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Photons are excellent carriers of quantum information. Since they hardly interact with each other,
they can maintain their quantum state over long distances. However, this poses a challenge if one
wishes to create entanglement between the degrees of freedom of photons. Creating entangled
states of photons is essential for quantum information processing with photons.
One way to create interactions between photons is to create strong interactions between two level
atoms and modes of electromagnetic radiation. This can be achieved by coupling optical transitions
of two-level atoms with modes of optical cavities or waveguides. The nonlinearity of a two-level
atom then effectively mediates interactions between two (or more) photons. However, due to a
fundamental time-bandwidth limit, a two-level atom cannot enable arbitrary quantum operations
on the states of two photons.
In this thesis, we study theoretically the problem of splitting two indistinguishable photons to

distinguishable output modes with a two-level atom. Due to the time-bandwidth limit, the achieved



splitting efficiency is fundamentally limited to 82% using just a two-level atom. We show that a
linear optical unitary transformation on the output modes of the two-level atom can exceed this
limit. Via optimization of the input two photon wavefunction and the parameters of the linear
optical unitary, we calculated a splitting efficiency of 92%.

For experimental realization of strong atom-light interactions, we used InGaAs quantum dots
coupled to a bullseye cavity. Bullseye cavities are promising towards realization of efficient
collection of light due to their near Gaussian far field emission. We demonstrated a strong
interaction between the quantum dot exciton and the Bullseye cavity mode, quantified by a
Cooperativity of ~8. This high cooperativity with a low-quality factor cavity can be attributed to
the charge stabilization enabled by the diode heterostructure of the quantum dot samples we used.
Finally, we focus on the electron spin ground states of a negatively charged InGaAs quantum dot.
The electron spin interacts with the nuclear spins of the In, Ga and As. We measure the spectrum
of this interaction using all optical dynamical decoupling pulse sequencies. This work lays a path

forward to realizing efficient and coherent spin-photon interfaces with InGaAs quantum dots.
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Chapter 1: Introduction

Photons hardly interact with each other. This is a great feature as far as communication
of quantum information is concerned. As a result of the lack of photon-photon
interactions, individual photons can preserve their quantum state over long distances in
optical fibers. However, if one wants to create quantum correlations aka entanglement
between the degrees of freedom of photons, lack of interactions between them poses a
challenge. Creating entanglement between photons is essential for quantum
information processing with photons|[1-3].

Photons can be made to effectively interact with each other by using a medium that
interacts with photons[3]. Ideally, the interaction of one photon with such a medium
changes the properties of the medium such that a second photon sees effectively a
different medium. After the second photon interacts with this medium, one or more of
its degrees of freedom would be correlated with those of the first photon. The media of
interest are, therefore, nonlinear optical media.

One way to create interactions between photons at the single photon level is to use
optical nonlinearities which are effective at the single photon level[3]. Bulk optical
nonlinearities, such as y® and y) media are not suitable because they are too weak
to be effective at the single photon level [10-12].

The nonlinearity of a two-level atom (TLA) is effective at the single photon level.
Intuitively, this is because the excitation of a TLA with one photon prevents its
excitation with another photon. We can create strong interactions between the atomic

nonlinearities and the desired modes of electromagnetic radiation using Cavity



Quantum Electrodynamics. However, time-energy uncertainty relations pose
fundamental limits on the quantum operations we can perform on the states of two or
more photons with a TLA [25-28].

Another way to create effective interactions between photons is to use a lambda system
[13]. A lambda system is a three-level system with two metastable ground states.
Depending on the ground state the system is in, its exhibits very different response to
incoming photons. This difference is leveraged to create perfect entanglement between
two photons.

In this thesis, we focus on theoretical as well as experimental aspects of creating
photon-photon interactions using a two-level atom. We also perform experiments on a
lambda system. Our experimental systems of choice in both cases are InGaAs quantum
dot excitons. Uncharged excitons realize an “artificial” two-level atom, and we use
negatively charged excitons to obtain a lambda system[102]. The two metastable states
of the lambda system are provided by the spin state of the electron. To do cavity
quantum electrodynamics with quantum dot excitons, we use electron beam
lithography to pattern optical cavities on our quantum dot chips. In the following
sections of this chapter, we introduce these different themes that occur throughout this

thesis.



1.1 Cavity Quantum Electrodynamics (Cavity OED)
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Figure 1: Schematic illustrating the basics of a cavity quantum electrodynamics system.

Figure 1 shows the schematic of a paradigmatic cavity quantum electrodynamics
system. Here the two mirrors form an optical cavity. The atom here has two energy
levels. The excited state spontaneous decay rate into the vacuum modes of
electromagnetic radiation is y. The coupling rate between the atom and the cavity mode
is g. The cavity mode decays out of the mirrors at a rate of k.

Throughout this thesis, we model the atom-cavity coupling with the Jaynes-Cummings

Hamiltonian [102], given by:
Hipe = glato+ota) (1.1)

where o and o are the lowering and raising operators of the TLA with excited state
|e) and ground state |g) and a and a* are the excitation and annihilation operators of
the cavity mode respectively.

The strength of the interaction between the atom and the cavity mode is said to be

strong when the coupling rate g dominates over the two decay rates y and k. The



quantity of interest for quantum information processing applications is the
cooperativity C given by:

C =g%/xy (1.2)
Broadly speaking, the regime of interest is when C > 1, which is colloquially known
as the regime of strong interaction between light and matter. However, there are some
more constraints on the relationship between the different rates g, k and y which give
to qualitatively different physics. These are the strong coupling and the weak coupling

regimes of cavity QED which we will describe in the following subsections.

1.1.1 Strong Coupling Regime of Cavity QED

When the interaction rate between the mode of the optical cavity and the atom i.e. g
dominates over the leaky rates k and y, we are in the strong coupling regime. In this
regime, the strong interaction term between the atom and cavity leads to hybridization
of the states of the atom and cavity, giving rise to the famous Jaynes-Cummings ladder.

Spectrally, this is usually observed as the vacuum Rabi splitting.

1.1.2 Weak Coupling Regime of Cavity QED

Weak coupling regime occurs when k > g, and g > ¥ such that the cavity mode leaks
faster it interacts the atom, but the atom still interacts more strongly with the cavity
mode than it does with the vacuum modes of electromagnetic radiation. This regime is
also known as the Bad Cavity Regime. In this thesis, we will only concern with the
case when the cavity only leaks into the modes that we can collect photons from. For
Figure 1, this corresponds to the imperfect reflectivity of the two mirrors being the only
source of leakage, such that the photons transmitted by the mirrors can be collected and

4



measured. This set of conditions was appropriately called the “fast cavity regime” by
Rosenblum et. al. [28], as the fast leaking of the cavity is not necessarily bad if it’s not

leaking into unwanted decay channels.

We further elaborate on the different regimes and aspects of cavity-atom coupling

through this thesis depending on the context.

1.2 Cavity OED with a Lambda system

I |h)
| 1)

| T)

Figure 2 Schematic of a lambda system with one of its optical transitions coupled to the cavity mode.

We consider a lambda system with two metastable ground states, here and throughout
this thesis given by the two spin states of an electron. Figure 2 shows such a system
coupled to a single sided cavity where the plane mirror is assumed to be 100%
reflective. One of the optical transitions is in resonance with and couples to the mode
of the cavity, which is h polarized. The other transition couples only to v polarized light
and is also far detuned from the cavity mode and therefore doesn’t couple to it.

In order to create photon-photon entanglement with this system, we need to coherently
control the spin state of the electron [13,98]. We would like to create the superposition
state given by (|T) 4 | 1) )/V2. For this, we need external control of the spin state of

the electron, which in most atomic systems is implemented using a direct drive of the



microwave frequency spin transition between |T) and |l). As we shall discuss in
Chapter 4 of this thesis, direct microwave control of spin states in a charged InGaAs
quantum dot exciton is not feasible[59]. Therefore, we use all-optical control, first
established in ref. 59, which we will briefly touch upon in a later section of this
introduction.

Provided that the cooperativity corresponding to the coupled transition is much greater
than 1 and coherent control of the spin states is achieved, it is possible to create perfect
entanglement between the polarization states of the two photons [13]. More concretely,
it is possible to implement a controlled phase gate between the polarization states of
the two photons [13,98]. Given that this gate can be implemented with high fidelity,
we can in principle achieve quantum computation with qubits implemented by the two

polarization states of photons.

1.3 InAs/GaAs guantum dots

The basic idea behind semiconductor quantum dots is sandwiching a lower bandgap
semiconductor between layers of a higher bandgap semiconductor creating a so-called
quantum well potential for electrons and holes. Figure 3 illustrates this idea for
InAs/GaAs quantum dots. Here InAs, which is the lower bandgap material is
sandwiched between GaAs, the higher bandgap material. The red dotted lines denote
the discrete energy levels of the quantum well. These levels correspond to bound states

that are confined in the 2-dimensional quantum well.



GaAs InAs GaAs

Figure 3 InAs/GaAs quantum well bandstructure

We require three-dimensional confinement of carriers to create the desired two-level
atomic system. Fortunately, this happens spontaneously during the MBE growth of the
InAs and GaAs using the Stranski-Krastanov (SK)) method [92,102]. Figure 4 shows
a scanning electron microscope (SEM) image of the cross-section of the grown

materials using this method.

InAs QD

wetting layer

Figure 4 SEM image illustrating the formation of InAs quantum dots.

Due to the strain caused by lattice mismatch between GaAs and InAs, islands of InAs
dots are formed during the growth of InAs on top of GaAs. This results in an effective
three-dimensional confinement of excitons in these dots, giving us the desired two-
level systems. When an extra electron is trapped inside this dot, the dot has two

metastable ground states given by the spin up and down states of the electron. This



creates a lambda system, which can be used to create a controlled phase gate between

the polarization states of photons.

1.4 Making cavities on chip: Photonic crystals.

To perform cavity QED with InAs quantum dots, which is required for obtaining single
photon nonlinearity, we pattern the so-called photonic crystal cavities on the MBE
grown quantum dot wafers using Electron Beam Lithography (EBL) [102]. We will
describe the details of this fabrication process in Chapter 3 with the example of the

fabrication of the circular Bragg grating aka Bullseye cavities.

ny N Ny N Ny Ny

Figure 5: Principle of photonic crystals: Bragg reflection by refractive index modulation

To create on-chip mirrors for optical cavities, we use the idea of Bragg interference
caused by refractive index modulation. This refractive index modulation is done
periodically, hence the name photonic crystals. Figure 5 illustrates this basic idea.
There is partial reflection and transmission of light at every interface between media of
the two different refractive indices ni and n>. Depending on the periodicity of the
modulation, the reflections at different interfaces constructively interfere only at certain

wavelengths. The illustrated photonic crystal acts as a mirror for those wavelengths.
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Figure 6 Leaving out three holes from the hexagonal lattice photonic crystal to form the L3 cavity

For our experiments with InAs quantum dots, we achieve this refractive index
modulation by periodically punching holes through our chip or forming gratings. One
way of forming photonic crystal cavities is to leave some defects in the photonic crystal
formed by a periodic array of holes. Figure 6 illustrates this idea by the way of the
example of L3 cavities where this defect region is formed by leaving 3 holes out of the
photonic crystal. This defect can be seen as being surrounded by mirrors from all sides.
Therefore, the modes of the cavity formed by this photonic crystal cavity is confined

in the defect region.



1.5 Experimental setup and measurement tools.

1.5.1 Polarization resolved confocal microscope for cryogenic measurements.

L — 3 o V'
Figure 7(a) Helium exchange gas cryostat with the sample inside and an optical breadboard on top (b) a close up
of the optical breadboard which forms part of a confocal microscope.

Figure 7 shows a part of our experimental setup including a Helium exchange gas
cryostat and the optical breadboard on top of it. We place our quantum dot samples
inside the cryostat to preserve the quantum coherence of the quantum dot excitons as
well as the electron spin. The optics on top of the optical breadboard forms a part of a

confocal microscope. The objective lens of the microscope inside the cryostat.

As shown in Figure 7(b), a key feature of our confocal microscope is the ability to
manipulate the polarization of light over the entire Poincare sphere. This allows us to
perform cross-polarized measurements, where we collect light polarization which is

orthogonal to the polarization of the excitation light. This gets rid of the excitation light

10



background, such that we are only collecting photons emitted by the quantum dot

exciton in a resonance fluorescence measurement.

