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ABSTRACT

Charged multiplicity distributions calculated in the
framework of the Statistical Bootstrap Model (SBM)
describe the shape of the experimentally observed
distributions rather well. The SBM distribution is
fairly close to the negative binomial distribution.
It has two parameters, the average number N of
clusters and the temperature T. Their dependence on
Ys and on rapidity cuts is intuitively obvious. The
behaviour of SBM multiplicity distributions is
governed by the existence of a singularity of the
model at some critical tamperature Ty where the phase
transition from hadrons to a quark-gluon plasma 1is
expected.
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‘Negative binomial (NB) distributions PNB(n;ﬂ,k) are known to describe well
KNO violating (and non-violating) multiplicity distributions, both for full
momentum space and for cut’ {pseudo-) rapidity regions |y| g Yeu

various processes and energlesl) 6). The NB distribution is given by
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In the Giovannini-Van Hove "cascade-clan" modetl
convolution of (logarithmic) multiplicity distributioas R(vi,;) for the number v
of particles in a "clan" (i.e., a set having a common "ancestor") with a Poisson

distribution Q(N;N) for the number N of different clans:
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(In fact this type of formula holds for any convolution.,) The experimental

dependence of k(/s,y ) and n(%s,y ) can then be re-interpreted in terms of

the more intuitive phy31ca1 parameters
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Still, neither the choices of the distributioms (Poisson and logarithmic) nor the

empirical behaviour of the parameters k and n appear paremptory.

The SBM philosophy is that there are twe stages of interaction; first among
partons (soft and hard) and then hadronization inte SBM clusters which move along
the collision axis, become larger and more numerous with increasing vs and decay
10)-17)

in a well-defined way

Obviously, the main concepts of the Giovannini-van Hove model and of SBM are
similar. We thus use the same general coanvolution formula (2) to obtain the total
SBM multiplicity distribution, with the difference that in our approach we have
the parameters N and the temperature T and that the multiplicity distribution

R(v;v) within a clan is replaced by that within a SBM cluster, R(v;T).
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A SBM cluster is determined by the "Bootstrap Equation" (BE)IZ)_17)

for the
mass spectrum t(MZ) of clusters, which turns out to increase exponentially
~M3axp(M/Ty), where Ty is a critical temperature, interpreted as the temperature
where a hadron gas becomes a quark-gluon plasmals). The not exactly known value
of Ty must a priori lie in the range of 150-200 MeV; we adopt the value
Tg = 190 MeVlT). For simplicity we consider only one sort of final hadron which
we call pion (m=mn) although in SBM it is treated as a Boltzmann scalar. We

neglect hare baryons, strange and charmed hadrons.

For our analysis in terms of the SBM, we need a few basic formulae of the

model.

After "putting the BE in a heat bath at temperature ™, i.e., by

. . . . 4)-
Laplace-transforming it, it takes a very convenlent from1 )-17)

G(8) = 6+ exp[604)] - GIB) - 1 W

| $(1):= LaHTm K, (%/T)

(5)

G(¢) is essentially the Laplace transform of the cluster mass spectrum t(M2);

solving Eq. (&) for G is equivalant to knowing t(MZ). Equation (4) can be solved

4)

by a power series

& {
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for Tl e £

¢g = An4-1 is the convergemnce radius of the series (6); Gy = G{§p) = 2&n2 [to see
that, draw $(G) from Eq. (4)]. The relation $(Tg) = ¢p fixes Tg if H is given (or

vigce versa).
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The coefficients By» incidentally, aré related to the total number S2 of

possible decay trees ending with exactly £ final piomns (if M/m > &): S1 = l!gl.
In this purely combinatorial sense, Eq. (4) and the coefficients gq have been

kitown for more than a centﬁrylg).

To calculate the SBM multiplicity distribution we need three ingredients:
{a) The probability distribution R(v;M2) that a cluster of given mass M decays
16) IR : S :

?
Revimt) - Detbold]

HT (M) (8)

with QV(MQ) being the invariant vy-pion momentum space;

(b) The probability W(MZ,T)dMZ that a cluster, chosen randomly from the hot SBM

cluster gas, has a mass in the interval {Mz,dMZ}le):

WM T gt . T OIMT) 4y
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essaentially: mass spectrum times Boltzmann factor. Here ¢(M,T)} is as in Eq. (5)
with M replacing m {only hers). The probability that a randemly chosen cluster

decays into v pions is obtained by combining (8) and (9):

R(v; T) ——-—de?W[M?T) R(v; K] = __%__[ﬁ;}__ (10)

the explicit mass spectrum cancels out but is still hiddea in the coefficients

8,3

{c) The preobability distribution Q(N;N), that there are N clusters, is in SBM a
Poisson distribution, since the interacting SBM hadron gas is formally a gas of
non-interacting clusters (all interactions being represented by the mass spectrum

