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1 Introduction

1.1 String theory, Swampland, and Hodge theory
Two major achievements of the twentieth century physics are quantum mechan-
ics and general relativity. Quantum mechanics governs the physics at ultra-short
scales, an example of which would be the interaction of electrons and nucleus in-
side an atom. General relativity dictates the physics of extreme gravity fields, an
example of which would be the gravitation field around an astronomical object
with a very large mass. With such two theories at hand, a natural question arises:
can one combine quantum mechanics and general relativity together so as to cook
up a quantum theory of gravity? Besides theoretical curiosity, direct motivation of
such a question is abundant. For example, the start of everything is the Big Bang,
an instant after which the entire universe is concentrated within a very tiny space
while experiencing extreme gravitational effects. If we want to study the physics
of the early universe, we must employ a theory of quantum gravity. A more con-
temporary example comes from the physics of black holes. A black hole is also
a tiny object that concentrates a large amount of mass, to the extent that even
light rays cannot escape the gravitation field of the black hole. With the direct
observation of the black hole [1], understanding their physics becomes a realistic
problem transcending theoretical interest. Hence a quantum theory of gravity is
desirable.

Unfortunately, naïvely combining the computations of quantum mechanics and
general relativity presents immediate trouble — the two theory are simply not
compatible with each other. In technical words, the resulting theory is non-
renormalisable. While a non-renormalisable effective field theory is by itself not
a problem, in quantum gravity, which is considered to be a fundamental theory,
non-renormalisability poses serious obstacles.

So something must be changed. There are at least two ways to modify the cur-
rent theory to describe quantum gravity. On the one hand, one can abandon the
hypothesis that the fundamental objects in a unifying theory of nature should be
zero-dimensional points. This is the approach of string theory. Equipped with
the hypothesis that the fundamental building blocks are one-dimensional strings

1



1 Introduction

and the frameworks of quantum mechanics and general relativity, string theory is
shown to be a consistent theory of quantum gravity. On the other hand, one can
just abandon perusing an all-encompassing microscopic theory, but rather pragmat-
ically work only with low-energy effective theories. The question then becomes:
what type of effective theory is compatible with the mysterious quantum gravity
at ultra high energy scale? This is the central question of the swampland program.

String theory is the most promising candidate for quantum gravity. Its tiny con-
ceptual shift, that is replacing the point particles by strings, has a huge implication
on the physics: It is now a quantum theory that is consistent with Einstein gravity.
Two elementary features of string theory are:

1. It has just one external parameter, which is the string tension, i.e. energy of
the string per unit length.

2. It is only consistent in 10-dimensional spacetime.

Feature 1 is nice, compared to the standard model, which has 19 external pa-
rameters, such as the electron mass. On the other hand, Feature 2 is not nice,
compared with our four-dimensional real world. How to link the 10-dimensional
string universe to the four-dimensional physical universe?

The answer dates back to the ancient proposal of Kaluza and Klein [2, 3]. Sup-
pose that the spacetime is now five-dimensional and is a direct product of our
four-dimensional universe and a one-dimensional “internal” circle. This amounts
to saying that, locally, we can parametrise the spacetime by coordinates of the form
(x4, θ), where x4 = (t, x, y, z) is the local coordinate on our four-dimensional uni-
verse, and θ is the local coordinate on the internal circle. Kaluza and Klein propose
that by making the size of the internal circle extremely tiny, human beings cannot
detect the internal circle at all. Thus the dimensionality of the universe being four
is realised as an “illusion” in the Kaluza-Klein theory. Moreover, if we just turn
on Einstein gravity with the five-dimensional metric as the basic degree of freedom
on the five-dimensional spacetime, then from the four-dimensional point of view,
one gets a four-dimensional Einstein gravity theory, plus the theory of Maxwell.
An important feature is that the four-dimensional physics, such as the gauge and
gravitational coupling constants, are controlled by the geometry of the circle. In
this way, Kaluza-Klein unifies the gravity and the electromagnetic interactions by
dimensional reduction.

In string theory, the mechanism of making contact with four-dimensional physics
is exactly the same. One focuses on those 10-dimensional string solutions that are
locally a direct product of our four-dimensional universe and a intricately chosen
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1.1 String theory, Swampland, and Hodge theory

six-dimensional internal space. Reducing the 10-dimensional physics to the four-
dimensional spacetime, assuming that the six-dimensional internal space is tiny,
one is able to get four-dimensional worlds. Moreover, the four-dimensional physics
is related to the six-dimensional compactification geometry, and by tweaking the
geometry, we can engineer a plethora of four-dimensional physics, possibly includ-
ing the very world we live in. The set of all four-dimensional worlds acquired this
way is called the string landscape. The existence of the string landscape prompts
the following question: Does our universe belong to the string landscape? Phrased
differently: Can string theory describe real-world physics?

We would like to pause the discussion on string theory for a moment, and consider
the other possibility for quantum gravity, namely just focusing on the observable
sector of the energy spectrum. In this direction, one is satisfied if one can construct
effective quantum field theories that describes the observed universe; such effective
theories should have a cut-off scale higher than the energy scale at which we can
make the observation. It should be a quantum field theory because we do know
that the Standard Model, a quantum field theory, has already been agreeing with
experiments extremely well.

Such approaches are called bottom-up. In a bottom-up construction, one typi-
cally starts by imposing a set of symmetry constraints, and then writes down the
most general theory that satisfies the symmetry constraints. Next, one checks if
the resulting theory satisfies other important self-consistency constraints, such as
being gauge anomaly-free. Obviously, the theories one gets from a bottom-up ap-
proach are far from unique; there is an immense number of effective field theories
that satisfy all such constraints, all of which contains Einstein gravity. This leads
to another natural question: Do all the consistent-looking effective theories one
gets from the bottom-up approach live in the string landscape?

Clearly, the answer is negative [4]. There are indeed consistent-looking effective
theories that do lot live in the string landscape. Those consistent-looking effective
field theories that do not belong to the Landscape form a set called the swampland.

The swampland program aims to acquire a set of criteria about whether an ef-
fective field theory is consistent with quantum gravity at very high energy. The
criteria on the market are mostly conjectural, because we do not have an undebat-
able quantum gravity theory yet. However, we do have string theory, which is the
most promising candidate for quantum gravity. Moreover, one can try to argue
in an indirect way, resorting to semi-classical black hole arguments, for quantum
gravity. Hence, all the criteria are called swampland conjectures at this moment,
and they are mostly proposed using string theory and semi-classical black hole
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1 Introduction

arguments.
A swampland conjecture is most powerful if it is at least proven in the framework

of string theory. But verifying the conjectures in string theory can be highly
non-trivial, as our understanding of string theory is yet to be completed. Our
contribution in this thesis is to bridge mathematics and string theory. We import
the asymptotic Hodge theory from mathematics into string theory, following the
seminal work [5]. This interplay between mathematics and physics turns out to be
extremely powerful in the study of swampland conjectures.

Let us finish this section by mentioning an exciting recent development that
connects the Hodge conjecture [6], a well-known “millennium prize problem”, with
the long-standing problem of the finiteness of string flux vacua [7–10]. It is per-
haps surprising that the mathematical techniques used in showing (arguably) the
strongest evidence about the Hodge conjecture in [11] and [12] can be used to show
the finiteness of string flux vacua in [13,14].

1.2 String compactification
In this section, we review the idea of string compactification, which is the founda-
tion of all the researches in string phenomenology and the relevant mathematics.

1.2.1 5D gravity on cylinder −→ 4D gravity + Maxwell

The idea of compactifying a higher dimensional theory down to a lower one dates
back to the ancient works in 1920’s by Kaluza [2] and Klein [3]. In this section, we
briefly go through compactification in a simplified setting, where a five-dimensional
gravity theory reduces to a four-dimensional theory mixing gravity and electromag-
netism, once one of the five-dimensional space is taken to be a circle. The result is
not unexpected if one adopts a principal bundle viewpoint of gauge theories: The
compactified spacetime R3,1 × S1 is exactly a trivial principal U(1)-bundle1 over
the four-dimensional R3,1, and should be related to the U(1) gauge theory, the
electromagnetism.

To set up notation, we denote the coordinates on R3,1 × S1 by (xµ, θ), where
xµ ∈ R3,1 is the coordinate in the four-dimensional Minkowski spacetime, and θ

labels the wrapped fifth direction. We identify θ ∼ θ + 2π, and denote the radius
of the circle by r ≥ 0.

1Recall that S1 is isomorphic to U(1) as Lie groups.
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1.2 String compactification

Before diving into the complicated, non-linear gravity theory, let us first con-
sider an even simpler model of a five-dimensional real massless scalar field φ̂ liv-
ing on the five-dimensional Minkowski spacetime with a non-dynamical metric
ds2

5 = ηµνdx
µdxν + r2dθ2, where r is a constant. The 5D action reads

Ŝ[φ̂] = −1
2

∫
R3,1×S1

dφ̂(x, θ) ∧ ∗dφ̂(x, θ)

= −r

2

∫
R3,1×S1

d4x dθ

{
∂µφ̂∂

µφ̂+ 1
r2 (∂θφ̂)2

}
. (1.2.1)

Since the field φ̂ is periodic in its fifth-direction, it can be re-expressed in terms of
the Fourier basis

φ̂(x, y) =
∑
n∈Z

φn(x)einθ , (1.2.2)

and the reality condition translates to the fact that φ−n = φ̄n. Plugging (1.2.2)
into (1.2.1), we have arrived at the 4D action

S[φn] = −πr
∑
n

∫
R3,1

dφn ∧ ∗dφ̄n + n2

r2 φnφ̄n ∗ 1 . (1.2.3)

Here are a few remarks about this expression. By compactifying the fifth dimen-
sion, a five-dimensional massless scalar field becomes a tower of four-dimensional
scalar fields. The scalar fields in this tower are called Kaluza-Klein modes and are
labelled by a natural number n. Moreover, the scalar field with n = 0 stays mass-
less, while those scalar fields with n > 0 are complex, massive with mass n2/r2. If
we postulate that the fifth dimension is not observable, meaning that we impose a
cut-off scale 0 < Λ < 1/r, then the fields with n > 0 are integrated out in the low
energy effective field theory, while the field with n = 0 is always included in the
effective theory. This is a general feature of compactification, and in the following
we will only include the zero-mass field in the four-dimensional effective theory.

Having seen the appearance of Kaluza-Klein modes in a simple setting, let us
now make the gravity dynamical. Let the five-dimensional metric be

(ĝMN ) =

(
gµν + r2AµAν r2Aµ

r2Aν r2

)
, (1.2.4)

which is the most general metric2 on R3,1 ×S1. For simplicity, we are sloppy about
the (mass) dimensions of the various fields and this will be fixed near the end of
2The particular form of this Ansatz is chosen to make sure that the inverse of the metric takes a
simple form.
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1 Introduction

this section. Note that from now on, every component in the metric is already
truncated down to the zero-mass component, so all fields entering ĝMN does not
depend on θ. The 5D action is given by

Ŝ[ĝMN ] = 1
2κ2

5

∫
R3,1×S1

R̂ ∗ 1 , (1.2.5)

where ∗1 =
√

−ĝ d4xdθ is the volume form and κ5 is the 5D gravitation interaction
strength.

After a straightforward computation (see Appendix 1.B), we get the 4D action
in string frame, where the Ricci scalar is multiplied by the scalar field r

S[gµν , Aµ, r] = 2π
2κ2

5

∫
R3,1

rR ∗ 1 − r3

2
F ∧ ∗F , (1.2.6)

where F = dA is the four-dimensional gauge field strength.
Perhaps it is now the time to be careful about the dimensions. We denote the

ground state radius of the circle by R0, so the the fifth dimension θ is replaced by
R0θ, which has mass dimension −1. Moreover, we keep the scalar field r dimen-
sionless, and this scalar field is sometimes called the breathing mode, representing
the small dynamical deviation of the circle from its radius R0. Next, we replace
Aµ by κ4Aµ, where κ4 is the 4D gravitational interaction strength that is related
to κ5 by (1.2.8), such that Aµ has the correct mass dimension one. After these
rescalings, the action looks like

S[gµν , Aµ, r] = 1
2κ2

4

∫
R3,1

rR ∗ 1 − κ2
4r

3

2
F ∧ ∗F , (1.2.7)

where we have identified
1

2κ2
4

= 2πR0

2κ2
5
. (1.2.8)

The final step is to perform a Weyl rescaling, replacing gµν by rgµν , so that the
r in front of R is eliminated, and we arrive at the action written in Einstein frame.
Moreover, the Weyl rescaling generates a kinetic term for the breathing mode r

S[gµν , Aµ, r] =
∫
R3,1

1
2κ2

4
R ∗ 1 − 3

2κ2
4r

2 dr ∧ ∗dr − r3

2
F ∧ ∗F . (1.2.9)

Hence, by dimensional reduction, we get a 4D theory that includes gravity, scalar,
U(1) gauge fields, and their interactions.

In summary, we have seen that starting from a higher dimensional gravitational
action, and assuming that the spacetime is (locally) a direct product, one is able
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1.2 String compactification

to generate an interacting theory containing gravity, scalar and gauge fields. Be-
cause of the dynamics of gravity, the internal geometry oscillates around its stable
configuration. This drives us to consider a family of internal geometry instead of
a single one. The parameters controlling the internal geometry become massless
scalar fields in the four-dimensional theory and are called moduli fields. Viewed
differently, these moduli fields are mappings from the four-dimensional spacetime
to the moduli space of the internal geometry. In Figure 1.1, we illustrate these
ideas in the context of circle compactification.

R3,1 Moduli space R+

Trivial family of S1

Moduli field

5D spacetime

Figure 1.1: Left panel: The five-dimensional spacetime is a family of circles fibred over
the four-dimensional R3,1. Right panel: A trivial family of regular S1 fibred over the
moduli space consisting the radius r > 0 of S1. The moduli field r(xµ) from the four-
dimensional spacetime to the moduli space of S1 remembers the radii of the internal
circles. In mathematics this moduli field is called a moduli map. Note that one can
compactify the moduli space into R≥0 by adding a degenerate circle with r = 0 at the
tip of the cone in the right panel. This intuition is used later in the study of asymptotic
Hodge theory.

1.2.2 Compactification of string theory on Calabi-Yau spaces
In this section, we introduce the compactification settings that we will investigate
in the remainder of the thesis. As we will see shortly, such settings are valuable
for phenomenology, since they deliver four-dimensional theories that preserve only
a fraction of the 10-dimensional supersymmetry. The microscopic theory under
consideration is of course various string theories, and the more general M-theory
that unifies all string theories via dualities. More precisely, we will be particu-
larly interested in type II strings, and the closely related F-theory. For the com-
pactification manifold, we choose Calabi-Yau threefolds and Calabi-Yau fourfolds.
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1 Introduction

Putting our microscopic string theories on such Calabi-Yau spaces will induce four-
dimensional supergravity theories in the low-energy, which are severely constrained
and amenable for exact analysis since many useful physical quantities are protected
by supersymmetry. In Table 1.1, we show the correspondence among the micro-
scopic theories, the compactification manifolds, and the lower-dimensional effective
field theories that are discussed in this thesis.

Critical Microscopic Compactification Macroscopic Lower
dimensions theory manifold supergravity dimensions

10 Type II
CY3 N = 2

4
CY3 orientifold N = 1

11 M-theory CY4 N = 2 3

12 F-theory Elliptic CY4 N = 1 4

Table 1.1: A table relating the the microscopic theories, the spacetime dimensions at which
they are consistent, the compactification manifolds, and the lower-dimensional effective
field theories that are considered in this thesis. In order to get four-dimensional N = 1
theories from F-theory, the Calabi-Yau fourfold must be elliptically fibred.

In the following, we go deeper into the compactification scenario in Table 1.1. We
will describe the structure of the four-dimensional effective supergravities, the geo-
metric quantities of the Calabi-Yau spaces, and the relation between the effective
physics and the geometric quantities.