1.6 Thesis Outline

In Chapter 2, we provide a comprehensive analysis of our theory results on improving
photon-photon splitting beyond the limitations of the nonlinearity of a two-level atom.
Using linear optical transformation on the output modes of the atom, we derive an
optimal input wavefunction which gives a routing efficiency of 92%. In comparison,
the previously known limit using the bare two-level atom is 77%.

In Chapter 3, we briefly review the relevant developments in the field of InAs/GaAs
quantum dots. We mainly discuss the work on diode heterostructures and their
importance in improving the properties of InAs/GaAs quantum dots. We focus on pinin
diode heterostructures, compare them with other heterostructures and explain why we
choose to focus on them in this thesis. We also present the result from the work on all
optical noise spectroscopy of dots in pinin heterostructures, to which the author of this
thesis made secondary contributions. For this work, pinin heterostructures were
sandwiched between two (Distributed) Bragg mirrors of the type described in section

1.4 to form a so called double DBR (distributed Bragg reflector) cavity.

In Chapter 4, we demonstrate strong interactions between a quantum dot exciton and
the mode of a Bullseye cavity. By simulating the quantum dynamics of the system
using QuTiP in python, we extract a Cooperativity of ~8. By performing time-resolved
measurements of the quantum dot emissions, we demonstrate a Purcell Enhancement

of 15.
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In Chapter 5, we show the experimental developments towards performing cavity QED
with nanobeam cavities. We show the novel developments in fabrication processes
required to fabricate nanobeam cavities and show some preliminary data from the
optical measurements of the nanobeam cavities at room temperature. These devices are
designed to couple very efficiently to lensed fibers. We will discuss why we need high
optical efficiencies for applications in quantum information processing and the future

developments required to achieve the same.

Parts of this thesis have been published in the following journal articles:
1.) Singh, H., Farfurnik, D., Luo, Z., Bracker, A. S., Carter, S. G., & Waks, E.
(2022). Optical Transparency Induced by a Largely Purcell Enhanced Quantum
Dot in a Polarization-Degenerate Cavity. Nano Letters, 22(19), 7959-7964.
2.) Farfurnik, D., Singh, H., Luo, Z., Bracker, A. S., Carter, S. G., Pettit, R. M., &
Waks, E. (2021). All-optical noise spectroscopy of a solid-state spin. Nano Lett.

2023, 23, 1781-1786.
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Chapter 2: Splitting indistinguishable photons beyond the
blockade limit via linear optics.

2.1 Introduction

Paradigms for quantum computing and networks have proposed the use of photons as
the substrate for quantum information processing. Hardware driven by photonics has
enjoyed success in a multitude of applications ranging from machine learning [1-4] to
quantum communication networks [5, 6] and simulation [7—12]. The lack of direct
interactions between photons and the environment thus make them robust carriers of
quantum information, immune to decoherence. Conversely, this absence of direct
interactions pose a significant challenge for realizing universal quantum operations on
quantum states of multiple photons. To enable the full range of envisioned applications,
a challenge of central importance is to generate and engineer strong photon-photon
interactions.

Optical nonlinearities that indirectly mediate interactions between photons have been
deemed as a viable route to realize such photon-photon coupling. Bulk optical
nonlinearities are an attractive option due to their potential for room temperature
operation, but at this stage are still too weak [13—15]. Alternatively, by coupling these
photons to an ancillary quantum system, strong nonlinearities can be engineered. One
such candidate is the Two-Level Emitter (TLE) coupled to a cavity or a waveguide [16,
17], which leverages strong light-matter interactions to mediate interactions between
photons [18, 19]. The nonlinear response of TLEs has been well studied [20-22] and

has been realized experimentally using quantum dots [23, 24], atoms [25, 26], ions [27]
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and superconducting circuitry [28]. However, it has been widely accepted that the
interactions mediated by a TLE suffer from time-bandwidth trade-offs implied by time-
energy uncertainty. These trade-offs have been shown to impose fundamental
constraints on the fidelity of operations such as CPHASE gates [29], photon sorting
[30, 31] and photon routing [32].

One application of interest is photon-photon splitting, where two or more
indistinguishable photons incident on the TLE via a single channel are routed into two
or more output channels [33]. Linear optical unitaries have been shown to reach peak
routing efficiencies of only 50%. Leveraging the photon blockade effect of a two-level
atom (where its excitation by one photon prevents its excitation with another photon),
on the other hand, is known to exceed this limit. The use of the photon blockade effect
is, however, still insufficient to achieve perfect routing due to the time-bandwidth
trade-off [30, 32, 34]. An extensive analysis for the routing of two-photons limited by
the time-bandwidth trade-off has been performed in ref. [32], where peak routing
efficiencies of 64% and 68% were attained for pulses with Lorentzian and Gaussian
spectral profiles respectively. Engineering the time-energy relations by adding
entanglement between the input photons further improves this efficiency, but the
splitting efficiency is still limited to 77% for an entangled pulse with a Lorentzian
spectral profile.

In this chapter, we show that the blockade limited routing efficiency can be exceeded
with the use of a linear optical unitary transformation after the atom. We optimize the
unitary to achieve the best routing efficiency for an uncorrelated two-photon input and

show that it can exceed 82% for a Gaussian pulse shape. We subsequently show that
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time- energy entangled inputs can achieve routing efficiencies exceeding 90%. Finally,
we optimize the entangled photon wavefunction to achieve an optimal routing
efficiency of 92%. This efficiency is significantly larger than the limit set by a two-
level emitter alone with no unitary. In all cases, the unitary transformation
fundamentally changes the time-bandwidth trade-off, resulting in optimal performance
at a reduced bandwidth of the input pulse compared to the bare two-level emitter.

This chapter is organized as follows: In section 2 we derive the most general time-
domain solutions for the probabilities of scattering event for two-photon wavepackets
incident on the two-level emitter and Mach-Zehnder Interferometer system. In section
3 we find the optimal unitaries that maximize the routing efficiency for both entangled
and unentangled photons. In section 4, we additionally optimize the temporal
wavefunction of the entangled photon input to achieve a more optimal routing
efficiency than would be possible by standard exponential or Gaussian temporal modes.
Finally, section 5 concludes the chapter with a further discussion of the scope and

impact of the results described in this chapter.

2.2 System Model and Method

Fig. 8(a) shows the standard approach to single photon routing using a two-level
emitter. The system is composed of a two-level emitter coupled to a waveguide. The 2
modes ain and bin are inputs to the emitter and aout and bout are the output modes. In the
photon routing scenario, two photons are injected from mode ain and scatter into the
two output modes. Mode bin is in the vacuum state. Fig. 8(b) shows another way to
implement this system, where a two-level emitter is coupled to a double-sided cavity.

These two systems are equivalent in the bad cavity limit (y < k) where y represents the
15



two-level emitter’s spontaneous emission rate and k denotes the cavity decay rate. In
this limit, the cavity atom system can be replaced by a one-dimensional atom model
with a modified spontaneous emission rate given by y = 4g*/x [35], where g is the atom-

cavity coupling strength.

(a)
Emitter (&)
N (@ ~ bin
Qin ) AN N bin
— - — —>
bout &Out Aout
éout
N T
j\ dout

Figure 8 (a) Schematic of two-level emitter coupled to a waveguide, indicating the directions of the input and
output modes. (b) Alternative implementation using an atom coupled to a double-sided cavity. (c) Schematic for
the photon router, where the output modes of the two-level emitter are injected into a Mach-Zehnder
Interferometer.

Due to photon blockade, the two input photons may be routed to spatially
distinguishable output modes aout and bout, an effect which we refer to as photon
splitting. We define the photon splitting efficiency as the probability that two photons
in the same input port exit at different output ports. Rosenblum et al. extensively
analyzed the splitting efficiency of a single atom and showed it was limited to 77% due

to a time-bandwidth tradeoff [28].
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To improve the splitting efficiency, we consider the system in Fig. 8(c). We place a
Mach-Zehnder Interferometer after the atom which applies a general linear optical
unitary transformation given by:

[ Rl e et L

dout

(2.1)
In the above equations, cout and dout are the output modes of the unitary, which are
directly related to the input modes via a scattering matrix. The scattering matrix has
two tunable parameters, 0 and ¢, which are represent applied phase shifts as shown in
the figure. By tuning these two parameters we can implement any desired two-mode
unitary transformation. We will use these two parameters to optimize the splitting
efficiency into the output modes.
To calculate the routing efficiency after the interferometer, we first define the time-

ordered second order correlation functions:

IP(7y, ) = <¢o|ﬁiut(7'1)(jlut (72)dout (T2)Pout (T1) [1o) (2.2)
where {p, q} € {c, d}. These correlations represent the probability densities that a
photon is detected at time 711, and a second photon is detected at time t2. The
wavefunction |yo) represents the initial state of the system, which is assumed to be in
the subspace where both photons are in mode ain and the atom is in the ground state.
Because these are time-ordered correlations it is implicit that T2 > 11 in all calculations.
Because we are restricting our attention only to a two photon input, the correlations can
be written as I'pq(T1, T2) = [Wpa(T1, T2)]* Where ypq(T1, 12) is the correlation amplitude

given by:
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wPQ(Tla 7-2) = <0| quut(TQ)ﬁout (Tl) |77b0>
(2.3)
From these correlations, we can directly calculate the splitting efficiency Ps as:

PS — delde2 [FCd(leTg) ‘FFdC(TlaTQ-)}
2.4)

To calculate the routing efficiency, we apply the unitary to derive a relation between
the correlation yeq and yqc in terms of the correlation amplitudes of the outputs of the

atom given by:

Ui = <0| Mout (TQ)ZOUt (7_1) Wo) (2.5)

where in the above {l, m} € {a, b}. The above amplitudes are related to the output

amplitudes of the interferometer via the relations:

ed = € 5111(6)/2) cos(0/2)taa — € sin?(0/2) thap+

e " cos®(0/2)tbpa — sin(6/2) cos(/2)1bpy (2.62)
Ve = € 2 5in(0/2) cos(8/2)1han + € cos?(6/2) 1 —
c_“?f’ sin?(6/2) s — sin(#/2) cos(6/2) ¢ (2.6b)

The above expressions enable us to directly calculate the output correlations of the

interferometer from the correlation amplitudes of the atomic output modes.

To calculate the correlation amplitudes of the atomic output modes, we use the standard
Hamiltonian for the interaction of an atom with a waveguide given by H =
Ho + Hint where [16, 36]:

H@ = f dwq)( T(lu) +bT bw)

i (2.7)
and
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Hi = @[f dw [61 (e + by) — &(al, + )]
T J—

In the above equations, o is the atomic lowering operator and ae are the bosonic

(2.8)

reservoir mode operators for the waveguide. They are related to the input modes via
the relation ain(®) = 1/v/27 [ dt ai(t)e™" The input and output modes are also directly
related to each other by the input-output relations aout = ain —/ 2y 6 and bout =bin —/ 2y 6

[16].

As we feed the input pulse through ain, bin 1s only a vacuum noise input. Since, we are
calculating normally ordered moments of output operators, vacuum noise inputs from
both input ports can be ignored and we can rewrite bout = /2y 6. The initial state of

the two photons in the input channel ain can be written as:

00) —/ dh/ Aty &(t1, ta)af, (t1)af, (t2) 0) |g)
- f (2.9

In Appendix 2.A, we show that the output correlation amplitudes after the atom are
given by:

) T T o _
Unb(T1,72) = -1*‘_{‘)(5_2“'["'4"*2" (f dl‘gj dfy (--J'-‘-I:+f-:.1£(1‘] .1‘-_:;.)
T1 —oc

(2.102)
Upa(T1,72) = —2ve T (/ l dty e.'%’“f(z‘l.rg)) +pp (71, 72)
I (2.10b)
ap (11, T2) = — 22T (/Tl dt; e2e(t; m) + [T2 dtq fQVtQE(Tl.fz)) +ipp (11, T2)
—oo m (2.10¢)
Vaa = &(T1.72) + Yab (71, 72) + Uba(71, 72) — Vpb(T1,T2) (2.10d)
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With these expressions for the two photon correlation amplitudes in the output modes
of the emitter, we can directly calculate the photon splitting efficiency in eqn. (2.6) and

eqn. (2.4).

2.3 Results

2.3.1 Routing Unentangled Photons
We first analyse the routing efficiency for an input of two unentangled photons. In this
case we can write the wavefunction as &(ty,t,) = V2 &(t1)&(t,). Here &(t) is a

normalized single photon wavepacket and the factor of V2 ensures that the input state
is normalized under time-ordering t; = t; [11]. We analyze two pulse profiles for the

single photon input wavepackets. The first is an exponential pulse profile such that

E(t) =V2ke ™™, and the second is a gaussian pulse profile given by

1
2
E(t) ( \/% K> e~*’t* In both cases x parametrizes the bandwidth of the pulse.

