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Abstract: In this manuscript, we present a coherent rigorous overview of the main properties of
Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type
are scattered through the literature and can be difficult to find. A special emphasis has been put
on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar
fact that for a general nonsmooth domain Ω in Rn, 0 < t < 1, and 1 < p < ∞, it is not necessarily
true that W1,p(Ω) ↪→ Wt,p(Ω). This has dire consequences in the multiplication properties of
Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus
on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact manifolds.
In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general
framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij
spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that
are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles,
cannot be found in the literature in the generality appearing here.

Keywords: Sobolev spaces; compact manifolds; tensor bundles; differential operators

1. Introduction

Suppose s ∈ R and p ∈ (1, ∞). With each nonempty open set Ω in Rn we can associate
a complete normed function space denoted by Ws,p(Ω) called the Sobolev-Slobodeckij
space with smoothness degree s and integrability degree p. Similarly, given a compact
smooth manifold M and a vector bundle E over M, there are several ways to define the
normed spaces Ws,p(M) and more generally Ws,p(E). The main goal of this manuscript is
to review these various definitions and rigorously study the key properties of these spaces.
Some of the properties that we are interested in are as follows:

• Density of smooth functions
• Completeness, separability, reflexivity
• Embedding properties
• Behavior under differentiation
• Being closed under multiplication by smooth functions:

u ∈Ws,p, ϕ is smooth ?
=⇒ ϕu ∈Ws,p

• Invariance under change of coordinates:

u ∈Ws,p, T is a diffeomorphism ?
=⇒ u ◦ T ∈Ws,p

• Invariance under composition by a smooth function:
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u ∈Ws,p, F is smooth ?
=⇒ F(u) ∈Ws,p

As we shall see, there are several ways to define Ws,p(E). In particular, ‖u‖Ws,p(E) can
be defined using the components of the local representations of u with respect to a fixed
augmented total trivialization atlas Λ, or it can be defined using the notion of connection in
E. Here are some of the questions that we have studied in this paper regarding this issue:

• Are the different characterizations that exist in the literature equivalent? If not, what is
the relationship between the various characterizations of Sobolev-Slobodeckij spaces
on M?

• In particular, does the corresponding space depend on the chosen atlas (more precisely
the chosen augmented total trivialization atlas) used in the definition?

• Suppose f ∈Ws,p(M). Does this imply that the local representation of f with respect
to each chart (Uα, ϕα) is in Ws,p(ϕα(Uα))? If g is a metric on M and g ∈Ws,p, can we
conclude that gij ◦ ϕ−1

α ∈Ws,p(ϕα(Uα))?
• Suppose that P : C∞(M) → C∞(M) is a linear differential operator. Is it possible

to gain information about the mapping properties of P by studying the mapping
properties of its local representations with respect to charts in a given atlas? For
example, suppose that the local representations of P with respect to each chart (Uα, ϕα)
in an atlas is continuous from Ws,p(ϕα(Uα)) to W s̃,p̃(ϕα(Uα)). Is it possible to extend
P to a continuous linear map from Ws,p(M) to W s̃,p̃(M)?

To further motivate the questions that are studied in this paper and the study of the
key properties mentioned above, let us consider a concrete example. For any two sets
A and B, let Func(A, B) denote the collection of all functions from A to B. Consider the
differential operator

divg : C∞(TM)→ Func(M,R), divg X = (tr ◦ sharpg ◦ ∇ ◦ flatg)X ,

on a compact Riemannian manifold (M, g) with g ∈Ws,p. Let {(Uα, ϕα)} be a smooth atlas
for M. It can be shown that for each α

(divgX) ◦ ϕ−1
α =

n

∑
j=1

1√
det gα

∂

∂xj

[
(
√

det gα)(X j ◦ ϕ−1
α )
]

,

where gα(x) is the matrix whose (i, j)-entry is (gij ◦ ϕ−1
α )(x). As it will be discussed in

detail in Section 10, we call Qα : C∞(ϕα(Uα),Rn)→ Func(ϕα(Uα),R) defined by

Qα(Y) =
n

∑
j=1

1√
det gα

∂

∂xj

[
(
√

det gα)(Y j)
]

︸ ︷︷ ︸
Qα

j (Y
j)

the local representation of divg with respect to the local chart (Uα, ϕα). Let us say we can
prove that for each α and j, Qα

j maps We,q
0 (ϕα(Uα)) to We−1,q(ϕα(Uα)). Can we conclude

that divg maps We,q(TM) to We−1,q(M)? Furthermore, how can we find exponents e and q
such that

Qα
j : We,q

0 (ϕα(Uα))→We−1,q(ϕα(Uα))

is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W0,p(Ω) = Lp(Ω), Sobolev-Slobodeckij spaces can be viewed as a generalization
of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key properties
of Ws,p(Ω) (for s 6= 0) depend on the geometry of the boundary of Ω. Indeed, to thoroughly
study the properties of Ws,p(Ω) one should consider the following cases independently:

(1) Ω = Rn
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(2) Ω is an arbitrary open subset of Rn

{
2a) bounded
2b) unbounded

(3) Ω is an open subset of Rn with smooth boundary

{
3a) bounded
3b) unbounded

Let us mention here four facts to highlight the dependence on domain and some
atypical behaviors of certain fractional Sobolev spaces. Let s ∈ (0, ∞) and p ∈ (1, ∞).

• Fact 1:

∀ j
∂

∂xj : Ws,p(Rn)→Ws−1,p(Rn)

is a well-defined bounded linear operator.
• Fact 2: If we further assume that s 6= 1

p and Ω has smooth boundary then

∀ j
∂

∂xj : Ws,p(Ω)→Ws−1,p(Ω)

is a well-defined bounded linear operator.
• Fact 3: If s̃ ≤ s, then

Ws,p(Rn) ↪→W s̃,p(Rn) .

• Fact 4: If Ω does NOT have Lipschitz boundary, then it is NOT necessarily true that

W1,p(Ω) ↪→W s̃,p(Ω)

for 0 < s̃ < 1.

Let M be an n-dimensional compact smooth manifold and let {(Uα, ϕα)} be a smooth
atlas for M. As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in Rn. Primarily we will be interested in the prop-
erties of Ws,p(ϕα(Uα)) and Ws,p

loc (ϕα(Uα)). Furthermore, when we want to patch things
together consistently and move from “local” to “global”, we will need to consider spaces
Ws,p(ϕα(Uα ∩Uβ)) and Ws,p(ϕβ(Uα ∩Uβ)). However, as we pointed out earlier, some of
the properties of Ws,p(Ω) depend heavily on the geometry of the boundary of Ω. Consider-
ing that the intersection of two Lipschitz domains is not necessarily a Lipschitz domain, we
need to consider the following question:

• Is it possible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire Rn or a nonempty bounded set
with smooth boundary? Furthermore, if we define the Sobolev spaces using such an
atlas, will the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in Rn (cf. [1–3]), real order
Sobolev spaces of functions [4–8], Sobolev spaces of functions on manifolds [9–12], and
Sobolev spaces of sections of vector bundles on manifolds [13,14]. However, most of these
works focus on spaces of functions rather than general sections, and in many cases the
focus is on integer order spaces. This paper should be viewed as a part of our efforts to
build a more complete foundation for the study and use of Sobolev-Slobodeckij spaces on
manifolds through a sequence of related manuscripts [15–18].
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Outline of Paper. In Section 2, we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3, we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some less
well-known facts about topics such as higher order covariant derivatives in the context
of vector bundles. In Section 6 we collect the results that we need from the theory of
generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Sections 8 and 9 we introduce
Lebesgue spaces and Sobolev–Slobodeckij spaces of sections of vector bundles and we
present a rigorous account of their various properties. Finally in Section 10 we study the
continuity of certain differential operators between Sobolev spaces of sections of vector
bundles. Although the purpose of Section 3 through Section 7 is to give a quick overview
of the prerequisites that are needed to understand the proofs of the results in later sections
and set the notation straight, as it was pointed out earlier, several theorems and proofs that
appear in these sections cannot be found elsewhere in the generality that are stated here.

2. Notation and Conventions

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and N0 denotes the set of nonnegative integers. For any nonnegative real number
s, the integer part of s is denoted by bsc. The letter n is a positive integer and stands for the
dimension of the space.

Ω is a nonempty open set in Rn. The collection of all compact subsets of Ω will be
denoted by K(Ω). Lipschitz domain in Rn refers to a nonempty bounded open set in Rn

with Lipschitz continuous boundary.
Each element of Nn

0 is called a multi-index. For a multi-index α = (α1, . . . , αn) ∈ Nn
0 ,

we let

• |α| := α1 + . . . + αn;
• α! := α1! . . . αn!.

If α, β ∈ Nn
0 , we say β ≤ α provided that βi ≤ αi for all 1 ≤ i ≤ n. If β ≤ α, we let(

α

β

)
:=

α!
β!(α− β)!

=

(
α1

β1

)
. . .
(

αn

βn

)
.

Suppose that α ∈ Nn
0 . For sufficiently smooth functions u : Ω → R (or for any

distribution u) we define the αth order partial derivative of u as follows:

∂αu :=
∂|α|u

∂xα1
1 . . . ∂xαn

n
.

We use the notation A � B to mean A ≤ cB, where c is a positive constant that does
not depend on the non-fixed parameters appearing in A and B. We write A ' B if A � B
and B � A.

For any nonempty set X and r ∈ N, X×r stands for X× . . .× X︸ ︷︷ ︸
r times

.

For any two nonempty sets X and Y, Func(X, Y) denotes the collection of all functions
from X to Y.

We write L(X, Y) for the space of all continuous linear maps from the normed space X
to the normed space Y. L(X,R) is called the (topological) dual of X and is denoted by X∗.
We use the notation X ↪→ Y to mean X ⊆ Y and the inclusion map is continuous.
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GL(n,R) is the set of all n× n invertible matrices with real entries. Note that GL(n,R)
can be identified with an open subset of Rn2

and so it can be viewed as a smooth manifold
(more precisely, GL(n,R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the
manifold M at point p ∈ M is denoted by Tp M, and the cotangent space by T∗p M. If (U, ϕ =

(xi)) is a local coordinate chart and p ∈ U, we denote the corresponding coordinate basis
for Tp M by ∂i|p while ∂

∂xi |x denotes the basis for the tangent space to Rn at x = ϕ(p) ∈ Rn;
that is,

ϕ∗∂i =
∂

∂xi .

Note that for any smooth function f : M→ R we have

(∂i f ) ◦ ϕ−1 =
∂

∂xi ( f ◦ ϕ−1) .

The vector space of all k-covariant, l-contravariant tensors on Tp M is denoted by
Tk

l (Tp M). So, each element of Tk
l (Tp M) is a multilinear map of the form

F : T∗p M× · · · × T∗p M︸ ︷︷ ︸
l copies

× Tp M× · · · × Tp M︸ ︷︷ ︸
k copies

→ R .

We are primarily interested in the vector bundle of (k
l)-tensors on M whose total space is

Tk
l (M) =

⊔
p∈M

Tk
l (Tp M) .

A section of this bundle is called a (k
l)-tensor field. We set Tk M := Tk

0 (M). TM denotes the
tangent bundle of M and T∗M is the cotangent bundle of M. We set

τk
l (M) = C∞(M, Tk

l (M)) = collection of smooth (kl )-tensor fields on M

and
χ(M) = C∞(M, TM) = the collection of smooth vector fields on M .

A symmetric positive definite section of T2M is called a Riemannian metric on M. If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as a
Riemannian manifold. If there is no possibility of confusion, we may write 〈X, Y〉 instead
of g(X, Y). The norm induced by g on each tangent space will be denoted by ‖.‖g. We say
that g is smooth (or the Riemannian manifold is smooth) if g ∈ C∞(M, T2M).

d denotes the exterior derivative and grad : C∞(M) → C∞(M, TM) denotes the
gradient operator which is defined by g(grad f , X) = d f (X) for all f ∈ C∞(M) and
X ∈ C∞(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flatg : Tp M→ T∗p M

X 7→ X[ := g(X, · ) ,

sharpg : T∗p M→ Tp M

ψ 7→ ψ] := flat−1
g (ψ) .

Using sharpg we can define the (0
2)-tensor field g−1 (which is called the inverse metric

tensor) as follows
g−1(ψ1, ψ2) := g(sharpg(ψ1), sharpg(ψ2)) .
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Let {Ei} be a local frame on an open subset U ⊂ M and {ηi} be the corresponding dual
coframe. So we can write X = XiEi and ψ = ψiη

i. It is standard practice to denote the ith
component of flatgX by Xi and the ith component of sharpg(ψ) by ψi:

flatgX = Xiη
i , sharpgψ = ψiEi .

It is easy to show that
Xi = gijX j , ψi = gijψj ,

where gij = g(Ei, Ej) and gij = g−1(ηi, η j). It is said that flatgX is obtained from X by
lowering an index and sharpgψ is obtained from ψ by raising an index.

3. Review of Some Results from Linear Algebra

In this section, we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators
on manifolds.

There are several ways to construct new vector spaces from old ones: subspaces,
products, direct sums, quotients, etc. The ones that are particularly important for the
study of Sobolev spaces of sections of vector bundles are the vector space of linear maps
between two given vector spaces, the tensor product of vector spaces, and the vector space
of all densities on a given vector space which we briefly review here in order to set the
notation straight.

• Let V and W be two vector spaces. The collection of all linear maps from V to W is a
new vector space which we denote by Hom(V, W). In particular, Hom(V,R) is the
(algebraic) dual of V. If V and W are finite-dimensional, then Hom(V, W) is a vector
space whose dimension is equal to the product of dimensions of V and W. Indeed, if
we choose a basis for V and a basis for W, then Hom(V, W) is isomorphic with the
space of matrices with dim W rows and dim V columns.

• Let U and V be two vector spaces. Roughly speaking, the tensor product of U and V
(denoted by U ⊗V) is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W, Hom(U ⊗V, W) is isomorphic to the collection of
bilinear maps from U×V to W. Informally, U⊗V consists of finite linear combinations
of symbols u⊗ v, where u ∈ U and v ∈ V. It is assumed that these symbols satisfy the
following identities:

(u1 + u2)⊗ v− u1 ⊗ v− u2 ⊗ v = 0 ,

u⊗ (v1 + v2)− u⊗ v1 − u⊗ v2 = 0 ,

α(u⊗ v)− (αu)⊗ v = 0 ,

α(u⊗ v)− u⊗ (αv) = 0 ,

for all u, u1, u2 ∈ U, v, v1, v2 ∈ V and α ∈ R. These identities simply say that the map

⊗ : U ×V → U ⊗V, (u, v) 7→ u⊗ v ,

is a bilinear map. The image of this map spans U ⊗V.

Definition 1. Let U and V be two vector spaces. Tensor product is a vector space U ⊗ V
together with a bilinear map ⊗ : U × V → U ⊗ V, (u, v) 7→ u⊗ v such that given any
vector space W and any bilinear map b : U × V → W, there is a unique linear map
b̄ : U ⊗V →W with b̄(u⊗ v) = b(u, v). That is, the following diagram commutes:

U ⊗V

U ×V W

b̄

b

⊗
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V, W) ∼= V∗ ⊗W .

Indeed, the following map is an isomorphism of vector spaces:

F : V∗ ⊗W → Hom(V, W), F(v∗ ⊗ w)︸ ︷︷ ︸
an element of Hom(V, W)

(v) = [v∗(v)]︸ ︷︷ ︸
a real number

w .

It is useful to obtain an expression for the inverse of F too. That is, given T ∈
Hom(V, W), we want to find an expression for the corresponding element of V∗ ⊗W.
To this end, let {ei}1≤i≤n be a basis for V and {ei}1≤i≤n denote the corresponding dual
basis. Let {sa}1≤a≤r be a basis for W. Then {ei ⊗ sb} is a basis for V∗ ⊗W. Suppose
∑i,a Ra

i ei ⊗ sa is the element of V∗ ⊗W that corresponds to T. We have

F(∑
i,a

Ra
i ei ⊗ sa) = T =⇒ ∀ u ∈ V ∑

i,a
Ra

i F[ei ⊗ sa](u) = T(u)

=⇒ ∀ u ∈ V ∑
i,a

Ra
i ei(u)sa = T(u) .

In particular, for all 1 ≤ j ≤ n,

T(ej) = ∑
i,a

Ra
i ei(ej)︸ ︷︷ ︸

δi
j

sa = ∑
a

Ra
j sa .

That is, Ra
i is the entry in the ath row and ith column of the matrix of the linear

transformation T.
• Let V be an n-dimensional vector space. A density on V is a function µ : V × . . .×V︸ ︷︷ ︸

n copies

→

R with the property that

µ(Tv1, . . . , Tvn) = |detT|µ(v1, . . . , vn) ,

for all T ∈ Hom(V, V).
We denote the collection of all densities on V by D(V). It can be shown that D(V) is a
one dimensional vector space under the obvious vector space operations. Indeed, if
(e1, . . . , en) is a basis for V, then each element µ ∈ D(V) is uniquely determined by
its value at (e1, . . . , en) because for any (v1, . . . , vn) ∈ V×n, we have µ(v1, . . . , vn) =
|detT|µ(e1, . . . , en) where T : V → V is the linear transformation defined by T(ei) = vi
for all 1 ≤ i ≤ n. Thus

F : D(V)→ R, F(µ) = µ(e1, . . . , en) ,

will be an isomorphism of vector spaces.
Moreover, if ω ∈ Λn(V) where Λn(V) is the collection of all alternating covariant
n-tensors, then |ω| belongs to D(V). Thus, if ω is any nonzero element of Λn(V), then
{|ω|} will be a basis for D(V) ([19], p. 428).

4. Review of Some Results from Analysis and Topology
4.1. Euclidean Space

Let Ω be a nonempty open set in Rn and m ∈ N0. Here is a list of several useful
function spaces on Ω:
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C(Ω) = { f : Ω→ R : f is continuous}
Cm(Ω) = { f : Ω→ R : ∀ |α| ≤ m ∂α f ∈ C(Ω)} (C0(Ω) = C(Ω))

BC(Ω) = { f : Ω→ R : f is continuous and bounded on Ω}
BCm(Ω) = { f ∈ Cm(Ω) : ∀ |α| ≤ m ∂α f is bounded on Ω}
BC(Ω̄) = { f : Ω→ R : f ∈ BC(Ω) and f is uniformly continuous on Ω}
BCm(Ω̄) = { f : Ω→ R : f ∈ BCm(Ω), ∀ |α| ≤ m ∂α f is uniformly continuous on Ω}
C∞(Ω) =

⋂
m∈N0

Cm(Ω), BC∞(Ω) =
⋂

m∈N0

BCm(Ω), BC∞(Ω̄) =
⋂

m∈N0

BCm(Ω̄)

Remark 1 ([1]). If g : Ω → R is in BC(Ω̄), then it possesses a unique, bounded, continuous
extension to the closure Ω̄ of Ω.

Notation: Let Ω be a nonempty open set in Rn. The collection of all compact sets in Ω is
denoted by K(Ω). If f : Ω→ R is a function, the support of f is denoted by supp f . Notice
that, in some references supp f is defined as the closure of {x ∈ Ω : f (x) 6= 0} in Ω, while
in certain other references it is defined as the closure of {x ∈ Ω : f (x) 6= 0} in Rn. Of
course, if we are concerned with functions whose support is inside an element of K(Ω),
then the two definitions agree. For the sake of definiteness, in this manuscript we always
use the former interpretation of support. Furthermore, support of a distribution will be
discussed in Section 6.

Remark 2. IfF (Ω) is any function space on Ω and K ∈ K(Ω), thenFK(Ω) denotes the collection
of elements in F (Ω) whose support is inside K. Furthermore,

Fc(Ω) = Fcomp(Ω) =
⋃

K∈K(Ω)

FK(Ω) .

Let 0 < λ ≤ 1. A function F : Ω ⊆ Rn → Rk is called λ-Holder continuous if there
exists a constant L such that

|F(x)− F(y)| ≤ L|x− y|λ ∀ x, y ∈ Ω .

Clearly, a λ-Holder continuous function on Ω is uniformly continuous on Ω. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BCm,λ(Ω) = { f : Ω→ R : ∀ |α| ≤ m ∂α f is λ-Holder continuous and bounded}
= { f ∈ BCm(Ω) : ∀ |α| ≤ m ∂α f is λ-Holder continuous}
= { f ∈ BCm(Ω̄) : ∀ |α| ≤ m ∂α f is λ-Holder continuous}

and BC∞,λ(Ω) :=
⋂

m∈N0
BCm,λ(Ω).

Remark 3. Let F : Ω ⊆ Rn → Rk (F = (F1, · · · , Fk)). Then

F is Lipschitz⇐⇒ ∀ 1 ≤ i ≤ k Fi is Lipschitz .

Indeed, for each i

|Fi(x)− Fi(y)| ≤

√√√√ k

∑
j=1
|Fj(x)− Fj(y)|2 = |F(x)− F(y)| ≤ L|x− y| ,
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which shows that if F is Lipschitz so will be its components. Furthermore, if for each i, there exists
Li such that

|Fi(x)− Fi(y)| ≤ Li|x− y| ,

then
k

∑
j=1
|Fj(x)− Fj(y)|2 ≤ nL2|x− y|2 ,

where L = max {L1, · · · , Lk}. This proves that if each component of F is Lipschitz so is F itself.

Theorem 1 ([20]). Let Ω be a nonempty open set in Rn and let K ∈ K(Ω). There is a function
ψ ∈ C∞

c (Ω) taking values in [0, 1] such that ψ = 1 on a neighborhood of K.

Theorem 2 (Exhaustion by Compact Sets [20]). Let Ω be a nonempty open subset of Rn. There
exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = Ω and

K1 ⊆ K̊2 ⊆ K2 ⊆ · · · ⊆ K̊j ⊆ Kj ⊆ · · · .

Moreover, as a direct consequence, if K is any compact subset of the open set Ω, then there exists an
open set V such that K ⊆ V ⊆ V̄ ⊆ Ω.

Theorem 3 ([20]). Let Ω be a nonempty open subset of Rn. Let {Kj}j∈N be an exhaustion of Ω by
compact sets. Define

V0 = K̊4, ∀ j ∈ N Vj = K̊j+4 \ Kj .

Then

(1) Each Vj is an open bounded set and Ω = ∪jVj;
(2) The cover {Vj}j∈N0 is locally finite in Ω, that is, each compact subset of Ω has nonempty

intersection with only a finite number of the Vj’s;
(3) There is a family of functions ψj ∈ C∞

c (Ω) taking values in [0, 1] such that supp ψj ⊆ Vj and

∑
j∈N0

ψj(x) = 1 for all x ∈ Ω .

Theorem 4 ([21], p. 74). Suppose Ω is an open set in Rn and G : Ω → G(Ω) ⊆ Rn is a
C1-diffeomorphism (i.e., G and G−1 are both C1 maps). If f is a Lebesgue measurable function on
G(Ω), then f ◦ G is Lebesgue measurable on Ω. If f ≥ 0 or f ∈ L1(G(Ω)), then∫

G(Ω)
f (x)dx =

∫
Ω

f ◦ G(x)|detG′(x)|dx .

Theorem 5 ([21], p. 79). If f is a nonnegative measurable function on Rn such that f (x) = g(|x|)
for some function g on (0, ∞), then∫

f (x)dx = σ(Sn−1)
∫ ∞

0
g(r)rn−1dr ,

where σ(Sn−1) is the surface area of (n− 1)-sphere.

Theorem 6 ([22], Section 12.11). Suppose U is an open set in Rn and f : U → R is differentiable.
Let x and y be two points in U and suppose the line segment joining x and y is contained in U.
Then there exists a point z on the line joining x to y such that

f (y)− f (x) = ∇ f (z).(y− x) .

As a consequence, if U is convex and all first order partial derivatives of f are bounded, then f is
Lipschitz on U.
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Warning: Suppose f ∈ BC∞(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
∪∞

n=0(n, n + 1) and define

f : U → R, f (x) = (−1)n, ∀ x ∈ (n, n + 1) .

Clearly, all derivatives of U are equal to zero, so f ∈ BC∞(U). However, f is not uniformly
continuous and thus it is not Lipschitz. Indeed, for any 1 > δ > 0, we can let x = 2− δ/4
and y = 2 + δ/4. Clearly |x− y| < δ, however, | f (x)− f (y)| = 2.

Of course, if f ∈ C1
c (U), then f can be extended by zero to a function in C1

c (Rn). Since
Rn is convex, we may conclude that the extension by zero of f is Lipschitz which implies
that f : U → R is Lipschitz. As a consequence, C1

c (U) ⊆ BC0,1(U) and C∞
c (U) ⊆ BC∞,1(U).

Furthermore, Theorem 60 and the following theorem provide useful information regarding
this issue.

Theorem 7. Let U ⊆ Rn and V ⊆ Rk be two nonempty open sets and let T : U → V (T =
(T1, . . . , Tk)) be a C1 map (that is, for each 1 ≤ i ≤ k, Ti ∈ C1(U)). Suppose B ⊆ U is a bounded
set such that B ⊆ B̄ ⊆ U. Then T : B→ V is Lipschitz.

Proof. By Remark 3 it is enough to show that each Ti is Lipschitz on B. Fix a function
ϕ ∈ C∞

c (Rn) such that ϕ = 1 on B̄ and ϕ = 0 on Rn \U. Then ϕTi can be viewed as an
element of C1

c (Rn). Therefore, it is Lipschitz (Rn is convex) and there exists a constant L,
which may depend on ϕ, B and Ti, such that

|ϕTi(x)− ϕTi(y)| ≤ L|x− y| ∀ x, y ∈ Rn .

Since ϕ = 1 on B̄, it follows that

|Ti(x)− Ti(y)| ≤ L|x− y| ∀ x, y ∈ B .

4.2. Normed Spaces

Theorem 8. Let X and Y be normed spaces. Let A be a dense subspace of X and B be a dense
subspace of Y. Then

• A× B is dense in X×Y;
• If T : A× B→ R is a continuous bilinear map, then T has a unique extension to a continuous

bilinear operator T̃ : X×Y → R.

Theorem 9 ([1]). Let X be a normed space and let M be a closed vector subspace of X.

(1) If X is reflexive, then X is a Banach space.
(2) X is reflexive if and only if X∗ is reflexive.
(3) If X∗ is separable, then X is separable.
(4) If X is reflexive and separable, then so is X∗.
(5) If X is a reflexive Banach space, then so is M.
(6) If X is a separable Banach space, then so is M.

Moreover, if X1, . . . , Xr are reflexive Banach spaces, then X1 × . . .× Xr equipped with the norm

‖(x1, . . . , xr)‖ = ‖x1‖X1 + . . . + ‖xr‖Xr

is also a reflexive Banach space.
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4.3. Topological Vector Spaces

There are different, generally nonequivalent, ways to define topological vector spaces.
The conventions in this section mainly follow Rudin’s functional analysis [23]. Statements
in this section are either taken from Rudin’s functional analysis, Grubb’s distributions and
operators [20], excellent presentation of Reus [24], and Treves’ topological vector spaces [25]
or are direct consequences of statements in the aforementioned references. Therefore we
will not give the proofs.

Definition 2. A topological vector space is a vector space X together with a topology τ with the
following properties:

(i) For all x ∈ X, the singleton {x} is a closed set.
(ii) The maps

(x, y) 7→ x + y (from X× X into X) ,

(λ, x) 7→ λx (from R× X into X) ,

are continuous where X× X and R× X are equipped with the product topology.

Definition 3. Suppose (X, τ) is a topological vector space and Y ⊆ X.

• Y is said to be convex if for all y1, y2 ∈ Y and t ∈ (0, 1) it is true that ty1 + (1− t)y2 ∈ Y.
• Y is said to be balanced if for all y ∈ Y and |λ| ≤ 1 it holds that λy ∈ Y. In particular, any

balanced set contains the origin.
• We say Y is bounded if for any neighborhood U of the origin (i.e., any open set containing the

origin), there exits t > 0 such that Y ⊆ tU.

Theorem 10 (Important Properties of Topological Vector Spaces).

• Every topological vector space is Hausdorff.
• If (X, τ) is a topological vector space, then

(1) For all a ∈ X: E ∈ τ ⇐⇒ a + E ∈ τ (that is, τ is translation invariant);
(2) For all λ ∈ R \ {0}: E ∈ τ ⇐⇒ λE ∈ τ (that is, τ is scale invariant);
(3) If A ⊆ X is convex and x ∈ X, then so is A + x;
(4) If {Ai}i∈I is a family of convex subsets of X, then ∩i∈I Ai is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4. Let (X, τ) be a topological space.

• A collection B ⊆ τ is said to be a basis for τ, if every element of τ is a union of elements in B.
• Let p ∈ X. If γ ⊆ τ is such that each element of γ contains p and every neighborhood of p

(i.e., every open set containing p) contains at least one element of γ, then we say γ is a local
base at p. If X is a vector space, then the local base γ is said to be convex if each element of γ
is a convex set.

• (X, τ) is called first-countable if each point has a countable local base.
• (X, τ) is called second-countable if there is a countable basis for τ.

Theorem 11. Let (X, τ) be a topological space and suppose for all x ∈ X, γx is a local base at x.
Then B = ∪x∈Xγx is a basis for τ.

Theorem 12. Let X be a vector space and suppose τ is a translation invariant topology on X. Then
for all x1, x2 ∈ X, the collection γx1 is a local base at x1 if and only if the collection {A + (x2 −
x1)}A∈γx1

is a local base at x2.
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Remark 4. Let X be a vector space and suppose τ is a translation invariant topology on X. As a
direct consequence of the previous theorems the topology τ is uniquely determined by giving a local
base γx0 at some point x0 ∈ X.

Definition 5. Let (X, τ) be a topological vector space. X is said to be metrizable if there exists a
metric d : X × X → [0, ∞) whose induced topology is τ. In this case we say that the metric d is
compatible with the topology τ.

Theorem 13. Let (X, τ) be a topological vector space.

• X is metrizable ⇐⇒ there exists a metric d on X such that for all x ∈ X, {B(x, 1
n )}n∈N is a

local base at x.
• A metric d on X is compatible with τ ⇐⇒ for all x ∈ X, {B(x, 1

n )}n∈N is a local base at x.

(B(x, 1
n ) is the open ball of radius 1

n centered at x).

Definition 6. Let X be a vector space and d be a metric on X. d is said to be translation invariant
provided that

∀ x, y, a ∈ X d(x + a, y + a) = d(x, y) .

Remark 5. Let (X, τ) be a topological vector space and suppose d is a translation invariant metric
on X. Then the following statements are equivalent:

(1) For all x ∈ X, {B(x, 1
n )}n∈N is a local base at x.

(2) There exists x0 ∈ X such that {B(x0, 1
n )}n∈N is a local base at x0.

Therefore, d is compatible with τ if and only if {B(0, 1
n )}n∈N is a local base at the origin.

Theorem 14. Let (X, τ) be a topological vector space. Then (X, τ) is metrizable if and only if
it has a countable local base at the origin. Moreover, if (X, τ) is metrizable, then one can find a
translation invariant metric that is compatible with τ.

Definition 7. Let (X, τ) be a topological vector space and let {xn} be a sequence in X.

• We say that {xn} converges to a point x ∈ X provided that

∀U ∈ τ, x ∈ U ∃N ∀ n ≥ N xn ∈ U .

• We say that {xn} is a Cauchy sequence provided that

∀U ∈ τ, 0 ∈ U ∃N ∀m, n ≥ N xn − xm ∈ U .

Theorem 15. Let (X, τ) be a topological vector space, {xn} be a sequence in X, and x, y ∈ X.
Additionally, suppose γ is a local base at the origin. The following statements are equivalent:

(1) xn → x;
(2) (xn − x)→ 0;
(3) xn + y→ x + y;
(4) ∀V ∈ γ ∃N ∀ n ≥ N xn − x ∈ V.

Moreover, {xn} is a Cauchy sequence if and only if

∀V ∈ γ ∃N ∀ n, m ≥ N xn − xm ∈ V .

Remark 6. In contrast with properties like continuity of a function and convergence of a sequence
which depend only on the topology of the space, the property of being a Cauchy sequence is not a
topological property. Indeed, it is easy to construct examples of two metrics d1 and d2 on a vector
space X that induce the same topology (i.e., the metrics are equivalent) but have different collection
of Cauchy sequences. However, it can be shown that if d1 and d2 are two translation invariant
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metrics that induce the same topology on X, then the Cauchy sequences of (X, d1) will be exactly
the same as the Cauchy sequences of (X, d2).

Theorem 16. Let (X, τ) be a metrizable topological vector space and d be a translation invariant
metric on X that is compatible with τ. Let {xn} be a sequence in X. The following statements are
equivalent:

(1) {xn} is a Cauchy sequence in the topological vector space (X, τ).
(2) {xn} is a Cauchy sequence in the metric space (X, d).

Definition 8. Let (X, τ) be a topological vector space. We say (X, τ) is locally convex if it has a
convex local base at the origin.

Note that, as a consequence of Theorems 10 and 12, the following statements are
equivalent:

(1) (X, τ) is a locally convex topological vector space.
(2) There exists p ∈ X with a convex local base at p.
(3) For every p ∈ X there exists a convex local base at p.

Definition 9. Let (X, τ) be a metrizable locally convex topological vector space. Let d be a
translation invariant metric on X that is compatible with τ. We say that X is complete if and
only if the metric space (X, d) is a complete metric space. A complete metrizable locally convex
topological vector space is called a Frechet space.

Remark 7. Our previous remark about Cauchy sequences shows that the above definition of
completeness is independent of the chosen translation invariant metric d. Indeed one can show that
the locally convex topological vector space (X, τ) is complete in the above sense if and only if every
Cauchy net in (X, τ) is convergent.

Theorem 17 ([26], p. 63). A linear continuous bijective mapping of a Frechet space X onto a
Frechet space Y has a continuous linear inverse.

Definition 10. A seminorm on a vector space X is a real-valued function p : X → R such that

(i) ∀ x, y ∈ X p(x + y) ≤ p(x) + p(y)
(ii) ∀ x ∈ X ∀ α ∈ R p(αx) = |α|p(x)

If P is a family of seminorms on X, then we say P is separating provided that for all x 6= 0 there
exists at least one p ∈ P such that p(x) 6= 0 (that is, if p(x) = 0 for all p ∈ P , then x = 0).

Remark 8. It follows from conditions (i) and (ii) that if p : X → R is a seminorm, then p(x) ≥ 0
for all x ∈ X.

Theorem 18. Suppose P is a separating family of seminorms on a vector space X. For all p ∈ P
and n ∈ N let

V(p, n) := {x ∈ X : p(x) <
1
n
} .

Furthermore, let γ be the collection of all finite intersections of V(p, n)’s. That is,

A ∈ γ⇐⇒ ∃k ∈ N, ∃p1, . . . , pk ∈ P , ∃n1, . . . , nk ∈ N such that A = ∩k
i=1V(pi, ni)

Then each element of γ is a convex balanced subset of X. Moreover, there exists a unique topology τ
on X that satisfies both of the following properties:

(1) τ is translation invariant (that is, if U ∈ τ and a ∈ X, then a + U ∈ τ).
(2) γ is a local base at the origin for τ.

This unique topology is called the natural topology induced by the family of seminorms P .
Furthermore, if X is equipped with the natural topology τ, then
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(i) (X, τ) is a locally convex topological vector space,
(ii) every p ∈ P is a continuous function from X to R.

Theorem 19. Suppose P is a separating family of seminorms on a vector space X. Let τ be the
natural topology induced by P . Then

(1) τ is the smallest topology on X that is translation invariant and with respect to which every
p ∈ P is continuous,

(2) τ is the smallest topology on X with respect to which addition is continuous and every p ∈ P
is continuous.

Theorem 20. Let X and Y be two vector spaces and suppose P and Q are two separating families
of seminorms on X and Y, respectively. Equip X and Y with the corresponding natural topologies.

(1) A sequence xn converges to x in X if and only if for all p ∈ P , p(xn − x)→ 0.
(2) A linear operator T : X → Y is continuous if and only if

∀ q ∈ Q ∃ c > 0, k ∈ N, p1, . . . , pk ∈ P such that ∀ x ∈ X |q ◦ T(x)| ≤ c max
1≤i≤k

pi(x) .

(3) A linear operator T : X → R is continuous if and only if

∃ c > 0, k ∈ N, p1, . . . , pk ∈ P such that ∀ x ∈ X |T(x)| ≤ c max
1≤i≤k

pi(x) .

Theorem 21. Let X be a Frechet space and let Y be a topological vector space. When T is a linear
map of X into Y, the following two properties are equivalent:

(1) T is continuous.
(2) xn → 0 in X =⇒ Txn → 0 in Y.

Theorem 22. Let P = {pk}k∈N be a countable separating family of seminorms on a vector space
X. Let τ be the corresponding natural topology. Then the locally convex topological vector space
(X, τ) is metrizable and the following translation invariant metric on X is compatible with τ:

d(x, y) =
∞

∑
k=1

1
2k

pk(x− y)
1 + pk(x− y)

.

Let (X, τ) be a locally convex topological vector space. Consider the topological dual
of X,

X∗ := { f : X → R : f is linear and continuous} .

There are several ways to topologize X∗: the weak∗ topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [25], Chapter 19). Here we describe the weak∗ topology and the strong topology on X∗.

Definition 11. Let (X, τ) be a locally convex topological vector space.

• The weak∗ topology on X∗ is the natural topology induced by the separating family of
seminorms {px}x∈X where

∀ x ∈ X px : X∗ → R, px( f ) := | f (x)| .

A sequence { fm} converges to f in X∗ with respect to the weak∗ topology if and only if
fm(x)→ f (x) in R for all x ∈ X.

• The strong topology on X∗ is the natural topology induced by the separating family of
seminorms {pB}B⊆Xbounded where for any bounded subset B of X

pB : X∗ → R pB( f ) := sup{| f (x)| : x ∈ B} .
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(It can be shown that for any bounded subset B of X and f ∈ X∗, f (B) is a bounded subset
of R.)

Remark 9.

(1) If X is a normed space, then the topology induced by the norm

∀ f ∈ X∗ ‖ f ‖op = sup
‖x‖X=1

| f (x)|

on X∗ is the same as the strong topology on X∗ ([25], p. 198).
(2) In this manuscript, we always consider the topological dual of a locally convex topological

vector space with the strong topology. Of course, it is worth mentioning that for many of
the spaces that we will consider (including X = E(Ω) or X = D(Ω) where Ω is an open
subset of Rn) a sequence in X∗ converges with respect to the weak∗ topology if and only if it
converges with respect to the strong topology (for more details on this see the definition and
properties of Montel spaces in Section 34.4, page 356 of [25]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 23 ([24], p. 160). If X and Y are topological vector spaces and I : X → Y and
P : Y → X are continuous linear maps such that P ◦ I = idX , then I : X → I(X) ⊆ Y is a linear
topological isomorphism and I(X) is closed in Y.

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.

Let X1, . . . , Xr be topological vector spaces. Recall that the product topology on
X1 × . . .× Xr is the smallest topology such that the projection maps

πk : X1 × . . .× Xr → Xk, πk(x1, . . . , xr) = xk ,

are continuous for all 1 ≤ k ≤ r. It can be shown that if each Xk is a locally convex
topological vector space whose topology is induced by a family of seminorms Pk, then
X1 × . . .× Xr equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{p1 ◦ π1 + . . . + pr ◦ πr : pk ∈ Pk ∀ 1 ≤ k ≤ r} .

Theorem 24 ([24], p. 164). Let X1, . . . , Xr be locally convex topological vector spaces. Equip
X1 × . . .× Xr and X∗1 × . . .× X∗r with the product topology. The mapping L̃ : X∗1 × . . .× X∗r →
(X1 × . . .× Xr)∗ defined by

L̃(u1, . . . , ur) = u1 ◦ π1 + . . . + ur ◦ πr

is a linear topological isomorphism. Its inverse is

L(v) = (v ◦ i1, . . . , v ◦ ir) ,

where for all 1 ≤ k ≤ r, ik : Xk → X1 × . . .× Xr is defined by

ik(z) = (0, . . . , 0, z︸︷︷︸
kth position

, 0, . . . , 0) .

