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Photons are excellent carriers of quantum information. Since they hardly interact with each other, 

they can maintain their quantum state over long distances. However, this poses a challenge if one 

wishes to create entanglement between the degrees of freedom of photons. Creating entangled 

states of photons is essential for quantum information processing with photons.  

One way to create interactions between photons is to create strong interactions between two level 

atoms and modes of electromagnetic radiation. This can be achieved by coupling optical transitions 

of two-level atoms with modes of optical cavities or waveguides. The nonlinearity of a two-level 

atom then effectively mediates interactions between two (or more) photons. However, due to a 

fundamental time-bandwidth limit, a two-level atom cannot enable arbitrary quantum operations 

on the states of two photons.  

In this thesis, we study theoretically the problem of splitting two indistinguishable photons to 

distinguishable output modes with a two-level atom. Due to the time-bandwidth limit, the achieved 



  

splitting efficiency is fundamentally limited to 82% using just a two-level atom. We show that a 

linear optical unitary transformation on the output modes of the two-level atom can exceed this 

limit. Via optimization of the input two photon wavefunction and the parameters of the linear 

optical unitary, we calculated a splitting efficiency of 92%. 

For experimental realization of strong atom-light interactions, we used InGaAs quantum dots 

coupled to a bullseye cavity. Bullseye cavities are promising towards realization of efficient 

collection of light due to their near Gaussian far field emission. We demonstrated a strong 

interaction between the quantum dot exciton and the Bullseye cavity mode, quantified by a 

Cooperativity of ~8. This high cooperativity with a low-quality factor cavity can be attributed to 

the charge stabilization enabled by the diode heterostructure of the quantum dot samples we used.  

Finally, we focus on the electron spin ground states of a negatively charged InGaAs quantum dot. 

The electron spin interacts with the nuclear spins of the In, Ga and As. We measure the spectrum 

of this interaction using all optical dynamical decoupling pulse sequencies. This work lays a path 

forward to realizing efficient and coherent spin-photon interfaces with InGaAs quantum dots.  
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Chapter 1: Introduction 

Photons hardly interact with each other. This is a great feature as far as communication 

of quantum information is concerned. As a result of the lack of photon-photon 

interactions, individual photons can preserve their quantum state over long distances in 

optical fibers. However, if one wants to create quantum correlations aka entanglement 

between the degrees of freedom of photons, lack of interactions between them poses a 

challenge. Creating entanglement between photons is essential for quantum 

information processing with photons[1-3].  

Photons can be made to effectively interact with each other by using a medium that 

interacts with photons[3]. Ideally, the interaction of one photon with such a medium 

changes the properties of the medium such that a second photon sees effectively a 

different medium. After the second photon interacts with this medium, one or more of 

its degrees of freedom would be correlated with those of the first photon. The media of 

interest are, therefore, nonlinear optical media.  

One way to create interactions between photons at the single photon level is to use 

optical nonlinearities which are effective at the single photon level[3]. Bulk optical 

nonlinearities, such as 𝜒𝜒(2) and 𝜒𝜒(3) media are not suitable because they are too weak 

to be effective at the single photon level [10-12]. 

The nonlinearity of a two-level atom (TLA) is effective at the single photon level. 

Intuitively, this is because the excitation of a TLA with one photon prevents its 

excitation with another photon. We can create strong interactions between the atomic 

nonlinearities and the desired modes of electromagnetic radiation using Cavity 
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Quantum Electrodynamics. However, time-energy uncertainty relations pose 

fundamental limits on the quantum operations we can perform on the states of two or 

more photons with a TLA [25-28]. 

Another way to create effective interactions between photons is to use a lambda system 

[13]. A lambda system is a three-level system with two metastable ground states. 

Depending on the ground state the system is in, its exhibits very different response to 

incoming photons. This difference is leveraged to create perfect entanglement between 

two photons.   

In this thesis, we focus on theoretical as well as experimental aspects of creating 

photon-photon interactions using a two-level atom. We also perform experiments on a 

lambda system. Our experimental systems of choice in both cases are InGaAs quantum 

dot excitons. Uncharged excitons realize an “artificial” two-level atom, and we use 

negatively charged excitons to obtain a lambda system[102]. The two metastable states 

of the lambda system are provided by the spin state of the electron. To do cavity 

quantum electrodynamics with quantum dot excitons, we use electron beam 

lithography to pattern optical cavities on our quantum dot chips. In the following 

sections of this chapter, we introduce these different themes that occur throughout this 

thesis.  

 
 



 

 

3 
 

1.1 Cavity Quantum Electrodynamics (Cavity QED) 

 
Figure 1: Schematic illustrating the basics of a cavity quantum electrodynamics system. 

Figure 1 shows the schematic of a paradigmatic cavity quantum electrodynamics 

system. Here the two mirrors form an optical cavity. The atom here has two energy 

levels. The excited state spontaneous decay rate into the vacuum modes of 

electromagnetic radiation is 𝛾𝛾. The coupling rate between the atom and the cavity mode 

is g. The cavity mode decays out of the mirrors at a rate of 𝜅𝜅. 

Throughout this thesis, we model the atom-cavity coupling with the Jaynes-Cummings 

Hamiltonian [102], given by: 

 

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝑎𝑎+𝜎𝜎 + 𝜎𝜎+𝑎𝑎)                                                                                        (1.1) 

 

where 𝜎𝜎 and 𝜎𝜎+ are the lowering and raising operators of the TLA with excited state 

|𝑒𝑒⟩ and ground state |𝑔𝑔⟩ and 𝑎𝑎 and 𝑎𝑎+ are the excitation and annihilation operators of 

the cavity mode respectively.  

The strength of the interaction between the atom and the cavity mode is said to be 

strong when the coupling rate g dominates over the two decay rates 𝛾𝛾 and 𝜅𝜅. The 

g   
Cavity-

 

γ 
Ato

 κ 
Cavity 
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quantity of interest for quantum information processing applications is the 

cooperativity C given by: 

𝐶𝐶 = 𝑔𝑔2/𝜅𝜅𝜅𝜅                                                                                                    (1.2) 

Broadly speaking, the regime of interest is when 𝐶𝐶 > 1, which is colloquially known 

as the regime of strong interaction between light and matter. However, there are some 

more constraints on the relationship between the different rates 𝑔𝑔, 𝜅𝜅 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 which give 

to qualitatively different physics. These are the strong coupling and the weak coupling 

regimes of cavity QED which we will describe in the following subsections.  

1.1.1 Strong Coupling Regime of Cavity QED 
 
When the interaction rate between the mode of the optical cavity and the atom i.e.  𝑔𝑔 

dominates over the leaky rates 𝜅𝜅 and 𝛾𝛾, we are in the strong coupling regime. In this 

regime, the strong interaction term between the atom and cavity leads to hybridization 

of the states of the atom and cavity, giving rise to the famous Jaynes-Cummings ladder. 

Spectrally, this is usually observed as the vacuum Rabi splitting.  

1.1.2 Weak Coupling Regime of Cavity QED 
 
Weak coupling regime occurs when 𝜅𝜅 > 𝑔𝑔, and 𝑔𝑔 ≫ 𝛾𝛾 such that the cavity mode leaks 

faster it interacts the atom, but the atom still interacts more strongly with the cavity 

mode than it does with the vacuum modes of electromagnetic radiation. This regime is 

also known as the Bad Cavity Regime. In this thesis, we will only concern with the 

case when the cavity only leaks into the modes that we can collect photons from. For 

Figure 1, this corresponds to the imperfect reflectivity of the two mirrors being the only 

source of leakage, such that the photons transmitted by the mirrors can be collected and 
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measured. This set of conditions was appropriately called the “fast cavity regime” by 

Rosenblum et. al. [28], as the fast leaking of the cavity is not necessarily bad if it’s not 

leaking into unwanted decay channels.  

 
We further elaborate on the different regimes and aspects of cavity-atom coupling 

through this thesis depending on the context.  

1.2 Cavity QED with a Lambda system 

 
Figure 2 Schematic of a lambda system with one of its optical transitions coupled to the cavity mode. 

 

We consider a lambda system with two metastable ground states, here and throughout 

this thesis given by the two spin states of an electron. Figure 2 shows such a system 

coupled to a single sided cavity where the plane mirror is assumed to be 100% 

reflective. One of the optical transitions is in resonance with and couples to the mode 

of the cavity, which is h polarized. The other transition couples only to v polarized light 

and is also far detuned from the cavity mode and therefore doesn’t couple to it.  

In order to create photon-photon entanglement with this system, we need to coherently 

control the spin state of the electron [13,98]. We would like to create the superposition 

state given by (|↑⟩ + | ↓⟩ )/√2 . For this, we need external control of the spin state of 

the electron, which in most atomic systems is implemented using a direct drive of the 

| ↓⟩ 
| ↑⟩ 

h Not coupled 
|ℎ⟩ 
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microwave frequency spin transition between |↑⟩ and |↓⟩. As we shall discuss in 

Chapter 4 of this thesis, direct microwave control of spin states in a charged InGaAs 

quantum dot exciton is not feasible[59]. Therefore, we use all-optical control, first 

established in ref. 59, which we will briefly touch upon in a later section of this 

introduction.  

Provided that the cooperativity corresponding to the coupled transition is much greater 

than 1 and coherent control of the spin states is achieved, it is possible to create perfect 

entanglement between the polarization states of the two photons [13]. More concretely, 

it is possible to implement a controlled phase gate between the polarization states of 

the two photons [13,98]. Given that this gate can be implemented with high fidelity, 

we can in principle achieve quantum computation with qubits implemented by the two 

polarization states of photons.   

1.3 InAs/GaAs quantum dots 

The basic idea behind semiconductor quantum dots is sandwiching a lower bandgap 

semiconductor between layers of a higher bandgap semiconductor creating a so-called 

quantum well potential for electrons and holes. Figure 3 illustrates this idea for 

InAs/GaAs quantum dots. Here InAs, which is the lower bandgap material is 

sandwiched between GaAs, the higher bandgap material. The red dotted lines denote 

the discrete energy levels of the quantum well. These levels correspond to bound states 

that are confined in the 2-dimensional quantum well.  
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Figure 3 InAs/GaAs quantum well bandstructure 

We require three-dimensional confinement of carriers to create the desired two-level 

atomic system. Fortunately, this happens spontaneously during the MBE growth of the 

InAs and GaAs using the Stranski-Krastanov (SK)) method [92,102]. Figure 4 shows 

a scanning electron microscope (SEM) image of the cross-section of the grown 

materials using this method.  

 

Figure 4 SEM image illustrating the formation of InAs quantum dots. 

 
Due to the strain caused by lattice mismatch between GaAs and InAs, islands of InAs 

dots are formed during the growth of InAs on top of GaAs. This results in an effective 

three-dimensional confinement of excitons in these dots, giving us the desired two-

level systems. When an extra electron is trapped inside this dot, the dot has two 

metastable ground states given by the spin up and down states of the electron. This 
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creates a lambda system, which can be used to create a controlled phase gate between 

the polarization states of photons.  

1.4 Making cavities on chip: Photonic crystals.   

To perform cavity QED with InAs quantum dots, which is required for obtaining single 

photon nonlinearity, we pattern the so-called photonic crystal cavities on the MBE 

grown quantum dot wafers using Electron Beam Lithography (EBL) [102]. We will 

describe the details of this fabrication process in Chapter 3 with the example of the 

fabrication of the circular Bragg grating aka Bullseye cavities.  

 

Figure 5: Principle of photonic crystals: Bragg reflection by refractive index modulation 

To create on-chip mirrors for optical cavities, we use the idea of Bragg interference 

caused by refractive index modulation. This refractive index modulation is done 

periodically, hence the name photonic crystals. Figure 5 illustrates this basic idea. 

There is partial reflection and transmission of light at every interface between media of 

the two different refractive indices n1 and n2. Depending on the periodicity of the 

modulation, the reflections at different interfaces constructively interfere only at certain 

wavelengths. The illustrated photonic crystal acts as a mirror for those wavelengths. 
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Figure 6 Leaving out three holes from the hexagonal lattice photonic crystal to form the L3 cavity 

For our experiments with InAs quantum dots, we achieve this refractive index 

modulation by periodically punching holes through our chip or forming gratings. One 

way of forming photonic crystal cavities is to leave some defects in the photonic crystal 

formed by a periodic array of holes. Figure 6 illustrates this idea by the way of the 

example of L3 cavities where this defect region is formed by leaving 3 holes out of the 

photonic crystal. This defect can be seen as being surrounded by mirrors from all sides. 