We calculate the routing efficiency using the results of the previous section. In
Appendix 2.C, we perform the full calculation for the exponential wavepacket, which
leads to an analytical solution. For the Gaussian pulse it is not possible to attain an
analytical expression, so we numerically calculate the routing efficiency. Figures 9(a)
and 9(b) plot the resulting routing efficiency as a function k¥ and 6 for uncorrelated
inputs with Gaussian and Exponential pulse profiles respectively. Since the routing
efficiency has a periodicity in 0 of n/2, we analyze and plot only one period. For each
point on the plot, we optimize the value of the interferometer input phase ¢ (see fig. 8)
to obtain the maximum splitting efficiency for the values of 6 and « corresponding to

that point. We find that ¢ = 0 optimizes the splitting efficiency for all points with 6 <
20



/4 and @ = m optimizes the splitting efficiency for 6 > n/4. This is true for both
exponential and gaussian pulses. Furthermore, the splitting efficiency optimized for ¢

is mirrored across the line 6 = n/4, such that the value at 0 is the same as the value at

/2 — 0, where 0 < /4.
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Figure 9 Routing efficiency for unentangled inputs (see text for details)

The red dot denotes the maximum splitting efficiency in both plots, which is obtained
at (0, @) values of (0.103m, 0) for the gaussian wavepacket and (0.096m, 0) for the
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exponential wavepacket. As we noted in the last paragraph, there are values of 6 > /4
which result in the same optima when the phase difference ¢ between the two input
arms of the interferometer is set to m. The orange contours represent the bare atom
routing efficiency calculated in ref. [28] for a Gaussian wavepacket (67%) and
exponential wavepacket (65%). One can see that the red dot in both cases is within
these orange contours and therefore achieves a higher routing efficiency.

We next compare the optimal splitting efficiency obtained with the Mach-Zehnder
interferometer to that of the bare atom. We can extract the bare atom routing efficiency
from the 6 = 0 cross-section of the plots in figures 9(a) and 9(b). In this case the unitary
implements the identity transformation and we therefore recover the bare atom
response. Figs. 9(c) and 9(d) plot the splitting efficiency as a function of the input pulse
bandwidth for these two unitary transformations. The blue curves correspond to having
no unitary on the outputs of the atom, and give the blockade limited efficiency. The
green curves corresponds to the unitary transformation that optimizes the splitting
efficiency. For the exponential pulse, the blockade limited efficiency is 65% and occurs
at k = 1.44y. In contrast, the optimal splitting efficiency with the unitary is 0.75. The
bandwidth k which achieves this global maximum is 1.09y, is therefore smaller than
the optimal bandwidth which achieves the blockade limited efficiency. For the
Gaussian pulse, optimal bandwidth «k is 1.57y, which achieves an optimal splitting
efficiency of 82%. This efficiency is larger than the blockade limited efficiency of 0.67.
We achieve this optimal at a smaller than that realized by the bare atom, which is 2.24y
for a Gaussian input pulse. Therefore, the unitary transformation fundamentally

changes the time-bandwidth trade-off required to achieve optimal splitting efficiency.
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2.3.2 Routing time-energy entangled photons
We now analyze the response of our system for in- puts which are time-energy
entangled. These inputs have time-energy uncertainty relations which are
fundamentally different from the uncorrelated inputs. Therefore, their interaction with
the two-level atom is also different. One way to write a time-energy entangled photon

state is as follows:

W, wy — w)

) = /dwo G(wo)/dw Pw)

(2.11)
where G(w,) and F(w) are general wavefunctions constrained only by the requirement
for the overall normalization of the state. The above wavefunction can be expressed in
the time domain as:

) = / dty g(t1) /dtQ [t — t1)a’ (tr)al (t2) |0)

(2.12)
where g(t1) and f(t> — ti) are Fourier transforms G(w,) and F(®). In the limit where
G(wo) = d(wo), we then have g(t) = 1/2n which achieves a perfect temporally correlated
entangled state which depends only on the time difference t> — ti. We refer to such
states as stationary, because the correlations only depend on the arrival time difference,
and do not depend on the values of the individual time variables. A more general
entangled state can introduce non-stationary behavior where correlations are time-

dependent, with the dependence quantified by the function g(t;).

We first consider the specific case where g(t;) = V2k e * and f(t2 — t1) =
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V26e~9(t2=t1) Here the two wavefunctions are exponential where k and & represent
the bandwidths of the respective distributions. We attain the stationary limit when k
—0. From this state, we obtain the following normalized input wavefunction:

5(751 ) tz) = 2\/5 G_Rtl 6_5(t2_t1)

(2.13)
where (t1, t2) is defined in eqn. (9). We begin with the above input wavefunction
because it leads to an analytical solution. We derive this full analytical solution in
Appendix 2.D. We are only interested in the stationary limit, which we obtain by taking
K — oo. In this limit, the expression for routing efficiency is identical to the one obtained
for maximally entangled states generated with a three level atomic cascade [28].
Maximizing this expression with respect to the bandwidth & with and without the linear
optical unitary yields routing efficiencies of 90% and 77% respectively.

Our analysis for the input state given by eq. (2.13) suggests that a stationary time-
energy correlated input Es(|t2 — t1]) can significantly improve the routing efficiency over
uncorrelated inputs. Stationary inputs with different pulse profiles could yield further
improvements. In the previous section, uncorrelated inputs with a Gaussian pulse
profile yielded a bigger maximum for routing efficiency than Exponential pulses. We

therefore consider the following input state:

L o0
[0 s 402 .
“‘Ijin> :/ dtl/ dt2 _Le 2(f2=t1) ajn(tl>a;rn<t2> ‘0>
L £ T (2.14)

2
208

Note that this state corresponds to substituting a Gaussian F(w) = e 6% ineq. 11. Here,

0 > 0 gives the bandwidth of the Gaussian and hence, of the input pulse. We note that
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in this case the stationary limit corresponds to L — oo. For this input state, the routing

efficiency is calculated via numerical integration.
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Figure 10 Routing efficiency for entangled inputs (see text for details)
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Figures 10(a) and 10(b) plot the resulting routing efficiency as a function 6 and 6 for
stationary entangled inputs with Gaussian and Exponential pulse profiles respectively.
Since the routing efficiency is periodic in 6, we plot only one period. Each point on
these plots corresponds to optimizing the routing efficiency with respect to ¢. We
obtain the same dependence on ¢ as for the uncorrelated inputs such the routing
efficiency optimized for ¢ is mirrored across 6 = w/4. The red dots correspond to the
routing efficiencies obtained by optimizing the linear optical unitary, which are 91.5%
and 90% for entangled Gaussian and exponential pulses respectively. These lie within
the orange contours that represent the blockade limited routing efficiencies. We note
that the blockade limited routing efficiency of 77% corresponds to the value obtained
in ref. [28] for input photons generated by a three-level atomic cascade.

We now compare the routing efficiency with obtained with the bare atom and the
optimal linear optical unitary for both exponential and Gaussian entangled pulses. To
make this comparison, we plot these two cases for Gaussian and exponential pulses in
figures 10(c) and 10(d) respectively. The blue curves correspond to having no unitary
on the outputs of the atom, and give the blockade limited efficiency. The green curves
corresponds to the unitary transformations which optimize the routing efficiency. For
the entangled exponential, the blockade limited efficiency of 77% occurs at the
bandwidth 6 = 2.73y. The bandwidth 6 needs to be reduced to 1.88y to obtain the
maximum routing efficiency with the optimized linear optical unitary. For the Gaussian
pulse, we also observe a reduction in the optimal bandwidth of the input pulse in going
from the bare atom to adding the optimized linear optical unitary transformation after

the atom. The optimal bandwidths in the two cases are 2.76y and 1.98y respectively.
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Therefore, for entangled exponential and Gaussian inputs, the linear optical unitary
changes the time-bandwidth tradeoff required to optimize the routing efficiency. This

is in line with our findings for uncorrelated inputs in the previous section.

2.4 Pulse Optimization

In the previous section we assumed that the entangled photon wavefunction takes on
the specific form of a Gaussian or exponential. In this section we employ optimization
to obtain an optimal pulse shape that achieves the globally optimum routing efficiency.
This optimal waveform represents a strong upper limit for the routing efficiency.

To optimize the entangled photon pulse shape, we expand the stationary wavefunction
Es([tz — t1]) in a complete expansion basis. We choose the Gauss-Hermite basis given
by:

N/2
£ (1) = Z oy Hay, (0t),  for even N
i 2.16)

where Hn(x) are the normalized Gauss-Hermite polynomials and N/2 gives the number
of terms in the basis expansion. The terms an are the coefficients of the respective
polynomials, ensuring that the function &s(t) is normalized. We choose the Gauss-
Hermite basis because the first order term is a plain Gaussian. We have already
analyzed this case in the previous section and found that it achieves 91.5% routing
efficiency, which is close to unity. We therefore expect that higher order terms will add
only small corrections, and we will only need to keep a few of them to come close to
the global limit. Note that we keep only even terms in the sum in eq. (2.16), which

corresponds to expanding &(t) over only the even Hermite-Gauss functions. We can
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ignore the odd Hermite-Gauss functions without any loss of generality because t > 0,
SO we can express any function on the positive time axis using only even functions of

time.

Since the scattering amplitudes Ypq and Sim are linear in the input pulse, the output

scattering amplitudes for the input pulse (t') denoted by Spq[E] can be written in

general as:
N/2
sPae] = Z 5P Hoy
n=0

(2.17)
The splitting efficiency is obtained by integrating |Scdl> + |Sac|* over the output photon

creation times 11 and T. For example, Tca[€] = |sca[E] is given by:

N/2 N/2

1 § § 1
F” O‘.m(ln H)m S‘( ¢ [HQ'H}

m=0n=

(2.18)
where we use the fact that the scattering amplitudes for real valued input states are real

(see egs. (2.10)). This can be rewritten as:

rlle] = ol p*[H)a
(2.19)

where o is a column vector with entries a; thru ansz and peq 1s @ symmetric matrix
because scaHom]Sac[Hzn] = Sed[H2n]sdc[Ham] implies that p®dij=p°d;.
"% takes a similar form and therefore the probability density ps[£] of the splitting the

photons to output ports ¢ and d takes a similar form.
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_ ot
psl€] = o' ps[H]a (2.20)

where the matrix ps[H] is a symmetric matrix. Integrating ps[] over t1 and 1> is the
same as integrating the entries of the matrix ps[H] over 11 and 12, which yields another
symmetric matrix R. Note that the diagonal entries of R are simply the routing
efficiencies for the different basis elements. Therefore, the splitting efficiency for the

input state & can be written as:

Ps(a) = a'Ra
(2.21)

Note that R is a symmetric positive semi-definite matrix because Ps(a) > 0. We claim
that the maximum Ps(a) is obtained for omax which is the eigenvector of R
corresponding to its maximum eigenvalue. To see this, we first diagonalize R = UTDU
using the spectral theorem for symmetric matrices. Since, R is positive semi-definite,
all entries of the diagonal matrix D are positive. The splitting efficiency can be

rewritten as:

Ps(B) = BTD3
(2.22)
where B = U o and the normalization constraint a'a is equivalent to the constraint B'p.
Therefore, Ps(B) is clearly maximum when the vector Pmax has zero valued entries
everywhere except the position corresponding to the maximum diagonal entry of D,
which is the maximum eigenvalue of R. The entry at this position can be chosen to be
1 because the overall phase of the input state doesn’t matter. Therefore, the vector omax

= UPBmax 1s the eigenvector of R with the maximum eigenvalue. To find the maximum

routing efficiency, we construct the matrix R for different number of terms in the basis
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expansion. The maximum eigenvalue of R then gives the maximum routing efficiency.

Using the corresponding eigenvector amax of R in (eq. 2.14) gives the optimal pulse

shape in each case.
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Figure 11 pulse optimization results (see text for details)

Figures 4(a) and 4(b) shows the dependence of the maximum routing efficiency on the
highest order N of the Gauss-Hermite polynomial in the basis expansion of the input
wavefunction. Fig 4(a) plots this for the case when the two-level emitter alone is the
router. The maximum routing efficiency in this case is 81%. Fig 4(b) shows the case
where the optimal linear optical unitary enhances the maximum routing efficiency to
92%. In both cases, when the input pulse is Gaussian, such that N=0, the routing
efficiency is very close to the value it ultimately saturates to. This shows that the
Gaussian pulse shape is very close to the optimal pulse shape of the input wave-
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function. Figures 4(c) and 4(d) show the optimal pulse shapes corresponding to N=40
in figures 4(a) and 4(b) respectively. As expected, both these pulse shapes appear

visually close to Gaussians.