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.
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Theorem 25 ([24], p. 163). Let X and Y be locally convex topological vector spaces and suppose
T : X → Y is a continuous linear map. Then

(1) The map
T∗ : Y∗ → X∗ 〈T∗y, x〉X∗×X = 〈y, Tx〉Y∗×Y ,

is well-defined, linear, and continuous. (T∗ is called the adjoint of T).
(2) If T(X) is dense in Y, then T∗ : Y∗ → X∗ is injective.

Remark 10. In the subsequent sections we will focus heavily on certain function spaces on domains
Ω in the Euclidean space. For approximation purposes, it is always desirable to have D(Ω)(=
C∞

c (Ω)) as a dense subspace of our function spaces. However, there is another, may be more
profound, reason for being interested in having D(Ω) as a dense subspace. It is important to
note that we would like to use the term “function spaces” for topological vector spaces that can be
continuously embedded in D′(Ω) (see Section 6 for the definition of D′(Ω)) so that concepts such
as differentiation will be meaningful for the elements of our function spaces. Given a function space
A(Ω) it is usually helpful to consider its dual too. In order to be able to view the dual of A(Ω) as a
function space we need to ensure that [A(Ω)]∗ can be viewed as a subspace of D′(Ω). To this end,
according to the above theorem, it is enough to ensure that the identity map from D(Ω) to A(Ω) is
continuous with dense image in A(Ω).

Let us consider more closely two special cases of Theorem 25.

(1) Suppose Y is a normed space and H is a dense subspace of Y. Clearly, the identity
map i : H → Y is continuous with dense image. Therefore, i∗ : Y∗ → H∗ (F 7→ F|H) is
continuous and injective. Furthermore, by the Hahn–Banach theorem for all ϕ ∈ H∗

there exists F ∈ Y∗ such that F|H = ϕ and ‖F‖Y∗ = ‖ϕ‖H∗ . So the above map
is indeed bijective and Y∗ and H∗ are isometrically isomorphic. As an important
example, let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Consider
the space Ws,p

0 (Ω) (see Section 7 for the definition of Ws,p
0 (Ω)). C∞

c (Ω) is a dense
subspace of Ws,p

0 (Ω). Therefore, W−s,p′(Ω) := [Ws,p
0 (Ω)]∗ is isometrically isomorphic

to [(C∞
c (Ω), ‖.‖s,p)]∗. In particular, if F ∈W−s,p′(Ω), then

‖F‖W−s,p′ (Ω)
= sup

0 6≡ψ∈C∞
c (Ω)

|F(ψ)|
‖ψ‖s,p

.

(2) Suppose (Y, ‖.‖Y) is a normed space, (X, τ) is a locally convex topological vector
space, X ⊆ Y, and the identity map i : (X, τ) → (Y, ‖.‖Y) is continuous with dense
image. So i∗ : Y∗ → X∗ (F 7→ F|X) is continuous and injective and can be used to
identify Y∗ with a subspace of X∗.

• Question: Exactly what elements of X∗ are in the image of i∗? That is, which
elements of X∗ “belong to” Y∗?

• Answer: ϕ ∈ X∗ belongs to the image of i∗ if and only if ϕ : (X, ‖.‖Y) →
R is continuous, that is, ϕ ∈ X∗ belongs to the image of i∗ if and only if
supx∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞.

So, an element ϕ ∈ X∗ can be considered as an element of Y∗ if and only if

sup
x∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ .

Furthermore, if we denote the unique corresponding element in Y∗ by ϕ̃ (normally
we identify ϕ and ϕ̃ and we use the same notation for both) then since X is dense in Y

‖ϕ̃‖Y∗ = sup
y∈Y\{0}

|ϕ̃(y)|
‖y‖Y

= sup
x∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ .
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Remark 11. To sum up, given an element ϕ ∈ X∗ in order to show that ϕ can be considered
as an element of Y∗ we just need to show that supx∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ and in that case,

norm of ϕ as an element of Y∗ is supx∈X\{0}
|ϕ(x)|
‖x‖Y

. However, it is important to notice that
if F : Y → R is a linear map, X is a dense subspace of Y, and F|X : (X, ‖.‖Y) → R is
bounded, that does NOT imply that F ∈ Y∗. It just shows that there exists G ∈ Y∗ such that
G|X = F|X .

We conclude this section by a quick review of the inductive limit topology.

Definition 12. Let X be a vector space and let {Xα}α∈I be a family of vector subspaces of X with
the property that

• For each α ∈ I, Xα is equipped with a topology that makes it a locally convex topological vector
space, and

•
⋃

α∈I Xα = X.

The inductive limit topology on X with respect to the family {Xα}α∈I is defined to be the largest
topology with respect to which

(1) X is a locally convex topological vector space;
(2) All the inclusions Xα ⊆ X are continuous.

Theorem 26 ([24], p. 161). Let X be a vector space equipped with the inductive limit topology
with respect to {Xα} as described above. If Y is a locally convex vector space, then a linear map
T : X → Y is continuous if and only if T|Xα : Xα → Y is continuous for all α ∈ I.

Theorem 27 ([24], p. 162). Let X be a vector space equipped with the inductive limit topology
with respect to {Xα} as described above. A convex subset W of X is a neighborhood of the origin
(i.e., an open set containing the origin) in X if and only if for all α, the set W ∩ Xα is a neighborhood
of the origin in Xα.

Theorem 28 ([24], p. 165). Let X be a vector space and let {Xj}j∈N0 be a nested family of vector
subspaces of X:

X0 ( X1 ( . . . ( Xj ( . . . .

Suppose each Xj is equipped with a topology that makes it a locally convex topological vector space.
Equip X with the inductive limit topology with respect to {Xj}. Then the following topologies on
X×r are equivalent (=they are the same):

(1) The product topology;
(2) The inductive limit topology with respect to the family {X×r

j } (For each j, X×r
j is equipped

with the product topology).

As a consequence, if Y is a locally convex vector space, then a linear map T : X×r → Y is continuous
if and only if T|X×r

j
: X×r

j → Y is continuous for all j ∈ N0.

5. Review of Some Results from Differential Geometry

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties that
we will frequently use. The main reference for the majority of the definitions is one of the
invaluable books by John M. Lee [19].

5.1. Smooth Manifolds

Suppose M is a topological space. We say that M is a topological manifold of dimen-
sion n if it is Hausdorff, second-countable, and locally Euclidean in the sense that each
point of M has a neighborhood that is homeomorphic to an open subset of Rn. It is easy to
see that the following statements are equivalent ([19], p. 3):
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(1) Each point of M has a neighborhood that is homeomorphic to an open subset of Rn.
(2) Each point of M has a neighborhood that is homeomorphic to an open ball in Rn.
(3) Each point of M has a neighborhood that is homeomorphic to Rn.

By a coordinate chart (or just chart) on M we mean a pair (U, ϕ), where U is an open
subset of M and ϕ : U → Û is a homeomorphism from U to an open subset Û = ϕ(U) ⊆ Rn.
U is called a coordinate domain or a coordinate neighborhood of each of its points and ϕ
is called a coordinate map. An atlas for M is a collection of charts whose domains cover
M. Two charts (U, ϕ) and (V, ψ) are said to be smoothly compatible if either U ∩V = ∅
or the transition map ψ ◦ ϕ−1 is a C∞-diffeomorphism. An atlas A is called a smooth
atlas if any two charts in A are smoothly compatible with each other. A smooth atlas
A on M is maximal if it is not properly contained in any larger smooth atlas. A smooth
structure on M is a maximal smooth atlas. A smooth manifold is a pair (M,A), where M
is a topological manifold and A is a smooth structure on M. Any chart (U, ϕ) contained
in the given maximal smooth atlas is called a smooth chart. If M and N are two smooth
manifolds, a map F : M → N is said to be a smooth (C∞) map if for every p ∈ M, there
exist smooth charts (U, ϕ) containing p and (V, ψ) containing F(p) such that F(U) ⊆ V
and ψ ◦ F ◦ ϕ−1 ∈ C∞(ϕ(U)). It can be shown that if F is smooth, then its restriction to
every open subset of M is smooth. Furthermore, if every p ∈ M has a neighborhood U
such that F|U is smooth, then F is smooth.

Remark 12.

• Sometimes we use the shorthand notation Mn to indicate that M is n-dimensional.
• Clearly, if (U, ϕ) is a chart in a maximal smooth atlas and V is an open subset of U, then

(V, ψ) where ψ = ϕ|V is also a smooth chart (i.e., it belongs to the same maximal atlas).
• Every smooth atlasA for M is contained in a unique maximal smooth atlas, called the smooth

structure determined by A.
• If M is a compact smooth manifold, then there exists a smooth atlas with finitely many

elements that determines the smooth structure of M (this is immediate from the definition of
compactness).

Definition 13.

• We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL)
smooth atlas if the image of each coordinate domain in the atlas under the corresponding
coordinate map is a nonempty bounded open set with Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas under
the corresponding coordinate map is the entire Rn or a nonempty bounded open set with
Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a nice smooth atlas if the image of
each coordinate domain in the atlas under the corresponding coordinate map is a ball in Rn.

• We say that a smooth atlas for a smooth manifold Mn is a super nice smooth atlas if the image
of each coordinate domain in the atlas under the corresponding coordinate map is the entire Rn.

• We say that two smooth atlases {(Uα, ϕα)}α∈I and {(Ũβ, ϕ̃β)}β∈J for a smooth manifold
Mn are geometrically Lipschitz compatible (GLC) smooth atlases provided that each atlas
is GGL and moreover for all α ∈ I and β ∈ J with Uα ∩ Ũβ 6= ∅, ϕα(Uα ∩ Ũβ) and
ϕ̃β(Uα ∩ Ũβ) are nonempty bounded open sets with Lipschitz boundary or the entire Rn.

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Furthermore, note that two arbitrary GL smooth atlases are not necessarily GLC smooth
atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see,
e.g., [27], pp. 115–117).

Given a smooth atlas {(Uα, ϕα)} for a compact smooth manifold M, it is not necessarily
possible to construct a new atlas {(Uα, ϕ̃α)} such that this new atlas is nice; for instance if
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Uα is not connected we cannot find ϕ̃α such that ϕ̃α(Uα) = Rn (or any ball in Rn). However,
as the following lemma states, it is always possible to find a refinement that is nice.

Lemma 1. Suppose {(Uα, ϕα)}1≤α≤N is a smooth atlas for a compact smooth manifold M. Then
there exists a finite open cover {Vβ}1≤β≤L of M such that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) is a ball in Rn .

Therefore, {(Vβ, ϕα(β)|Vβ
)}1≤β≤L is a nice smooth atlas.

Proof. For each 1 ≤ α ≤ N and p ∈ Uα, there exists rαp > 0 such that Brαp(ϕα(p)) ⊆
ϕα(Uα). Let Vαp := ϕ−1

α (Brαp(ϕα(p))).
⋃

1≤α≤N
⋃

p∈Uα
Vαp is an open cover of M and so it

has a finite subcover {Vα1 p1 , . . . , VαL pL}. Let Vβ = Vαβ pβ
. Clearly, Vβ ⊆ Uαβ

and ϕαβ
(Vβ) is

a ball in Rn.

Remark 13. Every open ball in Rn is C∞-diffeomorphic to Rn. Furthermore, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas on a compact
smooth manifold, which is guaranteed by the above lemma, implies the existence of a finite super
nice smooth atlas.

Lemma 2. Let M be a compact smooth manifold. Let {Uα}1≤α≤N be an open cover of M. Suppose
C is a closed set in M (so C is compact) which is contained in Uβ for some 1 ≤ β ≤ N. Then there
exists an open cover {Aα}1≤α≤N of M such that C ⊆ Aβ ⊆ Āβ ⊆ Uβ and Aα ⊆ Āα ⊆ Uα for all
α 6= β.

Proof. Without loss of generality we may assume that β = 1. For each 1 ≤ α ≤ N and
p ∈ Uα, there exists rαp > 0 such that B2rαp(ϕα(p)) ⊆ ϕα(Uα). Let Vαp := ϕ−1

α (Brαp(ϕα(p))).
Clearly, p ∈ Vαp ⊆ V̄αp ⊆ Uα. Since M is compact, the open cover

⋃
1≤α≤N

⋃
p∈Uα

Vαp of M
has a finite subcover A. For each 1 ≤ α ≤ N let Eα = {p ∈ Uα : Vαp ∈ A} and

I1 = {α : Eα 6= ∅} .

If α ∈ I1, we let Wα =
⋃

p∈Eα
Vαp. For α 6∈ I1 choose one point p ∈ Uα and let Wα = Vαp.

C is compact so ϕ1(C) is a compact set inside the open set ϕ1(U1). Therefore, there exists
an open set B such that

ϕ1(C) ⊆ B ⊆ B̄ ⊆ ϕ1(U1) .

Let W = ϕ−1
1 (B). Clearly, C ⊆W ⊆ W̄ ⊆ Uα. Now Let

A1 = W
⋃

W1 ,

Aα = Wα ∀α > 1 .

Clearly, A1 contains W which contains C. Furthermore, union of Aα’s contains⋃N
α=1

⋃
p∈Eα

Vαp which is equal to M. Closure of a union of sets is a subset of the union of
closures of those sets. Therefore, for each α, Āα ⊆ Uα.

Theorem 29 (Exhaustion by Compact Sets for Manifolds). Let M be a smooth manifold. There
exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = M, K̊j+1 \ Kj 6= ∅ for all j and

K1 ⊆ K̊2 ⊆ K2 ⊆ . . . ⊆ K̊j ⊆ Kj ⊆ . . . .

Definition 14. A C∞ partition of unity on a smooth manifold is a collection of nonnegative C∞

functions {ψα : M→ R}α∈A such that

(i) The collection of supports, {supp ψα}α∈A is locally finite in the sense that every point in M
has a neighborhood that intersects only finitely many of the sets in {supp ψα}α∈A.
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(ii) ∑α∈A ψα = 1.

Given an open cover {Uα}α∈A of M, we say that a partition of unity {ψα}α∈A is subordinate to the
open cover {Uα}α∈A if supp ψα ⊆ Uα for every α ∈ A.

Theorem 30 ([28], p. 146). Let M be a compact smooth manifold and {Uα}α∈A an open cover of
M. There exists a C∞ partition of unity {ψα}α∈A subordinate to {Uα}α∈A (notice that the index
sets are the same).

Theorem 31 ([28], p. 347). Let {Uα}α∈A be an open cover of a smooth manifold M.

(i) There is a C∞ partition of unity {ϕk}∞
k=1 with every ϕk having compact support such that

for each k, supp ϕk ⊆ Uα for some α ∈ A.
(ii) If we do not require compact support, then there is a C∞ partition of unity {ψα}α∈A subordi-

nate to {Uα}α∈A.

Remark 14. Let M be a compact smooth manifold. Suppose {Uα}α∈A is an open cover of M and
{ψα}α∈A is a partition of unity subordiante to {Uα}α∈A.

◦ For all m ∈ N, {ψ̃α = ψm
α

∑α∈A ψm
α
} is another partition of unity subordinate to {Uα}α∈A.

◦ If {Vβ}β∈B is an open cover of M and {ξβ} is a partition of unity subordinate to
{Vβ}β∈B, then {ψαξβ}(α,β)∈A×B is a partition of unity subordinate to the open cover
{Uα ∩Vβ}(α,β)∈A×B.

Lemma 3. Let M be a compact smooth manifold. Suppose {Uα}1≤α≤N is an open cover of M.
Suppose C is a closed set in M (so C is compact) which is contained in Uβ for some 1 ≤ β ≤ N.
Then there exists a partition of unity {ψα}1≤α≤N subordinate to {Uα}1≤α≤N such that ψβ = 1
on C.

Proof. We follow the argument in [29]. Without loss of generality we may assume β = 1.
We can construct a partition of unity with the desired property as follows: Let Aα be a
collection of open sets that covers M and such that C ⊆ A1 ⊆ Ā1 ⊆ U1 and for α > 1,
Aα ⊆ Āα ⊆ Uα (see Lemma 2). Let ηα ∈ C∞

c (Uα) be such that 0 ≤ ηα ≤ 1 and ηα = 1
on a neighborhood of Āα. Of course ∑N

α=1 ηα is not necessarily equal to 1 for all x ∈ M.
However, if we define ψ1 = η1 and for α > 1

ψα = ηα(1− η1) . . . (1− ηα−1) ,

by induction one can easily show that for 1 ≤ l ≤ N

1−
l

∑
α=1

ψα = (1− η1) . . . (1− ηl) .

In particular,

1−
N

∑
α=1

ψα = (1− η1) . . . (1− ηN) = 0 ,

since for each x ∈ M there exists α such that x ∈ Aα and so ηα(x) = 1. Consequently,
∑N

α=1 ψα = 1.

5.2. Vector Bundles, Basic Definitions

Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a
smooth manifold E together with a surjective smooth map π : E→ M such that

(1) For each x ∈ M, Ex = π−1(x) is an r-dimensional (real) vector space;
(2) For each x ∈ M, there exists a neighborhood U of x in M and a smooth map ρ =

(ρ1, . . . , ρr) from E|U := π−1(U) onto Rr such that
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• For every x ∈ U, ρ|Ex : Ex → Rr is an isomorphism of vector spaces,
• Φ = (π|EU , ρ) : EU → U ×Rr is a diffeomorphism.

We denote the projection onto the last r components by π′. So π′ ◦ Φ = ρ. The
expressions “E is a vector bundle over M”, or “E→ M is a vector bundle”, or “π : E→ M
is a vector bundle” are all considered to be equivalent in this manuscript.

If π : E→ M is a vector bundle of rank r, U is an open set in M, ρ : EU = π−1(U)→
Rr and Φ = (π|EU , ρ) : EU → U ×Rr satisfy the properties stated in item (2), then we refer
to both Φ : EU → U ×Rr and ρ : EU → Rr as a (smooth) local trivialization of E over U
(it will be clear from the context which one we are referring to). We say that E|U is trivial.
The pair (U, ρ) (or (U, Φ)) is sometimes called a vector bundle chart. It is easy to see that
if (U, ρ) is a vector bundle chart and ∅ 6= V ⊆ U is open, then (V, ρ|EV ) is also a vector
bundle chart for E. Moreover, if V is any nonempty open subset of M, then EV is a vector
bundle over the manifold V. We say that a triple (U, ϕ, ρ) is a total trivialization triple
of the vector bundle π : E → M provided that (U, ϕ) is a smooth coordinate chart and
ρ = (ρ1, · · · , ρr) : EU → Rr is a trivialization of E over U. A collection {(Uα, ϕα, ρα)} is
called a total trivialization atlas for the vector bundle E → M provided that for each α,
(Uα, ϕα, ρα) is a total trivialization triple and {(Uα, ϕα)} is a smooth atlas for M.

Lemma 4 ([19], p. 252). Let π : E → M be a smooth vector bundle of rank r over M. Suppose
Φ : π−1(U)→ U×Rr and Ψ : π−1(V)→ V ×Rr are two smooth local trivializations of E with
U ∩V 6= ∅. There exists a smooth map τ : U ∩V → GL(r,R) such that the composition

Φ ◦Ψ−1 : (U ∩V)×Rr → (U ∩V)×Rr

has the form
Φ ◦Ψ−1(p, v) = (p, τ(p)v) .

Remark 15. Let E be a vector bundle over an n-dimensional smooth manifold M. Suppose
{(Uα, ϕα, ρα)}α∈I is a total trivialization atlas for the vector bundle π : E → M. Then for each
α ∈ I, the mapping

EUα = π−1(Uα)→ ϕα(Uα)×Rr ⊆ Rn+r, s 7→
(

ϕα(π(s)), ρα(s)
)

will be a coordinate map for the manifold E over the coordinate domain EUα . The collection
{
(
EUα , (ϕα ◦ π, ρα)

)
}α∈I will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5 ([30], p. 77). Let E be a vector bundle over an n-dimensional smooth manifold M (M
does not need to be compact). Then M can be covered by n + 1 open sets V0, . . . , Vn where the
restriction E|Vi is trivial.

Theorem 32. Let E be a vector bundle of rank r over an n-dimensional smooth manifold M. Then
E→ M has a total trivialization atlas. In particular, if M is compact, then it has a total trivialization
atlas that consists of only finitely many total trivialization triples.

Proof. Let V0, . . . , Vn be an open cover of M such that E is trivial over Vβ with the mapping
ρβ : EVβ

→ Rr. Let {(Uα, ϕα)}α∈I be a smooth atlas for M (if M is compact, the index
set I can be chosen to be finite). For all α ∈ I and 0 ≤ β ≤ n let Wαβ = Uα ∩ Vβ.
Let J = {(α, β) : Wαβ 6= ∅}. Clearly, {(Wαβ, ϕαβ, ραβ)}(α,β)∈J where ϕαβ = ϕα|Wαβ

and
ραβ = ρβ|π−1(Wαβ)

is a total trivialization atlas for E→ M.
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Definition 15.

• We say that a total trivialization triple (U, ϕ, ρ) is geometrically Lipschitz (GL) provided
that ϕ(U) is a nonempty bounded open set with Lipschitz boundary. A total trivialization
atlas is called geometrically Lipschitz if each of its total trivialization triples is GL.

• We say that a total trivialization triple (U, ϕ, ρ) is nice provided that ϕ(U) is equal to a ball
in Rn. A total trivialization atlas is called nice if each of its total trivialization triples is nice.

• We say that a total trivialization triple (U, ϕ, ρ) is super nice provided that ϕ(U) is equal to
Rn. A total trivialization atlas is called super nice if each of its total trivialization triples is
super nice.

• A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of
its total trivialization triples is GL or super nice.

• We say that two total trivialization atlases {(Uα, ϕα, ρα)}α∈I and {(Ũβ, ϕ̃β, ρ̃β)}β∈J are
geometrically Lipschitz compatible (GLC) if the corresponding atlases {(Uα, ϕα)}α∈I
and {(Ũβ, ϕ̃β)}β∈J are GLC.

Theorem 33. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E has a nice total trivialization atlas (and a super nice total trivialization atlas) that
consists of only finitely many total trivialization triples.

Proof. By Theorem 32, E → M has a finite total trivialization atlas {(Uα, ϕα, ρα)}. By
Lemma 1 (and Remark 13) there exists a finite open cover {Vβ}1≤β≤L of M such that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) is a ball in Rn

(or ∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) = Rn) ,

and thus {(Vβ, ϕα(β)|Vβ
)}1≤β≤L is a nice (resp. super nice) smooth atlas. Now, clearly,

{(Vβ, ϕα(β)|Vβ
, ρα(β)|EVβ

)}1≤β≤L is a nice (resp. super nice) total trivialization atlas.

Theorem 34. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there
exists a total trivialization atlas {(Uα, ϕα, ρα)}1≤α≤N such that

• For all 1 ≤ α ≤ N, ϕα(Uα) is bounded with Lipschitz continuous boundary;
• For all 1 ≤ α, β ≤ N, Uα ∩Uβ is either empty or else ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are

bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [31]. Equip M with a smooth Riemannian metric g. Let rinj denote the
injectivity radius of M which is strictly positive because M is compact. Let V0, . . . , Vn be
an open cover of M such that E is trivial over Vβ with the mapping ρβ : EVβ

→ Rr. For
every x ∈ M choose 0 ≤ i(x) ≤ n such that x ∈ Vi(x). For all x ∈ M let rx be a positive

number less than
rinj
2 such that expx(Brx ) ⊆ Vi(x) where Brx denotes the open ball in Tx M

of radius rx (with respect to the inner product induced by the Riemannian metric g) and
expx : Tx M → M denotes the exponential map at x. For every x ∈ M define the normal
coordinate chart centered at x , (Ux, ϕx), as follows:

Ux = expx(Brx ), ϕx := λ−1
x ◦ exp−1

x : Ux → Rn,

where λx : Rn → Tx M is an isomorphism defined by λx(y1, . . . , yn) = yiEix; Here {Eix}n
i=1

is a an arbitrary but fixed orthonormal basis for Tx M. It is well-known that (see, e.g., [32])

• ϕx(x) = (0, . . . , 0);
• gij(x) = δij where gij denotes the components of the metric with respect to the normal

coordinate chart (Ux, ϕx);
• Eix = ∂i|x where {∂i}1≤i≤n is the coordinate basis induced by (Ux, ϕx).
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As a consequence of the previous items, it is easy to show that if X ∈ Tx M (X = Xi∂i|x),
then the Euclidean norm of X will be equal to the norm of X with respect to the metric g,
that is, |X|g = |X|ḡ where

|X|ḡ =
√
(X1)2 + . . . + (Xn)2 |X|g =

√
g(X, X) .

Consequently, for every x ∈ M, ϕx(Ux) will be a ball in the Euclidean space, in particular,
{(Ux, ϕx)}x∈M is a GL atlas. The proof of Lemma 3.1 in [31] in part shows that the atlas
{(Ux, ϕx)}x∈M is GL compatible with itself. Since M is compact there exists x1, . . . , xN ∈ M
such that {Uxj}1≤j≤N also covers M.
Now, clearly, {(Uxj , ϕxj , ρi(xj)

|Uxj
)}1≤j≤N is a total trivialization atlas for E that is GL com-

patible with itself.

Corollary 1. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite super nice total trivialization atlas that is GL compatible with itself.

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be the total trivialization atlas that was constructed above.
For each α, ϕα(Uα) is a ball in the Euclidean space and so it is diffeomorphic to Rn; let
ξα : ϕα(Uα) → Rn be such a diffeomorphism. We let ϕ̃α := ξα ◦ ϕα : Uα → Rn. A
composition of diffeomorphisms is a diffeomorphism, so for all 1 ≤ α, β ≤ N, ϕ̃α ◦ ϕ̃−1

β :
ϕ̃β(Uα ∩ Uβ) → ϕ̃α(Uα ∩ Uβ) is a diffeomorphism. So {(Uα, ϕ̃α, ρα)}1≤α≤N is clearly a
smooth super nice total trivialization atlas. Moreover, if 1 ≤ α, β ≤ N are such that Uα ∩Uβ

is nonempty, then ϕ̃α(Uα ∩Uβ) is Rn or a bounded open set with Lipschitz continuous
boundary. The reason is that ϕ̃α = ξα ◦ ϕα, and ϕα(Uα ∩Uβ) is Rn or Lipschitz, ξα is a
diffeomorphism and being equal to Rn or Lipschitz is a property that is preserved under
diffeomorphisms. Therefore, {(Uα, ϕ̃α, ρα)}1≤α≤N is a finite super nice total trivialization
atlas that is GL compatible with itself.

A section of E is a map u : M→ E such that π ◦ u = IdM. The collection of all sections
of E is denoted by Γ(M, E). A section u ∈ Γ(M, E) is said to be smooth if it is smooth
as a map from the smooth manifold M to the smooth manifold E. The collection of all
smooth sections of E→ M is denoted by C∞(M, E). Note that if {(Uα, ϕα, ρα)}α∈I is a total
trivialization atlas for the vector bundle π : E → M of rank r, then for u ∈ Γ(M, E) we
have u ∈ C∞(M, E) if and only if for all α ∈ I, the local representation of u with respect to
the coordinate charts (Uα, ϕα) and

(
EUα , (ϕα ◦ π, ρα)

)
is smooth, that is,

u ∈ C∞(M, E)⇐⇒ ∀ α ∈ I x 7→
(

ϕα ◦ π ◦ u ◦ ϕ−1
α , ρα ◦ u ◦ ϕ−1

α

)
is smooth

⇐⇒ ∀ α ∈ I x 7→
(
x, ρα ◦ u ◦ ϕ−1

α

)
is smooth

⇐⇒ ∀ α ∈ I x 7→ ρα ◦ u ◦ ϕ−1
α is smooth

⇐⇒ ∀ α ∈ I, ∀1 ≤ l ≤ r ρl
α ◦ u ◦ ϕ−1

α ∈ C∞(ϕα(Uα)) .

A local section of E over an open set U ⊆ M is a map u : U → E where u has the
property that π ◦ u = IdU (that is, u is a section of the vector bundle EU → U). We denote
the collection of all local sections on U by Γ(U, E) or Γ(U, EU).

Remark 16. As a consequence of ρ|Ex : Ex → Rr being an isomorphism, if u is a section of
E|U → U and f : U → R is a function, then ρ( f u) = f ρ(u). In particular, ρ(0) = 0.

Given a total trivialization triple (U, ϕ, ρ) we have the following commutative dia-
gram:
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E|U ϕ(U)×R

U ϕ(U) ⊆ Rn

(ϕ◦π,ρj)

π π̃

ϕ

If s is a section of E|U → U, then by definition the pushforward of s by ρj (the jth
component of ρ) is a section of ϕ(U)×R→ ϕ(U) which is defined by

ρ
j
∗(s) = ρj ◦ s ◦ ϕ−1 (i.e., z ∈ ϕ(U) 7→ (z, ρj ◦ s ◦ ϕ−1(z))) .

Let E→ M be a vector bundle of rank r and U ⊆ M be an open set. A (smooth) local
frame for E over U is an ordered r-tuple (s1, . . . , sr) of (smooth) local sections over U such
that for each x ∈ U, (s1(x), . . . , sr(x)) is a basis for Ex. Given any vector bundle chart (V, ρ),
we can define the associated (smooth) local frame on V as follows:

∀ 1 ≤ l ≤ r ∀ x ∈ V sl(x) = ρ|−1
Ex

(el) ,

where (e1, · · · , er) is the standard basis of Rr. The following theorem states the converse of
this observation is also true.

Theorem 35 ([19], p. 258). Let E → M be a vector bundle of rank r and let (s1, . . . , sr) be a
smooth local frame over an open set U ⊆ M. Then (U, ρ) is a vector bundle chart where the map
ρ : EU → Rr is defined by

∀ x ∈ U, ∀u ∈ Ex ρ(u) = u1e1 + . . . + urer ,

where u = u1s1(x) + . . . + ursr(x).

Theorem 36 ([19], p. 260). Let E → M be a vector bundle of rank r and let (s1, . . . , sr) be a
smooth local frame over an open set U ⊆ M. If f ∈ Γ(M, E), then f is smooth on U if and only if
its component functions with respect to (s1, . . . , sr) are smooth.

A (smooth) fiber metric on a vector bundle E is a (smooth) function which assigns to
each x ∈ M an inner product

〈., .〉E : Ex × Ex → R .

Note that the smoothness of the fiber metric means that for all u, v ∈ C∞(M, E) the mapping

M→ R, x 7→ 〈u(x), v(x)〉E

is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([33], p. 72).

Remark 17. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber metric on the
tangent bundle. The metric g induces fiber metrics on all tensor bundles; it can be shown that ([32])
if (M, g) is a Riemannian manifold, then there exists a unique inner product on each fiber of Tk

l (M)

with the property that for all x ∈ M, if {ei} is an orthonormal basis of Tx M with dual basis {ηi},
then the corresponding basis of Tk

l (Tx M) is orthonormal. We denote this inner product by 〈., .〉F
and the corresponding norm by |.|F. If A and B are two tensor fields, then with respect to any local
coordinate system

〈A, B〉F = gi1r1 . . . gikrk gj1s1 . . . gjl sl Aj1 ...jl
i1 ...ik

Bs1 ...sl
r1 ...rk .

Theorem 37. Let π : E→ M be a vector bundle with rank r equipped with a fiber metric 〈., .〉E.
Then given any total trivialization triple (U, ϕ, ρ), there exists a smooth map ρ̃ : EU → Rr such
that with respect to the new total trivialization triple (U, ϕ, ρ̃) the fiber metric trivializes on U,
that is,
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∀ x ∈ U ∀ u, v ∈ Ex 〈u, v〉E = u1v1 + . . . + urvr ,

where for each 1 ≤ l ≤ r, ul and vl denote the lth components of u and v, respectively, (with respect
to the local frame associated with the bundle chart (U, ρ̃)).

Proof. Let (t1, . . . , tr) be the local frame on U associated with the vector bundle chart (U, ρ).
That is,

∀ x ∈ U, ∀1 ≤ l ≤ r tl(x) = ρ|−1
Ex

(el) .

Now, we apply the Gram–Schmidt algorithm to the local frame (t1, . . . , tr) to construct an
orthonormal frame (s1, . . . , sr) where

∀ 1 ≤ l ≤ r sl =
tl −∑l−1

j=1〈tl , sj〉Esj

|tl −∑l−1
j=1〈tl , sj〉Esj|

.

sl : U → E is smooth because

(1) Smooth local sections over U form a module over the ring C∞(U);
(2) The function x 7→ 〈tl(x), sj(x)〉E from U to R is smooth;
(3) Since Span{s1, . . . , sl−1} = Span{t1, . . . , tl−1}, tl −∑l−1

j=1〈tl , sj〉Esj is nonzero on U and

x 7→ |tl(x)−∑l−1
j=1〈tl(x), sj(x)〉Esj(x)| as a function from U to R is nonzero on U and

it is a composition of smooth functions.

Thus, for each l, sl is a linear combination of elements of the C∞(U)-module of smooth
local sections over U, and so it is a smooth local section over U. Now, we let (U, ρ̃) be the
associated vector bundle chart described in Theorem 35. For all x ∈ U and for all u, v ∈ Ex
we have

〈u, v〉E = 〈ulsl , vjsj〉E = ulvj〈sl , sj〉E = ulvjδl j = u1v1 + . . . + urvr .

Corollary 2. As a consequence of Theorem 37, Theorem 34, and Theorem 33 every vector bundle
on a compact manifold equipped with a fiber metric admits a nice finite total trivialization atlas (and
a super nice finite total trivialization atlas and a finite total trivialization atlas that is GL compatible
with itself) such that the fiber metric is trivialized with respect to each total trivialization triple in
the atlas.

5.3. Standard Total Trivialization Triples

Let Mn be a smooth manifold and π : E→ M be a vector bundle of rank r. For certain
vector bundles there are standard methods to associate with any given smooth coordinate
chart (U, ϕ = (xi)) a total trivialization triple (U, ϕ, ρ). We call such a total trivialization
triple the standard total trivialization associated with (U, ϕ). Usually this is done by first
associating with (U, ϕ) a local frame for EU and then applying Theorem 35 to construct a
total trivialization triple.

• E = Tk
l (M): The collection of the following tensor fields on U forms a local frame for

EU associated with (U, ϕ = (xi)).

∂

∂xi1
⊗ . . .⊗ ∂

∂xil
⊗ dxj1 ⊗ . . .⊗ dxjk .

So, given any atlas {(Uα, ϕα)} of a manifold Mn, there is a corresponding total trivial-
ization atlas for the tensor bundle Tk

l (M), namely {(Uα, ϕα, ρα)} where for each α, ρα

has nk+l components which we denote by (ρα)
j1 ...jl
i1 ...ik

. For all F ∈ Γ(M, Tk
l (M)), we have
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(ρα)
j1 ...jl
i1 ...ik

(F) = (Fα)
j1 ...jl
i1 ...ik

.

Here (Fα)
j1 ...jl
i1 ...ik

denotes the components of F with respect to the standard frame for

Tk
l Uα described above. When there is no possibility of confusion, we may write Fj1 ...jl

i1 ...ik

instead of (Fα)
j1 ...jl
i1 ...ik

.

• E = Λk(M): This is the bundle whose fiber over each x ∈ M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for EU associated with (U, ϕ = (xi))

dxj1 ∧ . . . ∧ dxjk ((j1, . . . , jk) is increasing).

• E = D(M) (the density bundle): The density bundle over M is the vector bundle
whose fiber over each x ∈ M is D(Tx M). More precisely, if we let

D(M) = ä
x∈M
D(Tx M) ,

then D(M) is a smooth vector bundle of rank 1 over M ([19], p. 429). Indeed, for
every smooth chart (U, ϕ = (xi)), |dx1 ∧ . . . ∧ dxn| on U is a local frame for D(M)|U .
We denote the corresponding trivialization by ρD,ϕ, that is, given µ ∈ D(Ty M), there
exists a number a such that

µ = a(|dx1 ∧ . . . ∧ dxn|y)

and ρD,ϕ sends µ to a. Sometimes we write D instead of D(M) if M is clear from
the context. Furthermore, when there is no possibility of confusion we may write ρD
instead of ρD,ϕ.

Remark 18 (Integration of densities on manifolds). Elements of Cc(M,D) can be integrated
over M. Indeed, for µ ∈ Cc(M,D) we may consider two cases

• Case 1: There exists a smooth chart (U, ϕ) such that suppµ ⊆ U.∫
M

µ :=
∫

ϕ(U)
ρD,ϕ ◦ µ ◦ ϕ−1 dV .

• Case 2: If µ is an arbitrary element of Cc(M,D), then we consider a smooth atlas
{(Uα, ϕα)}α∈I and a partition of unity {ψα}α∈I subordinate to {Uα} and we let∫

M
µ := ∑

α∈I

∫
M

ψαµ .

It can be shown that the above definitions are independent of the choices (charts and partition of
unity) involved ([19], pp. 431–432).

5.4. Constructing New Bundles from Old Ones
5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle

• The construction Hom(., .) can be applied fiberwise to a pair of vector bundles E and
Ẽ over a manifold M to give a new vector bundle denoted by Hom(E, Ẽ). The fiber
of Hom(E, Ẽ) at any given point p ∈ M is the vector space Hom(Ep, Ẽp). Clearly, if
rank E = r and rank Ẽ = r̃, then rank Hom(E, Ẽ) = rr̃.
If {(Uα, ϕα, ρα)} and {(Uα, ϕα, ρ̃α)} are total trivialization atlases for the vector bundles
π : E→ M and π̃ : Ẽ→ M, respectively, then {Uα, ϕα, ρ̂α} will be a total trivialization
atlas for πHom : Hom(E, Ẽ) → M where ρ̂α : π−1

Hom(Uα) → Hom(Rr,Rr̃) ∼= Rrr̃ is
defined as follows: for p ∈ Uα, Ap ∈ Hom(Ep, Ẽp) is mapped to [ρ̃α|Ẽp

] ◦ A ◦ [ρα|Ep ]
−1.
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• Let π : E → M be a vector bundle. The dual bundle E∗ is defined by E∗ =
Hom(E, Ẽ = M×R).

• Let π : E → M be a vector bundle and let D denote the density bundle of M.
The functional dual bundle E∨ is defined by E∨ = Hom(E,D) (see [24]). Let us
describe explicitly what the standard total trivialization triples of this bundle are. Let
(U, ϕ, ρ) be a total trivialization triple for E. We can associate with this triple the total
trivialization triple (U, ϕ, ρ∨) for E∨ where ρ∨ : E∨U → Rr is defined as follows: for
p ∈ U, Lp ∈ Hom(Ep,Dp) is mapped to ρD,ϕ ◦ Lp ◦ (ρ|Ep)

−1 ∈ (Rr)∗ ' Rr. Note that
(Rr)∗ ' Rr under the following isomorphism

(Rr)∗ → Rr, u 7→ u(e1)e1 + . . . + u(er)er .

That is, u as an element of Rr is the vector whose components are (u(e1), . . . , u(er)).
In particular, if z = z1e1 + . . . + zrer is an arbitrary vector in Rr, then

u(z) = u(z1e1 + . . . + zrer) = z1u(e1) + . . . + zru(er) = z · u ,

where on the LHS u is viewed as an element of (Rr)∗ and on the RHS u is viewed as
an element of Rr.
In short, ρ∨ : E∨U → Rr is given by

∀ 1 ≤ l ≤ r (ρ∨)l(Lp) =
(
ρD,ϕ ◦ Lp ◦ (ρ|Ep)

−1)(el) .