1.2.3 Type IIB String Theory on Calabi-Yau threefolds
Two different type II string theories, namely IIA and IIB, exist in 10-dimensions.
The IIA theory is non-chiral, and IIB is chiral. The low energy EFT of type
II theories compactified on Calabi-Yau threefolds are four-dimensional N = 2
ungauged supergravities which includes an amount of massless moduli scalar fields.
An orientifold projection further truncates the theory down to N = 1 and can
support fluxes to stabilise the moduli and induce gauged supergravity. In this
section, we discuss the vector sector of type IIB theory compactified on Calabi-
Yau threefolds. We will not discuss the orientifold compactification in this section,
and we recommend the interested reader to consult [15–17]. For simplicity we work
in units where the gravitational interaction constant κ4 = 1.
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1.2 String compactification

N = 2 supergravity in four-dimensions
We list here the basic ingredients of four-dimensional N = 2 supergravity and refer
the reader to the textbooks [18, 19] for detailed discussion. There are three types
of supergravity multiplets in D = 4, N = 2 supergravity: the gravity, vector, and
hypermultiplets3. Our focus will be on the vector multiplets. The bosonic fields in
each vector multiplet include a massless vector field Aµ and a complex scalar field
z. Besides the vector multiplet, there is also the gravity multiplet, whose bosonic
fields are the metric gµν and a vector A0

µ named the graviphoton. Fixing nV, the
number of vector multiplets in the theory, the bosonic action of four-dimensional
ungauged N = 2 supergravity looks like

S =
∫
R3,1

1
2
R∗1−gi̄dz

i∧∗dz̄̄+ 1
2

Im NIJF
I ∧∗F J − 1

2
Re NIJF

I ∧F J , (1.2.10)

where zi with i = 1, . . . , nV runs over the scalars in the vector multiplets, and
F I with I = 0, . . . , nV runs over the vectors in the vector multiplets, together
with the graviphoton. There are in fact many different conventions on the form
of the N = 2 action. Here we follow the convention in [18], and we refer to [18,
Appendix C] for a nice comparison between different conventions. We have also
adopted convention so that F 0 corresponds to the field strength of the graviphoton.
The N = 2 supersymmetry poses constraints on the kinetic matrices gi̄ and NIJ

via (projective) special Kähler geometry [20–23]. The special geometry encodes
the symplectic invariance, a generalisation of the electro-magnetic duality, that is
present in N = 2 supergravity. It works as follows. To specify an N = 2 theory
with scalar fields zi in the vector multiplets, one needs to provide a 2(nV + 1)-
dimensional symplectic vector v(z) consisting of holomorphic functions of zi

v(z) =

(
ZI(z)
FI(z)

)
, (1.2.11)

subjected to a constraint that will be introduced later. Two such vectors v =
(ZI ,FI)T and ṽ = (Z̃I , F̃I)T can be multiplied using the symplectic pairing

Q(v, ṽ) = ZIF̃I − Z̃IFI , (1.2.12)

and we can change the basis while preserving the symplectic pairing, so the sym-
plectic vector v(z) carries an Sp(2(nV + 1),R)-action.
3These are the on-shell multiplets. Including the off-shell multiplets, one can dualise a real scalar
in a vector multiplet into a two-form, resulting in a vector-tensor multiplet, or do the same to
a real scalar in a hypermultiplet, yielding a linear multiplet.

9



1 Introduction

In order to describe the constraint on v(z), we need to define more gadgets. The
real-valued Kähler potential K(z, z̄) is defined to be

e−K = −iQ(v, v̄) , (1.2.13)

and the Kähler covariant derivative Div is given by

Div = ∂iv + (∂iK)v . (1.2.14)

Then special geometry constraint on the symplectic vector v(z) is given by

Q(Div,Djv) = 0 . (1.2.15)

Fixing the data v(z) subject to the constraint (1.2.15), the kinetic matrices gi̄
and NIJ in the N = 2 action (1.2.10) can be determined as follows. For the scalars,
one has

gi̄ = ∂i∂̄K = ieKQ(Div,D̄v̄) , (1.2.16)

and the gauge kinetic term is given by the (nV + 1) × (nV + 1) matrix

NIJ = (FI ,Dı̄FI)(ZJ ,Dı̄Z
J)−1 , (1.2.17)

whose imaginary part is negative definite.
It is often useful to organise the above data into a single holomorphic function

F(Z) called the prepotential. This is not always doable, but it is shown [21] that
every four-dimensional N = 2 supergravity can be rotated into a duality frame by
a symplectic transformation where a prepotential exists. We refer the reader to
the textbooks [18, 19] for detailed discussion on this issue. The prepotential F(Z)
is homogeneous of degree two in the variable ZI(z), and one has

FI = ∂F
∂ZI

, (1.2.18)

so that v(z) = (ZI(z),FI(z))T defines the symplectic vector. Moreover, the gauge
kinetic function can be rewritten, in the presence of a prepotential, as

NIJ = FIJ + 2i Im FINZN Im FJKZK

ZL Im FLMZM
, (1.2.19)

where we understood FIJ = ∂2F
∂ZI∂ZJ and Im FIJ = 1

2 (−iFIJ + iFIJ) for clarity.
For the convenience of the reader, we present a toy example illustrating the

construction of N = 2 actions from the choice of a symplectic vector in Appendix
1.C.

10



1.2 String compactification

Calabi-Yau threefolds and four-dimensional physics
Here we review the basic properties of Calabi-Yau threefolds. For detailed dis-
cussion, see [24–31]. A Calabi-Yau threefold Y3 is a compact Kähler manifold
of (complex) dimension three with a (holomorphically) trivial canonical bundle
ωY3

∼= OY3 . The definition is equivalent to that there exists a unique up to rescal-
ing (3, 0)-form Ω. As a Kähler manifold, Y3 has a basic holomorphic invariant4

called the Hodge diamond, which records the dimensions of the Dolbeault coho-
mology hp,q = dimCH

p,q(Y3) . The Hodge numbers are constrained by inherent
symmetries hp,q = hq,p = hn−p,n−q, where n is the dimension of the Kähler man-
ifold. Almost all Hodge numbers are fixed by the Calabi-Yau condition or the
inherent symmetries of the Hodge diamond, and the only free ones are h1,1 and
h2,1. The Hodge diamond of a Calabi-Yau threefold is shown in Figure 1.2.

=

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

h0,3h1,2h2,1h3,0

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

0 h1,1 0

0 0

1

1h2,1h2,11

0 h1,1 0

0 0

1

Figure 1.2: Hodge diamond of a Calabi-Yau threefold. The only two free parameters are
h1,1 controlling the (complexified) Kähler deformation, and h2,1 controlling the complex
structure deformation.

Fixing a Calabi-Yau threefold Y3, one can slightly deform its metric, while pre-
serving the Calabi-Yau condition. Since in gravity the metric itself is dynamic, this
means that one has to consider a family of Calabi-Yau threefolds that are small
deformations of Y3, instead of a single Y3. This resembles the family of circles in
the circle compactification in Section 1.2.1. It turns out that there are two types
of deformations of Y3, namely the complex structure deformation and the (com-
plexified) Kähler structure deformation. And the moduli space of Y3 splits into a

4In general, the Hodge diamond is neither a diffeomorphic nor homeomorphic invariant; there
exists pairs of Kähler manifolds sharing the same Hodge diamond but are not diffeomorphic or
homeomorphic to each other. However, certain linear combinations of Hodge numbers can be
diffeomorphic or homeomorphic invariants. See [32] for a complete discussion on this problem.
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1 Introduction

direct product of the complex and Kähler structure moduli spaces.

M = Mcs × Mks . (1.2.20)

This thesis focuses on the complex structure deformation, which gives the scalar
fields in the vector multiplet of the four-dimensional N = 2 supergravity. The
complex structure moduli space Mcs of a Calabi-Yau threefold Y3 is a (projective)
special Kähler manifold of dimension h2,1 [22, 33]. To specify the special Kähler
structure, we need to give the data of a symplectic vector and the symplectic
pairing. The symplectic vector can be constructed from the so-called period vector,
which tracks how the complex structure of Y3 deforms by looking at the Hodge
structure on the middle cohomology H3(Y3,C) of Y3. Hodge structures are the
central object of this thesis and more detail on Hodge structures will be reviewed
in section 1.4. For the present discussion, it suffices to recall that there is (p, q)-form
decomposition of the middle cohomology

H3(Y3,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 , (1.2.21)

satisfying
Hp,q = Hq,p . (1.2.22)

The decomposition defines a pure Hodge structure of weight three. Note that the
notion of complex conjugation is closely tied with the choice of a complex structure
on Y3; changing the complex structure will change the conjugation of a (p, q)-form,
which implies that the deformation of complex structure on Y3 can be effectively
tracked by the variation of Hodge structure on H3(Y3,C). In practice, the variation
of Hodge structure is tracked by the period vector, which works as follows. Firstly,
to record the effect of the deformation of complex structure, we need to choose
a basis of H3(Y3,C) that is invariant under the change of complex structure. A
commonly used basis is a symplectic basis generating the integral cohomology5,
so we choose an integral three-form basis6 {αI , βJ} with I, J = 0, . . . , h2,1 that
generates the integral cohomology H3(Y3,Z) = Z〈αI , βJ〉 and satisfies that

Q(αI , αJ) = Q(βI , βJ) = 0 , Q(αI , βJ) = δJI , (1.2.23)
5We do not consider the torsion part of the integral cohomology, hence all H∗(Y,Z) in this paper
is understood as H∗(Y,Z)/Tors. It is also possible to choose integral basis other than the
symplectic ones, and this is done in the Appendix 2.D in order to adapt the homological mirror
symmetry computation. For more information, see [34–38].

6This basis is sometimes defined to be the Poincaré dual of integral cohomology three-cycles.
Technically, this is defining a flat Gauss-Manin connection by requiring that the flat frames are
αI , β

J .
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1.2 String compactification

where Q(α, β) =
∫
Y3
α ∧ β is the intersection product on the cohomology. Special

geometry on the complex structure moduli space tells us that to track the change of
the complex structure on a Calabi-Yau threefold Y3, it suffices to track the change
of the (3, 0)-form Ω. Expanding the Ω in terms of the symplectic basis

{
αI , β

J
}

,
we get the period vector Π(z) = (ZI ,FI)T, where z is a local coordinate in the
complex structure moduli space7:

Ω(z) = ZIαI − FIβI . (1.2.24)

And the period vector Π is the symplectic vector defining the N = 2 effective
theory. Now we see a good example relating the geometry of the compactification
manifold to four-dimensional effective physics. For example, the complex structure
moduli fields can be realised as the special coordinates of Mcs,

zi = Zi

Z0 , i = 1, . . . , h2,1 , (1.2.25)

and using the general construction of N = 2 theories, we see that the Kähler
potential of the scalar part of the theory that corresponds to the complex structure
deformation of Y3 is given by

e−K = iQ(Π,Π) = i
∫
Y3

Ω ∧ Ω =
∫
Y3

Ω ∧ ∗Ω , (1.2.26)

where the first equality is the N = 2 construction, the second equality follows
from identifying the symplectic vector in N = 2 as the period vector of Y3 which
is basis-independent, and the third equality follows from the complex geometry
of Y3. Note that the expression for the Kähler potential depends on the complex
structure moduli zi, because a change of the complex structure results in a change
of the complex conjugation Ω. The form of rightmost integral in (1.2.26) appears
recurrently in geometry and we call it the Hodge norm of Ω. More precisely, for
any two cohomology classes α, β on Y3, we define their Hodge inner product as

h(α, β) =
∫
Y3

α ∧ ∗β , (1.2.27)

and then the Hodge norm of a class α is denoted by

‖α‖2 = h(α, α) . (1.2.28)
7The minus sign in front of FI is due to the convention of picking

{
Q(−, αI), Q(−, βI)

}
as a

basis in the vector space dual of H3(Y3,C), i.e., ZI = Q(Ω, βI),FI = Q(Ω, αI). This is possible
due to the non-degeneracy of Q. Another possible choice is to directly use the canonical dual
basis of αI , β

I , eliminating the minus sign. The latter is the convention used in Chapter 2.
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1 Introduction

So we see that the Kähler potential can be written simply as

e−K = ‖Ω‖2
z , (1.2.29)

where we use the subscript z to stress the dependency on the complex structure
moduli. Note that the (3, 0)-form must be consistently normalised; the freedom of
a rescaling of Ω results in a Kähler transformation on the Kähler potential. The
Hodge norm and Hodge inner product appears frequently in the four-dimensional
physics coming from string compactification, and this enables the study of four-
dimensional physics by Hodge theory on the compactification manifold in this
thesis.

As a side remark, with the Kähler potential K defined, special Kähler geometry
on the complex structure moduli space of Calabi-Yau threefolds implies that the
entire H2,1 space can be generated by taking Kähler covariant derivatives of Ω,
namely

H2,1 = C〈DiΩ〉 , (1.2.30)

where we define the Kähler covariant derivative8 DiΩ = ∂iΩ + (∂iK)Ω as in the
N = 2 theory, and i = 1, . . . , h2,1 runs over the complex structure moduli zi.

Besides the complex structure deformation, there is of course Kähler deformation
in type IIB compactification, together with their counterparts in type IIA theory.
We refer the more detailed discussion on these topics to standard literatures, for
example [24,25,39]. This finishes our brief discussion on the Calabi-Yau threefold
compactification of type II string theories.

1.2.4 F-theory on Calabi-Yau fourfolds
Compactifying type II string theory on Calabi-Yau threefolds result in N = 2
supergravity in four dimensions. It would be nice to reduce the amount of super-
symmetry to make contact with real world, while retaining computational control
of the theory. It turns out that this can be achieved by orientifolding the Calabi-
Yau threefold, which projects out half of the physical degrees of freedom, resulting
in an N = 1 supergravity. The type IIB Calabi-Yau orientifold construction can
be nicely embedded in the so-called F-theory framework, which will be the phys-
ical setting of Chapter 3 and 4. In the following, we briefly introduce F-theory,
8We are being sloppy here. The true definition is that DiΩ = ∇iΩ + (∂iK)Ω, where ∇i is
the Gauss-Manin connection in the i-th coordinate direction. Since our choice of three-form
basis αI , β

J are flat with respect to the Gauss-Manin connection, the covariant derivative on Ω
becomes a normal derivative on the coefficients, i.e. the period vector.
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1.2 String compactification

review basics of N = 1 supergravity in four-dimensions, set up basic notation of
Calabi-Yau fourfolds, and link the N = 1 physics to the geometry.

A brief introduction to F-theory
F-theory [40–43] is a strong coupling incarnation of type IIB string theory. One
motivation is that when D7-branes are present in the 10-dimensional type IIB
spacetime, the string coupling has to become strong in some region of the 10-
dimensional spacetime. The problem of D7-branes cannot be ignored, because even
if one starts with a type IIB setting without D7-brane, S-duality can transform the
D7-brane-free theory into a theory with D7-branes. Thus, a generalised picture
that includes the strong and weak coupling type IIB theory is desired. F-theory
solves the problem by assuming a 12-dimensional quantum theory, which upon
compactifying on a torus results in a 10-dimensional type IIB string theory with
varying axio-dilaton, thus probing the full type IIB theory.

There are multiple ways to characterise F-theory and we will adopt the practical
way of defining F-theory via M-theory and dualities. The definition goes as follows.
Starting with M-theory and compactify it on a torus, topologically of the form
T 2 = S1

T × S1
M, one obtains type IIA theory compactified on the circle S1

T, whose
string coupling is given by (see, e.g., [25, Chapter 8])

gIIA = RM

ls
, (1.2.31)

where RM is the radius of the circle S1
M and ls is the string length (inverse of the

string tension). By taking RM to be very small, a weakly coupled type IIA theory
compactified on the remaining circle S1

T pops out. Next, applying T-duality along
the circle S1

T results in type IIB theory compactified on a circle of radius (see,
e.g., [25, Chapter 6])

RIIB = l2s
RT

. (1.2.32)

Thus, by making RT also small, the 10-dimensional type IIB theory is restored. The
complex structure modulus of the M-theory torus T 2 exactly corresponds to the
type IIB axio-dilaton. In this way, F-theory defined via M-theory is a generalisation
of type IIB string theory with varying axio-dilaton. The process is shown in Figure
1.3.

Having related the 12-dimensional F-theory to 10-dimensional type IIB the-
ory, the next step is to work for a four-dimensional spacetime. This can also
be done with Calabi-Yau compactifications, but with four-folds instead of three-
folds. Putting the 11-dimensional M-theory on a Calabi-Yau fourfold results in a

15



1 Introduction

M/S1
M × S1

T

IIA/S1
T IIB/S1

IIB IIBτ

F/T 2
τ

RM → 0

T-duality RIIB → 0

T 2
τ → 0

Figure 1.3: Defining F-theory via M-theory. The torus T 2
τ remembers the complex struc-

ture τ of S1
M × S1

T, which corresponds to type IIB axio-dilaton τ . Under T-duality, one
relates RIIB = 1/RT. The Kähler modulus RMRT of T 2

τ is sent to zero in the F-theory
limit.

three-dimensional N = 2 supergravity. If we require the Calabi-Yau fourfold to be
an elliptic fibration, then the three-dimensional N = 2 supergravity can be lifted
to a four-dimensional N = 1 supergravity. We call the latter theory as coming
from F-theory compactified on elliptic-fibred Calabi-Yau fourfolds.

We stress here that the above definition of F-theory via M-theory, and the com-
pactification of F-theory on elliptic-fibred Calabi-Yau fourfolds are just heuristic.
In practice, there are subtleties that need to be taken into account. We refer the
interested reader to [44, 45] for more detailed discussion. The relation between
F-theory and type IIB and type IIA orientifold vacua is discussed in Section 3.2.2.

N = 1 supergravity in four-dimensions
Four-dimensional N = 1 supergravity is structurally simpler but less constrained
than its N = 2 counterpart. The N = 1 multiplets are the gravity multiplet, chiral
multiplets, and vector multiplets. Our focus will be on the chiral multiplets, each
of which contains a complex scalar field as the bosonic field. Complete treatment
of N = 1 supergravity can be found in [19,46].

To define an N = 1 theory with nC chiral multiplets containing scalar fields zi,
one needs to provide the following data

• A Kähler potential K(z, z̄), which is a real smooth strictly plurisubharmonic
function9 ;

9In the context of Kähler geometry, this is saying that the Hessian (∂i∂̄K) is positive semi-
definite.
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1.2 String compactification

• A superpotential W (z), which is a holomorphic function .

