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ABSTRACT We first review the current state of the art of quantum computing for Earth observation (EO)
and satellite images. There are the persisting challenges of profiting from quantum advantage, and finding
the optimal sharing between high-performance computing (HPC) and quantum computing (QC), i.e. the
HPC+QC paradigm, for computational EO problems. Secondly, we assess some parameterized quantum
circuit models transpiled into a Clifford+T universal gate set, where the Clifford+T quantum gate set
sheds light on the quantum resources required for deploying quantum models either on an HPC system
or several QCs. If the Clifford+T quantum gate set cannot be simulated efficiently on an HPC system
then we can apply a quantum computer and its computational power over conventional computers. Our
resulting quantum resource estimation demonstrates that Quantum Machine Learning (QML) models having
a sufficient number of T-gates provide the quantum advantage if and only if they generalize on unseen data
points better than their classical counterparts deployed on the HPC system and they break the symmetry in
their weights at each learning iteration like in conventional deep neural networks. As an initial innovation,
we estimate the quantum resources required for some QML models. Secondly, we define the optimal sharing
between an HPC+QC system for executing QML models for Hyperspectral Satellite Images (HSIs); HSIs
are a unique dataset compared to multispectral images to be deployed on quantum computers due to the
limited number of their input qubits, and the commonly used small number of labeled benchmark HSIs.

INDEX TERMS Earth observation, hyperspectral images, image classification, quantum machine learning,

quantum computers, quantum resource estimation, remote sensing.

. INTRODUCTION

A. WHY QUANTUM COMPUTING FOR EARTH
OBSERVATION?

ARTH Observation (EO) methodologies tackle opti-

mization and Artificial Intelligence (AI) problems in-
volving big datasets obtained from instruments mounted on
space-borne and airborne platforms. Some optimization and
Al problems combined with big EO datasets are intractable
computational problems for conventional High Performance
Computing (HPC) systems. In addition, EO datasets them-
selves are complex heterogeneous image datasets, compared
with conventional Red-Green-Blue (RGB) images, character-
ized by so-called 4V features comprising volume, variety, ve-
locity, and veracity [1]; here, volume refers to big EO datasets
(e.g. Terabytes of data per day collected, for instance, by the
European Space Agency), variety refers to distinct spectral
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data such as multispectral, and hyperspectral pixel data,
velocity refers to the speed of change on the Earth’s surface,
and veracity refers to imperfect datasets such as noisy images
or remotely-sensed images partly covered by clouds [2]. In
general, EO problems also include calibration and integer
optimization problems in Synthetic Aperture Radar (SAR)
applications [3], [4], a Bayesian paradigm (e.g. Gaussian
processes) for retrieving physical parameters from remotely-
sensed datasets [5], [6], uncertainty estimates for EO predic-
tions [7], solving Partial Differential Equations (PDEs) for
climate modeling and digital twin Earth paradigms [8], and
identifying objects on the Earth’s surface [9]. Furthermore,
integer optimization problems, Bayesian analyses, PDEs, and
Al training architectures are computationally expensive and
inherently intractable problems, that is, NP-hard prob-
lems (see Fig. 1) [10]; Non-Deterministic (NP) polynomial
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problems are computational problems where there are no
known efficient commonly-used algorithms for finding their
solutions in a reasonable polynomial time (i.e. a polynomial
number of steps) but can be verified in a polynomial time
given their solutions, and NP-hard problems are compu-
tational problems harder than NP problems. Furthermore,
quantum machines harnessing quantum physics phenomena
like entanglement can solve some hard problems faster and
more efficiently than their counterpart conventional machines
ranging from integer optimization problems [11]-[13] to
Al techniques [14]-[18] and to PDEs [19], [20], and even
quantum-inspired algorithms for solving PDEs [21]. These
computational advantages of quantum algorithms (or quan-
tum advantage) over conventional algorithms inspire enough
to examine and identify computationally intractable prob-
lems with EO methodologies as well as hard EO datasets for
near- and far-term quantum machines.