5.4.2. Tensor Product of Bundles

Let π : E → M and π̃ : Ẽ → M be two vector bundles. Then E⊗ Ẽ is a new vector
bundle whose fiber at p ∈ M is Ep ⊗ Ẽp. If {(Uα, ϕα, ρα)} and {(Uα, ϕα, ρ̃α)} are total
trivialization atlases for the vector bundles π : E → M and π̃ : Ẽ → M, respectively,
then {(Uα, ϕα, ρ̂α))} will be a total trivialization atlas for πtensor : E ⊗ Ẽ → M where
ρ̂α : π−1

tensor(Uα)→ (Rr ⊗Rr̃) ∼= Rrr̃ is defined as follows: for p ∈ Uα, ap ⊗ ãp ∈ Ep ⊗ Ẽp is
mapped to ρα|Ep(ap)⊗ ρ̃α|Ẽp

(ãp).

It can be shown that Hom(E, Ẽ) ∼= E∗ ⊗ Ẽ (isomorphism of vector bundles over M).

Remark 19 (Fiber Metric on Tensor Product). Consider the inner product spaces (U, 〈., .〉U)
and (V, 〈., .〉V). We can turn the tensor product of U and V, U ⊗V into an inner product space
by defining

〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U〈v1, v2〉V ,

and extending by linearity. As a consequence, if E is a vector bundle (on a Riemannian manifold
(M, g)) equipped with a fiber metric 〈., .〉E, then there is a natural fiber metric on the bundle
(T∗M)⊗k and subsequently on the bundle (T∗M)⊗k ⊗ E. If F = Fa

i1 ...ik
dxi1 ⊗ . . .⊗ dxik ⊗ sa and

G = Gb
j1 ...jk

dxj1 ⊗ . . .⊗ dxjk ⊗ sb are two local sections of this bundle on a domain U of a total
trivialization triple, then at any point in U we have

〈F, G〉(T∗M)⊗k⊗E = Fa
i1···ik Gb

j1 ...jk 〈dxi1 , dxj1〉T∗M . . . 〈dxik , dxjk 〉T∗M〈sa, sb〉E
= gi1 j1 . . . gik jk habFa

i1 ...ik Gb
j1 ...jk ,

where hab := 〈sa, sb〉E (here {sa = ρ−1(ea)}1≤a≤r is a local frame for E over U.{ea}1≤a≤r is the
standard basis for Rr where r = rank E).

5.5. Connection on Vector Bundles, Covariant Derivative
5.5.1. Basic Definitions

Let π : E→ M be a vector bundle.

Definition 16. A connection in E is a map
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∇ : C∞(M, TM)× C∞(M, E)→ C∞(M, E), (X, u) 7→ ∇Xu

satisfying the following properties:

(1) ∇Xu is linear over C∞(M) in X

∀ f , g ∈ C∞(M) ∇ f X1+gX2 u = f∇X1 u + g∇X2 u .

(2) ∇Xu is linear over R in u:

∀ a, b ∈ R ∇X(au1 + bu2) = a∇Xu1 + b∇Xu2 .

(3) ∇ satisfies the following product rule

∀ f ∈ C∞(M) ∇X( f u) = f∇Xu + (X f )u .

A metric connection in a real vector bundle E with a fiber metric is a connection ∇ such that

∀X ∈ C∞(M, TM), ∀ u, v ∈ C∞(M, E) X〈u, v〉E = 〈∇Xu, v〉E + 〈u,∇Xv〉E .

Here is a list of useful facts about connections:

• ([34], p. 183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection;

• ([19], p. 50) If ∇ is a connection in a bundle E, X ∈ C∞(M, TM), u ∈ C∞(M, E), and
p ∈ M, then ∇Xu|p depends only on the values of u in a neighborhood of p and the
value of X at p. More precisely, if u = ũ on a neighborhood of p and Xp = X̃p, then
∇Xu|p = ∇X̃ ũ|p;

• ([19], p. 53) If ∇ is a connection in TM, then there exists a unique connection in
each tensor bundle Tk

l (M), also denoted by ∇, such that the following conditions
are satisfied:

(1) On the tangent bundle, ∇ agrees with the given connection.
(2) On T0(M), ∇ is given by ordinary differentiation of functions, that is, for all

real-valued smooth functions f : M→ R: ∇X f = X f .
(3) ∇X(F⊗ G) = (∇X F)⊗ G + F⊗ (∇XG).
(4) If tr denotes the trace on any pair of indices, then ∇X(trF) = tr(∇X F).

This connection satisfies the following additional property: for any T ∈ C∞(M, Tk
l (M)),

vector fields Yi, and differential 1-forms ω j,

(∇XT)(ω1, . . . ,ωl , Y1, . . . , Yk) = X(T(ω1, . . . , ωl , Y1, . . . , Yk))

−
l

∑
j=1

T(ω1, . . . ,∇Xω j, . . . , ωl , Y1, . . . , Yk)

−
k

∑
i=1

T(ω1, . . . , ωl , Y1, . . . ,∇XYi, . . . , Yk) .

Definition 17. Let ∇ be a connection in π : E → M. We define the corresponding covariant
derivative on E, also denoted ∇, as follows

∇ : C∞(M, E)→ C∞(M, Hom(TM, E)) ∼= C∞(M, T∗M⊗ E), u 7→ ∇u

where for all p ∈ M, ∇u(p) : Tp M→ Ep is defined by

Xp 7→ ∇Xu|p ,

where X on the RHS is any smooth vector field whose value at p is Xp.
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Remark 20. Let ∇ be a connection in TM. As it was discussed ∇ induces a connection in any
tensor bundle E = Tk

l (M), also denoted by ∇. Some authors (including Lee in [19], p. 53) define
the corresponding covariant derivative on E = Tk

l (M) as follows:

∇ : C∞(M, Tk
l (M))→ C∞(M, Tk+1

l (M)), F 7→ ∇F

where
∇F(ω1, . . . , ωl , Y1, . . . , Yk, X) = (∇X F)(ω1, . . . , ωl , Y1, . . . , Yk) .

This definition agrees with the previous definition of covariant derivative that we had for general
vector bundles because

T∗M⊗ Tk
l M ∼= T∗M⊗ T∗M⊗ . . .⊗ T∗M︸ ︷︷ ︸

k factors

⊗ TM⊗ . . .⊗ TM︸ ︷︷ ︸
l factors

∼= Tk+1
l M .

Therefore,

C∞(M, Hom(TM, Tk
l M)) ∼= C∞(M, T∗M⊗ Tk

l M) ∼= C∞(M, Tk+1
l M) .

More concretely, we have the following one-to-one correspondence between
C∞(M, Hom(TM, Tk

l M)) and C∞(M, Tk+1
l M):

(1) Given u ∈ C∞(M, Tk+1
l M), the corresponding element ũ ∈ C∞(M, Hom(TM, Tk

l M)) is given by

∀ p ∈ M ũ(p) : Tp M→ Tk
l (Tp M), X 7→ u(p)(. . . , . . . , X) .

(2) Given ũ ∈ C∞(M, Hom(TM, Tk
l M)), the corresponding element u ∈ C∞(M, Tk+1

l M) is
given by

∀ p ∈ M u(p)(ω1, . . . , ωl , Y1, . . . , Yk, X) = [ũ(p)(X)](ω1, . . . , ωl , Y1, . . . , Yk) .

5.5.2. Covariant Derivative on Tensor Product of Bundles

If E an Ẽ are vector bundles over M with covariant derivatives ∇E : C∞(M, E) →
C∞(M, T∗M ⊗ E) and ∇Ẽ : C∞(M, Ẽ) → C∞(M, T∗M ⊗ Ẽ), respectively, then there is a
uniquely determined covariant derivative ([14], p. 87)

∇E⊗Ẽ : C∞(M, E⊗ Ẽ)→ C∞(M, T∗M⊗ E⊗ Ẽ)

such that
∇E⊗Ẽ(u⊗ ũ) = ∇Eu⊗ ũ +∇Ẽũ⊗ u .

The above sum makes sense because of the following isomorphisms:

(T∗M⊗ E)⊗ Ẽ ∼= T∗M⊗ E⊗ Ẽ ∼= T∗M⊗ Ẽ⊗ E ∼= (T∗M⊗ Ẽ)⊗ E .

Remark 21. Recall that for tensor fields covariant derivative can be considered as a map from
C∞(M, Tk

l M) → C∞(M, Tk+1
l M). Using this, we can give a second description of covariant

derivative on E⊗ Ẽ when E = Tk
l M. In this new description we have

∇Tk
l M⊗Ẽ : C∞(M, Tk

l M⊗ Ẽ)→ C∞(M, Tk+1
l M⊗ Ẽ) .

Indeed, for F ∈ C∞(M, Tk
l M) and u ∈ C∞(M, Ẽ)

∇Tk
l M⊗Ẽ(F⊗ u) = (∇Tk

l MF)︸ ︷︷ ︸
Tk+1

l M

⊗u + F︸︷︷︸
Tk

l M

⊗ ∇Ẽu︸︷︷︸
T∗M⊗Ẽ︸ ︷︷ ︸

Tk+1
l M⊗Ẽ

.
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In particular, if f ∈ C∞(M) and u ∈ C∞(M, E) we have ∇E( f u) ∈ C∞(M, T∗M⊗ E) and it is
equal to

∇E( f u) = d f ⊗ u + f∇Eu .

5.5.3. Higher Order Covariant Derivatives

Let π : E→ M be a vector bundle. Let∇E be a connection in E and∇ be a connection
in TM which induces a connection in T∗M. We have the following chain

C∞(M, E) ∇
E
−→ C∞(M, T∗M⊗ E) ∇

T∗M⊗E
−−−−→ C∞(M, (T∗M)⊗2 ⊗ E) ∇

(T∗M)⊗2⊗E
−−−−−−→

· · · ∇
(T∗M)⊗(k−1)⊗E
−−−−−−−−→ C∞(M, (T∗M)⊗k ⊗ E) ∇

(T∗M)⊗k⊗E
−−−−−−→ · · · .

In what follows we denote all the maps in the above chain by ∇E. That is, for any
k ∈ N0 we consider ∇E as a map from C∞(M, (T∗M)⊗k ⊗ E) to C∞(M, (T∗M)⊗(k+1) ⊗ E).
So,

(∇E)k : C∞(M, E)→ C∞(M, (T∗M)⊗k ⊗ E) .

As an example, let us consider (∇E)k( f u) where f ∈ C∞(M) and u ∈ C∞(M, E).
We have

∇E( f u) = d f ⊗ u + f∇Eu .

(∇E)2( f u) = ∇T∗M⊗E[d f ⊗ u + f∇Eu
]

= [∇T∗M(d f )⊗ u + d f ⊗∇Eu] + [d f ⊗∇Eu + f (∇E)2u]

=
2

∑
j=0

(
2
j

)
(∇T∗M)j f ⊗ (∇E)2−ju .

In general, we can show by induction that

(∇E)k( f u) =
k

∑
j=0

(
k
j

)
(∇T∗M)j f ⊗ (∇E)k−ju .

where (∇T∗M)0 = Id. Here (∇T∗M)j f should be interpreted as applying ∇ (in the sense
described in Remark 20) j times; so (∇T∗M)j f at each point is an element of T j

0M =
(T∗M)⊗j.

5.5.4. Three Useful Rules, Two Important Observations

Let π : E → M and π̃ : Ẽ → M be two vector bundles over M with ranks r and r̃,
respectively. Let ∇ be a connection in TM (which automatically induces a connection in all
tensor bundles), ∇E be a connection in E and ∇Ẽ be a connection in Ẽ. Let (U, ϕ, ρ) be a
total trivialization triple for E.

(1) {∂i = ϕ−1
∗

∂
∂xi }1≤i≤n is a coordinate frame for TM over U.

(2) {sa = ρ−1(ea)}1≤a≤r is a local frame for E over U ({ea}1≤a≤r is the standard basis for
Rr where r = rank E).

(3) Christoffel Symbols for ∇ on (U, ϕ, ρ): ∇∂i
∂j = Γk

ij∂k.

(4) Christoffel Symbols for ∇E on (U, ϕ, ρ): ∇∂i
sa = (ΓE)

b
iasb.

Furthermore, recall that for any 1-form ω,

∇Xω = (Xi∂iωk − XiωjΓ
j
ik)dxk .

Therefore,
∇∂i

dxj = −Γj
ikdxk .
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• Rule 1: For all u ∈ C∞(M, E)

∇Eu = dxi ⊗∇E
∂i

u on U .

The reason is as follows: Recall that for all p ∈ M, ∇Eu(p) ∈ T∗M ⊗ E. Since
{dxi ⊗ sa} is a local frame for T∗M⊗ E on U we have

∇Eu = Ra
i dxi ⊗ sa = dxi ⊗ (Ra

i sa) .

According to what was discussed in the study of the isomorphism Hom(V, W) ∼=
V∗ ⊗W in Section 3 we know that at any point p ∈ M, Ra

i is the element in column i
and row a of the matrix of ∇Eu(p) as an element of Hom(Tp M, Ep). Therefore,

∇E
∂i

u = Ra
i sa .

Consequently, we have ∇Eu = dxi ⊗ (Ra
i sa) = dxi ⊗∇E

∂i
u.

• Rule 2: For all v1 ∈ C∞(M, E) and v2 ∈ C∞(M, Ẽ)

∇E⊗Ẽ
∂j

(v1 ⊗ v2) = (∇E
∂j

v1)⊗ v2 + v1 ⊗ (∇Ẽ
∂j

v2) .

• Rule 3: For all u ∈ C∞(M, E) and f ∈ C∞(M)

∇E( f u) = f∇Eu + d f ⊗ u .

The following two examples are taken from [35].

• Example 1: Let u ∈ C∞(M, E). On U we may write u = uasa. We have

∇Eu = ∇E(uasa)
Rule 3
= ua∇Esa + dua ⊗ sa = ua∇Esa + (∂iuadxi)⊗ sa

Rule 1
= uadxi ⊗∇E

∂i
sa + (∂iuadxi)⊗ sa

= uadxi ⊗
(
(ΓE)

b
iasb
)
+ (∂iuadxi)⊗ sa = dxi ⊗

(
ua(ΓE)

b
iasb
)
+ dxi ⊗ (∂iuasa)

= dxi ⊗
(
ub(ΓE)

a
ibsa
)
+ dxi ⊗ (∂iuasa)

= [∂iua + (ΓE)
a
ibub]dxi ⊗ sa .

That is, ∇Eu = (∇Eu)a
i dxi ⊗ sa where

(∇Eu)a
i = ∂iua + (ΓE)

a
ibub .

• Example 2: Let u ∈ C∞(M, E). On U we may write u = uasa. We have
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(∇E)2u = ∇T∗M⊗E([∂iua + (ΓE)
a
ibub]dxi ⊗ sa

)
Rule 3
= [∂iua + (ΓE)

a
ibub]∇T∗M⊗E(dxi ⊗ sa) + d[∂iua + (ΓE)

a
ibub]⊗ (dxi ⊗ sa)

Rule 1
= [∂iua + (ΓE)

a
ibub]dxj ⊗∇T∗M⊗E

∂j
(dxi ⊗ sa) + d[∂iua + (ΓE)

a
ibub]⊗ (dxi ⊗ sa)

Def. of d
= [∂iua + (ΓE)

a
ibub]dxj ⊗∇T∗M⊗E

∂j
(dxi ⊗ sa) + ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

Rule 2
= [∂iua + (ΓE)

a
ibub]dxj ⊗

[
∇T∗M

∂j
dxi ⊗ sa + dxi ⊗∇E

∂j
sa
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

= [∂iua + (ΓE)
a
ibub]dxj ⊗

[
− Γi

jkdxk ⊗ sa + dxi ⊗ (ΓE)
c
jasc
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

i↔ k in the first summand
= [∂kua + (ΓE)

a
kbub]dxj ⊗

[
− Γk

jidxi ⊗ sa + dxk ⊗ (ΓE)
c
jasc
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

= {∂j[∂iua + (ΓE)
a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa + [∂kua + (ΓE)

a
kbub](ΓE)

c
jadxj ⊗ dxk ⊗ sc

i↔ k in the last summand
= {∂j[∂iua + (ΓE)

a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa

+ [∂iua + (ΓE)
a
ibub](ΓE)

c
jadxj ⊗ dxi ⊗ sc

c↔ a in the last summand
= {∂j[∂iua + (ΓE)

a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa

+ [∂iuc + (ΓE)
c
ibub](ΓE)

a
jcdxj ⊗ dxi ⊗ sa .

Considering the above examples we make the following two useful observations that can
be proved by induction.

• Observation 1: In general (∇E)ku =
(
(∇E)ku

)a
i1 ...ik

dxi1 ⊗ . . . ⊗ dxik ⊗ sa (1 ≤ a ≤
r, 1 ≤ i1, . . . , ik ≤ n) where ((∇E)ku

)a
i1 ...ik
◦ ϕ−1 is a linear combination of u1 ◦

ϕ−1, . . . , ur ◦ ϕ−1 and their partial derivatives up to order k and the coefficients are
polynomials in terms of Christoffel symbols (of the linear connection on M and connec-
tion in E) and their derivatives (on a compact manifold these coefficients are uniformly
bounded provided that the metric and the fiber metric are smooth). That is,

((∇E)ku
)a

i1 ...ik
◦ ϕ−1 = ∑

|η|≤k

r

∑
l=1

Cηl∂
η(ul ◦ ϕ−1) ,

where for each η and l, Cηl is a polynomial in terms of Christoffel symbols (of the
linear connection on M and connection in E) and their derivatives.

• Observation 2: The highest order term in ((∇E)ku
)a

i1 ...ik
◦ ϕ−1 is ∂

xi1
. . . ∂

xik
(ua ◦ ϕ−1);

that is,

((∇E)ku
)a

i1 ...ik
◦ ϕ−1 =

∂

∂xi1
. . .

∂

∂xik
(ua ◦ ϕ−1) + . . .

where extra terms contain derivatives of order at most k− 1 of ul ◦ ϕ−1 (1 ≤ l ≤ r):

((∇E)ku
)a

i1 ...ik
◦ ϕ−1 =

∂k

∂xi1 . . . ∂xik
(ua ◦ ϕ−1) + ∑

|η|<k

r

∑
l=1

Cηl∂
η(ul ◦ ϕ−1) .

6. Some Results from the Theory of Generalized Functions

In this section, we collect some results from the theory of distributions that will be
needed for our definition of function spaces on manifolds. Our main reference for this part
is the exquisite exposition by Marcel De Reus [24].

6.1. Distributions on Domains in Euclidean Space

Let Ω be a nonempty open set in Rn.

(1) Recall that
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• K(Ω) is the collection of all compact subsets of Ω.
• C∞(Ω) = the collection of all infinitely differentiable (real-valued) functions on Ω.
• For all K ∈ K(Ω), C∞

K (Ω) = {ϕ ∈ C∞(Ω) : supp ϕ ⊆ K}.
• C∞

c (Ω) =
⋃

K∈K(Ω) C∞
K (Ω) = {ϕ ∈ C∞(Ω) : supp ϕ is compact in Ω}.

(2) For all ϕ ∈ C∞(Ω), j ∈ N and K ∈ K(Ω) we define

‖ϕ‖j,K := sup{|∂α ϕ(x)| : |α| ≤ j, x ∈ K} .

(3) For all j ∈ N and K ∈ K(Ω), ‖.‖j,K is a seminorm on C∞(Ω). We define E(Ω) to
be C∞(Ω) equipped with the natural topology induced by the separating family of
seminorms {‖.‖j,K}j∈N,K∈K(Ω). It can be shown that E(Ω) is a Frechet space.

(4) For all K ∈ K(Ω) we define EK(Ω) to be C∞
K (Ω) equipped with the subspace topology.

This subspace topology on C∞
K (Ω) is the natural topology induced by the separating

family of seminorms {‖.‖j,K}j∈N. Since C∞
K (Ω) is a closed subset of the Frechet space

E(Ω), EK(Ω) is also a Frechet space.
(5) We define D(Ω) =

⋃
K∈K(Ω) EK(Ω) equipped with the inductive limit topology with

respect to the family of vector subspaces {EK(Ω)}K∈K(Ω). It can be shown that if
{Kj}j∈N0 is an exhaustion by compacts sets of Ω, then the inductive limit topology on
D(Ω) with respect to the family {EKj}j∈N0 is exactly the same as the inductive limit
topology with respect to {EK(Ω)}K∈K(Ω).

Remark 22. Let us mention a trivial but extremely useful consequence of the above description
of the inductive limit topology on D(Ω). Suppose Y is a topological space and the mapping
T : Y → D(Ω) is such that T(Y) ⊆ EK(Ω) for some K ∈ K(Ω). Since EK(Ω) ↪→ D(Ω), if
T : Y → EK(Ω) is continuous, then T : Y → D(Ω) will be continuous.

Theorem 38 (Convergence and Continuity for E(Ω)). Let Ω be a nonempty open set in Rn.
Let Y be a topological vector space whose topology is induced by a separating family of seminormsQ.

(1) A sequence {ϕm} converges to ϕ in E(Ω) if and only if ‖ϕm − ϕ‖j,K → 0 for all j ∈ N and
K ∈ K(Ω).

(2) Suppose T : E(Ω)→ Y is a linear map. Then the following is equivalent

• T is continuous.
• For every q ∈ Q, there exist j ∈ N and K ∈ K(Ω), and C > 0 such that

∀ ϕ ∈ E(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in E(Ω), then T(ϕm)→ 0 in Y.

(3) In particular, a linear map T : E(Ω)→ R is continuous if and only if there exist j ∈ N and
K ∈ K(Ω), and C > 0 such that

∀ ϕ ∈ E(Ω) |T(ϕ)| ≤ C‖ϕ‖j,K .

(4) A linear map T : Y → E(Ω) is continuous if and only if

∀ j ∈ N, ∀K ∈ K(Ω) ∃C > 0, k ∈ N , q1, . . . , qk ∈ Q such that ∀ y ‖T(y)‖j,K ≤ C max
1≤i≤k

qi(y) .

Theorem 39 (Convergence and Continuity for EK(Ω)). Let Ω be a nonempty open set in Rn

and K ∈ K(Ω). Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {ϕm} converges to ϕ in EK(Ω) if and only if ‖ϕm − ϕ‖j,K → 0 for all j ∈ N.
(2) Suppose T : EK(Ω)→ Y is a linear map. Then the following is equivalent:

• T is continuous.
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• For every q ∈ Q, there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in EK(Ω), then T(ϕm)→ 0 in Y.

Theorem 40 (Convergence and Continuity for D(Ω)). Let Ω be a nonempty open set in Rn.
Let Y be a topological vector space whose topology is induced by a separating family of seminormsQ.

(1) A sequence {ϕm} converges to ϕ in D(Ω) if and only if there is a K ∈ K(Ω) such that
suppϕm ⊆ K and ϕm → ϕ in EK(Ω).

(2) Suppose T : D(Ω)→ Y is a linear map. Then the following is equivalent

• T is continuous.
• For all K ∈ K(Ω), T : EK(Ω)→ Y is continuous.
• For every q ∈ Q and K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in D(Ω), then T(ϕm)→ 0 in Y.

(3) In particular, a linear map T : D(Ω)→ R is continuous if and only if for every K ∈ K(Ω),
there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) |T(ϕ)| ≤ C‖ϕ‖j,K .

Remark 23. Let Ω be a nonempty open set in Rn. Here are two immediate consequences of the
previous theorems and remark:

(1) The identity map
iD,E : D(Ω)→ E(Ω)

is continuous (that is, D(Ω) ↪→ E(Ω) ).
(2) If T : E(Ω) → E(Ω) is a continuous linear map such that supp(Tϕ) ⊆ suppϕ for all

ϕ ∈ E(Ω) (i.e., T is a local continuous linear map), then T restricts to a continuous
linear map from D(Ω) to D(Ω). Indeed, the assumption supp(Tϕ) ⊆ suppϕ implies
that T(D(Ω)) ⊆ D(Ω). Moreover, T : D(Ω) → D(Ω) is continuous if and only if for
K ∈ K(Ω) T : EK(Ω) → D(Ω) is continuous. Since T(EK(Ω)) ⊆ EK(Ω), this map is
continuous if and only if T : EK(Ω)→ EK(Ω) is continuous (see Remark 22). However, since
the topology of EK(Ω) is the induced topology from E(Ω), the continuity of the preceding
map follows from the continuity of T : E(Ω)→ E(Ω).

Theorem 41. Let Ω be a nonempty open set in Rn. Let Y be a topological vector space whose
topology is induced by a separating family of seminorms Q. Suppose T : [D(Ω)]×r → Y is a linear
map. The following are equivalent: (product spaces are equipped with the product topology)

(1) T : [D(Ω)]×r → Y is continuous.
(2) For all K ∈ K(Ω), T : [EK(Ω)]×r → Y is continuous.
(3) For all q ∈ Q and K ∈ K(Ω), there exists j1, . . . , jl ∈ N such that

∀ (ϕ1, . . . , ϕr) ∈ [EK(Ω)]×r |q ◦ T(ϕ1, . . . , ϕr)| ≤ C(‖ϕ1‖j1,K + . . . + ‖ϕr‖jr ,K) .

Theorem 42. Let Ω be a nonempty open set in Rn.

(1) A set B ⊆ D(Ω) is bounded if and only if there exists K ∈ K(Ω) such that B is a bounded
subset of EK(Ω) which is in turn equivalent to the following statement:

∀ j ∈ N ∃rj ≥ 0 such that ∀ ϕ ∈ B ‖ϕ‖j,K ≤ rj .

(2) If {ϕm} is a Cauchy sequence in D(Ω), then it converges to a function ϕ ∈ D(Ω). We say
D(Ω) is sequentially complete.
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Remark 24. Topological spaces whose topology is determined by knowing the convergent sequences
and their limits exhibit nice properties and are of particular interest. Let us recall a number of useful
definitions related to this topic:

• Let X be a topological space and let E ⊆ X. The sequential closure of E, denoted scl(E) is
defined as follows:

scl(E) = {x ∈ X : there is a sequence {xn} in E such that xn → x} .

Clearly, scl(E) is contained in the closure if E.
• A topological space X is called a Frechet-Urysohn space if for every E ⊆ X the sequential

closure of E is equal to the closure of E.
• A subset E of a topological space X is said to be sequentially closed if E = scl(E).
• A topological space X is said to be sequential if for every E ⊆ X, E is closed if and only if

E is sequentially closed. If X is a sequential topological space and Y is any topological space,
then a map f : X → Y is continuous if and only if

lim
n→∞

f (xn) = f ( lim
n→∞

xn)

for each convergent sequence {xn} in X.

The following implications hold for a topological space X:

X is metrizable→ X is first-countable→ X is Frechet-Urysohn→ X is sequential

As it was stated, E and EK (For all K ∈ K(Ω)) are Frechet and subsequently they are
metrizable. However, it can be shown that D(Ω) is not first-countable and subsequently it is not
metrizable. In fact, although according to Theorem 40, the elements of the dual of D(Ω) can be
determined by knowing the convergent sequences in D(Ω), it can be proved that D(Ω) is not
sequential.

Definition 18. Let Ω be a nonempty open set in Rn. The topological dual of D(Ω), denoted D′(Ω)
(D′(Ω) = [D(Ω)]∗), is called the space of distributions on Ω. Each element of D′(Ω) is called
a distribution on Ω.

Remark 25. Every function f ∈ L1
loc(Ω) defines a distribution u f ∈ D′(Ω) as follows:

∀ ϕ ∈ D(Ω) u f (ϕ) :=
∫

Ω
f ϕdx . (1)

In particular, every function ϕ ∈ E(Ω) defines a distribution uϕ. It can be shown that the map
j : E(Ω) → D′(Ω) which sends ϕ to uϕ is an injective linear continuous map ([24], p. 11).
Therefore, we can identify E(Ω) with a subspace of D′(Ω).

Remark 26. Let Ω ⊆ Rn be a nonempty open set. Recall that f : Ω → R is locally integrable
( f ∈ L1

loc(Ω)) if it satisfies any of the following equivalent conditions:

(1) f ∈ L1(K) for all K ∈ K(Ω).
(2) For all ϕ ∈ C∞

c (Ω), f ϕ ∈ L1(Ω).
(3) For every nonempty open set V ⊆ Ω such that V̄ is compact and contained in Ω, f ∈ L1(V).

(It can be shown that every locally integrable function is measurable ([36], p. 70)).
As a consequence, if we define Funcreg(Ω) to be the set

{ f : Ω→ R : u f : D(Ω)→ R defined by Equation (1) is well-defined and continuous} ,

then Funcreg(Ω) = L1
loc(Ω).
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Definition 19 (Calculus Rules for Distributions). Let Ω be a nonempty open set in Rn. Let
u ∈ D′(Ω).

• For all ϕ ∈ C∞(Ω), ϕu is defined by

∀ψ ∈ C∞
c (Ω) [ϕu](ψ) := u(ϕψ) .

It can be shown that ϕu ∈ D′(Ω).
• For all multiindices α, ∂αu is defined by

∀ψ ∈ C∞
c (Ω) [∂αu](ψ) = (−1)|α|u(∂αψ) .

It can be shown that ∂αu ∈ D′(Ω).

Furthermore, it is possible to make sense of “change of coordinates” for distributions.
Let Ω and Ω′ be two open sets in Rn. Suppose T : Ω→ Ω′ is a C∞ diffeomorphism. T can
be used to move any function on Ω to a function on Ω′ and vice versa.

T∗ : Func(Ω′,R)→ Func(Ω,R), T∗( f ) = f ◦ T ,

T∗ : Func(Ω,R)→ Func(Ω′,R), T∗( f ) = f ◦ T−1 .

T∗ f is called the pullback of the function f under the mapping T and T∗ f is called
the pushforward of the function f under the mapping T. Clearly, T∗ and T∗ are inverses of
each other and T∗ = (T−1)∗. One can show that T∗ sends functions in L1

loc(Ω) to L1
loc(Ω

′)
and furthermore T∗ restricts to linear topological isomorphisms T∗ : E(Ω) → E(Ω′) and
T∗ : D(Ω)→ D(Ω′). Note that for all f ∈ L1

loc(Ω) and ϕ ∈ C∞
c (Ω′)

< uT∗ f , ϕ >D′(Ω′)×D(Ω′) =
∫

Ω′
(T∗ f )(y)ϕ(y)dy =

∫
Ω′
( f ◦ T−1)(y)ϕ(y)dy

x=T−1(y)
=

∫
Ω

f (x)ϕ(T(x))|detT′(x)|dx

=< u f , |detT′(x)|ϕ(T(x)) >D′(Ω)×D(Ω) .

The above observation motivates us to define the pushforward of any distribution
u ∈ D′(Ω) as follows:

∀ϕ ∈ D(Ω′) 〈T∗u, ϕ〉D′(Ω′)×D(Ω′) := 〈u, |detT′(x)|ϕ(T(x))〉D′(Ω)×D(Ω) .

It can be shown that T∗u : D(Ω′) → R is continuous and so it is in fact an element of
D′(Ω′). Similarly, the pullback T∗ : D′(Ω′)→ D′(Ω) is defined by

∀ϕ ∈ D(Ω) 〈T∗u, ϕ〉D′(Ω)×D(Ω) := 〈u, |det(T−1)′(y)|ϕ(T−1(y))〉D′(Ω′)×D(Ω′) .

It can be shown that T∗u : D(Ω)→ R is continuous and so it is in fact an element of D′(Ω).

Definition 20 (Extension by Zero of a Function). Let Ω be an open subset of Rn and V be an
open susbset of Ω. We define the linear map ext0

V,Ω : Func(V,R)→ Func(Ω,R) as follows:

ext0
V,Ω( f )(x) =

{
f (x) if x ∈ V
0 if x ∈ Ω \V

.

ext0
V,Ω restricts to a continuous linear map D(V)→ D(Ω).
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Definition 21 (Restriction of a Distribution). Let Ω be an open subset of Rn and V be an open
susbset of Ω. We define the restriction map resΩ,V : D′(Ω)→ D′(V) as follows:

〈resΩ,Vu, ϕ〉D′(V)×D(V) := 〈u, ext0
V,Ω ϕ〉D′(Ω)×D(Ω) .

This is well-defined; indeed, resΩ,V : D′(Ω) → D′(V) is a continuous linear map as it is the
adjoint of the continuous map ext0

V,Ω : D(V) → D(Ω). Given u ∈ D′(Ω), we sometimes write
u|V instead of resΩ,Vu.

Remark 27. It is easy to see that the restriction of the map resΩ,V : D′(Ω) → D′(V) to E(Ω)
agrees with the usual restriction of smooth functions.

Definition 22 (Support of a Distribution). Let Ω be a nonempty open set in Rn. Let u ∈ D′(Ω).

• We say u is equal to zero on some open subset V of Ω if u|V = 0.
• Let {Vi}i∈I be the collection of all open subsets of Ω such that u is equal to zero on Vi. Let

V =
⋃

i∈I Vi. The support of u is defined as follows:

supp u := Ω \V .

Note that suppu is closed in Ω but it is not necessarily closed in Rn.

Theorem 43 (Properties of the Support [20,23,24]). Let Ω and Ω′ be nonempty open sets in Rn.

• If f ∈ L1
loc(Ω), then supp f = supp u f .

• For all u ∈ D′(Ω), u = 0 on Ω \ supp u.
• Let u ∈ D′(Ω). If ϕ ∈ D(Ω) vanishes on an open neighborhood of supp u, then u(ϕ) = 0.
• For every closed subset A of Ω and every u ∈ D′(Ω), we have supp u ⊆ A if and only if

u(ϕ) = 0 for every ϕ ∈ D(Ω) with supp ϕ ⊆ Ω \ A.
• For every u ∈ D′(Ω) and ψ ∈ E(Ω), supp(ψu) ⊆ supp(ψ) ∩ supp(u).
• Let u, v ∈ D′(Ω). If there exists a nonempty open subset U of Ω such that supp u ⊆ U and

supp v ⊆ U and

〈u|U , ϕ〉D′(U)×D(U) = 〈v|U , ϕ〉D′(U)×D(U) ∀ ϕ ∈ C∞
c (U) ,

then u = v as elements of D′(Ω).
• Let u, v ∈ D′(Ω). Then supp(u + v) ⊆ supp u ∪ supp v.
• Let {ui} be a sequence in D′(Ω), u ∈ D(Ω), and K ∈ K(Ω) such that ui → u in D′(Ω)

and supp ui ⊆ K for all i. Then also supp u ⊆ K.
• For every u ∈ D′(Ω) and α ∈ Nn

0 , supp(∂αu) ⊆ supp(u).
• If T : Ω → Ω′ is a diffeomorphism, then supp(T∗u) = T(supp u). In particular, if u has

compact support, then so has T∗u.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {ui} be a sequence in D(Ω) such that ui → u in D′(Ω),
and suppose there exists K ∈ K(Ω) such that supp u ⊆ K. Does the fact that the limiting
distribution has compact support imply that there exists a compact set K̃ such that supp ui ⊆
K̃ for all i? The answer is negative. For example, for each i ∈ N let ui ∈ D(R) be a
nonnegative function such that ui = 0 outside the interval (i, i + 1) and

∫ i+1
i ui dx = 1

i .
Clearly, ui → 0 in L1(R) and so ui → 0 in D′(R). However, there is no compact set K̃ such
that supp ui ⊆ K̃ for all i.

Theorem 44 ([24], pp. 10 and 20). Let Ω be a nonempty open set in Rn. Let E ′(Ω) denote the
topological dual of E(Ω) equipped with the strong topology. Then

• The map that sends u ∈ E ′(Ω) to u|D(Ω) is an injective continuous linear map from E ′(Ω)
into D′(Ω).

• The image of the above map consists precisely of those u ∈ D′(Ω) for which supp u is compact.



Mathematics 2022, 10, 522 38 of 103

Due to the above theorem we may identify E ′(Ω) with distributions on Ω with compact
support.

Definition 23 (Extension by Zero of Distributions With Compact Support). Let Ω be a
nonempty open set in Rn and V be a nonempty open subset of Ω. We define the linear map
ext0

V,Ω : E ′(V) → E ′(Ω) as the adjoint of the continuous linear map resΩ,V : E(Ω) → E(V);
that is,

〈ext0
V,Ωu, ϕ〉E ′(Ω)×E(Ω) := 〈u, ϕ|V〉E ′(V)×E(V) .

Suppose Ω′ and Ω are two nonempty open sets in Rn such that Ω′ ⊆ Ω and K ∈ K(Ω′).
One can easily show that:

• For all u ∈ EK(Ω′), resRn ,Ω ◦ ext0
Ω′ ,Rn u = ext0

Ω′ ,Ωu.
• For all u ∈ EK(Ω′), ext0

Ω,Rn ◦ ext0
Ω′ ,Ωu = ext0

Ω′ ,Rn u.
• For all u ∈ EK(Ω), ext0

Ω′ ,Ω ◦ resΩ,Ω′u = u.

We summarize the important topological properties of the spaces of test functions and
distributions in Table 1 below.

Table 1. Topological properties of the spaces of test functions.

D(Ω) E(Ω)
D′(Ω)
Strong

E ′(Ω)
Strong

D′(Ω)
Weak

E ′(Ω)
Weak

Sequential No Yes No No No No

First-Countable No Yes No No No No

Metrizable No Yes No No No No

Second-Countable No Yes No No No No

Sequentially Complete Yes Yes Yes Yes Yes Yes

Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles
6.2.1. Basic Definitions, Notation

Let Mn be a smooth manifold (M is not necessarily compact). Let π : E → M be a
vector bundle of rank r.

(1) E(M, E) is defined as C∞(M, E) equipped with the locally convex topology induced
by the following family of seminorms: let {(Uα, ϕα, ρα)}α∈I be a total trivialization
atlas. Then for every α ∈ I, 1 ≤ l ≤ r, and f ∈ C∞(M, E), f̃ l

α := ρl
α ◦ f ◦ ϕ−1

α is an
element of C∞(ϕα(Uα)). For every 4-tuple (l, α, j, K) with 1 ≤ l ≤ r, α ∈ I, j ∈ N, K a
compact subset of Uα (i.e., K ∈ K(Uα)) we define

‖.‖l,α,j,K : C∞(M, E)→ R, f 7→ ‖ρl
α ◦ f ◦ ϕ−1

α ‖j,ϕα(K) .

It is easy to check that ‖.‖l,α,j,K is a seminorm on C∞(M, E) and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write ‖.‖l,ϕα ,j,K instead of ‖.‖l,α,j,K.

(2) For any compact subset K ⊆ M we define

EK(M, E) := { f ∈ E(M, E) : supp f ⊆ K}

equipped with the subspace topology.
(3) D(M, E) := C∞

c (M, E) = ∪K∈K(M)EK(M, E) (union over all compact subsets
of M) equipped with the inductive limit topology with respect to the family
{EK(M, E)}K∈K(M). Clearly, if M is compact, then D(M, E) = E(M, E) (as topological
vector spaces).
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Remark 28.

• If for each α ∈ I, {Kα
m}m∈N is an exhaustion by compact sets of Uα, then the topology induced

by the family of seminorms

{‖.‖l,α,j,Kα
m : 1 ≤ l ≤ r, α ∈ I, j ∈ N, m ∈ N}

on C∞(M, E) is the same as the topology of E(M, E). This together with the fact that every
manifold has a countable total trivialization atlas shows that the topology of E(M, E) is
induced by a countable family of seminorms. So E(M, E) is metrizable.

• If {Kj}j∈N is an exhuastion by compact sets of M, then the inductive limit topology on
C∞

c (M, E) with respect to the family {EKj(M, E)} is the same as the topology on D(M, E).

Definition 24. The space of distributions on the vector bundle E, denoted D′(M, E), is defined as
the topological dual of D(M, E∨). That is,

D′(M, E) = [D(M, E∨)]∗ .

As usual we equip the dual space with the strong topology. Recall that E∨ denotes the bundle
Hom(E,D(M)) where D(M) is the density bundle of M.

