the asymptotic zone (W1)) and Ga(w;) — (1 — w1)ht23 as w; — 1 (i.e. in
the asymptotic zone (W5)). Then the corresponding Wy and W; are related exactly
by ®,23. So we proved (6.1.6) . When we consider the asymptotic zones (W3) and
(W4) we can observe that the cyclic permutation (21, 22,23, 24) — (22, 23,24, 21) on
the variables does not affect our results and so solutions W3 and W, differs exactly by
®,34, hence proving (6.1.9) .

Now making an ulterior change of variables:

WiWz =Y, Wo = T

we get
OF 193 134 t13
el 2 hELAY A
Oz [m—y+z—1+m]’
OF tol t')4 't')g
—— = R[-= = —1F
dy [ y  y-—1 * Y — w]
Now
_ (z—2)
(21 — 24)’
_ (z1 — 22)
(21 —24)’

and in the asymptotic zones (W1) and (W2) we have:
z>>y—0

so the differential equation becomes:

OF 123 134 13
6.1.10 — = h[-== — 5
( ) Oz [ z + z—1 + T I,
t

oy oy
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Due to the classical YB equation we get
F(z,y) = y""*G(z),

where G verifies the equation

oG t13 + 1 2

e — B 13 : 2 zi41]G'
Now in order for two solutions G; and G5 of the previous equation to reproduce the
correct asymptotic behaviour for Wi and Ws in the zones (W1) and (W2) they have
to differ exactly by (A ® td ® id)®. Recall in fact that (A ® ¢d ® id)® is defined by
comparing different solutions of the equation (6.1.10) which is obtained by applying

(A ® id @ id) to the basic equation defining ®. These two different solutions G; and

(G2 have to have the following behaviour

Gi(z) — ghlhstta) 5 0
(i.e. in the asymptotic zone (1))

Gy(z) — (1—2)*™ = — 1,

(i.e. in the asymptotic zone (W2)).
Consider now the asymptotic zones (W2) and (W3). We have here

z—y>>zc—1—0

oF 134
— =h F
Oz [m - 1] ’
aF 191 104 123
6.1.11 — = h[Z= 4 + F.

So we have solution of the form

Fz,y) = (1~ =2)"**G(y),

where the equation (6.1.11) verified by G is the one that by comparison of two different
solutions with appropriate asymptotic behaviour gives (id®id®A)®. It is easy to check
that exactly such an asymptotic behaviour has to be attained by two solutions Gy and
G in order to reproduce the right asymptotic behaviour in the zones (W2) and (W3)
for the corresponding W, and Wj. So W, and W; differs exactly by (:d @ id @ A)®.
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Now introduce the new variables:

then the differential equation becomes:

oF t93 t34 tlg
Dbl X 7 7
Ju [u+u+v—1+u+v] ’
OF | in tog i34 t13
5v_h['u+'u—l+u—l—'u—l u—l—’u]
In the asymptotic zones (W4) and (W5) v,1 — v >> u — 0 then we get
oF ta3
e = MLE
BF tol to4 t34 t13
—— = h[— - —]F.
v [’u+v—1+v—1+v]

So due to the classical Yang Baxter equation we get
F(u,v) = u**2G(v).

As usual comparing the right behaviour of two different solutions in the zones (W4)
and (W5) we get that the relevant solutions G; and G, have to differ exactly by
(td ® A @ 1d)®. And this concludes the proof of the pentagon. The proofs of the

hexagons are done along similar lines.

We will here recall the Drinfeld’s theorem.

6.1.1 Theorem: Let A be a guasitriangular quasi-Hopf algebra over C[[k]] such
that A is a topologically free C[[k]]-module, 4/hA is a universal enveloping algebra
with the usual comultiplication. Then A is isomorphic to a quasitriangular quasi-
Hopf algebra obtained by twisting some A4, ;. The isomorphism class (g,¢) is uniquely
determined by A.

By applying the previous theorem to Uy (g) we get immediately that thisis a twist-

ing of some A; ;. But then Drinfeld observe first that the deformations of semisimple
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Lie algebra are trivial and so § = g[[h]]. Not only he formulated also a theorem.