With the above data, the action of a four-dimensional N = 1 supergravity with nC

chiral multiplets takes the following form

S =
∫
R3,1

1
2
R ∗ 1 − gi̄dz

i ∧ ∗dz̄̄ − V , (1.2.33)

where i = 1, . . . , nC and the kinetic matrix gi̄ is given by

gi̄ = ∂i∂̄K , (1.2.34)

while the scalar potential V is given by

V = eK(gi̄DiWD̄W − 3WW ) , (1.2.35)

where the Kähler covariant derivative is defined as

DiW = ∂iW + (∂iK)W . (1.2.36)

Calabi-Yau fourfolds and the four-dimensional physics
A Calabi-Yau fourfold Y4 is a four-dimensional Kähler space with trivial canonical
bundle. It has three free Hodge numbers h1,1, h2,1, and h3,1. Similar to Calabi-
Yau threefolds, h1,1 parametrises the (complexified) Kähler moduli deformation,
while h3,1 corresponds to the complex structure deformation. A subtlety here is
the three-form number h2,1. This part is not understood as well as the other two
Hodge numbers. In this work we will not touch this Hodge number, and its physical
significance is discussed in [47, 48]. The Hodge diamond of a Calabi-Yau fourfold
is shown in Figure 1.4. We will again focus on the middle cohomology H4(Y4,C)
and consider the complex structure deformation of Y4. Like Calabi-Yau threefolds,
the complex structure moduli space of Y4 is a Kähler manifold. Unlike Calabi-
Yau threefolds, the complex structure moduli space of Y4 is not special Kähler.
This will make a general analysis of Calabi-Yau fourfold compactifications more
complicated. Detailed discussion can be found in [34, 49, 50]. Fortunately, for our
purpose, considering a part of H4(Y4,C) that mimics the middle cohomology of
Calabi-Yau threefolds is enough. This is a subspace of H4(Y4,C) that is called the
primitive, horizontal subspace.

As usual, we denote the local coordinate on the complex structure moduli space
of Y4 by zi, and the unique (4, 0)-form on Y4 by Ω. Then the Kähler potential K
of the complex structure moduli space is given by

e−K =
∫
Y4

Ω ∧ ∗Ω , (1.2.37)
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=

h2,1 h1,2 h0,3

h1,1 h0,2

h0,1

h0,4h1,3h2,2h3,1

h3,2 h2,3 h1,4

h3,3 h2,4

h3,4

0 h2,1 h2,1

0 h1,1

0

h3,1h2,2h3,11

0 h2,1 h2,1

0 h1,1

0

h4,0

h3,0
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h1,0
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h4,1

h4,2

h4,3

1

0

0
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1

0

0
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Figure 1.4: The Hodge diamond of a Calabi-Yau fourfold. The free parameters are h1,1

parametrising the (complexified) Kähler deformation, h3,1 parametrising the complex
structure deformation, and a special sector h2,1. The h2,2 is fixed by h2,2 = 2(22+2h1,1 +
2h3,1 − h2,1). See [49].

which is again the Hodge norm of Ω. Define similarly DiΩ = ∂iΩ + (∂iK)Ω, then
the horizontal part of H4(Y4,C) is generated by iterated action of Di on Ω. In
particular, the H3,1 space automatically horizontal, as in Calabi-Yau threefolds,

H3,1 = C〈DiΩ〉 . (1.2.38)

By conjugation, the subspaces H1,3 and H0,4 are also horizontal. Thus, the hor-
izontal condition only affects H2,2, and we denote the horizontal part of H2,2 by
H2,2

h .
To define the primitive part, we need the Kähler class ω of Y4. Then the primitive

middle cohomology consists of those classes that are annihilated by wedging with
ω. Similar to the horizontal classes, all subspaces except for H2,2 are primitive
because of the structure of the Hodge diamond of a Calabi-Yau fourfold, and we
denote the primitive part of H2,2 by

H2,2
p =

{
α ∈ H2,2|ω ∧ α = 0

}
. (1.2.39)

To relate the Calabi-Yau fourfold geometry to the N = 1 data, we first stress that
in order to have a valid four-dimensional N = 1 theory, the Calabi-Yau fourfold
has to be elliptically fibred. Then the complex structure moduli fields zi belong to
the N = 1 chiral multiplets, whose kinetic matrix gi̄ is derived from the Kähler
potential (1.2.37). Without further modification of the theory, the scalar fields zi
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1.3 Swampland conjectures

are massless. One way to generate masses for the complex structure moduli is to
turn on the G4-flux, which originates from the 11D supergravity three-form field in
M-theory, and is a cohomology class in the primitive horizontal middle cohomology
H4

ph(Y4,Z). This will generate a superpotential W given by [51]

W (z) = Q(Ω, G4) , (1.2.40)

where Q(α, β) =
∫
Y4
α ∧ β is the intersection form on Y4. The scalar potential can

then be derived from the superpotential. It can be neatly written in terms of the
geometric quantities as

V (z) = c

(∫
Y4

G4 ∧ ∗G4 −
∫
Y4

G4 ∧G4

)
, (1.2.41)

where c is a function that does not depend on the complex structure moduli of
Y4. The scalar potential V in fact works both for D = 3, N = 2 M-theory and
D = 4, N = 1 F-theory compactifications, and the difference lies in the coefficient
function c. For example, in the context of F-theory compactified on an elliptically
fibred Calabi-Yau fourfold, the coefficient is c = V−2

b , where Vb is the volume of
the base. More discussion on this coefficient can be found in Section 3.2.1.

Note that the scalar potential (1.2.41) can be further rewritten as

V (z) = c‖G4 − ∗G4‖2
z . (1.2.42)

So this enables the study of V (z) by asymptotic Hodge theory. In some sense the
scalar potential generated by a G4-flux measures the deviation of G4 from being
self-dual. This picture is adopted in Chapter 3.

1.3 Swampland conjectures
In this section, we introduce the swampland distance conjecture and the de Sitter
conjecture that are studied in this thesis. As discussed earlier in the introduc-
tion, the swampland program refines the bottom-up approach of quantum gravity
theory. It aims to distinguish those effective field theories that can be obtained
by string compactification from the apparently consistent (anomaly-free) quantum
field theories. The exact criteria are still unclear, because of the absence of a com-
plete picture of quantum gravity. So the criteria are called swampland conjectures,
and they are mostly inspired by string theory, and semi-classical arguments about
black holes. One of the best understood swampland conjectures is the swampland
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distance conjecture, together with its generalisations, which, roughly speaking, pos-
tulates the emergence of a tower of massless states that invalidates an effective field
theory consistent with quantum gravity in some corners of the moduli space. The
tower of states appearing in the distance conjecture also appears to be useful for
other swampland conjectures, hence the distance conjecture is central in the zoo of
swampland conjectures. Detailed review of the Swampland Program can be found
in [52–56].

1.3.1 Distance conjecture
Now we would like to discuss the swampland distance conjecture [57] in more detail.
The assumption is that the effective theory admits a UV completion into quantum
gravity, and includes, besides the spacetime metric gµν , real scalar fields φi valued
in a field space M, which carries a field space metric Gij(φ) depending on the
scalar fields. The field space metric defines the kinetic term of the scalar fields. In
four dimensions, the action looks like

S = 1
κ2

4

∫
R3,1

1
2
R ∗ 1 −Gijdφ

i ∧ ∗dφj + · · · , (1.3.1)

where “· · · ” denotes other couplings that can also depend on the scalar fields φi.
The field space metric can be used to measure the traverse distance of a field
configuration. The distance conjecture asserts:

• There exists a boundary point φb that is at infinite distance away from any
other point φ in M.

• Upon approaching the boundary point φb, the effective theory breaks down
because an infinite tower of light states descends from the ultraviolet. Their
masses are exponentially suppressed with respect to the minimal geodesic
distance traversed by the scalar field φ.

One can be more precise about the statements in the swampland distance con-
jecture. The field space M is a Riemannian manifold with metric Gij hence it is
a metric space; its topology is generated by the minimal geodesic distance. So the
first bullet of the distance conjecture implies that the field space M cannot be com-
pact10. Mathematically speaking, the field space can be compactified M ↪→ M,
where the compactified field space M augments the original M by the boundary
10Note that this part is often presented as a conjecture independent from the distance conjecture.
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points φb. Thus, the setting is perfectly in line with the moduli problem in geom-
etry: The moduli spaces one encounters in geometry, such as the moduli spaces
of Calabi-Yau manifolds, are rarely compact. When studying the geometry by de-
forming the regular spaces, one always runs into degenerate versions of the regular
space, and these degenerate spaces populate the boundary of the original moduli
space. By adding the boundary points, one obtains a compactified moduli space.
Here in the swampland distance conjecture, the bulk of the moduli space consists of
consistent-looking effective field theories, and the boundary corresponds to possible
breakdown of the effective field theories when coupled with quantum gravity.

Next, we turn to the second bullet point in the distance conjecture by giving a
more concrete statement. Denote the minimal geodesic distance11 between φ and
φ0 by d(φ, φ0). Then the setting in the distance conjecture is that one considers
a trajectory φ in the field space, starting from a point φ0, and aiming towards
an infinite boundary point φb. In this process, an infinite tower of states become
increasingly light, whose mass follows the relation

M(φ) = M(φ0)e−γd(φ,φ0) , (1.3.2)

with γ a constant not depending on the parameter of the path. We would like to
stress that although the path φ is assumed to be general, the distance that enters
into the mass of the tower is required to be the minimal geodesic distance d(φ, φ0).
The physical setting is displayed in Figure 1.5.

There are still ambiguities in the distance conjecture and we would like to point
out two of them here. One questions is about the onset of the exponentially
light states: As we travel in the field space towards an infinite distance boundary
point, when does the light tower start to show the exponential scaling in their
masses? Put differently, this question is related to whether an infinite distance
traverse in the field space is really needed in order to see the exponentially light
tower. This is addressed in the refined distance conjecture [58], which says that the
exponentially light tower is already important when the field displacement is trans-
planckian. We will discuss an important phenomenological consequence of the
refined distance conjecture in the next paragraph. Another question regarding the
distance conjecture is that: Suppose along one path towards the infinite distance
point, one finds an exponentially light tower of states, is it the correct tower along

11Note that multiple geodesics with different lengths connecting any two points in a Riemannian
manifold is possible. A Riemannian manifold in which every two points are connected by a
unique geodesic is called a uniquely geodesic space. In general, it is non-trivial to determine if
a Riemannian manifold is uniquely geodesic.
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M

φb

φ0
φ

mφ ∼ mφ0e
−γd(φ0,φ)

Figure 1.5: The physical setting of swampland distance conjecture. The field space M
has an infinite distance boundary point φb. Starting from φ0 and travelling towards φb,
an infinite tower of exponentially light states descends from the ultraviolet. Note that
d(φ0, φ) is the minimal geodesic distance.

other paths? This question will be addressed in a forthcoming work [59] utilising
the tamed geometry framework that is successfully used to establish the finiteness
of flux vacua [14]. This question can also be tied with the classification of the
origin of possible light towers in the limit, which prompts the emergent string
conjecture [60]. The emergent string conjecture states that, under string dualities,
the light tower in the infinite distance limit is either the tower of states living on
a tensionless string, or a light Kaluza-Klein tower inducing a decompactification.
For a review on the emergent string conjecture, see [61].

The refined distance conjecture has a direct impact on the inflation cosmology.
There exists many large-field inflation models trying to explain the inflation of
our universe using a scalar field that has a transplanckian displacement in the
field space. According to the refined distance conjecture, such operations are not
compatible with the effective field theory one started with; passing certain stage
in the field space, the effective field theory compatible with quantum gravity will
inevitably break down due to the light tower of states. An example of large-field
inflation model is the family of axion monodromy inflation models and we will use
asymptotic Hodge theory to study the break down of such models when the field
excursion is large in Section 3.7 and Chapter 4.
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1.3.2 de Sitter conjecture

The de Sitter conjecture is a swampland conjecture that will be addressed in Chap-
ter 3. The basic idea is that while constructing anti de Sitter and Minkowski vacua
is easy in string theory, it is extremely hard to obtain an undebatable de Sitter
solution that is capable of describing our observed universe. This phenomenon
motivates the authors of [62] to propose a conjecture on the shape of all scalar
potentials that can appear in string theory, which forbids the existence of any
semi-stable vacua with positive cosmological constant, i.e. de Sitter vacua. Soon
after the original de Sitter conjecture was proposed, the authors of [63] completed
the proposal to exclude some counter-examples to the original conjecture. We now
review the statement of the de Sitter conjecture in [63], and relate it with the
previously discussed swampland distance conjecture.

The setting of the de Sitter conjecture is similar to the distance conjecture. The
assumption is that the four-dimensional effective action admits a UV completion
into quantum gravity, and is of the form

S = 1
κ2

4

∫
R3,1

1
2
R ∗ 1 −Gijdφ

i ∧ ∗dφj − V (φ) + · · · , (1.3.3)

where we have included a potential V (φ) for the scalar fields φi. As usual, a vacuum
of the theory is realised by a minimum of the scalar potential, which is identified
as the cosmological constant of the vacuum. The vacuum under consideration can
be global or local. The first case is dubbed as stable, while the latter is called
meta-stable. The de Sitter conjecture states that the scalar potential must satisfy
either

‖∇V ‖ ≥ c

Mp
V , (1.3.4)

or

min(HessV ) ≤ − c′

M2
p
V , (1.3.5)

where ‖∇V ‖ is computed with respect to the field space metricGij and min(HessV )
is a shorthand for the minimal eigenvalue of the Hessian12 of V . The constant c is
conjectured to be O(1). The original de Sitter conjecture [62] only asserts property
(1.3.4) on the scalar potential.

12The Hessian is defined as the matrix of the second covariant derivatives of V ; in the coordinate
basis, we have HessV = (∇i∇jV ), where the covariant derivatives are defined on the scalar
field space M carrying the field space metric Gij .
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An immediate consequence of the first condition in the de Sitter conjecture is
that there is no possible scalar potential that realises de Sitter minima, as such
vacua violate the inequality (1.3.4).

The de Sitter conjecture is related to the distance conjecture, when we work
around infinite distance singularities in the field space. The idea is that the infinite
tower of light states will contribute to the total entropy of the de Sitter vacuum of
the effective field theory. But a result from Bousso [64] bounds the total entropy
by the Gibbons-Hawking entropy of the de Sitter event horizon, which depends on
the cosmological constant of the vacuum. The interplay of these two statements
implies a runaway behaviour of the scalar potential V (φ) along certain direction
that is pushed towards the limit, and the runaway behaviour is consistent with the
de Sitter conjecture. For more detailed discussion, see the original paper [63] and
the review [54].

In closing this section, we would like to point out a recent proposal of an under-
lying principle of the swampland conjectures. This proposal is called the tameness
conjecture [65] and it has attracted substantial interest in the community. One
motivation of the tameness conjecture is the observation that in all string vacua
constructed so far, the four-dimensional physical couplings, scalar potentials, etc.,
are clearly not arbitrary functions. On the other hand, a similar observation also
exists in the Hodge theory community on the mathematical side. Recently, the
paper [12] made an important progress by realising this picture, showing that the
period mappings in Hodge theory are not arbitrary holomorphic functions, but
must be some well-behaved “tamed” functions. This mathematical work inspired
the authors of [14] to use the tamed geometry, as a replacement to the asymptotic
Hodge theory, to show the finiteness of flux vacua, and finally resulting in the
tameness conjecture. Compared to the asymptotic Hodge theory which is quite
complicated and works over the complex numbers, the tamed geometry is consid-
erably much simpler, and works well even in real geometries. It is expected that
the tamed geometry will bring fruitful insights into the Swampland Program in the
future.

1.4 Asymptotic Hodge Theory
In this section, we discuss informally the motivation behind asymptotic Hodge
theory. Our viewpoint will be geometrical, mainly focusing on studying possible
algebraic structures on the middle cohomology of a family of degenerating Calabi-
Yau spaces. We use two example geometries to illustrate the various constructions
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in asymptotic Hodge theory. They are Calabi-Yau one-folds, a.k.a torus, and
Calabi-Yau threefolds.

1.4.1 The cohomology of a smooth Calabi-Yau threefold
Let us first review the well-known structure on the cohomology of a Calabi-Yau
threefold. The conclusion actually holds for any compact Kähler manifold, but we
choose Calabi-Yau threefolds because they are complicated enough for physicists
to play with and carry cohomology with many degrees, while at the same time
simple enough, to the extent that many of their cohomologies are vanishing, so
that it is fairly easy to illustrate some classical aspects of Hodge theory with them.
Complete discussion on this topic can be found in [66–70] and [71, Chapter 1].

Let Y be a smooth Calabi-Yau threefold, which is a smooth Kähler manifold of
complex dimension n = 3, whose canonical bundle is holomorphically trivial.

From the theory of complex manifolds, the Calabi-Yau Y has cohomologies with
degrees k varying from zero to six. At each degree, there is a Hodge decomposition

Hk(Y,C) = Hk,0(Y ) ⊕Hk−1,1(Y ) ⊕ · · · ⊕H0,k(Y ) , (1.4.1)

satisfying
Hp,q(Y ) = Hq,p(Y ) . (1.4.2)

When there is no danger of confusion, we will often omit the argument Y in Hp,q(Y )
and write Hp,q for simplicity. In the space Hp,q lives those cohomology classes that
can be locally represented by complex differential forms with p dz’s and q dz̄’s. We
say that Hk(Y,C) carries a Hodge structure of weight k. For simplicity, we will
also write Hk

C for Hk(Y,C). Similar notations apply to the integral, rational, and
real cohomologies.