Therefore, the modes of the cavity formed by this photonic crystal cavity is confined 

in the defect region.  
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1.5 Experimental setup and measurement tools. 

1.5.1 Polarization resolved confocal microscope for cryogenic measurements. 
 

 
Figure 7(a) Helium exchange gas cryostat with the sample inside and an optical breadboard on top (b) a close up 
of the optical breadboard which forms part of a confocal microscope. 

Figure 7 shows a part of our experimental setup including a Helium exchange gas 

cryostat and the optical breadboard on top of it. We place our quantum dot samples 

inside the cryostat to preserve the quantum coherence of the quantum dot excitons as 

well as the electron spin. The optics on top of the optical breadboard forms a part of a 

confocal microscope. The objective lens of the microscope inside the cryostat.  

 

As shown in Figure 7(b), a key feature of our confocal microscope is the ability to 

manipulate the polarization of light over the entire Poincare sphere. This allows us to 

perform cross-polarized measurements, where we collect light polarization which is 

orthogonal to the polarization of the excitation light. This gets rid of the excitation light 
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background, such that we are only collecting photons emitted by the quantum dot 

exciton in a resonance fluorescence measurement.  

1.6 Thesis Outline 

In Chapter 2, we provide a comprehensive analysis of our theory results on improving 

photon-photon splitting beyond the limitations of the nonlinearity of a two-level atom. 

Using linear optical transformation on the output modes of the atom, we derive an 

optimal input wavefunction which gives a routing efficiency of 92%. In comparison, 

the previously known limit using the bare two-level atom is 77%. 

In Chapter 3, we briefly review the relevant developments in the field of InAs/GaAs 

quantum dots. We mainly discuss the work on diode heterostructures and their 

importance in improving the properties of InAs/GaAs quantum dots. We focus on pinin 

diode heterostructures, compare them with other heterostructures and explain why we 

choose to focus on them in this thesis. We also present the result from the work on all 

optical noise spectroscopy of dots in pinin heterostructures, to which the author of this 

thesis made secondary contributions. For this work, pinin heterostructures were 

sandwiched between two (Distributed) Bragg mirrors of the type described in section 

1.4 to form a so called double DBR (distributed Bragg reflector) cavity.  

 
In Chapter 4, we demonstrate strong interactions between a quantum dot exciton and 

the mode of a Bullseye cavity. By simulating the quantum dynamics of the system 

using QuTiP in python, we extract a Cooperativity of ~8. By performing time-resolved 

measurements of the quantum dot emissions, we demonstrate a Purcell Enhancement 

of 15.  
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In Chapter 5, we show the experimental developments towards performing cavity QED 

with nanobeam cavities. We show the novel developments in fabrication processes 

required to fabricate nanobeam cavities and show some preliminary data from the 

optical measurements of the nanobeam cavities at room temperature. These devices are 

designed to couple very efficiently to lensed fibers. We will discuss why we need high 

optical efficiencies for applications in quantum information processing and the future 

developments required to achieve the same.  

 

Parts of this thesis have been published in the following journal articles: 

1.) Singh, H., Farfurnik, D., Luo, Z., Bracker, A. S., Carter, S. G., & Waks, E. 

(2022). Optical Transparency Induced by a Largely Purcell Enhanced Quantum 

Dot in a Polarization-Degenerate Cavity. Nano Letters, 22(19), 7959-7964. 

2.) Farfurnik, D., Singh, H., Luo, Z., Bracker, A. S., Carter, S. G., Pettit, R. M., & 

Waks, E. (2021). All-optical noise spectroscopy of a solid-state spin. Nano Lett. 

2023, 23, 1781−1786. 
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Chapter 2: Splitting indistinguishable photons beyond the 
blockade limit via linear optics. 

2.1 Introduction 

Paradigms for quantum computing and networks have proposed the use of photons as 

the substrate for quantum information processing. Hardware driven by photonics has 

enjoyed success in a multitude of applications ranging from machine learning [1–4] to 

quantum communication networks [5, 6] and simulation [7–12]. The lack of direct 

interactions between photons and the environment thus make them robust carriers of 

quantum information, immune to decoherence. Conversely, this absence of direct 

interactions pose a significant challenge for realizing universal quantum operations on 

quantum states of multiple photons. To enable the full range of envisioned applications, 

a challenge of central importance is to generate and engineer strong photon-photon 

interactions. 

Optical nonlinearities that indirectly mediate interactions between photons have been 

deemed as a viable route to realize such photon-photon coupling. Bulk optical 

nonlinearities are an attractive option due to their potential for room temperature 

operation, but at this stage are still too weak [13–15]. Alternatively, by coupling these 

photons to an ancillary quantum system, strong nonlinearities can be engineered. One 

such candidate is the Two-Level Emitter (TLE) coupled to a cavity or a waveguide [16, 

17], which leverages strong light-matter interactions to mediate interactions between 

photons [18, 19]. The nonlinear response of TLEs has been well studied [20–22] and 

has been realized experimentally using quantum dots [23, 24], atoms [25, 26], ions [27] 
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and superconducting circuitry [28]. However, it has been widely accepted that the 

interactions mediated by a TLE suffer from time-bandwidth trade-offs implied by time- 

energy uncertainty. These trade-offs have been shown to impose fundamental 

constraints on the fidelity of operations such as CPHASE gates [29], photon sorting 

[30, 31] and photon routing [32]. 

One application of interest is photon-photon splitting, where two or more 

indistinguishable photons incident on the TLE via a single channel are routed into two 

or more output channels [33]. Linear optical unitaries have been shown to reach peak 

routing efficiencies of only 50%. Leveraging the photon blockade effect of a two-level 

atom (where its excitation by one photon prevents its excitation with another photon), 

on the other hand, is known to exceed this limit. The use of the photon blockade effect 

is, however, still insufficient to achieve perfect routing due to the time-bandwidth 

trade-off [30, 32, 34]. An extensive analysis for the routing of two-photons limited by 

the time-bandwidth trade-off has been performed in ref. [32], where peak routing 

efficiencies of 64% and 68% were attained for pulses with Lorentzian and Gaussian 

spectral profiles respectively. Engineering the time-energy relations by adding 

entanglement between the input photons further improves this efficiency, but the 

splitting efficiency is still limited to 77% for an entangled pulse with a Lorentzian 

spectral profile. 

In this chapter, we show that the blockade limited routing efficiency can be exceeded 

with the use of a linear optical unitary transformation after the atom. We optimize the 

unitary to achieve the best routing efficiency for an uncorrelated two-photon input and 

show that it can exceed 82% for a Gaussian pulse shape. We subsequently show that 
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time- energy entangled inputs can achieve routing efficiencies exceeding 90%. Finally, 

we optimize the entangled photon wavefunction to achieve an optimal routing 

efficiency of 92%. This efficiency is significantly larger than the limit set by a two-

level emitter alone with no unitary. In all cases, the unitary transformation 

fundamentally changes the time-bandwidth trade-off, resulting in optimal performance 

at a reduced bandwidth of the input pulse compared to the bare two-level emitter. 

This chapter is organized as follows: In section 2 we derive the most general time-

domain solutions for the probabilities of scattering event for two-photon wavepackets 

incident on the two-level emitter and Mach-Zehnder Interferometer system. In section 

3 we find the optimal unitaries that maximize the routing efficiency for both entangled 

and unentangled photons. In section 4, we additionally optimize the temporal 

wavefunction of the entangled photon input to achieve a more optimal routing 

efficiency than would be possible by standard exponential or Gaussian temporal modes. 

Finally, section 5 concludes the chapter with a further discussion of the scope and 

impact of the results described in this chapter. 

2.2 System Model and Method 

Fig. 8(a) shows the standard approach to single photon routing using a two-level 

emitter. The system is composed of a two-level emitter coupled to a waveguide. The 2 

modes ain and bin are inputs to the emitter and aout and bout are the output modes. In the 

photon routing scenario, two photons are injected from mode ain and scatter into the 

two output modes. Mode bin is in the vacuum state. Fig. 8(b) shows another way to 

implement this system, where a two-level emitter is coupled to a double-sided cavity. 

These two systems are equivalent in the bad cavity limit (γ ≪ κ) where γ represents the 
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two-level emitter’s spontaneous emission rate and κ denotes the cavity decay rate. In 

this limit, the cavity atom system can be replaced by a one-dimensional atom model 

with a modified spontaneous emission rate given by γ = 4g2/κ [35], where g is the atom-

cavity coupling strength. 

 
Figure 8 (a) Schematic of two-level emitter coupled to a waveguide, indicating the directions of the input and 
output modes. (b) Alternative implementation using an atom coupled to a double-sided cavity. (c) Schematic for 
the photon router, where the output modes of the two-level emitter are injected into a Mach-Zehnder 
Interferometer. 

 

Due to photon blockade, the two input photons may be routed to spatially 

distinguishable output modes aout and bout, an effect which we refer to as photon 

splitting. We define the photon splitting efficiency as the probability that two photons 

in the same input port exit at different output ports. Rosenblum et al. extensively 

analyzed the splitting efficiency of a single atom and showed it was limited to 77% due 

to a time-bandwidth tradeoff [28]. 
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To improve the splitting efficiency, we consider the system in Fig. 8(c). We place a 

Mach-Zehnder Interferometer after the atom which applies a general linear optical 

unitary transformation given by: 

                                                (2.1) 

In the above equations, cout and dout are the output modes of the unitary, which are 

directly related to the input modes via a scattering matrix. The scattering matrix has 

two tunable parameters, θ and ϕ, which are represent applied phase shifts as shown in 

the figure. By tuning these two parameters we can implement any desired two-mode 

unitary transformation. We will use these two parameters to optimize the splitting 

efficiency into the output modes. 

To calculate the routing efficiency after the interferometer, we first define the time-

ordered second order correlation functions: 

                               (2.2) 

where {p, q} ∈ {c, d}. These correlations represent the probability densities that a 

photon is detected at time τ1, and a second photon is detected at time τ2. The 

wavefunction |ψ0⟩ represents the initial state of the system, which is assumed to be in 

the subspace where both photons are in mode ain and the atom is in the ground state. 

Because these are time-ordered correlations it is implicit that τ2 ≥ τ1 in all calculations. 

Because we are restricting our attention only to a two photon input, the correlations can 

be written as Γpq(τ1, τ2) = |ψpq(τ1, τ2)|2 where ψpq(τ1, τ2) is the correlation amplitude 

given by: 
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               (2.3) 
From these correlations, we can directly calculate the splitting efficiency PS as: 
 

                         (2.4) 
 
To calculate the routing efficiency, we apply the unitary to derive a relation between 

the correlation ψcd and ψdc in terms of the correlation amplitudes of the outputs of the 

atom given by: 

 

                                                           (2.5) 
where in the above {l, m} ∈ {a, b}. The above amplitudes are related to the output 

amplitudes of the interferometer via the relations: 

 

                     (2.6a) 

                                  (2.6b) 
 
The above expressions enable us to directly calculate the output correlations of the 

interferometer from the correlation amplitudes of the atomic output modes. 

    

To calculate the correlation amplitudes of the atomic output modes, we use the standard 

Hamiltonian for the interaction of an atom with a waveguide given by H = 

H0 + Hint where [16, 36]: 
 

                (2.7) 
and 
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                        (2.8) 
 
In the above equations, σ is the atomic lowering operator and aω are the bosonic 

reservoir mode operators for the waveguide. They are related to the input modes via 

the relation ain(ω) = 1/√2𝜋𝜋 ∫ dt ain(t)e-iωt. The input and output modes are also directly 

related to each other by the input-output relations aout = ain −�2𝛾𝛾σ and bout =bin −�2𝛾𝛾σ 

[16]. 

 
As we feed the input pulse through ain, bin is only a vacuum noise input. Since, we are 

calculating normally ordered moments of output operators, vacuum noise inputs from 

both input ports can be ignored and we can rewrite bout = �2𝛾𝛾σ. The initial state of 

the two photons in the input channel ain can be written as: 

 

                                                      (2.9) 
 
In Appendix 2.A, we show that the output correlation amplitudes after the atom are 
given by: 
 

                                       (2.10a) 
 

                                     (2.10b) 

        (2.10c) 

                                 (2.10d) 
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With these expressions for the two photon correlation amplitudes in the output modes 

of the emitter, we can directly calculate the photon splitting efficiency in eqn. (2.6) and 

eqn. (2.4).  