2.5 Discussion and Conclusion

In conclusion, we have presented an extensive theoretical analysis of the splitting of
two indistinguishable photons to spatially distinct output channels using a two-level
emitter followed by a Mach-Zehnder interferometer. Through optimization of the input
pulse shape and the phases of the interferometer, we obtain a routing efficiency of 92%.
This is a substantial improvement over the optimal routing efficiency with just the two-
level emitter, which is close to 81%. Our results exceed the maximum routing
efficiency of 77% with a two-level emitter calculated in ref. [28]. Our results suggest
that a stationary pulse can extract the optimal nonlinear response from the two-level
atom. This insight could be applied to the optimization of other applications where the
nonlinear response of a two-level is used. Throughout this work, the phases of the linear
optical unitary were constant in time. We expect that the optimization of time-varying
unitaries would further improve the splitting efficiency. We can also consider networks
where multiple two-level emitters are cascaded with linear optical unitaries.
Optimization of such networks may improve the fidelities of operations besides photon-

photon splitting that we considered here.
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Chapter 3: Diode Heterostructures for InAs/GaAs quantum dots

3.1 Introduction

We described the basic principle behind self-assembled quantum dots in chapter 1,
section 1.3. Sticking with the example of InAs/GaAs quantum dots, we introduce here
the idea and some of the existing literature on controlling the electrical environments
that quantum dots are embedded in.

The semiconductor nature of quantum dots allows control of their electrical
environment by making diode heterostructures. This locks the Fermi energy and
provides electrical control of the quantum dot charged state. Layers of these
heterostructures can be doped or undoped semiconductors and even metals, in the case
of a Schottky diode heterostructure [111].

We are interested in controlling both the electrical and photonic environment of the
dots. To make, for example photonic crystals, the basic building block is a thin GaAs
membrane. Charge control on quantum dots in photonic crystals has been demonstrated
using thin p-i-n diode structures. However, the large in-built electric field in
combination with the small thickness of these devices led to a large potential at the
position of the quantum dots shifting the Coulomb plateaus to large forward bias
voltages. This resulted in high tunneling currents at the operating bias in p-i-n-
membrane devices, a possible explanation for the absence of spin pumping in
embedded quantum dots [ 119]. The quantum dot optical linewidths were relatively high

in these structures.
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In the second section of this chapter, we introduce p-i-n-i-n diode heterostructures,
which we use for experiments throughout this thesis. These structures solve the
problem of high currents that p-i-n diodes suffer from[111]. In the third section, we
describe our results on noise spectroscopy of quantum dot electron spin embedded in a

p-i-n-i-n diode.

3.2 p-i-n-i-n diode heterostructure

(@)

(b)

Figure 12 pin and pinin diode band diagram

Figure 12(a) shows a schematic of the p-i-n diode heterostructure along with the
conduction band profile as a function of position under zero forward bias. We see that
in order to bring the potential in the quantum dot beneath the Er of the back n-contact,
we have to apply a forward bias of Vgp. This leads to high currents flowing through

the device when there is an electron in the dot, which is undesirable.

Fig 12 illustrates how a p-i-n-i-n structure solves the problem of high currents present
in p-i-n structures when deterministically charging the dot with one electron. This is
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achieved by adding a highly doped n layer to cause band bending, such the dot potential
is very close to Ereven under no forward bias. This means that we need to apply a very

small forward bias to charge the dot with one electron.

Loebl et. al. first demonstrated optical spin pumping of negatively charged quantum
dots in p-i-n-i-n diode heterostructures in 2017 [111]. Interfacing of dots in these
structures to photonic crystals by Zhouchen et. al. showed a record high cooperativity
of 13 [100]. These results show that p-i-n-i-n diode heterostructures are a promising
route towards realizing high quality spin-photon interfaces with semiconductor

quantum dots.

3.3 Noise spectroscopy via dynamical decoupling pulse sequences

3.3.1 Level structure of negatively charged dots under Voigt magnetic field

Figure 13 Level structure of negatively charged dot under voigt magnetic field

Fig 13 shows the level structure of a negatively charged quantum dot when a magnetic

field is applied in the plane of the quantum dots i.e., perpendicular to the quantum dot
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growth direction. This magnetic field direction corresponds to the Voigt configuration.
The two ground states with spins up and down come from the spin states of the trapped
electron which makes the dot negatively charged. In order to coherently control the
spin state of the electron over the Bloch sphere, we need initialization of the spin to one
of the spin states. The figure 13 shows how an optical pump can initialize the spin to
the | T ) state. After initialization to this state, we can rotate the spin state around the x
or y axes of the Bloch sphere using a two-photon drive in the adiabatic limit. We
describe in the next section how this drive is realized experimentally. Rotation of the
spin around the z-axis of the Bloch sphere, which is defined by the direction of the
applied magnetic field, is achieved by the free precession of the spin around the applied
magnetic field. Note that w, denotes the Zeeman splitting of the electron spin under an
applied magnetic field. For comprehensive information about the spectrum of
InAs/GaAs quantum dots under different conditions, we refer the reader to the

spectroscopy and analyses performed by Bayer et. al. [49]

3.3.2 Experimental realization of rotation drive for electron spin

Rotation
Laser
Wavelengt|

in out
H Electro Optical Modulator H |
918.45 918.5 918.55

Wavelength [nm]

Figure 14 modulating a CW laser for creating rotation pulses

35



Figure 14 shows a schematic of how we realize the optical pulses that drive the electron
spin and a spectrum of the realized optical pulses. An electro optical modulator from
IX Blue (bandwidth >20 GHz) amplitude modulates a CW laser with linear
polarization. The modulation signal is generated with a 65 GHz Arbitrary Waveform

Generator. The Rotation wavelength is red detuned by A from the | ) to | Tl, U ) optical

transition. We apply a modulation signal with frequency %, where w, 1s the Zeeman

splitting between the optical transitions. The amplitude modulated signal then has two
sidebands separated by w,, as shown by the spectrum in figure 14. By switching the
modulation signal on and off, we can create pulse sequences that create the desired
drive for the electron spin. As mentioned in the previous subsection, this external drive
combined with the free precession of the electron spin around the applied magnetic
field enables full SU (2) control (i.e., over the entire Bloch sphere) of the spin state

[59].

3.3.3 Dynamical Decoupling Pulse Sequences

CPMG rotations

CPMG sequence
Xer2 Yo Yo e Yr Yz Yo Yo Yo Ya Yo Xz

I I I N I I IR I N N I

N -oulses
Figure 15 Dynamical decoupling to preserve spin coherence
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Figure 15 illustrates the idea behind dynamical decoupling pulse sequences via the
example of Carr-Purcell-Meiboom-Gill sequences [41]. We assume that the two-level
system being interrogated is the spin 2 of the electron and the main decoherence
mechanism is its interaction with the nuclei of the host lattice. We use a Bloch sphere
representation of spin dynamics. Without loss of generality, we may assume that spin
| T) state corresponds to the |0) state of a qubit and the spin | ) state corresponds to

the |1) state.
The initial state of the spin is |0). We apply a % pulse about axis such that the red arrow

in the figure lands on the x-y plane, as shown by the first Bloch sphere in the figure
(from the left). The second Bloch sphere in the figure shows multiple red arrows for
the spin state after its free precession about the z-axis. This is to illustrate the
decoherence of the spin dynamics due to its interaction with the nuclei and the multiple
red arrows represent a lack of knowledge of the spin state of the electron. The third
Bloch sphere shows the application of a  pulse about the y axis. After the application
of the m pulse, the spin “rephases”. This is illustrated by the red arrows coming together
during the free precession following the m pulse.

Depending on how fast the interaction between the nuclei and electron spin is, we must
apply multiple r pulses with separation smaller than the time scale of the interaction.
One of the sequences of multiple 7 pulses is the CPMG sequences, which is shown in

the figure.
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3.3.4 Noise spectroscopy of electron spin in InAs/GaAs quantum dot
The interaction between the nuclei and the electron spin can be seen as causing noise
in the electron spin dynamics [41-46]. By applying dynamical decoupling pulses in the
CPMG sequence, with different number of pulses and with different time delays

between pulses, we can extract the spectrum of this noise that affects the spin

dynamics[41].
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Figure 16 Resulting spin coherence curves from dynamical decoupling pulse sequences

We first apply the simplest form of the CPMG sequence: namely, the Hahn-echo
experiment consisting of a single © pulse (Figure 16a). Consistent with previous Hahn-
echo measurements on quantum dots, [57,71,72] the decay time scale of the spin
dynamics (i.e., the coherence time) increases as a function of the external magnetic
field, B, up to T2 = 1 us (blue dots in Figure 16a). This increase is associated with the

Zeeman terms of the indium and arsenic nuclei dominating over the inhomogeneous
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broadening of these nuclei at high magnetic fields (Supporting Information).
Furthermore, the spin exhibits a two-stage decay in its coherence that consists of a fast
drop of the signal contrast (at T = 30 ns), followed by a second decay (starting at T =
100 ns). This behavior is analogous to previously observed Hahn-echo spin dynamics
of quantum dots.[57,72] Intuitively, the two stages of decoherence suggest that separate
spectral components of the noise affect the spin dynamics at separate time scales.
Simulation results (the lines in Figure 16a), which consider such separate noise
components associated with the strained nuclear environment of the quantum dot
[56,57], agree with the experimental results, thereby confirming this hypothesis. To
experimentally extract these spectral noise components, we apply CPMG sequences
with increasing numbers of pulses.

The temporal dynamics of the quantum dot spin under the application of such
sequences are presented in Figure 16 b,c for the external magnetic fields of 1.2 and 2
T, respectively. As shown in Figure 16b for B = 1.2 T, the measured spin coherence
times increase with n as the decay time scale of the coherence function becomes longer.
However, as shown in Figure 16c¢, the two-stage spin decoherence profile for B=2 T
exhibits a more complicated behavior as a function of n. Our simulations (the lines in
Figure 16 b,c) considering two spectral components of the Overhauser field [56,57]
agree with the observed experimental behavior. However, to understand these complex
dynamics requires a comparison between the rate of application of these pulses with

the frequencies of the noise spectra. [41,43—46,57,73—75]
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We experimentally extract these noise frequencies by analyzing all data collected from
four different measurements of the coherence functions under the application of CPMG
sequences with n =1, 2, 4, and 8 m-pulses utilizing a recursive numerical integration
method. The extracted spectral densities, plotted for external magnetic fields between
1.2 and 2 T (blue dots in Figure 17a—c), display a broad range of frequencies of up to
100 MHz. To characterize the behavior of the noise as a function of the magnetic field,
we fit the extracted spectra to Gaussian functions (solid blue lines in Figure 17a—c).
The central frequency of the noise (center of the Gaussian fit) increases with the
magnetic field up to 38 MHz at B = 2 T (Figure 17d), corresponding to (twice) the
Larmor frequency of indium nuclei [58] that dominate the interaction with the electron
spin due to their spin-9/2 nature. Meanwhile, the amplitude of the noise (at the central
frequency) decreases with the magnetic field (Figure 17¢) as nuclear Zeeman

interactions dominate over the broadening of the nuclei due to strain fields. [56,57]
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Figure 17 Extracted noise spectra (see text for details)
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The extracted noise spectra verify a previously established theoretical model of the
Overhauser field [56,57]. Using this model, we simulate the noise spectra that represent
the hyperfine coupling of the quantum dot spin to indium and arsenic nuclear spins
experiencing quadrupolar coupling to strain fields (insets of Figure 17a—c), which
exhibit sharp peaks that correspond to the different nuclear spin numbers. To compare
the experimental results of noise spectroscopy with theory, we first use the theoretical
spectra to calculate CPMG coherence functions with n =1, 2, 4, and 8 n-pulses under
ideal conditions. We then apply the algorithm used to extract noise spectra from the
experimentally obtained coherence functions to the simulated coherence functions (red
diamonds in Figure 17a—c). As the CPMG sequences probe the noise with spectrally
broad filter functions that have high harmonics rather than with delta-like filter
functions that probe the noise at single frequencies, the sharp peaks in the simulated
spectra are broadened by the finite sampling resolution and can be fitted to Gaussian
functions similarly to the experimental results. The dashed red lines in Figure 17a—c
that represent such Gaussian fits lie well within the uncertainties of the experimentally
fitted results (shaded blue areas), thereby confirming the agreement between theory and
experiment. Furthermore, the amplitudes of the simulated spectra (red diamonds in
Figure 17¢) consistently fit the experimentally extracted amplitudes and indicate that
the quantum dot spin interacts with 40000 nuclei, in agreement with common

predictions. [57]