It is natural to work with the total cohomology of the Calabi-Yau Y , which is
the sum of cohomologies of all degrees H∗(Y,C) =

⊕
kH

k(Y,C). The total coho-
mology is a complex vector space, and there is a nice way to pictorially work with
it. We depict the H∗

C =
⊕

p,qH
p,q resembling the Hodge diamond with a rotation,

but this time we focus on the vector subspaces Hp,q instead of the numerical di-
mensions hp,q. We fill in different Hp,q with dots that can be understood as basis
elements of Hp,q, and later on when we discuss special operators acting on H∗

C we
can directly specify the operators using arrows on the diagram. Such a diagram is
also called Hodge diamond and it will be clear from context which version of Hodge
diamond is under discussion. A Calabi-Yau threefold with h1,1 = 1 and h2,1 = 2
has a Hodge diamond of the form shown in Figure 1.6.
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H0,0 H1,0 H2,0 H3,0

H0,1 H1,1 H2,1 H3,1

H0,2 H1,2 H2,2 H3,2

H0,3 H1,3 H2,3 H3,3

=

Figure 1.6: The Hodge diamond of a Calabi-Yau threefold with h1,1 = 1 and h2,1 = 2.
Every dot in the diagram represents a suitably chosen basis vector of the corresponding
subspace Hp,q.

Since the cohomology at each degree carries a Hodge structure of that degree,
an immediate question arises: Does H∗

C carry any Hodge structure? If so, what is
the weight of that Hodge structure?

To answer this question, one might be able to cook up some Hodge structure with
some definite weight in some ad hoc way for some very special Kähler manifolds.
However, it turns out that a more natural and useful thing to do is to extend the
notion of a Hodge structure of a fixed weight, by allowing a Hodge structure with
a mix of different weights. Such generalised Hodge structures are called mixed
Hodge structures, and a mixed Hodge structure consisting of a single weight, such
as those living on Hk

C, is called a pure Hodge structure. So, a prototypical example
of a mixed structure is exactly the total cohomology H∗

C of a Calabi-Yau threefold,
which is a mix of pure Hodge structures of degree k varying from zero to six.
Moreover, it satisfies a nice property that Hp,q = Hq,p for all p, q. Any mixed
Hodge structure that resembles the mixed Hodge structure on H∗

C is called R-split,
and such a mixed Hodge structure can be understood as a direct sum13 of pure
Hodge structures. Note that we have not touched the precise definition of a mixed
Hodge structure, and it will be addressed in Appendix 1.D.1.

Now we would like to introduce an example of the most important concept in
asymptotic Hodge theory applied to string theory: The mixed Hodge structure,
13More precisely, we are talking about direct sums in the category of mixed Hodge structures. So

a direct sum of the underlying vector space does not suffice to be a direct sum of mixed Hodge
structures, which has to be compatible with the various filtrations.
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which is the total cohomology H∗
C under discussion, is actually compatible with a

representation of the Lie algebra sl(2). Recall that the Lie algebra sl(2) is generated
by three operators: the lowering operator N , the rising operator N+, and the
neutral operator Y . They satisfy the following commutation relations

[Y,N ] = −2N , [Y,N+] = 2N+ , [N+, N ] = Y . (1.4.3)

To make H∗
C into an sl(2)-representation, we need to specify how the operators

representing N,N+, and Y act on H∗
C.

The rising operator is immediate. Define the Lefschetz operator L by wedging
with the Kähler class ω

Lα = ω ∧ α , for α ∈ H∗
C . (1.4.4)

Note that the point of using another notation L instead of using ω is to emphasise
that the Lefschetz operator is defined at the level of cohomology, instead of forms.
Then we identify the rising operator with the Lefschetz operator N+ = L.

To find the lowering operator, we need the Hodge inner product h, define on H∗
C

by
h(α, β) =

∫
Y

α ∧ ∗β , for α, β ∈ H∗
C . (1.4.5)

And we define the adjoint Lefschetz operator Λ as the hermitian conjugate of the
Lefschetz L with respect to h, i.e.,

h(Λα, β) = h(α,Lβ) , for all α, β ∈ H∗
C . (1.4.6)

A straightforward computation, using ∗2 = (−1)
k(k−1)

2 on Hk
C, leads to

Λ = ∗−1 ◦ L ◦ ∗ . (1.4.7)

The lowering operator is then given by the adjoint Lefschetz operator, N = Λ.
Finally, computing [L,Λ] yields the neutral operator Y , given by

Y α = (k − n)α , for α ∈ Hk
C , (1.4.8)

satisfying [L,Λ] = Y . For Calabi-Yau threefolds we have n = 3. It can be further
checked that (1.4.3) is satisfied [66–69,72].

Interestingly, the sl(2)-action on H∗
C plays well with the mixed Hodge structure

on H∗
C. One has

L : Hp,q → Hp+1,q+1 , and Λ : Hp,q → Hp−1,q−1 , (1.4.9)
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and Y stabilises Hp,q with the scalar multiplication of p+ q − n.
It is instructive to picture the entire mixed Hodge structure with its sl(2)-action

in the Hodge diamond of a Calabi-Yau threefold with h1,1 = 1 and h2,1 = 2 shown
in Figure 1.7.

Y = 0

Y = 1

Y = 2

Y = 3

Y = −1Y = −2Y = −3

Λ

Λ

Λ

Figure 1.7: The total cohomology H∗(Y,C) of a Calabi-Yau threefold with h1,1 = 1 and
h2,1 = 2. The sl(2)-actions of Y and Λ are shown. The operator L acts exactly in the
opposite direction of Λ. Note that Λ kills the entire H3.

We have now seen that the total cohomology of a smooth Calabi-Yau threefold
carries an R-split mixed Hodge structure. In string theory, we would also like
to consider Calabi-Yau’s varying in a family, with different complex and Kähler
structures. In Hodge theory, this amounts to a variation of Hodge structure.

1.4.2 Variation of Hodge structure on elliptic curves

Let us illustrate the basic concepts in variation of Hodge structures using the
elliptic curve as an example. The concrete example that we will consider will be
the Legendre family of an elliptic curve. We follow the approach in [73, Chapter 1].
The defining equation of an elliptic curve Eλ is given by

y2 = x(x− 1)(x− λ) , λ ∈ P1 . (1.4.10)
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Although for every λ 6= 0, 1, the resulting manifolds are all diffeomorphic as a two-
dimensional torus, they are not isomorphic as complex manifolds14, i.e., they can
have different complex structures.

It is convenient to assemble the family of all elliptic curves together, so that we
obtain a fibration E → P1, with the fibre over λ ∈ P1 the elliptic curve Eλ. We
pick any λ 6= 0, 1, and take a disc ∆ centred around λ that does not include 0 or
1. Thus we get a local picture of a smooth family of elliptic curves. The picture
we should have in mind is given in Figure 1.8.

Eλ

∆

λ

e1

e2

Figure 1.8: A local picture of a smooth family of elliptic curves. The open disk ∆ does
not contain 0 or 1. Over each λ ∈ ∆ there is a smooth elliptic curve Eλ. The chosen real
homology cycles e1 and e2 are the Poincaré dual of the cohomology basis e1 and e2.

We will be interested in the deformation of the Hodge structure on the middle
cohomology H1(Eλ,C) as we change λ. In order to do this, we use the period
vector as we did in Calabi-Yau threefolds in Section 1.2.3. It is defined as follows.
Suppose at a fixed λ, we have chosen an integral basis e1, e2 of the cohomology
H1(Eλ,Z) that is unaffected by the deformation of complex structures. We also

14For example, a holomorphic function on Eλ might not be holomorphic any more on Eλ′ with
λ′ 6= λ.
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choose a complex basis ω, ω of the complex cohomology, satisfying

H1,0 = Cω , H0,1 = H1,0 = Cω . (1.4.11)

Then the complex basis ω can be expanded into the integral basis as follows

ω = Π1e
1 + Π2e

2 = (e1, e2)Π , (1.4.12)

where the complex vector of coefficients Π = (Π1,Π2)T is called the period vector,
and is a function on the parameter λ. Now let us change λ. To record and compare
the change of ω, we can either keep the period vector constant and let the integral
basis e1, e2 vary, or keep the integral basis constant and let the period vector be
a function of λ. It turns out that the latter approach is more useful, and we will
adopt this convention throughout the thesis. Namely, locally, we fix an integral
basis e1, e2 and describe the variation of Hodge structure by making the period
vector Π(λ) a function of λ. In this way, the period vector can be shown to satisfy
the Picard-Fuchs differential equation, which in the elliptic curve example has the
following form [73, Equation 1.11]

λ(λ− 1)Π′′ + (2λ− 1)Π′ + 1
4

Π = 0 (1.4.13)

By solving the Picard-Fuchs equations, we get the period vector describing the
variation of Hodge structure. Note that we have omitted the discussion about
the boundary condition in the Picard-Fuchs equation, without which one cannot
fix a solution. The boundary condition is usually supplied by looking into the
degenerate manifold, say at λ = 0, 1. Since this is not the focus of this thesis, we
refer to [74] for a practical discussion in the context of mirror symmetry.

Now we have discussed how to track the variation of Hodge structure along
a smooth local family of elliptic curves. The next step would be to globalise
the discussion, glueing the period vectors along the overlapping discs. But one
immediately runs into a problem: The elliptic curve ceases to be a smooth manifold
at λ = 0, 1. So we need a way to describe the behaviour of the Hodge structures as
the manifold degenerates, and preferably in differential geometric language. This
is achieved by the theory of degenerating variation of Hodge structures.

1.4.3 Degeneration of Hodge structures on elliptic curves
In this section, we enter the core topic of this thesis, namely how to manage the
Hodge structure in a degenerating family. We continue following [73, Chapter 1].
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To be concrete, let us first be clear with the setup and the goal. We focus on a
neighbourhood of the singular elliptic curve E0 with λ = 0, and work locally in a
punctured disc ∆∗ centering at λ = 0, which does not contain the other singularity
λ = 1. On the whole punctured disc ∆∗, the family is still smooth. The singular
fibre E0 exactly fills in the hole of the punctured disc, and it is called the central
fibre. We would like to describe the Hodge structure on H1(Eλ,C) as λ → 0.

It turns out that the Hodge structure on H1(Eλ,C) is closely related to the struc-
ture of H1(E0,C), where the latter needs to be properly defined in the framework
of algebraic geometry in order to allow the direct study of singular spaces. We will
not go into algebraic geometry, but, instead, describe the result heuristically, so
that one can see how mixed Hodge structure emerges. Topologically, the central
fibre E0 is a “pinched torus”, a curve with a node. We display its shape in Figure
1.9.

H1(E0,C)

e1

Weight 0 Weight 1E0

e1

Figure 1.9: The topology of the central fibre E0. On the left picture, we see that only
one of the homology cycle e1 survives. On the right picture, the middle cohomology is
a mixed Hodge structure with weight zero and weight one pieces. The weight one part
happens to be zero for the pinched elliptic curve, and the weight one piece is provided by
e1.

From Figure 1.9, we immediately see that the Hodge structure on H1(E0,C)
cannot be a pure weight one Hodge structure, because there is only one one-cycle
surviving. In order to get a pure Hodge structure of weight one, i.e. H1(E0,C) =
H1,0 ⊕H1,0, by (a suitable version of) Poincaré duality, the number of one-cycles
has to be even.

It turns out that the middle cohomology H1(E0,C) in this case carries a mixed
Hodge structure consisting of weight zero and weight one parts. It happens that
the weight one part is vanishing, and the dual of the single one cycle concentrates
in the weight zero sector. It is regarded as a mixed Hodge structure, instead of a
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pure weight zero structure, because this fits in the more general pattern in the de-
generation of algebraic curves. If we start from a curve of higher genus and shrink
one of its one-cycle to zero, then the middle cohomology will have both weight
one and weight zero parts. The weight one part consists of those one-cycles away
from the vanishing cycle, and the weight zero part is still populated by the cycles
that intersects with the vanishing cycle. The Hodge diamond of H1(E0,C) is also
shown in 1.9. The reader can temporarily use the intuition in Figure 1.6 to un-
derstand this Hodge diamond, except that the diamond provides a decomposition
of the middle cohomology H1(E0,C), instead of the total cohomology. Actually,
the Hodge diamond of a mixed Hodge structure is depicting its Deligne splitting,
which is discussed in Appendix 1.D.1.

So this is the middle cohomology of a singular algebraic curve. In fact, modern
mathematics and physics tell us that it is unnatural to just study one singular
object on its own. For example, in circle compactification, the dynamics of gravity
could drive the compactification space to jump between singular circle (r = 0) and
a normal circle (r > 0). Hence, it is more natural to assemble the singular space
together with its nearby regular spaces into a family and study them as a whole.
Thus, it would be nice to relate the mixed Hodge structure on H1(E0,C) with some
structure on H1(Eλ,C) when λ is close to 0. This is indeed the case, and the result
is that H1(Eλ,C) also carries a mixed Hodge structure, called the limiting mixed
Hodge structure.

Note that for λ 6= 0, the middle cohomology H1(Eλ,C) is two-dimensional. So
the limiting mixed Hodge structure on H1(Eλ,C) cannot be exactly the same as the
mixed Hodge structure on H1(E0,C). In fact, the limiting mixed Hodge structure
on H1(Eλ,C) can be interpreted as a combination of two mixed Hodge structures,
one of them comes from the singular variety E0, and the other comes from the
open variety that is P1 with two points deleted. See [73, Chapter 1] for a complete
discussion. This geometric picture is shown in Figure 1.10.

The proper way to construct the limiting mixed Hodge structure needs the mon-
odromy data of the family Eλ. Namely, if we go around the singularity λ = 0 in
the local patch ∆∗, then the differential forms e1, e2 will enjoy a monodromy. The
asymptotic Hodge theory [75,76] then produce the limiting mixed Hodge structure
on H1(Eλ,C) by using this monodromy operator. The theory also further modifies
the limiting mixed Hodge structure into something as simple as the mixed Hodge
structure on the total cohomology that is discussed in Section 1.4.1, and make the
modified mixed Hodge structure on H1(Eλ,C) compatible with an sl(2)-algebra
that is constructed out of the monodromy. Thus asymptotic Hodge theory simpli-
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∆∗
λ ∼ 0

×

N

T = eN

Weight 0 + 1

H1(Eλ,C)

Weight 1 + 2

Figure 1.10: The limiting mixed Hodge structure on H1(Eλ,C) with λ ∼ 0 is a combination
of two mixed Hodge structures. The monodromy operator acts on the integral basis e1

and e2 of H1(Eλ,C), and its logarithm N is in analogy to the Λ operator in Figure 1.7.
The weight zero and one part of the limiting mixed Hodge structure encircled by thin
dashed triangle comes from surviving cycle the degenerate torus, and the weight one
and two part encircled by the thin solid triangle comes from the surviving cycle in the
two-punctured sphere. Note that after filling the two punctures in the punctured sphere,
and identifying these two puncture locations in the filled sphere, we get topologically the
pinched torus E0. The filled sphere, remembering the two puncture locations, is called
a normalisation of the pinched torus. See [73, Chapter 1] for a precise discussion about
this picture.

fies the study of degenerations in a family, which is desired in the verification of
swampland conjectures. More discussion on this will be in the next sections.

1.4.4 Using asymptotic Hodge theory in string theory

In this section, we briefly discuss the important results in asymptotic Hodge the-
ory that are applied to the study of swampland conjectures in this thesis. Detailed
mathematical discussion on this topic can be found in [77–80] and [71, Chapter 7].
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For physical applications, see [5, 13, 14, 53, 81–93]. The idea is very simple: many
interesting physical quantities, such as the mass of a physical state, or the scalar
potential of the effective four-dimensional physics, can be expressed into the Hodge
norm or Hodge inner product of certain cohomology classes on the Calabi-Yau man-
ifolds. Asymptotic Hodge theory exactly provides the tools to study these norms
and inner products, by interpreting the cohomology as a mixed Hodge structure
compatible with a representation of commuting sl(2)-triples. One can then get
useful estimates of these physical quantities as the Calabi-Yau degenerates, hence
check some of the swampland conjectures in the context of Calabi-Yau compactifi-
cation.

Singularity in the period and monodromy
First we need to specify the geometric setting. We work with a (complex) N -
dimensional moduli space with singularities. Focusing on one singular locus, we
choose local coordinates zi on the moduli space, such that the singular locus is
at z1 = · · · = zn = 0. In other words, we work in a local neighbourhood of the
singularity of the form

(∆∗)n × ∆N−n , (1.4.14)

where ∆∗ = {0 < |z| < 1} is the punctured disk, and ∆ = {|z| < 1} is the unit disk.
To simplify the discussion, we will now assume n = N . The point is that all the
data computed by asymptotic Hodge theory focuses on the degenerating part, i.e.
the part depending on (∆∗)n. And if n < N , then these data will depend on the
coordinates on ∆N−n real-analytically. We refer to [76, Remarks (4.65) Part (ii)]
for a through discussion.