17

"and a Van der Waals volume correction™'’); freely created and absorbed non-inter-

acting particles are Poisson distributed. In equilibrium the mean value N
increases from zero {(at T = Q) to some maximum and then drops to ome at T = T,
where all clusters collapse into one infinite supercluster: they ''condense into a

17 <. . sse s . . .
). This is the grand canonical equilibrium situation; in a

quark-gluon liquid"
collision, however, we are in a microcanonical non-equilibrium situation, where
infinite clusters are impossible (energy fixed). Moreovér, the violent longitu-—
dinal forward-backward motion will tear any large cluster into small ones. The

two mechanisms: merging of small clusters into large ones when T * T¢ and



destroying of large clusters by the longitudinal motion neutralize each other to
some extent, so that the mean number N of clusters might only slowly vary with
Ys. This guess 1is corroborated by other models (multiperipheral with cluster

0)

vertic352 and bremsstrahlungZI)) which suggest dN/dy to be independent of s

and y. Since we cannot calculate N, we take it as a free parameter to be compared

after fits with our above expectations. Thus
= -N =N —
Qv;N )= N /i i N pe paroweder (1)

This fixes everything. We insert {(10) and (11) into the general convolution

formula (2) and cbtain the following normalized distribution

PSBH(@{;, EIT) = e-ﬁcm[ﬁ,r) ¢[T}m (12)

the coefficients ¢ obey the recursion relation

—

TSR BN - (13)
Cm(NlT) = G5 %&Z:'Ikgb C/kﬂk i o= 1 P

with the - given by (7}.

The mean value n and the dispersion DZ = n? - n? are found to be

—

=N
— — (14)
11 = N v?
where

v=06'/G
V> = (¢G'+ ¢2C”)/5
G/:= LfC/d¢ é‘fﬁ (15)

Experimentally not total, but charged multiplicities are available., We
therafore must still project out the charged multiplicity distribution (isospin
projectionzz) is too complicated here): assume a total charge zeroc, then the

probability to find 2k charged among a total of n particles is, for 2k < n

m!

_. /
(k! (n-2)! ; [ﬂ)?[f‘h-ﬂ)f (16

N(vﬁ,&)?—
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and zero for Zk > n. Combining (12) and (16) gives the normalized. charged

:eglpﬁpﬁigéty_d}g;gibutiqp (2n charged) N _
SRM — i SR — '
Ek (Zﬁ,, NIT) :4“2 W(rn,m) P H[(m,- :V,T) (17)

This is our final result to be compared to experiments., We fix the parameters N
and T (or N and 4¢) by a least square.fit of (17) to ccfrected dat323). figure la
presents a plot of (17) with these data, while Fig. lb cdmpares‘the same data
with a NB: fit.: 'NB xepresents the data better than SBM but the differsnce  is
limited mainly to chargéd mﬁitiplicities 2100, where the experimental errors are

significant,

Preliminary fits at other energies and also with (pseudo;) rapidity cuts
taﬁég; g 'simiiarly _sgtisféétory agreement with the data. The temperature T
monotohously tends towards Ty with increasing ¥s, but is rather insensitive to
ﬁpsggdo—)_ggpid?;y ¢utsmif Y eut > 1. The mean number N of clusters grows somewhat
less  than logarithmically with s and about linearly with Yeut® The mean
multiplicity per cluster v grows roughly like fnvs and is rather insensitive to

rapidity cutg.

That the SBM distribution is larger than the corresponding NB distribution
at large n is due to the differant cluster/clan decay structures - essentially to
.the factor 1/vn by which the asymptotic g, [see Eq. (7)] differ from the 1l/n of
the logarithmic clam decay distribution. The SBM used here is, however, only one
of a large class of possible SBM's [Ref. 16), App. B] containimg also models with
asymptotic g, ~ 1/o [namely, when :(Mz) ~ M"3/2exp(M/Tg)}. The present version
is the gimplest and physically most appealing one and moreover the only ome
worked out in det31110)_17);‘the multiplicity distribution presented here is just

‘& by=-product.

A more detailed account of our work and confrontation with data at other

24)

energies will be published elsewhere .
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FIGURE CAPTION

Fig. 1

(a) The charged multiplicity distribution PS:M (n; N=16.1, ¢ = 0.3708)

c
compared to corrected experimental data23) taken at vs = 540 GeV. The

value of ¢ corrésponds to T = 187 MeV.

{b) The same data comparsd to PNB (n; n=28.3, k=3.69); the values of the

parameters n and k are also taken from Ref. 23).
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