B. DO WE REALLY NEED QUANTUM MACHINES?

Quantum machines can be generally divided into three
families, that is, quantum annealers [22], quantum simu-
lators [23], [24], and universal quantum computers [25].
These quantum machines promise computational advantage
for computing notoriously difficult problems over conven-
tional computers according to computational complexity
theorems/conjectures [26], [27]; computational complexity
theorems draw boundaries between computational problems
according to their hardness for finding their solutions (see
Fig. 1) [10]. At the moment, quantum machines are de-
signed to tackle specific forms and kinds of intractable com-
putational problems, e.g. quantum annealers for Quadratic
Unconstrained Binary Optimization (QUBO) problems or
simulating the Ising Hamiltonian [11], and quantum simu-
lators for mimicking some physical Hamiltonian [28], [29].
Furthermore, classical computational methods for intractable
computational problems reach their limitations and potential
accuracy due to the classical computational resource required
and the complexity of both EO challenges and datasets.
As we stated earlier, some computational techniques are
intractable problems on conventional machines and compu-
tationally expensive even on the HPC system. The computa-
tional methods which are notoriously difficult to compute on
a supercomputer but can be tackled efficiently on quantum
machines are already proven theoretically and experimentally
[30], e.g. for condensed-matter physics and quantum chem-
istry applications [23], [31]. Condensed-matter and quantum
chemistry communities demonstrated the computational ad-
vantage of quantum machines over conventional methods
such as classical tensor networks (TN) for some of their
problems. In particular, research communities ranging from
high energy physics [24], condensed-matter physics [29], Al
[15] to EO [32] are in the exploration phase of identifying
and investigating their hard problems for quantum platforms.
Thus, to go beyond current computational methods integrated
with large-scale datasets to find a better solution and uti-
lize low computational cost, it is inevitable to examine and
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FIGURE 1. The computational complexity conjecture draws boundaries
between computational problems according to their hardness based on
classical and quantum computational resources required. In particular, the
computational problem denoted by the green star is easy to solve for both
quantum machines and classical computers, the computational problem
denoted by the orange star is easy for quantum machines but hard for
classical machines, and the computational problem denoted by the black star
is hard for classical computers but no known efficient quantum algorithmic
approaches exist for quantum machines.

identify computationally hard problems in EO applications
for novel near- and long-term quantum machines. More
importantly, it is vital to gain insight into programming these
novel computing machines and their potential advantages and
imperfections for computational problems.

C. STATE OF THE ART OF QUANTUM COMPUTING FOR
EARTH OBSERVATION
Quantum computing is a novel computing paradigm that
promises to find solutions to some intractable computational
problems more efficiently and faster by exploiting quantum
superposition and entanglement than conventional comput-
ing techniques if and only if one considers ideal quantum
complexity measures without overhead considerations like
a distillation of Toffoli gates in the real quantum machines,
e.g. the classical versions of the Toffoli gates are transistors
in a conventional computer [33]. Quantum machines are
a kind of computer constructed using the primitives of a
quantum computing method, that is, quantum bits (qubits)
and quantum gates in contrast to classical bits and transistors.
Universal quantum machines can be decomposed into three
layers [34]:

1) a quantum state preparation or a quantum data encod-

ing layer,
2) a quantum unitary evolution or a parametrized quan-
tum gate layer,
3) a quantum measurement layer.

For gaining insight into computing EO problems involving
big datasets on quantum machines, there exist already some
studies for processing a variety of EO datasets to tackle EO
challenges using hybrid classical-quantum approaches (see
Fig. 2); hybrid classical-quantum approaches are exchange-
able with quantum AI/ML, and a variety of datasets includes
hyperspectral, multispectral, and polarimetric EO images.
Classification tasks involve satellite images consisting of
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FIGURE 2. A hybrid classical-quantum approach for computational and machine learning tasks. A quantum layer includes implicitly a quantum data encoding layer,

a parametrized quantum gate layer, and a quantum measurement layer.