Around a singularity, we denote the period mapping by Φ(z). We understand it
as an abstract holomorphic mapping

Φ : Moduli space −→ Space of Hodge filtrations , (1.4.15)

so it assigns to each point z the corresponding Hodge filtration Φp(z) on the middle
cohomology of the Calabi-Yau. A special case is the period vector in Calabi-Yau
threefolds, which is understood as Φ3(z). Because of the special geometry on
Calabi-Yau threefold moduli spaces, we can generate lower flags by taking deriva-
tives. Note that the target of this map remembers the Hodge filtrations, instead of
the Hodge decomposition. This is because in this way the map Φ is holomorphic. It
is impossible to get a non-trivial holomorphic period map if the target remembers
the Hodge decomposition.

The point z = 0 corresponds to the singular Calabi-Yau threefold, so the holomor-
phic period mapping develops monodromy around z = 0. Analytic continuation
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around zi = 0 defines a monodromy operator Ti for every i = 1, . . . , n

Φ(z1, . . . , e
2πizi, . . . , zn) = TiΦ(z) . (1.4.16)

It is often useful to not work with the coordinates zi, where the period mapping
is multi-valued because of monodromy. To make this simpler, we work with the
universal covering of (∆∗)n, which is the n-dimensional upper half plane Hn =
{ti = xi + iyi|yi > 0}. The covering map is given by

p : Hn → (∆∗)n

(ti) 7→ (e2πiti = zi) . (1.4.17)

The singularity at zi = 0 is now located at ti → i∞ on the upper half plane. The
period map Φ(z) lifts to a period mapping on the upper half plane Φ(t). We dis-
tinguish these two mapping by their arguments, and without further clarification,
a period mapping Φ always refers to the lifted one. The monodromy property of
the lifted period mapping is characterised by

Φ(t1, . . . , ti + 1, . . . , tn) = TiΦ(t) . (1.4.18)

Lastly, the monodromy operators Ti coming from geometry is always quasi-
unipotent, meaning that there are positive integers m,n such that

(Tmi − 1)n = 0 . (1.4.19)

It can be shown that by a base-change, i.e. twisting the base coordinates z 7→ zk

for some k, the exponent m can always be set to m = 1, and the monodromy is
then unipotent of order n. We assume such a modification is always done. And we
denote the logarithm of the monodromy operators Ti by Ni

Ni = log Ti . (1.4.20)

Because of (1.4.19) with m = 1, the operators Ni are all nilpotent of order n

Nn
i = 0 , for all i . (1.4.21)

Nilpotent orbits and limiting mixed Hodge structures
The period map Φ(t) can be very complicated near the singularity t → i∞. The
nilpotent orbit theorem provides a powerful yet simple approximation of Φ near
the singularity. The theorem produces an important quantity called the limiting
Hodge filtration Flim, which is given by

Flim = lim
t→i∞

e
−
∑

j
tjNj Φ(t) , (1.4.22)
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where Nj is the logarithm of the monodromy operator Ti. It is important to
remark that the limiting Hodge filtration Flim is not a pure Hodge filtration, i.e. if
we define Hp,q

lim = F plim ∩F qlim, then the cohomology does not split into a direct sum
of Hp,q

lim. In fact, the limiting Hodge filtration defines a mixed Hodge structure on
the cohomology. We will come back to this point later.

The nilpotent orbit theorem states that the nilpotent orbit

Ψ(t) = e

∑
j
tjNjFlim (1.4.23)

approximates the original period mapping Φ(t) very well, as t → i∞. Since Flim
is not a pure Hodge filtration in general, while Φ(t) is a pure Hodge filtration,
the theorem also implies that for Im ti large enough, Ψ(t) is again a pure Hodge
filtration. In fact, for any reasonable distance function d measuring the distance
between two Hodge filtrations, there is an estimate

d(Φ(t),Ψ(t)) ≤ K

n∑
j=1

(Im tj)βe−2π Im tj , (1.4.24)

where K and β are positive real numbers. For a complete discussion on the nilpo-
tent orbit theorem, see [76, Section 1].

The most important data one gets out of the nilpotent orbit theorem is that
there is a limiting mixed Hodge structure (Flim, N1, . . . , Nn) constructed out of the
limiting Hodge filtration and the logarithm of the monodromy matrices. The pre-
cise definition of the limiting mixed Hodge structure will be presented in Appendix
1.D.2.

The growth of Hodge norm and inner product
The most important theorem in asymptotic Hodge theory is the sl(2)-orbit theorem
[75, 76]. For our brief introduction to its application in string theory, it suffices to
know that this theorem equips the middle cohomology of Calabi-Yau manifolds
with an R-split mixed Hodge structure that mimics the mixed Hodge structure on
the total cohomology of a Kähler manifold, and it also provides a set of commuting
sl(2)-triples acting on the middle cohomology, whose action plays well with the R-
split mixed Hodge structure.

Let us discuss in the context of Calabi-Yau threefolds for concreteness. Let Y3 be
a Calabi-Yau threefold, and we study its middle cohomology H3. The sl(2)-orbit
theorem tells us that the middle cohomology H3 carries an R-split sl(2)-mixed
Hodge structure, whose Deligne splitting is

H3 =
⊕

0≤p,q≤3

Ip,q , (1.4.25)
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such that Ip,q = Iq,p and the direct sum of subspaces with p+ q = k gives a pure
Hodge structure of weight k = 0, . . . , 6. Moreover, the sl(2)-orbit theorem states
that there are n copies of sl(2)-triples

(Ni, Yi, N+
i ) , i = 1, . . . , n , (1.4.26)

that are mutually commuting and act on the middle cohomology H3. These opera-
tors play well with the sl(2)-mixed Hodge structure. Compared with the situation
in the total cohomology in Section 1.4.1, the neutral operator Yi is like the Y -
operator, which determines the subspaces with pure weights; here Yi diagonalise
on H3, and the eigenvalue runs over l = −3,−2, . . . ,+3, while the eigenspace of
Yi with eigenvalue l is a pure Hodge structure of l + 3,⊕

p+q=l+3

Ip,q is the eigenspace of Y3 with eigenvalue l + 3 .

The Ni operators are like the dual Lefschetz operator Λ, which moves the weight
down by two,

Ni(Ip,q) ⊂ Ip−1,q−1 , (1.4.27)

while the N+
i operators are like the Lefschetz operator L, which moves the weights

up by two,
N+
i (Ip,q) ⊂ Ip+1,q+1 . (1.4.28)

So the middle cohomology H3 becomes an sl(2)n-representation. We can re-
late the commuting sl(2)-operators to useful geometric operators that appear in
Calabi-Yau geometry, and use the link between geometry and the effective four-
dimensional physics to study the swampland conjectures. Among the connections,
let us mention here the most prototypical one, that is the estimate of the Hodge
norm in the limit. For a differential three-form α living in H3, we would like to
know the growth behaviour of

‖α‖2
t =

∫
Y

α ∧ ∗α , (1.4.29)

as the moduli ti → i∞ are pushed towards the limit. Since the particular expression
of this norm depends on the geometry, we have to resort to answering some general
questions, such as whether the norm is vanishing, tending towards a constant, or
blowing up in the limit? Such questions can be answered precisely by the sl(2)-
orbit theorem. The way to do it is simple, once one has the data of the sl(2)-mixed
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Hodge structure, and the commuting sl(2)-triples. Namely, we decompose the
differential form α into the eigenspace of the Yi-operators,

α =
∑

l1,...,ln

αl1,...,ln , (1.4.30)

where
Yiαl1,...,ln = liαl1,...,ln . (1.4.31)

And the Hodge norm estimate [75,76] tells us that

‖αl1,...,ln‖2
t ∼

(
y1

y2

)l1 (y2

y3

)l2
· · ·
(
yn−1

yn

)ln−1

ylnn , (1.4.32)

in the limit ti → i∞, where the f ∼ g symbol means that f and g are bounded by
a constant multiple of each other. Moreover, every eigenspace of Yi with different
labels (l1, . . . , ln) are orthogonal under this estimate, so taking a linear combination
of everything does the job. An example would be an αl1,...,ln with all li < 0, so
that its Hodge norm is vanishing in the limit.

The subspaces Ip,q, and the sl(2)-triples N,Y,N+ are constructed out of the
limiting mixed Hodge structure (Flim, N1, . . . , Nn). The precise construction is
non-trivial, and is briefly reviewed in the Appendices in Chapter 2. For a nice
physical review, see [92, Section 3].

Appendices

1.A Convention
In this appendix we list some conventions adopted in this chapter. We write R3,1

to denote the four-dimensional Minkowski spacetime with signature (−,+,+,+).
We use extensively the language of differential forms, because of its succinctness
and compatibility with the geometric picture. But practical computation often
requires working with local coordinates. On a (pseudo-)Riemannian manifold of
(real) dimension n with metric g, in a local patch U , we write a p-form A ∈ ΩpM (U)
as

A = 1
p!
Aµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (1.A.1)

and the Hodge dual ∗A ∈ Ωn−p
M (U) is defined to be the unique (n − p)-form

satisfying
A ∧ ∗A = 1

p!
Aµ1···µpA

µ1···µp
√

| det g|dx1 ∧ · · · ∧ dxn . (1.A.2)
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In particular,

∗1 =
√

| det g|dx1 ∧ · · · ∧ dxn (1.A.3)

gives the volume form.
Next we list our conventions adopted in regards with the curvatures. The Levi-

Civita connection coefficients are

Γµνρ = 1
2
gµλ(∂νgρλ + ∂ρgλµ − ∂λgνρ) . (1.A.4)

In the moving frame formalism, choosing the natural coordinate basis dxµ ∈ Ω1
M (U)

of one-forms and let ωµν ∈ Ω1
M (U) be the associated connection matrix, then

ωµν = Γµνρdxρ . (1.A.5)

The Riemann curvature tensor is given by

Rµνρσ = ∂ρΓµσν − ∂σΓµρν + ΓµρλΓλσν − ΓµσλΓλρν , (1.A.6)

which corresponds to the curvature matrix Ωµν ∈ Ω2
M (U)

Ωµν = dωµν − ωλν ∧ ωµλ = −1
2
Rµνρσdx

ρ ∧ dxσ . (1.A.7)

Note the extra minus sign at right-most part of this expression. Note also that,
although we write down local expressions of the connection and curvature forms,
they are actually defined on the whole manifold M .

The Ricci curvature tensor and Ricci scalar curvature are then defined by suc-
cessively tracing out indices in the Riemann curvature tensor

Rµν = Rλµλν , and R = gµνRµν . (1.A.8)

Finally, in n-dimensional spacetime, the gravitational interaction strength κn
and Planck mass MP,n are related by

1
κ2
n

= Mn−2
P,n . (1.A.9)

A nice comparison of all different conventions can be found in [19, Appendix A]
and [18, Appendix C].
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1.B Details of 5D compactifications
In this appendix we present some details of the Kaluza-Klein circle compactifica-
tion discussed in Section 1.2.1. The computation is most simply done with Cartan’s
moving frame method/tetrad method. For review, see [94, 95]. For its particular
application to Kaluza-Klein compactification, [96, 97] are some original sources.
In this appendix, we present the necessary steps in the computation. For physi-
cists familiar with the tetrad formalism, the method presented here differs from
the traditional tetrad formalism in that we do not use orthonormal basis along
all directions. In other words, the tetrad formalism is only applied to the extra
dimension.

Let us repeat the metric (1.2.4) here for convenience. Everything with a ˆ, such
as dŝ2, denotes a quantity in the 5D cylinder spacetime. The infinitesimal line
element is given by

dŝ2 = ĝMNdx
MdxN = gµνdx

µdxν + 2r2(x)Aµ(x)dxµdθ + r2(x)dθ2 . (1.B.1)

The cross-term among the dxµ and dθ is particularly unpleasant. The first step
in the calculation is to change basis in the tangent space such that the cross-term
goes away. Our choice of basis eA (A = µ, 4) is

eµ := dxµ , e4 := r(x)(dθ +Aµ(x)dxµ) . (1.B.2)

So the metric becomes

dŝ2 = ĝABe
AeB = gµνdx

µdxν + (e4)2 . (1.B.3)

Next, we need to find out the Levi-Civita connection matrix ω̂AB under the eA

basis. This is done by solving the Cartan structure equations

deA = −ω̂AB ∧ eB ,

dĝAB = ω̂AB + ω̂BA ,
(1.B.4)

where we have lowered the index

ω̂AB := ω̂CAgCB . (1.B.5)

Please pay attention to the position of the contracted indices. The first equation
means that the connection is torsion-free, and the second means that the connection
is compatible with the metric.
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Using the metric (1.B.3) and the choice of eA in (1.B.2), we solve for the connec-
tion matrix ω̂. It is given by

ω̂4
µ = 1

2
rFµνdx

ν + ∂µr

r
e4 ,

ω̂µ4 = −1
2
rFµν dx

ν − ∂µr

r
e4 ,

ω̂µν = ωµν − 1
2
Fµν e

4 ,

(1.B.6)

where Fµν = ∂µAν − ∂νAµ as usual, and ωµν is the connection matrix of the 4D
Levi-Civita connection associated with the metric gµν , so

ωµν = Γµνρdxρ . (1.B.7)

The next step is to compute the anti-symmetric curvature matrix Ω̂AB , which
is defined as

Ω̂AB = dω̂AB + ω̂CA ∧ ω̂BC . (1.B.8)

Please pay attention to the location of the summed indices. Using the expression
for the connection matrix (1.B.6), it is straightforward to compute

Ω̂µν = Ωµν + r2

4
(FµνFρσ + FµρFνσ)dxρ ∧ dxσ

+1
2

(r∇ρFµν + 2Fµν∂ρr − ∂µrFνρ + ∂νrFµρ)dxρ ∧ e4 ,

Ω̂µ4 = 1
2

(∂ρrFµσ + r∂ρFµσ + ∂µrFρσ − rΓλµρFλσ)dxρ ∧ dxσ

+
(

1
r

∇µ∂ρr − r2

4
FλµFλρ

)
dxρ ∧ e4 ,

(1.B.9)

where ∇ is the 4D Levi-Civita connection. The curvature matrix is related to the
Riemannian curvature tensor, expressed under the eA basis, as follows.

Ω̂AB = −1
2
R̂ABCDe

C ∧ cD , (1.B.10)

so that (after antisymmetrisation on the indices C and D) the curvature tensor15

is given by

R̂µνρσ = Rµνρσ − 1
2
r2FµνFρσ − r2

4
(FµρFνσ − FµσFνρ) ,

R̂µνρ4 = −r

2
∇ρFµν − ∂ρrFµν + 1

2
∂µrFνρ − 1

2
∂νrFµρ ,

R̂µ4ρ4 = −1
r

∇µ∂ρr + 1
4
r2FλµFλρ .

(1.B.11)

15To really check that the resulting curvature tensor satisfies the usual symmetries, the Bianchi
identity ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 should be used.
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Contract twice to get the Ricci scalar R̂ and we have finally arrived at

R̂ = R− 2
r

∇µ∇µr − r2

4
FµνF

µν , (1.B.12)

where we have used ∂µr = ∇µr since r is a scalar field. Note that the second
term contributes a total (covariant) derivative under the action integral, so it is
not present in the 4D action (1.2.7) since the spacetime R1,4 is boundary-less.

For the Weyl rescaling, we record the relevant formula below. If gµν = e2Ω(x)g̃µν
in D-dimensions, then their Ricci scalars are related by

R = e−2Ω(R̃− 2(D − 1)∇̃2Ω − (D − 1)(D − 2)∂µΩ∂µΩ) , (1.B.13)

while their Laplacian operators are related by ∇2 = e−2Ω∇̃2.

1.C An example of the N = 2 symplectic formalism
We would like to present a toy example to exemplify the general discussion about
N = 2, D = 4 supergravity in Section 1.2.3. This example is taken from [19, Exer-
cise 20.18]. There is nV = 1 vector multiplet with the complex scalar denoted z =
x+ iy with x, y real scalar fields, so the symplectic vector v(z) = (Z0, Z1,F0,F1)T

consists of four components. The theory is defined by a prepotential

F(Z) = −iZ0Z1 , (1.C.1)

and we choose the so-called special coordinates, which means selecting Z0 = 1, and
Z1 = −iz is a constant multiple of the scalar z. Then the symplectic vector is
given by

v(z) = (Z0, Z1,F0,F1)T = (1,−iz,−z,−i)T , (1.C.2)

where FI = ∂F
∂ZI . Computing the Kähler potential, we get

K(z, z̄) = −i log
(
ZIFI − ZIFI

)
= − log 2(z − z̄) , (1.C.3)

so that the kinetic matrix for the scalar z is

gzz̄ = ∂z∂z̄K = − 1
(z − z̄)2 = 1

4y2 > 0 . (1.C.4)

To compute the gauge kinetic matrix NIJ , we first list the relevant matrices

(FI ,Dı̄FI) =

(
F0 Dz̄F0

F1 Dz̄F1

)
=

(
−z − z

z−z̄
−i i

z−z̄

)
,

(ZJ ,Dı̄Z
J) =

(
Z0 Dz̄Z

0

Z1 Dz̄Z
1

)
=

(
1 1

z−z̄
−iz iz

z−z̄

)
.