6.1.2 Theorem: Let? € g® g the element corresponding to the inner product in
g, through which we defined the quantum groupl*?l Uy(g) Then f = t.

Suppose now we have a Yang-Baxter matrix R € Up(g) ® Ur(g) for some non ex-
ceptional semisimple Lie algebra g, then, given two finite dimensional representations

(pi, V*), (pj, V) of Un(g) we can consider
Ryivi=P(pi®p;)R:VIQVI — VigV:,

Fix a representation (p, V) and let R= f%v,v. Observe that as a consequence of the

Yang-Baxter equation we have
(6.1.12) RizRosRyp = Rys Rz Ros

for operators in V ® V ® V; here, as usual, the subscripts in R denote the place in

which R acts.
Hence we can then define a representation ¢, of the braid group By on Vg....®@ V
S

n times

just sending o(7) into fi’,i,i_;_l . Link invariants came naturally from these representations
[13]. |

One could construct another representation of the braid group. We consider the
space X, introduced in chapter 3. Identifying the representations spaces of Uy(g)
with representations spaces of g, we can construct over X, a trivial vector bundle

with fiber V1 ® ... ® V,,. Moreover we are able to endow this vector bundle with the
—— e

n  times
flat connection

(clz,- —_ de)

(z—2)

(6.1.13) Q=h) [pi®p;l(t)
i

42 The dependence is contained in the Cartan matrix.
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where t is exactly the same t as in theorem 6.1.2. For g = su(n) we have that
t =3 R*®R,, where R, is a orthonormal basis of g, normalized through the Killing
form. And this explain why in chapter 4 we devoted our attention to such a matrix.
Now to each loop in X, we assign its holonomy for the connection {2. The connection
being flat we get a representation of the fundamental group of X, i.e. of the pure
braid group. Now we could also consider the bundle over the space M, introduced

also in section 3.1, obtained by quotienting by the action of the symmetric group Sn.

If we take V3 = ... = V,,, then the connection (6.1.13) descends to a flat connection
on this vector bundle. As a consequence this gives a representation ¢, of the braid
group B, in V&7,

It is due to Kohno the suggestion that the two representations just introduced

coincide.

It is easy to see up to conjugation that to the generator o; ;41 of the braid group
the last representation associates an element conjugate by GL(V®) to P; ;41 e2mhti it
[74]. But the theorem 2 now tells us immediately that the two representations 3 and

g are equivalent.

This does not cover the case when we consider Uy(g) for g root of the unity, but
this case has been worked out by Kohno [73].

Recall that the Hecke algebra H,(q) is defined as the algebra with the same

generators and relations as the braid group B, plus the additional relation

(6.1.14) (o(i) ~ )(o (i) +9) = 0

for some g € C'. The Hecke algebra can be thought of as a deformation of the group
algebra of the symmetric group. The importance of the additional relation of the
Hecke algebra, in our context, is that it corresponds to the skein relation for the
braids closure. Particularly interesting are the representations of the Hecke algebra for
g Toot of the unity. In that case in fact they differ substancially from the corresponding

representations of the symmetric group.

Now if we have a Yang-Baxter matrix R € U,(g) ® U,(g) verifying the skein
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relation
(6.1.15) (R—q)(R+q M) =1

(this is the case for the Yang-Baxter matrix of Ug(sl(n)) then the representation

gives also a representation of the Hecke algebra.

6.2. Discussion on the Moore-Seiberg axioms for rational conformal field

theories

We introduced in section 2.3 the space Vjik of vertex operators
(6.2.1) (.z ) VIiQVE — Vi
jk
for irreducibile represetations Vi, V7, V* of the chiral algebra. We had also an invo-

lution V in the set of representations and maps

(6.2.2) F{J; f:] @V, 0V, — eV e V),
J1 g2 ; i
(6.2.3) B[", 1@V, eV, — eV, 8V,
(6.2.4) je(E) Vi — Vi
t —s e:‘:i‘n‘A, 0'23(t)
i R i kY
(6.2.5) O5ul) Vi = Vi
{ — Ula(e:thgt)
(6.2.6) S(5): @:Vy; — @iV}

We also had the relation

(6.2.7) B(e) = F71(1® Q(—¢))F.
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which allow us to discard B from the the axioms.
Not let us recall the Moore-Seiberg axioms verified these data.