thousands of pixels and hundreds of spectral bands, e.g.
Eurosat images having 64 x 64 pixels and 12 spectral bands
[35], while digital quantum machines on the market have less
than 100 noisy qubits and a limited depth of faulty quantum
gates [36]. Moreover, there is the persistent challenge to
embed satellite images in a quantum data encoding layer
regardless of the size of quantum machines and their quantum
errors. The authors of the article [32], [37]-[40] proposed
and utilized a so-called two-level embedding scheme includ-
ing a classical layer for the dimensionality reduction and
a quantum data encoding layer for dimensionally-reduced
images, i.e. a hybrid classical-quantum approach, when they
used a multispectral Eurosat dataset. Here, a hybrid classical-
quantum approach refers to embedding classical datasets in a
quantum data encoding layer and optimizing a parametrized
quantum gate layer of digital quantum computers with the
help of a conventional classical computer. However, the
Eurosat dataset is a big dataset comprising low-dimensional
and easy-to-classify images, namely, it has a low veracity,
while most EO datasets are a small dataset comprising high-
dimensional and hard-to-classify images, that is, a with high
veracity e.g. a multispectral UC Merced Land Use dataset
having 245 x 245 pixels and 3 spectral bands [41]. Hence,
the authors of the article [42] investigated the performance
of universal quantum machines having varying depths of a
parametrized quantum gate layer when utilizing the multi-
spectral UC Merced Land Use dataset, and polarimetric EO
images for naturally embedding them in input qubits without
a dimensionality reduction technique [43]. The quality of the
given datasets plays an important role in data-driven tasks for
hybrid classical-quantum approaches [44]. For instance, the
authors of the article [45] analyzed the power of EO image
datasets for training universal quantum machines.

Furthermore, a quantum annealer is a kind of quantum
simulator being designed to simulate an Ising Hamiltonian
equivalent to QUBO problems [22]. The authors of the article
[46], [47] analyzed classification problems posed as a QUBO
problem belonging to NP-hard problems on a D-Wave
quantum annealer when employing binary and hyperspectral
EO images, respectively, since a D-Wave quantum annealer
promises to converge to a better solution to NNP-hard
problems. A Support Vector Machine (SVM) can also be
transformed into a QUBO problem [48]. Hence, the SVM
is even optimized on a D-Wave quantum annealer when the
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authors of the articles [49]-[51] analyzed the EO image
datasets. There is even the example of embedding large
EO datasets in a D-Wave quantum annealer by using a K-
fold technique and the concept of a coreset [52] since a D-
Wave quantum annealer has around 5,000 qubits arranged
according to a specifically limited topology. In addition, a D-
Wave quantum annealer was proposed for a notoriously hard
feature selection task and a multi-label SVM for remotely-
sensed hyperspectral images [53].

Inspired by the potential advantage of quantum algorithms,
quantum-inspired algorithms are gaining great interest in
academia and industry due to their efficiency in power con-
sumption and explainability, e.g. a quantum-inspired quan-
tum Fourier transformation [54], quantum-inspired AI/ML
[55], or compressing deep neural networks (DNNs) by using
tensor networks [56]. Tensor networks are often designed to
compute efficiently quantum many-body systems [57], and
they are today extensively utilized to simulate quantum cir-
cuits on modern GPU tensor cores [58]. Thanks to these de-
velopments, quantum tensor networks are already applied to
decrease the number of weights of physics-informed DNNs,
and to increase the resolution of hyperspectral images [59].

D. HOW AND WHEN DO QUANTUM MACHINES
OUTPERFORM CONVENTIONAL COMPUTERS?

There is a clear indication that quantum processing units
(QPUs) will co-exist with conventional classical computers
comparable to conventional heterogeneous computing, where
one exploits central processing units (CPUs) and general pro-
cessing units (GPUs). Nowadays, we are in the era of a high-
performance computing (HPC) and the quantum computing
(QC) paradigm, i.e. novel heterogeneous computing concept
which integrates a given CPU+GPU with QPUs. QPUs un-
derstand a specific kind and form of computational problems
(see Fig. 3); for example, a quantum annealer can be designed
to tackle only QUBO problems, and neutral atom platforms
for simulating certain chemical Hamiltonians. Moreover,
we need to program either an extremely hard heteroge-
neous computing environment (i.e. CPU+GPU+QPUs) or
a conventional heterogeneous computing environment (i.e.
CPU+GPU) depending on the level of difficulty of the com-
putational problems.