(1.C.5)
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And note that det
(
ZJ ,Dı̄Z

J
)

= 2iz
z−z̄ 6= 0 as long as z 6= 0 so it is invertible with

(ZJ ,Dı̄Z
J)−1 =

(
1
2

i
2z

z−z̄
2 − i(z−z̄)

2z

)
. (1.C.6)

Then

(NIJ) = (FI ,Dı̄FI)(ZJ ,Dı̄Z
J)−1 =

(
−z 0
0 1/z

)
. (1.C.7)

Finally, the bosonic action for this theory is given by

S =
∫
R3,1

1
2
R ∗ 1 − 1

4y2 dx ∧ ∗dx− 1
4y2 dy ∧ ∗dy

+y

2
F 0 ∧ ∗F 0 + x

2
F 0 ∧ F 0

+ y

2(x2 + y2)
F 1 ∧ ∗F 1 − x

2(x2 + y2)
F 1 ∧ F 1 .

(1.C.8)

Note that, had one been presented directly with the above action, it would be hard
to observe that it is the bosonic part of a theory with extended supersymmetry.
This demonstrates the effectiveness of the symplectic formalism.

1.D Technicalities about mixed Hodge structures
In this appendix, we list several elementary definitions related to mixed Hodge
structures. If the reader is really interested in using asymptotic Hodge theory, we
strongly recommend learning it from mathematical literatures. Nice review articles
include [77, 79, 80, 98–104]. The books [71, 78, 105] can be useful to consult. If the
reader is addicted to the linear algebraic yoga about filtrations, the papers [106–
110] are definitely worth reading. Finally, the original papers on asymptotic Hodge
theory are [75, 76], and the general estimate of the Hodge norm is independently
developed, without using the multi-variable sl(2)-orbit theorem, in [107].

1.D.1 Mixed Hodge structure and Deligne splitting
We would now state the definition of a mixed Hodge structure. Fixing a rational
vector space VQ, and its complexification VC = VQ ⊗ C, a mixed Hodge structure
(VQ, VC,W, F ) consists of the following data

1. A finite increasing weight filtration W on the rational vector space VQ

0 ⊂ · · · ⊂ W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ VQ , (1.D.1)
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2. A finite decreasing Hodge filtration F on the complex vector space VC

0 ⊂ · · · ⊂ F 1 ⊂ F 0 ⊂ F−1 ⊂ · · · ⊂ VC , (1.D.2)

where an increasing filtration being finite means that Wk = 0 for sufficiently small
k and Wk = VQ for sufficiently large k. Similar notion holds for finite decreasing
filtrations. These data satisfy the condition that, over each graded piece

GrWk := Wk

Wk−1
, (1.D.3)

the induced filtrations
F pGrWk := F p ∩Wk

F p ∩Wk−1
, (1.D.4)

defines a weight k Hodge structure on GrWk , i.e. it satisfies the k-opposed condition

F pGrWk ⊕ F k+1−pGrWk ∼= GrWk , for all p . (1.D.5)

We would like to point out that, in order to support pure Hodge structures on
the graded pieces GrWk , it is necessary to have the increasing filtration Wk defined
over a vector space that is fixed by the complex conjugation, which is the rational
vector space VQ.

It is also possible to replace the rational vector space VQ by a real vector space
VR, or a lattice (Z-module) VZ and the definition goes in parallel with our definition.
In our physical application, we usually have V as cohomologies. So it would be
useful to think VZ, VQ, VR, VC as the (free part of the) integral, rational, real, and
complex cohomologies of a Kähler manifold.

Following [99, Section 2], it is instructive to list some common ranges of indices on
the filtrations that appear in mixed Hodge structures. Let X be a quasi-projective
variety and let V = Hn(X) be the degree n-cohomology , then one has the Hodge
filtration

0 = Fn+1 ⊂ Fn ⊂ · · · ⊂ F 1 ⊂ F 0 = VC . (1.D.6)

Moreover, it is shown by Deligne [106,111] and Schmid [75] (See [79, Section 9] for
historical remarks) that the weight filtration on Hn(X) takes the following form:

• If X if smooth and projective, for example if X is a torus, or a smooth
compact Calabi-Yau manifold, then

0 = Wn−1 ⊂ Wn = Hn(X) , (1.D.7)

so that Hn(X) carries a pure Hodge structure of weight n. This is the familiar
story.
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• If X is projective, but not necessarily smooth, for example if X is a pinched
torus, or a compact degenerate Calabi-Yau manifold where some cycles shrink
to zero, then

0 = W−1 ⊂ W0 ⊂ · · · ⊂ Wn = Hn(X) . (1.D.8)

• If X is smooth, but not necessarily projective, for example if X is a punctured
torus, or an open Calabi-Yau manifold, then

0 = Wn−1 ⊂ Wn ⊂ · · · ⊂ W2n = Hn(X) . (1.D.9)

• If, instead of a single space, we have a family Xt of Kähler manifolds labelled
by t, where for t 6= 0 the Xt is smooth and compact, while t = 0 corresponds
to a singular fibre X0. The limiting mixed Hodge structure on Hn(Xt) with
t ∼ 0 will carry a weight filtration that is a combination of the above types

0 = W−1 ⊂ W0 ⊂ · · · ⊂ W2n = Hn(Xt) . (1.D.10)

This is in fact given by the monodromy weight filtration that will be discussed
later.

It would be useful to have an analogy to the Hodge decomposition for a mixed
Hodge structure, so that one can work directly with a direct sum decomposition
of VC, instead of a filtration. Such a decomposition would look like VC =

⊕
Hp,q,

and satisfy the following property

Wk =
⊕
p+q=k

Hp,q , and F p =
⊕
r≥p

Hr,s , (1.D.11)

where in the second equation, the omitted index s is implicitly summed over its
possible range. In fact, there exists many such splittings, and any such splitting
satisfies

Hp,q = Hq,p mod
⊕

r+s≤p+q−1

Hr,s , (1.D.12)

which generalises the usual property that conjugation exchanges Hp,q and Hq,p

for pure Hodge structures. The above two problems, the non-uniqueness and the
complex conjugation issue, can be both cured by the so called Deligne splitting
[112], [76, Theorem (2.13)], which for clarity is often denoted by VC =

⊕
Ip,q. It

is the unique splitting of a mixed Hodge structure (VQ, VC,W, F ) that satisfies the
properties in (1.D.11) which we reproduce for clarity

Wk =
⊕
p+q=k

Ip,q , and F p =
⊕
r≥p

Ir,s , (1.D.13)
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together with an upgraded conjugation property

Ip,q = Iq,p mod
⊕

r<p,s<q

Ir,s , (1.D.14)

where the expression means that any vector in Ip,q can be written as the conju-
gation of a vector in Iq,p, plus some corrections living in the big direct sum. The
Deligne splitting can be explicitly constructed out of the W and F filtrations by
the following formula [76, Equation (2.12)]

Ip,q = F p∩Wp+q∩(F q∩Wp+q+F q−1 ∩Wp+q−2 +F q−2 ∩Wp+q−3 + · · · ) . (1.D.15)

Please be careful about every symbol in the above equation when applying it.
Note the jump in the levels in the weight filtration between the first term and the
remaining terms in the bracket. We also stress that the subspaces in the bracket
are summed, instead of directly summed, because there might be non-zero overlaps
between different summands. Moreover, we would like to warn the reader that, in
general, the intersection of vector spaces does not distribute over the summation,
so for U, V,W vector spaces,

U ∩ (V +W ) 6= (U ∩ V ) + (U ∩W ) ! (1.D.16)

If the Deligne splitting of a mixed Hodge structure (W,F ) satisfies

Ip,q = Iq,p , (1.D.17)

then the mixed Hodge structure is called R-split. Such mixed Hodge structures
are particularly pleasant to study, because it can be just understood as a direct
sum of a series of pure Hodge structures of different weights, like the mixed Hodge
structure on the total cohomology on a Calabi-Yau threefold discussed in section
1.4.1.

Not all mixed Hodge structures is R-split, but for any mixed Hodge structure
(W,F ), Deligne [112], [76, Proposition (2.20)] constructs an operator δ such that
the modified mixed Hodge structure (W, eiδF ) is R-split.

The works by Schmid [75] and Cattani-Kaplan-Schmid [76] start from the limit-
ing mixed Hodge structures coming from a degenerating variation of Hodge struc-
ture, apply the Deligne δ-construction to make it R-split, and construct another
R-split mixed Hodge structure called the sl(2)-splitting. It is this sl(2)-splitting
that enables one to regard the middle cohomology as a representation of a set of
commuting sl(2)-algebras. There is a simple algebraic way to classify all possible
R-split limiting mixed Hodge structures on the cohomology Hn(X) [113, 114] and
the degeneration patterns among them. This classification will be reviewed and
used in Chapter 2 and 3.
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1.D.2 The limiting mixed Hodge structure
We work in the context of 1.4.4 and let V = Hn(Xt) be the cohomology of the
non-singular Calabi-Yau manifold nearby the singular fibre. The initial data for
the definition of a limiting mixed Hodge structure is the limiting Hodge filtration
Flim defined in Section 1.4.4. Namely, define

Flim = lim
t→i∞

e
−
∑

j
tjNj Φ(t) , (1.D.18)

where Φ is the lifted period mapping, and Nj are the log-monodromy operators.
We assume that a base transformation is already made so that the monodromy
operators are unipotent. The Flim will be the decreasing Hodge F -filtration in the
defining data of a limiting mixed Hodge structure. The next step is to define the
increasing weight W -filtration.

The construction of the W -filtration is purely algebraic. Note that the operators
Nj are actually nilpotent with

Nn
j = 0 , for all j , (1.D.19)

because of the unipotency (1.4.19) with m = 1 of the monodromy operators. Then
the W -filtration is constructed by a theorem of Jacobson–Morosov. The theorem
works as follows. Starting with any nilpotent operator N , satisfying Nn = 0, acting
on a vector space V , there is a unique increasing Jacobson–Morosov filtration W (N)
centred at zero

0 = W (N)−n−1 ⊂ W (N)−n ⊂ · · · ⊂ W (N)n = V , (1.D.20)

such that

N(W (N)k) ⊂ W (N)k−2 , and Nk : GrWk
∼−→ GrW−k , (1.D.21)

for all k, where the latter map is an isomorphism. Recall that GrWk = Wk

Wk−1
.

Coming back to the asymptotic Hodge theory setting, we have a series of nilpo-
tent operators N1, . . . , Nn acting on the cohomology V = Hn(Xt), and it is shown
in [115] that any positive linear combination a1N1 + · · · anNn with a1, . . . , an > 0
is nilpotent of order n, and that the filtration W (a1N1 + · · · + anNn) does not
depend on the choice of a1, . . . , an. So we define the monodromy weight filtration
associated to N1, . . . , Nn by W (N1, . . . , Nn)[−n], where

W (N1, . . . , Nn)[−n]k := W (a1N1 + · · · + anNn)k−n , (1.D.22)
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for all k. The monodromy weight filtration is a shift of the Jacobson–Morosov
filtration by minus the weight of the cohomology n, and its non-trivial indices runs
over k = 0, . . . , 2n, realising the previous discussion around equation (1.D.10).
When the data N1, . . . , Nn is clear from the context, we will also write W (n) for
the long expression W (N1, . . . , Nn)[−n]. Concrete expressions for W (n) in Calabi-
Yau three-folds can be found in equation (2.2.38).

A fundamental result in asymptotic Hodge theory [75, 76] then says that the
filtrations (Flim,W (N1, . . . , Nn)[−n]) defines a limiting mixed Hodge structure on
the cohomology V = Hn(Xt).
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2 Infinite Distance Networks in Field Space
and Charge Orbits

This chapter is based on: T. W. Grimm, C. Li and E. Palti, Infinite
Distance Networks in Field Space and Charge Orbits, JHEP 03
(2019), 016, [arXiv:1811.02571].

In this chapter, we study the swampland distance conjecture for the complex
structure moduli space of Calabi-Yau manifolds. In this context, we uncover sig-
nificant structure within the proposal by showing that there is a rich spectrum
of different infinite distance loci that can be classified by certain topological data
derived from an associated discrete symmetry. We show how this data also deter-
mines the rules for how the different infinite distance loci can intersect and form
an infinite distance network. We study the properties of the intersections in detail
and, in particular, propose an identification of the infinite tower of states near such
intersections in terms of what we term charge orbits. These orbits have the prop-
erty that they are not completely local, but depend on data within a finite patch
around the intersection, thereby forming an initial step towards understanding
global aspects of the distance conjecture in field spaces. Our results follow from a
deep mathematical structure captured by the so-called orbit theorems, which gives
a handle on singularities in the moduli space through mixed Hodge structures, and
is related to a local notion of mirror symmetry thereby allowing us to apply it
also to the large volume setting. These theorems are general and apply far beyond
Calabi-Yau moduli spaces, leading us to propose that similarly the infinite distance
structures we uncover are also more general.

2.1 Introduction
The Swampland Distance Conjecture (SDC), states that infinite distances in mod-
uli space lead to an infinite tower of states becoming massless exponentially fast
in the proper field distance [57]. As reviewed in Section 1.3.1, if we consider two
points in field space P and Q, with a geodesic proper distance between them of
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2 Infinite Distance Networks in Field Space and Charge Orbits

d (P,Q), then upon approaching the point P there should exist an infinite tower
of states with characteristic mass scale m such that

m (P ) ∼ m (Q) e−γd(P,Q) as d (P,Q) → ∞ . (2.1.1)

Here γ is some positive constant which depends on the choice of P and Q but
which is not specified in generality.

The conjecture, as stated in (2.1.1) is rather coarse. It does not say anything
about properties of the tower of states beyond their mass, and in particular, about
what is the overall structure of different infinite distances in the field space. In
order to build up intuition about these questions, and evidence for the conjecture,
it is useful to study large rich classes of field spaces in string theory. In [5] such a
systematic study was initiated for the complex structure moduli space of Calabi-
Yau manifolds in compactifications of type IIB string theory to four dimensions.
We will retain this setting in this chapter.1 The conjecture was shown to hold for
a large class of infinite distances without referring to any specific example. The
reason such a general approach is possible is because infinite distance loci in moduli
space have some very general properties. In particular, they have a discrete set of
data associated to monodromies when circling them, and this data determined the
local form of the moduli space as well as the spectrum of charged states. In this
chapter we will build on these ideas and uncover more of the structure contained in
this discrete data. In terms of the distance conjecture, this structure will ‘resolve’
the infinite distance divergence into a fine classification of different types of infinite
distances, and begin to shed light on how such infinite distance types can intersect
and form a complex network of infinite distance loci. It will also determine how
the towers of states can arise and be inter-related within such a network.

First, we recall the local aspect of the data. The results of [5] showed that infinite
distance loci are singular loci in the moduli space and have an associated discrete
monodromy transformation, denoted by T . This transformation determines the
local geometry of the moduli space. It also picks out an infinite tower of states
where it acts as the transformation moving one step up the tower. This general
picture is illustrated in figure 2.1. The presence of such a universal structure
allowed for a very general analysis and so to proofs of very general results. It
was also proposed that the infinite distance is itself induced by integrating out the
tower of states. In this sense, it is quite natural that the same object T controls
both the tower of states and the infinite distance behaviour.
1See [116,117] for a general analysis of weak gauge coupling limits in compactifications of F-theory
to six-dimensions.
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Figure 2.1: Figure illustrating the relation between the distance conjecture and mon-
odromy. The point P is at infinite distance and the monodromy about it is denoted by
T. The monodromy determines the local singular geometry of the moduli space, which
leads to the exponential behaviour of the mass of the tower of states. The monodromy
also acts on the spectrum of states picking out a specific infinite set of states.

So far we have only considered a single point P at infinite distance. But the
moduli space is a high-dimensional space, and P actually belongs to a continuous
set of points which together form an infinite distance locus. This full locus can
be characterised by discrete data related to T . The locus can also intersect other
similar infinite distance loci. Together, all these loci form a network of infinite
distances. This structure is perhaps best illustrated with an example. In figure
2.2 we present an example field space, the complex structure moduli space of a
particular Calabi-Yau manifold. Each locus of infinite distance in the moduli space
is denoted by a solid line, and the full structure of the network is manifest. The
loci in figure 2.2 are labelled by a type, which (for Calabi-Yau threefolds) can be I,
II, III, or IV. Type I loci are at finite distance in moduli space. Type II, III or IV
loci are at infinite distance and the increasing type denotes a sense of increasingly
strongly divergent distances. In [5] a generic point P on one of the infinite distance
loci was assigned a type inherited from the locus type.2 This was done away from
the intersection points and is in this sense a purely local analysis.

In this chapter we will begin to explore the global structure of the infinite distance
network. The first thing we will introduce is a more refined classification of the

2The notation in [5] is that types I, II, III, IV are labelled by d = 0, 1, 2, 3 respectively.