The theoretical model of the quantum dot environment verified by all-optical noise

spectroscopy can shed light on the coherent behavior of the quantum dot spin dynamics
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(e.g., the coherence functions in Figure 16). The model predicts two separate noise
terms, perpendicular and parallel to the external magnetic field. [56,57] The noise
component perpendicular to the external field, S.1(®), monotonically decreases with the
frequency and qualitatively fits the experimentally extracted noise floor (i.e., the
baselines of the Gaussian fits in Figure 17a—c). This noise component dominates at low
frequencies, thereby leading to the spin dynamics at long time scales (>100 ns) depicted
in Figure 16. Since the application rate of m-pulses in our CPMG sequences is faster
than the low frequencies of Si(®), increasing the number of pulses slows down the
decay of the spin dynamics at long time scales. For example, under an external field of
2 T (Figure 16c¢), the decay of the spin dynamics at T > 100 ns is slower for n = 4
(dotted green line) than for n =1 (solid blue line). In addition to the perpendicular noise
term, the theoretical model predicts high-frequency noise, Sll(w), which arises in
parallel to the direction of the external field. [56,57] This parallel term is stronger than
the perpendicular term and consists of peaks corresponding to the nuclear Larmor
frequencies broadened by the environmental strain field . The broad spectral features
of Sll(w) lead to the observed contrast drop [75] at the short time scales depicted in
Figure 16. For an external magnetic field of B = 1.2 T, the large magnitude of S|[(®)
leads to the complete loss of the quantum dot spin coherence under the Hahn-echo
sequence (dash-dotted black line in Figure 16a) at T = 30 ns; thus, a second decay
caused by S1(m) is not observed for this field. The contrast drop caused by S|l(®) also
quantifies the ability of the CPMG sequences to extend the quantum dot spin coherence
time. For example, the application rate of the m-pulses in our CPMG sequences is

slower than the high-frequency components of S|[(®) for B=2 T. As a result, the decay
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of the spin dynamics at time scales shorter than 100 ns does not improve by increasing
the number of pulses (Figure 16¢). By analyzing the obtained noise spectra, we learn
that mitigating such high-frequency noise to extend the quantum dot spin coherence
time from the current state of the art of a few microseconds [57,71,72] to beyond 10 us
requires the application of dynamic decoupling sequences utilizing hundreds of -

pulses.

However, here we can apply just eight m-pulses due to two mechanisms of spin
relaxation. First, the natural spin relaxation of the quantum dot in our sample, T1 = 1
us, did not allow us to observe the expected spin dynamics under multipulse sequences
beyond microsecond time scales. This relaxation time could be extended up to
milliseconds by modifying the tunnel barrier of the sample. [76] Second, increasing the
number of CPMG pulses in our measurements resulted in a dramatic contrast drop of
the collected fluorescence as a function of n [60]. This contrast drop is related to
electron tunneling due to the increase in the laser power associated with the addition of
the pulses. Such electron tunneling could be mitigated by coupling the quantum dot to
fabricated photonic structures that reduce the laser power required for spin rotation.
The reduction of the rotation laser power could enable the realization of multipulse
sequences for prolonging spin coherence times and for the preservation of arbitrary
spin states (e.g., XY8-based sequences [73]) for quantum information processing.
Furthermore, the implementation of multipulse sequences with ultrahigh spectral
resolutions (e.g., the “DYSCO” sequence [44]) may enable the identification of

individual Larmor frequencies associated with nuclear species (e.g., the peaks in the
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insets of Figure 17), as well as the ultrahigh resolution probing of external fluctuating

magnetic fields with a single spin.
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Chapter 4: Large Purcell Enhancement and Dipole Induced
Transparency in a Bullseye Cavity

4.1 Introduction

In recent years, optically active quantum dots have emerged as useful resources for
photonic quantum technologies. Quantum dots emit single photons with high
brightness and indistinguishability,[ 77—85] which makes them promising as sources of
single and entangled photons for photonic quantum computing.[86—89] In addition,
these dots can be electrically charged with a single electron or a single hole, thereby
offering a ground-state spin qubit.[90—96] Strongly coupling a quantum dot spin to a
photonic cavity could provide an interface between a single photon and a single spin
for quantum information processing,[97,98] thereby contributing to the ongoing efforts
of establishing quantum networks.[99,100] Such strong coupling requires a sufficiently
high cooperativity between the spin and the cavity, which typically involves the use of
high-Q (>10k) cavities.[97,98] An ultrahigh cooperativity has been recently achieved
between a quantum dot and a high-Q tunable microcavity formed by utilizing the
advanced fabrication of convex mirrors.[98] An alternative approach for achieving
such high cooperativities utilizes simple nanofabrication tools (e.g., electron beam
lithography) to fabricate photonic crystal cavities. However, high-Q photonic crystal
cavities often feature poor optical access to external light from the free space due to
their divergent far-field emission patterns. [92,97,101] This poor access limits the
ability to optically excite and collect photons emitted from quantum dots, as well as to
coherently control the quantum dot spin, which requires circularly polarized light.[91,

92, 95, 96].
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To efficiently interface quantum dots with light often involves their coupling to low-Q
(<1000) cavities such as gratings and micropillars.[80-82,84,102—107] Low-Q cavities
can increase the optical density of states in the environment of a quantum dot, thereby
Purcell-enhancing the rate of spontaneous emission of single photons from the dot. In
addition, cavities that provide Gaussian far-field emission patterns can improve the
efficiency of exciting and collecting photons from the quantum dot via confocal optical
setups. For example, circular gratings formed by the periodical etching of rings from a
substrate material (“bullseye” cavities) have been used to optically interface single
defects in diamond [109] and quantum dots.[84,102,104—107,110] In particular,
InAs/GaAs quantum dots produced optical emission of single photons with lifetimes
of ~200 ns.[106] Improving the efficiency of collecting photons from quantum dots
coupled to such low-Q cavities can be achieved by introducing ellipticity to the
structure,[84,85] but this prevents the access to the cavity using circularly polarized
light. Another downside of low-Q cavities is their high loss of photons, which may
result in low spin-cavity cooperativities, thereby significantly limiting the performance
of the cavities for quantum networking. [97,98] To date, a low-Q cavity that provides
a high-cooperativity spin—photon interface with an efficient, polarization-independent,
optical access has yet to be demonstrated.

In this chapter, we efficiently couple InAs/GaAs quantum dots embedded in a charge-
tunable device (a p—i—n—i—n diode) [101,111,112] to low-Q (~1000) bullseye cavities
with nearly degenerate polarization modes. By leveraging the low charge noise

associated with the device, we measure spontaneous emission lifetimes of quantum
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dots as short as ~80 ps (a Purcell enhancement of ~15), which are more than 2 times
shorter than those previously observed for InAs/GaAs quantum dots in nearly
degenerate bullseye cavities [106] and are close to the state-of-the-art lifetimes of such
dots in microcavities.[80,81,84,85] By measuring a dip in the reflected light from a
bullseye cavity caused by its coupling to an uncharged quantum dot, we extract a
cooperativity of ~8 between the cavity and the dot, which highlights the potential of
the bullseye cavities as spin—photon interfaces. Combined with the enhanced
efficiencies of optically exciting the quantum dot spin and collecting the emitted
photons, the fabricated bullseye cavities offer a promising platform for quantum

information processing utilizing electrically charged quantum dots.

4.2 Relevant Theory.: Purcell Enhancement

Purcell enhancement is one of the phenomena in quantum optics that needs the
quantization of electromagnetic radiation for a complete description. This is because
Purcell enhancement is concerned with the enhancement of the rate of spontaneous
emission of an electric dipole (i.e., atom which interacts with the electromagnetic field
with the electric dipole Hamiltonian d.E) when it is coupled to a single mode of
electromagnetic radiation in the weak coupling regime of cavity QED.

A two-level atom (with an electric dipole) spontaneously emits radiation even in the
absence of any externally applied field because of its interaction with the vacuum
modes of electromagnetic radiation. When the atom is coupled to a cavity which
supports only a single mode of the electromagnetic field, it sees a different

electromagnetic environment than it sees when places in vacuo. This change in
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electromagnetic environment then changes the rate of spontaneous emission of the

atom.

When the atom is in resonance with the mode of the optical cavity, the rate of its
spontaneous emission becomes faster than its rate in vacuum. The ratio of the rate in
cavity to the rate in vacuum is known as Purcell Enhancement. Purcell Enhancement

is given by:

vea () )

where Afree is the vacuum wavelength, n is the refractive index, and Q and V are the

cavity quality factor and the mode volume respectively.
In this chapter, we will demonstrate Purcell Enhancement of the InAs quantum dot

excitons in a Bullseye cavity.

4.3 Relevant Theory: Dipole Induced Transparency (DIT)

Dipole Induced Transparency refers to the modification of the cavity transmission and

reflection in the weak coupling regime of cavity QED i.e., when g <k and g >y
2
(where g, K and y are defined in figure 1,) such that the cooperativity C = ‘Z—y > 1. This

regime is also known as the Purcell Enhancement regime. In this regime, the cavity
transmission of the cavity with two symmetric mirrors as shown in figure 1 gets
modified from a Lorentzian spectrum for the bare cavity to the spectrum shown in

figure 18 which exhibits a dip at the resonance wavelength of the atom [113].
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Figure 18 DIT: dip in cavity transmission at atomic resonance frequency

4.4 Design and simulation of Circular Bragg Grating (Bullseye) cavities
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Figure 19 Bullseye design and simulation

Figure 19 shows the design, modal pattern and far field emission pattern of a circular

Bragg grating aka Bullseye cavity. We designed and simulated the Bullseye cavities
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using Finite Difference Time Domain (FDTD) simulation of Maxwell’s equations
using Lumerical. Figure 19 (a) shows the design parameters for a Bullseye cavity
designed to have an optical mode at 930nm, which corresponds to the resonance
wavelength of the majority of the InAs quantum dots in our wafers [101]. The bullseye
cavity mainly is composed of two parts. One is the center disk that determines the
resonance wavelength of its fundamental mode. For InAs quantum dots eimtting at
around 930 nm, we set the radius of the center disk to be 363 nm to target a resonance
wavelength of 930 nm. The second part is the surround ring gratings that help shape
the Gaussian far field pattern (Figure 19 (b)), which is related to the radius of center
disk and was set to be 154 nm here. To support the grating structure on a suspended
GaAs membrane, we added bridges between the gratings to connect them to the bulk
region as shown in Figure 19(c). To minimize the perturbation brought by those extra
supporting bridges, we tried to minimize the size of those supporting bridges but made
them wide enough to support the weight of the gratings. As shown in Figure 19(c),
bridges of 2.5 degrees arc with respect to the center of the cavity were used. Figure 19
(c) and (d) are the y-dipole electrical field intensity and far field pattern of the bullseye
cavity with supporting bridges. Compared to the simulation results of the original
bullseye design in (a) and (b), introducing bridge structures doesn’t affect the optical
modes of bullseye cavity much. The simulation shows bullseye cavity typically features

a quality factor of around 1000.
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4.5 Fabrication steps for Bullseye Cavities

In this chapter, we demonstrate Purcell Enhancement of InAs quantum dot excitons
embedded in pinin diode heterostructures using Bullseye cavities. We also show the

Dipole Induced Transparency effect of the weak coupling regime of cavity QED.