Digital QPUs (excluding a quantum annealer) currently
consist of around 100 error-prone qubits and the low-depth
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FIGURE 3. Novel heterogeneous computing: a high performance and
quantum computing paradigm. Here, conventional heterogeneous computing
refers to the programming of both CPU and GPU, whereas we call novel
heterogeneous computing when integrating QPUs with CPUs and GPUs.
QPUs can be several parallel quantum machines based on different quantum
technologies such as quantum annealing, neutral atoms, superconducting,
and photonic.

faulty quantum gates, and the authors of the article [60]
coined them “noisy intermediate-scale quantum (NISQ) de-
vices”. For practical computational problems, there is no
demonstration yet of the computational advantage of NISQ
devices over a conventional classical computer. Toward quan-
tum advantage in EO, it is vital to estimate the quantum
resources required for tackling hard computational and ma-
chine learning problems, since some quantum algorithms
can be simulated efficiently using a conventional classical
computer [61], [62]. Thus, any reasonable quantum resource
estimation of a quantum algorithm includes, for example,
non-Clifford T-gates, error rates of qubits and quantum gates,
and the execution time of single- and two-qubit quantum
gates. From the perspective of the implementation of a quan-
tum algorithm, non-Clifford T-gates are the most resource-
expensive part compared with Clifford quantum gates, that
is, CNOT, Hadamard, Phase, and measurement gates. There
is even a so-called Gottesmann-Knill theorem which states
(informally) that non-Clifford T-gates cannot be efficiently
simulated on a conventional classical computer, while Clif-
ford quantum gates can be simulated in a polynomial time
using a conventional classical computer without any restric-
tion on entanglement [61], [62]. Namely, quantum algorithms
comprising solely Clifford quantum gates can be simulated
in O(n?m) polynomial steps [63] with n qubits and m
Clifford operations, while quantum algorithms consisting of
Clifford+T gates take O(kt3e¢~2) exponential steps, where
t is the number of T-gates known as T count, a so-called
stabilizer state x growing exponentially O(2?), and e the error
rate [61]. Some quantum algorithms can also be efficiently
simulated using a sophisticated classical technique like a
tensor network on GPU tensor cores [64].

A Clifford+T gate set, {S, H, CNOT, T'}, forms a uni-
versal gate set for digital QPUs thanks to its feasibility for
quantum error correcting known as a surface code [65]. More
importantly, the surface code helps build fault-tolerant digital
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FIGURE 4. Quantum stack for quantum resource estimation. Here, a
high-level program is compiled down to a quantum machine code through the
quantum ISA. The quantum ISA is the middle interface bridging software and
hardware layers.

quantum computers to go beyond NISQ-era computers [36].
In contrast to NISQ computers, fault-tolerant quantum com-
puters are composed of error-free qubits (more than 100) and
quantum gates transpiled into the Clifford+T gate set. Hence,
this shows that quantum advantage for EO applications can
be reached if and only if our quantum learning models have
a sufficiently high number O(10'?) of T-gates and generalize
on unseen data points [66]. Otherwise, we can simulate them
efficiently using conventional classical computing resources.

Further, a hybrid classical-quantum approach for computa-
tional EO problems is a way of embedding high-dimensional
classical data in a limited number of qubits and optimizing
the weights of a parameterized quantum model [32], [67].
There is yet another challenging question of how notoriously
difficult computational problems can take advantage of both
an HPC and QCs, or when should we execute them on
an HPC instead of QCs and vice versa? To answer this
question, we decompose the parameterized quantum model
into the Clifford+T gate set at each learning iteration. If the
parameterized quantum model only includes Clifford gates
and a small number of T-gates in the quantum Instruction-
Set Architecture (quantum ISA) level [68] then we execute it
on the HPC instead of the QCs, since we already know that
Clifford gates and a few numbers of T-gates can be simulated
efficiently using a conventional classical computer (see Fig.
4). The quantum ISA, the quantum version of the conven-
tional ISA, is the interface between software and quantum
hardware layers in the quantum stack, and it expresses a high-
level quantum program by its surface code. In particular, we
re-emphasize that quantum learning models can be simulated
efficiently using a classical computer without the need for
quantum computers if they do not have a high number of T-
gates and do not break the symmetry in their weights (sig-
naling the power of QML models). Therefore, to outperform
classical learning models deployed on an HPC system, we
should invent and design quantum learning models having
thousands of T-gates, and their generalizability on unseen
data points is higher than their classical counterparts [16].
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Currently, there is (still) no such QML model having hun-
dreds of T-gates and having higher generalizability on unseen
data points than its classical counterpart.