Remark 29. The reason that space of distributions on the vector bundle E is defined as the dual of
D(M, E∨) rather than the dual of the seemingly natural choice D(M, E) is well explained in [24,37].
Of course, there are other nonequivalent ways to make sense of distributions on vector bundles
(see [37] for a detailed discussion). Furthermore, see Lemma 13 where it is proved that Riemannian
density can be used to identify D′(M, E) with [D(M, E)]∗.

Remark 30. Let U and V be nonempty open sets in M with V ⊆ U.

• As in the Euclidean case, the linear map ext0
V,U : Γ(V, E∨V)→ Γ(U, E∨U) defined by

ext0
V,U f (x) =

{
f (x) x ∈ V
0 x ∈ U \V

restricts to a continuous linear map from D(V, E∨V) to D(U, E∨U).
• As in the Euclidean case, the restriction map resU,V : D′(U, EU)→ D′(V, EV) is defined as

the adjoint of ext0
V,U :

〈resU,Vu, ϕ〉D′(V,EV)×D(V,E∨V)
= 〈u, ext0

V,U ϕ〉D′(U,EU)×D(U,E∨U) .

• Support of a distribution u ∈ D′(M, E) is defined in the exact same way as for distributions
in the Euclidean space. It can be shown that

(1) ([24], p. 105) If u ∈ D′(M, E) and ϕ ∈ D(M, E∨) vanishes on an open neighborhood
of suppu, then u(ϕ) = 0.

(2) ([24], p. 104) For every closed subset A of M and every u ∈ D′(M, E), we have
suppu ⊆ A if and only if u(ϕ) = 0 for every ϕ ∈ D(M, E∨) with suppϕ ⊆ M \ A.

The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions. A
question that arises is that whether there is a natural way to identify regular sections of
E (i.e., elements of Γ(M, E)) with distributions. The following theorem provides a partial
answer to this question. Recall that compactly supported continuous sections of the density
bundle can be integrated over M.
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Theorem 45. Every f ∈ E(M, E) defines the following continuous map:

u f : D(M, E∨)→ R, ψ 7→
∫

M
[ψ, f ] , (2)

where the pairing [ψ, f ] defines a compactly supported continuous section of the density bundle:

∀ x ∈ M [ψ, f ](x) := [ψ(x)][ f (x)] (ψ(x) ∈ Hom(Ex,Dx) evaluated at f (x) ∈ Ex) .

In general, we define Γreg(M, E) as the set

{ f ∈ Γ(M, E) : u f defined by Equation (2) is well-defined and continuous} .

Compare this with the definition of Funcreg(Ω) in Remark 26. Theorem 45 tells us that
E(M, E) is contained in Γreg(M, E). If u ∈ D′(M, E) is such that u = u f for some f ∈
Γreg(M, E), then we say that u is a regular distribution.

Now, let (U, ϕ, ρ) be a total trivialization triple for E and let (U, ϕ, ρD) and (U, ϕ, ρ∨)
be the corresponding standard total trivialization triples for D(M) and E∨, respectively.
The local representation of the pairing [ψ, f ] has a very simple expression in terms of the
local representations of f and ψ:

f ∈ Γreg(M, E) =⇒ ( f̃ 1, . . . , f̃ r) := ( f 1 ◦ ϕ−1, . . . , f r ◦ ϕ−1) := ρ ◦ f ◦ ϕ−1 ∈ [Func(ϕ(U),R)]×r

( f̃ 1, . . . , f̃ r) is the local representation of f .

ψ ∈ D(M, E∨) =⇒ (ψ̃1, . . . , ψ̃r) := (ψ1 ◦ ϕ−1, . . . , ψr ◦ ϕ−1) := ρ∨ ◦ ψ ◦ ϕ−1 ∈ [Func(ϕ(U),R)]×r

(ψ̃1, . . . , ψ̃r) is the local representation of ψ .

Our claim is that the local representation of [ψ, f ] (that is, ρD ◦ [ψ, f ] ◦ ϕ−1) is equal to the
Euclidean dot product of the local representations of f and ψ:

ρD ◦ [ψ, f ] ◦ ϕ−1 = ∑
i

f̃ iψ̃i .

The reason is as follows: Let y ∈ ϕ(U) and x = ϕ−1(y)

[ρD ◦ [ψ, f ] ◦ ϕ−1](y) = ρD
(
[ψ(x)][ f (x)]

)
= ρD

(
[ψ(x)][(ρ|Ex )

−1( f̃ 1(y), . . . , f̃ r(y))]
)

= [ρD ◦ ψ(x) ◦ (ρ|Ex )
−1]( f̃ 1(y), . . . , f̃ r(y))

= [ρ∨(ψ(x))][( f̃ 1(y), . . . , f̃ r(y))] the left bracket is applied to the right bracket

= ρ∨(ψ(x)) · ( f̃ 1(y), . . . , f̃ r(y)) dot product! ρ∨(ψ(x)) viewed as an element of Rr

= (ψ̃1(y), . . . , ψ̃r(y)) · ( f̃ 1(y), . . . , f̃ r(y)) .

6.2.2. Local Representation of Distributions

Let (U, ϕ, ρ) be a total trivialization triple for π : E → M. We know that each
f ∈ Γ(M, E) can locally be represented by r components f̃ 1, . . . , f̃ r defined by

∀ 1 ≤ l ≤ r f̃ l : ϕ(U)→ R, f̃ l = ρl ◦ f ◦ ϕ−1 .

These components play a crucial role in our study of Sobolev spaces. Now the question is
that whether we can similarly use the total trivialization triple (U, ϕ, ρ) to locally associate
with each distribution u ∈ D′(M, E), r components ũ1, . . . , ũr belonging to D′(ϕ(U)). That
is, we want to see whether we can define a nice map

D′(U, EU) = [D(U, E∨U)]
∗ → D′(ϕ(U))× . . .× D′(ϕ(U))︸ ︷︷ ︸

r times

.
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(Note that according to Remark 30, if u ∈ D′(M, E), then u|U ∈ D′(U, EU).) Such a map, in
particular, will be important when we want to make sense of Sobolev spaces with negative
exponents of sections of vector bundles. Furthermore, it would be desirable to ensure
that if u is a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of Γ(M, E).

We begin with the following map at the level of compactly supported smooth func-
tions:

T̃E∨ ,U,ϕ : D(U, E∨U)→ [D(ϕ(U))]×r, ξ → ρ∨ ◦ ξ ◦ ϕ−1 = ((ρ∨)1 ◦ ξ ◦ ϕ−1, . . . , (ρ∨)r ◦ ξ ◦ ϕ−1) .

Note that T̃E∨ ,U,ϕ has the property that for all ψ ∈ C∞(U) and ξ ∈ D(U, E∨U)

T̃E∨ ,U,ϕ(ψξ) = (ψ ◦ ϕ−1)T̃E∨ ,U,ϕ(ξ) .

Theorem 46. The map T̃E∨ ,U,ϕ : D(U, E∨U)→ [D(ϕ(U))]×r is a linear topological isomorphism
([D(ϕ(U))]×r is equipped with the product topology).

Proof. Clearly, T̃E∨ ,U,ϕ is linear. Furthermore, the map T̃E∨ ,U,ϕ is bijective. Indeed, the
inverse of T̃E∨ ,U,ϕ (which we denote by TE∨ ,U,ϕ) is given by

TE∨ ,U,ϕ : [D(ϕ(U))]×r → D(U, E∨U)

∀ x ∈ U TE∨ ,U,ϕ(ξ1, . . . , ξr)(x) =
(
ρ∨|E∨x

)−1 ◦ (ξ1, . . . , ξr) ◦ ϕ(x) .

Now, we show that T̃E∨ ,U,ϕ : D(U, E∨U) → [D(ϕ(U))]×r is continuous. To this end, it is
enough to prove that for each 1 ≤ l ≤ r the map

πl ◦ T̃E∨ ,U,ϕ : D(U, E∨U)→ D(ϕ(U)), ξ 7→ (ρ∨)l ◦ ξ ◦ ϕ−1

is continuous. The topology on D(U, E∨U) is the inductive limit topology with respect
to {EK(U, E∨U)}K∈K(U), so it is enough to show that for each K ∈ K(U), πl ◦ T̃E∨ ,U,ϕ :
EK(U, E∨U) → D(ϕ(U)) is continuous. Note that πl ◦ T̃E∨ ,U,ϕ[EK(U, E∨U)] ⊆ Eϕ(K)(ϕ(U)).
Considering that Eϕ(K)(ϕ(U)) ↪→ D(ϕ(U)), it is enough to show that

πl ◦ T̃E∨ ,U,ϕ : EK(U, E∨U)→ Eϕ(K)(ϕ(U))

is continuous. For all ξ ∈ EK(U, E∨U) and j ∈ N we have

‖πl ◦ T̃E∨ ,U,ϕ(ξ)‖j,ϕ(K) = ‖(ρ∨)l ◦ ξ ◦ ϕ−1‖j,ϕ(K) = ‖ξ‖l,ϕ,j,K ,

which implies the continuity (note that even an inequality in place of the last equality would
have been enough to prove the continuity). It remains to prove the continuity of TE∨ ,U,ϕ :
[D(ϕ(U))]×r → D(U, E∨U). By Theorem 41 it is enough to show that for all K ∈ K(ϕ(U)),
TE∨ ,U,ϕ : [EK(ϕ(U))]×r → D(U, E∨U) is continuous. It is clear that TE∨ ,U,ϕ([EK(ϕ(U))]×r) ⊆
Eϕ−1(K)(U, E∨U). Since Eϕ−1(K)(U, E∨U) ↪→ D(U, E∨U), it is sufficient to show that TE∨ ,U,ϕ :
[EK(ϕ(U))]×r → Eϕ−1(K)(U, E∨U) is continuous. To this end, by Theorem 41, we just need to
show that for all j ∈ N and 1 ≤ l ≤ r there exists j1, . . . , jr such that

‖TE∨ ,U,ϕ(ξ1, . . . , ξr)‖l,ϕ,j,ϕ−1(K) ≤ C(‖ξ1‖j1,K + . . . ‖ξr‖jr ,K) .

However, this obviously holds because

‖TE∨ ,U,ϕ(ξ1, . . . , ξr)‖l,ϕ,j,ϕ−1(K) = ‖ξl‖j,K .
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The adjoint of TE∨ ,U,ϕ is

T∗E∨ ,U,ϕ : [D(U, E∨U)]
∗ →

(
[D(ϕ(U))]×r)∗

〈T∗E∨ ,U,ϕu, (ξ1, . . . , ξr)〉 = 〈u, TE∨ ,U,ϕ(ξ1, . . . , ξr)〉 .

Note that, since TE∨ ,U,ϕ is a linear topological isomorphism, T∗E∨ ,U,ϕ is also a linear topolog-
ical isomorphism (and in particular it is bijective). For every u ∈ [D(U, E∨U)]

∗, T∗E∨ ,U,ϕu is

in
(
[D(ϕ(U))]×r)∗; we can combine this with the bijective map

L :
(
[D(ϕ(U))]×r)∗ → [D′(ϕ(U))]×r, L(v) = (v ◦ i1, . . . , v ◦ ir)

(see Theorem 24) to send u ∈ [D(U, E∨U)]
∗ into an element of [D′(ϕ(U))]×r:

L(T∗E∨ ,U,ϕu) = ((T∗E∨ ,U,ϕu) ◦ i1, . . . , (T∗E∨ ,U,ϕu) ◦ ir) ,

where for all 1 ≤ l ≤ r, (T∗E∨ ,U,ϕu) ◦ il ∈ D′(ϕ(U)) is given by

((T∗E∨ ,U,ϕu) ◦ il)(ξ) = (T∗E∨ ,U,ϕu)(il(ξ)) = (T∗E∨ ,U,ϕu)(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0)

= 〈u, TE∨ ,U,ϕ(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0)〉 .

If we define gl,ξ,U,ϕ ∈ D(U, E∨U) by

gl,ξ,U,ϕ(x) = TE∨ ,U,ϕ(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0)(x)

=
(
ρ∨|E∨x

)−1 ◦ (0, . . . , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0) ◦ ϕ(x) ,

then we may write

〈(T∗E∨ ,U,ϕu) ◦ il , ξ〉D′(ϕ(U))×D(ϕ(U)) = 〈u, gl,ξ,U,ϕ〉[D(U,E∨U)]∗×D(U,E∨U) .

Summary: We can associate with u ∈ D′(U, EU) = (D(U, E∨U))
∗ the following r distribu-

tions in D′(ϕ(U)):
∀ 1 ≤ l ≤ r ũl = T∗E∨ ,U,ϕu ◦ il ,

that is,
∀ ξ ∈ D(ϕ(U)) 〈ũl , ξ〉 = 〈u, gl,ξ,U,ϕ〉 ,

where gl,ξ,U,ϕ ∈ D(U, E∨U) is defined by

(
ρ∨|E∨x

)−1 ◦ (0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0) ◦ ϕ(x) .

In particular,
ρ∨ ◦ gl,ξ,U,ϕ ◦ ϕ−1 = (0, . . . , 0, ξ︸︷︷︸

lth position

, 0, . . . , 0) ,

and so (ρ∨ ◦ gl,ξ,U,ϕ ◦ ϕ−1)l = ξ.
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Let us give a name to the composition of L with T∗E∨ ,U,ϕ that we used above. We set
HE∨ ,U,ϕ := L ◦ T∗E∨ ,U,ϕ:

HE∨ ,U,ϕ : [D(U, E∨U)]
∗ → (D′(ϕ(U)))×r, u 7→ L(T∗E∨ ,U,ϕu) = (ũ1, . . . , ũr) .

Remark 31. Here we make three observations about the mapping HE∨ ,U,ϕ.

(1) For every u ∈ [D(U, E∨U)]
∗

supp[HE∨ ,U,ϕ u]l = suppũl ⊆ ϕ(supp u) .

Indeed, let A = ϕ(suppu). By Theorem 43, it is enough to show that if η ∈ D(ϕ(U)) is such
that suppη ⊆ ϕ(U) \ A, then ũl(η) = 0. Note that

〈ũl , η〉 = 〈u, gl,η,U,ϕ〉 .

So, by Remark 30 we just need to show that gl,η,U,ϕ = 0 on an open neighborhood of suppu.
Let K = suppη. Clearly, U \ ϕ−1(K) is an open neighborhood of suppu. We will show that
gl,η,U,ϕ vanishes on this open neighborhood. Note that

gl,η,U,ϕ(x) = (ρ∨|E∨x )
−1(0, . . . , 0, η ◦ ϕ(x)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

Since ρ∨|E∨x is an isomorphism and η = 0 on ϕ(U) \ K, we conclude that gl,η,U,ϕ = 0 on
ϕ−1(ϕ(U) \ K) = U \ ϕ−1(K).

(2) Clearly, HE∨ ,U,ϕ : D′(U, EU) → [D′(ϕ(U))]×r preserves addition. Moreover, if f ∈
C∞(U) and u ∈ D′(U, EU), then HE∨ ,U,ϕ( f u) = ( f ◦ ϕ−1)HE∨ ,U,ϕ(u). Recall that H =
L ◦ T∗E∨ ,U,ϕ.

〈T∗E∨ ,U,ϕ( f u), (ξ1, . . . , ξr)〉 = 〈 f u, TE∨ ,U,ϕ(ξ1, . . . , ξr)〉

= 〈u, f TE∨ ,U,ϕ(ξ1, . . . , ξr)〉
= 〈u, TE∨ ,U,ϕ[( f ◦ ϕ−1)(ξ1, . . . , ξr)]〉
= 〈T∗E∨ ,U,ϕu, ( f ◦ ϕ−1)(ξ1, . . . , ξr)〉

= 〈( f ◦ ϕ−1)T∗E∨ ,U,ϕu, (ξ1, . . . , ξr)〉

(The third equality follows directly from the definition of TE∨ ,U,ϕ.) Therefore,

T∗E∨ ,U,ϕ( f u) = ( f ◦ ϕ−1)T∗E∨ ,U,ϕu .

The fact that L(( f ◦ ϕ−1)T∗E∨ ,U,ϕu) = ( f ◦ ϕ−1)L(T∗E∨ ,U,ϕu) is an immediate consequence
of the definition of L.

(3) Since TE∨ ,U,ϕ and L are both linear topological isomorphisms, H−1
E∨ ,U,ϕ = (L ◦ T∗E∨ ,U,ϕ)

−1 :
(D′(ϕ(U)))×r → D∗(U, E∨U) is also a linear topological isomorphism. It is useful for our
later considerations to find an explicit formula for this map. Note that

H−1
E∨ ,U,ϕ = (L ◦ T∗E∨ ,U,ϕ)

−1 = (T∗E∨ ,U,ϕ)
−1 ◦ L−1 = (T−1

E∨ ,U,ϕ)
∗ ◦ L−1

= (T̃E∨ ,U,ϕ)
∗ ◦ L−1 = (T̃E∨ ,U,ϕ)

∗ ◦ L̃ .

Recall that

L̃ : [D∗(ϕ(U))]×r → [(D(ϕ(U)))×r]∗, (v1, . . . , vr) 7→ v1 ◦ π1 + . . . + vr ◦ πr ,

T̃∗E∨ ,U,ϕ : [(D(ϕ(U)))×r]∗ → D∗(U, E∨U) .
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Therefore, for all ξ ∈ D(U, E∨U)

H−1
E∨ ,U,ϕ(v

1, . . . , vr)(ξ) = 〈T̃∗E∨ ,U,ϕ(v
1 ◦ π1 + . . . + vr ◦ πr), ξ〉

= 〈(v1 ◦ π1 + . . . + vr ◦ πr), T̃ξ〉
= 〈(v1 ◦ π1 + . . . + vr ◦ πr), ((ρ∨)1 ◦ ξ ◦ ϕ−1, . . . , (ρ∨)r ◦ ξ ◦ ϕ−1)〉
= ∑

i
vi[(ρ∨)i ◦ ξ ◦ ϕ−1] .

Remark 32. Suppose u ∈ D′(M, E) is a regular distribution, that is, u = u f where f ∈
Γreg(M, E). We want to see whether the local components of such a distribution agree with
its components as an element of Γ(M, E). With respect to the total trivialization triple (U, ϕ, ρ)
we have

(1) f 7→ ( f̃ 1, . . . , f̃ r), f̃ l = ρl ◦ f ◦ ϕ−1,
(2) u f 7→ (ũ f

1, . . . , ũ f
l).

The question is whether u f̃ l = ũ f
l? Here we will show that the answer is positive. Indeed, for all

ξ ∈ D(ϕ(U)) we have

〈ũ f
l , ξ〉 = 〈u f , gl,ξ,U,ϕ〉 =

∫
M
[gl,ξ,U,ϕ, f ] =

∫
ϕ(U)

∑
i
(g̃l,ξ,U,ϕ)

i f̃ idV =
∫

ϕ(U)
(g̃l,ξ,U,ϕ)

l f̃ ldV

=
∫

ϕ(U)
f̃ lξdV = 〈u f̃ l , ξ〉 .

Note that the above calculation in fact shows that the restriction of HE∨ ,U,ϕ to D(U, EU) is T̃E,U,ϕ.

7. Spaces of Sobolev and Locally Sobolev Functions in Rn

In this section, we present a brief overview of the basic definitions and properties
related to Sobolev spaces on Euclidean spaces.

7.1. Basic Definitions

Definition 25. Let s ≥ 0 and p ∈ [1, ∞]. The Sobolev–Slobodeckij space Ws,p(Rn) is defined
as follows:

• If s = k ∈ N0, p ∈ [1, ∞],

Wk,p(Rn) = {u ∈ Lp(Rn) : ‖u‖Wk,p(Rn) := ∑
|ν|≤k
‖∂νu‖p < ∞} .

• If s = θ ∈ (0, 1), p ∈ [1, ∞),

Wθ,p(Rn) = {u ∈ Lp(Rn) : |u|Wθ,p(Rn) :=
( ∫ ∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+θp dxdy
) 1

p < ∞} .

• If s = θ ∈ (0, 1), p = ∞,

Wθ,∞(Rn) = {u ∈ L∞(Rn) : |u|Wθ,∞(Rn) := ess sup
x,y∈Rn ,x 6=y

|u(x)− u(y)|
|x− y|θ

< ∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1), p ∈ [1, ∞],

Ws,p(Rn) = {u ∈Wk,p(Rn) : ‖u‖Ws,p(Rn) := ‖u‖Wk,p(Rn) + ∑
|ν|=k
|∂νu|Wθ,p(Rn) < ∞} .
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Remark 33. Clearly, for all s ≥ 0, Ws,p(Rn) ⊆ Lp(Rn). Recall that Lp(Rn) ⊆ L1
loc(R

n) ⊆
D′(Rn). So, we may consider elements of Ws,p(Rn) as distributions in D′(Rn). Indeed, for s ≥ 0,
p ∈ (1, ∞), and u ∈ D′(Rn) we define{

‖u‖Ws,p(Rn) := ‖ f ‖Ws,p(Rn) if u = u f for some f ∈ Lp(Rn)

‖u‖Ws,p(Rn) := ∞ otherwise
.

As a consequence, we may write

Ws,p(Rn) = {u ∈ D′(Rn) : ‖u‖Ws,p(Rn) < ∞} .

Remark 34. Let us make some observations that will be helpful in the proof of a number of important
theorems. Let A be a nonempty measurable set in Rn.

(1) We may write:

∫ ∫
Rn×Rn

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy

=
∫ ∫

A×A
. . . dxdy +

∫
A

∫
Rn\A

. . . dxdy +
∫
Rn\A

∫
A

. . . dxdy +
∫
Rn\A

∫
Rn\A

. . . dxdy .

In particular, if suppu ⊆ A, then the last integral vanishes and the sum of the two middle
integrals will be equal to 2

∫
A

∫
Rn\A

|∂νu(x)|p
|x−y|n+θp dydx. Therefore, in this case

∫ ∫
Rn×Rn

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy =∫ ∫
A×A

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy + 2
∫

A

∫
Rn\A

|∂νu(x)|p

|x− y|n+θp dydx .

(2) If A is open, K ⊆ A is compact and α > n, then there exists a number C such that for all
x ∈ K we have ∫

Rn\A

1
|x− y|α dy ≤ C .

(C may depend on A, K, n, and α but is independent of x.) The reason is as follows: Let
R = 1

2 dist(K, Ac) > 0. Clearly, for all x ∈ K, the ball BR(x) is inside A. Therefore, for all
x ∈ K, Rn \ A ⊆ Rn \ BR(x) which implies that for all x ∈ K
∫
Rn\A

1
|x− y|α dy ≤

∫
Rn\BR(x)

1
|x− y|α dy

z=y−x
=

∫
Rn\BR(0)

1
|z|α dz = σ(Sn−1)

∫ ∞

R

1
rα

rn−1dr ,

which converges because α > n. We can let C = σ(Sn−1)
∫ ∞

R
1
rα rn−1dr.

(3) If A is bounded and α < n, then there exists a number C such that for all x ∈ A∫
A

1
|x− y|α dy ≤ C .

(C depends on A, n, and α but is independent of x.) The reason is as follows: Since A is
bounded there exists R > 0 such that for all x, y ∈ A we have |x− y| < R. So, for all x ∈ A∫

A

1
|x− y|α dy ≤ σ(Sn−1)

∫ R

0

1
rα

rn−1dr ,

which converges because α < n.

Theorem 47. Let s ≥ 0 and p ∈ (1, ∞). C∞
c (Rn) is dense in Ws,p(Rn). In fact, the identity map

iD,W : D(Rn)→Ws,p(Rn) is a linear continuous map with dense image.
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Proof. The fact that C∞
c (Rn) is dense in Ws,p(Rn) follows from Theorem 7.38 and

Lemma 7.44 in [38] combined with Remark 39. Linearity of iD,W is obvious. It remains to
prove that this map is continuous. By Theorem 40 it is enough to show that

∀K ∈ K(Rn), ∀ ϕ ∈ EK(Rn) ∃j ∈ N s.t. ‖ϕ‖Ws,p(Rn) � ‖ϕ‖j,K .

Let s = m + θ where m ∈ N0 and θ ∈ [0, 1). If θ 6= 0, by definition ‖ϕ‖Ws,p(Rn) =
‖ϕ‖Wm,p(Rn) + ∑|ν|=m |∂ν ϕ|Wθ,p(Rn). It is enough to show that each summand can be
bounded by a constant multiple of ‖ϕ‖j,K for some j.

• Step 1: If θ = 0,

‖ϕ‖Wm,p(Rn) = ∑
|ν|≤m

‖∂ν ϕ‖Lp(Rn) = ∑
|ν|≤m

‖∂ν ϕ‖Lp(K)

= ∑
|ν|≤m

(‖ϕ‖m,K|K|
1
p ) � ‖ϕ‖m,K ,

where the implicit constant depends on m, p, and K but is independent of ϕ.
• Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was

pointed out in Remark 34 we may write∫ ∫
Rn×Rn

|∂ν ϕ(x)− ∂ν ϕ(y)|p

|x− y|n+θp dxdy =∫ ∫
A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p

|x− y|n+θp dxdy + 2
∫

A

∫
Rn\A

|∂ν ϕ(x)|p

|x− y|n+θp dydx .

First note that Rn is a convex open set; so by Theorem 6 every function f ∈ EK(Rn) is
Lipschitz; indeed, for all x, y ∈ Rn we have | f (x)− f (y)| � ‖ f ‖1,K‖x− y‖. Hence∫ ∫

A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p

|x− y|n+θp dxdy ≤
∫

A
‖∂ν ϕ‖p

1,K

∫
A

|x− y|p

|x− y|n+θp dydx

=
∫

A
‖∂ν ϕ‖p

1,K

∫
A

1
|x− y|n+(θ−1)p

dydx .

By part 3 of Remark 34
∫

A
1

|x−y|n+(θ−1)p dy is bounded by a constant independent of x;

also, clearly, ‖∂ν ϕ‖1,K ≤ ‖ϕ‖m+1,K. Considering that |A| is finite we get∫ ∫
A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p

|x− y|n+θp dxdy � ‖ϕ‖p
m+1,K .

Finally, for the remaining integral we have∫
A

∫
Rn\A

|∂ν ϕ(x)|p

|x− y|n+θp dydx =
∫

K

∫
Rn\A

|∂ν ϕ(x)|p

|x− y|n+θp dydx ,

because the inner integral is zero for x 6∈ K. Now, we can write∫
K

∫
Rn\A

|∂ν ϕ(x)|p

|x− y|n+θp dydx �
∫

K
‖ϕ‖p

m,K

∫
Rn\A

1
|x− y|n+θp dydx .

By part 2 of Remark 34 for all x ∈ K, the inner integral is bounded by a constant. Since
|K| is finite we conclude that∫

A

∫
Rn\A

|∂ν ϕ(x)|p

|x− y|n+θp dydx � ‖ϕ‖p
m,K .
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Hence
‖u‖Ws,p(Rn) � ‖ϕ‖m+1,K .

Definition 26. Let s > 0 and p ∈ (1, ∞). We define

W−s,p′(Rn) = (Ws,p(Rn))∗ (
1
p
+

1
p′

= 1).

Remark 35. Note that since the identity map from D(Rn) to Ws,p(Rn) is continuous with dense
image, the dual space W−s,p′(Rn) can be viewed as a subspace of D′(Rn). Indeed, by Theorem 25
the adjoint of the identity map, i∗D,W : W−s,p′(Rn) → D′(Rn) is an injective linear continuous
map and we can use this map to identify W−s,p′(Rn) with a subspace of D′(Rn). It is a direct
consequence of the definition of adjoint that for all u ∈ W−s,p′(Rn), i∗D,Wu = u|D(Rn). So, by
identifying u : Ws,p(Rn) → R with u|D(Rn) : D(Rn) → R, we can view W−s,p′(Rn) as a
subspace of D′(Rn).

Remark 36.

• It is a direct consequence of the contents of pp. 88 and 178 of [8] that for m ∈ Z and
1 < p < ∞

Wm,p(Rn) = Hm
p (Rn) = Fm

p,2(Rn) .

• It is a direct consequence of the contents of pp. 38, 51, 90 and 178 of [8] that for s 6∈ Z and
1 < p < ∞

Ws,p(Rn) = Bs
p,p(Rn) .

Theorem 48. For all s ∈ R and 1 < p < ∞, Ws,p(Rn) is reflexive.

Proof. See the proof of Theorem 64. Additionally, see [39], Section 2.6, p. 198.

Note that by definition for all s > 0 we have [Ws,p(Rn)]∗ = W−s,p′(Rn). Now, since
Ws,p(Rn) is reflexive, [W−s,p′(Rn)]∗ is isometrically isomorphic to Ws,p(Rn) and so they
can be identified with one another. Thus, for all s ∈ R and 1 < p < ∞ we may write

[Ws,p(Rn)]∗ = W−s,p′(Rn) .

Let s ≥ 0 and p ∈ (1, ∞). Every function ϕ ∈ C∞
c (Rn) defines a linear functional

Lϕ : Ws,p(Rn)→ R defined by

Lϕ(u) =
∫
Rn

uϕdx .

Lϕ is continuous because by Holder’s inequality

|Lϕ(u)| = |
∫
Rn

uϕdx| ≤ ‖u‖Lp(Rn)‖ϕ‖Lp′ (Rn)
≤ ‖ϕ‖Lp′ (Rn)

‖u‖Ws,p(Rn) .

Furthermore, the map L : C∞
c (Rn)→W−s,p′(Rn) which maps ϕ to Lϕ is injective because

Lϕ = Lψ → ∀ u ∈Ws,p(Rn)
∫
Rn

u(ϕ− ψ)dx = 0→
∫
Rn
|ϕ− ψ|2dx = 0→ ϕ = ψ .

Thus, we may identify ϕ with Lϕ and consider C∞
c (Rn) as a subspace of W−s,p′(Rn).

Theorem 49. For all s > 0 and p ∈ (1, ∞), C∞
c (Rn) is dense in W−s,p′(Rn).
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Proof. The proof given in p. 65 of [1] for the density of Lp′ in the integer order Sobolev
space W−m,p′ , which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C∞

c (Rn) in W−s,p′(Rn).

Remark 37. As a consequence of the above theorems, for all s ∈ R and p ∈ (1, ∞), Ws,p(Rn) can
be considered as a subspace of D′(Rn). See Theorem 25 and the discussion thereafter for further
insights. Additionally, see Remark 45.

Next we list several definitions pertinent to Sobolev spaces on open subsets of Rn.

Definition 27. Let Ω be a nonempty open set in Rn. Let s ∈ R and p ∈ (1, ∞).

(1) • If s = k ∈ N0,

Wk,p(Ω) = {u ∈ Lp(Ω) : ‖u‖Wk,p(Ω) := ∑
|ν|≤k
‖∂νu‖Lp(Ω) < ∞} .

• If s = θ ∈ (0, 1),

Wθ,p(Ω) = {u ∈ Lp(Ω) : |u|Wθ,p(Ω) :=
( ∫ ∫

Ω×Ω

|u(x)− u(y)|p

|x− y|n+θp dxdy
) 1

p < ∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1),

Ws,p(Ω) = {u ∈Wk,p(Ω) : ‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|ν|=k
|∂νu|Wθ,p(Ω) < ∞} .

• If s < 0,

Ws,p(Ω) = (W−s,p′
0 (Ω))∗ (

1
p
+

1
p′

= 1),

where for all e ≥ 0 and 1 < q < ∞, We,q
0 (Ω) is defined as the closure of C∞

c (Ω) in
We,q(Ω).

(2) Ws,p(Ω̄) is defined as the restriction of Ws,p(Rn) to Ω. That is, Ws,p(Ω̄) is the collection
of all u ∈ D′(Ω) such that there is a v ∈ Ws,p(Rn) with v|Ω = u. Here v|Ω should be
interpreted as the restriction of a distribution in D′(Rn) to a distribution in D′(Ω). Ws,p(Ω̄)
is equipped with the following norm:

‖u‖Ws,p(Ω̄) = inf
v∈Ws,p(Rn),v|Ω=u

‖v‖Ws,p(Rn).

(3)
W̃s,p(Ω̄) = {u ∈Ws,p(Rn) : supp u ⊆ Ω̄} .

W̃s,p(Ω̄) is equipped with the norm ‖u‖W̃s,p(Ω̄) = ‖u‖Ws,p(Rn).
(4)

W̃s,p(Ω) = {u = v|Ω, v ∈ W̃s,p(Ω̄)} . (3)

Again v|Ω should be interpreted as the restriction of an element in D′(Rn) to D′(Ω).
So W̃s,p(Ω) is a subspace of D′(Ω). This space is equipped with the norm ‖u‖W̃s,p =
inf ‖v‖Ws,p(Rn) where the infimum is taken over all v that satisfy the equality in Equation (3).
Note that two elements v1 and v2 of W̃s,p(Ω̄) restrict to the same element in D′(Ω) if and
only if supp(v1 − v2) ⊆ ∂Ω. Therefore,

W̃s,p(Ω) =
W̃s,p(Ω̄)

{v ∈Ws,p(Rn) : supp v ⊆ ∂Ω} .
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(5) For s ≥ 0 we define

Ws,p
00 (Ω) = {u ∈Ws,p(Ω) : ext0

Ω,Rn u ∈Ws,p(Rn)} .

We equip this space with the norm

‖u‖Ws,p
00 (Ω) := ‖ext0

Ω,Rn u‖Ws,p(Rn) .

Note that previously we defined the operator ext0
Ω,Rn only for distributions with compact

support and functions; this is why the values of s are restricted to be nonnegative in this
definition.

(6) For all K ∈ K(Ω) we define

Ws,p
K (Ω) = {u ∈Ws,p(Ω) : supp u ⊆ K} ,

with ‖u‖Ws,p
K (Ω) := ‖u‖Ws,p(Ω).

(7)
Ws,p

comp(Ω) =
⋃

K∈K(Ω)

Ws,p
K (Ω) .

This space is normally equipped with the inductive limit topology with respect to the fam-
ily {Ws,p

K (Ω)}K∈K(Ω). However, in these notes we always consider Ws,p
comp(Ω) as a

normed space equipped with the norm induced from Ws,p(Ω).

Remark 38. Each of these definitions has its advantages and disadvantages. For example, the
way we defined the spaces Ws,p(Ω) is well suited for using duality arguments while proving the
usual embedding theorems for these spaces on an arbitrary open set Ω is not trivial; on the other
hand, duality arguments do not work as well for spaces Ws,p(Ω̄) but the embedding results for
these spaces on an arbitrary open set Ω automatically follow from the corresponding results on Rn.
Various authors adopt different definitions for Sobolev spaces on domains based on the applications
in which they are interested. Unfortunately, the notation used in the literature for the various spaces
introduced above are not uniform. First note that it is a direct consequence of Remark 36 and the
definitions of Bs

p,q(Ω), Hs
p(Ω) and Fs

p,q(Ω) in [39] p. 310 and [40] that

Ws,p(Ω̄) =

{
Fs

p,2(Ω) = Hs
p(Ω) if s ∈ Z

Bs
p,p(Ω) if s 6∈ Z

.

With this in mind, we have Table 2 which displays the connection between the notation used in this
work with the notation in a number of well-known references.

Table 2. Connection to notation employed in previous literature

This Manuscript Triebel [39] Triebel [40] Grisvard [5] Bhattacharyya [4]

Ws,p(Ω) Ws
p(Ω) Ws,p(Ω)

Ws,p(Ω̄) Ws
p(Ω) Ws

p(Ω) Ws
p(Ω̄) Ws,p(Ω̄)

W̃s,p(Ω̄) W̃s
p(Ω) W̃s

p(Ω̄)

W̃s,p(Ω) W̃s
p(Ω)

Ws,p
00 (Ω) W̃s

p(Ω) Ws,p
00 (Ω)
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Remark 39.

• Note that

‖u‖Wk,p(Ω) + ∑
|ν|=k
|∂νu|Wθ,p(Ω) ≤ ‖u‖Wk,p(Ω) + ∑

|ν|=k
‖∂νu‖Wθ,p(Ω)

= ‖u‖Wk,p(Ω) + ∑
|ν|=k

(
‖∂νu‖Lp(Ω) + |∂νu|Wθ,p(Ω)

)
� ‖u‖Wk,p(Ω) + ∑

|ν|=k
|∂νu|Wθ,p(Ω) (since ∑

|ν|=k
‖∂νu‖Lp(Ω) ≤ ‖u‖Wk,p(Ω)) .

Therefore, the following is an equivalent norm on Ws,p(Ω)

‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|α|=k
‖∂αu‖Wθ,p(Ω) .

• For p ∈ (1, ∞) and a, b > 0 we have (ap + bp)
1
p ' a + b; indeed,

ap + bp ≤ (a + b)p ≤ (2 max{a, b})p ≤ 2p(ap + bp) .

More generally, if a1, . . . , am are nonnegative numbers, then (ap
1 + . . .+ ap

m)
1
p ' a1 + . . .+ am.

Therefore, for any nonempty open set Ω in Rn, s > 0, the following expressions are both
equivalent to the original norm on Ws,p(Ω)

‖u‖Ws,p(Ω) :=
[
‖u‖p

Wk,p(Ω)
+ ∑
|ν|=k
|∂νu|p

Wθ,p(Ω)

] 1
p ,

‖u‖Ws,p(Ω) :=
[
‖u‖p

Wk,p(Ω)
+ ∑
|ν|=k
‖∂νu‖p

Wθ,p(Ω)

] 1
p ,

where s = k + θ, k ∈ N0, θ ∈ (0, 1).

7.2. Properties of Sobolev Spaces on the Whole Space Rn

Theorem 50 (Embedding Theorem I, [39], Section 2.8.1). Suppose 1 < p ≤ q < ∞ and
−∞ < t ≤ s < ∞ satisfy s − n

p ≥ t − n
q . Then Ws,p(Rn) ↪→ Wt,q(Rn). In particular,

Ws,p(Rn) ↪→Wt,p(Rn).

Theorem 51 (Multiplication by smooth functions, [12], p. 203). Let s ∈ R, 1 < p < ∞, and
ϕ ∈ BC∞(Rn). Then the linear map

mϕ : Ws,p(Rn)→Ws,p(Rn), u 7→ ϕu

is well-defined and bounded.

A detailed study of the following multiplication theorems can be found in [18].

Theorem 52. Let si, s and 1 ≤ p, pi < ∞ (i = 1, 2) be real numbers satisfying

(i) si ≥ s ≥ 0,
(ii) s ∈ N0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
) ≥ 0,

where the strictness of the inequalities in items (iii) and (iv) can be interchanged.
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If u ∈ Ws1,p1(Rn) and v ∈ Ws2,p2(Rn), then uv ∈ Ws,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

Ws1,p1(Rn)×Ws2,p2(Rn)→Ws,p(Rn).

Theorem 53 (Multiplication theorem for Sobolev spaces on the whole space, nonnegative
exponents). Assume si, s and 1 ≤ pi ≤ p < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) s ≥ 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
).

If u ∈ Ws1,p1(Rn) and v ∈ Ws2,p2(Rn), then uv ∈ Ws,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

Ws1,p1(Rn)×Ws2,p2(Rn)→Ws,p(Rn).

Theorem 54 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents I). Assume si, s and 1 < pi ≤ p < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} < 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
),

(v) s1 + s2 ≥ n(
1
p1

+
1
p2
− 1) ≥ 0.

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map

Ws1,p1(Rn)×Ws2,p2(Rn)→Ws,p(Rn).

Theorem 55 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents II). Assume si, s and 1 < p, pi < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} ≥ 0 and s < 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
) ≥ 0,

(v) s1 + s2 > n(
1
p1

+
1
p2
− 1) (the inequality is strict).

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map

Ws1,p1(Rn)×Ws2,p2(Rn)→Ws,p(Rn).