1) V is an involution of a finite set
2) Ifoij = 5ij C, V;g = (5.5_7'v C, jik = V"zv, (V}'ik)v — T/jivkv-

3 ) Q2(+) is multiplication by a phas]e. The action of T on Vjii is a diagonal matrix
of phases, independent of the index j;
4) Fp3F13F53 = PysFisFia V,é, QVERVS, — Vpls RVEie VS,
5) F((%) ®1)F = (1 2(£))F(1 & Q%))
6) S*(j) = ®:05:(-)
7) $(H)TS(G) =T718(G) T~
8) (S®LF(L®O(=)0(+)F1)571®1)=FPF1(1Q 0(-))

Now we want to understand these axioms. First observe that (3 = Q;k depends

on three indices, but in fact we can consider @iﬂjk as a map
(6.2.8) Qip: ViV —VEe VI

Our first identification will be that of Q(&) with P(p; ® p;) o R¥, where R = e is
the R-matrix of the Drinfeld’s quasi-Hopf algebra 4, ;, g being related to the chiral
algebra. :
We could also directly identify (&) with the symmetry operator of a tensor
category. If the representations of the chiral algebra are integrable then the ¢ used in
defining R will belong to the underlying finite dimensional algebra, if not it will have
the more general form used by Drinfeld in stating theorem 6.1.1.
Consider (6.2.2). Recall here that an element b € V}.(z) corresponds to a map

h:V? Rz VI — V2.
So looking at right and left-side of equation (6.2.4) , we see that on the left we have
ab:Vir @, (V2®, V) —V

and on the right
¢d: V7 @, (VA @, V) — Vi
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So B (summed over ) has to correspond to a map
(6.2.9) Bjyjak t VI @2y (VI @2, VF) — V2 @2, (V7 82, V)

the meaning of the parentheses is due to the fact that the tensor product of the rep-
resentation is not supposed to be necessarily associative. So we see that the meaning
of the braiding is not just interchange of two legs as appear usually but is interchange
of two legs after some parenthesis has been moved.

This is the reason why in the Moore and Seiberg approach the braiding is not
seen as a fundamental object.

We need exactly something which moves the parenthesis. And this will be the
fusing, which hence will be identified with the associativity constraint.

Consider now the definition of the fusing matrix (2.3.10).

As before we can intepret the left hand side as a map
ab: Vi ®,, (V2 @, V) — V!
and the right hand side as
éd: (VI ®,,—0y V) ®,, VE— V?
So F (again summed over 1) can be interpreted as a map
(6.2.10) Fiiap 1 VI ©,, (V2 ®,, VE) — (VI @,z Vi) ®,, VF)

and this corresponds exactly to the associativity constraint. We will assume also that
this is the image of the ®~1 of the Drinfeld’s example. The relation (2.3.11) between
F , B and  can be described exactly in terms of the diagram:

. Bkt )
Vi®:(VE®:, V) —(V*®:, (VI ®:, V')

(6.2.11) lez le,j,z

. ﬂj’kgid .
v ®zl—-12(vk)®zzvl) — (Vk®12—zlv")®zg Vx
The definition of © is connected to the existence of an antipode. Is still not perfectly
clear to us the meaning of S(j). But we are confident it is related to the ribbon

structure.
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We will try now to interpret the axioms.
Axioms 1) and 2) are connected to the existence of an antipode. Axiom 3) is clear
from the connection we made with the Drinfeld’s example. Consider for instance the

axiom 4). This can be expressed as the commutativity of the diagram:

. ) P4QF; kom . Fijokm . *
V’@xl(vj®zz(vk®:3vm)) — V‘®:1(V1®z2—z3vk)®:3vm)) — (V‘®zl-—13(v"®xz—-z3v ))@zzvm

lFi,j,kgm lF;,,-,wid
FiQjik,m

(Vi®eymra V)®:g (VF@, V™) = (Vi1 mzy V) @2y ozs VF)®2, V™

Analogously axiom 5) can be expressed as:

. Fikg nji@}k,l . )
VJ@zl(Vk®:2V‘)'—)(Vj®z1—zgvk)®zg V‘ e Vl®—zl—2z2(vl®zlvn)
+1 .
ll ® ﬂk,l lFl,J,k
+1 .
Fj 1k a5 @

Vi (V@ V) = (VI®: 4:, VO,V — (V'®czy—2, V)® 2, VF)

These are exactly the two hexagons. Now we believe that rational conformal field
theories are (modulo a better understanding of the réle of z) rigid balanced tensor

categories, whose structure derive from the structure of the representations of a quasi-
Hopf algebra (the chiral algebra).

The two hexagons in turns correspond to the relations:
(6.2.12) (A @id)R = (F12)"IR¥(FBHIRPF!
(6.2.13) (1ld®@ A)R = (FBRYH)RV¥(FH) IR

(Azl—z:.’ ® idz2 ®Z3 id)(F)(id ®zl id ®32 AZS)(F) =
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(F(21 — 23,22 — 23) @z, 1)(id ® Az, —z, @ id)(F (21, 23))(1 @z, F(22,23)

Finally the axioms for S and T can be seen as property which allows to pass consis-
tently from genus 0 to genus 1 and higher.

Now let us consider the special example of the Wess-Zumino-Witten model. Recall
that 2, is expressed in terms of the conformal weights of the representations 1Z %
and of any representation appearing in the decomposition of V/® V*. These conformal
weights are also the eigenvalues of Ly in the vacuum in these representations, and
in particular in the WZW models these eigenvalues coincide with the values of the
Casimir of g in the corresponding representations, divided by ¢, + k. So if we restrict
our attention to integrable representations they have a corresponding restriction to
the finite dimensional algebra. On these representations the Drinfeld’s [24] example
for g = su(n), R has value

L3 (4 —Cg.—Cg.
(pi ® )R |pp= (pi ® pj)e¥A(Ie®I18e — o5(co —es,—cy;)

whereas
(g —cg;—<g;)

(p: ® p7) |p=€™" #F

By comparison we get that for

_2m
cy + k
there can be some relations of the Drinfeld’s example with WZW model. Moreover
we get
(6-2.14) q — eh — eci,f}-ik

The fact that the braiding coincides with the quantum group R-matrix for exactly
such values in the Wess-Zumino-Witten models seems not to be a coincidence. In fact
recently [75] Kasdhan and Lusztig have proven the equivalence of a suitable category
of affine representations and a corresponding category of representations of the corre-
sponding quantum group for q a root of the unity. The tensor product structure they
give to affine algebra representations resemble very much the one which come from
the Moore-Seiberg comultiplication, and the associativity constraint is exactly related

ala Drinfeld to the Knizhik-Zamolodgichov equations.
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The relation
1 J2 ir
(6.2.15) Bpg[" 7] =r5i ©®pi(R)z,
obtained from physical motivations (where R is the Yang-Baxter matrix for U,(sl(n))
seems not to be coincidental. Observe also that in the WZW model the fusing is
expressed exactly as the ® of Drinfeld’s example through the solutions of the Knizhik-
Zamolodgichov equations. Few words more are needed. It seems also that the twisting

which relates quantum group and the Drinfeld’s example, due to relation (6.2.6), be

strictly related to F' itself. So we are let to draw a diagram:

B,....
quantum group >  gquanium group

# =

Q,..
chiral algebra > chiral algebra

where we put in the arrows just B and ), but we could also put any other
ingredient we have.
Using data satisfying these axioms (and this is an explicit answer to the Witten’s

paper claims) it is possible to construct invariants of three manifolds[76][77].
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