51



2 Infinite Distance Networks in Field Space and Charge Orbits

I
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Figure 2.2: Figure showing an example field space with multiple infinite distance loci.
The example is the (resolved) complex structure moduli space of the (mirror of the)
two parameter Calabi-Yau P1,1,2,2,2[8] as studied in [118]. Each infinite distance locus is
denoted by a solid line and assigned a type labelled by II, III, or IV. We also show special
finite distance loci with dashed lines, and these are associated to type I. Some well-known
loci are labelled explicitly, the finite distance conifold and orbifold loci, and the infinite
distance large complex-structure point.

infinite distance loci which takes into account important additional data. The type
will now be supplemented by a numerical sub-index, so for example, will take the
form II2. This more refined type can then change, or enhance, at points where
the loci intersect. In figure 2.3 we give a different example of an infinite distance
network where we now focus in on the intersection structure in a particular region.
We see that the loci are assigned a more refined data type and also each intersection
locus has an associated type which may differ from the generic point on the locus.
We will explain what the more refined data captures, and how it can be calculated
from the monodromy T .

The next step will be to understand the distance conjecture when approaching
the intersection points themselves. The whole notion of the nature of the infinite
distance is vastly more complicated at the intersection points. In particular, the
finiteness of the distance itself, as well as the masses of states, become path depen-
dent questions. So whether a state becomes massless or not at the intersection loci
depends on how one approaches them. We will show how to incorporate this path
dependence into the formalism.

The refined discrete data not only gives the properties of the infinite distance loci
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IV1

IV1

IV1
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III0

IV2
IV2

IV1IV1

Figure 2.3: Figure showing an example intersecting network for the (mirror of the) Calabi-
Yau P1,1,1,6,9[18] as studied in [119]. In this case we focus in one a particular region of
the network, within the box, and show the more refined data for each locus including the
sub-index. At the points of intersections the type of a locus can be modified. We show
the types associated to each intersection point in the focused region.

but also the rules for which types of infinite distance loci can intersect each other
and what are the possible types to which they could enhance on the intersection
points. We therefore find rules for what type of infinite distance networks could
be built. These intersection rules have deep mathematics behind them, as initially
developed in [76] and studied recently in [113]. The rules can be expressed in terms
of which types of infinite distance loci can enhance to which types over certain
sub-loci corresponding to intersections. Expressed this way the intersection, or
enhancement, rules for two example classes of networks are shown in figure 2.4.
The example network in figure 2.3 falls into the type h2,1 = 2. One can then readily
check that the enhancement of the locus types at the intersections indeed follows
the general rules.

In [5] the tower of states was identified as generated by an infinite action of the
monodromy matrix T on some BPS state charge. In this chapter we will introduce
a more general notion of such a tower that is associated to the monodromy action,
which we term a charge orbit. A crucial aspect of the charge orbit is that it will
not be associated to a point on an infinite distance locus, but to a patch, which
means that it can capture the structure of intersections. This will therefore form a
first step towards connecting the towers of the different infinite distance loci into a
network. A non-trivial result which we will be able to prove already is that if the
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Figure 2.4: Graphs of allowed type enhancements for field spaces with h2,1 complex fields.
In terms of Calabi-Yau geometries, h2,1 is the associated Hodge number. An arrow
denotes that a starting type of locus may enhance over a sub-locus, corresponding to an
intersection, to the end type. Note that the enhancement relations are not transitive. For
example, in the h2,1 = 2 case, there is a chain of II0 → II1 → IV2 enhancements, but
there is no direct enhancement from II0 to IV2.

type of the infinite distance increases at the intersection, then there is an infinite
charge orbit of states which become massless approaching the locus even away
from the intersection point itself. We call this an inheritance of a charge orbit by
a locus from its intersection point. It is important to note, however, that in [5]
the monodromy induced tower was shown to be populated by BPS states, while
in this chapter we will identify the charge orbit but will be unable to prove that it
is populated by BPS states. Nonetheless, we propose that it indeed captures the
tower of states of the distance conjecture, while leaving a proof in terms of BPS
states for future work.

The chapter is structured as follows. In section 2.2 we introduce the formalism
and underlying theorems which we will use in the chapter. In section 2.3 we show
how the data of the type of infinite distance locus can be used to form a complete
classification of such loci, and how this type can be extracted from the discrete
monodromy. In section 2.4 we utilise these results to define the charge orbits
at intersections of infinite distance loci. We summarise our results, and discuss
extensions and interpretations of them in section 2.5. In the appendix we present
a detailed analysis of some example intersection loci as well as collect some of the
more technical formalism.
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2.2 Monodromy and Orbit Theorems in Calabi-Yau
Moduli Spaces

In this section we introduce, and develop in a way adapted to our needs, the crucial
mathematical theorems and structures associated to so-called orbits. As briefly
discussed in Section 1.4, the central elements are the nilpotent orbit theorem, the
Sl(2)-Orbit theorem and the growth theorems. The theorems lead to a detailed
and powerful description of the moduli space locally around any singular loci.
In particular, we will utilise their multi-variable versions which will allow for a
description of a patch of moduli space that can include intersections of infinite
distance loci.

2.2.1 Complex Structure Moduli Spaces and Monodromy
The focus of this chapter lies on a particular sector of Type II string compacti-
fications on Calabi-Yau threefolds and we will develop the concepts reviewed in
Section 1.2.3 further. More precisely, we will investigate the geometry of the field
space spanned by the scalars in the N = 2 vector multiplets arising in these com-
pactifications. These scalars correspond to complex structure deformations of the
Calabi-Yau threefold in Type IIB string theory and complexified Kähler structure
deformations in Type IIA. Since these two compactifications are deeply linked via
mirror symmetry, it will often suffice to address only one of the two sides. In par-
ticular, it is important to recall that the complex structure side captures the more
general perspective and hence will be the focus for the first part of our exposition.
Later on, we will address aspects of the Kähler structure side by discussing large
volume compactifications.

To begin with, let us denote the complex structure moduli space by Mcs and
introduce the Weil-Petersson metric gWP that arises in the Type IIB string the-
ory comactification. The space Mcs has complex dimension h2,1, where hp,q =
dimC(Hp,q(Y3)) are the Hodge numbers of the Calabi-Yau threefold Y3. In a local
patch we can thus introduce complex coordinates zI , I = 1, . . . , h2,1, which are
called the complex structure moduli. The metric gWP on Mcs is special Kähler
and determined by the complex structure variations of the holomorphic (3, 0)-form
Ω on Y3 [20,21,120]. Its components gIJ̄ = ∂zI∂z̄JK can locally be obtained from
the Kähler potential

K(z, z̄) = − log
[
i
∫
Y3

Ω ∧ Ω̄
]

≡ − log
[
i Π̄IηIJ ΠJ

]
. (2.2.1)
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In the second equality we have expanded Ω into a real integral basis γI , I =
1, . . . , 2h2,1 + 2 spanning H3(Y3,Z). More precisely, we introduced

Ω = ΠI γI , ηIJ = −
∫
Y3

γI ∧ γJ . (2.2.2)

In order to simplify notation we will introduce bold-faced letters to denote coeffi-
cient vectors in the three-form basis γI , i.e.

Π ≡
(
Π1, . . . ,Π2h2,1+2)T

. (2.2.3)

The complex coefficients ΠI can be shown to be holomorphic function and are called
the periods of Ω. Let us stress that zI , ΠI , and γI are adapted to the considered
patch in Mcs and can very non-trivially change when moving to different patches
in Mcs.3

It is important to discuss the possible transformations preserving the above
structure. To begin with, we note that η = (ηIJ ) is an anti-symmetric matrix. It
defines an anti-symmetric bilinear form

S(v, w) ≡ S(v,w) = vT ηw ≡ −
∫
Y3

v ∧ w , (2.2.4)

where v, w are three-forms in H3(Y3,C) and v, w are their coefficient vectors in the
integral basis γI . We will use the notations S(v, w) and S(v,w) interchangeably.
One shows that the group preserving η is the real symplectic group Sp(2h2,1 +2,R)
acting as

MTηM = η , M ∈ Sp(2h2,1 + 2,R) . (2.2.5)

The action of this group thus corresponds to actions on the basis that preserve
S(v,w) = S(Mv,Mw). Crucially, we stress that they do not correspond to a
symmetry of the effective theory, but rather to a choice of frame in which to
consider the fields. The true symmetry of the effective theory is encoded by the
so-called monodromy group Γ ⊂ Sp(2h2,1 + 2), which we will discuss next.

A crucial fact about the complex structure moduli space Mcs is that it is nei-
ther smooth nor compact. It generally admits points at which the Calabi-Yau
manifold becomes singular. These form the so-called discriminant locus. Clearly,
it is non-trivial to show general results about these discriminant loci and we first
3Furthermore, there is the freedom to rescale the whole vector Π with a holomorphic function
f(z), which corresponds to a Kähler transformation of (2.2.1). While one should keep this
freedom in mind, we will not mention it again.
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summarize some of the main abstract results. Later on we will give a more de-
tailed classification of what actually can happen at this locus. Firstly, we note
that the moduli space of smooth Calabi-Yau threefolds is quasi-projective [121],
which roughly implies that as long as one removes a divisor ∆s corresponding to
singular Calabi-Yau manifolds it can be embedded into a projective space. The
discriminant locus ∆s can have a very non-trivial structure, since it will generi-
cally consist of many intersecting components. Crucially the singularities of the
Calabi-Yau manifolds can get worse when moving along ∆s. A cartoon picture of
this is shown in figure 2.5 and we already gave a more realistic description of an
actually occurring moduli space in the introduction, see figures 2.2 and 2.3. It was

Figure 2.5: Two normally intersecting divisors of the discriminant locus ∆. The singularity
of the Calabi-Yau threefold, here depicted as genus-two Riemann surface, worsens at the
intersection.

also shown [121,122] that one can resolve ∆s to ∆ = ∪k∆k such that it consists of
divisors ∆k that intersect normally. This result is crucial to justify the local model
that we employ to describe the individual patches of the moduli space. Hence, in
the following we will always work with the desingularized discriminant locus ∆. It
will also be convenient to introduce a shorthand notation for the intersection of l
divisors we define

∆k1...kl
= ∆k1 ∩ . . . ∩ ∆kl

. (2.2.6)

Another important aspect of the above description of Mcs is the fact that Π
can be understood as being multi-valued and experience monodromies along paths
encircling the divisor components ∆k of ∆. To make this more precise, let us
introduce local coordinates zI , such that the divisor ∆k is given by zk = 0 for some
k ∈ {1, . . . , h2,1}. The intersection of divisors ∆k and ∆l can be parametrized if
one introduces several vanishing local coordinates zk = zl = 0. We encircle ∆k
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by sending zk → e2πizk. In general the periods will non-trivially transform with a
matrix Tk. When defining the monodromy, especially when writing Tk as a matrix,
there is a choice between whether the Tk is defined to act on the homology 3-cycles
or the cohomology 3-forms. Our convention in this chapter is to let the monodromy
act on the integral basis of the 3-forms. Explicitly, with a multi-valued integral
basis of 3-forms chosen to be {γI}, the monodromy operator Tk induced by the
loop zk → e2πizk is defined by

γI(. . . , e2πizk, . . .) = γJ (. . . , zk, . . .) (Tk)J
I , for all I. (2.2.7)

In terms of the period vector Π, under our convention, we have

Π(. . . , e2πizk, . . .) = T−1
k Π(. . . , zk, . . .) . (2.2.8)

The monodromy matrices are shown to be quasi-unipotent [75, 123], i.e. they sat-
isfy an equation of the form (Tm − Id)n+1 = 0 for some positive integers m,n.
Furthermore, the monodromies arising from intersecting divisors ∆k,∆l commute
[Tk, Tl] = 0. This fact remains true for each pair of monodromy matrices if one
considers higher intersections. Collecting all Tk from all components of ∆ one ob-
tains a group Γ known as the monodromy group. It preserves the pairing η, such
that by (2.2.5) we have

Γ ⊂ Sp(2h2,1 + 2,R) . (2.2.9)

More abstractly, the monodromy group can be defined by considering representa-
tions of the fundamental group π1(Mcs) acting on the period vectors. In general,
the elements of Γ will not commute. However, in this chapter we will restrict
ourselves to the commuting monodromies arising at intersections of divisors ∆k.

In the next section we will have a closer look at the singularities occurring along
the ∆k and their intersections. In order to do that it will be important to extract
the unipotent part T (u)

k of each Tk. We define

Nk = 1
mk

log(Tmk

k ) ≡ log
(
T

(u)
k

)
, (2.2.10)

where mk is the smallest integer that satisfies (Tmk

k − Id)nk+1 = 0. This implies
that the Nk are nilpotent, i.e. that there exist integers nk such that

Nnk+1
k = 0 . (2.2.11)

Since each Tk preserves the bilinear form S introduced in (2.2.4), i.e. S(Tk·, Tk·) =
S(·, ·) one finds

S(Nkv,w) = −S(v, Nkw) , (2.2.12)
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and since T (u)
k ∈ Sp(2h2,1 + 2,R) we have Nk ∈ sp(2h2,1 + 2,R), where sp(n,R)

is the Lie algebra of Sp(n,R). The nilpotent elements Nk will be the key players
in much of the following discussion. Therefore, it is convenient to make a base
transformation and pick right away coordinates for which the monodromies are
unipotent. This can be achieved by sending zk → (zk)mk . We should stress that
this implies that we lose information about certain types of singularities, such as
orbifold singularities. We will see below that it is the unipotent part of Tk that
encodes whether or not a point on ∆ is at finite or infinite distance. In fact, one
checks that the above coordinate change does not alter the discussion relevant to
this chapter.

2.2.2 Approximating the periods: Nilpotent orbits
In this section we discuss the first important tool which is used in establishing the
mathematical structure that we will explore throughout this chapter. The gen-
eral important question one wants to address is: Are there simpler functions that
approximate the periods Π introduced in (2.2.2) and capture some of their key fea-
tures? In the following we will introduce a set of such functions known as nilpotent
orbits following [75]. These not only approximate the periods, but also share their
transformation behaviour (2.2.8) under local monodromy transformations. We will
also comment on the importance of nilpotent orbits in the context of variations of
Hodge structures.

To begin with, let us note that the periods Π of Ω are in general very complicated
functions on the moduli space Mcs. This can be already expected from the figure
2.2. Hence, at best one can hope to approximate the Π locally. The nilpotent orbits
approximate Π in a local patch denoted by E containing points of the discriminant
locus ∆. The local patch is chosen to be of the form

E = (D∗)nE × Dh
2,1−nE , (2.2.13)

i.e. a product of punctured disks D∗ = {z ∈ C | 0 < |z| < 1} and unit disks D =
{ζ ∈ C | |ζ| < 1} so that the singular point “lies in the puncture”. In other words,
we approximate the periods near points at the intersection of nE discriminant
divisors ∆i, i = 1, . . . , nE , but away from any further intersection. The introduced
local coordinates zI = (zi, ζκ) parametrize the nE intersecting discriminant divisors
∆i given by zi = 0. The coordinates ζκ parametrize additional complex directions
and do not play an important role in the following discussion. We have introduced
the nilpotent matrices Ni in (2.2.10). It was then shown by Schmid [75] that locally
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around the point P with zi = 0 the periods take the form

Π(z, ζ) = exp
[ nE∑
j=1

− 1
2πi (log zj)Nj

]
A(z, ζ) , (2.2.14)

≡ exp
[ nE∑
j=1

−tjNj
]
A
(
e2πit, ζ

)
,

with A being holomorphic in zi, ζκ near P . Here we have also expressed the result
in the coordinates

tj ≡ xj + i yj = 1
2πi log zj . (2.2.15)

This implies that crucial information about the singular behaviour of the periods
Π near the point P is in the matrices Nj . Furthermore, the second essential
information is the leading term in the vector A(z, ζ). Since it is holomorphic it
admits an expansion

A(z, ζ) = a0(ζ) + aj(ζ)zj + ajl(ζ)zjzl + ajlm(ζ)zjzlzm + . . . , (2.2.16)

with the a0(ζ), aj(ζ) , . . . being holomorphic functions of ζκ. The nilpotent orbit
theorem underlies the statement (2.2.14). Namely, it establishes the fact that the
periods Π are well-approximated by the nilpotent orbit

Πnil = exp
[ nE∑
j=1

− 1
2πi (log zj)Nj

]
a0(ζ) ≡ exp

[ nE∑
j=1

−tjNj
]
a0(ζ) , (2.2.17)

where an estimate how well the orbit (2.2.17) approximates the actual period Π
was given in [75] and [76]. We stress that the nilpotent orbit drops the exponential
corrections in the coordinates t, i.e.

Π(t, ζ) = exp
[∑nE

j=1
− tjNj

](
a0(ζ)︸ ︷︷ ︸

nilpotent orbit Πnil

+O(e2πit)
)
. (2.2.18)

This result is crucial, for example, in evaluating the leading form of the Kähler
potential (2.2.1).

Having defined the nilpotent orbit, one immediately sees that it shares the trans-
formation behaviour of the periods under the shifts ti → ti − δik, i.e.