Remark 40. Let us discuss further how we should interpret multiplication in the case where
negative exponents are involved. Suppose for instance s1 < 0 (s2 may be positive or negative). A
moment’s thought shows that the relation

Ws1,p1(Rn)×Ws2,p2(Rn) ↪→Ws,p(Rn)

in the above theorems can be interpreted as follows: for all u ∈Ws1,p1(Rn) and v ∈Ws2,p2(Rn), if
{ϕi} in C∞(Rn) ∩Ws1,p1(Rn) is any sequence such that ϕi → u in Ws1,p1(Rn), then
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(1) For all i, ϕiv ∈Ws,p(Rn) (multiplication of a smooth function and a distribution);
(2) ϕiv converges to some element g in Ws,p(Rn) as i→ ∞;
(3) ‖g‖Ws,p(Rn) � ‖u‖Ws1,p1 (Rn)‖v‖Ws2,p2 (Rn) where the implicit constant does not depend on u

and v;
(4) g ∈ Ws,p(Rn) is independent of the sequence {ϕi} and can be regarded as the product of u

and v.

In particular, ϕiv→ uv in D′(Rn) and for all ψ ∈ C∞
c (Rn)

〈uv, ψ〉D′(Rn)×D(Rn) = lim
i→∞
〈ϕiv, ψ〉D′(Rn)×D(Rn) = 〈v, ϕiψ〉D′(Rn)×D(Rn) .

7.3. Properties of Sobolev Spaces on Smooth Bounded Domains

In this section, we assume that Ω is an open bounded set in Rn with smooth bound-
ary unless a weaker assumption is stated. First we list some facts that can be useful in
understanding the relationship between various definitions of Sobolev spaces on domains.

• ([4], p. 584) [Theorem 8.10.13 and its proof] Suppose s > 0 and 1 < p < ∞. Then
Ws,p(Ω) = Ws,p(Ω̄) in the sense of equivalent normed spaces.

• ([40], pp. 481 and 494) For s > 1
p − 1, W̃s,p(Ω̄) = W̃s,p(Ω). That is, for s > 1

p − 1

{v ∈Ws,p(Rn) : supp v ⊆ ∂Ω} = {0} .

• Let s > 0 and 1 < p < ∞. Then for s 6= 1
p , 1 + 1

p , 2 + 1
p , . . . (that is, when the fractional

part of s is not equal to 1
p ) we have

(1) ([4], p. 592) [Theorem 8.10.20] Ws,p
00 (Ω) = Ws,p

0 (Ω) in the sense of equivalent
normed spaces.

(2)
ext0

Ω,Rn :
(
C∞

c (Ω), ‖.‖s,p
)
→Ws,p(Rn)

is a well-defined bounded linear operator.
(3)

resRn ,Ω : W−s,p′(Rn)→W−s,p′(Ω) u 7→ u|Ω
is a well-defined bounded linear operator.

Note that the connection between items (2) and (3) above can be seen as follows:
Let u ∈ W−s,p′(Rn). resRn ,Ωu ∈ W−s,p′(Ω) if and only if u|Ω : (D(Ω), ‖.‖s,p) → R is
continuous, that is, if

sup
0 6=ϕ∈D(Ω)

|〈u|Ω, ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

< ∞ .

We have

|〈u|Ω, ϕ〉D′(Ω)×D(Ω)| = |〈u, ext0
Ω,Rn ϕ〉D′(Rn)×D(Rn)| = |〈u, ext0

Ω,Rn ϕ〉W−s,p′ (Rn)×Ws,p
0 (Rn)

|

� ‖u‖W−s,p′ (Rn)
‖ext0

Ω,Rn ϕ‖Ws,p
0 (Rn) .

So, the desired inequality holds if one can show that for all ϕ ∈ D(Ω),
‖ext0

Ω,Rn ϕ‖Ws,p
0 (Rn) � ‖ϕ‖Ws,p(Ω).

Next we recall some facts about extension operators and embedding properties of
Sobolev spaces. The existence of extension operator can be helpful in transferring known
results for Sobolev spaces defined on Rn to Sobolev spaces defined on bounded domains.

Theorem 56 (Extension Property I [4], p. 584). Let Ω ⊂ Rn be a bounded open set with
Lipschitz continuous boundary. Then for all s > 0 and for 1 ≤ p < ∞, there exists a continuous
linear extension operator P : Ws,p(Ω) ↪→Ws,p(Rn) such that (Pu)|Ω = u and ‖Pu‖Ws,p(Rn) ≤
C‖u‖Ws,p(Ω) for some constant C that may depend on s, p, and Ω but is independent of u.
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The next theorem states that the claim of Theorem 56 holds for all values of s (positive
and negative) if we replace Ws,p(Ω) with Ws,p(Ω̄).

Theorem 57 (Extension Property II [40], p. 487, [8], p. 201). Let Ω ⊂ Rn be a bounded open set
with Lipschitz continuous boundary, p ∈ (1, ∞) and s ∈ R. Let R : Ws,p(Rn)→Ws,p(Ω̄) be the
restriction operator (R(u) = u|Ω). Then there exists a continuous linear operator S : Ws,p(Ω̄)→
Ws,p(Rn) such that R ◦ S = Id.

Corollary 3. One can easily show that the results of Sobolev multiplication theorems in the
previous section (Theorems 52–55) hold also for Sobolev spaces on any Lipschitz domain as long as
all the Sobolev spaces involved satisfy We,q(Ω) = We,q(Ω̄) (and so, in particular, existence of an
extension operator is guaranteed). Indeed, if P1 : Ws1,p1(Ω)→Ws1,p1(Rn) and P2 : Ws2,p2(Ω)→
Ws2,p2(Rn) are extension operators, then (P1u)(P2v)|Ω = uv and therefore,

‖uv‖Ws,p(Ω) = ‖uv‖Ws,p(Ω̄) ≤ ‖(P1u)(P2v)‖Ws,p(Rn) � ‖P1u‖Ws1,p1 (Rn)‖P2v‖Ws2,p2 (Rn)

� ‖u‖Ws1,p1 (Ω)‖v‖Ws2,p2 (Ω) .

Remark 41. In the above Corollary, we presumed that (P1u)(P2v)|Ω = uv. Clearly, if s1 and
s2 are both nonnegative, the equality holds. However, what if at least one of the exponents, say
s1, is negative? In order to prove this equality, we may proceed as follows: let {ϕi} be a sequence
in C∞(Rn) ∩Ws1,p1(Rn) such that ϕi → P1u in Ws1,p1(Rn). By assumption Ws1,p1(Ω) =
Ws1,p1(Ω̄), therefore the restriction operator is continuous and {ϕi|Ω} is a sequence in C∞(Ω) ∩
Ws1,p1(Ω) that converges to u in Ws1,p1(Ω). For all ψ ∈ C∞

c (Ω) we have

〈[(P1u)(P2v)]|Ω, ψ〉D′(Ω)×D(Ω) = 〈(P1u)(P2v), ext0
Ω,Rn ψ〉D′(Rn)×D(Rn)

Remark 40
= lim

i→∞
〈ϕi(P2v), ext0

Ω,Rn ψ〉D′(Rn)×D(Rn)

= lim
i→∞
〈(P2v), ϕiext0

Ω,Rn ψ〉D′(Rn)×D(Rn)

= lim
i→∞
〈(P2v), ext0

Ω,Rn (ϕi|Ωψ)〉D′(Rn)×D(Rn)

= lim
i→∞
〈(P2v)|Ω, ϕi|Ωψ〉D′(Ω)×D(Ω)

= lim
i→∞
〈ϕi|Ωv, ψ〉D′(Ω)×D(Ω)

= 〈uv, ψ〉D′(Ω)×D(Ω) .

Theorem 58 (Embedding Theorem II [5]). Let Ω be a nonempty bounded open subset of Rn

with Lipschitz continuous boundary or Ω = Rn. If sp > n, then Ws,p(Ω) ↪→ L∞(Ω) ∩ C0(Ω)
and Ws,p(Ω) is a Banach algebra.

Theorem 59 (Embedding Theorem III [18]). Let Ω be a nonempty bounded open subset of Rn

with Lipschitz continuous boundary. Suppose 1 ≤ p, q < ∞ (p does NOT need to be less than or
equal to q) and 0 ≤ t ≤ s satisfy s− n

p ≥ t− n
q . If s 6∈ N0, additionally assume that s 6= t. Then

Ws,p(Ω) ↪→Wt,q(Ω). In particular, Ws,p(Ω) ↪→Wt,p(Ω).

Theorem 60. Let Ω be a nonempty bounded open subset of Rn with Lipschitz continuous boundary.
Then u : Ω→ R is Lipschitz continuous if and only if u ∈W1,∞(Ω). In particular, every function
in BC1(Ω) is Lipschitz continuous.

Proof. The above theorem is proved in Chapter 5 of [2] for open sets with C1 boundary.
The exact same proof works for open sets with Lipschitz continuous boundary.

The following theorem (and its corollary) will play an important role in our study of
Sobolev spaces on manifolds.
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Theorem 61 (Multiplication by smooth functions). Let Ω be a nonempty bounded open set in
Rn with Lipschitz continuous boundary.

(1) Let k ∈ N0 and 1 < p < ∞. If ϕ ∈ BCk(Ω), then the linear map Wk,p(Ω) → Wk,p(Ω)
defined by u 7→ ϕu is well-defined and bounded.

(2) Let s ∈ (0, ∞) and 1 < p < ∞. If ϕ ∈ BCbsc,1(Ω) (all partial derivatives of ϕ up to and
including order bsc exist and are bounded and Lipschitz continuous), then the linear map
Ws,p(Ω)→Ws,p(Ω) defined by u 7→ ϕu is well-defined and bounded.

(3) Let s ∈ (−∞, 0) and 1 < p < ∞. If ϕ ∈ BC∞,1(Ω), then the linear map Ws,p(Ω) →
Ws,p(Ω) defined by u 7→ ϕu is well-defined and bounded.

Note: According to Theorem 60, when Ω is an open bounded set with Lipschitz continuous
boundary, every function in BC1(Ω) is Lipschitz continuous. As a consequence, BC∞,1(Ω) =
BC∞(Ω). Of course, as it was discussed after Theorem 6, for a general bounded open set Ω whose
boundary is not Lipschitz, functions in BC∞(Ω) are not necessarily Lipschitz.

Proof.

• Step 1: s = k ∈ N0. The claim is proved in ([29], p. 995).
• Step 2: 0 < s < 1. The proof in p. 194 of [41], with obvious modifications, shows the

validity of the claim for the case where s ∈ (0, 1).
• Step 3: 1 < s 6∈ N. In this case we can proceed as follows: Let k = bsc, θ = s− k.

‖ϕu‖s,p
Remark 39

= ‖ϕu‖k,p + ∑
|ν|=k
‖∂ν(ϕu)‖θ,p

� ‖ϕu‖k,p + ∑
|ν|=k

∑
β≤ν

‖∂ν−β ϕ∂βu‖θ,p

� ‖u‖k,p + ∑
|ν|=k

∑
β≤ν

‖∂βu‖θ,p (by steps 1 and 2; the implicit constant may depend on ϕ)

= ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖∂βu‖θ,p

� ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖u‖θ+|β|,p (∂β : Wθ+|β|,p(Ω)→Wθ,p(Ω)is continuous)

� ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖u‖s,p (θ + |β| < s⇒Ws,p(Ω) ↪→Wθ+|β|,p(Ω))

� ‖u‖s,p.

Note that the embedding Ws,p(Ω) ↪→ Wθ+|β|,p(Ω) is valid due to the extra assump-
tion that Ω is bounded with Lipschitz continuous boundary (see Theorem 68 and
Remark 42).

• Step 4: s < 0. For this case we use a duality argument. Note that since ϕ ∈ C∞(Ω), ϕu
is defined as an element of D′(Ω). Furthermore, recall that Ws,p(Ω) is isometrically
isomorphic to [C∞

c (Ω), ‖.‖−s,p′ ]
∗ (see the discussion after Remark 10). So, in order

to prove the claim, it is enough to show that multiplication by ϕ is a well-defined
continuous operator from Ws,p(Ω) to A = [C∞

c (Ω), ‖.‖−s,p′ ]
∗. We have

‖ϕu‖A = sup
v∈C∞

c \{0}

|〈ϕu, v〉D′(Ω)×D(Ω)|
‖v‖−s,p′

= sup
v∈C∞

c \{0}

|〈u, ϕv〉D′(Ω)×D(Ω)|
‖v‖−s,p′

Remark 45
= sup

v∈C∞
c \{0}

|〈u, ϕv〉
Ws,p(Ω)×W−s,p′

0 (Ω)
|

‖v‖−s,p′

≤ sup
v∈C∞

c \{0}

‖u‖s,p‖ϕv‖−s,p′

‖v‖−s,p′
� sup

v∈C∞
c \{0}

‖u‖s,p‖v‖−s,p′

‖v‖−s,p′
= ‖u‖s,p.
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Corollary 4. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous boundary.
Let K ∈ K(Ω). Suppose s ∈ R and p ∈ (1, ∞). If ϕ ∈ C∞(Ω), then the linear map Ws,p

K (Ω)→
Ws,p

K (Ω) defined by u 7→ ϕu is well-defined and bounded.

Proof. Let U be an open set such that K ⊂ U ⊆ Ū ⊆ Ω. Let ψ ∈ C∞
c (Ω) be such that

ψ = 1 on K and ψ = 0 outside U. Clearly ψϕ ∈ C∞
c (Ω) and thus ψϕ ∈ BC∞,1(Ω) (see the

paragraph above Theorem 7). So, it follows from Theorem 61 that ‖ψϕu‖s,p � ‖u‖s,p where
the implicit constant in particular may depend on ϕ and ψ. Now the claim follows from
the obvious observation that for all u ∈Ws,p

K (Ω), we have ψϕu = ϕu.

Theorem 62. Let Ω = Rn or Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary. Let K ⊆ Ω be compact, s ∈ R and p ∈ (1, ∞). Then

(1) Ws,p
K (Ω) ⊆Ws,p

0 (Ω). That is, every element of Ws,p
K (Ω) is a limit of a sequence in C∞

c (Ω);
(2) if K ⊆ V ⊆ K′ ⊆ Ω where and K′ is compact and V is open, then for every u ∈ Ws,p

K (Ω),
there exists a sequence in C∞

K′(Ω) that converges to u in Ws,p(Ω).

Proof.

(1) Let u ∈ Ws,p
K (Ω). By Theorems 65 and 66, there exists a sequence {ϕi} in C∞(Ω)

such that ϕi → u in Ws,p(Ω). Let ψ ∈ C∞
c (Ω) be such that ψ = 1 on K. Since

C∞
c (Ω) ⊆ BC∞,1(Ω), it follows from Theorems 51 and 61 that ψϕi → ψu in Ws,p(Ω).

This proves the claim because ψϕi ∈ C∞
c (Ω) and ψu = u.

(2) In the above argument, choose ψ ∈ C∞
c (Ω) such that ψ = 1 on K and ψ = 0 outside V.

Theorem 63 (([40], p. 496), ([39], pp. 317, 330, and 332)). Let Ω be a bounded Lipschitz
domain in Rn. Suppose 1 < p < ∞, 0 ≤ s < 1

p . Then C∞
c (Ω) is dense in Ws,p(Ω) (thus

Ws,p(Ω) = Ws,p
0 (Ω)).

7.4. Properties of Sobolev Spaces on General Domains

In this section, Ω and Ω′ are arbitrary nonempty open sets in Rn. We begin with some
facts about the relationship between various Sobolev spaces defined on bounded domains.

• Suppose s ≥ 0 and Ω′ ⊆ Ω. Then for all u ∈ Ws,p(Ω), we have resΩ,Ω′u ∈ Ws,p(Ω′).
Moreover, ‖resΩ,Ω′u‖Ws,p(Ω′) ≤ ‖u‖Ws,p(Ω). Indeed, if we let s = k + θ

‖u‖Ws,p(Ω′) = ‖u‖Wk,p(Ω′) + ∑
|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy
) 1

p

= ∑
|α|≤k
‖∂αu‖Lp(Ω′) + ∑

|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy
) 1

p

≤ ∑
|α|≤k
‖∂αu‖Lp(Ω) + ∑

|ν|=k

( ∫ ∫
Ω×Ω

|∂νu(x)− ∂νu(y)|p

|x− y|n+θp dxdy
) 1

p = ‖u‖Ws,p(Ω) .

So, resΩ,Ω′ : Ws,p(Ω) → Ws,p(Ω′) is a continuous linear map. Furthermore, as a
consequence, for every real number s ≥ 0

Ws,p(Ω̄) ↪→Ws,p(Ω) .

Indeed, if u ∈ Ws,p(Ω̄), then there exists v ∈ Ws,p(Rn) such that resRn ,Ωv = u and
thus u ∈ Ws,p(Ω). Moreover, for every such v, ‖u‖Ws,p(Ω) = ‖resRn ,Ωv‖Ws,p(Ω) ≤
‖v‖Ws,p(Rn). This implies that

‖u‖Ws,p(Ω) ≤ inf
v∈Ws,p(Rn),v|Ω=u

‖v‖Ws,p(Rn) = ‖u‖Ws,p(Ω̄) .
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• Clearly, for all s ≥ 0
Ws,p

00 (Ω) ↪→Ws,p(Ω̄) .

• For every integer m > 0 ([5], p. 18)

Wm,p
0 (Ω) ⊆Wm,p

00 (Ω) ⊆Wm,p(Ω̄) ⊆Wm,p(Ω) .

• Suppose s ≥ 0. Clearly, the restriction map resRn ,Ω : Ws,p(Rn) → Ws,p(Ω̄) is a
continuous linear map. This combined with the fact that C∞

c (Rn) is dense in Ws,p(Rn)
implies that C∞

c (Ω̄) := resRn ,Ω(C∞
c (Rn)) is dense in Ws,p(Ω̄) for all s ≥ 0.

• W̃s,p(Ω̄) is a closed subspace of Ws,p(Rn). Closed subspaces of reflexive spaces are
reflexive, hence W̃s,p(Ω̄) is a reflexive space.

Theorem 64. Let Ω be a nonempty open set in Rn and 1 < p < ∞.

(1) For all s ≥ 0, Ws,p(Ω) is reflexive.
(2) For all s ≥ 0, Ws,p

0 (Ω) is reflexive.
(3) For all s < 0, Ws,p(Ω) is reflexive.

Proof.

(1) The proof for s ∈ N0 can be found in [1]. Let s = k + θ where k ∈ N0 and 0 < θ < 1.
Let

r = card{ν ∈ Nn
0 : |ν| = k} .

Define P : Ws,p(Ω)→Wk,p(Ω)× [Lp(Ω×Ω)]×r by

P(u) = (u,
(
|∂νu(x)− ∂νu(y)|
|x− y|

n
p +θ

)
|ν|=k

) .

The space Wk,p(Ω)× [Lp(Ω×Ω)]×r equipped with the norm

‖( f , v1, . . . , vr)‖ := ‖ f ‖Wk,p(Ω) + ‖v1‖Lp(Ω×Ω) + . . . + ‖vr‖Lp(Ω×Ω)

is a product of reflexive spaces and so it is reflexive (see Theorem 9). Clearly, the
operator P is an isometry from Ws,p(Ω) to Wk,p(Ω)× [Lp(Ω×Ω)]×r. Since Ws,p(Ω)
is a Banach space, P(Ws,p(Ω)) is a closed subspace of the reflexive space Wk,p(Ω)×
[Lp(Ω×Ω)]×r and thus it is reflexive. Hence Ws,p(Ω) itself is reflexive.

(2) Ws,p
0 (Ω) is the closure of C∞

c (Ω) in Ws,p(Ω). Closed subspaces of reflexive spaces are
reflexive. Therefore, Ws,p

0 (Ω) is reflexive.
(3) A normed space X is reflexive if and only if X∗ is reflexive (see Theorem 9). Since for

s < 0 we have Ws,p(Ω) = [W−s,p′
0 (Ω)]∗, the reflexivity of Ws,p(Ω) follows from the

reflexivity of W−s,p′
0 (Ω).

Theorem 65. For all s < 0 and 1 < p < ∞, C∞
c (Ω) is dense in Ws,p(Ω).

Proof. The proof of the density of Lp in Wm,p in p. 65 of [1] for integer order Sobolev

spaces, which is based on the reflexivity of W−m,p′
0 (Ω), works in the exact same way for

establishing the density of C∞
c (Ω) in Ws,p(Ω).

Theorem 66 (Meyers-Serrin). For all s ≥ 0 and p ∈ (1, ∞), C∞(Ω) ∩Ws,p(Ω) is dense in
Ws,p(Ω).

Next we consider extension by zero and its properties.
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Lemma 6 ([4], p. 201). Let Ω be a nonempty open set in Rn and u ∈ Wm,p
0 (Ω) where m ∈ N0

and 1 < p < ∞. Then

(1) ∀ |α| ≤ m, ∂αũ = (̃∂αu) as elements of D′(Rn),
(2) ũ ∈Wm,p(Rn) with ‖ũ‖Wm,p(Rn) = ‖u‖Wm,p(Ω).

Here, ũ := ext0
Ω,Rn u and (̃∂αu) := ext0

Ω,Rn(∂αu).

Lemma 7 ([6], p. 546). Let Ω be a nonempty open set in Rn, K ∈ K(Ω), u ∈ Ws,p
K (Ω) where

s ∈ (0, 1) and 1 < p < ∞. Then ext0
Ω,Rn u ∈Ws,p(Rn) and

‖ext0
Ω,Rn‖Ws,p(Rn) � ‖u‖Ws,p(Ω) ,

where the implicit constant depends on n, p, s, K and Ω.

Theorem 67 (Extension by Zero). Let s ≥ 0 and p ∈ (1, ∞). Let Ω be a nonempty open set in
Rn and let K ∈ K(Ω). Suppose u ∈Ws,p

K (Ω). Then

(1) ext0
Ω,Rn u ∈ Ws,p(Rn). Indeed, ‖ext0

Ω,Rn u‖Ws,p(Rn) � ‖u‖Ws,p(Ω) where the implicit con-
stant may depend on s, p, n, K, Ω but it is independent of u ∈Ws,p

K (Ω).
(2) Moreover,

‖ext0
Ω,Rn u‖Ws,p(Rn) ≥ ‖u‖Ws,p(Ω) .

In short, ‖ext0
Ω,Rn u‖Ws,p(Rn) ' ‖u‖Ws,p(Ω).

Proof. Let ũ = ext0
Ω,Rn u. If s ∈ N0, then both items follow from Lemma 6. So, let s = m + θ

where m ∈ N0 and θ ∈ (0, 1). We have

‖ũ‖Ws,p(Rn) = ‖ũ‖Wm,p(Rn) + ∑
|ν|=m

|∂νũ|Wθ,p(Rn)

Lemma 6
= ‖u‖Wm,p(Ω) + ∑

|ν|=m
|∂̃νu|Wθ,p(Rn)

Lemma 7
� ‖u‖Wm,p(Ω) + ∑

|ν|=m
‖∂νu‖Wθ,p(Ω)

� ‖u‖Ws,p(Ω) .

The fact that ‖ũ‖Ws,p(Rn) ≥ ‖u‖Ws,p(Ω) is a direct consequence of the decomposition stated
in item 1 of Remark 34.

Corollary 5. Let s ≥ 0 and p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω
and let K ∈ K(Ω′). Suppose u ∈Ws,p

K (Ω′). Then

(1) ext0
Ω′ ,Ωu ∈Ws,p(Ω),

(2) ‖ext0
Ω′ ,Ωu‖Ws,p(Ω) ' ‖u‖Ws,p(Ω′).

Proof.

u ∈Ws,p
K (Ω′) =⇒ ext0

Ω′ ,Rn u ∈Ws,p(Rn) =⇒ ext0
Ω′ ,Rn u|Ω ∈Ws,p(Ω̄) .

As we know, Ws,p(Ω̄) ↪→ Ws,p(Ω). Furthermore, it is easy to see that ext0
Ω′ ,Rn u|Ω =

ext0
Ω′ ,Ωu. Therefore, ext0

Ω′ ,Ωu ∈Ws,p(Ω). Moreover,

‖ext0
Ω′ ,Ωu‖Ws,p(Ω) ' ‖ext0

Ω,Rn ◦ ext0
Ω′ ,Ωu‖Ws,p(Rn) = ‖ext0

Ω′ ,Rn u‖Ws,p(Rn) ' ‖u‖Ws,p(Ω′) .
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Extension by zero for Sobolev spaces with negative exponents will be discussed in
Theorem 71.

Theorem 68 (Embedding Theorem IV). Let Ω ⊆ Rn be an arbitrary nonempty open set.

(1) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s− n
p ≥ t− n

q . Then Ws,p(Ω̄) ↪→Wt,q(Ω̄).

(2) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s− n
p ≥ t− n

q . Then Ws,p
K (Ω) ↪→Wt,q

K (Ω)

for all K ∈ K(Ω).
(3) For all k1, k2 ∈ N0 with k1 ≤ k2 and 1 < p < ∞, Wk2,p(Ω) ↪→Wk1,p(Ω).
(4) If 0 ≤ t ≤ s < 1 and 1 < p < ∞, then Ws,p(Ω) ↪→Wt,p(Ω).
(5) If 0 ≤ t ≤ s < ∞ are such that bsc = btc and 1 < p < ∞, then Ws,p(Ω) ↪→Wt,p(Ω).
(6) If 0 ≤ t ≤ s < ∞, t ∈ N0, and 1 < p < ∞, then Ws,p(Ω) ↪→Wt,p(Ω).

Proof.

(1) This item can be found in ([39], Section 4.6.1).
(2) For all u ∈Ws,p

K (Ω) we have

‖u‖Wt,q(Ω) ' ‖ext0
Ω,Rn u‖Wt,q(Rn) � ‖ext0

Ω,Rn u‖Ws,p(Rn) ' ‖u‖Ws,p(Ω) .

(3) This item is a direct consequence of the definition of integer order Sobolev spaces.
(4) Proof can be found in [6], p. 524.
(5) This is a direct consequence of the previous two items.
(6) This is true because Ws,p(Ω) ↪→Wbsc,p(Ω) ↪→Wt,p(Ω).

Remark 42. For an arbitrary open set Ω in Rn and 0 < t < 1, the embedding W1,p(Ω) ↪→
Wt,p(Ω) does NOT necessarily hold (see, e.g., [6], Section 9). Of course, as it was discussed,
under the extra assumption that Ω is Lipschitz, the latter embedding holds true. So, if bsc 6= btc
and t 6∈ N0, then in order to ensure that Ws,p(Ω) ↪→ Wt,p(Ω) we need to assume some sort of
regularity for the domain Ω (for instance it is enough to assume Ω is Lipschitz).

Theorem 69 (Multiplication by smooth functions). Let Ω be any nonempty open set in Rn. Let
p ∈ (1, ∞).

(1) If 0 ≤ s < 1 and ϕ ∈ BC0,1(Ω) (that is, ϕ is bounded and ϕ is Lipschitz), then

mϕ : Ws,p(Ω)→Ws,p(Ω), u 7→ ϕu

is a well-defined bounded linear map.
(2) If k ∈ N0 and ϕ ∈ BCk(Ω), then

mϕ : Wk,p(Ω)→Wk,p(Ω), u 7→ ϕu

is a well-defined bounded linear map.
(3) If −1 < s < 0 and ϕ ∈ BC∞,1(Ω) or s ∈ Z− and ϕ ∈ BC∞(Ω), then

mϕ : Ws,p(Ω)→Ws,p(Ω), u 7→ ϕu

is a well-defined bounded linear map (ϕu is interpreted as the product of a smooth function
and a distribution).

Proof.

(1) Proof can be found in [6], p. 547.
(2) Proof can be found in [29], p. 995.
(3) The duality argument in Step 4 of the proof of Theorem 61 works for this item too.
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Remark 43. Suppose ϕ ∈ BC∞,1(Ω). Note that the above theorem says nothing about the
boundedness of the mapping mϕ : Ws,p(Ω) → Ws,p(Ω) in the case where s is noninteger such
that |s| > 1. Of course, if we assume Ω is Lipschitz, then the continuity of mϕ follows from
Theorem 61. It is important to note that the proof of that theorem for the case s > 1 (noninteger)
uses the embedding Wk+θ,p(Ω) ↪→Wk′+θ,p(Ω) with k′ < k which as we discussed does not hold
for an arbitrary open set Ω. The proof for the case s < −1 (noninteger) uses duality to transfer the
problem to s > 1 and thus again we need the extra assumption of regularity of the boundary of Ω.

Theorem 70. Let Ω be a nonempty open set in Rn, K ∈ K(Ω), p ∈ (1, ∞), and −1 < s < 0 or
s ∈ Z− or s ∈ [0, ∞). If ϕ ∈ C∞(Ω), then the linear map

Ws,p
K (Ω)→Ws,p

K (Ω), u 7→ ϕu

is well-defined and bounded.

Proof. There exists ψ ∈ C∞
c (Ω) such that ψ = 1 on K. Clearly ψϕ ∈ C∞

c (Ω) and if u ∈
Ws,p

K (Ω), ψϕu = ϕu on Ω. Thus without loss of generality we may assume that ϕ ∈ C∞
c (Ω).

Since C∞
c (Ω) ⊆ BC∞(Ω) and C∞

c (Ω) ⊆ BC∞,1(Ω), the cases where −1 < s < 0 or s ∈ Z−
follow from Theorem 69. For s ≥ 0, the proof of Theorem 61 works for this theorem as
well. The only place in that proof that the regularity of the boundary of Ω was used was
for the validity of the embedding Ws,p(Ω) ↪→ Wθ+|β|,p(Ω). However, as we know (see
Theorem 68), this embedding holds for Sobolev spaces with support in a fixed compact set
inside Ω for a general open set Ω, that is, for Ws,p

K (Ω) ↪→Wθ+|β|,p
K (Ω) to be true we do not

need to assume Ω is Lipschitz.

Remark 44. Note that our proofs for s < 0 are based on duality. As a result, it seems that for the
case where s is a noninteger less than −1 we cannot have a multiplication by smooth functions
result for Ws,p

K (Ω) similar to the one stated in the above theorem (note that there is no fixed compact
set K such that every v ∈ C∞

c (Ω) has compact support in K. Thus, the technique used in Step 4 of
the proof of Theorem 61 does not work in this case).

Theorem 71. Let s < 0 and p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω
and let K ∈ K(Ω′). Suppose u ∈Ws,p

K (Ω′). Then

(1) If ext0
Ω′ ,Ωu ∈ Ws,p(Ω), then ‖u‖Ws,p(Ω′) � ‖ext0

Ω′ ,Ωu‖Ws,p(Ω) (the implicit constant may
depend on K).

(2) If s ∈ (−∞,−1] ∩ Z or −1 < s < 0, then ext0
Ω′ ,Ωu ∈ Ws,p(Ω) and ‖ext0

Ω′ ,Ωu‖Ws,p(Ω) '
‖u‖Ws,p(Ω′). This result holds for all s < 0 if we further assume that Ω is Lipschitz or
Ω = Rn.

Proof. To be completely rigorous, let iD,W : D(Ω′)→W−s,p′
0 (Ω′) be the identity map and

let i∗D,W : Ws,p(Ω′)→ D′(Ω′) be its dual with which we identify Ws,p(Ω′) with a subspace
of D′(Ω′). Previously we defined ext0

Ω′ ,Ω for distributions with compact support in Ω′. For
any u ∈Ws,p

K (Ω′) we let
ext0

Ω′ ,Ωu := ext0
Ω′ ,Ω ◦ i∗D,Wu ,

which by definition will be an element of D′(Ω). Note that (see Remark 45 and the
discussion right after Remark 10)

‖ext0
Ω′ ,Ωu‖Ws,p(Ω) = sup

0 6=ψ∈D(Ω)

|〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

‖u‖Ws,p(Ω′) = sup
0 6=ϕ∈D(Ω′)

|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

.
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So, in order to prove the first item we just need to show that

∀ 0 6= ϕ ∈ D(Ω′) ∃ψ ∈ D(Ω) s.t.
|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

�
|〈ext0

Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

.

Let ϕ ∈ D(Ω′). Define ψ = ext0
Ω′ ,Ω ϕ. Clearly, ψ ∈ D(Ω) and ψ = ϕ on Ω′. Therefore,

〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω) = 〈u, ψ|Ω′〉D′(Ω′)×D(Ω′) = 〈u, ϕ〉D′(Ω′)×D(Ω′) .

Moreover, since −s > 0

‖ψ‖W−s,p′ (Ω)
= ‖ext0

Ω′ ,Ω ϕ‖W−s,p′ (Ω)
� ‖ϕ‖W−s,p′ (Ω′) .

This completes the proof of the first item. For the second item we just need to prove that
under the given hypotheses

∀ 0 6= ψ ∈ D(Ω) ∃ ϕ ∈ D(Ω′) s.t.
|〈ext0

Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

�
|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

.

To this end suppose ψ ∈ D(Ω). Choose a compact set K̃ such that K ⊂ ˚̃K ⊂ K̃ ⊂ Ω′. Fix
χ ∈ D(Ω) such that χ = 1 on K̃ and supp χ ⊂ Ω′. Clearly, ψ = χψ on a neighborhood of K
and if we set ϕ = χψ|Ω′ , then ϕ ∈ D(Ω′). Therefore,

〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω) = 〈ext0

Ω′ ,Ωu, χψ〉D′(Ω)×D(Ω) = 〈u, χψ|Ω′〉D′(Ω′)×D(Ω′) = 〈u, ϕ〉D′(Ω′)×D(Ω′) .

Furthermore, since −s > 0, we have

‖ϕ‖W−s,p′ (Ω′) ≤ ‖ext0
Ω′ ,Ω ϕ‖W−s,p′ (Ω)

= ‖χψ‖W−s,p′ (Ω)
� ‖ψ‖W−s,p′ (Ω)

.

The latter inequality is the place where we used the assumption that s ∈ (−∞,−1] ∩Z or
−1 < s < 0 or Ω is Lipschitz or Ω = Rn. This completes the proof of the second item.

Corollary 6. Let p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω and let
K ∈ K(Ω′). Suppose u ∈Ws,p

K (Ω). It follows from Corollary 5 and Theorem 71 that

• If s ∈ R is not a noninteger less than −1, then

‖u‖Ws,p(Ω) ' ‖u‖Ws,p(Ω′) ,

• If Ω is Lipschitz or Ω = Rn, then for all s ∈ R

‖u‖Ws,p(Ω) ' ‖u‖Ws,p(Ω′) .

Note that on the right hand sides of the above expressions, u stands for resΩ,Ω′u. Clearly, ext0
Ω′ ,Ω ◦

resΩ,Ω′u = u.

Theorem 72. Let Ω be any nonempty open set in Rn, K ⊆ Ω be compact, s > 0, and p ∈ (1, ∞).
Then the following norms on Ws,p

K (Ω) are equivalent:

‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|ν|=k
|∂νu|Wθ,p(Ω) ,

[u]Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
1≤|ν|≤k

|∂νu|Wθ,p(Ω) ,

where s = k + θ, k ∈ N0, θ ∈ (0, 1). Moreover, if we further assume Ω is Lipschitz, then the above
norms are equivalent on Ws,p(Ω).



Mathematics 2022, 10, 522 61 of 103

Proof. Clearly, for all u ∈ Ws,p(Ω), ‖u‖Ws,p(Ω) ≤ [u]Ws,p(Ω). So, it is enough to show that
there is a constant C > 0 such that for all u ∈Ws,p

K (Ω) (or u ∈Ws,p(Ω) if Ω is Lipschitz)

[u]Ws,p(Ω) ≤ C‖u‖Ws,p(Ω) .

For each 1 ≤ i ≤ k we have

∑
|ν|=i
|∂νu|Wθ,p(Ω) = ‖u‖Wi+θ,p(Ω) − ‖u‖Wi,p(Ω) .

Thus

[u]Ws,p(Ω) = ‖u‖Ws,p(Ω) + ∑
1≤i<k

∑
|ν|=i
|∂νu|Wθ,p(Ω)

= ‖u‖Ws,p(Ω) + ∑
1≤i<k

(
‖u‖Wi+θ,p(Ω) − ‖u‖Wi,p(Ω)

)
.

Therefore, it is enough to show that there exists a constant C ≥ 1 such that

∑
1≤i<k

‖u‖Wi+θ,p(Ω) ≤ (C− 1)‖u‖Ws,p(Ω) + ∑
1≤i<k

‖u‖Wi,p(Ω) .

By Theorem 68, for each 1 ≤ i < k, Ws,p
K (Ω) ↪→ Wi+θ,p

K (Ω) (also, we have Ws,p(Ω) ↪→
Wi+θ,p(Ω) with the extra assumption that Ω is Lipschitz); so there is a constant Ci such
that ‖u‖Wi+θ,p(Ω) ≤ Ci‖u‖Ws,p(Ω). Clearly with C = 1 + ∑k−1

i=1 Ci the desired inequality
holds.

Remark 45. Let s ≥ 0 and 1 < p < ∞. Here we summarize the connection between Sobolev
spaces and space of distributions.

(1) Question 1: What does it mean to say u ∈ D′(Ω) belongs to W−s,p′(Ω)?
Answer:

u ∈ D′(Ω) is in W−s,p′(Ω)⇐⇒ u : (D(Ω), ‖.‖s,p)→ R is continuous

⇐⇒ u : D(Ω)→ R has a unique continuous extension to û : Ws,p
0 (Ω)→ R

(2) Question 2: How should we interpret W−s,p′(Ω) ⊆ D′(Ω)?
Answer: i : D(Ω)→Ws,p

0 (Ω) is continuous with dense image. Therefore, i∗ : W−s,p′(Ω)→
D′(Ω) is an injective continuous linear map. If u ∈W−s,p′(Ω), then i∗u ∈ D′(Ω) and

〈i∗u, ϕ〉D′(Ω)×D(Ω) = 〈u, iϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

= 〈u, ϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

.

So, i∗u = u|D(Ω) and if we identify with i∗u with u we can write

〈u, ϕ〉D′(Ω)×D(Ω) = 〈u, ϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

, ‖u‖W−s,p′ (Ω)
= sup

0 6=ϕ∈C∞
c (Ω)

|〈u, ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

.

(3) Question 3: How should we interpret Ws,p(Ω) ⊆ D′(Ω)?
Answer: It is a direct consequence of the definition of Ws,p(Ω) that Ws,p(Ω) ↪→ Lp(Ω)
for any open set Ω. So, any f ∈ Ws,p(Ω) can be identified with the regular distribution
u f ∈ D′(Ω) where

〈u f , ϕ〉 =
∫

f ϕ ∀ ϕ ∈ D(Ω) .

(4) Question 4: What does it mean to say u ∈ D′(Ω) belongs to Ws,p(Ω)?
Answer: It means there exists f ∈Ws,p(Ω) such that u = u f .
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Remark 46. Let Ω be a nonempty open set in Rn and f , g ∈ C∞
c (Ω). Suppose s ∈ R and

p ∈ (1, ∞).

• If s ≥ 0, then

‖ f ‖W−s,p′ (Ω)
= sup

0 6=ϕ∈C∞
c (Ω)

|〈 f , ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

= sup
0 6=ϕ∈C∞

c (Ω)

|
∫

Ω f ϕ dx|
‖ϕ‖Ws,p(Ω)

.

So, for all ϕ ∈ C∞
c (Ω)

|
∫

Ω
f ϕ dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖ϕ‖Ws,p(Ω) .

In particular, for g, we have

|
∫

Ω
f g dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖g‖Ws,p(Ω) .

• If s < 0, we may replace the roles of f and g, and also (s, p) and (−s, p′) in the above
argument to get the exact same inequality: |

∫
Ω f g dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖g‖Ws,p(Ω).