Before we describe the measurement of our dot-cavity devices, we briefly describe the
steps involved in the fabrication of Bullseye cavities. A detailed description of these

steps can be found in ref. [121].

clection bear: IR SRAMLLLLLLE
Electron beam Expose resist wit

Resist ZEP 520A_ Electron beam I

 — ————
GaAs (CELY GaAs

Etch GaAs in
ICP etcher
i
af

B AUNENEENEM Dissolve AlGaAs MERRNRNEREE ™
R EEEEEEENEEN layer In 10% HF N IEEEEEEEDN N

P — L —
GaAs (CELY

Figure 20 GaAs softmask fabrication steps

Remove resist

Figure 20 shows a schematic of the fabrication steps. First, we spin coat our quantum
dot wafer with the positive electron beam resist ZEP520A (Zeon Chemicals) at a spin
rate of 3000 rotations per minute. This leads to a resist thickness of ~450nm. We then
expose ZEP520A with an electron beam lithography tool Elionix ELS G-100 which
generates 100kV electrons. We use an electron beam current of 100pA to expose the
resist. We dip the sample in a beaker containing ZED-N50 for 60 seconds to “develop”

the resist. The exposed part of the positive resist dissolves in n-amyl acetate (sold as
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ZED-N50 by Zeon chemicals.) This is followed the etching of GaAs in a Chlorine
plasma. The resist of thickness ~450nm holds well under the chlorine plasma, allowing
us to obtain the desired structures reliably. (We note that depending on the structures
being fabrication, a “hard mask™ of Silicon Nitride may need to used.) After etching,
we remove the resist by dissolving it in n-methyl-2-pyrrolidone (sold as Remover PG
by Kayaku chemicals.) The sample is kept in a remover PG beaker placed on a 60°C
hot plate for 20 minutes to completely remove the resist. To obtain suspended Bullseye
structures, we dip the sample in 10% HF for 45 seconds. HF performs an undercut of

the AlGaAs layer by producing AIH3 which dissolves in water. However, it also leaves

behind AlF3 residues, which are removed by dipping the sample in KOH for 1 minute.

Figure 21 SEM images of fabricated bullseyes

Figure 21 shows all the three types of Bullseye structures we fabricate. As also
mentioned in the previous section, we have bridges connecting subsequent rings of
Bullseyes so that the structures don’t collapse following their suspension due to

undercut of the AlGaAs layer. The three structures shown here only differ in the
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arrangement of these bridges and exhibit very similar far field emission patterns in

simulation.

4.6 Characterization of Bullseye cavities

We first characterize the modes of the Bullseye cavities using above band
photoluminescence measurements. It’s possible to observe cavity spectra under
photoluminescence due to the so-called cavity feeding effect[122. ]To measure the
bullseye spectra, we apply a voltage of 1V across the pinin diode. At this voltage, the
lines in the spectra corresponding to emission from individual dots are strongly
diminished, allowing an easy characterization of the locations and linewidths of the

modes of the bullseye cavities.
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Figure 22 Bullseye photoluminescence spectrum

Figure 22 shows the two orthogonally polarized modes of a bullseye cavity that was
ultimately deemed unsuitable for further cavity QED measurements. The label 8-14 33
identifies the location of this bullseye in the array of cavities that we fabricated. The
last digits 1 and 2 in the labels in figure 22a and 22b respectively identity the two
orthogonally polarized modes. This cavity was ultimately rejected for further

measurements because of the low-quality factor (~400) of the two modes and the large
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splitting of ~5nm between them. However, we performed time-resolved
photoluminescence (PL) of the exciton coupled to the 814331 mode and compared with
the same measurement of an dot exciton in the bulk i.e. a dot not physically located
inside a bullseye cavity. These measurements are shown in Figure 23. We fit the
observed PL to exponentials and extracted lifetimes of ~670ns and ~1400ns for the
exciton coupled to the bullseye and the dot exciton in the bulk respectively. This
corresponds to a Purcell enhancement of ~2, which further motivated us to keep looking
for better devices in our array. Also note that the counts/unit time from the exciton in

the bullseye are two orders of magnitude higher than the exciton in the bulk.
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Figure 23 Exciton lifetime in bulk and bullseye

Figure 24 shows the above band PL measurements for the Bullseye labelled 8-14 11
which is the main focus of the rest of this chapter. Note that this bullseye has the bridge
structure shown in figure 24(a). Figure 24(a) shows the PL spectrum at a bias voltage
of 1V where only the cavity mode is observed. This Bullseye has nearly degenerate
polarization modes. Furthermore, the modes have a Quality factor of ~1070 which
agrees very well with the simulated quality factor. Figure 24 (b) overlays the PL from
the two dots coupled to this bullseye measured at an applied magnetic field of 6T in the
voigt configuration and a bias voltage of 0.6V where the two dots are neutral and show

the brightest emission. At 6T, these neutral dots have two orthogonally polarized PL
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lines, parallel and perpendicular to the applied magnetic field. For the rest of this

chapter, we focus on Dot 1.
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Figure 24 photoluminescence of (a) bullseye (b) of dots coupled to bullseye

4.7 Large Purcell Enhancement of a charge stabilized neutral dot in a Bullseye cavity
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Figure 25 Lifetime measurements show large Purcell enhancement
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Fig 25 shows the time-resolved photoluminescence measurements of the two
orthogonally polarized transitions of dot 1 at 6T magnetic field in the voigt geometry
and a representative measurement of a dot in the bulk. We plot the y-axis on a log scale
such that the exponential decay of photoluminescence versus time is rendered linear on
the plot. The blue, orange and green lines correspond to linear fits to the PL of bulk
exciton, bullseye coupled V polarized exciton and H polarized exciton respectively.
From the linear fits, we extract lifetimes of 83ps and 90ps for the H polarized and V
polarized excitons respectively. In contrast, the lifetime of the bulk exciton is ~1200
ps. This suggesst a large Purcell enhancement due to the Bullseye cavity mode.

For the H polarized exciton, we calculated a Purcell enhancement of 15.35 4+ 0.85. The
latter is close to the state-of-the-art lifetimes measured on InAs/GaAs quantum dots
embedded in microcavities [80,81,84,85] and is shorter by a factor of ~2 than those
previously measured on InAs/GaAs quantum dots in bullseye cavities with nearly
degenerate polarization modes.[106] We attribute this improvement to two main
factors. First, our fabrication of bullseye structures involves the etching of a sacrificial
layer below the cavity, whereas the rings of the bullseye structures in previous
fabrications [102,110] either were not etched all the way down to this layer or
incorporated a metallic mirror at the bottom.[ 106] While partial etching or the addition
of a metallic mirror could improve the collection efficiency of photons scattered from
the sample, these procedures may reduce the quality factor of the bullseye cavity,
thereby providing a smaller Purcell enhancement compared to those we observe for
suspended structures. The second factor that contributes to the enhanced optical

emission rate is the reduced charge noise associated with the p—i—n—i—n diode,
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[101,112 ] which minimizes the effects of spectral wandering of quantum dots coupled

to the cavity that may degrade the Purcell enhancement of their emission.

4.8 Bullseye cavities show dipole induced transparency.

To study the potential of bullseye cavities as spin—photon interfaces, we measure the
reflectivity of light from a cavity coupled to an uncharged quantum dot in the absence
of an external magnetic field. We sweep the frequency of a weak (~0.5 nW)
continuous-wave laser and measure the intensity of the signal reflected from the cavity
(purple dots in Figure 26a). A dip in the cavity reflectivity with a contrast of ~80%
emerges at the wavelength of the optical transition of the quantum dot. This optical
transparency is caused by the destructive interference between two optical transitions
with opposite phases generated due to the coupling between the cavity and the quantum
dot (in analogy with electromagnetically induced transparency where two transitions
in an atomic three level system interfere destructively) and improves with the Purcell
factor. [113] The observed reflectivity pattern is asymmetric, namely a Fano
resonance,[114—116] possibly due to a small splitting between the cavity polarization
modes or to an additional interference effect resulting from the membrane of our
sample (see Appendix 3.A). The measured reflectivity agrees with simulation results
based on a theoretical Jaynes—Cummings model [24,40] (yellow line in Figure 26a)
considering a coupling strength of g =35 GHz between the quantum dot and the cavity
and photon losses from the cavity and the dot of x = 310 GHz and y = 1 GHz,

respectively (see Section Appendix 3.A). The relatively high cooperativity between the
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dot and the cavity extracted from the model, C = = = 4, suggests that bullseye cavities

can be used for photon switching and for interfacing single photons with single spins.

[97,98]
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Figure 26 bullseye reflectivity measurements (see text for details)

We can estimate the efficiency of coupling photons to quantum dots in such interfaces
by plotting the intensity of light reflected at the cavity dip as a function of the incident
laser power (Figure 26b). Fitting the experimentally measured dip reflectivity trend to
the theoretically simulated trend [40] reveals that ~8% of the incident light reaches the
cavity (see Appendix 3.A). This efficiency is much greater than those we observe in
the same experimental setup utilizing photonic crystal (e.g., L3) cavities, indicating
that the far-field emission pattern of the bullseye cavity is concentrated at small angles,
as expected from simulations. The main factor limiting the coupling efficiency is the
mismatch between the numerical aperture of the objective lens in our setup (0.68) and
the angle of the cavity far-field emission mode corresponding to a 1/e relative intensity
(~0.36). This mismatch leads to a factor of ~3.6 degradation in the efficiency that can

be avoided by changing the lenses in our experimental setup. After additionally
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growing a distributed Bragg reflector at the bottom of the sample the sample to act as
a mirror, we expect to optically access quantum dots in next-generation bullseye
cavities with efficiencies of over 60%. Beyond improving the rates of optical excitation
and photon collection, such efficient access of light may enable multipulse coherent

control of quantum dot spins in cavities. [96]

4.9 Optical spin pumping in a Bullseve cavity

As we mentioned in chapter 1, in order to achieve perfect photon-photon entanglement,
we require a lambda system with one of its transitions coupled to an optical cavity [99]
To achieve this, we would like to use a negatively charged dot with magnetic field
applied in the voigt configuration which has the desired level structure due to the

metastable spin up and down states of the electron spin [93].
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Figure 27 photoluminescence of bullseye coupled to charged dots (a) CW (b) time-resolved

We examine a bullseye cavity coupled to such a spin: namely, a single electron spin
qubit confined in a (“charged”) quantum dot. Under an external magnetic field of B =

9 T, the application of a series of ultrashort above-band laser pulses (i.e., they are much
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shorter than the optical emission rates of the dot) reveals the optical transitions of the
dot (Figure 27a). Compared to dots in the bulk, the laser power required for the
saturation of the photoluminescence signal from the quantum dot in the cavity is 1 order
of magnitude weaker, and the intensity of this signal is ~25 stronger. Optically
accessing the device should be even more efficient for light in spectral resonance with
the cavity: namely, spectrally detuned by ~1 nm from the optical transitions of the dot.
Here, due to the observed spectral detuning, the Purcell enhancement of photon
emission via the optical transitions of the examined electrically charged dot of (~8—9,
Figure 27b) is smaller than that observed for the uncharged dot studied in the previous
section. However, this spectral detuning can be leveraged to boost the efficiency of
optical pulses that coherently control the quantum dot spin applied in resonance with
the cavity, as such pulses must be spectrally detuned from the dot’s optical transitions.
[91,95,96] Another observation that highlights the potential of bullseye cavities for
boosting spin-coherent control is the emission of photons from all four optical
transitions of the dot. As illustrated in Figure 27a, the charged quantum dot emits
photons at polarizations orthogonal to each other, with directions dictated by the
external magnetic field. The observation of photoluminescence from all four transitions
is consistent with the expected polarization degeneracy of the cavity mode (i.e., if a
polarization mode were too spectrally detuned, we would have not observed the two
emission lines with polarizations associated with it). We note that the collection of
horizontally polarized light is less efficient than that of the vertically polarized light
due to a small spectral splitting of polarization modes of this cavity caused by

fabrication imperfections. Despite such quantitative differences, the ability to access

60



quantum dots with light beams orthogonal to each other is crucial for the realization of
pulse sequences for coherently controlling the quantum dot spin for quantum

information processing utilizing circularly polarized light[91,95,96].

m qol-ﬁﬂh-s- iﬂn; *41:”15} < Bl s - < 90 nis .
=
3
A 0.75]
3
~ 0.5
©
=
5 0.25
<

O

0 50 100 150 200 250 300 350
Time (ns)

Figure 28 Electron spin relaxation inside a bullseye cavity

To further emphasize the potential of controlling the quantum dot spin in the bullseye
cavity, we use laser pulses resonant with one of the optical transitions of the dot to
optically pump the spin (under B =9 T). Varying the free evolution time between these
pulses and measuring the emission of Raman signal from the dot results in the
saturation behavior depicted in Figure 28. The sharp peak of the Raman signal emitted
under the application of the first pulse indicates the optical initialization of the spin to
one of its ground states. Then, the application of additional pumping pulses should not
induce any Raman signal. Experimentally, however, the pulses induce undesired
Raman signals that saturate for the free evolution time of T1 =21.2 + 3.5 ns (extracted

from the leastsquares fitting shown in the inset of Figure 28). This saturated Raman
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signal represents the relaxation of the quantum dot spin, which reduces the spin
initialization fidelity down to ~25%.