2.3 Results 

2.3.1 Routing Unentangled Photons 

We first analyse the routing efficiency for an input of two unentangled photons. In this 

case we can write the wavefunction as 𝜉𝜉(𝑡𝑡1, 𝑡𝑡2) = √2 𝜉𝜉(𝑡𝑡1)𝜉𝜉(𝑡𝑡2). Here ξ(t) is a 

normalized single photon wavepacket and the factor of √2 ensures that the input state 

is normalized under time-ordering 𝑡𝑡1  ≥  𝑡𝑡1 [11]. We analyze two pulse profiles for the 

single photon input wavepackets. The first is an exponential pulse profile such that 

𝜉𝜉(𝑡𝑡) = √2𝜅𝜅𝑒𝑒−𝜅𝜅𝜅𝜅, and the second is a gaussian pulse profile given by 

𝜉𝜉(𝑡𝑡) ��2
𝜋𝜋 
𝜅𝜅�

1
2

𝑒𝑒−𝜅𝜅2𝑡𝑡2. In both cases κ parametrizes the bandwidth of the pulse.  

We calculate the routing efficiency using the results of the previous section. In 

Appendix 2.C, we perform the full calculation for the exponential wavepacket, which 

leads to an analytical solution. For the Gaussian pulse it is not possible to attain an 

analytical expression, so we numerically calculate the routing efficiency. Figures 9(a) 

and 9(b) plot the resulting routing efficiency as a function κ and θ for uncorrelated 

inputs with Gaussian and Exponential pulse profiles respectively. Since the routing 

efficiency has a periodicity in θ of π/2, we analyze and plot only one period. For each 

point on the plot, we optimize the value of the interferometer input phase φ (see fig. 8) 

to obtain the maximum splitting efficiency for the values of θ and κ corresponding to 

that point. We find that φ = 0 optimizes the splitting efficiency for all points with θ ≤ 
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π/4 and φ = π optimizes the splitting efficiency for θ > π/4. This is true for both 

exponential and gaussian pulses. Furthermore, the splitting efficiency optimized for φ 

is mirrored across the line θ = π/4, such that the value at θ is the same as the value at 

π/2 − θ, where θ < π/4. 

 

Figure 9 Routing efficiency for unentangled inputs (see text for details) 

 

The red dot denotes the maximum splitting efficiency in both plots, which is obtained 

at (θ, φ) values of (0.103π, 0) for the gaussian wavepacket and (0.096π, 0) for the 
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exponential wavepacket. As we noted in the last paragraph, there are values of θ > π/4 

which result in the same optima when the phase difference φ between the two input 

arms of the interferometer is set to π. The orange contours represent the bare atom 

routing efficiency calculated in ref. [28] for a Gaussian wavepacket (67%) and 

exponential wavepacket (65%). One can see that the red dot in both cases is within 

these orange contours and therefore achieves a higher routing efficiency.  

We next compare the optimal splitting efficiency obtained with the Mach-Zehnder 

interferometer to that of the bare atom. We can extract the bare atom routing efficiency 

from the θ = 0 cross-section of the plots in figures 9(a) and 9(b). In this case the unitary 

implements the identity transformation and we therefore recover the bare atom 

response. Figs. 9(c) and 9(d) plot the splitting efficiency as a function of the input pulse 

bandwidth for these two unitary transformations. The blue curves correspond to having 

no unitary on the outputs of the atom, and give the blockade limited efficiency. The 

green curves corresponds to the unitary transformation that optimizes the splitting 

efficiency. For the exponential pulse, the blockade limited efficiency is 65% and occurs 

at κ = 1.44γ. In contrast, the optimal splitting efficiency with the unitary is 0.75. The 

bandwidth κ which achieves this global maximum is 1.09γ, is therefore smaller than 

the optimal bandwidth which achieves the blockade limited efficiency. For the 

Gaussian pulse, optimal bandwidth κ is 1.57γ, which achieves an optimal splitting 

efficiency of 82%. This efficiency is larger than the blockade limited efficiency of 0.67. 

We achieve this optimal at a smaller than that realized by the bare atom, which is 2.24γ 

for a Gaussian input pulse. Therefore, the unitary transformation fundamentally 

changes the time-bandwidth trade-off required to achieve optimal splitting efficiency. 
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2.3.2 Routing time-energy entangled photons 

We now analyze the response of our system for in- puts which are time-energy 

entangled. These inputs have time-energy uncertainty relations which are 

fundamentally different from the uncorrelated inputs. Therefore, their interaction with 

the two-level atom is also different. One way to write a time-energy entangled photon 

state is as follows: 

                                            (2.11) 

where G(ωo) and F(ω) are general wavefunctions constrained only by the requirement 

for the overall normalization of the state. The above wavefunction can be expressed in 

the time domain as: 

                                             (2.12) 

where g(t1) and f(t2 − t1) are Fourier transforms G(ωo) and F(ω). In the limit where 

G(ω0) = δ(ω0), we then have g(t1) = 1/2π which achieves a perfect temporally correlated 

entangled state which depends only on the time difference t2 − t1. We refer to such 

states as stationary, because the correlations only depend on the arrival time difference, 

and do not depend on the values of the individual time variables. A more general 

entangled state can introduce non-stationary behavior where correlations are time-

dependent, with the dependence quantified by the function g(t1). 

We first consider the specific case where 𝑔𝑔(𝑡𝑡1) = √2𝜅𝜅 𝑒𝑒−𝜅𝜅𝑡𝑡1 and 𝑓𝑓(𝑡𝑡2 −  𝑡𝑡1)  = 
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√2𝛿𝛿𝑒𝑒−𝛿𝛿(𝑡𝑡2−𝑡𝑡1). Here the two wavefunctions are exponential where κ and δ represent 

the bandwidths of the respective distributions. We attain the stationary limit when κ 

→0. From this state, we obtain the following normalized input wavefunction: 

                                                             (2.13) 

where ξ(t1, t2) is defined in eqn. (9). We begin with the above input wavefunction 

because it leads to an analytical solution. We derive this full analytical solution in 

Appendix 2.D. We are only interested in the stationary limit, which we obtain by taking 

κ → ∞. In this limit, the expression for routing efficiency is identical to the one obtained 

for maximally entangled states generated with a three level atomic cascade [28]. 

Maximizing this expression with respect to the bandwidth δ with and without the linear 

optical unitary yields routing efficiencies of 90% and 77% respectively. 

Our analysis for the input state given by eq. (2.13) suggests that a stationary time-

energy correlated input ξs(|t2 − t1|) can significantly improve the routing efficiency over 

uncorrelated inputs. Stationary inputs with different pulse profiles could yield further 

improvements. In the previous section, uncorrelated inputs with a Gaussian pulse 

profile yielded a bigger maximum for routing efficiency than Exponential pulses. We 

therefore consider the following input state: 

                                        (2.14) 

Note that this state corresponds to substituting a Gaussian F(ω) = 𝑒𝑒−
2𝜔𝜔1

2

𝛿𝛿2  in eq. 11. Here, 

δ ≥ 0 gives the bandwidth of the Gaussian and hence, of the input pulse. We note that 
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in this case the stationary limit corresponds to L → ∞. For this input state, the routing 

efficiency is calculated via numerical integration. 

 

Figure 10 Routing efficiency for entangled inputs (see text for details) 
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Figures 10(a) and 10(b) plot the resulting routing efficiency as a function δ and θ for 

stationary entangled inputs with Gaussian and Exponential pulse profiles respectively. 

Since the routing efficiency is periodic in θ, we plot only one period. Each point on 

these plots corresponds to optimizing the routing efficiency with respect to ϕ. We 

obtain the same dependence on ϕ as for the uncorrelated inputs such the routing 

efficiency optimized for ϕ is mirrored across θ = π/4. The red dots correspond to the 

routing efficiencies obtained by optimizing the linear optical unitary, which are 91.5% 

and 90% for entangled Gaussian and exponential pulses respectively. These lie within 

the orange contours that represent the blockade limited routing efficiencies. We note 

that the blockade limited routing efficiency of 77% corresponds to the value obtained 

in ref. [28] for input photons generated by a three-level atomic cascade. 

We now compare the routing efficiency with obtained with the bare atom and the 

optimal linear optical unitary for both exponential and Gaussian entangled pulses. To 

make this comparison, we plot these two cases for Gaussian and exponential pulses in 

figures 10(c) and 10(d) respectively. The blue curves correspond to having no unitary 

on the outputs of the atom, and give the blockade limited efficiency. The green curves 

corresponds to the unitary transformations which optimize the routing efficiency. For 

the entangled exponential, the blockade limited efficiency of 77% occurs at the 

bandwidth δ = 2.73γ. The bandwidth δ needs to be reduced to 1.88γ to obtain the 

maximum routing efficiency with the optimized linear optical unitary. For the Gaussian 

pulse, we also observe a reduction in the optimal bandwidth of the input pulse in going 

from the bare atom to adding the optimized linear optical unitary transformation after 

the atom. The optimal bandwidths in the two cases are 2.76γ and 1.98γ respectively. 
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Therefore, for entangled exponential and Gaussian inputs, the linear optical unitary 

changes the time-bandwidth tradeoff required to optimize the routing efficiency. This 

is in line with our findings for uncorrelated inputs in the previous section. 

2.4 Pulse Optimization 

In the previous section we assumed that the entangled photon wavefunction takes on 

the specific form of a Gaussian or exponential. In this section we employ optimization 

to obtain an optimal pulse shape that achieves the globally optimum routing efficiency. 

This optimal waveform represents a strong upper limit for the routing efficiency. 

To optimize the entangled photon pulse shape, we expand the stationary wavefunction 

ξs(|t2  − t1|) in a complete expansion basis. We choose the Gauss-Hermite basis given 

by: 

     (2.16) 

where Hn(x) are the normalized Gauss-Hermite polynomials and N/2 gives the number 

of terms in the basis expansion. The terms αn are the coefficients of the respective 

polynomials, ensuring that the function ξs(t) is normalized. We choose the Gauss-

Hermite basis because the first order term is a plain Gaussian. We have already 

analyzed this case in the previous section and found that it achieves 91.5% routing 

efficiency, which is close to unity. We therefore expect that higher order terms will add 

only small corrections, and we will only need to keep a few of them to come close to 

the global limit. Note that we keep only even terms in the sum in eq. (2.16), which 

corresponds to expanding ξ(t) over only the even Hermite-Gauss functions. We can 
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ignore the odd Hermite-Gauss functions without any loss of generality because t ≥ 0, 

so we can express any function on the positive time axis using only even functions of 

time.  

Since the scattering amplitudes ψpq and slm are linear in the input pulse, the output 

scattering amplitudes for the input pulse ξ(τ′) denoted by spq[ξ] can be written in 

general as: 

      (2.17) 

The splitting efficiency is obtained by integrating |scd|2 + |sdc|2 over the output photon 

creation times τ1 and τ2. For example, Γcd[ξ] = |scd[ξ]|2 is given by: 

 

     (2.18) 

where we use the fact that the scattering amplitudes for real valued input states are real 

(see eqs. (2.10)). This can be rewritten as: 

               (2.19) 

where α is a column vector with entries α1 thru αN/2 and ρcd is a symmetric matrix 

because scd[H2m]sdc[H2n] = scd[H2n]sdc[H2m] implies that ρcd
ij =ρcd

ji. 

Γdc takes a similar form and therefore the probability density ρs[ξ] of the splitting the 

photons to output ports c and d takes a similar form. 
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                                     (2.20) 

where the matrix ρs[H] is a symmetric matrix. Integrating ρs[ξ] over τ1 and τ2 is the 

same as integrating the entries of the matrix ρs[H] over τ1 and τ2, which yields another 

symmetric matrix R. Note that the diagonal entries of R are simply the routing 

efficiencies for the different basis elements. Therefore, the splitting efficiency for the 

input state ξ can be written as: 

                                      (2.21) 

Note that R is a symmetric positive semi-definite matrix because PS(α) ≥ 0. We claim 

that the maximum PS(α) is obtained for αmax which is the eigenvector of R 

corresponding to its maximum eigenvalue. To see this, we first diagonalize R = UTDU 

using the spectral theorem for symmetric matrices. Since, R is positive semi-definite, 

all entries of the diagonal matrix D are positive. The splitting efficiency can be 

rewritten as: 

                            (2.22) 

where β = U α and the normalization constraint α†α is equivalent to the constraint β†β. 