7.5. Invariance Under Change of Coordinates, Composition

Theorem 73 ([12], Section 4.3). Let s ∈ R and 1 < p < ∞. Suppose that T : Rn → Rn is a
C∞-diffeomorphism (i.e., T is bijective and T and T−1 are C∞) with the property that the partial
derivatives (of any order) of the components of T are bounded on Rn (the bound may depend on the
order of the partial derivative) and infRn |det T′| > 0. Then the linear map

Ws,p(Rn)→Ws,p(Rn), u 7→ u ◦ T

is well-defined and is bounded.

Now, let U and V be two nonempty open sets in Rn. Suppose T : U → V is a bijective
map. Similar to [1] we say T is k-smooth if all the components of T belong to BCk(U) and
all the components of T−1 belong to BCk(V).

Remark 47. It is useful to note that if T is 1-smooth, then

inf
U
|det T′| > 0 and inf

V
|det (T−1)′| > 0 .

Indeed, since the first order partial derivatives of the components of T and T−1 are bounded, there
exist postive numbers M and M̃ such that for all x ∈ U and y ∈ V

|det T′(x)| < M, |det (T−1)′(y)| < M̃ .

Since |det T′(x)| × |det (T−1)′(T(x))| = 1, we can conclude that for all x ∈ U and y ∈ V

|det T′(x)| > 1
M̃

, |det (T−1)′(y)| > 1
M

,

which proves the claim.

Remark 48. Furthermore, it is interesting to note that, as a consequence of the inverse function
theorem, if T : U → V is a bijective map that is Ck (k ∈ N) with the property that det T′(x) 6= 0
for all x ∈ U, then the inverse of T will be Ck as well, that is, T will automatically be a Ck-
diffeomorphism (see, e.g., Appendix C in [19] for more details).



Mathematics 2022, 10, 522 63 of 103

Remark 49. Note that since we do not assume that U and V are necessarily convex or Lipschitz,
the continuity and boundedness of the partial derivatives of the components of T do not imply that
the components of T are Lipschitz. (see the “Warning” immediately after Theorem 6).

Theorem 74 (([29], p. 1003), ([1], pp. 77–78 )). Let p ∈ (1, ∞) and k ∈ N. Suppose that U and
V are nonempty open subsets of Rn.

(1) If T : U → V is a 1-smooth map, then the map

Lp(V)→ Lp(U), u 7→ u ◦ T

is well-defined and is bounded.
(2) If T : U → V is a k-smooth map, then the map

Wk,p(V)→Wk,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Theorem 75. Let p ∈ (1, ∞) and k ∈ Z− (k is a negative integer). Suppose that U and V are
nonempty open subsets of Rn, and T : U → V is ∞-smooth. Then the map

Wk,p(V)→Wk,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Proof. By definition we have (T∗u denotes the pullback of u by T)

‖T∗u‖Wk,p(U) = sup
ϕ∈C∞

c (U)

|〈T∗u, ϕ〉D′(U)×D(U)|
‖ϕ‖W−k,p′ (U)

= sup
ϕ∈C∞

c (U)

|〈u, |det(T−1)′|ϕ ◦ T−1〉D′(V)×D(V)|
‖ϕ‖W−k,p′ (U)

� sup
ϕ∈C∞

c (U)

‖u‖Wk,p(V)‖|det(T−1)′|ϕ ◦ T−1‖W−k,p′ (V)

‖ϕ‖W−k,p′ (U)

|det(T−1)′ |∈BC∞

� sup
ϕ∈C∞

c (U)

‖u‖Wk,p(V)‖ϕ ◦ T−1‖W−k,p′ (V)

‖ϕ‖W−k,p′ (U)

.

Since −k is a positive integer, by Theorem 74 we have ‖ϕ ◦ T−1‖W−k,p′ (V)
� ‖ϕ‖W−k,p′ (U)

.
Consequently,

‖T∗u‖Wk,p(U) � ‖u‖Wk,p(V) .

Theorem 76. Let p ∈ (1, ∞) and 0 < s < 1. Suppose that U and V are nonempty open subsets of
Rn, T : U → V is 1-smooth, and T is Lipschitz continuous on U. Then the map

Ws,p(V)→Ws,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Proof. Note that

‖u ◦ T‖Ws,p(U) = ‖u ◦ T‖Lp(U) + |u ◦ T|Ws,p(U)

Theorem 74
� ‖u‖Lp(V) + |u ◦ T|Ws,p(U) .
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So, it is enough to show that |u ◦ T|Ws,p(U) � |u|Ws,p(V).

|u ◦ T|Ws,p(U) =
( ∫ ∫

U×U

|(u ◦ T)(x)− (u ◦ T)(y)|p
|x− y|n+sp dxdy

) 1
p

z=T(x)
w=T(y)
�

( ∫ ∫
V×V

|u(z)− u(w)|p
|T−1(z)− T−1(w)|n+sp

1
|detT′(x)|

1
|detT′(y)|dzdw

) 1
p

�
( ∫ ∫

V×V

|u(z)− u(w)|p
|T−1(z)− T−1(w)|n+sp dzdw

) 1
p .

T is Lipschitz continuous on U; so, there exists a constant C > 0 such that

|T(x)− T(y)| ≤ C|x− y| =⇒ |z− w| ≤ C|T−1(z)− T−1(w)| .

Therefore,

|u ◦ T|Ws,p(U) �
( ∫ ∫

V×V

|u(z)− u(w)|p
|z− w|n+sp dzdw

) 1
p = |u|Ws,p(V) .

Theorem 77. Let p ∈ (1, ∞) and −1 < s < 0. Suppose that U and V are nonempty open subsets
of Rn, T : U → V is ∞-smooth, T−1 is Lipschitz continuous on V, and |det(T−1)′| is in BC0,1(V).
Then the map

Ws,p(V)→Ws,p(U), u 7→ u ◦ T

is well-defined and is bounded.

Proof. The proof of Theorem 75, with obvious modifications, shows the validity of the
above claim.

Remark 50. In the previous theorem, by assumption, the first order partial derivatives of the
components of T−1 are continuous and bounded. Furthermore, it is true that absolute value of a
Lipschitz continuous function and the sum and product of bounded Lipschitz continuous functions
will be Lipschitz continuous. Consequently, in order to ensure that |det(T−1)′| is in BC0,1(V), it
is enough to make sure that the first order partial derivatives of the components of T−1 are bounded
and Lipschitz continuous.

Theorem 78. Let s = k + θ where k ∈ N, θ ∈ (0, 1), and let p ∈ (1, ∞). Suppose that U and V
are two nonempty open sets in Rn. Let T : U → V be a Lipschitz continuous k-smooth map on U
such that the partial derivatives up to and including order k of all the components of T are Lipschitz
continuous on U as well. Then

(1) For each K ∈ K(V) the linear map

T∗ : Ws,p
K (V)→Ws,p

T−1(K)(U), u 7→ u ◦ T

is well-defined and is bounded.
(2) If we further assume that V is Lipschitz (and so U is Lipschitz), the linear map

T∗ : Ws,p(V)→Ws,p(U), u 7→ u ◦ T

is well-defined and is bounded.
Note: When U is a Lipschitz domain, the fact that T is k-smooth automatically implies that
all the partial derivatives of the components of T up to and including order k− 1 are Lipschitz
continuous (see Theorem 60). So in this case, the only extra assumption, in addition to T
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being k-smooth, is that the partial derivatives of the components of T of order k are Lipschitz
continuous on U.

Proof. Recall that C∞(V) ∩Ws,p(V) is dense in Ws,p(V). Our proof consists of two steps:
in the first step we addditionally assume that u ∈ C∞(V). Then in the second step we
prove the validity of the claim for u ∈Ws,p

K (V) (or u ∈Ws,p(V) with the assumption that
V is Lipschitz).

• Step 1: We have

‖u ◦ T‖Ws,p(U) = ‖u ◦ T‖Wk,p(U) + ∑
|ν|=k
|∂ν(u ◦ T)|Wθ,p(U)

Theorem 74
� ‖u‖Wk,p(V) + ∑

|ν|=k
|∂ν(u ◦ T)|Wθ,p(U) .

Since u and T are both Ck, it can be proved by induction that (see, e.g., [1])

∂ν(u ◦ T)(x) = ∑
β≤ν,1≤|β|

Mνβ(x)[(∂βu) ◦ T](x) ,

where Mνβ(x) are polynomials of degree at most |β| in derivatives of order at most |ν|
of the components of T. In particular, Mνβ ∈ BC0,1(U) . Therefore,

|∂ν(u ◦ T)|Wθ,p(U) ≤ ‖∂
ν(u ◦ T)‖Wθ,p(U) = ‖ ∑

β≤ν,1≤|β|
Mνβ(x)[(∂βu) ◦ T](x)‖Wθ,p(U)

Theorem 69
� ∑

β≤ν,1≤|β|
‖(∂βu) ◦ T‖Wθ,p(U) = ∑

β≤ν,1≤|β|
‖(∂βu) ◦ T‖Lp(U) + |(∂βu) ◦ T|Wθ,p(U)

Theorems 74 and 76
� ∑

β≤ν,1≤|β|
‖∂βu‖Lp(V) + |∂βu|Wθ,p(V) ≤ ‖u‖Wk,p(V) + ∑

β≤ν,1≤|β|
|∂βu|Wθ,p(V) .

(The fact that ∂βu belongs to Wθ,p(V) ↪→ Lp(V) is a consequence of the definition of
the Slobodeckij norm combined with our embedding theorems for Sobolev spaces of
functions with fixed compact support in an arbitrary domain or embedding theorems
for Sobolev spaces of functions on a Lipschitz domain). Hence

‖u ◦ T‖Ws,p(U) � ‖u‖Wk,p(V) + ∑
1≤|ν|≤k

∑
β≤ν,1≤|β|

|∂βu|Wθ,p(V)

� ‖u‖Wk,p(V) + ∑
1≤|α|≤k

|∂αu|Wθ,p(V)

Theorem 72' ‖u‖Ws,p(V) .

Note that the last equivalence is due to the assumption that u ∈ Ws,p
K (V) ( or u ∈

Ws,p(V) with V being Lipschitz).
• Step 2: Now suppose u is an arbitrary element of Ws,p

K (V) (or Ws,p(V) with V being
Lipschitz). There exists a sequence {um}m≥1 in C∞(V) such that um → u in Ws,p(V).
In particular, {um} is Cauchy. By the previous steps we have

‖T∗um − T∗ul‖Ws,p(U) � ‖um − ul‖Ws,p(V) → 0 (as m, l → ∞) .

Therefore, {T∗um} is a Cauchy sequence in the Banach space Ws,p(U) and subse-
quently there exists v ∈ Ws,p(U) such that T∗um → v as m→ ∞. It remains to show
that v = T∗u as elements of Ws,p(U). As a direct consequence of the definition of
Ws,p-norm (s ≥ 0) we have
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‖T∗um − v‖Lp(U) ≤ ‖T∗um − v‖Ws,p(U) → 0 ,

‖um − u‖Lp(V) ≤ ‖um − u‖Ws,p(V) → 0 .

Note that by Theorem 74, um → u in Lp(V) implies that T∗um → T∗u in Lp(U). Thus
T∗u = v as elements of Lp(U) and hence as elements of Ws,p(U).

Theorem 79. Let p ∈ (1, ∞) and s < −1 be a noninteger number. Suppose that U and V are
two nonempty Lipschitz open sets in Rn and T : U → V is a ∞-smooth map. Then the linear map

T∗ : Ws,p(V)→Ws,p(U), u 7→ u ◦ T

is well-defined and is bounded.
Note: Since V is a Lipschitz domain, the fact that T is ∞-smooth automatically implies that T−1

and all the partial derivatives of the components of T−1 are Lipschitz continuous (see Theorem 60).

Proof. The proof is completely analogous to the proof of Theorem 75. We have

‖T∗u‖Ws,p(U) = sup
ϕ∈C∞

c (U)

|〈T∗u, ϕ〉D′(U)×D(U)|
‖ϕ‖W−s,p′ (U)

= sup
ϕ∈C∞

c (U)

|〈u, |det(T−1)′|ϕ ◦ T−1〉D′(V)×D(V)|
‖ϕ‖W−s,p′ (U)

�
‖u‖Ws,p(V)‖|det(T−1)′|ϕ ◦ T−1‖W−s,p′ (V)

‖ϕ‖W−s,p′ (U)

|det(T−1)′ |∈BC∞(V)
�

‖u‖Ws,p(V)‖ϕ ◦ T−1‖W−s,p′ (V)

‖ϕ‖W−s,p′ (U)

.

Since −s > 0, it follows from the hypotheses of this theorem and the result of Theorem 78
that ‖ϕ ◦ T−1‖W−s,p′ (V)

� ‖ϕ‖W−s,p′ (U)
. Consequently,

‖T∗u‖Ws,p(U) � ‖u‖Ws,p(V) .

Lemma 8. Let U and V be two nonempty open sets in Rn. Suppose T : U → V (T =
(T1, . . . , Tn)) is a Ck+1-diffeomorphism for some k ∈ N0 and let B ⊆ U be a nonempty bounded
open set such that B ⊆ B̄ ⊆ U. Then

(1) T : B→ T(B) is a (k + 1)-smooth map.
(2) T : B→ T(B) and T−1 : T(B)→ B are Lipschitz (the Lipschitz constant may depend on B).
(3) For all 1 ≤ i ≤ n and |α| ≤ k, ∂αTi ∈ BCk,1(B) and ∂α(T−1)i ∈ BCk,1(T(B)).

Proof. Item 1 is true because B̄ is compact and so T(B̄) is compact and continuous functions
are bounded on compact sets. Items 2 and 3 are direct consequences of Theorem 7.

Theorem 80. Let s ∈ R and p ∈ (1, ∞). Suppose that U and V are two nonempty open sets
in Rn and T : U → V is a C∞-diffeomorphism (if s ≥ 0 it is enough to assume T is a Cbsc+1-
diffeomorphism). Let B ⊆ U be a nonempty bounded open set such that B ⊆ B̄ ⊆ U. Let
u ∈Ws,p(V) be such that suppu ⊆ T(B) (note that if suppu is compact in V, then such a B exists).
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(1) If s is NOT a noninteger less than −1, then

‖u ◦ T‖Ws,p(U) � ‖u‖Ws,p(V) .

(The implicit constant may depend on B but otherwise is independent of u.)
(2) If U and V are Lipschitz or Rn, then the above result holds for all s ∈ R.

Proof. If s is an integer or −1 < s < 1, or if U and V are Lipschitz or Rn and s ∈ R then as
a consequence of the above lemma and the preceding theorems we may write

‖u ◦ T‖Ws,p(U)

Corollary 6
' ‖u ◦ T‖Ws,p(B) � ‖u‖Ws,p(T(B))

Corollary 6
' ‖u‖Ws,p(V) .

For general U and V, if s = k + θ, we let B̂ be an open set such that ¯̂B is a compact subset of
U and B̄ ⊆ B̂. We can apply the previous lemma to B̂ and write

‖u ◦ T‖Ws,p(U)

Corollary 6
' ‖u ◦ T‖Ws,p

B̄ (B̂)

Theorem 78
� ‖u‖Ws,p

T(B̄)(T(B̂))
Corollary 6
' ‖u‖Ws,p(V) .

Theorem 81 ([42]). Let s ∈ [1, ∞), 1 < p < ∞, and let

m =

{
s, if s is an integer
bsc+ 1, otherwise

.

If F ∈ Cm(R) is such that F(0) = 0 and F, F′, . . . , F(m) ∈ L∞(R) (in particular, note that every
F ∈ C∞

c (R) with F(0) = 0 satisfies these conditions), then the map u 7→ F(u) is well-defined and
continuous from Ws,p(Rn) ∩W1,sp(Rn) into Ws,p(Rn).

Corollary 7. Let s, p, and F be as in the previous theorem. Moreover, suppose sp > n. Then the
map u 7→ F(u) is well-defined and continuous from Ws,p(Rn) into Ws,p(Rn). The reason is that
when sp > n, we have Ws,p(Rn) ↪→W1,sp(Rn).

7.6. Differentiation

Theorem 82 (([4], pp. 598–605), ([5], Section 1.4)). Let s ∈ R, 1 < p < ∞, and α ∈ Nn
0 .

Suppose Ω is a nonempty open set in Rn. Then

(1) The linear operator ∂α : Ws,p(Rn)→Ws−|α|,p(Rn) is well-defined and bounded.
(2) For s < 0, the linear operator ∂α : Ws,p(Ω)→Ws−|α|,p(Ω) is well-defined and bounded.
(3) For s ≥ 0 and |α| ≤ s, the linear operator ∂α : Ws,p(Ω)→Ws−|α|,p(Ω) is well-defined and

bounded.
(4) If Ω is bounded with Lipschitz continuous boundary, and if s ≥ 0, s− 1

p 6= integer (i.e., the

fractional part of s is not equal to 1
p ), then the linear operator ∂α : Ws,p(Ω)→ Ws−|α|,p(Ω)

for |α| > s is well-defined and bounded.

Remark 51. Comparing the first and last items of the previous theorem, we see that not all the
properties of Sobolev–Slobodeckij spaces on Rn are fully inherited by Sobolev–Slobodeckij spaces on
bounded domains even when the domain has Lipschitz continuous boundary (note that the above
difference is related to the more fundamental fact that for s > 0, even when Ω is Lipschitz, C∞

c (Ω)

is not necessarily dense in Ws,p(Ω) and subsequently W−s,p′(Ω) is defined as the dual of Ws,p
0 (Ω)

rather than the dual of Ws,p(Ω) itself). For this reason, when working with Sobolev spaces on
manifolds, we prefer super nice atlases (i.e., we prefer to work with coordinate charts whose image
under the coordinate map is the entire Rn). The next best choice would be GGL or GL atlases.
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7.7. Spaces of Locally Sobolev Functions

Material of this section are taken from our manuscript on the properties of locally
Sobolev-Slobodeckij functions [17].

Definition 28. Let s ∈ R, 1 < p < ∞. Let Ω be a nonempty open set in Rn. We define

Ws,p
loc (Ω) := {u ∈ D′(Ω) : ∀ϕ ∈ C∞

c (Ω) ϕu ∈Ws,p(Ω)} .

Ws,p
loc (Ω) is equipped with the natural topology induced by the separating family of seminorms
{|.|ϕ}ϕ∈C∞

c (Ω)} where

∀ u ∈Ws,p
loc (Ω) ϕ ∈ C∞

c (Ω) |u|ϕ := ‖ϕu‖Ws,p(Ω) .

Theorem 83. Let s ∈ R, 1 < p < ∞, and α ∈ Nn
0 . Suppose Ω is a nonempty bounded open set in

Rn with Lipschitz continuous boundary. Then

(1) The linear operator ∂α : Ws,p
loc (R

n)→Ws−|α|,p
loc (Rn) is well-defined and continuous.

(2) For s < 0, the linear operator ∂α : Ws,p
loc (Ω)→Ws−|α|,p

loc (Ω) is well-defined and continuous.

(3) For s ≥ 0 and |α| ≤ s, the linear operator ∂α : Ws,p
loc (Ω)→Ws−|α|,p

loc (Ω) is well-defined and
continuous.

(4) If s ≥ 0, s − 1
p 6= integer (i.e., the fractional part of s is not equal to 1

p ), then the linear

operator ∂α : Ws,p
loc (Ω)→Ws−|α|,p

loc (Ω) for |α| > s is well-defined and continuous.

The following statements play a key role in our study of Sobolev spaces on Riemannian
manifolds with rough metrics.

Theorem 84. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous boundary
or Ω = Rn. Suppose u ∈Ws,p

loc (Ω) where sp > n. Then u has a continuous version.

Lemma 9. Let Ω = Rn or Ω be a bounded open set in Rn with Lipschitz continuous boundary.
Suppose s1, s2, s ∈ R and 1 < p1, p2, p < ∞ are such that

Ws1,p1(Ω)×Ws2,p2(Ω) ↪→Ws,p(Ω) .

Then

(1) Ws1,p1
loc (Ω)×Ws2,p2

loc (Ω) ↪→Ws,p
loc (Ω),

(2) For all K ∈ K(Ω), Ws1,p1
loc (Ω)×Ws2,p2

K (Ω) ↪→ Ws,p(Ω). In particular, if f ∈ Ws1,p1
loc (Ω),

then the mapping u 7→ f u is a well-defined continuous linear map from Ws2,p2
K (Ω) to

Ws,p(Ω).

Remark 52. It can be shown that the locally Sobolev spaces on Ω are metrizable, so the continuity
of the mapping

Ws1,p1
loc (Ω)×Ws2,p2

loc (Ω)→Ws,p
loc (Ω), (u, v) 7→ uv

in the above lemma can be interpreted as follows: if ui → u in Ws1,p1
loc (Ω) and vi → v in Ws2,p2

loc (Ω),
then uivi → uv in Ws,p

loc (Ω). Furthermore, since Ws2,p2
K (Ω) is considered as a normed subspace of

Ws2,p2(Ω), we have a similar interpretation of the continuity of the mapping in item 2.

Lemma 10. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary. Let s ∈ R and p ∈ (1, ∞) be such that sp > n. Let B : Ω→ GL(k,R). Suppose for all
x ∈ Ω and 1 ≤ i, j ≤ k, Bij(x) ∈Ws,p

loc (Ω). Then

(1) det B ∈Ws,p
loc (Ω).

(2) Moreover, if for each m ∈ N Bm : Ω → GL(k,R) and for all 1 ≤ i, j ≤ k (Bm)ij → Bij in
Ws,p

loc (Ω), then det Bm → det B in Ws,p
loc (Ω).
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Theorem 85. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz
continuous boundary. Let s ≥ 1 and p ∈ (1, ∞) be such that sp > n.

(1) Suppose that u ∈Ws,p
loc (Ω) and that u(x) ∈ I for all x ∈ Ω where I is some interval in R. If

F : I → R is a smooth function, then F(u) ∈Ws,p
loc (Ω).

(2) Suppose that um → u in Ws,p
loc (Ω) and that for all m ≥ 1 and x ∈ Ω, um(x), u(x) ∈ I where

I is some open interval in R. If F : I → R is a smooth function, then F(um) → F(u) in
Ws,p

loc (Ω).
(3) If F : R→ R is a smooth function, then the map taking u to F(u) is continuous from Ws,p

loc (Ω)

to Ws,p
loc (Ω).

8. Lebesgue Spaces on Compact Manifolds

Let Mn be a compact smooth manifold and E → M be a smooth vector bundle of
rank r.

Definition 29. A collection {(Uα, ϕα, ρα, ψα)}1≤α≤N of 4-tuples is called an augmented total
trivialization atlas for E→ M provided that {(Uα, ϕα, ρα)}1≤α≤N is a total trivialization atlas
for E→ M and {ψα} is a partition of unity subordinate to the open cover {Uα}.

Let {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E→ M. Let
g be a continuous Riemannian metric on M and 〈., .〉E be a fiber metric on E (we denote the
corresponding norm by |.|E). Suppose 1 ≤ q < ∞.

(1) Definition A: The space Lq(M, E) is the completion of C∞(M, E) with respect to the
following norm:

‖u‖Lq(M,E) :=
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖Lq(ϕα(Uα)) .

Note that for this definition to make sense it is not necessary to have metric on M or
fiber metric on E.

(2) Definition B: The space Lq(M, E) is the completion of C∞(M, E) with respect to the
following norm:

|u|Lq(M,E) :=
( ∫

M
|u|qEdVg

) 1
q

.

(3) Definition C: The metric g defines a measure on M. Define the following equivalence
relation on Γ(M, E):

u ∼ v⇐⇒ u = v a.e.

We define

Lq(M, E) :=
{u ∈ Γ(M, E) : ‖u‖q

Lq(M,E) :=
∫

M |u|
q
EdVg < ∞}

∼ .

For q = ∞ we define

L∞(M, E) :=
{u ∈ Γ(M, E) : ‖u‖L∞(M,E) := esssup|u|E < ∞}

∼ .

Note: We may define negligible sets (sets of measure zero) on a compact manifold using
charts (see Chapter 6 in [43]); it can be shown that this definition is independent of the
charts and equivalent to the one that is obtained using the metric g. So, it is meaningful to
write u = v a.e even without using a metric.

Theorem 86. Definition A is equivalent to Definition B (i.e., the norms are equivalent).
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Proof. Our proof consists of four steps:

• Step 1: In the next section it will be proved that different total trivialization atlases and
partitions of unity result in equivalent norms (note that Lq = W0,q). Therefore, without
loss of generality we may assume that {(Uα, ϕα, ρα)}1≤α≤N is a total trivialization atlas
that trivializes the fiber metric 〈., .〉E (see Theorem 37 and Corollary 2). So, on any
bundle chart (U, ϕ, ρ) and for any section u we have

|u|2E ◦ ϕ−1 = 〈u, u〉E ◦ ϕ−1 =
r

∑
l=1

(ρl ◦ u ◦ ϕ−1)2 .

• Step 2: In this step we show that if there is 1 ≤ β ≤ N such that suppu ⊆ Uβ, then

|u|qLq(M,E) =
∫

M
|u|qEdVg '

r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

We have∫
M
|u|qEdVg =

∫
ϕβ(Uβ)

(|u|E ◦ ϕ−1
β )q

√
det(gij ◦ ϕ−1

β )(x) dx1 . . . dxn

'
∫

ϕβ(Uβ)
(|u|E ◦ ϕ−1

β )q dx1 . . . dxn (
√

det(gij ◦ ϕ−1
β )(x) is bounded by positive constants)

=
∫

ϕβ(Uβ)

(√ r

∑
l=1

(ρl
β ◦ u ◦ ϕ−1

β )2
)q

dx1 . . . dxn

'
∫

ϕβ(Uβ)
[

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |]

q dx1 . . . dxn (
√

∑ a2
l '∑ |al |)

'
∫

ϕβ(Uβ)

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |

q dx1 . . . dxn ((∑ al)
q '∑ aq

l )

=
r

∑
l=1

∫
ϕβ(Uβ)

|ρl
β ◦ u ◦ ϕ−1

β |
q dx1 . . . dxn =

r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Step 3: In this step we will prove that for all u ∈ C∞(M, E)

|u|qLq(M,E) '∑
α

|ψαu|qLq(M,E) .

We have

|u|qLq(M,E) =
∫

M
|u|qEdVg = ∑

α

∫
M

ψ
q
α

∑β ψ
q
β

|u|qEdVg ({ ψ
q
α

∑β ψ
q
β

} is a partition of unity subordinate to {Uα})

'∑
α

∫
Uα

ψ
q
α|u|

q
EdVg (

1

∑β ψ
q
β

is bounded by positive constants)

= ∑
α

∫
Uα

|ψαu|qEdVg = ∑
α

∫
M
|ψαu|qEdVg

= ∑
α

|ψαu|qLq(M,E) .

• Step 4: Let u be an arbitrary element of C∞(M, E). We have

|u|qLq(M,E)

Step 3
' ∑

α

|ψαu|qLq(M,E)

Step 2
' ∑

α
∑

l
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖

q
Lq(ϕα(Uα))

' ‖u‖q
Lq(M,E) .
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9. Sobolev Spaces on Compact Manifolds and Alternative Characterizations
9.1. The Definition

Let Mn be a compact smooth manifold. Let π : E → M be a smooth vector bundle
of rank r. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for
E → M. For each 1 ≤ α ≤ N, let Hα denote the map HE∨ ,Uα ,ϕα

which was introduced in
Section 6.

Definition 30.

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) < ∞} .

Remark 53.

(1) If u ∈We,q(M, E; Λ) is a regular distribution, it follows from Remark 32 that

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

(2) It is clear that the collection of functions from M to R can be identified with sections of the
vector bundle E = M×R. For this reason We,q(M; Λ) is defined as We,q(M, M×R; Λ).
Note that in this case, for each α, ρα is the identity map. So, we may consider an augmented
total trivialization atlas Λ as a collection of 3-tuples {(Uα, ϕα, ψα)}1≤α≤N . In particular, if
u ∈We,q(M; Λ) is a regular distribution, then

‖u‖We,q(M;Λ) =
N

∑
α=1
‖(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

(3) Sometimes, when the underlying manifold M and the augmented total trivialization atlas
are clear from the context (or when they are irrelevant), we may write We,q(E) instead
of We,q(M, E; Λ). In particular, for tensor bundles, we may write We,q(Tk

l M) instead of
We,q(M, Tk

l M; Λ).

Remark 54. Here is a list of some alternative, not necessarily equivalent, characterizations of
Sobolev spaces.

(1) Suppose e ≥ 0.

We,q(M, E; Λ) = {u ∈ Lq(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) < ∞} .

(2)

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ext0

ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) < ∞} .

(3)

We,q(M, E; Λ) = {u ∈ D′(M, E) : [Hα(u|Uα)]
l ∈We,q

loc(ϕα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

(4) We,q(M, E; Λ) is the completion of C∞(M, E) with respect to the norm

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .
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(5) • Let g be a smooth Riemannian metric (i.e., a fiber metric on TM). So, g−1 is a fiber
metric on T∗M.

• Let 〈., .〉E be a smooth fiber metric on E.
• Let ∇E be a metric connection in the vector bundle π : E→ M.
For k ∈ N0, Wk,q(M, E; g,∇E) is the completion of C∞(M, E) with respect to the following
norm:

‖u‖Wk,q(M,E;g,∇E) =
( k

∑
i=0
|(∇E)iu|qLq

) 1
q =

( k

∑
i=0

∫
M
| ∇E . . .∇E︸ ︷︷ ︸

i times

u|q
(T∗M)⊗i⊗EdVg

) 1
q .

In particular, if we denote the Levi Civita connection corresponding to the smooth Riemannian
metric g by ∇, then Wk,q(M; g) is the completion of C∞(M) with respect to the follow-
ing norm

‖u‖Wk,q(M;g) =
( k

∑
i=0
|∇iu|qLq

) 1
q =

( k

∑
i=0

∫
M
| ∇ . . .∇︸ ︷︷ ︸

i times

u|qTi MdVg
) 1

q .

In the subsequent discussions we will study the relation between each of these alternative descriptions
of Sobolev spaces and Definition 30.

Remark 55. As it is discussed for example in [18], Sobolev-Slobodeckij spaces on Rn with non-
integer smoothness degree can be defined using real interpolation. Indeed, for s ∈ R \ Z and
θ = s− bsc,

Ws,p(Rn) =
(
Wbsc,p(Rn), Wbsc+1,p(Rn)

)
θ,p .

One may use any of the previously mentioned descriptions to define Wk,q(M, E) for k ∈ Z, and
then use real interpolation to define We,q(M, E) for e 6∈ Z. We postpone the study of this approach
to an independent manuscript with focus on the role of interpolation theory in investigation of Bessel
potential spaces and Sobolev–Slobodeckij spaces on compact manifolds.

An important question is whether our definition of Sobolev spaces (as topological
spaces) depends on the augmented total trivialization atlas Λ. We will answer this question
at 3 levels. Although each level can be considered as a generalization of the preceding
level, the proofs will be independent of each other. The following theorems show that at
least when e is not a noninteger less than −1, the space We,q(M, E; Λ) and its topology are
independent of the choice of augmented total trivialization atlas.

Remark 56. In the following theorems, by the equivalence of two norms ‖.‖1 and ‖.‖2 we mean
there exist constants C1 and C2 such that

C1‖.‖1 ≤ ‖.‖2 ≤ C2‖.‖1 ,

where C1 and C2 may depend on

n, e, q, ϕα, Uα, ϕ̃β, Ũβ, ψα, ψ̃β .

Theorem 87 (Equivalence of norms for functions). Let e ∈ R and q ∈ (1, ∞). Let Λ =
{(Uα, ϕα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ψ̃β)}1≤β≤Ñ be two augmented total trivialization at-
lases for the trivial bundle M×R→ M. Furthermore, letW be any vector subspace of We,q(M; Υ)
whose elements are regular distributions (e.g., C∞(M)).

(1) If e is not a noninteger less than −1, then W is a subspace of We,q(M; Λ) as well, and the
norms produced by Λ and Υ are equivalent onW .
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(2) If e is a noninteger less than −1, further assume that the total trivialization atlases corre-
sponding to Λ and Υ are GLC. Then W is a subspace of We,q(M; Λ) as well, and the norms
produced by Λ and Υ are equivalent onW .

Proof. Let u ∈ Γreg(M). Our goal is to show that the following expressions are comparable:

N

∑
α=1
‖(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

To this end it suffices to show that for each 1 ≤ α ≤ N

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) �

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

We have

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) = ‖

Ñ

∑
β=1

ψ̃β(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖ψ̃β(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα))

'
Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))
.

The last equality follows from Corollary 6 because (ψ̃βψαu) ◦ ϕ−1
α has support in the

compact set ϕα(supp ψα ∩ supp ψ̃β) ⊆ ϕα(Uα ∩ Ũβ). Note that here we used the assumption
that if e is a noninteger less than −1, then ϕα(Uα) is Lipschitz or the entire Rn. Clearly,

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))
=

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ◦ ϕ̃β ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

.

Since ϕ̃β ◦ ϕ−1
α : ϕα(Uα ∩ Ũβ)→ ϕ̃β(Uα ∩ Ũβ) is a C∞-diffeomorphism and (ψ̃βψαu) ◦ ϕ̃−1

β

has compact support in the compact set ϕ̃β(supp ψα ∩ supp ψ̃β) ⊆ ϕ̃β(Uα ∩ Ũβ), it follows
from Theorem 80 that

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ◦ ϕ̃β ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

�
Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Uα∩Ũβ))
.

Note that here we used the assumption that if e is a noninteger less than −1, then the two
total trivialization atlases are GL compatible. As a direct consequence of Corollary 5 and
Theorem 71 we have

‖(ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Uα∩Ũβ))

' ‖(ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

= ‖(ψα ◦ ϕ̃−1
β )[(ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Ũβ))
.



Mathematics 2022, 10, 522 74 of 103

Now, note that ψα ◦ ϕ̃−1
β ∈ C∞(ϕ̃β(Ũβ)) and (ψ̃βu) ◦ ϕ̃−1

β has support in the compact set
ϕ̃β(supp ψ̃β). Therefore, by Theorem 70 (for the case where e is not a noninteger less than
−1) and Corollary 4 (for the case where e is a noninteger less than −1) we have

‖(ψα ◦ ϕ̃−1
β )[(ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Ũβ))
� ‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

Hence

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) �

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

Theorem 88 (Equivalence of norms for regular sections). Let e ∈ R and q ∈ (1, ∞). Let
Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two augmented total triv-
ialization atlases for the vector bundle E → M. Furthermore, let W be any vector subspace of
We,q(M, E; Υ) whose elements are regular distributions (e.g., C∞(M, E)).

(1) If e is not a noninteger less than −1, then W is a subspace of We,q(M, E; Λ) as well, and the
norms produced by Λ and Υ are equivalent onW .

(2) If e is a noninteger less than −1, further assume that the total trivialization atlases corre-
sponding to Λ and Υ are GLC. Then W is a subspace of We,q(M, E; Λ) as well, and the norms
produced by Λ and Υ are equivalent onW .

Proof. Let u ∈ Γreg(M, E). Our goal is to show that the following expressions are compara-
ble:

N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1

r

∑
l=1
‖ρ̃l

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

To this end, it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) �
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

We have

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) = ‖ρ
l
α ◦ (

Ñ

∑
β=1

ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

'
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

.

The last equality follows from Corollary 6 because ρl
α ◦ (ψ̃βψαu) ◦ ϕ−1

α has support in the
compact set ϕα(supp ψα ∩ supp ψ̃β) ⊆ ϕα(Uα ∩ Ũβ). Note that here we used the assumption
that if e is a noninteger less than −1, then ϕα(Uα) is either Lipschitz or equal to the entire
Rn. Note that
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Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

=
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ̃−1
β ◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

Theorem 80
�

Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )[ρl
α ◦ (ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )
[
πl ◦ π′ ◦Φα︸ ︷︷ ︸

ρα

◦(ψ̃βu) ◦ ϕ̃−1
β

]
‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )
[
πl ◦ π′ ◦Φα ◦Φ−1

β ◦Φβ ◦ (ψ̃βu) ◦ ϕ̃−1
β

]
‖We,q(ϕ̃β(Uα∩Ũβ))

.

Let vβ : ϕ̃β(Ũβ) → E be defined by vβ(x) = (ψ̃βu) ◦ ϕ̃−1
β . Clearly π(vβ(x)) = ϕ̃−1

β (x).
Therefore,

Φβ(vβ(x)) =
(
π(vβ(x)), ρ̃β(vβ(x))

)
=
(

ϕ̃−1
β (x), ρ̃β(vβ(x))

)
.

For all x ∈ ϕ̃β(Uα ∩ Ũβ) we have

π′ ◦Φα ◦Φ−1
β

(
Φβ(vβ(x))

)
= π′ ◦Φα ◦Φ−1

β

(
ϕ̃−1

β (x), ρ̃β(vβ(x))
)

Lemma 4
= π′ ◦

(
ϕ̃−1

β (x), ταβ(ϕ̃−1
β (x))ρ̃β(vβ(x))

)
= ταβ(ϕ̃−1

β (x))︸ ︷︷ ︸
an r× r matrix

ρ̃β(vβ(x)) .

Let Aαβ = ταβ ◦ ϕ̃−1
β on ϕ̃β(Uα ∩ Ũβ). So, we can write

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕ̃β(Uα∩Ũβ))

�
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )(x)
[
πl ◦ Aαβ(x)ρ̃β(vβ(x))

]
‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )(x)
[ r

∑
t=1

(Aαβ(x))ltρ̃
t
β(vβ(x))

]
‖We,q(ϕ̃β(Uα∩Ũβ))

≤
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)(Aαβ(x))ltρ̃
t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

.

Now, note that (Aαβ(x))lt are in C∞(ϕ̃β(Uα ∩ Ũβ)) and (ψα ◦ ϕ̃−1
β )(x)ρ̃t

β(vβ(x)) has support
inside the compact set ϕ̃β(supp ψ̃β ∩ supp ψα). Therefore, by Theorem 70 (for the case where
e is not a noninteger less than −1) and Corollary 4 (for the case where e is a noninteger less
than −1), we have

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)(Aαβ(x))ltρ̃
t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

�
r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

.
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Therefore,

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα))

�
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

'
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Ũβ))

(Here we used Corollary 5 and Theorem 71)

�
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β(vβ(x))‖We,q(ϕ̃β(Ũβ))

(Here we used Theorem 70 and Corollary 4)

=
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

Theorem 89 (Equivalence of norms for distributional sections). Let e ∈ R and q ∈ (1, ∞).
Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two augmented total
trivialization atlases for the vector bundle E→ M.

(1) If e is not a noninteger less than −1, then We,q(M, E; Λ) and We,q(M, E; Υ) are equivalent
normed spaces.

(2) If e is a noninteger less than−1, further assume that the total trivialization atlases correspond-
ing to Λ and Υ are GLC. Then We,q(M, E; Λ) and We,q(M, E; Υ) are equivalent normed
spaces.

Proof. Let u ∈ D′(M, E). We want to show the following expressions are comparable:

N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

.

To this end it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) �
Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

.

We have

[Hα(ψαu)]l = [Hα(
Ñ

∑
β=1

ψ̃βψαu)]l Remark 31
=

Ñ

∑
β=1

[Hα(ψ̃βψαu)]l .

In what follows we will prove that

[Hα(ψ̃βψαu)]l =
r

∑
i=1

(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α , (4)

for some functions (Aαβ)il , (1 ≤ i ≤ r) in C∞(ϕ̃β(Uα ∩ Ũβ)). For now let us assume the
validity of Equation (4) to prove the claim.
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‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) = ‖
Ñ

∑
β=1

[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα))

Corollary 6
'

Ñ

∑
β=1
‖[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα∩Ũβ))

(note that by Remark 31 [Hα(ψ̃βψαu)]l has support in the compact set ϕα(supp ψα ∩ supp ψ̃β))

=
Ñ

∑
β=1
‖

r

∑
i=1

(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

≤
Ñ

∑
β=1

r

∑
i=1
‖
(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

Theorem 80
�

Ñ

∑
β=1

r

∑
i=1
‖(Aαβ)il [H̃β(ψ̃βψαu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1

r

∑
i=1
‖(Aαβ)il(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

�
Ñ

∑
β=1

r

∑
i=1
‖(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

'
Ñ

∑
β=1

r

∑
i=1
‖(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

(Here we used Corollary 5 and Theorem 71)

�
Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

(Here we used Theorem 70 and Corollary 4) .