The observed spin relaxation is dominated by two physical mechanisms. First, the main
mechanism that causes spin relaxation is the cotunneling of the electron confined in the
dot with the electrons in the n-type back contact,[118] which results in our sample in
spin relaxation times of a few tens of nanoseconds even for dots in the bulk. These
natural relaxation times can be further extended by orders of magnitude by modifying
the tunnel barriers (GaAs layers) of the diode. [118,119] The second (minor) cause for
the short spin relaxation time observed here is the spectral proximity of the bullseye
cavity (~905 nm) to the wetting layer. Given this spectral proximity, pumping an
optical transition of the dot coupled to the cavity may lead to a residual above-band
pumping of both spin states, thereby reducing the spin initialization fidelities (by a few
additional percent) compared to the those observed for dots with optical wavelengths
of ~930 nm. This residual pumping can be mitigated by designing and utilizing
bullseye cavities with higher resonant wavelengths: e.g., by increasing the dimensions
of the rings. The mitigation of both natural and laser-induced spin relaxation
mechanisms could enable high fidelity spin control of the quantum dot spin using low
laser powers, thereby upgrading the potential of these dots for quantum information

processing.
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Chapter 5: Ongoing projects and future directions

We begin this chapter by reiterating some of the requirements for achieving
semiconductor cavity QED platforms that are viable for quantum information
processing applications:

(1) High cooperativity

(11) Near unity coupling efficiency to the atom-cavity system

(ii1))  For spin qubits in a lambda system: large spin lifetimes and coherence times
We have demonstrated that the near Gaussian far field emission pattern of Bullseye
cavities can substantially improve the coupling efficiency over the far field pattern of
L3 cavities. We also observed a decent cooperativity of 8, which was enabled by the
mitigation of charge noise by the p-i-n-i-n diode heterostructures. However, we saw
that the spin relaxation time of dots coupled to Bullseye devices was poor, limited to
50ns in most cases. One of the reasons for this limitation is the 30nm tunnel barrier
between the quantum dot layer and the back n contact of the diode which forms the
Fermi Sea source of electrons for charging the dot.
A limitation of the Bullseye device, from a photonic point of view, is that high
efficiency and high cooperativity are somewhat conflicting requirements. Bullseye
cavities can be designed with partially etched gratings such that the emission is biased
upwards and therefore is more efficiently collected by an objective lens. However, this
leads to lower device quality factor, i.e., a higher k for the cavity, and therefore a lower

Cooperativity, all other things being equal.
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In this chapter, we try to address both problems. We characterize the spin lifetimes in
p-i-n-i-n heterostructures with a sacrificial layer of AlGaAs with 40nm and 50nm
tunnel barriers between the quantum dot layer and the back n-contact. We find that
40nm tunnel barriers performed the best given the same growth conditions. This is not
in line with previous findings in the literature where 50nm tunnel barrier devices
performed better in the case of a Schottky diode [76]. The reason for this inconsistency
is not clear as of now.

To address the conflicting requirements between Bullseye efficiency and cooperativity,
while also achieving quality factors >1000 that Bullseye cavities are typically limited
to in simulation, we investigate nanobeam cavities with adiabatically tapered
waveguides. Nanobeam cavities have been shown to have quality factors as high as
25000 for InAs/GaAs quantum dots substrates. [123] Theoretically, the quality factors
can be as large as a few million. Adiabatically tapering a waveguide can theoretically
yield efficiencies >95%, as we show via means of FDTD simulations. In this chapter,
we show the design and simulation results for nanobeam cavities with adiabatically
tapered waveguides. We show the developments we have made towards fabricating
these devices in p-i-n-i-n diode heterostructures, as well as some device

characterization data.

5.1 Dependence of spin lifetime on tunnel barrier for p-i-n-i-n diode heterostructures

Our results in the previous chapter used a device with 30nm tunnel barrier. We
observed spin lifetimes below 100ns, which is far below the spin lifetimes observed in
Schottky diode heterostructures [76]. To study whether increasing the tunnel barrier is

effective in increasing the spin relaxation time as a result of the decrease in cotunneling
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rate [76], we characterized the spin lifetimes of electron spins in negatively charged

quantum dots in samples with 40nm and 50nm tunnel barriers.
Spin lifetime measurements in p-i-n-i-n diode heterostructures with 40nm tunnel
barriers
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Figure 29 spin lifetime test for 40nm tunnel barrier pinin diode

Figure 29 shows the spin lifetime measurement of electron spin in one negatively
charged InAs dot from a sample with a pinin diode heterostructure. Figure 29(a) shows
the time resolved photon counts when spin initialization pulses of a duration of 10ns
are applied with time delays to capture the spin relaxation time response. After the
fluorescence due to the first initialization pulse, the fluorescence from the application
of the subsequent pulses is suppressed due to optical spin pumping [93]. As the spin
relaxes to thermal equilibrium, we observe fluorescence levels similar to that of the
first pulse in the sequence. It can be seen from figure 29(b) that it takes about 3us for
the spin to fully relax. This corresponds to a spin relaxation time of about 600ns, which

is representative of other dots in the sample and better than what we observed for the
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30nm tunnel barrier sample. We ascribe this improvement to the reduced co-tunneling

rate due to the increased length of the tunnel barrier. [76]

Spin lifetime measurements in p-i-n-i-n diode heterostructures with 50nm tunnel

barriers
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Figure 30 Spin lifetime test for 50nm tunnel barrier pinin diode

o

Figure 30 shows a spin relaxation measurement like the one in the previous subsection.
In this case, the dot is embedded in a diode structure with a tunnel barrier of 50nm
width. This measurement is representative of the measurement performed on other dots
on the sample. Contrary to our expectations, the spin relaxation time in these samples
was rather poor. In the example shown by the figure above, the spin relaxation is

happening on the order of 10s of nanoseconds.

5.2 Nanobeam cavities with adiabatic tapers

Adiabatically tapering a single mode waveguide

The idea of adiabatic tapering is simple. We start with the width of a single mode

waveguide. We taper the mode slow enough such that the mode stays guided, while the
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effective index of the mode decreases. As the refractive index of the mode approaches
1, the taper can be terminated as now the waveguide mode is nearly impedance matched
with vacuum and transmits through the waveguide into vacuum with low reflection or

scattering loss.

Figure 31 Nonlinear adiabatic taper

Figure 31 shows the design of an adiabatic taper based on the adiabatic condition for
GaAs. The figure is a snapshot of the movie generated from Lumerical FDTD which
shows the propagation of the electric field along the waveguide when excited by a

Mode Source. The adiabatic condition is given by:

dw 0
2y K Qerw) -1

where w is the width of the waveguide at location z, z=0 being the beginning of the
taper. This differential equation gives rise to a highly nonlinear taper. Since the
refractive index of GaAs @920nm is ~3.5>>1, the initial taper happens very fast. This
can give rise to short tapers which are convenient for working with short working

distance objectives.
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The following table shows a comparison between linear and nonlinear tapers of length
9.4um designed for a GaAs waveguide of width 300nm at a wavelength of 920nm. The
different columns of the table show the fraction of the source light that gets emitted
into a certain NA. As the table clearly shows, the nonlinear taper designed using the

adiabatic condition outperforms the linear taper.

0.77 0.95

Linear 0.47

Non-Linear 0.79 0.92 0.97

Nanobeam cavity design

Figure 32 Nanobeam cavity with adiabatically tapered central holes

The nanobeam cavity design is based on a 1D photonic crystal with a central defect, as
shown in the figure above. Note that the hole size and period is tapered towards the
center of the cavity. This is to ensure that the Bloch modes of the photonic crystal
mirrors are adiabatically transformed into the mode of the waveguide as they approach
the cavity defect. This prevents any unwanted scattering and enables a high Q cavity
design. For the design above, we simulated a cavity Q of 1.9 million at the design
wavelength of 940nm. The calculated mode volume of the cavity is 0.16 (%)3 , Where

n=3.55 i1s the refractive index of GaAs.
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Fabricated one sided nanobeam cavities with adiabatic tapers.
In order to make one sided nanobeam cavities, we reduce the number of holes of the
photonic crystal mirror on the side which is close to the adiabatic tapers. We fabricated
these devices on our pinin diode heterostructure samples. The following picture shows
an SEM image of the fabricated cavities after etching and undercut + precision

cleaving.

SEMHV:100kV  Det:In-Beam SE XEIA3 TESCAN  SEM HV: 10.0 kv Det: In-Beam SE XEIA3 TESCAN|

WD: 516 mm SEM MAG: 79.0ke 2 pm WD: 4.96 mm SEM MAG: 51.0kx 1 pm
View field: 7.01 ym  Date(m/dly}: 11107122 Univarsity of Maryland AIM Lab View field: 5.43 um _ Date{mid/y): 0872122 University of Maryland AIM Lab

Figure 33 Fabricated nanobeam cavities

Characterization of fabricated cavities at room temperature

Figure 34 Schematic of nanobeam measurement with lensed fibers

The figure above shows a schematic of the optical setup that we use to characterize the
nanobeam cavities. The laser light exiting out of the lensed fiber falls on the tapered

nanobeam cavity. The reflected light from the nanobeam cavity is collected into the
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lensed fiber. The reflected light is then imaged on a spectrometer CCD to measure the

reflection spectrum of the nanobeam cavity.

The figure below shows the reflection spectra of two of the nanobeam cavities
characterized at room temperature. We observe a dip at the resonance wavelength of
the fundamental mode of the cavity. The dip in the reflection spectrum occurs close to
the design wavelength of 940nm in both bases. We obtain a cavity Q of ~2000 via a

Lorentzian fit.

(a) Nanobeam reflectivity (23] Manobeam reflectivity

Figure 35 Dip in nanobeam reflectivity at cavity resonance
3.3 Outlook

In order to obtain InAs/GaAs quantum dots in pinin diodes with lifetimes comparable
to Schottky diodes, we will keep working with our collaborators to figure out where
the issues are. Another alternative is to investigate GaAs/AlGaAs quantum dots, which
have larger spin coherence times due to lower strain.

We need to optimize the fabrication of nanobeam cavities in order to obtain higher
quality factors. We are working on ebeam lithography with a Silicon Nitride hard mask
which is more resistant to etching under a chlorine plasma and would allow longer etch

times such that the cavity holes are etched through.
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Appendices

Appendix 2.A: Derivation of Scattering Amplitudes

To calculate the scattering amplitudes, we note:

TF‘J”pq (Tl ; TQ) - <0‘ ]Sout (TQ)quut (7—1) “llin>

=f dhf dty (t1,12)Ghq (T, T2i T, t2)
—eoJu QA1)
where

Goa(T1, Tostr. t2) = (0] o (T2) ot (1)l (1)a], (£2) |0) (2A.2)
Therefore, to calculate the desired scattering amplitudes pq, we first calculate Gpq and
then use eq. 2A.1. In order to calculate Gpq, we first recall the result from ref. [14] that

will be used repeatedly in this section. Throughout this section the time orderings t> >

t; and 7, = 714 are assumed.

(0l o (r1)a (1) [0) = (0] 5(71)&" (t1) [0)

(2A3.a)
(0| o(r1)o(r2)o (t2)o (1) [0) =
(016(m1)a(r2)a ' (t2)57 (t1) [0) (2A3.b)
with
5_(1;) e‘iﬁcrrta_e—if:fpfff
(2A4)
where
— _9i~aT45
Hcff - 23‘ Yo o (2A5)
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Using egs. (2A.4) and (2A.5) and the properties of the operators ¢ and o, we can
calculate the amplitudes corresponding to eqs 2A.3. In Eq. 2A.3a, t; = t; is the only
possible time ordering because the atom must be raised to the excited state before it is
lowered to the ground state. In Eq. 2A.3a, 7, = t, = 7; = t; is the only possible
ordering, because before being raised by o ¥ (t,),the atom must be lowered. Therefore,

we have:

(06(1)6" (1) [0) = e 7 O(r1 — 1)

(2A.62)
(0 6(m1)6(r2)6" (2)6 (t1) |0) =
6—2'}"(7-2—1-‘2}6—2'}"{11—?51)x
O(r2 — 12)O(m2 — t1)O(71 — t1) (2A.6b)

where 0 is the Heaviside step function and ensures the time orderings.

Before we proceed to the calculations of Gpq, we also recall the quantum causality

conditions

o), I(r)| = |67(t),I(r)| =0,for t <7
[6(t),1()] = [o1(t), 1(r)] = 0,for t < oAz

20,00)] = 40, 00)] =0.for 127 (A7)

where [ stands for input annihilation or raising operators, and O stands for output

annihilation or raising operators.