Therefore, PS(β) is clearly maximum when the vector βmax has zero valued entries 

everywhere except the position corresponding to the maximum diagonal entry of D, 

which is the maximum eigenvalue of R. The entry at this position can be chosen to be 

1 because the overall phase of the input state doesn’t matter. Therefore, the vector αmax 

= Uβmax is the eigenvector of R with the maximum eigenvalue. To find the maximum 

routing efficiency, we construct the matrix R for different number of terms in the basis 
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expansion. The maximum eigenvalue of R then gives the maximum routing efficiency. 

Using the corresponding eigenvector αmax of R in (eq. 2.14) gives the optimal pulse 

shape in each case. 

 

Figure 11 pulse optimization results (see text for details) 

Figures 4(a) and 4(b) shows the dependence of the maximum routing efficiency on the 

highest order N of the Gauss-Hermite polynomial in the basis expansion of the input 

wavefunction. Fig 4(a) plots this for the case when the two-level emitter alone is the 

router. The maximum routing efficiency in this case is 81%. Fig 4(b) shows the case 

where the optimal linear optical unitary enhances the maximum routing efficiency to 

92%. In both cases, when the input pulse is Gaussian, such that N=0, the routing 

efficiency is very close to the value it ultimately saturates to. This shows that the 

Gaussian pulse shape is very close to the optimal pulse shape of the input wave- 
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function. Figures 4(c) and 4(d) show the optimal pulse shapes corresponding to N=40 

in figures 4(a) and 4(b) respectively. As expected, both these pulse shapes appear 

visually close to Gaussians. 

2.5 Discussion and Conclusion 

In conclusion, we have presented an extensive theoretical analysis of the splitting of 

two indistinguishable photons to spatially distinct output channels using a two-level 

emitter followed by a Mach-Zehnder interferometer. Through optimization of the input 

pulse shape and the phases of the interferometer, we obtain a routing efficiency of 92%. 

This is a substantial improvement over the optimal routing efficiency with just the two-

level emitter, which is close to 81%. Our results exceed the maximum routing 

efficiency of 77% with a two-level emitter calculated in ref. [28]. Our results suggest 

that a stationary pulse can extract the optimal nonlinear response from the two-level 

atom. This insight could be applied to the optimization of other applications where the 

nonlinear response of a two-level is used. Throughout this work, the phases of the linear 

optical unitary were constant in time. We expect that the optimization of time-varying 

unitaries would further improve the splitting efficiency. We can also consider networks 

where multiple two-level emitters are cascaded with linear optical unitaries. 

Optimization of such networks may improve the fidelities of operations besides photon-

photon splitting that we considered here. 
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Chapter 3: Diode Heterostructures for InAs/GaAs quantum dots 

3.1 Introduction 

We described the basic principle behind self-assembled quantum dots in chapter 1, 

section 1.3. Sticking with the example of InAs/GaAs quantum dots, we introduce here 

the idea and some of the existing literature on controlling the electrical environments 

that quantum dots are embedded in.  

The semiconductor nature of quantum dots allows control of their electrical 

environment by making diode heterostructures. This locks the Fermi energy and 

provides electrical control of the quantum dot charged state. Layers of these 

heterostructures can be doped or undoped semiconductors and even metals, in the case 

of a Schottky diode heterostructure [111].  

We are interested in controlling both the electrical and photonic environment of the 

dots. To make, for example photonic crystals, the basic building block is a thin GaAs 

membrane. Charge control on quantum dots in photonic crystals has been demonstrated 

using thin p-i-n diode structures. However, the large in-built electric field in 

combination with the small thickness of these devices led to a large potential at the 

position of the quantum dots shifting the Coulomb plateaus to large forward bias 

voltages. This resulted in high tunneling currents at the operating bias in p-i-n-

membrane devices, a possible explanation for the absence of spin pumping in 

embedded quantum dots [119]. The quantum dot optical linewidths were relatively high 

in these structures. 
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In the second section of this chapter, we introduce p-i-n-i-n diode heterostructures, 

which we use for experiments throughout this thesis. These structures solve the 

problem of high currents that p-i-n diodes suffer from[111]. In the third section, we 

describe our results on noise spectroscopy of quantum dot electron spin embedded in a 

p-i-n-i-n diode.   

3.2 p-i-n-i-n diode heterostructure 

 

 

Figure 12 pin and pinin diode band diagram 

Figure 12(a) shows a schematic of the p-i-n diode heterostructure along with the 

conduction band profile as a function of position under zero forward bias. We see that 

in order to bring the potential in the quantum dot beneath the EF of the back n-contact, 

we have to apply a forward bias of VQD. This leads to high currents flowing through 

the device when there is an electron in the dot, which is undesirable.  

 

Fig 12 illustrates how a p-i-n-i-n structure solves the problem of high currents present 

in p-i-n structures when deterministically charging the dot with one electron. This is 



 

 

34 
 

achieved by adding a highly doped n layer to cause band bending, such the dot potential 

is very close to Ef even under no forward bias. This means that we need to apply a very 

small forward bias to charge the dot with one electron.  

 

Loebl et. al. first demonstrated optical spin pumping of negatively charged quantum 

dots in p-i-n-i-n diode heterostructures in 2017 [111]. Interfacing of dots in these 

structures to photonic crystals by Zhouchen et. al. showed a record high cooperativity 

of 13 [100]. These results show that p-i-n-i-n diode heterostructures are a promising 

route towards realizing high quality spin-photon interfaces with semiconductor 

quantum dots.  

 

 

3.3 Noise spectroscopy via dynamical decoupling pulse sequences 

3.3.1 Level structure of negatively charged dots under Voigt magnetic field 

 
Figure 13 Level structure of negatively charged dot under voigt magnetic field 

 

Fig 13 shows the level structure of a negatively charged quantum dot when a magnetic 

field is applied in the plane of the quantum dots i.e., perpendicular to the quantum dot 
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growth direction. This magnetic field direction corresponds to the Voigt configuration. 

The two ground states with spins up and down come from the spin states of the trapped 

electron which makes the dot negatively charged. In order to coherently control the 

spin state of the electron over the Bloch sphere, we need initialization of the spin to one 

of the spin states. The figure 13 shows how an optical pump can initialize the spin to 

the | ↑ ⟩ state. After initialization to this state, we can rotate the spin state around the x 

or y axes of the Bloch sphere using a two-photon drive in the adiabatic limit. We 

describe in the next section how this drive is realized experimentally. Rotation of the 

spin around the z-axis of the Bloch sphere, which is defined by the direction of the 

applied magnetic field, is achieved by the free precession of the spin around the applied 

magnetic field. Note that 𝜔𝜔0 denotes the Zeeman splitting of the electron spin under an 

applied magnetic field. For comprehensive information about the spectrum of 

InAs/GaAs quantum dots under different conditions, we refer the reader to the 

spectroscopy and analyses performed by Bayer et. al. [49] 

3.3.2 Experimental realization of rotation drive for electron spin 

 
Figure 14 modulating a CW laser for creating rotation pulses 
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Figure 14 shows a schematic of how we realize the optical pulses that drive the electron 

spin and a spectrum of the realized optical pulses. An electro optical modulator from 

IX Blue (bandwidth >20 GHz) amplitude modulates a CW laser with linear 

polarization. The modulation signal is generated with a 65 GHz Arbitrary Waveform 

Generator. The Rotation wavelength is red detuned by Δ from the | ↓⟩ to | ↑↓,⇓ ⟩ optical 

transition. We apply a modulation signal with frequency 𝜔𝜔0
2

, where 𝜔𝜔0 is the Zeeman 

splitting between the optical transitions. The amplitude modulated signal then has two 

sidebands separated by 𝜔𝜔0, as shown by the spectrum in figure 14. By switching the 

modulation signal on and off, we can create pulse sequences that create the desired 

drive for the electron spin. As mentioned in the previous subsection, this external drive 

combined with the free precession of the electron spin around the applied magnetic 

field enables full SU (2) control (i.e., over the entire Bloch sphere) of the spin state 

[59]. 

 

3.3.3 Dynamical Decoupling Pulse Sequences 

 
Figure 15 Dynamical decoupling to preserve spin coherence 
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Figure 15 illustrates the idea behind dynamical decoupling pulse sequences via the 

example of Carr-Purcell-Meiboom-Gill sequences [41]. We assume that the two-level 

system being interrogated is the spin ½ of the electron and the main decoherence 

mechanism is its interaction with the nuclei of the host lattice. We use a Bloch sphere 

representation of spin dynamics. Without loss of generality, we may assume that spin  

| ↑ ⟩ state corresponds to the |0⟩ state of a qubit and the spin | ↓⟩ state corresponds to 

the |1⟩ state. 

The initial state of the spin is |0⟩. We apply a 𝜋𝜋
2
 pulse about axis such that the red arrow 

in the figure lands on the x-y plane, as shown by the first Bloch sphere in the figure 

(from the left). The second Bloch sphere in the figure shows multiple red arrows for 

the spin state after its free precession about the z-axis. This is to illustrate the 

decoherence of the spin dynamics due to its interaction with the nuclei and the multiple 

red arrows represent a lack of knowledge of the spin state of the electron. The third 

Bloch sphere shows the application of a 𝜋𝜋 pulse about the y axis. After the application 

of the 𝜋𝜋 pulse, the spin “rephases”. This is illustrated by the red arrows coming together 

during the free precession following the 𝜋𝜋 pulse.  

Depending on how fast the interaction between the nuclei and electron spin is, we must 

apply multiple 𝜋𝜋 pulses with separation smaller than the time scale of the interaction. 

One of the sequences of multiple 𝜋𝜋 pulses is the CPMG sequences, which is shown in 

the figure. 
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3.3.4 Noise spectroscopy of electron spin in InAs/GaAs quantum dot 

The interaction between the nuclei and the electron spin can be seen as causing noise 

in the electron spin dynamics [41-46]. By applying dynamical decoupling pulses in the 

CPMG sequence, with different number of pulses and with different time delays 

between pulses, we can extract the spectrum of this noise that affects the spin 

dynamics[41]. 

 

Figure 16 Resulting spin coherence curves  from dynamical decoupling pulse sequences 

We first apply the simplest form of the CPMG sequence: namely, the Hahn-echo 

experiment consisting of a single π pulse (Figure 16a). Consistent with previous Hahn-

echo measurements on quantum dots, [57,71,72] the decay time scale of the spin 

dynamics (i.e., the coherence time) increases as a function of the external magnetic 

field, B, up to T2 ≈ 1 μs (blue dots in Figure 16a). This increase is associated with the 

Zeeman terms of the indium and arsenic nuclei dominating over the inhomogeneous 



 

 

39 
 

broadening of these nuclei at high magnetic fields (Supporting Information). 

Furthermore, the spin exhibits a two-stage decay in its coherence that consists of a fast 

drop of the signal contrast (at T ≈ 30 ns), followed by a second decay (starting at T ≈ 

100 ns). This behavior is analogous to previously observed Hahn-echo spin dynamics 

of quantum dots.[57,72] Intuitively, the two stages of decoherence suggest that separate 

spectral components of the noise affect the spin dynamics at separate time scales. 

Simulation results (the lines in Figure 16a), which consider such separate noise 

components associated with the strained nuclear environment of the quantum dot 

[56,57], agree with the experimental results, thereby confirming this hypothesis. To 

experimentally extract these spectral noise components, we apply CPMG sequences 

with increasing numbers of pulses. 

The temporal dynamics of the quantum dot spin under the application of such 

sequences are presented in Figure 16 b,c for the external magnetic fields of 1.2 and 2 

T, respectively. As shown in Figure 16b for B = 1.2 T, the measured spin coherence 

times increase with n as the decay time scale of the coherence function becomes longer. 

However, as shown in Figure 16c, the two-stage spin decoherence profile for B = 2 T 

exhibits a more complicated behavior as a function of n. Our simulations (the lines in 

Figure 16 b,c) considering two spectral components of the Overhauser field [56,57] 

agree with the observed experimental behavior. However, to understand these complex 

dynamics requires a comparison between the rate of application of these pulses with 

the frequencies of the noise spectra. [41,43−46,57,73−75] 
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We experimentally extract these noise frequencies by analyzing all data collected from 

four different measurements of the coherence functions under the application of CPMG 

sequences with n = 1, 2, 4, and 8 π-pulses utilizing a recursive numerical integration 

method. The extracted spectral densities, plotted for external magnetic fields between 

1.2 and 2 T (blue dots in Figure 17a–c), display a broad range of frequencies of up to 

100 MHz. To characterize the behavior of the noise as a function of the magnetic field, 

we fit the extracted spectra to Gaussian functions (solid blue lines in Figure 17a–c). 