So, it remains to prove Equation (4). Since supp[Hα(ψ̃βψαu)]l is inside the compact set
ϕα(suppψα ∩ suppψ̃β) ⊆ ϕα(Uα ∩ Ũβ), it is enough to consider the action of [Hα(ψ̃βψαu)]l

on elements of C∞
c (ϕα(Uα ∩ Ũβ)). ϕ̃β ◦ ϕ−1

α : ϕα(Uα ∩ Ũβ) → ϕ̃β(Uα ∩ Ũβ) is a C∞-
diffeomorphism. Therefore, the map

C∞
c [ϕ̃β(Uα ∩ Ũβ)]→ C∞

c [ϕα(Uα ∩ Ũβ)], η 7→ η ◦ ϕ̃β ◦ ϕ−1
α

is bijective. In particular, an arbitrary element of C∞
c [ϕα(Uα ∩ Ũβ)] has the form η ◦ ϕ̃β ◦ ϕ−1

α

where η is an element of C∞
c [ϕ̃β(Uα ∩ Ũβ)].

For all η ∈ C∞
c [ϕ̃β(Uα ∩ Ũβ)] we have (see Section 6.2.2)

〈[Hα(ψ̃βψαu)]l , η ◦ ϕ̃β ◦ ϕ−1
α 〉 = 〈ψ̃βψαu, gα

l,η◦ϕ̃β◦ϕ−1
α
〉 , (5)

where gα
l,η◦ϕ̃β◦ϕ−1

α
stands for gl,η◦ϕ̃β◦ϕ−1

α ,Uα ,ϕα
.
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For all y ∈ ϕα(Uα ∩ Ũβ) we have (x = ϕ−1
α (y))

ρ∨α |E∨x ◦ gα
l,η◦ϕ̃β◦ϕ−1

α
◦ ϕ−1

α (y)︸ ︷︷ ︸
x

= (0, . . . , 0, η ◦ ϕ̃β ◦ ϕ−1
α (y)︸ ︷︷ ︸

lth position

, 0, . . . , 0) ,

ρ̃∨β ◦ g̃β
l,η ◦ ϕ̃−1

β (ϕ̃β ◦ ϕ−1
α (y))︸ ︷︷ ︸

x

= (0, . . . , 0, η ◦ ϕ̃β ◦ ϕ−1
α (y)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

Therefore, for all y ∈ ϕα(Uα ∩ Ũβ)

ρ∨α |E∨x ◦ gα
l,η◦ϕ̃β◦ϕ−1

α
◦ ϕ−1

α (y) = ρ̃∨β ◦ g̃β
l,η ◦ ϕ−1

α (y) ,

which implies that on Uα ∩ Ũβ

gα
l,η◦ϕ̃β◦ϕ−1

α
= [ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β
l,η . (6)

It follows from Lemma 4 that for all a ∈ E∨x

[ρ̃∨β |E∨x ] ◦ [ρ
∨
α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ](a) = τ β̃α(x)︸ ︷︷ ︸
r×r

(ρ̃∨β |E∨x (a)) .

That is,
[ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ](a) = [ρ̃∨β |E∨x ]
−1[τ β̃α(x)(ρ̃∨β |E∨x (a))] .

For a = g̃β
l,η(x) we have

ρ̃∨β |E∨x (a) = ρ̃∨β |E∨x (g̃β
l,η(x)) = (0, . . . , 0, η ◦ ϕ̃β(x)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

So,

[ρ∨α |E∨x ]
−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β

l,η = [ρ̃∨β |E∨x ]
−1[τ β̃α(x)(ρ̃∨β |E∨x (g̃β

l,η(x)))] = [ρ̃∨β |E∨x ]
−1((η ◦ ϕ̃β)


τ

β̃α
1l
...

τ
β̃α
rl

)

= [ρ̃∨β |E∨x ]
−1(

(η ◦ ϕ̃β)τ

β̃α
1l

0
...
0

+ · · ·+


0
...
0

(η ◦ ϕ̃β)τ
β̃α
rl

)

= g̃β

1,(τ β̃α
1l ◦ϕ̃−1

β )η
+ · · ·+ g̃β

r,(τ β̃α
rl ◦ϕ̃−1

β )η
. (7)
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It follows from (5)–(7) that for all η ∈ C∞
c [ϕ̃β(Uα ∩ Ũβ)]

〈[Hα(ψ̃βψαu)]l , η ◦ ϕ̃β ◦ ϕ−1
α 〉 = 〈ψ̃βψαu, [ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β
l,η〉

= 〈ψ̃βψαu,
r

∑
i=1

g̃β

i,(τ β̃α
il ◦ϕ̃−1

β )η
〉

=
r

∑
i=1
〈[H̃β(ψ̃βψαu)]i, (τ β̃α

il ◦ ϕ̃−1
β )η〉

=
r

∑
i=1
〈(τ β̃α

il ◦ ϕ̃−1
β )[H̃β(ψ̃βψαu)]i, η〉

=
r

∑
i=1
〈(τ β̃α

il ◦ ϕ̃−1
β )[H̃β(ψ̃βψαu)]i, η ◦ ϕ̃β ◦ ϕ−1

α ◦ (ϕα ◦ ϕ̃−1
β )〉

=
r

∑
i=1
〈 1

det(ϕα ◦ ϕ̃−1
β )

(τ
β̃α
il ◦ ϕ̃−1

β )[H̃β(ψ̃βψαu)]i ◦ ϕ̃β ◦ ϕ−1
α , η ◦ ϕ̃β ◦ ϕ−1

α 〉 .

For the last equality we used the following identity

〈 1
detT−1 (u ◦ T), ϕ〉 = 〈u, ϕ ◦ T−1〉 .

Hence

[Hα(ψ̃βψαu)]l =
r

∑
i=1

1
det(ϕα ◦ ϕ̃−1

β )
(τ

β̃α
il ◦ ϕ̃−1

β )[H̃β(ψ̃βψαu)]i ◦ ϕ̃β ◦ ϕ−1
α ,

and consequently letting

(Aαβ)il =
1

det(ϕα ◦ ϕ̃−1
β )

(τ
β̃α
il ◦ ϕ̃−1

β )

leads to (4).

Remark 57. Note that the above theorems establish the full independence of We,q(M, E; Λ) from Λ
at least when e is not a noninteger less than −1. So, it is justified to write We,q(M, E) instead of
We,q(M, E; Λ) at least when e is not a noninteger less than −1. Additionally, see Remark 61.

9.2. The Properties
9.2.1. Multiplication Properties

Theorem 90. Let Mn be a compact smooth manifold and E → M be a vector bundle with rank
r. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E. Suppose
e ∈ R, q ∈ (1, ∞), η ∈ C∞(M). If e is a noninteger less than −1, further assume that the total
trivialization atlas of Λ is GGL. Then the linear map

mη : We,q(M, E; Λ)→We,q(M, E; Λ), u 7→ ηu

is well-defined and bounded.
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Proof.

‖ηu‖We,q(M,E;Λ) : =
N

∑
α=1

r

∑
l=1
‖(Hα(ψαηu))l‖We,q(ϕα(Uα))

Remark 31
=

N

∑
α=1

r

∑
l=1
‖(η ◦ ϕ−1

α )(Hα(ψαu))l‖We,q(ϕα(Uα))

�
N

∑
α=1

r

∑
l=1
‖(Hα(ψαu))l‖We,q(ϕα(Uα)) = ‖u‖We,q(M,E;Λ) .

For the case where e is not a noninteger less than −1, the last inequality follows from
Theorem 70. If e is a noninteger less than −1, then by assumption ϕα(Uα) is either entire
Rn or is Lipschitz, and the last inequality is due to Theorem 51 and Corollary 4.

Theorem 91. Let Mn be a compact smooth manifold and E→ M be a vector bundle with rank r.
Let Λ be an augmented total trivialization atlas for E. Let s1, s2, s ∈ R and p1, p2, p ∈ (1, ∞). If
any of s1, s2, or s is a noninteger less than −1, further assume that the total trivialization atlas of Λ
is GL compatible with itself.

(1) If s1, s2, and s are not nonintegers less than −1, and if Ws1,p1(Rn) ×Ws2,p2(Rn) ↪→
Ws,p(Rn), then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→Ws,p(M, E; Λ) .

(2) If s1, s2, and s are not nonintegers less than−1, and if Ws1,p1(Ω)×Ws2,p2(Ω) ↪→Ws,p(Ω),
for any open ball Ω, then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→Ws,p(M, E; Λ) .

(3) If any of s1, s2, or s is a noninteger less than−1, and if Ws1,p1(Ω)×Ws2,p2(Ω) ↪→Ws,p(Ω)
for Ω = Rn and for any bounded open set Ω with Lipschitz continuous boundary, then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→Ws,p(M, E; Λ) .

Proof.

(1) Let Λ1 = {(Uα, ϕα, ρα, ψα)}1≤α≤N be any augmented total trivialization atlas which
is super nice. Let Λ2 = {(Uα, ϕα, ρα, ψ̃α)}1≤α≤N where for each 1 ≤ α ≤ N, ψ̃α =

ψ2
α

∑N
β=1 ψ2

β

. Note that 1
∑N

β=1 ψ2
β

◦ ϕ−1
α ∈ BC∞(ϕα(Uα)). For f ∈ Ws1,p1(M; Λ) and u ∈

Ws2,p2(M, E; Λ) we have

‖ f u‖Ws,p(M,E;Λ) ' ‖ f u‖Ws,p(M,E;Λ2)
=

N

∑
α=1

r

∑
j=1
‖[Hα(ψ̃α( f u))]j‖Ws,p(ϕα(Uα))

�
N

∑
α=1

r

∑
j=1
‖((ψα f ) ◦ ϕ−1

α )[Hα(ψαu)]j‖Ws,p(ϕα(Uα))

�
( N

∑
α=1
‖(ψα f ) ◦ ϕ−1

α ‖Ws1,p1 (ϕα(Uα))

)( N

∑
α=1

r

∑
j=1
‖[Hα(ψαu)]j‖Ws2,p2 (ϕα(Uα))

)
= ‖ f ‖Ws1,p1 (M;Λ1)

‖u‖Ws2,p2 (M,E;Λ1)
' ‖ f ‖Ws1,p1 (M;Λ)‖u‖Ws2,p2 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead of
“super nice”.
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(3) The exact same argument as item 1 works. Just choose Λ1 = Λ. (The equality
‖ f u‖Ws,p(M,E;Λ) ' ‖ f u‖Ws,p(M,E;Λ2)

holds due to the assumption that Λ = Λ1 is GL
compatible with itself.)

Remark 58. Suppose e is a noninteger less than −1 and q ∈ (1, ∞). We will prove that if Λ and
Λ̃ are two augmented total trivialization atlases and each of Λ and Λ̃ is GL compatible with itself,
then We,q(M, E; Λ) = We,q(M, E; Λ̃) (see Remark 61). Considering this and the fact that we can
choose Λ1 to be super nice (or nice) and GL compatible with itself (see Theorem 34 and Corollary 1),
we can remove the assumption “s1, s2, and s are not nonintegers less than −1” from part 1 and part
2 of the preceding theorem.

9.2.2. Embedding Properties

Theorem 92. Let Mn be a compact smooth manifold. Let π : E→ M be a smooth vector bundle
of rank r over M. Let Λ be an augmented total trivialization atlas for E. Let e1, e2 ∈ R and
q1, q2 ∈ (1, ∞). If any of e1 or e2 is a noninteger less than −1, further assume that the total
trivialization atlas in Λ is GGL.

(1) If e1 and e2 are not nonintegers less than −1 and if We1,q1(Rn) ↪→ We2,q2(Rn), then
We1,q1(M, E; Λ) ↪→We2,q2(M, E; Λ).

(2) If e1 and e2 are not nonintegers less than −1 and if We1,q1(Ω) ↪→ We2,q2(Ω) for all open
balls Ω ⊆ Rn, then We1,q1(M, E; Λ) ↪→We2,q2(M, E; Λ).

(3) If any of e1 or e2 is a noninteger less than −1 and if We1,q1(Ω) ↪→ We2,q2(Ω) for Ω =
Rn and for any bounded domain Ω ⊆ Rn with Lipschitz continuous boundary, then
We1,q1(M, E; Λ) ↪→We2,q2(M, E; Λ).

Proof.

(1) Let Λ1 = {(Uα, ϕα, ρα, ψα)}1≤α≤N be any augmented total trivialization atlas for E
which is super nice. We have

‖u‖We2,q2 (M,E;Λ) ' ‖u‖We2,q2 (M,E;Λ1)
=

N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We2,q2 (ϕα(Uα))

�
N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We1,q1 (ϕα(Uα))

= ‖u‖We1,q1 (M,E;Λ1)
' ‖u‖We1,q1 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead of
“super nice”.

(3) The exact same argument as item 1 works. Just choose Λ1 = Λ.

Remark 59. If we further assume that Λ is GL compatible with itself, then we can remove the
assumption “e1 and e2 are not nonintegers less than −1” from part 1 and part 2 of the preceding
theorem. (see the explanation in Remark 58).

Theorem 93. Let Mn be a compact smooth manifold. Let π : E→ M be a smooth vector bundle
of rank r over M equipped with fiber metric 〈., .〉E (so it is meaningful to talk about L∞(M, E)).
Suppose s ∈ R and p ∈ (1, ∞) are such that sp > n. Then Ws,p(M, E) ↪→ L∞(M, E). Moreover,
every element u in Ws,p(M, E) has a continuous version (note that since s is not a noninteger less
than −1, the choice of the augmented total trivialization atlas is immaterial).
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Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be a nice total trivialization atlas for E→ M that trivializes
the fiber metric. Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}. We need to
show that for every u ∈Ws,p(M, E)

|u|L∞(M,E) � ‖u‖Ws,p(M,E) .

Note that since s > 0, Ws,p(M, E) ↪→ Lp(M, E) and we can treat u as an ordinary section of
E. We prove the above inequality in two steps:

• Step 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ. We have

|u|L∞(M,E) = ess sup
x∈M

|u|E = ess sup
x∈Uβ

|u|E

= ess sup
y∈ϕβ(Uβ)

√
r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |2 (by assumption the triples trivialize the metric)

≤ ess sup
y∈ϕβ(Uβ)

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β | ≤

r

∑
l=1

ess sup
y∈ϕβ(Uβ)

|ρl
β ◦ u ◦ ϕ−1

β |

=
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖L∞(ϕβ(Uβ))

�
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖Ws,p(ϕβ(Uβ))

(sp > n so Ws,p(ϕβ(Uβ)) ↪→ L∞(ϕβ(Uβ))) .

• Step 2: Now, suppose u is an arbitrary element of Ws,p(M, E). We have

|u|L∞(M,E) = |
N

∑
α=1

ψαu|L∞(M,E) ≤
N

∑
α=1
|ψαu|L∞(M,E)

Step 1
�

N

∑
α=1

r

∑
l=1
‖ρl

α ◦ ψαu ◦ ϕ−1
α ‖Ws,p(ϕα(Uα)) ' ‖u‖Ws,p(M,E) .

Next we prove that every element u of Ws,p(M, E) has a continuous version. Note that for
all x ∈ Uα

ψαu(x) = Φ−1
α (x, ρ1

α ◦ ψαu, . . . , ρr
α ◦ ψαu) .

Furthermore, for all 1 ≤ l ≤ r and 1 ≤ α ≤ N we have

ρl
α ◦ ψαu ◦ ϕ−1

α ∈Ws,p(ϕα(Uα)) .

Therefore, ρl
α ◦ ψαu ◦ ϕ−1

α has a continuous version which we denote by vl
α. Suppose Al

α is
the set of measure zero on which vl

α 6= ρl
α ◦ ψαu ◦ ϕ−1

α . Let Aα = ∪1≤l≤r Al
α. Clearly, Aα is

a set of measure zero. Since ϕα : Uα → ϕα(Uα) is a diffeomorphism, Bα := ϕ−1
α (Aα) is a

set of measure zero in Uα (In general, if M and N are smooth n-manifolds, F : M→ N is a
smooth map, and A ⊆ M is a subset of measure zero, then F(A) has measure zero in N.
See p. 128 in [19]).
Clearly,

(x, v1
α ◦ ϕα, . . . , vr

α ◦ ϕα) = (x, ρ1
α ◦ ψαu, . . . , ρr

α ◦ ψαu) .

on Uα \ Bα. So,

wα := Φ−1
α (x, v1

α ◦ ϕα, . . . , vr
α ◦ ϕα) = Φ−1

α (x, ρ1
α ◦ ψαu, . . . , ρr

α ◦ ψαu) = ψαu

on Uα \ Bα. Note that wα : Uα → E is a composition of continuous functions and so it is
continuous on Uα. Let ξα ∈ C∞

c (Uα) be such that ξα = 1 on suppψα. So ξαwα = ψαu on
M \ Bα. Consequently, if we let w = ∑N

α=1 ξαwα, then w is a continuous function that agrees
with u = ∑N

α=1 ψαu on M \ B where B = ∪1≤α≤N Bα.
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9.2.3. Observations Concerning the Local Representation of Sobolev Functions

Let Mn be a compact smooth manifold. Let E→ M be a smooth vector bundle of rank
r over M. As it was discussed in Section 6, given a total trivialization triple (Uα, ϕα, ρα), we
can associate with every u ∈ D′(M, E) and every f ∈ Γ(M, E), a local representation with
respect to (Uα, ϕα, ρα):

u 7→ (ũ1, . . . , ũr) ∈ [D′(ϕα(Uα))]
×r, ũl = [Hα(u|Uα)]

l ,

f 7→ ( f̃ 1, . . . , f̃ r) ∈ [Func(ϕα(Uα),R)]×r, f̃ l = ρl
α ◦ ( f |Uα) ◦ ϕ−1

α ,

and of course, as it was pointed out in Remark 32, the two representations agree when
u is a regular distribution. The goal of this section is to list some useful facts about the
local representations of elements of Sobolev spaces. In what follows, when there is no
possibility of confusion, we may write Hα(u) instead of Hα(u|Uα), or ρl

α ◦ f ◦ ϕ−1
α instead

of ρl
α ◦ ( f |Uα) ◦ ϕ−1

α .

Theorem 94. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r.
Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E → M. Let
u ∈ D′(M, E), e ∈ R, and q ∈ (1, ∞). If for all 1 ≤ α ≤ N and 1 ≤ j ≤ r, [Hα(u)]j ∈
We,q

loc(ϕα(Uα)), then u ∈We,q(M, E; Λ).

Proof.

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
j=1
‖[Hα(ψαu)]j‖We,q(ϕα(Uα))

=
N

∑
α=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) · ([Hα(u)]j)‖We,q(ϕα(Uα)) .

Now, note that ψα ◦ ϕ−1
α : ϕα(Uα)→ R is smooth with compact support (its support is in

the compact set ϕα(supp ψα)). Therefore, it follows from the assumption that each term on
the right hand side of the above equality is finite.

Remark 60. Note that, as opposed to what is claimed in some references, it is NOT true in general
that if u ∈ We,q(M, E; Λ), then the components of the local representations of u will be in the
corresponding Euclidean Sobolev space; that is, u ∈ We,q(M, E; Λ) does not imply that for all
1 ≤ α ≤ N and 1 ≤ j ≤ r, [Hα(u)]j ∈We,q(ϕα(Uα)). Consider the following example:
M = S1, e = 0, q = 1, and f : M→ R defined by f ≡ 1. Clearly f ∈W0,1(M) = L1(S1). Now,
consider the atlas A = {(U1, ϕ1), (U2, ϕ2)} where

U1 = S1 \ {(0, 1)}, ϕ1(x, y) =
x

1− y
,

U2 = S1 \ {(0,−1)}, ϕ2(x, y) =
x

1 + y
(stereographic projection) .

Clearly, f ◦ ϕ−1
1 = f ◦ ϕ−1

2 = 1 and ϕ1(U1) = ϕ2(U2) = R. So, f ◦ ϕ−1
1 and f ◦ ϕ−1

2 do not
belong to L1(ϕ1(U1)) or L1(ϕ2(U2)).

However, the following theorem holds true.

Theorem 95. Let Mn be a compact smooth manifold and E→ M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
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itself. Let u ∈We,q(M, E; Λ) be such that supp u ⊆ V ⊆ V̄ ⊆ Uβ for some open set V and some
1 ≤ β ≤ N. Then for all 1 ≤ i ≤ r, [Hβ(u)]i ∈We,q(ϕβ(Uβ)). Indeed,

‖[Hβ(u)]i‖We,q(ϕβ(Uβ))
≤ ‖u‖We,q(M,E;Λ) .

Proof. Let Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N
α=1 where {ψ̃α}1≤α≤N is a partition of unity subordinate

to the cover {Uα}1≤α≤N such that ψ̃β = 1 on a neighborhood of V̄ (see Lemma 3). We have

‖[Hβ(u)]i‖We,q(ϕβ(Uβ))
= ‖[Hβ(ψ̃βu)]i‖We,q(ϕβ(Uβ))

≤
N

∑
α=1

r

∑
j=1
‖[Hα(ψ̃αu)]j‖We,q(ϕα(Uα))

= ‖u‖We,q(M,E;Λ1)
' ‖u‖We,q(M,E;Λ) .

Corollary 8. Let Mn be a compact smooth manifold and E→ M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. If u ∈We,q(M, E; Λ), then for all 1 ≤ α ≤ N and 1 ≤ i ≤ r, [Hα(u)]i (i.e., each component
of the local representation of u with respect to (Uα, ϕα, ρα)) belongs to We,q

loc(ϕα(Uα)). Moreover, if
ξ ∈ C∞

c (ϕα(Uα)), then

‖ξ[Hα(u)]i‖We,q(ϕα(Uα)) � ‖u‖We,q(M,E;Λ) ,

where the implicit constant may depend on ξ.

Proof. Define G : M→ R by

G(p) =

{
ξ ◦ ϕα if p ∈ Uα

0 if p 6∈ Uα
.

Clearly, G ∈ C∞(M). So, by Theorem 90, Gu ∈ We,q(M, E; Λ). Furthermore, since ξ ∈
C∞

c (ϕα(Uα)), there exists a compact set K such that

supp ξ ⊆ K̊ ⊆ K ⊆ ϕα(Uα) .

Consequently, there exists an open set Vα (e.g., Vα = ϕ−1
α (K̊)) such that

supp (Gu) ⊆ supp(ξ ◦ ϕα) ⊆ Vα ⊆ V̄α ⊆ Uα .

So, by Theorem 95, [Hα(Gu)]i ∈We,q(ϕα(Uα)) and

‖[Hα(Gu)]i‖We,q(ϕα(Uα)) � ‖Gu‖We,q(M,E;Λ) � ‖u‖We,q(M,E;Λ) .

Now, we just need to notice that on ϕα(Uα),

[Hα(Gu)]i = (G ◦ ϕ−1
α )[Hα(u)]i = ξ[Hα(u)]i .

9.2.4. Observations Concerning the Riemannian Metric

The Sobolev spaces that appear in this section all have nonnegative smoothness
exponents; therefore, the choice of the augmented total trivialization atlas is immaterial
and will not appear in the notation.
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Corollary 9. Let (Mn, g) be a compact Riemannian manifold with g ∈Ws,p(T2M), sp > n. Let
{(Uα, ϕα, ρα)}1≤α≤N be a standard total trivialization atlas for T2M→ M. Fix some α and denote
the components of the metric with respect to (Uα, ϕα, ρα) by gij : Uα → R (gij = (ρα)ij ◦ g). As
an immediate consequence of Corollary 8 we have

gij ◦ ϕ−1
α ∈Ws,p

loc (ϕα(Uα)) .

Theorem 96. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. Let {(Uα, ϕα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T2M→ M. Fix
some α and denote the components of the metric with respect to (Uα, ϕα, ρα) by gij : Uα → R
(gij = (ρα)ij ◦ g). Then

(1) det gα ∈Ws,p
loc (ϕα(Uα)) where gα(x) is the matrix whose (i, j)-entry is gij ◦ ϕ−1

α ,
(2)

√
det g ◦ ϕ−1

α =
√

det gα ∈Ws,p
loc (ϕα(Uα)),

(3) 1√
det g◦ϕ−1

α
∈Ws,p

loc (ϕα(Uα)).

Proof.

(1) By Corollary 8, gij ◦ ϕ−1
α is in Ws,p

loc (ϕα(Uα)). So, it follows from Lemma 10 that
det gα ∈Ws,p

loc (ϕα(Uα)).
(2) This is a direct consequence of item 1 and Theorem 85.
(3) This is a direct consequence of item 1 and Theorem 85.

Theorem 97. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. Then the inverse metric tensor g−1 (which is a (0

2) tensor field) is in Ws,p(T2M).

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T2M→ M.
Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}1≤α≤N . We have

‖g−1‖Ws,p(T2 M) =
N

∑
α=1

∑
i,j
‖ψαgij ◦ ϕ−1

α ‖Ws,p(ϕα(Uα)) .

So, it is enough to show that for all i, j and α, gij ◦ ϕ−1
α is in Ws,p

loc (ϕα(Uα)). Let B = (Bij)

where Bij = gij ◦ ϕ−1
α . By assumption, g ∈Ws,p(T2M); it follows from Corollary 8 that Bij ∈

Ws,p
loc (ϕα(Uα)). Our goal is to show that the entries of the inverse of B are in Ws,p

loc (ϕα(Uα)).
Recall that

(B−1)ij =
(−1)i+j

det B
Mij ,

where Mij is the determinant of the (n − 1) × (n − 1) matrix formed by removing the
jth row and ith column of B. Since the entries of B are in Ws,p

loc (ϕα(Uα)), it follows from
Lemma 10 and Theorem 85 that 1

det B and Mij are in Ws,p
loc (ϕα(Uα)). Furthermore, sp > n, so

Ws,p
loc (ϕα(Uα)) is closed under multiplication. Consequently, (B−1)ij is in Ws,p

loc (ϕα(Uα)).

Corollary 10. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. {(Uα, ϕα)}1≤α≤N be a GGL smooth atlas for M. Denote the standard components of
the inverse metric with respect to this chart by gij : Uα → R. As an immediate consequence of
Theorem 97 and Corollary 8 we have

gij ◦ ϕ−1
α ∈Ws,p

loc (ϕα(Uα)) .

Furthermore, since

Γk
ij ◦ ϕ−1

α =
1
2

gkl(∂igjl + ∂jgil − ∂l gij) ◦ ϕ−1
α ,
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it follows from Corollary 9, Lemma 9, Theorem 83, and the fact that
Ws,p(ϕα(Uα))×Ws−1,p(ϕα(Uα)) ↪→Ws−1,p(ϕα(Uα)) that

Γk
ij ◦ ϕ−1

α ∈Ws−1,p
loc (ϕα(Uα)) .

9.2.5. A Useful Isomorphism

Let Mn be a compact smooth manifold and E→ M be a vector bundle of rank r. Let e ∈
R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E→ M. Given a closed subset A ⊆ M, We,q

A (M, E; Λ) is defined to be the subspace
of We,q(M, E; Λ) consisting of u ∈ We,q(M, E; Λ) with suppu ⊆ A. Fix 1 ≤ β ≤ N and
suppose K ⊆ Uβ is compact. Then each element of We,q

K (M, E; Λ) can be identified with an
element of D′(Uβ, EUβ

) under the injective map u ∈ We,q
K (M, E; Λ) ⊆ D′(M, E) 7→ u|U ∈

D′(Uβ, EUβ
). So, we can restrict the domain of Hβ : [D(Uβ, E∨Uβ

)]∗ → (D′(ϕβ(Uβ)))
×r to

We,q
K (M, E; Λ) which associates with each element u ∈We,q

K (M, E; Λ), the r components of
Hβ(u) = (ũ1

β, · · · , ũr
β) (here Hβ stands for HE∨ ,Uβ ,ϕβ

).

Lemma 11. Consider the above setting and further assume that if e is a noninteger less than −1,
then the total trivialization atlas in Λ is GL compatible with itself. Then the linear topological
isomorphism Hβ : [D(Uβ, E∨Uβ

)]∗ = D′(Uβ, EUβ
) → (D′(ϕβ(Uβ)))

×r restricts to a linear
topological isomorphism

Ĥβ : We,q
K (M, E; Λ)→ [We,q

ϕβ(K)
(ϕβ(Uβ))]

×r .

Proof. In order to simplify the notation we will use (U, ϕ, ρ), H, Ĥ, and ũl instead of
(Uβ, ϕβ, ρβ), Hβ, Ĥβ, and ũl

β. In order to prove this claim, we proceed as follows:

(1) First we show that suppũl ⊆ ϕ(K).
(2) Next we show that if u ∈ We,q

K (M, E; Λ), then ‖u‖We,q(M,E;Λ) ' ∑r
l=1 ‖ũl‖We,q(ϕ(U))

which proves that:

(i) ũl is indeed an element of We,q(ϕ(U));
(ii) Ĥ is continuous.

Note that (i) together with the fact that suppũl ⊆ ϕ(K) shows that ũl is indeed an
element of We,q

ϕ(K)(ϕ(U)) so Ĥ is well-defined.

(3) We prove that Ĥ is injective.
(4) In order to prove that Ĥ is surjective we use our explicit formula for H−1 (see

Remark 31).

Note that the fact that Ĥ is bijective combined with the equality
‖u‖We,q(M,E;Λ) ' ∑r

l=1 ‖ũl‖We,q(ϕ(U)) implies that Ĥ−1 is continuous as well.
Here are the proofs:

(1) This item is a direct consequence of item 1 in Remark 31.
(2) Define the augmented total trivialization atlas Λ1 by Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N

α=1
where {ψ̃α}1≤α≤N is a partition of unity subordinate to {Uα}1≤α≤N such that ψ̃β = 1
on a neighborhood of K. Note that for each α, ψ̃α ≥ 0 and ∑N

α=1 ψ̃α = 1. Thus, the
assumption ψ̃β = 1 on K implies that ψ̃α = 0 on K for all α 6= β. We have

‖u‖We,q(M,E;Λ) ' ‖u‖We,q(M,E;Λ1)
'

N

∑
α=1

r

∑
l=1
‖(Hα(ψ̃αu))l‖We,q(ϕα(Uα))

=
r

∑
l=1
‖(H(ψ̃βu))l‖We,q(ϕα(Uα)) =

r

∑
l=1
‖[H(u)]l‖We,q(ϕα(Uα)) .
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Note that suppu ⊆ K and ψ̃β = 1 on K, so ψ̃βu = u|U as elements of D′(U, EU).
Therefore, H(ψ̃βu) = H(u) = (ũ1, . . . , ũr).

(3) Ĥ is injective because it is a restriction of the injective map H.
(4) Let (v1, . . . , vr) ∈ [We,q

ϕ(K)(ϕ(U))]×r. Our goal is to show that H−1(v1, . . . , vr) ∈
We,q

K (M, E; Λ) ' We,q
K (M, E; Λ1) (this implies that Ĥ is surjective). By Remark 31,

for all ξ ∈ D(U, E∨U)

H−1(v1, . . . , vr)(ξ) = ∑
i

vi[(ρ∨)i ◦ ξ ◦ ϕ−1] .

First note it follows from Remark 30 that suppH−1(v1, . . . , vr) ⊆ K; indeed, if suppξ ⊆
U \K, then ξ ◦ ϕ−1 = 0 on ϕ(K). So, (ρ∨)i ◦ ξ ◦ ϕ−1 = 0 on ϕ(K). That is, supp[(ρ∨)i ◦
ξ ◦ ϕ−1] ⊆ ϕ(U) \ ϕ(K). Thus, for all i, vi[(ρ∨)i ◦ ξ ◦ ϕ−1] = 0 (because, by assumption,
suppvi ⊆ ϕ(K)). This shows that if suppξ ⊆ U \ K, then H−1(v1, . . . , vr)(ξ) = 0.
Consequently, suppH−1(v1, . . . , vr) ⊆ K.
Furthermore, we have

‖H−1(v1, . . . , vr)‖We,q(M,E;Λ1)
'

r

∑
l=1
‖vl‖We,q(ϕ(U)) < ∞ .

So, H−1(v1, · · · , vr) ∈We,q(M, E; Λ).

It is clear that u ∈ We,q(M, E; Λ) if and only if for all α, ψαu ∈ We,q
Kα
(M, E; Λ) where

Kα can be taken as any compact set such that suppψα ⊆ Kα ⊆ Uα. In fact as a direct
consequence of the definition of Sobolev spaces and the above mentioned isomorphism
we have

u ∈We,q(M, E; Λ)⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [We,q
ϕα(suppψα)

(ϕα(Uα))]
×r

⇐⇒ ∀ 1 ≤ α ≤ N ψαu ∈We,q
suppψα

(M, E; Λ)

9.2.6. Completeness; Density of Smooth Functions

Our proofs for completeness of Sobolev spaces and density of smooth functions are
based on the ideas presented in [24].

Lemma 12. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank
r. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total
trivialization atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL
compatible with itself. Let Kα be a compact subset of Uα that contains the support of ψα. Let
S : We,q(M, E; Λ)→ ∏N

α=1 We,q
Kα
(M, E; Λ) be the linear map defined by S(u) = (ψ1u, . . . , ψNu).

Then S : We,q(M, E; Λ) → S(We,q(M, E; Λ)) ⊆ ∏N
α=1 We,q

Kα
(M, E; Λ) is a linear topological

isomorphism. Moreover, S(We,q(M, E; Λ)) is closed in ∏N
α=1 We,q

Kα
(M, E; Λ).

Proof. Each component of S is continuous (see Theorem 90), therefore S is continuous.
Define P : ∏N

α=1 We,q
Kα
(M, E)→We,q(M, E) by

P(v1, . . . , vN) = ∑
i

vi .

Clearly, P is continuous. Furthermore, P ◦ S = id. Now the claim follows from
Theorem 23.

Theorem 98. Let Mn be a compact smooth manifold and E→ M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
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atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. Then We,q(M, E; Λ) is a Banach space.

Proof. According to Lemma 11, for each 1 ≤ α ≤ N, We,q
Kα
(M, E; Λ) is isomorphic to the

Banach space [We,q
ϕα(Kα)

(ϕα(Uα))]×r. So ∏N
α=1 We,q

Kα
(M, E; Λ) is a Banach space. A closed

subspace of a Banach space is Banach. Therefore, S(We,q(M, E; Λ)) is a Banach space.
Since S is a linear topological isomorphism onto its image, We,q(M, E; Λ) is also a Banach
space.

Theorem 99. Let Mn be a compact smooth manifold and E→ M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. Then D(M, E) is dense in We,q(M, E; Λ).

Proof. Let Kα = suppψα. For each 1 ≤ α ≤ N, let Vα be an open set such that

Kα ⊆ Vα ⊆ V̄α ⊆ Uα .

Suppose u ∈ We,q(M, E; Λ) and let uα = ψαu. Clearly, suppuα ⊆ Kα. Furthermore,
according to Lemma 11, for each α there exists a linear topological isomorphism

Ĥα : We,q
V̄α
(M, E)→ [We,q

ϕα(V̄α)
(ϕα(Uα))]

×r .

Note that Ĥα(uα) ∈ [We,q
ϕα(Kα)

(ϕα(Uα))]×r. Therefore, by Lemma 62 there exists a sequence

{(ηα)i} in [C∞
ϕα(V̄α)

(ϕα(Uα))]×r (of course we view each component of (ηα)i as a distribu-

tion) that converges to Ĥα(uα) in We,q norm as i → ∞. Since Ĥα is a linear topological
isomorphism, we can conclude that

Ĥ−1
α ((ηα)i)→ uα, (in We,q

V̄α
(M, E; Λ) as i→ ∞) .

(Note that if a sequence converges in We,q
A (M, E; Λ) where A is a closed subset of M, it also

obviously converges in We,q(M, E; Λ).) Let ξi = ∑N
α=1 Ĥ−1

α ((ηα)i). This sum makes sense
because, as we will shortly prove, each summand is in C∞

c (Uα, Eα) and so by extension by
zero can be viewed as an element of C∞(M, E). Clearly ξi → ∑α uα = u in We,q(M, E; Λ).
It remains to show that for each i, ξi is in C∞(M, E). To this end, it suffices to show
that if χ = (χ1, . . . , χr) ∈ [C∞

c (ϕα(Uα))]×r, then Ĥ−1
α (χ) is in C∞

c (Uα, Eα) and so can
be considered as an element of C∞(M, E) (by extension by zero). Note that Ĥ−1

α (χ) is
compactly supported in Uα because by definition of Ĥα any distribution in the codomain of
Ĥ−1

α has compact support in V̄α. So, we just need to prove the smoothness of Ĥ−1
α (χ). That

is, we need to show that there is a smooth section f ∈ C∞(Uα, EUα) such that u f = Ĥ−1
α (χ).

It seems that the natural candidate for f (x) should be (ρα|Ex )
−1 ◦ χ ◦ ϕα(x). In fact, if we

define f by this formula, then Ĥα(u f ) = Hα(u f ) and by Remark 32 Hα(u f ) is a distribution
that corresponds to the regular function ( f̃ 1, . . . , f̃ r) = ρα ◦ f ◦ ϕ−1

α . Obviously,

ρα ◦ f ◦ ϕ−1
α |ϕα(x) = ρα ◦ (ρα|Ex )

−1 ◦ χ ◦ ϕα ◦ ϕ−1
α |ϕα(x) = χ|ϕα(x) .

So, the regular section f (x) = ρα|−1
Ex
◦ χ ◦ ϕα(x) corresponds to Ĥ−1

α (χ) and we just need to
show that f is smooth; this is true because f is a composition of smooth functions. Indeed,

f (x) = ρα|−1
Ex
◦ χ ◦ ϕα(x) = Φ−1

α (x, χ ◦ ϕα(x)) =⇒ f = Φ−1
α ◦ (Id, χ ◦ ϕα) ,

and all the maps involved in the above expression are smooth.
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9.2.7. Dual of Sobolev Spaces

Lemma 13. Let Mn be a compact smooth manifold and let π : E→ M be a vector bundle of rank r
equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1
is an augmented total trivialization atlas for E → M which trivializes the fiber metric. If e is a
noninteger less than −1 further assume that the total trivialization atlas in Λ is GGL.
Fix a positive smooth density µ on M (for instance we can equip M with a smooth Riemannian
metric and consider the corresponding Riemannian density). Let T : D(M, E)→ D(M, E∨) be the
map that sends ξ to Tξ where Tξ is defined by

∀ x ∈ M Tξ(x) : Ex → Dx, a 7→ 〈a, ξ(x)〉E µ(x) .

Then T is a linear bijective continuous map. Moreover, T : (C∞(M, E), ‖.‖We,q(M,E;Λ)) →
(C∞(M, E∨), ‖.‖We,q(M,E∨ ;Λ∨)) is a topological isomorphism.

Note: Since M is compact, D(M, E) and D(M, E∨) are Frechet spaces. So, by
Theorem 17, the continuity of the bijective linear map T : D(M, E) → D(M, E∨) implies
the continuity of its inverse. That is, T : D(M, E) → D(M, E∨) is a linear topological
isomorphism. As a consequence, the adjoint of T is a well-defined bijective continuous
map that can be used to identify D′(M, E) = [D(M, E∨)]∗ with [D(M, E)]∗.

Proof. The fact that T is linear is obvious.

• T is one-to-one: Suppose ξ ∈ D(M, E) is such that Tξ = 0. Then

∀ x ∈ M Tξ(x) = 0 =⇒ ∀ x ∈ M, ∀ a ∈ Ex [Tξ(x)](a) = 0

=⇒ ∀ x ∈ M, ∀ a ∈ Ex 〈a, ξ(x)〉E = 0

=⇒ ∀ x ∈ M 〈ξ(x), ξ(x)〉E = 0 =⇒ ∀ x ∈ M ξ(x) = 0 .