Il. QUANTUM RESOURCE ESTIMATION FOR
HYPERSPECTRAL IMAGES

Instruments on Earth observation satellites detect spectral
signals reflected on natural and human-made objects on the
Earth’s surface, and huge amounts of spectral data in distinct
wavelength ranges (Terabytes of data per day) are archived
in data storage devices day and night [69]. A hyperspectral
imaging satellite, e.g. the EnMAP satellite [70], is an imag-
ing instrument mounted on a satellite for sensing spectral
reflectances in ranges of 420 nm to 1000 nm (VNIR) and
from 900 nm to 2450 nm (SWIR). Its mission is to collect
hyperspectral imaging data to provide vital information for
scientific inquiries, societal grand challenges, and key stake-
holders and decision-makers relating to

« climate change impact and interventions,

e hazard and risk assessment,

« biodiversity and ecosystem processes, and

« land cover changes and surface processes, to name a
few.

For training PQC models on limited benchmark-oriented
labeled HSI datasets, we utilized a classical layer for reduc-
ing the dimensionality of the features of the HSI datasets due
to the limited number of input qubits. However, how much
one needs to reduce the dimensionality of the given HSI
dataset depends on the quantum computers being utilized,
that is, whether we have access to an NISQ device having
error-prone qubits < 100 or a fault-tolerant quantum (FTQ)
computer having error-free qubits > 100. In particular, the
classical machine plays a lesser role in the pre-processing of
the HSI dataset, and we can feed many informative features
to quantum computers (less dimensionality reduction) as the
number of error-free qubits of quantum machines increases.
In particular, we assume that we used EnMAP HSIs with
230 spectral bands and 145 x 145 spatial dimensions, that
is, the size of the dataset. Moreover, ENMAP HSIs having
21,205 data points and 230 features are small-scale image
datasets compared with conventional multispectral images
for training DL models. To execute the PQC model on
NISQ machines having < 100 input qubits, we can either
reduce the spectral bands of the EnMAP HSIs from 230 to
at most 100 or select the most informative 100 bands to
be compatible with the input qubits by utilizing a classical
machine. Instead, for FTQ machines having more than 100
logical input qubits, we can persevere more spectral bands of
EnMAP HSIs when performing the dimensionality reduction
or the feature selection technique in the spectral bands by
using a classical machine.

Toward quantum resource estimation, we assessed four
different PQC models expressed by the Clifford+T gate set
(see Figs. 5-8). The Clifford+T gate set is defined by Uy, Us,
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FIGURE 5. A real-amplitude quantum circuit having depth-one is transpiled
into the Clifford+T gate set. It is used to demonstrate the power of a PQC
model by the authors of the article [16].
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FIGURE 6. An energy-based quantum circuit having depth-one is transpiled
into the Clifford+T gate set. This PQC model is proposed for the NISQ device
by the authors of the article [71].
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where, for example, Uy(w/4) = T, Ui(n/2) = S,
Uz(0,7) = H. Hence, the Clifford+T gate set is {U;(7/2),
Uz(0,m), CNOT, U;(n/4)}. Given an HPC+QC system,
the four PQC models shown in Figs. 5-8 comprise several
parameterized quantum gates. We can execute them on the
HPC instead of the QCs, and the quantum resource required
for executing them on QCs is then O(1) (constant time) if
there is either no sign of T-gates or a low number of T-gates.
In particular, we will deploy them on either the HPC system
or the QCs depending on the existence and the number
of T-gates in their configuration during the training phase.
Furthermore, the number of T-gates defines the quantum
resource required for deploying QML models on NISQ and
FTQ computers. To determine the number of T-gates in our
four PQCs, we used the concept of symmetry breaking of
conventional neural networks [74]. We strongly emphasize
that QML models also break the symmetry in their weights
in order to decrease their redundant parameterized quantum
gates and they generalize better on unseen data points than
with conventional neural networks; namely, each weight
within a parameterized quantum layer must have different
digital values for capturing unique features. Therefore, we
assumed that each layer of the QML models must have at
most a single T-gate at each learning iteration, and our QML
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FIGURE 7. A strongly-entangling quantum circuit having depth-one is
transpiled into the Clifford+T gate set. This PQC model is proposed to build a
powerful quantum learning model in the article [72].
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FIGURE 8. A hardware efficient quantum circuit having depth-one is
transpiled into the Clifford+T gate set. This PQC is used for quantum
variational inference in the article [73].