The central frequency of the noise (center of the Gaussian fit) increases with the 

magnetic field up to 38 MHz at B = 2 T (Figure 17d), corresponding to (twice) the 

Larmor frequency of indium nuclei [58] that dominate the interaction with the electron 

spin due to their spin-9/2 nature. Meanwhile, the amplitude of the noise (at the central 

frequency) decreases with the magnetic field (Figure 17e) as nuclear Zeeman 

interactions dominate over the broadening of the nuclei due to strain fields. [56,57] 

 

Figure 17 Extracted noise spectra (see text for details) 
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The extracted noise spectra verify a previously established theoretical model of the 

Overhauser field [56,57]. Using this model, we simulate the noise spectra that represent 

the hyperfine coupling of the quantum dot spin to indium and arsenic nuclear spins 

experiencing quadrupolar coupling to strain fields (insets of Figure 17a–c), which 

exhibit sharp peaks that correspond to the different nuclear spin numbers. To compare 

the experimental results of noise spectroscopy with theory, we first use the theoretical 

spectra to calculate CPMG coherence functions with n = 1, 2, 4, and 8 π-pulses under 

ideal conditions. We then apply the algorithm used to extract noise spectra from the 

experimentally obtained coherence functions to the simulated coherence functions (red 

diamonds in Figure 17a–c). As the CPMG sequences probe the noise with spectrally 

broad filter functions that have high harmonics rather than with delta-like filter 

functions that probe the noise at single frequencies, the sharp peaks in the simulated 

spectra are broadened by the finite sampling resolution and can be fitted to Gaussian 

functions similarly to the experimental results. The dashed red lines in Figure 17a–c 

that represent such Gaussian fits lie well within the uncertainties of the experimentally 

fitted results (shaded blue areas), thereby confirming the agreement between theory and 

experiment. Furthermore, the amplitudes of the simulated spectra (red diamonds in 

Figure 17e) consistently fit the experimentally extracted amplitudes and indicate that 

the quantum dot spin interacts with 40000 nuclei, in agreement with common 

predictions. [57] 

 

The theoretical model of the quantum dot environment verified by all-optical noise 

spectroscopy can shed light on the coherent behavior of the quantum dot spin dynamics 
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(e.g., the coherence functions in Figure 16). The model predicts two separate noise 

terms, perpendicular and parallel to the external magnetic field. [56,57] The noise 

component perpendicular to the external field, S⊥(ω), monotonically decreases with the 

frequency and qualitatively fits the experimentally extracted noise floor (i.e., the 

baselines of the Gaussian fits in Figure 17a–c). This noise component dominates at low 

frequencies, thereby leading to the spin dynamics at long time scales (>100 ns) depicted 

in Figure 16. Since the application rate of π-pulses in our CPMG sequences is faster 

than the low frequencies of S⊥(ω), increasing the number of pulses slows down the 

decay of the spin dynamics at long time scales. For example, under an external field of 

2 T (Figure 16c), the decay of the spin dynamics at T > 100 ns is slower for n = 4 

(dotted green line) than for n = 1 (solid blue line). In addition to the perpendicular noise 

term, the theoretical model predicts high-frequency noise, S∥(ω), which arises in 

parallel to the direction of the external field. [56,57] This parallel term is stronger than 

the perpendicular term and consists of peaks corresponding to the nuclear Larmor 

frequencies broadened by the environmental strain field . The broad spectral features 

of S∥(ω) lead to the observed contrast drop [75] at the short time scales depicted in 

Figure 16. For an external magnetic field of B = 1.2 T, the large magnitude of S∥(ω) 

leads to the complete loss of the quantum dot spin coherence under the Hahn-echo 

sequence (dash-dotted black line in Figure 16a) at T ≈ 30 ns; thus, a second decay 

caused by S⊥(ω) is not observed for this field. The contrast drop caused by S∥(ω) also 

quantifies the ability of the CPMG sequences to extend the quantum dot spin coherence 

time. For example, the application rate of the π-pulses in our CPMG sequences is 

slower than the high-frequency components of S∥(ω) for B = 2 T. As a result, the decay 
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of the spin dynamics at time scales shorter than 100 ns does not improve by increasing 

the number of pulses (Figure 16c). By analyzing the obtained noise spectra, we learn 

that mitigating such high-frequency noise to extend the quantum dot spin coherence 

time from the current state of the art of a few microseconds [57,71,72] to beyond 10 μs 

requires the application of dynamic decoupling sequences utilizing hundreds of π-

pulses. 

 

However, here we can apply just eight π-pulses due to two mechanisms of spin 

relaxation. First, the natural spin relaxation of the quantum dot in our sample, T1 ≈ 1 

μs, did not allow us to observe the expected spin dynamics under multipulse sequences 

beyond microsecond time scales. This relaxation time could be extended up to 

milliseconds by modifying the tunnel barrier of the sample. [76] Second, increasing the 

number of CPMG pulses in our measurements resulted in a dramatic contrast drop of 

the collected fluorescence as a function of n [60]. This contrast drop is related to 

electron tunneling due to the increase in the laser power associated with the addition of 

the pulses. Such electron tunneling could be mitigated by coupling the quantum dot to 

fabricated photonic structures that reduce the laser power required for spin rotation. 

The reduction of the rotation laser power could enable the realization of multipulse 

sequences for prolonging spin coherence times and for the preservation of arbitrary 

spin states (e.g., XY8-based sequences [73]) for quantum information processing. 

Furthermore, the implementation of multipulse sequences with ultrahigh spectral 

resolutions (e.g., the “DYSCO” sequence [44]) may enable the identification of 

individual Larmor frequencies associated with nuclear species (e.g., the peaks in the 
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insets of Figure 17), as well as the ultrahigh resolution probing of external fluctuating 

magnetic fields with a single spin. 
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Chapter 4: Large Purcell Enhancement and Dipole Induced 
Transparency in a Bullseye Cavity 
4.1 Introduction 

In recent years, optically active quantum dots have emerged as useful resources for 

photonic quantum technologies. Quantum dots emit single photons with high 

brightness and indistinguishability,[77−85] which makes them promising as sources of 

single and entangled photons for photonic quantum computing.[86−89] In addition, 

these dots can be electrically charged with a single electron or a single hole, thereby 

offering a ground-state spin qubit.[90−96] Strongly coupling a quantum dot spin to a 

photonic cavity could provide an interface between a single photon and a single spin 

for quantum information processing,[97,98] thereby contributing to the ongoing efforts 

of establishing quantum networks.[99,100] Such strong coupling requires a sufficiently 

high cooperativity between the spin and the cavity, which typically involves the use of 

high-Q (>10k) cavities.[97,98] An ultrahigh cooperativity has been recently achieved 

between a quantum dot and a high-Q tunable microcavity formed by utilizing the 

advanced fabrication of convex mirrors.[98] An alternative approach for achieving 

such high cooperativities utilizes simple nanofabrication tools (e.g., electron beam 

lithography) to fabricate photonic crystal cavities. However, high-Q photonic crystal 

cavities often feature poor optical access to external light from the free space due to 

their divergent far-field emission patterns. [92,97,101] This poor access limits the 

ability to optically excite and collect photons emitted from quantum dots, as well as to 

coherently control the quantum dot spin, which requires circularly polarized light.[91, 

92, 95, 96].  
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To efficiently interface quantum dots with light often involves their coupling to low-Q 

(<1000) cavities such as gratings and micropillars.[80-82,84,102−107] Low-Q cavities 

can increase the optical density of states in the environment of a quantum dot, thereby 

Purcell-enhancing the rate of spontaneous emission of single photons from the dot. In 

addition, cavities that provide Gaussian far-field emission patterns can improve the 

efficiency of exciting and collecting photons from the quantum dot via confocal optical 

setups. For example, circular gratings formed by the periodical etching of rings from a 

substrate material (”bullseye” cavities) have been used to optically interface single 

defects in diamond [109] and quantum dots.[84,102,104−107,110] In particular, 

InAs/GaAs quantum dots produced optical emission of single photons with lifetimes 

of ∼200 ns.[106] Improving the efficiency of collecting photons from quantum dots 

coupled to such low-Q cavities can be achieved by introducing ellipticity to the 

structure,[84,85] but this prevents the access to the cavity using circularly polarized 

light. Another downside of low-Q cavities is their high loss of photons, which may 

result in low spin-cavity cooperativities, thereby significantly limiting the performance 

of the cavities for quantum networking. [97,98] To date, a low-Q cavity that provides 

a high-cooperativity spin−photon interface with an efficient, polarization-independent, 

optical access has yet to be demonstrated. 

In this chapter, we efficiently couple InAs/GaAs quantum dots embedded in a charge-

tunable device (a p−i−n−i−n diode) [101,111,112] to low-Q (∼1000) bullseye cavities 

with nearly degenerate polarization modes. By leveraging the low charge noise 

associated with the device, we measure spontaneous emission lifetimes of quantum 
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dots as short as ∼80 ps (a Purcell enhancement of ∼15), which are more than 2 times 

shorter than those previously observed for InAs/GaAs quantum dots in nearly 

degenerate bullseye cavities [106] and are close to the state-of-the-art lifetimes of such 

dots in microcavities.[80,81,84,85] By measuring a dip in the reflected light from a 

bullseye cavity caused by its coupling to an uncharged quantum dot, we extract a 

cooperativity of ∼8 between the cavity and the dot, which highlights the potential of 

the bullseye cavities as spin−photon interfaces. Combined with the enhanced 

efficiencies of optically exciting the quantum dot spin and collecting the emitted 

photons, the fabricated bullseye cavities offer a promising platform for quantum 

information processing utilizing electrically charged quantum dots. 

4.2 Relevant Theory: Purcell Enhancement 

Purcell enhancement is one of the phenomena in quantum optics that needs the 

quantization of electromagnetic radiation for a complete description. This is because 

Purcell enhancement is concerned with the enhancement of the rate of spontaneous 

emission of an electric dipole (i.e., atom which interacts with the electromagnetic field 

with the electric dipole Hamiltonian 𝑑̂𝑑.𝐸𝐸�) when it is coupled to a single mode of 

electromagnetic radiation in the weak coupling regime of cavity QED.  

A two-level atom (with an electric dipole) spontaneously emits radiation even in the 

absence of any externally applied field because of its interaction with the vacuum 

modes of electromagnetic radiation. When the atom is coupled to a cavity which 

supports only a single mode of the electromagnetic field, it sees a different 

electromagnetic environment than it sees when places in vacuo. This change in 
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electromagnetic environment then changes the rate of spontaneous emission of the 

atom. 

 
When the atom is in resonance with the mode of the optical cavity, the rate of its 

spontaneous emission becomes faster than its rate in vacuum. The ratio of the rate in 

cavity to the rate in vacuum is known as Purcell Enhancement. Purcell Enhancement 

is given by: 

 

 
 
where  𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the vacuum wavelength, 𝑛𝑛 is the refractive index, and Q and V are the 

cavity quality factor and the mode volume respectively.  

In this chapter, we will demonstrate Purcell Enhancement of the InAs quantum dot 

excitons in a Bullseye cavity.  

4.3 Relevant Theory: Dipole Induced Transparency (DIT) 

Dipole Induced Transparency refers to the modification of the cavity transmission and 

reflection in the weak coupling regime of cavity QED i.e., when 𝑔𝑔 < 𝜅𝜅 and 𝑔𝑔 ≫ 𝛾𝛾 

(where g, 𝜅𝜅 and 𝛾𝛾 are defined in figure 1,) such that the cooperativity 𝐶𝐶 = 𝑔𝑔2

𝜅𝜅𝜅𝜅
> 1. This 

regime is also known as the Purcell Enhancement regime. In this regime, the cavity 

transmission of the cavity with two symmetric mirrors as shown in figure 1 gets 

modified from a Lorentzian spectrum for the bare cavity to the spectrum shown in 

figure 18 which exhibits a dip at the resonance wavelength of the atom [113].   
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Figure 18 DIT: dip in cavity transmission at atomic resonance frequency 

4.4 Design and simulation of Circular Bragg Grating (Bullseye) cavities 

 
Figure 19 Bullseye design and simulation 

 
 
Figure 19 shows the design, modal pattern and far field emission pattern of a circular 

Bragg grating aka Bullseye cavity. We designed and simulated the Bullseye cavities 
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using Finite Difference Time Domain (FDTD) simulation of Maxwell’s equations 

using Lumerical. Figure 19 (a) shows the design parameters for a Bullseye cavity 

designed to have an optical mode at 930nm, which corresponds to the resonance 

wavelength of the majority of the InAs quantum dots in our wafers [101]. The bullseye 

cavity mainly is composed of two parts. One is the center disk that determines the 

resonance wavelength of its fundamental mode. For InAs quantum dots eimtting at 

around 930 nm, we set the radius of the center disk to be 363 nm to target a resonance 

wavelength of 930 nm. The second part is the surround ring gratings that help shape 

the Gaussian far field pattern (Figure 19 (b)), which is related to the radius of center 

disk and was set to be 154 nm here. To support the grating structure on a suspended 

GaAs membrane, we added bridges between the gratings to connect them to the bulk 

region as shown in Figure 19(c). To minimize the perturbation brought by those extra 

supporting bridges, we tried to minimize the size of those supporting bridges but made 

them wide enough to support the weight of the gratings. As shown in Figure 19(c), 

bridges of 2.5 degrees arc with respect to the center of the cavity were used. Figure 19 

(c) and (d) are the y-dipole electrical field intensity and far field pattern of the bullseye 

cavity with supporting bridges. Compared to the simulation results of the original 

bullseye design in (a) and (b), introducing bridge structures doesn’t affect the optical 

modes of bullseye cavity much. The simulation shows bullseye cavity typically features 

a quality factor of around 1000. 