We first calculate the scattering amplitudes for two reflection events Gup, which gives:

(0] Bout (T2)bowt (T1)al, (t1)al, (t2) |0) =
9~y

gl \alT a.T , G.T )
y (0] o (=)o (m1)al, (t1)al,(t2) 0) (2A.8)
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We first note here that the only time ordering which gives a non-zero result is 7, >
t, = 14 = t;. This is because other possible time orderings of eqn (2A.8) result in 0.

Therefore, we have:

G, = 27 (0 o(t2)al, 7)o (t)al, (1) |0) =
472 (0] o (t2)o " (2)o (t1)oT (1) |0) =

dry2e (2w m2) =20 (timT2) o

O(ty — 12)0(1y — 11)O(t; — 1) (2A.9)

where the first step follows from applying the causality condition (2A.7a) on the result
of eqn. (2A.8). The second step follows from using a;,(t) = @y (t) +/2y0*(t)

and the causality condition (2A.7b) and the last step follows from eqn. (2A.6b).

Using the result for Gpp in eqn. (2A.1), we obtain:

Ypb(T1,72) = dyZe”21(M1H72)

/ d’i"z/ dtye?r(trtiz) et 1))

(2A.10)
To obtain Gy, we observe:
Gab = (0] Gout (t2)bout (t1 )al, (11)al, (72) [0) =
— /27 (0] ain(t2)o (t1)al, (ﬂ)ajﬂ (12) |0)
- t
+ 2y (0] o (t2)o(t1)al, (11)al, (1) |0) QA1)

where the equality follows from the input-output relations. We note that the second
term on the right-hand side of the equality is Gub. Therefore, we only need to calculate

the first term. Using the causality conditions (2A.7a), (2A.7b) and the relation a;}, =
atye ++/2yot (t),we get:
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(0] ain(t2)o(t1)al, (11)al, (12) |0) =
e—zq..(tl—n)@(f_l _ 71)5@_2 —T3) (2A.12)

plugging this result in eqn (2A.11), we obtain Gpa. Now we use eqn. (2A.1) to obtain:

Upa(T1,72) = —27€7 277 x

/ dtl Ggw'.tlg(fl \ TQ) + 1_5';‘}3}3
T (2A.13)

Appendix 2.B: Calculation of Routing Efficiency

We can calculate the splitting efficiency from the scattering amplitudes derived in the
previous section. To do this, we first calculate the scattering amplitudes at the output
of the MZI namely, e, Wed, Wde, Yad- The probability density of splitting is then given
by ps = [Wedl* + [Wacl.

To calculate the scattering amplitudes at the output of the MZI, we use the MZI input-
output relations to express them in terms of the scattering amplitudes at the output of
the TLA. We illustrate this procedure by showing the steps for calculating weq

explicitly.

Yed = (“‘ Jtmt(T'_')‘acmt[.‘—l] ‘f]} = {U‘ [(=1r." [:U:"{H,'IQI]"}TMH [.T'_J_] Hi“[aa’!z)'%c:llt('rz.]] ('"lm Sin[.'q,."’Q.]r\’-cmt.[.‘—l_] | ('(]S[H,'fz_]';’cmt{“‘—l ]] |(]}
= —sin(#/2) cos(#/2) v, + ff“"’('(152[6';’?)-:,-'!,‘_ t".lql):iiflz(ﬁlf.l'?]'t-"tr | et sin(#/2) cos(8/2) 1

(2B.1)
where the first step follows from the definition of ycq. The second step follows from
the MZI input-output relations. The third step uses the definition of the scattering

amplitudes at the output of the TLA. Using the above procedure, we get,

Vae = —sin(0/2) cos(0/2) by — et sinz(b’/Q)L o + €' ('()SZ(H/Q)W,. + 2 sin(60/2) cos(0/2)w

(2B.2)
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Ve = €082 (0/2) iy + € sin(0/2) cos(0/2) ¢ + €' sin(0/2) cos(0/2) + €2 sin®(6/2)1x

(2B.3)

thaq = Sin(0/2)1,, — e sin(0/2) cos(0/2)0 — e sin(#/2) cos(8/2)0, + e cos?(0/2)iy

(2B.4)
We note that [Wee|* +Wed]® Hwde|* +Wadl> = [Wobl* + [Woal* + [Wab> + [Waal*. Since the right-
hand side of this equation integrates to 1 over the output times 1 and 12, so does the
left-hand side, ensuring proper normalization of the output photon wavefunction. This
preservation of probabilities is ensured by the unitarity of the MZI transformation of
eq. (7). We obtain the probability density of the two input photons being split to

different output modes of the MZI as ps = |yed|* + |Wac|*, which gives:

1 . ‘ 5 5 .
Ps = —1(2L‘hh (— sin(4w) cos(@) (Ppa + V) — 8sin? (w) cos? (w) L'Uh(z{ﬂ){”,m) +2sin® (2w) ey, + 20pa ((cos(Aw) — 1)+

$in (1) cos(@)tan) + (cos(dw) + )0, + 2sin(4w) cos(@ ), + (cos(dw) + 3)02, + 2sin(2w)e2,)

(2B.5)

The routing efficiency is given by the integral of ps over t and .

Appendix 2.C: Routing efficiency for uncorrelated exponential inputs

The input state of two uncorrelated photons with an exponential pulse profile is given
by &(ty,ty) = V2&(t,)é(t,) with &(t) = V2ke ™. Plugging this input state into
eqns. (10) yields the following expressions for the two photon wavefunctions at the

outputs aout and bout of the two-level atom:

8\/})2,,. ((..Zw.n _ ehT ) e 2m(yr) =722y k) ((,‘Zim +hTy _ (_:"'T|+2'}72}

(T, T2) =

(e = 292 (2C.1
1a)
( ) A2k (217 — ) e T2 (TER)I TR0 HR) (99 TERTs _ et 2T
VhalT1, To) = —
ba\71,72 (I‘{ - 2";)2 (2C lb)
e Ay/Byhe ™t (R =T R) (KTt T _ g At TabsTs 4 (4y — p)el1He)(nT) gty nbsntdon)
Yab(T1, T2} = (rk—27)? (2CIC)

v"aa = E(Tl-, 7_2) + Lg/'eil)(717 TZ) + /l!f"l)ei(Tls 7—2) - wbb(Tlt 7—2)

(2C.1d)
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Using these expressions in eqn. 2B.5, we can calculate probability density that the two
input photons are routed to different output ports cout and dout of the interferometer.
Integrating the resulting expression over 11 and 1> gives the following routing

efficiency:

(r(r(10 — 3x) + 20) — 8) cos(4w) + 16k sin? (2w) cos(2¢) + 32k sin(4w) cos(d) + r(k(3n + 38) +44) + 8

2] ¢
1k +2)2(36 +2) (2C.2)

Ps =

Here, we set the atomic bandwidth y = 1. Please note that this merely corresponds to

expressing the pulse bandwidth « in the units of the atomic bandwidth y.

Appendix 2.D: Routing efficiency for entangled exponential inputs

The input state of two entangled photons with an exponential pulse profile is given by
E(ty, ty) = 2VKS e 1 e=8(t2=t1) We follow the same steps as in the previous section
to obtain the two-photon wavefunction at the output of the two-level atom. The
resulting routing efficiency in the stationary limit is given by:

—(6((6 — 10)5 — 12) + 8) cos(4w) + 168 sin?(2w) cos(2¢) + 328 sin(4w) cos(d) + 6(5(5 + 22) +20) + 8
4(0 +2)3

Ps =

(2D.1)
where the stationary limit corresponds to taking the limit k — 0. Also note that we have
set the atomic bandwidth y = 1, which merely corresponds to expressing the pulse

bandwidth 6 in terms of the atomic bandwidth.

77



Appendix 3.A: Theoretical Model of Bullseye reflectivity spectrum

To calculate the reflectivity spectrum of a bullseye cavity coupled to a neutral quantum
dot exciton in the absence of an external magnetic field [yellow lines in Fig. 26 of the
main text], we used a Jaynes Cummings model with losses, coherently driven by a laser
field. Considering this model, the system Hamiltonian, in the rotating frame with

respect to the driving field and under the rotating wave approximation, is given by:

H = h[(we — w)d'd + (we —w))o.6_ +iglac. —a'o_) + €(a+ a')]
(3A.1)

where g represents the coupling strength of the quantum dot to the cavity, o and &
represent the frequency and amplitude of the laser, respectively, a" and a (o+ and o)
are the creation and annihilation operators of the cavity field (quantum dot optical
transition), respectively, and wc, ma are the resonant frequencies of the cavity and
quantum dot, respectively. In addition to the Hamiltonian part, we modeled the losses
of photons in the system due to the decay of the cavity field at a rate of « and the
spontaneous emission from the neutral quantum dot exciton at a rate of y; by the
collapse operators L, = vka and L, = +/yo_, respectively. Finally, we modeled the

pure Markovian dephasing of the neutral quantum dot exciton at a rate of y4 by the
jump operator Ly = /Y40y, Where ox is the x-Pauli operator in the energy subspace of

the quantum dot.
To simulate the reflectivity from the cavity [red line in Fig. 26 (a) of the main text], we
first used a quantum optics (QuTip) toolbox to calculate the steady-state density matrix,

p, by solving the Lindblad master equation:
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. 1
p=—7 [H,p] + Z (L:'PLI —3 {LIL"-‘ "J})

(3A.2)
withi € {c, a, d}. Using the obtained density matrix, we then calculated the steady state
cavity field (directly proportional to the cavity reflectivity) given by n. = tr(pa'a).
Repeating the simulation while sweeping the frequency of the laser, i, resulted in the
cavity reflectivity spectrum. Figure 26(a) of the main text shows such a reflectivity
spectrum driven by a laser with power as low as 0.5 nW, which corresponds to the
weak excitation limit £ < g, K, y1, Yd. To properly simulate the spectrum within this
limit, we considered a sufficiently low value of £ and known values of kx = 310 GHz
(extracted from the bandwidth of the cavity) and y1 = 0.1 GHz (taken from a previous
study that used the same wafer 1)), and swept the unknown parameters yq4 and g. By
fitting the simulated spectra to the experimental results [blue data points in Fig. 26 (a)],

we extracted the parameters of our system, g =35 GHz and yq = 1 GHz. These numbers

.. 292
correspond to a cooperativity of C = % ~ 8.
d

Fitting the simulation results to the experimental data can also provide an estimate for
the efficiency of the optical interface provided by the bullseye cavity. Figure 26(b) of
the main text shows both experimentally measured (blue data points) and theoretically
simulated (red line) trends of the normalized reflectivity of the cavity as a function of
the laser power. The experimental data represent the measured reflectivity of the dip
while sweeping the laser power before the sample, Pin, normalized by the reflectivity
of the cavity in the absence of the quantum dot (observed after changing the voltage
bias of the diode). To obtain the simulated results, we solved equation (2) for w1 = o

while sweeping the parameter & that represents the amplitude of the laser. We
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performed this simulation twice, in the presence and absence of the quantum dot (i.e.,
considering g = 0), which resulted in the steady-state cavity fields nc(&) and no(§),

respectively. From these cavity fields, we finally calculated the normalized reflectivity,

R = % . While the input laser power cannot be determined solely from the simulation,
this power is directly proportional to the reflectivity in the absence of the quantum dot.

rhwn,

Pm

(3C.3)
where 1 is the efficiency of the optical interface provided by the cavity. As such, fitting
the trend of the simulated reflectivity as a function of no to the experimental results
allowed us to extract the optical efficiency provided by the cavity, n = 8%, and to
present the simulated in Fig. 26(b) in units of uW that represent the laser input power.
While the parameters of the simulation were swept to optimally fit the experimental
measurements, there are still quantitative discrepancies between theory and
experiment. Most notably, the theoretical reflectivity spectrum [red line in Fig. 26 (a)]
deviates from the experimental obtained one [blue data points in Fig. 26 (a)], which
exhibits a rather asymmetric pattern (Fano resonance). We believe that this observation
can be related either to the small non-degeneracy between two orthogonal linearly
polarized modes of the particular bullseye cavity, or to an additional interference effect
resulting from the Fabry-Perot cavity that constitutes the membrane of our sample. To
examine these effects, we measure the photoluminescence signal emitted from the
bullseye cavity under above-band excitation in absence of the quantum dot, while

separately filtering the two orthogonal polarization modes using quarter and half
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waveplates. Figure 36 illustrates the observed small spectral deviation between the
polarization modes, as well as the oscillating reflectivity signal associated with

Fabry-Perot interference.

Normalized Photoluminescence

904 905 906
Wavelength (nm)

Figure 36 The photoluminescence spectra emitted from two orthogonal linearly polarized modes of the cavity
corresponding to figure 26 under above band excitation
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