models having depth-one can only have one T-gate. As for
the quantum resource required for executing them on digital
QCs [75], we assumed also:

1) If our PQCs have 10® T-gates and 5 logical qubits
then we need 158, 431 physical qubits (i.e. 9, 375 state
distillation qubits, and 149, 056 physical qubits) with a
surface code distance of d = 25, and our QML models
then take around 5 hours.

2) If our PQCs have three T-gates and 5 logical qubits
then we need 50, 700 physical qubits (i.e. 14,400 state
distillation qubits, and 36, 300 physical qubits) with a
surface code distance of d = 11, and our QML models
then take around 8.12~8 hours.

3) If our PQCs have one T-gate and 5 logical qubits then
we need 15, 135 physical qubits (i.e. 14, 400 state dis-
tillation qubits, and 735 physical qubits) with a surface
code distance of d = 7, and our QML models then take
around 2.07~® hours.

The quantum resource estimation demonstrates whether the
QML models have to be deployed on quantum computers
or not [68], [76], and it also generates the number of phys-
ical qubits and the depth of a quantum circuit required for
deploying quantum algorithms on the surface code quantum
computers.

lll. CONCLUSION

We assessed the quantum resource required for executing
QML models on a digital quantum computer in order to
obtain a so-called quantum advantage. We demonstrated that
some quantum advantage can only be obtained if and only
if QML models have a sufficient number of T-gates and
generalize better on unseen data points than their classical
counterparts. To count the T-gates of a particular QML
model, we used the strong assumption that the QML models
must break the symmetry in their weights — identical to
the symmetry breaking in conventional deep learning mod-
els — so that they become expressively a more powerful
model than their counterpart classical learning models. Based
on the number of T-gates, we proposed a new HPC+QC
paradigm (novel heterogeneous computing) in addition to
a hybrid classical-quantum approach. In particular, we can
simulate QML models on an HPC system (i.e. CPU+GPU)
if they do not have T-gates (or a few T-gates) at the quantum
instruction-set architecture level.

Toward quantum advantage in Earth observation, we fo-
cused on QML models for hyperspectral images acquired by
the EnMAP satellite, since QML models can be trained on
a limited labeled dataset, and our HSIs are images with lim-
ited label information compared with multispectral images.
For QML models, we utilized four parameterized quantum
circuits and estimated the quantum resource required for
deploying them on digital quantum machines. We found
that we can deploy our QML models on an HPC system
instead of QCs since they only have a single T-gate due to
the symmetry breaking assumption. To design QML models
having around O(10®) which cannot be executed on an HPC
system, they must have almost a depth of O(108), and this
is impractical for current and future quantum computers.
Toward quantum advantage, it seems, therefore, reasonable
to build, first, a special-purpose digital quantum computer
for some practically significant computational task instead of
a universal digital quantum computer similar to a D-Wave
quantum annealer.

As future and ongoing work, we will invent and design
a QML model having a reasonable depth, that cannot be
simulated on a conventional supercomputer but can be ex-
ecuted efficiently on QCs, and has more expressive power
over classical learning models at the same time. We will
also design an algorithm for the quantum instruction-set
architecture in the quantum software stack. Here, depending
on the number of T-gates of a parameterized quantum circuit,
the quantum instruction-set architecture decides to deploy
a quantum model either on an HPC system or on several
QCs comprising a digital quantum computer, and an analog
quantum computer.
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