 

 

51 
 

4.5 Fabrication steps for Bullseye Cavities 

In this chapter, we demonstrate Purcell Enhancement of InAs quantum dot excitons 

embedded in pinin diode heterostructures using Bullseye cavities. We also show the 

Dipole Induced Transparency effect of the weak coupling regime of cavity QED.  

 

Before we describe the measurement of our dot-cavity devices, we briefly describe the 

steps involved in the fabrication of Bullseye cavities. A detailed description of these 

steps can be found in ref. [121].  

 
Figure 20 GaAs softmask fabrication steps 

 
 
Figure 20 shows a schematic of the fabrication steps. First, we spin coat our quantum 

dot wafer with the positive electron beam resist ZEP520A (Zeon Chemicals) at a spin 

rate of 3000 rotations per minute. This leads to a resist thickness of ~450nm. We then 

expose ZEP520A with an electron beam lithography tool Elionix ELS G-100 which 

generates 100kV electrons. We use an electron beam current of 100pA to expose the 

resist. We dip the sample in a beaker containing ZED-N50 for 60 seconds to “develop” 

the resist. The exposed part of the positive resist dissolves in n-amyl acetate (sold as 
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ZED-N50 by Zeon chemicals.) This is followed the etching of GaAs in a Chlorine 

plasma. The resist of thickness ~450nm holds well under the chlorine plasma, allowing 

us to obtain the desired structures reliably. (We note that depending on the structures 

being fabrication, a “hard mask” of Silicon Nitride may need to used.) After etching, 

we remove the resist by dissolving it in n-methyl-2-pyrrolidone (sold as Remover PG 

by Kayaku chemicals.) The sample is kept in a remover PG beaker placed on a 60oC 

hot plate for 20 minutes to completely remove the resist. To obtain suspended Bullseye 

structures, we dip the sample in 10% HF for 45 seconds. HF performs an undercut of 

the AlGaAs layer by producing AlH3 which dissolves in water. However, it also leaves 

behind AlF3 residues, which are removed by dipping the sample in KOH for 1 minute.  

 

Figure 21 SEM images of fabricated bullseyes 

 

Figure 21 shows all the three types of Bullseye structures we fabricate. As also 

mentioned in the previous section, we have bridges connecting subsequent rings of 

Bullseyes so that the structures don’t collapse following their suspension due to 

undercut of the AlGaAs layer. The three structures shown here only differ in the 
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arrangement of these bridges and exhibit very similar far field emission patterns in 

simulation. 

4.6 Characterization of Bullseye cavities 

We first characterize the modes of the Bullseye cavities using above band 

photoluminescence measurements. It’s possible to observe cavity spectra under 

photoluminescence due to the so-called cavity feeding effect[122. ]To measure the 

bullseye spectra, we apply a voltage of 1V across the pinin diode. At this voltage, the 

lines in the spectra corresponding to emission from individual dots are strongly 

diminished, allowing an easy characterization of the locations and linewidths of the 

modes of the bullseye cavities.  

 

Figure 22 Bullseye photoluminescence spectrum 

Figure 22 shows the two orthogonally polarized modes of a bullseye cavity that was 

ultimately deemed unsuitable for further cavity QED measurements. The label 8-14 33 

identifies the location of this bullseye in the array of cavities that we fabricated. The 

last digits 1 and 2 in the labels in figure 22a and 22b respectively identity the two 

orthogonally polarized modes. This cavity was ultimately rejected for further 

measurements because of the low-quality factor (~400) of the two modes and the large 
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splitting of ~5nm between them. However, we performed time-resolved 

photoluminescence (PL) of the exciton coupled to the 814331 mode and compared with 

the same measurement of an dot exciton in the bulk i.e. a dot not physically located 

inside a bullseye cavity. These measurements are shown in Figure 23. We fit the 

observed PL to exponentials and extracted lifetimes of ~670ns and ~1400ns for the 

exciton coupled to the bullseye and the dot exciton in the bulk respectively. This 

corresponds to a Purcell enhancement of ~2, which further motivated us to keep looking 

for better devices in our array. Also note that the counts/unit time from the exciton in 

the bullseye are two orders of magnitude higher than the exciton in the bulk.  

 

Figure 23 Exciton lifetime in bulk and bullseye 

Figure 24 shows the above band PL measurements for the Bullseye labelled 8-14 11 

which is the main focus of the rest of this chapter. Note that this bullseye has the bridge 

structure shown in figure 24(a). Figure 24(a) shows the PL spectrum at a bias voltage 

of 1V where only the cavity mode is observed. This Bullseye has nearly degenerate 

polarization modes. Furthermore, the modes have a Quality factor of ~1070 which 

agrees very well with the simulated quality factor. Figure 24 (b) overlays the PL from 

the two dots coupled to this bullseye measured at an applied magnetic field of 6T in the 

voigt configuration and a bias voltage of 0.6V where the two dots are neutral and show 

the brightest emission. At 6T, these neutral dots have two orthogonally polarized PL 
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lines, parallel and perpendicular to the applied magnetic field. For the rest of this 

chapter, we focus on Dot 1.  

 

Figure 24 photoluminescence of (a) bullseye (b) of dots coupled to bullseye 

 

4.7 Large Purcell Enhancement of a charge stabilized neutral dot in a Bullseye cavity  
 

 

Figure 25 Lifetime measurements show large Purcell enhancement 
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Fig 25 shows the time-resolved photoluminescence measurements of the two 

orthogonally polarized transitions of dot 1 at 6T magnetic field in the voigt geometry 

and a representative measurement of a dot in the bulk. We plot the y-axis on a log scale 

such that the exponential decay of photoluminescence versus time is rendered linear on 

the plot. The blue, orange and green lines correspond to linear fits to the PL of bulk 

exciton, bullseye coupled V polarized exciton and H polarized exciton respectively. 

From the linear fits, we extract lifetimes of 83ps and 90ps for the H polarized and V 

polarized excitons respectively. In contrast, the lifetime of the bulk exciton is ~1200 

ps. This suggesst a large Purcell enhancement due to the Bullseye cavity mode.  

For the H polarized exciton, we calculated a Purcell enhancement of 15.35 ± 0.85. The 

latter is close to the state-of-the-art lifetimes measured on InAs/GaAs quantum dots 

embedded in microcavities [80,81,84,85] and is shorter by a factor of ∼2 than those 

previously measured on InAs/GaAs quantum dots in bullseye cavities with nearly 

degenerate polarization modes.[106] We attribute this improvement to two main 

factors. First, our fabrication of bullseye structures involves the etching of a sacrificial 

layer below the cavity, whereas the rings of the bullseye structures in previous 

fabrications [102,110] either were not etched all the way down to this layer or 

incorporated a metallic mirror at the bottom.[106] While partial etching or the addition 

of a metallic mirror could improve the collection efficiency of photons scattered from 

the sample, these procedures may reduce the quality factor of the bullseye cavity, 

thereby providing a smaller Purcell enhancement compared to those we observe for 

suspended structures. The second factor that contributes to the enhanced optical 

emission rate is the reduced charge noise associated with the p−i−n−i−n diode, 
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[101,112 ] which minimizes the effects of spectral wandering of quantum dots coupled 

to the cavity that may degrade the Purcell enhancement of their emission. 

 

 

4.8 Bullseye cavities show dipole induced transparency. 
 
To study the potential of bullseye cavities as spin−photon interfaces, we measure the 

reflectivity of light from a cavity coupled to an uncharged quantum dot in the absence 

of an external magnetic field. We sweep the frequency of a weak (∼0.5 nW) 

continuous-wave laser and measure the intensity of the signal reflected from the cavity 

(purple dots in Figure 26a). A dip in the cavity reflectivity with a contrast of ∼80% 

emerges at the wavelength of the optical transition of the quantum dot. This optical 

transparency is caused by the destructive interference between two optical transitions 

with opposite phases generated due to the coupling between the cavity and the quantum 

dot (in analogy with electromagnetically induced transparency where two transitions 

in an atomic three level system interfere destructively) and improves with the Purcell 

factor. [113] The observed reflectivity pattern is asymmetric, namely a Fano 

resonance,[114−116] possibly due to a small splitting between the cavity polarization 

modes or to an additional interference effect resulting from the membrane of our 

sample (see Appendix 3.A). The measured reflectivity agrees with simulation results 

based on a theoretical Jaynes−Cummings model [24,40] (yellow line in Figure 26a) 

considering a coupling strength of g = 35 GHz between the quantum dot and the cavity 

and photon losses from the cavity and the dot of κ = 310 GHz and γ = 1 GHz, 

respectively (see Section Appendix 3.A). The relatively high cooperativity between the 
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dot and the cavity extracted from the model, 𝐶𝐶 = 𝑔𝑔2

𝜅𝜅𝜅𝜅
= 4, suggests that bullseye cavities 

can be used for photon switching and for interfacing single photons with single spins. 

[97,98] 

 

 

Figure 26 bullseye reflectivity measurements (see text for details) 

We can estimate the efficiency of coupling photons to quantum dots in such interfaces 

by plotting the intensity of light reflected at the cavity dip as a function of the incident 

laser power (Figure 26b). Fitting the experimentally measured dip reflectivity trend to 

the theoretically simulated trend [40] reveals that ∼8% of the incident light reaches the 

cavity (see Appendix 3.A). This efficiency is much greater than those we observe in 

the same experimental setup utilizing photonic crystal (e.g., L3) cavities, indicating 

that the far-field emission pattern of the bullseye cavity is concentrated at small angles, 

as expected from simulations. The main factor limiting the coupling efficiency is the 

mismatch between the numerical aperture of the objective lens in our setup (0.68) and 

the angle of the cavity far-field emission mode corresponding to a 1/e relative intensity 

(∼0.36). This mismatch leads to a factor of ∼3.6 degradation in the efficiency that can 

be avoided by changing the lenses in our experimental setup. After additionally 
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growing a distributed Bragg reflector at the bottom of the sample the sample to act as 

a mirror, we expect to optically access quantum dots in next-generation bullseye 

cavities with efficiencies of over 60%. Beyond improving the rates of optical excitation 

and photon collection, such efficient access of light may enable multipulse coherent 

control of quantum dot spins in cavities. [96] 

4.9 Optical spin pumping in a Bullseye cavity  
 
As we mentioned in chapter 1, in order to achieve perfect photon-photon entanglement, 

we require a lambda system with one of its transitions coupled to an optical cavity [99] 

To achieve this, we would like to use a negatively charged dot with magnetic field 

applied in the voigt configuration which has the desired level structure due to the 

metastable spin up and down states of the electron spin [93].  

 

 
Figure 27 photoluminescence of bullseye coupled to charged dots (a) CW (b) time-resolved 

  
 
We examine a bullseye cavity coupled to such a spin: namely, a single electron spin 

qubit confined in a (“charged”) quantum dot. Under an external magnetic field of B = 

9 T, the application of a series of ultrashort above-band laser pulses (i.e., they are much 
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shorter than the optical emission rates of the dot) reveals the optical transitions of the 

dot (Figure 27a). Compared to dots in the bulk, the laser power required for the 

saturation of the photoluminescence signal from the quantum dot in the cavity is 1 order 

of magnitude weaker, and the intensity of this signal is ∼25 stronger. Optically 

accessing the device should be even more efficient for light in spectral resonance with 

the cavity: namely, spectrally detuned by ∼1 nm from the optical transitions of the dot. 