• T is onto: Let u ∈ D(M, E∨). Our goal is to show that there exists ξ ∈ D(M, E) such
that u = Tξ . Note that

∀ x ∈ M u(x) = Tξ(x)⇐⇒ ∀ x ∈ M ∀ a ∈ Ex 〈a, ξ(x)〉E µ(x) = [u(x)](a) .

Since Dx is 1-dimensional and both µ(x) (which is a positive smooth density) and
[u(x)][a] belong to Dx,, there exists a number b(x, a) such that

[u(x)](a) = b(x, a)µ(x) .

So, we need to show that there exists ξ ∈ D(M, E) such that

∀ x ∈ M ∀ a ∈ Ex 〈a, ξ(x)〉E = b(x, a) .

The above equality uniquely defines a functional on Ex which gives us a unique
element ξ(x) ∈ Ex by the Riesz representation theorem. It remains to prove that ξ is
smooth. To this end, we will show that for each α, ξ|Uα is smooth. Let (s1, . . . , sr) be a
smooth orthonormal frame for EUα .

∀ x ∈ Uα ξ(x) = ξ1(x)s1(x) + . . . + ξr(x)sr(x) .

It suffices to show that ξ1, . . . , ξr are smooth functions (see Theorem 36). We have

ξ i(x) = 〈ξ(x), si(x)〉E .

It follows from the definition of ξ(x) that

[u(x)][si(x)] = 〈si(x), ξ(x)〉E µ(x) .
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Therefore, ξ i(x) satisfies the following equality

[u(x)][si(x)] = ξ i(x)µ(x) .

That is, if we define a section of D → Uα by

[u, si] : Uα → D, x 7→ [u(x)][si(x)] ,

then ξ i is the component of this section with respect to the smooth frame {µ(x)} on
Uα. The smoothness of ξ i follows from the fact that if N is any manifold, E→ N is a
vector bundle and u and v are in E(N, E∨) and E(N, E), respectively, then [u, v] is in
E(N,D); indeed, the local representation of [u, v] is ∑l ũl ṽl which is a smooth function
because ũl and ṽl are smooth functions.

• T : D(M, E)→ D(M, E∨) is continuous:
We make use of Theorem 20. Recall that

(1) The topology on D(M, E) is induced by the seminorms:

∀ 1 ≤ l ≤ r, ∀ 1 ≤ α ≤ N, ∀ k ∈ N, ∀K ⊆ Uα(compact) pl,α,k,K(ξ) = ‖ρl
α ◦ ξ ◦ ϕ−1

α ‖ϕα(K),k .

(2) The topology on D(M, E∨) is induced by the seminorms:

∀ 1 ≤ l ≤ r, ∀ 1 ≤ α ≤ N, ∀ k ∈ N, ∀K ⊆ Uα(compact) ql,α,k,K(η) = ‖(ρ∨α )l ◦ η ◦ ϕ−1
α ‖ϕα(K),k .

For all ξ ∈ D(M, E) we have

ql,α,k,K(Tξ) = ‖(ρ∨α )l ◦ Tξ ◦ ϕ−1
α ‖ϕα(K),k = ‖(ρD,ϕα

) ◦ (Tξ ◦ ϕ−1
α ) ◦ (ρα|Ex )

−1(el)︸ ︷︷ ︸
sl(x)

‖ϕα(K),k ,

where (e1, . . . , er) is the standard basis for Rr. Let y = ϕα(x). Note that

[Tξ(ϕ−1
α (y))][sl(x)] = 〈sl(x), ξ(x)〉E µ(x) .

Therefore, if we define the smooth function fα on Uα by µ(x) = fα(x)|dx1 ∧ . . . ∧ dxn|,
then

(ρD,ϕα
) ◦ (Tξ ◦ ϕ−1

α ) ◦ sl(x) = 〈sl(x), ξ(x)〉E fα(x) = ξ l(x) fα(x) = (ρl
α ◦ ξ ◦ ϕ−1

α (y))( fα ◦ ϕ−1
α (y)) . (8)

So, if we let
C = max

y∈ϕα(K),|β|≤k
|∂β( fα ◦ ϕ−1

α (y))| ,

then

ql,α,k,K(Tξ) = ‖(ρl
α ◦ ξ ◦ ϕ−1

α (y))( fα ◦ ϕ−1
α (y))‖ϕα(K),k ≤ C‖ρl

α ◦ ξ ◦ ϕ−1
α (y))‖ϕα(K),k = C pl,α,k,K(ξ) .

• T : (C∞(M, E), ‖.‖e,q)→ (C∞(M, E∨), ‖.‖e,q) is a topological isomorphism:

‖ξ‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ ψαξ ◦ ϕ−1
α ‖We,q(ϕα(Uα)) ,

‖Tξ‖We,q(M,E∨ ;Λ∨) =
N

∑
α=1

r

∑
l=1
‖(ρ∨α )l ◦ ψαTξ ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

By Equation (8), we have

(ρ∨α )
l ◦ ψαTξ ◦ ϕ−1

α = ρD,ϕα
◦ (ψαTξ ◦ ϕ−1

α ) ◦ sl(x) = (ρl
α ◦ ψαξ ◦ ϕ−1

α )( fα ◦ ϕ−1
α ) .
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Therefore,

‖Tξ‖We,q(M,E∨ ;Λ∨) =
N

∑
α=1

r

∑
l=1
‖(ρl

α ◦ ψαξ ◦ ϕ−1
α )( fα ◦ ϕ−1

α )‖We,q(ϕα(Uα)) .

Now, we just need to notice that fα ◦ ϕ−1
α is a positive function and belongs to

C∞(ϕα(Uα)) (so 1
fα◦ϕ−1

α
is also smooth) and ρl

α ◦ ψαξ ◦ ϕ−1
α has support in the compact

set ϕα(supp(ψα)) to conclude that

‖ξ‖We,q(M,E;Λ) ' ‖Tξ‖We,q(M,E∨ ;Λ∨) .

Lemma 14. Let Mn be a compact smooth manifold and let π : E→ M be a vector bundle of rank r
equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1
is an augmented total trivialization atlas for E→ M. If e is a noninteger less than−1 further assume
that the total trivialization atlas in Λ is GGL. Then D(M, E) ↪→We,q(M, E) ↪→ D′(M, E).

Proof. We refer to [24] for discussion about the case where e ∈ Z. For e ∈ R \Z we have

We,q(M, E; Λ) ↪→Wbec,q(M, E; Λ) ↪→ D′(M, E) ,

D(M, E) ↪→Wbec+1,q(M, E; Λ) ↪→We,q(M, E; Λ) .

Theorem 100. Let Mn be a compact smooth manifold and let π : E → M be a vector bun-
dle of rank r equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ =
{(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E→ M which trivializes the
fiber metric. If e is a noninteger whose magnitude is greater than 1 further assume that the total
trivialization atlas in Λ is GL compatible with itself. Fix a positive smooth density µ on M.
Consider the L2 inner product on D(M, E) defined by

〈u, v〉2 =
∫

M
〈u, v〉Eµ .

Then

(i) 〈., .〉2 extends uniquely to a continuous bilinear pairing
〈., .〉2 : W−e,q′(M, E; Λ) ×We,q(M, E; Λ) → R (We are using the same notation (i.e.,
〈., .〉2) for the extended bilinear map!)

(ii) The map S : W−e,q′(M, E; Λ)→ [We,q(M, E; Λ)]∗ defined by S(u) = lu where

lu : We,q(M, E; Λ)→ R, lu(v) = 〈u, v〉2

is a well-defined topological isomorphism.

In particular, [We,q(M, E; Λ)]∗ can be identified with W−e,q′(M, E; Λ).

Proof.

(1) By Theorem 8, in order to prove (i) it is enough to show that

〈., .〉2 : (C∞(M, E), ‖.‖−e,q′)× (C∞(M, E), ‖.‖e,q)→ R

is a continuous bilinear map. Denote the corresponding standard trivialization map
for the density bundle D → M by ρD,ϕα

. Let Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N
α=1 be an

augmented total trivialization atlas for E where ψ̃α = ψ3
α

∑N
β=1 ψ3

β

. Note that 1
∑N

β=1 ψ3
β

◦

ϕ−1
α ∈ BC∞(ϕα(Uα)). Let Kα = suppψα. Recall that on Uα we may write µ =
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hα|dx1 ∧ · · · ∧ dxn| where hα = ρD,ϕα
◦ µ is smooth. Moreover, for any continuous

function f : M→ R,

∫
M

f µ =
N

∑
α=1

∫
M

ψ̃α f µ

=
N

∑
α=1

∫
ϕα(Uα)

(ϕ−1
α )∗(ψ̃α f µ)

=
N

∑
α=1

∫
ϕα(Uα)

(ψ̃α f ◦ ϕ−1
α )(ϕ−1

α )∗µ

=
N

∑
α=1

∫
ϕα(Uα)

(ψ̃α f ◦ ϕ−1
α )(hα ◦ ϕ−1

α ) dV

�
N

∑
α=1

∫
ϕα(Uα)

(ψ2
α f ◦ ϕ−1

α )(ψαhα ◦ ϕ−1
α ) dV (

1

∑N
β=1 ψ3

β

◦ ϕ−1
α ∈ BC∞(ϕα(Uα))) .

Therefore, we have

|
∫

M
〈u, v〉Eµ| = |

N

∑
α=1

∫
M

ψ̃α〈u, v〉Eµ|

� |
N

∑
α=1

∫
ϕα(Uα)

(ψ2
α〈u, v〉E ◦ ϕ−1

α )(ψαhα ◦ ϕ−1
α )dV| .

Since by assumption the total trivialization atlas in Λ trivializes the metric, we get

|
∫

M
〈u, v〉Eµ| �

N

∑
α=1

r

∑
i=1
|
∫

ϕα(Uα)
(ψα ◦ ϕ−1

α ũi)(ψα ◦ ϕ−1
α ṽi)(ψαhα ◦ ϕ−1

α )dV|

Remark 46
�

N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))
‖(ψα ◦ ϕ−1

α ṽi)(ψαhα ◦ ϕ−1
α )‖We,q(ϕα(Uα))

�
N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))
‖(ψα ◦ ϕ−1

α ṽi)‖We,q(ϕα(Uα))

�
[ N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))

][ N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ṽi)‖We,q(ϕα(Uα))

]
= ‖u‖W−e,q′ (M,E;Λ)

‖v‖We,q(M,E;Λ) .

(2) For each u ∈ W−e,q′(M, E; Λ), lu is continuous because 〈., .〉2 is continuous. So, S is
well-defined.

(3) S is a continuous linear map because

∀ u ∈W−e,q′(M, E; Λ) ‖S(u)‖(We,q(M,E;Λ))∗ = sup
0 6=v∈We,q(M,E;Λ)

|S(u)v|
‖v‖We,q(M,E;Λ)

= sup
0 6=v∈We,q(M,E;Λ)

|〈u, v〉2|
‖v‖We,q(M,E;Λ)

≤ C‖u‖W−e,q′ (M,E;Λ)
,

where C is the norm of the continuous bilinear form 〈., .〉2.
(4) S is injective: suppose u ∈W−e,q′(M, E; Λ) is such that S(u) = 0, then

∀ v ∈We,q(M, E; Λ) lu(v) = 〈u, v〉2 = 0 .

We need to show that u = 0.
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• Step 1: For ξ and η in D(M, E) we have

〈ξ, η〉2 = 〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) ,

where T is the map introduced in Lemma 13 (note that if we identify D(M, E)
with a subset of [D(M, E∨)]∗, then we may write ξ instead of uξ on the right
hand side of the above equality). The reason is as follows:

〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) =
∫

M
[Tη(x)][ξ(x)] (by definition of uξ).

Recall that by definition of Tη we have

∀ x ∈ M ∀a ∈ Ex [Tη(x)][a] = 〈a, η(x)〉E µ .

In particular,
[Tη(x)][ξ(x)] = 〈ξ(x), η(x)〉E µ .

Therefore,

〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) =
∫

M
〈ξ(x), η(x)〉Eµ = 〈ξ, η〉2 .

• Step 2: For w ∈W−e,q′(M, E; Λ) and η ∈ D(M, E) ⊆We,q(M, E; Λ) we have

〈w, η〉2 = 〈w, Tη〉[D(M,E∨)]∗×D(M,E∨) .

Indeed, let {ξm} be a sequence in D(M, E) that converges to w in W−e,q′ (M, E; Λ).
Note that W−e,q′(M, E; Λ) ↪→ [D(M, E∨)]∗, so the sequence converges to w in
[D(M, E∨)]∗ as well. By what was proved in the first step, for all m

〈ξm, η〉2 = 〈ξm, Tη〉[D(M,E∨)]∗×D(M,E∨) .

Taking the limit as m→ ∞ proves the claim.
• Step 3: Finally note that for all v ∈ D(M, E) ⊆We,q(M, E; Λ)

〈T∗u, v〉[D(M,E)]∗×D(M,E) = 〈u, Tv〉[D(M,E∨)]∗×D(M,E∨) = 〈u, v〉2 = 0 .

Therefore, T∗u = 0 as an element of [D(M, E)]∗. T is a continuous bijective map,
so T∗ is injective. It follows that u = 0 as an element of [D(M, E∨)]∗ and so u = 0
as an element of W−e,q′(M, E; Λ).

(5) S is surjective. Let F ∈ [We,q(M, E; Λ)]∗. We need to show that there is an element
u ∈ W−e,q′(M, E; Λ) such that S(u) = F. Since D(M, E) is dense in We,q(M, E; Λ), it
is enough to show that there exists an element u ∈W−e,q′ (M, E; Λ) with the property that

∀ ξ ∈ D(M, E) F(ξ) = 〈u, ξ〉2 .

Note that, according to what was proved in Step 2,

〈u, ξ〉2 = 〈u, Tξ〉[D(M,E∨)]∗×D(M,E∨) = 〈T∗u, ξ〉[D(M,E)]∗×D(M,E) .

So, we need to show that there exists an element u ∈W−e,q′(M, E; Λ) such that

∀ ξ ∈ D(M, E) F(ξ) = 〈T∗u, ξ〉[D(M,E)]∗×D(M,E) .

Since D(M, E) ↪→We,q(M, E; Λ), F|D(M,E) is an element of [D(M, E)]∗. We let

u := [T−1]∗(F|D(M,E)) ∈ [D(M, E∨)]∗ .
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Clearly, u satisfies the desired equality (note that [T−1]∗ = [T∗]−1). So, we just need
to show that u is indeed an element of W−e,q′(M, E; Λ). Note that

u ∈W−e,q′(M, E; Λ)⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [W−e,q′

ϕα(suppψα)
(ϕα(Uα))]

×r .

Since supp(ψαu) ⊆ suppψα, it follows from Remark 31 that

∀ 1 ≤ l ≤ r supp([Hα(ψαu)]l) ⊂ ϕα(suppψα) .

It remains to prove that [Hα(ψαu)]l ∈W−e,q′(ϕα(Uα)). Note that

for e ≥ 0 [We,q
0 (ϕα(Uα))]

∗ = W−e,q′(ϕα(Uα)) ,

for e < 0 [We,q
0 (ϕα(Uα))]

∗ = [We,q(ϕα(Uα))]
∗ = W−e,q′

0 (ϕα(Uα)) ⊆W−e,q′(ϕα(Uα)) .

Consequently, for all e

[We,q
0 (ϕα(Uα))]

∗ ⊆W−e,q′(ϕα(Uα)) .

Therefore, it is enough to show that

[Hα(ψαu)]l ∈ [We,q
0 (ϕα(Uα))]

∗ .

To this end, we need to prove that

[Hα(ψαu)]l : (C∞
c (ϕα(Uα)), ‖.‖e,q)→ R

is continuous. For all ξ ∈ C∞
c (ϕα(Uα)) we have

[Hα(ψαu)]l(ξ) = 〈ψαu, gl,ξ,Uα ,ϕα
〉[D(Uα ,E∨Uα

)]∗×D(Uα ,E∨Uα
) = 〈u, ψαgl,ξ,Uα ,ϕα

〉[D(M,E∨)]∗×D(M,E∨)

= 〈[T−1]∗F|D(M,E), ψαgl,ξ,Uα ,ϕα
〉[D(M,E∨)]∗×D(M,E∨)

= 〈F|D(M,E), T−1(ψαgl,ξ,Uα ,ϕα
)〉D∗(M,E)×D(M,E) = F(T−1(ψαgl,ξ,Uα ,ϕα

)) .

Thus, [Hα(ψαu)]l is the composition of the following maps:

(C∞
c (ϕα(Uα)), ‖.‖e,q)→ [We,q

ϕα(suppψα)
(ϕα(Uα))]

×r ∩ [C∞
c (ϕα(Uα))]

×r →We,q
suppψα

(M, E∨; Λ∨) ∩ C∞(M, E∨)

→ (C∞(M, E), ‖‖e,q)→ R

ξ 7→ (0, · · · , 0, (ψα ◦ ϕ−1
α )ξ︸ ︷︷ ︸

lth position

, 0, . . . , 0) 7→ H−1
E∨ ,Uα ,ϕα

(0, . . . , 0, (ψα ◦ ϕ−1
α )ξ, 0, · · · , 0) = ψαgl,ξ,Uα ,ϕα

7→ T−1(ψαgl,ξ,Uα ,ϕα
) 7→ F(T−1(ψαgl,ξ,Uα ,ϕα

)) ,

which is a composition of continuous maps.
(6) S : W−e,q′(M, E; Λ) → [We,q(M, E; Λ)]∗ is a continuous bijective map, so by the

Banach isomorphism theorem, it is a topological isomorphism.

Remark 61.

(1) The result of Theorem 100 remains valid even if Λ = {(Uα, ϕα, ρα, ψα)} does not trivialize
the fiber metric. Indeed, if e is not a noninteger whose magnitude is greater than 1, then the
Sobolev spaces We,q and W−e,q′ are independent of the choice of augmented total trivialization
atlas. If e is a noninteger whose magnitude is greater than 1, then by Theorem 37 there exists
an augmented total trivialization atlas Λ̃ = {(Uα, ϕα, ρ̃α, ψα)} that trivializes the metric and
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has the same base atlas as Λ (so it is GL compatible with Λ because by assumption Λ is GL
compatible with itself). So, we can replace Λ by Λ̃.

(2) Let Λ be an augmented total trivialization atlas that is GL compatible with itself. Let e
be a noninteger less than −1 and q ∈ (1, ∞). By Theorem 100 and the above observa-
tion, We,q(M, E; Λ) is topologically isomorphic to [W−e,q′(M, E; Λ)]∗. However, the space
W−e,q′(M, E; Λ) is independent of Λ. So, we may conclude that even when e is a noninteger
less than −1, the space We,q(M, E; Λ) is independent of the choice of the augmented total
trivialization atlas as long as the corresponding total trivialization atlas is GL compatible
with itself.

9.3. On the Relationship between Various Characterizations

Here we discuss the relationship between the characterizations of Sobolev spaces
given in Remark 54 and our original definition (Definition 30).

(1) Suppose e ≥ 0.

We,q(M, E; Λ) = {u ∈ Lq(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) < ∞} .

As a direct consequence of Theorem 92, for e ≥ 0, We,q(M, E; Λ) ↪→ Lq(M, E) with
the original definition of We,q(M, E; Λ). Therefore, the above characterization is
completely consistent with the original definition.

(2)

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ext0

ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) < ∞} .

It follows from Corollary 6 that

• If e is not a noninteger less than −1, then

‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) ' ‖ext0
ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) ,

• If e is a noninteger less than −1 and ϕα(Uα) is Rn or a bounded open set with
Lipschitz continuous boundary, then again the above equality holds.

Therefore, when e is not a noninteger less than −1, the above characterization com-
pletely agrees with the original definition. If e is a noninteger less than −1 and the
total trivialization atlas corresponding to Λ is GGL, then again the two definitions
agree.

(3)

We,q(M, E; Λ) = {u ∈ D′(M, E) : [Hα(u|Uα)]
l ∈We,q

loc(ϕα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

It follows immediately from Theorem 94 and Corollary 8 that the above character-
ization of the set of Sobolev functions is equivalent to the set given in the original
definition provided we assume that if e is a noninteger less than −1, then Λ is GL
compatible with itself.

(4) We,q(M, E; Λ) is the completion of C∞(M, E) with respect to the norm

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

It follows from Theorem 99 that if e is not a noninteger less than −1 the above charac-
terization of Sobolev spaces is equivalent to the original definition. Furthermore, if e is
a noninteger less than−1 and Λ is GL compatible with itself, the two characterizations
are equivalent.



Mathematics 2022, 10, 522 96 of 103

Now, we will focus on proving the equivalence of the original definition and the fifth
characterization of Sobolev spaces. In what follows instead of ‖.‖Wk,q(M,E;g,∇E) we just
write |.|Wk,q(M,E). Furthermore, note that since k is a nonnegative integer, the choice of the
augmented total trivialization atlas in Definition 30 is immaterial. Our proof follows the
argument presented in [44] and is based on the following five facts:

• Fact 1: Let u ∈ C∞(M, E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N. Then

|u|qLq(M,E) =
∫

M
|u|qEdVg '∑

l
‖ ρl

β ◦ u︸ ︷︷ ︸
ul

◦ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Fact 2: Let u ∈ C∞(M, E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N. Then

|u|q
Wk,q(M,E)

'
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1 ...js
◦ ϕ−1

β ‖
q
Lq(ϕβ(Uβ))

.

Proof.

|u|q
Wk,q(M,E)

'
k

∑
s=0
|(∇E)su|qLq(M,(T∗M)⊗i⊗E)

Fact 1'
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1 ...js︸ ︷︷ ︸

components w.r.t (Uβ , ϕβ , ρβ)

◦ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Fact 3: Let u ∈ C∞(M, E) be such that supp u ⊆ Uβ for some 1 ≤ β ≤ N. Then

‖u‖We,q(M,E) '
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

.

Proof. Let {ψα} be a partition of unity such that ψβ = 1 on supp u (note that since
elements of a partition of unity are nonnegative and their sum is equal to 1, we can
conclude that if α 6= β then ψα = 0 on supp u). We have

‖u‖We,q(M,E) '
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

=
r

∑
l=1
‖ρl

β ◦ (ψβu) ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

=
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

.

• Fact 4: Let u ∈ C∞(M, E). Then for any multi-index γ and all 1 ≤ l ≤ r we have (on
any total trivialization triple (U, ϕ, ρ)):

|∂γ[ρl ◦ u ◦ ϕ−1]| � ∑
s≤|γ|

r

∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1···js
◦ ϕ−1| .

Proof. For any multi-index γ = (γ1, . . . , γn) we define seq γ to be the following list
of numbers:

seq γ = 1 . . . 1︸ ︷︷ ︸
γ1 times

2 · · · 2︸ ︷︷ ︸
γ2 times

. . . n . . . n︸ ︷︷ ︸
γn times

.
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Note that there are exactly |γ| = γ1 + . . . + γn numbers in seq γ. By Observation 2 in
Section 5.5.4 we have

(
(∇E)|γ|u

)l
seq γ
◦ ϕ−1 = ∂γ[ρl ◦ u ◦ ϕ−1] +

r

∑
a=1

∑
α:|α|<|γ|

Cαa∂α[ρa ◦ u ◦ ϕ−1] .

Thus

∂γ[ρl ◦ u ◦ ϕ−1] =
(
(∇E)|γ|u

)l
seq γ
◦ ϕ−1 −

r

∑
a=1

∑
α:|α|<|γ|

Cαa∂α[ρa ◦ u ◦ ϕ−1] ,

∂α[ρa ◦ u ◦ ϕ−1] =
(
(∇E)|α|u

)a
seq α
◦ ϕ−1 −

r

∑
b=1

∑
β:|β|<|α|

Cβb∂β[ρb ◦ u ◦ ϕ−1] ,

...

where the coefficients Cαa, Cβb, etc. are polynomials in terms of christoffel symbols
and the metric and so they are all bounded on the compact manifold M. Consequently,

|∂γ[ρl ◦ u ◦ ϕ−1]| � ∑
s≤|γ|

r

∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1 ...js
◦ ϕ−1

β | .

• Fact 5: Let f ∈ C∞(M, E) and u ∈Wk,q(M, Ẽ) where Ẽ is another vector bundle over
M. Then

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) � ‖u‖Wk,q(M,Ẽ) ,

where the implicit constant may depend on f but it does not depend on u.

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N and {(Uα, ϕα, ρ̃α)}1≤α≤N be total trivialization at-
lases for E and Ẽ, respectively. Let {sα,a = ρ−1

α (ea)}r
a=1 be the corresponding local

frame for E on Uα and {tα,b = ρ̃−1
α (eb)}r̃

b=1 be the corresponding local frame for Ẽ
on Uα. Let G : {1, . . . , r} × {1, . . . , r̃} → {1, . . . , rr̃} be an arbitrary but fixed bijective
function. Then {(Uα, ϕα, ρ̂α)} is a total trivialization atlas for E⊗ Ẽ where

ρ̂α(sα,a ⊗ tα,b) = eG(a,b) (as an element of Rrr̃) ,

and it is extended by linearity to the E⊗ Ẽ|Uα . Now we have

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) =
N

∑
α=1

r

∑
a=1

r̃

∑
b=1
‖ρ̂a,b

α ◦ (ψα f ⊗ u) ◦ ϕ−1
α ‖Wk,q(ϕα(Uα))

=
N

∑
α=1

r

∑
a=1

r̃

∑
b=1
‖(ψα ◦ ϕ−1

α )( f a
α ◦ ϕ−1

α )(ub
α ◦ ϕ−1

α )‖Wk,q(ϕα(Uα))
,

where f = f a
α sα,a and u = ub

αtα,b on Uα. Clearly f a
α ◦ ϕ−1

α ∈ C∞(ϕα(Uα)). Therefore,

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) �
N

∑
α=1

r̃

∑
b=1
‖(ψα ◦ ϕ−1

α )(ub
α ◦ ϕ−1

α )‖Wk,q(ϕα(Uα))
' ‖u‖Wk,q(M,Ẽ) .

• Part I: First we prove that ‖u‖Wk,q(M,E) � |u|Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that supp u ⊆ Uβ. We have



Mathematics 2022, 10, 522 98 of 103

‖u‖q
Wk,q(M,E)

Fact 3'
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Wk,q(ϕβ(Uβ))

'
r

∑
l=1

∑
|γ|≤k

‖∂γ(ρl
β ◦ u ◦ ϕ−1

β )‖q
Lq(ϕβ(Uβ))

Fact 4
�

r

∑
l=1

∑
|γ|≤k

∑
s≤|γ|

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1 ...js
◦ ϕ−1

β ‖
q
Lq(ϕβ(Uβ))

�
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1 ...js
◦ ϕ−1

β ‖
q
Lq(ϕβ(Uβ))

Fact 2' |u|q
Wk,q(M,E)

.

(2) Case 2: Now let u be an arbitrary element of C∞(M, E). We have

‖u‖Wk,q(M,E) = ‖
N

∑
α=1

ψαu‖Wk,q(M,E) ≤
N

∑
α=1
‖ψαu‖Wk,q(M,E)

�
N

∑
α=1
|ψαu|Wk,q(M,E) (by what was proved in Case 1)

�
N

∑
α=1
|u|Wk,q(M,E) ' |u|Wk,q(M,E) .

We note that the last inequality holds because

|ψαu|q
Wk,q(M,E)

=
k

∑
i=0
‖(∇E)i(ψαu)‖q

Lq(M,(T∗M)⊗i⊗E)

=
k

∑
i=0
‖

i

∑
j=0

(
i
j

)
∇jψα ⊗ (∇E)i−ju‖q

Lq(M,(T∗M)⊗i⊗E)

Fact 5
�

k

∑
i=0

i

∑
j=0
‖(∇E)i−ju‖q

Lq(M,(T∗M)⊗(i−j)⊗E)

�
k

∑
s=0
‖(∇E)su‖q

Lq(M,(T∗M)⊗s⊗E) ' |u|
q
Wk,q(M,E)

.

• Part II: Now we show that |u|Wk,q(M,E) � ‖u‖Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ.

|u|q
Wk,q(M,E)

Fact 2'
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1 ...js
◦ ϕ−1

β ‖
q
Lq(ϕβ(Uβ))

Observation 1 in 5.5.4
=

k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖ ∑
|η|≤s

r

∑
l=1

(Cηl)
a
j1 ...js ∂η( ul︸︷︷︸

ρl
β◦u

◦ϕ−1
β )‖q

Lq(ϕβ(Uβ))

�
r

∑
l=1

∑
|η|≤k
‖∂η(ul ◦ ϕ−1

β )‖q
Lq(ϕβ(Uβ))

=
r

∑
l=1
‖ul ◦ ϕ−1

β ‖
q
Wk,q(ϕβ(Uβ))

' ‖u‖q
Wk,q(M,E)

.
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(2) Case 2: Now let u be an arbitrary element of C∞(M, E).

|u|Wk,q(M,E) = |
N

∑
α=1

ψαu|Wk,q(M,E) ≤
N

∑
α=1
|ψαu|Wk,q(M,E)

Case 1
�

N

∑
α=1
‖ψαu‖Wk,q(M,E)

Fact 3'
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖Wk,q(ϕα(Uα))

' ‖u‖Wk,q(M,E) .

10. Some Results on Differential Operators

Let Mn be a compact smooth manifold. Let E and Ẽ be two vector bundles over M of
ranks r and r̃, respectively. A linear operator P : C∞(M, E)→ Γ(M, Ẽ) is called local if

∀ u ∈ C∞(M, E) supp Pu ⊆ supp u .

If P is a local operator, then it is possible to have a well-defined notion of restriction of P to
open sets U ⊆ M, that is, if P : C∞(M, E)→ Γ(M, Ẽ) is local and U ⊆ M is open, then we
can define a map

P|U : C∞(U, EU)→ Γ(U, ẼU)

with the property that

∀ u ∈ C∞(M, E) (Pu)|U = P|U(u|U) .

Indeed, suppose u, ũ ∈ C∞(M, E) agree on U, then as a result of P being local we have

supp (Pu− Pũ) ⊆ supp (u− ũ) ⊆ M \U .

Therefore, if u|U = ũ|U , then (Pu)|U = (Pũ)|U . Thus, if v ∈ C∞(U, EU) and x ∈ U,
we can define (P|U)(v)(x) as follows: choose any u ∈ C∞(M, E) such that u = v on a
neighborhood of x and then let (P|U)(v)(x) = (Pu)(x).

Recall that for any nonempty set V, Func(V,Rt) denotes the vector space of all
functions from V to Rt. By the local representation of P with respect to the total triv-
ialization triples (U, ϕ, ρ) of E and (U, ϕ, ρ̃) of Ẽ we mean the linear transformation
Q : C∞(ϕ(U),Rr)→ Func(ϕ(U),Rr̃) defined by

Q( f ) = ρ̃ ◦ P(ρ−1 ◦ f ◦ ϕ) ◦ ϕ−1 .

Note that ρ−1 ◦ f ◦ ϕ is a section of EU → U. Furthermore, note that for all u ∈ C∞(M, E)

ρ̃ ◦ (P(u|U)) ◦ ϕ−1 = Q(ρ ◦ (u|U) ◦ ϕ−1) . (9)

Let us denote the components of f ∈ C∞(ϕ(U),Rr) by ( f 1, . . . , f r). Then we can write
Q( f 1, · · · , f r) = (h1, . . . , hr̃) where for all 1 ≤ k ≤ r̃

hk = πk ◦Q( f 1, . . . , f r)
Q is linear

= πk ◦Q( f 1, 0, . . . , 0) + . . . + πk ◦Q(0, . . . , 0, f r) .

So, if for each 1 ≤ k ≤ r̃ and 1 ≤ i ≤ r we define Qki : C∞(ϕ(U),R)→ Func(ϕ(U),R) by

Qki(g) = πk ◦Q(0, . . . , 0, g︸︷︷︸
ith position

, 0, . . . , 0) ,

then we have

Q( f 1, . . . , f r) = (
r

∑
i=1

Q1i( f i), . . . ,
r

∑
i=1

Qr̃i( f i)) .
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In particular, note that the sth component of ρ̃ ◦ Pu ◦ ϕ−1, that is ρ̃s ◦ Pu ◦ ϕ−1, is equal to
the sth component of Q(ρ1 ◦ u ◦ ϕ−1, · · · , ρr ◦ u ◦ ϕ−1) (see Equation (9)) which is equal to

r

∑
i=1

Qsi(ρ
i ◦ u ◦ ϕ−1) .

Theorem 101. Let Mn be a compact smooth manifold. Let P : C∞(M, E) → Γ(M, Ẽ) be a
local operator. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Λ̃ = {(Uα, ϕα, ρ̃α, ψα)}1≤α≤N be two
augmented total trivialization atlases for E and Ẽ, respectively. Suppose the atlas {(Uα, ϕα)}1≤α≤N
is GL compatible with itself. For each 1 ≤ α ≤ N, let Qα denote the local representation of P
with respect to the total trivialization triples (Uα, ϕα, ρα) and (Uα, ϕα, ρ̃α) of E and Ẽ, respectively.
Suppose e, ẽ ∈ R, 1 < q, q̃ < ∞, and for each 1 ≤ α ≤ N, 1 ≤ i ≤ r̃, and 1 ≤ j ≤ r,

Qα
ij : (C∞

c (ϕα(Uα)), ‖.‖e,q)→W ẽ,q̃
loc(ϕα(Uα))

is well-defined and continuous and does not increase support. Then

• P(C∞(M, E)) ⊆W ẽ,q̃(M, Ẽ; Λ̃),
• P : (C∞(M, E), ‖.‖e,q) → W ẽ,q̃(M, Ẽ; Λ̃) is continuous and so it can be extended to a

continuous linear map P : We,q(M, E; Λ)→W ẽ,q̃(M, Ẽ; Λ̃).

Proof. First note that

‖Pu‖W ẽ,q̃(M,Ẽ;Λ̃) =
N

∑
α=1

r̃

∑
i=1
‖ρ̃i

α ◦ (ψα(Pu)) ◦ ϕ−1
α ‖W ẽ,q̃(ϕα(Uα))

,

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
j=1
‖ρj

α ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

It is enough to show that for all 1 ≤ α ≤ N, 1 ≤ i ≤ r̃

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖W ẽ,q̃(ϕα(Uα))
�

N

∑
β=1

r

∑
j=1
‖ρj

β ◦ (ψβu) ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

.

We have

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖W ẽ,q̃(ϕα(Uα))
= ‖(ψα ◦ ϕ−1

α ) · (ρ̃i
α ◦ (Pu) ◦ ϕ−1

α )‖W ẽ,q̃(ϕα(Uα))

≤
r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (

N

∑
β=1

ψβu) ◦ ϕ−1
α )‖W ẽ,q̃(ϕα(Uα))

(see the paragraph above Theorem 101)

≤
N

∑
β=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (ψβu) ◦ ϕ−1

α )‖W ẽ,q̃(ϕα(Uα))

=
N

∑
β=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (ξψβu) ◦ ϕ−1

α )‖W ẽ,q̃(ϕα(Uα))
,

where ξ ∈ C∞
c (Uα) is a fixed function such that ξ = 1 on supp ψα. Using the assumption

that Qα
ij : (C∞

c (ϕα(Uα)), ‖.‖e,q)→W ẽ,q̃
loc(ϕα(Uα)) is continuous we get

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖W ẽ,q̃(ϕα(Uα))
�

N

∑
β=1

r

∑
j=1
‖ρj

α ◦ (ξψβu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

Note that ρ
j
α ◦ (ξψβu) ◦ ϕ−1

α = (ξψβ ◦ ϕ−1
α )(ρ

j
α ◦ u ◦ ϕ−1

α ) has compact support in ϕα(Uα ∩
Uβ). So, it follows from Corollary 6 that



Mathematics 2022, 10, 522 101 of 103

‖ρj
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) ' ‖ρ
j
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Uβ))
.

Therefore,

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖W ẽ,q̃(ϕα(Uα))

�
N

∑
β=1

r

∑
j=1
‖ρj

α ◦ (ξψβu) ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Uβ))

=
N

∑
β=1

r

∑
j=1
‖ρj

α ◦ (ξψβu) ◦ ϕ−1
β ◦ ϕβ ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Uβ))

Theorem 80
�

N

∑
β=1

r

∑
j=1
‖ρj

α ◦ (ξψβu) ◦ ϕ−1
β ‖We,q(ϕβ(Uα∩Uβ))

.

So, it is enough to prove that ‖ρj
α ◦ (ξψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uα∩Uβ))
can be bounded by

∑N
β=1 ∑r

j=1 ‖ρ
j
β ◦ (ψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uβ))
. Since this can be done in the exact same way

as the proof of Theorem 88, we do not repeat the argument here.

Here we will discuss one simple application of the above theorem. Let (Mn, g) be
a compact Riemannian manifold with g ∈ Ws,p(M, T2M), sp > n, and s ≥ 1. Consider
d : C∞(M) → C∞(T∗M). The local representations are all assumed to be with respect to
charts in a super nice total trivialization atlas that is GL compatible with itself. The local
representation of d is Q : C∞(ϕ(U))→ C∞(ϕ(U),Rn) which is defined by

Q( f )(a) = ρ̃ ◦ d(ρ−1 ◦ f ◦ ϕ) ◦ ϕ−1(a)

= ρ̃ ◦ ( ∂ f
∂xi |ϕ(ϕ−1(a))dxi|ϕ−1(a))

= (
∂ f
∂x1 |a, . . . ,

∂ f
∂xn |a) .

Here we used ρ = Id and the fact that if g : M→ R is smooth, then

(dg)(p) =
∂(g ◦ ϕ−1)

∂xi |ϕ(p)dxi|p .

Clearly, each component of Q is a continuous operator from (C∞
c (ϕ(U)), ‖.‖e,q) to

We−1,q(ϕ(U)) ↪→ We−1,q
loc (ϕ(U)) (see Theorem 82; note that ϕ(U) = Rn). Hence d can

be viewed as a continuous operator from We,q(M) to We−1,q(T∗M).
Several other interesting applications of Theorem 101 can be found in [16].

11. Conclusions

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential operators
in nonsmooth setting. In this manuscript, we focused on establishing certain fundamental
properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding
the behavior of elliptic differential operators on compact manifolds. In particular, we built
a general framework for developing multiplication theorems, embedding results, etc. for
Sobolev–Slobodeckij spaces on compact manifolds. We paid special attention to spaces with
noninteger smoothness order and to general sections of vector bundles. We established in
particular that, as long as 1 < q < ∞ and e ≥ 0 or e ∈ Z,

• Various common standard characterizations of We,q (as discussed in Section 9) are
equivalent;

• The local charts definition of We,q is independent of the chosen atlas;
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• Nice properties of We,q for smooth domains in Rn (such as embedding properties and
multiplication properties) will carry over to We,q of sections of vector bundles.

Furthermore, we noticed that the local representations of elements of We,q (for functions on
M or, more generally, sections of vector bundles) will not necessarily be in the corresponding
Euclidean Sobolev-Slobodeckij space; they should be viewed as elements of locally Sobolev-
Slobodeckij spaces on the Euclidean space (we have devoted a separate manuscript [17] to
the study of the properties of locally Sobolev-Slobodeckij spaces on the Euclidean space).
In the same spirit, in Section 10 we observed that locally Sobolev-Slobodeckij spaces can
be considered as the appropriate target spaces in the study of the local representations of
differential operators between Sobolev–Slobodeckij spaces of sections of vector bundles.
For the case where e < −1 is noninteger, we were not able to prove the validity of these
properties in a general setting; however, by introducing notions such as “geometrically
Lipschitz atlases”, we found sufficient conditions that guarantee the validity of similar
results as those we have for the case where e ∈ Z.
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