Here, due to the observed spectral detuning, the Purcell enhancement of photon 

emission via the optical transitions of the examined electrically charged dot of (∼8−9, 

Figure 27b) is smaller than that observed for the uncharged dot studied in the previous 

section.  However, this spectral detuning can be leveraged to boost the efficiency of 

optical pulses that coherently control the quantum dot spin applied in resonance with 

the cavity, as such pulses must be spectrally detuned from the dot’s optical transitions. 

[91,95,96] Another observation that highlights the potential of bullseye cavities for 

boosting spin-coherent control is the emission of photons from all four optical 

transitions of the dot. As illustrated in Figure 27a, the charged quantum dot emits 

photons at polarizations orthogonal to each other, with directions dictated by the 

external magnetic field. The observation of photoluminescence from all four transitions 

is consistent with the expected polarization degeneracy of the cavity mode (i.e., if a 

polarization mode were too spectrally detuned, we would have not observed the two 

emission lines with polarizations associated with it). We note that the collection of 

horizontally polarized light is less efficient than that of the vertically polarized light 

due to a small spectral splitting of polarization modes of this cavity caused by 

fabrication imperfections. Despite such quantitative differences, the ability to access 
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quantum dots with light beams orthogonal to each other is crucial for the realization of 

pulse sequences for coherently controlling the quantum dot spin for quantum 

information processing utilizing circularly polarized light[91,95,96]. 

 
Figure 28 Electron spin relaxation inside a bullseye cavity 

To further emphasize the potential of controlling the quantum dot spin in the bullseye 

cavity, we use laser pulses resonant with one of the optical transitions of the dot to 

optically pump the spin (under B = 9 T). Varying the free evolution time between these 

pulses and measuring the emission of Raman signal from the dot results in the 

saturation behavior depicted in Figure 28. The sharp peak of the Raman signal emitted 

under the application of the first pulse indicates the optical initialization of the spin to 

one of its ground states. Then, the application of additional pumping pulses should not 

induce any Raman signal. Experimentally, however, the pulses induce undesired 

Raman signals that saturate for the free evolution time of T1 = 21.2 ± 3.5 ns (extracted 

from the leastsquares fitting shown in the inset of Figure 28). This saturated Raman 
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signal represents the relaxation of the quantum dot spin, which reduces the spin 

initialization fidelity down to ∼25%. 

The observed spin relaxation is dominated by two physical mechanisms. First, the main 

mechanism that causes spin relaxation is the cotunneling of the electron confined in the 

dot with the electrons in the n-type back contact,[118] which results in our sample in 

spin relaxation times of a few tens of nanoseconds even for dots in the bulk. These 

natural relaxation times can be further extended by orders of magnitude by modifying 

the tunnel barriers (GaAs layers) of the diode. [118,119] The second (minor) cause for 

the short spin relaxation time observed here is the spectral proximity of the bullseye 

cavity (∼905 nm) to the wetting layer. Given this spectral proximity, pumping an 

optical transition of the dot coupled to the cavity may lead to a residual above-band 

pumping of both spin states, thereby reducing the spin initialization fidelities (by a few 

additional percent) compared to the those observed for dots with optical wavelengths 

of ∼930 nm. This residual pumping can be mitigated by designing and utilizing 

bullseye cavities with higher resonant wavelengths: e.g., by increasing the dimensions 

of the rings. The mitigation of both natural and laser-induced spin relaxation 

mechanisms could enable high fidelity spin control of the quantum dot spin using low 

laser powers, thereby upgrading the potential of these dots for quantum information 

processing. 
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Chapter 5:  Ongoing projects and future directions 
 
We begin this chapter by reiterating some of the requirements for achieving 

semiconductor cavity QED platforms that are viable for quantum information 

processing applications: 

(i) High cooperativity 

(ii) Near unity coupling efficiency to the atom-cavity system 

(iii) For spin qubits in a lambda system: large spin lifetimes and coherence times 

We have demonstrated that the near Gaussian far field emission pattern of Bullseye 

cavities can substantially improve the coupling efficiency over the far field pattern of 

L3 cavities. We also observed a decent cooperativity of 8, which was enabled by the 

mitigation of charge noise by the p-i-n-i-n diode heterostructures. However, we saw 

that the spin relaxation time of dots coupled to Bullseye devices was poor, limited to 

50ns in most cases. One of the reasons for this limitation is the 30nm tunnel barrier 

between the quantum dot layer and the back n contact of the diode which forms the 

Fermi Sea source of electrons for charging the dot.  

A limitation of the Bullseye device, from a photonic point of view, is that high 

efficiency and high cooperativity are somewhat conflicting requirements. Bullseye 

cavities can be designed with partially etched gratings such that the emission is biased 

upwards and therefore is more efficiently collected by an objective lens. However, this 

leads to lower device quality factor, i.e., a higher 𝜅𝜅 for the cavity, and therefore a lower 

Cooperativity, all other things being equal.  
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In this chapter, we try to address both problems. We characterize the spin lifetimes in 

p-i-n-i-n heterostructures with a sacrificial layer of AlGaAs with 40nm and 50nm 

tunnel barriers between the quantum dot layer and the back n-contact. We find that 

40nm tunnel barriers performed the best given the same growth conditions. This is not 

in line with previous findings in the literature where 50nm tunnel barrier devices 

performed better in the case of a Schottky diode [76]. The reason for this inconsistency 

is not clear as of now. 

To address the conflicting requirements between Bullseye efficiency and cooperativity, 

while also achieving quality factors >1000 that Bullseye cavities are typically limited 

to in simulation, we investigate nanobeam cavities with adiabatically tapered 

waveguides. Nanobeam cavities have been shown to have quality factors as high as 

25000 for InAs/GaAs quantum dots substrates. [123] Theoretically, the quality factors 

can be as large as a few million. Adiabatically tapering a waveguide can theoretically 

yield efficiencies >95%, as we show via means of FDTD simulations. In this chapter, 

we show the design and simulation results for nanobeam cavities with adiabatically 

tapered waveguides. We show the developments we have made towards fabricating 

these devices in p-i-n-i-n diode heterostructures, as well as some device 

characterization data.  

5.1 Dependence of spin lifetime on tunnel barrier for p-i-n-i-n diode heterostructures 

Our results in the previous chapter used a device with 30nm tunnel barrier. We 

observed spin lifetimes below 100ns, which is far below the spin lifetimes observed in 

Schottky diode heterostructures [76]. To study whether increasing the tunnel barrier is 

effective in increasing the spin relaxation time as a result of the decrease in cotunneling 
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rate [76], we characterized the spin lifetimes of electron spins in negatively charged 

quantum dots in samples with 40nm and 50nm tunnel barriers.  

Spin lifetime measurements in p-i-n-i-n diode heterostructures with 40nm tunnel 

barriers 

 
Figure 29 spin lifetime test for 40nm tunnel barrier pinin diode 

 
 
Figure 29 shows the spin lifetime measurement of electron spin in one negatively 

charged InAs dot from a sample with a pinin diode heterostructure. Figure 29(a) shows 

the time resolved photon counts when spin initialization pulses of a duration of 10ns 

are applied with time delays to capture the spin relaxation time response. After the 

fluorescence due to the first initialization pulse, the fluorescence from the application 

of the subsequent pulses is suppressed due to optical spin pumping [93]. As the spin 

relaxes to thermal equilibrium, we observe fluorescence levels similar to that of the 

first pulse in the sequence. It can be seen from figure 29(b) that it takes about 3us for 

the spin to fully relax. This corresponds to a spin relaxation time of about 600ns, which 

is representative of other dots in the sample and better than what we observed for the 
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30nm tunnel barrier sample. We ascribe this improvement to the reduced co-tunneling 

rate due to the increased length of the tunnel barrier. [76] 

 

Spin lifetime measurements in p-i-n-i-n diode heterostructures with 50nm tunnel 

barriers 

 
Figure 30 Spin lifetime test for 50nm tunnel barrier pinin diode 

 
Figure 30 shows a spin relaxation measurement like the one in the previous subsection. 

In this case, the dot is embedded in a diode structure with a tunnel barrier of 50nm 

width. This measurement is representative of the measurement performed on other dots 

on the sample. Contrary to our expectations, the spin relaxation time in these samples 

was rather poor. In the example shown by the figure above, the spin relaxation is 

happening on the order of 10s of nanoseconds.  

 

5.2 Nanobeam cavities with adiabatic tapers   

Adiabatically tapering a single mode waveguide 

The idea of adiabatic tapering is simple. We start with the width of a single mode 

waveguide. We taper the mode slow enough such that the mode stays guided, while the 
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effective index of the mode decreases. As the refractive index of the mode approaches 

1, the taper can be terminated as now the waveguide mode is nearly impedance matched 

with vacuum and transmits through the waveguide into vacuum with low reflection or 

scattering loss.  

 

 

Figure 31 Nonlinear adiabatic taper 

 

Figure 31 shows the design of an adiabatic taper based on the adiabatic condition for 

GaAs. The figure is a snapshot of the movie generated from Lumerical FDTD which 

shows the propagation of the electric field along the waveguide when excited by a 

Mode Source. The adiabatic condition is given by: 

         () 

 

where w is the width of the waveguide at location z, z=0 being the beginning of the 

taper. This differential equation gives rise to a highly nonlinear taper. Since the 

refractive index of GaAs @920nm is ~3.5>>1, the initial taper happens very fast. This 

can give rise to short tapers which are convenient for working with short working 

distance objectives.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 ≪ (𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(𝑤𝑤) − 1) 
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The following table shows a comparison between linear and nonlinear tapers of length 

9.4um designed for a GaAs waveguide of width 300nm at a wavelength of 920nm. The 

different columns of the table show the fraction of the source light that gets emitted 

into a certain NA. As the table clearly shows, the nonlinear taper designed using the 

adiabatic condition outperforms the linear taper.  

Taper type NA = 0.34 

Transmission 

NA = 0.5 

Transmission 

NA = 0.7 

Transmission 

Linear 0.47 0.77 0.95 

Non-Linear 0.79 0.92 0.97 

Nanobeam cavity design 

 
Figure 32 Nanobeam cavity with adiabatically tapered central holes 

 
 
The nanobeam cavity design is based on a 1D photonic crystal with a central defect, as 

shown in the figure above. Note that the hole size and period is tapered towards the 

center of the cavity. This is to ensure that the Bloch modes of the photonic crystal 

mirrors are adiabatically transformed into the mode of the waveguide as they approach 

the cavity defect. This prevents any unwanted scattering and enables a high Q cavity 

design. For the design above, we simulated a cavity Q of 1.9 million at the design 

wavelength of 940nm. The calculated mode volume of the cavity is  0.16 �𝜆𝜆
𝑛𝑛
�
3
 , where 

n=3.55 is the refractive index of GaAs.  
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 Fabricated one sided nanobeam cavities with adiabatic tapers. 

In order to make one sided nanobeam cavities, we reduce the number of holes of the 

photonic crystal mirror on the side which is close to the adiabatic tapers. We fabricated 

these devices on our pinin diode heterostructure samples. The following picture shows 

an SEM image of the fabricated cavities after etching and undercut + precision 

cleaving. 

 

Figure 33 Fabricated nanobeam cavities 

 

Characterization of fabricated cavities at room temperature 

 
Figure 34 Schematic of nanobeam measurement with lensed fibers 

 
The figure above shows a schematic of the optical setup that we use to characterize the 

nanobeam cavities. The laser light exiting out of the lensed fiber falls on the tapered 

nanobeam cavity. The reflected light from the nanobeam cavity is collected into the 
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lensed fiber. The reflected light is then imaged on a spectrometer CCD to measure the 

reflection spectrum of the nanobeam cavity.  

 
The figure below shows the reflection spectra of two of the nanobeam cavities 

characterized at room temperature. We observe a dip at the resonance wavelength of 

the fundamental mode of the cavity. The dip in the reflection spectrum occurs close to 

the design wavelength of 940nm in both bases. We obtain a cavity Q of ~2000 via a 

Lorentzian fit. 

 

Figure 35 Dip in nanobeam reflectivity at cavity resonance 

5.3 Outlook  

In order to obtain InAs/GaAs quantum dots in pinin diodes with lifetimes comparable 

to Schottky diodes, we will keep working with our collaborators to figure out where 

the issues are.  Another alternative is to investigate GaAs/AlGaAs quantum dots, which 

have larger spin coherence times due to lower strain.  

We need to optimize the fabrication of nanobeam cavities in order to obtain higher 

quality factors. We are working on ebeam lithography with a Silicon Nitride hard mask 

which is more resistant to etching under a chlorine plasma and would allow longer etch 

times such that the cavity holes are etched through.  
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Appendices 
 

Appendix 2.A: Derivation of Scattering Amplitudes 
 
To calculate the scattering amplitudes, we note: 
 

                                             (2A.1) 
where 
 

                                          (2A.2) 
 
Therefore, to calculate the desired scattering amplitudes pq, we first calculate Gpq and 

then use eq. 2A.1. In order to calculate Gpq, we first recall the result from ref. [14] that 

will be used repeatedly in this section. Throughout this section the time orderings t2 ≥ 

t1 and 𝜏𝜏2 ≥  𝜏𝜏1 are assumed. 

 

                                                        (2A3.a) 

                                                       (2A3.b) 
with 
 

                                                                                    (2A.4) 
where 
 

                                                                                                (2A.5) 
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Using eqs. (2A.4) and (2A.5) and the properties of the operators 𝜎𝜎 and 𝜎𝜎+, we can 

calculate the amplitudes corresponding to eqs 2A.3. In Eq. 2A.3a, 𝜏𝜏1 ≥ 𝑡𝑡1 is the only 

possible time ordering because the atom must be raised to the excited state before it is 

lowered to the ground state. In Eq. 2A.3a, 𝜏𝜏2 ≥ 𝑡𝑡2 ≥ 𝜏𝜏1 ≥ 𝑡𝑡1 is the only possible 

ordering, because before being raised by 𝜎𝜎+(𝑡𝑡2),the atom must be lowered. Therefore, 

we have: 

                                                          (2A.6a) 

                                                   (2A.6b) 
 
where Θ is the Heaviside step function and ensures the time orderings. 
 
Before we proceed to the calculations of Gpq, we also recall the quantum causality 

conditions 

                                                        (2A.7a) 

                                                        (2A.7b) 
 
where 𝐼𝐼 stands for input annihilation or raising operators, and  𝑂𝑂� stands for output 

annihilation or raising operators. 

 
We first calculate the scattering amplitudes for two reflection events Gbb, which gives: 

 

                                                 (2A.8) 
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We first note here that the only time ordering which gives a non-zero result is 𝜏𝜏2 ≥

𝑡𝑡2 ≥  𝜏𝜏1 ≥ 𝑡𝑡1. This is because other possible time orderings of eqn (2A.8) result in 0. 

Therefore, we have: 

 

                                                   (2A.9) 
 
where the first step follows from applying the causality condition (2A.7a) on the result 

of eqn. (2A.8). The second step follows from using 𝑎𝑎𝑖𝑖𝑖𝑖(𝑡𝑡)  =  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)  + �2𝛾𝛾𝜎𝜎+(𝑡𝑡) 

and the causality condition (2A.7b) and the last step follows from eqn. (2A.6b). 

 
Using the result for Gbb in eqn. (2A.1), we obtain: 
 

                                                 (2A.10) 
 
To obtain 𝐺𝐺𝑏𝑏𝑏𝑏, we observe: 
 
 

                                         (2A.11) 
 
where the equality follows from the input-output relations. We note that the second 

term on the right-hand side of the equality is Gbb. Therefore, we only need to calculate 

the first term. Using the causality conditions (2A.7a), (2A.7b) and the relation 𝑎𝑎𝑖𝑖𝑖𝑖+ =

𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜+ + �2𝛾𝛾𝜎𝜎+(𝑡𝑡),we get: 
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                                             (2A.12) 
 
plugging this result in eqn (2A.11), we obtain Gba. Now we use eqn. (2A.1) to obtain: 
 

                                                 (2A.13) 
 

Appendix 2.B: Calculation of Routing Efficiency 
 
We can calculate the splitting efficiency from the scattering amplitudes derived in the 

previous section. To do this, we first calculate the scattering amplitudes at the output 

of the MZI namely, ψcc, ψcd, ψdc, ψdd. The probability density of splitting is then given 

by ρs = |ψcd|2 + |ψdc|2. 

To calculate the scattering amplitudes at the output of the MZI, we use the MZI input-

output relations to express them in terms of the scattering amplitudes at the output of 

the TLA. We illustrate this procedure by showing the steps for calculating ψcd 

explicitly. 

 (2B.1) 

where the first step follows from the definition of ψcd. The second step follows from 

the MZI input-output relations. The third step uses the definition of the scattering 

amplitudes at the output of the TLA. Using the above procedure, we get, 

                   (2B.2) 
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                          (2B.3) 

                      (2B.4) 

We note that |ψcc|2 +|ψcd|2 +|ψdc|2 +|ψdd|2 = |ψbb|2 + |ψba|2 + |ψab|2 + |ψaa|2. Since the right-

hand side of this equation integrates to 1 over the output times τ1 and τ2, so does the 

left-hand side, ensuring proper normalization of the output photon wavefunction. This 

preservation of probabilities is ensured by the unitarity of the MZI transformation of 

eq. (7). We obtain the probability density of the two input photons being split to 

different output modes of the MZI as ρs = |ψcd|2 + |ψdc|2, which gives: 

             (2B.5) 

The routing efficiency is given by the integral of ρs over t and τ. 

Appendix 2.C: Routing efficiency for uncorrelated exponential inputs 
 
The input state of two uncorrelated photons with an exponential pulse profile is given 

by 𝜉𝜉(𝑡𝑡1, 𝑡𝑡2)  =  √2𝜉𝜉(𝑡𝑡1)𝜉𝜉(𝑡𝑡2) with 𝜉𝜉(𝑡𝑡)  =  √2𝜅𝜅𝑒𝑒−𝜅𝜅𝜅𝜅. Plugging this input state into 

eqns. (10) yields the following expressions for the two photon wavefunctions at the 

outputs aout and bout of the two-level atom: 

 

                    (2C.1a) 

            (2C.1b) 

            (2C.1c) 

                                        (2C.1d) 
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Using these expressions in eqn. 2B.5, we can calculate probability density that the two 

input photons are routed to different output ports cout and dout of the interferometer. 

Integrating the resulting expression over τ1 and τ2 gives the following routing 

efficiency: 

        (2C.2) 

 

Here, we set the atomic bandwidth γ = 1. Please note that this merely corresponds to 

expressing the pulse bandwidth κ in the units of the atomic bandwidth γ. 

Appendix 2.D: Routing efficiency for entangled exponential inputs 
 
The input state of two entangled photons with an exponential pulse profile is given by 

𝜉𝜉(𝑡𝑡1, 𝑡𝑡2)  = 2√𝜅𝜅𝜅𝜅 𝑒𝑒−𝜅𝜅𝑡𝑡1  𝑒𝑒−𝛿𝛿(𝑡𝑡2−𝑡𝑡1). We follow the same steps as in the previous section 

to obtain the two-photon wavefunction at the output of the two-level atom. The 

resulting routing efficiency in the stationary limit is given by: 

          (2D.1) 

where the stationary limit corresponds to taking the limit κ → 0. Also note that we have 

set the atomic bandwidth γ = 1, which merely corresponds to expressing the pulse 

bandwidth δ in terms of the atomic bandwidth. 
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Appendix 3.A: Theoretical Model of Bullseye reflectivity spectrum 
 

To calculate the reflectivity spectrum of a bullseye cavity coupled to a neutral quantum 

dot exciton in the absence of an external magnetic field [yellow lines in Fig. 26 of the 

main text], we used a Jaynes Cummings model with losses, coherently driven by a laser 

field. Considering this model, the system Hamiltonian, in the rotating frame with 

respect to the driving field and under the rotating wave approximation, is given by: 

                                    (3A.1) 

where g represents the coupling strength of the quantum dot to the cavity, ωl and ξ 

represent the frequency and amplitude of the laser, respectively, a† and a (σ+ and σ−) 

are the creation and annihilation operators of the cavity field (quantum dot optical 

transition), respectively, and ωc, ωa are the resonant frequencies of the cavity and 

quantum dot, respectively. In addition to the Hamiltonian part, we modeled the losses 

of photons in the system due to the decay of the cavity field at a rate of κ and the 

spontaneous emission from the neutral quantum dot exciton at a rate of γ1 by the 

collapse operators 𝐿𝐿𝑐𝑐  = √𝜅𝜅𝑎𝑎 and 𝐿𝐿𝑎𝑎  = √𝛾𝛾𝜎𝜎_, respectively. Finally, we modeled the 

pure Markovian dephasing of the neutral quantum dot exciton at a rate of γd by the 

jump operator 𝐿𝐿𝑑𝑑  = �𝛾𝛾𝑑𝑑𝜎𝜎𝑥𝑥, where σx is the x-Pauli operator in the energy subspace of 

the quantum dot. 

To simulate the reflectivity from the cavity [red line in Fig. 26 (a) of the main text], we 

first used a quantum optics (QuTip) toolbox to calculate the steady-state density matrix, 

ρ, by solving the Lindblad master equation: 
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                                                                 (3A.2) 

with i ∈ {c, a, d}. Using the obtained density matrix, we then calculated the steady state 

cavity field (directly proportional to the cavity reflectivity) given by nc = tr(ρa†a). 

Repeating the simulation while sweeping the frequency of the laser, ωl, resulted in the 

cavity reflectivity spectrum. Figure 26(a) of the main text shows such a reflectivity 

spectrum driven by a laser with power as low as 0.5 nW, which corresponds to the 

weak excitation limit ξ ≪ g, κ, γ1, γd. To properly simulate the spectrum within this 

limit, we considered a sufficiently low value of ξ and known values of κ = 310 GHz 

(extracted from the bandwidth of the cavity) and γ1 = 0.1 GHz (taken from a previous 

study that used the same wafer 1)), and swept the unknown parameters γd and g. By 

fitting the simulated spectra to the experimental results [blue data points in Fig. 26 (a)], 

we extracted the parameters of our system, g = 35 GHz and γd = 1 GHz. These numbers 

correspond to a cooperativity of 𝐶𝐶 ≈ 2𝑔𝑔2

𝜅𝜅𝛾𝛾𝑑𝑑
≈  8. 

Fitting the simulation results to the experimental data can also provide an estimate for  

the efficiency of the optical interface provided by the bullseye cavity. Figure 26(b) of 

the main text shows both experimentally measured (blue data points) and theoretically 

simulated (red line) trends of the normalized reflectivity of the cavity as a function of 

the laser power. The experimental data represent the measured reflectivity of the dip 

while sweeping the laser power before the sample, Pin, normalized by the reflectivity 

of the cavity in the absence of the quantum dot (observed after changing the voltage 

bias of the diode). To obtain the simulated results, we solved equation (2) for ωl = ωc 

while sweeping the parameter ξ that represents the amplitude of the laser. We 
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performed this simulation twice, in the presence and absence of the quantum dot (i.e., 

considering g = 0), which resulted in the steady-state cavity fields nc(ξ) and n0(ξ), 

respectively. From these cavity fields, we finally calculated the normalized reflectivity, 

𝑅𝑅 = 𝑛𝑛𝑛𝑛
𝑛𝑛0

  .  While the input laser power cannot be determined solely from the simulation, 

this power is directly proportional to the reflectivity in the absence of the quantum dot. 

                                                                                                            (3C.3) 

where η is the efficiency of the optical interface provided by the cavity. As such, fitting 

the trend of the simulated reflectivity as a function of n0 to the experimental results 

allowed us to extract the optical efficiency provided by the cavity, η ≈ 8%, and to 

present the simulated in Fig. 26(b) in units of μW that represent the laser input power. 

While the parameters of the simulation were swept to optimally fit the experimental 

measurements, there are still quantitative discrepancies between theory and 

experiment. Most notably, the theoretical reflectivity spectrum [red line in Fig. 26 (a)] 

deviates from the experimental obtained one [blue data points in Fig. 26 (a)], which 

exhibits a rather asymmetric pattern (Fano resonance). We believe that this observation 

can be related either to the small non-degeneracy between two orthogonal linearly 

polarized modes of the particular bullseye cavity, or to an additional interference effect 

resulting from the Fabry-Perot cavity that constitutes the membrane of our sample. To 

examine these effects, we measure the photoluminescence signal emitted from the 

bullseye cavity under above-band excitation in absence of the quantum dot, while 

separately filtering the two orthogonal polarization modes using quarter and half 
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waveplates. Figure 36 illustrates the observed small spectral deviation between the 

polarization modes, as well as the oscillating reflectivity signal associated with 

Fabry-Perot interference. 

 

Figure 36 The photoluminescence spectra emitted from two orthogonal linearly polarized modes of the cavity 
corresponding to figure 26 under above band excitation  
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