Πnil(. . . , tk − 1, . . .) = eNk Πnil(. . . , tk, . . .) = T
(u)
k Πnil(. . . , tk, . . .) . (2.2.19)

Here we stress again that Nk defined via (2.2.10) only captures the unipotent part
of the monodromy transformation, which is the only relevant part since we assume
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2.2 Monodromy and Orbit Theorems in Calabi-Yau Moduli Spaces

a coordinate transformation tk → mkt
k as at the end of subsection 2.2.1 have been

performed.
Let us close this section by recalling some basic facts about Hodge structures

and Hodge filtrations and their relation to nilpotent orbit. Recall, that the third
cohomology group splits for a given complex structure as

H3(Y3,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 . (2.2.20)

This (p, q)-split for a smooth geometry Y3 defines a so-called pure Hodge structure
of weight 3 (see appendix 2.A, for some additional details). The changes of this
split as one moves in complex structure moduli space are captured by the study
of variations of Hodge structures. In order to make this more explicit, we first
combine the Hp,q as

F 3 = H3,0 , F 2 = H3,0 ⊕H2,1 ,

F 1 = H3,0 ⊕H2,1 ⊕H1,2 , F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 .
(2.2.21)

These complex spaces vary holomorphically with the complex structure moduli zI .
Introducing a flat connection ∇I ≡ ∇∂/∂zI , known as the Gauss-Manin connection,
one has ∇IF

p ⊂ F p−1. For Calabi-Yau threefolds one furthermore finds that all
elements of the lower F p, p < 3 are obtained as derivatives of F 3 spanned by the
holomorphic (3, 0)-form. Roughly speaking this implies that all information about
the filtration F ≡ (F 3, F 2, F 1, F 0) is encoded by Ω.

Since the periods of Ω are approximated by the nilpotent orbit given in (2.2.17),
we can also obtain a filtration by taking derivatives of Πnil when Πnil is represented
in a flat frame. Concretely, we evaluate

Πnil
∂ti−−−−−→ NiΠnil

∂tj−−−−−→ NiNjΠnil → . . . , (2.2.22)

and note that the derivatives with respect to ζκ are encoded by ∇κa0,∇κ∇λa0,

etc. Due to the nilpotent orbit theorem the derivatives of Πnil approximate the
elements in spaces F 2, F 1, F 0 up to corrections proportional to zj = e2πitj . Clearly,
when moving to the points on ∆ by sending ti → i∞ the elements (2.2.22) are
singular. However, this singularity arises in Πnil and all its derivatives only via the
exponential prefactor exp(

∑
i t
iNi). As we discuss in the next subsection, we can

characterize singularities after dropping the singular prefactor, e.g. by replacing
(2.2.22) with

a0 −−−→ Nia0 −−−→ NiNja0 → . . . , (2.2.23)

and considering in the ζκ-directions the derivatives ∇κa0,∇λa0, etc. The limiting
Hodge filtrations F p∆ spanned by these vectors will be discussed in more detail in
the next subsection.
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2.2.3 Characterizing Singularities in Calabi-Yau Threefolds

We now have a closer look at the arising singularities at the divisors ∆i and their
intersections. In subsections 2.3.1 and 2.3.2 we summarize a recent classification
of singularities and allowed enhancements carried out in [113]. This chapter builds
on many important and deep mathematical results about so-called limiting mixed
Hodge structures. This subsection aims to give the reader a somewhat condensed
summary of the underlying mathematical tools with some additional details de-
ferred to appendix 2.A.

The basic object that one associates to the points on ∆ is a limiting mixed
Hodge structure. For our purposes, rather then introducing in detail the con-
cept of a mixed Hodge structure, it turns out to be useful to directly work with
the so-called Deligne splitting. We will introduce this splitting in the following.
Roughly speaking it captures a finer split Ip,q, p, q = 0, . . . , 3 of the third coho-
mology group H3(Y3,C) as one moves to a singularity of Y3. In other words the
(p, q)-split (2.2.20) for a smooth geometry Y3 splits into this finer Deligne splitting
schematically depicted as

(H3,0, H2,1, H1,2, H0,3) move to ∆−−−−−−−−→

I3,3

I3,2 I2,3

I3,1 I2,2 I1,3

I3,0 I2,1 I1,2 I0,3

I2,0 I1,1 I0,2

I1,0 I0,1

I0,0

.

(2.2.24)
To introduce this splitting we follow the filtration F ≡ (F 3, F 2, F 1, F 0) given in
(2.2.21) to a point in ∆. As pointed out already in the previous subsection the
form will become singular in this limit. However, we can remove these singularities
as we discuss in the following.

We begin our consideration with the simplest situation, namely consider points
on a divisor ∆1 that are not elements of any other ∆l, i.e. we are away from any
intersection locus ∆1l = ∆1 ∩ ∆l. We denote this set of points by ∆◦

1, generally
setting

∆◦
k = ∆k −

⋃
l 6=k

∆kl . (2.2.25)

To reach the locus ∆1 we have to send z1 → 0, which by (2.2.15) is equivalent to
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t1 → i∞. For points on ∆◦
1 one shows that

F p(∆◦
1) = lim

t1→i∞
exp

[
−t1N1

]
F p , (2.2.26)

is well-behaved. In this expression we let Nk act on the basis γI in which all
elements of F p can be expanded. Clearly, F p(∆◦

1) is defined on ∆◦
1 and still depends

homomorphically on the other h2,1 − 1 complex structure moduli.
Let us next move towards the intersection of ∆1 with another divisor, say ∆2

in ∆, i.e. let us consider the surface ∆12 = ∆1 ∩ ∆2. This requires to send both
z1, z2 → 0 or t1, t2 → i∞ and one shows that the spaces F p(∆◦

1) are also not
generally well-behaved in this limit. To remedy this problem, we consider the
locus ∆◦

12, generally defining defined as

∆◦
kl = ∆kl −

⋃
m 6=k,l

∆klm . (2.2.27)

Hence, ∆◦
12 consists of points on ∆12 away from any further intersection. On this

locus one considers

F p(∆◦
12) = lim

t1,t2→i∞
exp

[
−t1N1 − t2N2

]
F p . (2.2.28)

The F p(∆◦
12) now depend on the remaining h2,1 − 2 coordinates and are non-

singular. We have depicted the assignment of the F p(∆◦
1) and F p(∆◦

12) to the
points in ∆ in figure 2.6. From this discussion it should be clear that one can
proceed in a similar fashion for higher intersections.

F p(∆◦
12)

F p(∆◦
1)

∆1

∆2

Figure 2.6: Association of a limiting F p to the points on the discriminant locus.

Let us now turn to the finer split arising at the points of the discriminate locus
∆. This is known as the Deligne splitting and encoded by complex vector spaces
Ir,s with r+ s ∈ {0, . . . , 6}. The data defining the splitting at each point of ∆ are
a limiting F p, such as F p(∆◦

1) and F p(∆◦
12) introduced in (2.2.26) and (2.2.28),
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and an associated nilpotent matrix. The simplest case are again points that are
on ∆◦

1 defined in (2.2.25). The associated nilpotent element is simply N1. In other
words, one associates

(F (∆◦
1), N1) 7→ {Ip,q(∆◦

1)}p,q=0,...,3 , (2.2.29)

where we denote F (∆◦
1) ≡ (F 3(∆◦

1), . . . , F 0(∆◦
1)) More involved are points that lie

on the intersection locus ∆◦
12 of two divisors, since here the immediate question for

the associated nilpotent matrix arises. It turns out [75] that one is actually free to
choose any N12 in the cone

σ(N1, N2) = {a1N1 + a2N2 | ai > 0} . (2.2.30)

It is crucial to note that each choice of a1, a2 in (2.2.30) yields the same Ip,q(∆◦
12)

and we can pick the most convenient combination, such as N1 +N2. In summary,
at the intersection ∆◦

12 and away from any further intersection, one associates

(F (∆◦
12), N1 +N2) 7→ {Ip,q(∆◦

12)}p,q=0,...,3 . (2.2.31)

It should be clear how to generalize this discussion to even higher intersection loci
∆k1...kl

introduced in (2.2.6). The associated nilpotent element are now elements
of the cone

σ(Nk1 , . . . , Nkl
) = {ak1Nk1 + . . .+ akl

Nkl
| ai > 0} . (2.2.32)

For example, let us consider the intersection of ∆i, i = 1, . . . , l, away from any
further intersection and denote this space by ∆◦

1...l. By an appropriate relabelling
this is the general situation. The limiting Hodge filtration for points on such
intersections are given by

F p(∆◦
1...l) = lim

t1,...,tl→i∞
exp

[
−
∑l
i=1 t

iNi

]
F p . (2.2.33)

Then the map to the Deligne splitting is

(F (∆◦
1...l), N(l)) 7→ {Ip,q(∆◦

1...l)}p,q=0,...,3 . (2.2.34)

Here N(l) is an element of (2.2.32) and we have chosen a simple representative by
picking

N(l) =
l∑
i=1

Ni . (2.2.35)
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This also allows us to introduce a notation which will be used throughout the
chapter, namely that an index (l) in brackets on a matrix indicates that we add
the first l elements of an ordered set, i.e. (N1, . . . , Nl, . . .). Indeed, we will often
denote (2.2.34) this way

Ip,q(l) ≡ Ip,q(∆◦
1...l) . (2.2.36)

With this information at hand we are now in the position to introduce the Deligne
splitting Ip,q and discuss its properties. To keep the notation simple we will study
the map

(F∆, N) 7→ {Ip,q}p,q=0,...,3 , (2.2.37)

with F∆ = (F 3
∆, . . . , F

0
∆). The F p∆ is the limiting F p and the N stands for the

nilpotent element associated to the considered point on ∆. In other words (2.2.37)
can correspond to the cases (2.2.29) and (2.2.31) or any higher intersection. In order
to define the Ip,q we first note that there is a natural set of vector spaces associated
to a nilpotent N known as the monodromy filtration Wi, i = 0, . . . , 6 . The most
natural spaces associated to a given N acting on H3(Y3,C) are constructed from
the images ImNp and kernels KerNq. These allow us to define

W6 = V,

∪
W5 = KerN3,

∪
W4 = KerN2 + ImN,

∪
W3 = KerN + ImN ∩ KerN2,

∪
W2 = ImN ∩ KerN + ImN2,

∪
W1 = ImN2 ∩ KerN,
∪
W0 = ImN3.

(2.2.38)

The properties of the so-defined Wi will be discussed in more detail in appendix
2.A. It is a crucial fact that this filtration Wi associated to higher intersections does
not depend on the precise element chosen among the

∑
i aiNi with ai > 0 [115].

For example, on ∆◦
12, the associated spaces W do not depend on which element

N12 in (2.2.30) one picks.
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We now have all the required information to define the Deligne splitting

Ip,q = F p∆ ∩Wp+q ∩
(
F̄ q∆ ∩Wp+q +

∑
j≥1

F̄ q−j
∆ ∩Wp+q−j−1

)
. (2.2.39)

At first, this definition looks rather involved and somewhat arbitrary. However, it
has many remarkable features, such as being the unique definition satisfying

F p∆ =
⊕
r≥p

⊕
s

Ir,s , Wl =
⊕
p+q≤l

Ip,q , Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s .

(2.2.40)
While the details of this definition are important in our explicit constructions,
within this section it often suffices to view Ip,q as spaces obtained from F p∆, N and
use the features that we will discuss next. Let us note that it is often convenient
to use the shorthand notation (F,W ) to summarize the relevant data for the map
(2.2.39). Here F is a vector containing the spaces F 3, . . . , F 0 relevant at the point
in ∆, and W is the weight filtration relevant at this point. This data (F,W )
also determines a limiting mixed Hodge structure as described in appendix 2.A.
However, it will be more convenient in the following to work with the Deligne
splitting.

As a first important property of (2.2.39) one checks that the spaces indeed define
a splitting of the total vector space. In fact, at any point of ∆ one needs to replace
the split (2.2.20) by

H3(Y3,C) =
3⊕

p,q=0
Ip,q , (2.2.41)

where we remind the reader that the Ip,q crucially depend on the location of the
point, as indicated in (2.2.29) and (2.2.31). One of the most important features
of the Deligne splitting arises from the fact that N acts as NF p∆ ⊂ F p−1

∆ and
NWi ⊂ Wi−2. Applied to (2.2.39) we find

NIp,q ⊂ Ip−1,q−1 . (2.2.42)

We note that this does not mean that the whole lower (p, q)-spaces are obtained
by acting with N . In fact, there is a natural way to split each Ip,q into a primitive
part P p,q that is not obtained by acting with N on a (p + i, q + i)-element and a
non-primitive part. Explicitly one defines the primitive parts to be

P p,q = Ip,q ∩ KerNp+q−2 . (2.2.43)

Clearly, the primitive part P p,q of Ip,q contains the core information in the Deligne
splitting, since all other elements are obtained by the action of Nk. One shows
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that
Ip,q =

⊕
i≥0

N i(P p+i,q+i) . (2.2.44)

The primitive elements satisfy another remarkable feature, namely, their norm is
positive and non-vanishing for non-vanishing elements. More explicitly, one has

S(P p,q, N lP r,s) = 0 for p+ q = r + s = l + 3 and (p, q) 6= (s, r),(2.2.45)
ip−qS(v,Np+q−3v̄) > 0 for v ∈ P p,q , v 6= 0 , (2.2.46)

where we use the bilinear form introduced in (2.2.4). These properties give us a
powerful tool to analyse positivity and vanishing properties of forms at ∆. As we
will discuss in the next subsection they are actually key in systematically classifying
the allowed singularities and enhancement patterns.

In summary, we have now explained the following picture. As we change the
complex structure moduli from a smooth Calabi-Yau threefold to a singular three-
fold on the discriminant locus on ∆, we need to replace the splitting of H3(Y3,C)
as in (2.2.24) with the Ip,q defined via (2.2.39) or (2.2.40). The occurring splits
characterize the singularity at P ∈ ∆. In subsection 2.3.1 we will focus in detail on
such splits and explain how these can be classified systematically for Calabi-Yau
threefolds.

From the above construction it is clear that the precise form of Ip,q depends on
the considered point on ∆ and will generally differ for points, for example, on ∆◦

1
and points on the intersection ∆◦

12. This implies that we could also move from a
generic point on ∆◦

1 to the intersection locus ∆◦
12. In this case we expect that the

Ip,q(∆◦
1) change to the Ip,q(∆◦

12). We write this as

Ip,q(∆◦
1) −→ Ip,q(∆◦

12) , (2.2.47)

with an arrow indicating the enhancement direction. It is crucial in this step to
ensure that the polarization conditions (2.2.45), (2.2.46) are transmitted correctly,
which in fact imposes severe constraints on the form of the enhancement. As
stressed in the introduction it is crucial for us not only to classify all the allowed
splittings Ip,q, but also all the allowed enhancement. This formidable task was
carried out in [113] and will be the subject of the next two subsections.

2.2.4 Commuting sl(2)s and the Sl(2)-orbit
While the nilpotent orbits are useful, for example, in approximating the periods
they are, in general, not a simple representation encoding the information about
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the asymptotic limit when approaching ∆. However, there is a foundational result
of Cattani, Kaplan, and Schmid [76], which shows that there is asymptotically a
special representation of the data contained in the nilpotent orbit (2.2.17). Roughly
speaking, one is able to replace (Ni,a0) with (N−

i , ã0) such that the N−
i are part

of commuting sl(2,C) algebras and ã0 splits into subvectors affected by the action
of these sl(2,C). In this representation many of the asymptotic properties of the
setting are rather easy to show and can then be translated back into the represen-
tation (Ni,a0). For example, the growth properties of the Hodge norm discussed
in subsection 2.2.5 are proved in this way. For us the existence of the commuting
sl(2,C) algebras will be of crucial importance when constructing the infinite charge
orbit relevant for the Swampland Distance Conjecture as we describe in detail in
section 2.4.

We begin our exposition by introducing the commuting sl(2,C) algebras in more
detail and introduce the steps required to explicitly construct them. In order to
do that we consider a local patch E of the complex structure moduli space that
intersects nE discriminant divisors ∆i, i = 1, . . . , nE , which non-trivially intersect
each other. In other words, we assume that the highest intersection in E is ∆1...nE

which is obtained by intersecting all nE divisors. Clearly, all other intersections of
a smaller number of ∆i can also be considered. As usual we denote the monodromy
logarithms associated to ∆i by Ni. Crucially, we will choose an ordering of the Ni:
(N1, . . . , NnE ), and all the results presented below will depend on this ordering.
Clearly, one still is free to pick any other ordering, but then has to adjust the
statements below accordingly. Furthermore, we will assume that the patch E is
chosen such that the nilpotent orbit

Πnil = exp
[ nE∑
j=1

−tjNj
]
a(nE )

0 , (2.2.48)

approximates the periods in E . Starting from this data we want to construct as-
sociated commuting sl(2,C) algebras. Each of these algebras sl(2,C)i is generated
by three elements, and we denote these triples by

commuting sl(2,C)i triple: (N−
i , N

+
i , Yi) . (2.2.49)

These elements satisfy the standard sl(2)-commutation relations [Yi, N±
i ] = ±2N±

i

and [N+
i , N

−
i ] = Yi. Furthermore, the triples are pairwise commuting, i.e. all

elements in the ith triple commute with all elements of the jth triple for i 6= j.
Together these triples define a Lie algebra homomorphism

ρ∗ :
⊕
i

sl(2,C)i −→ sp(2h2,1 + 2,C) , (2.2.50)
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where ρ gives the map of the corresponding Lie groups. The Sl(2)-orbit theorem
of [76] states the properties of the triples in relation to a given nilpotent orbit.

Given a nilpotent orbit (2.2.48) around the highest intersection ∆1...nE one can
read off the filtrations (F∆,W ) with F p∆ defined in (2.2.33) and Wi(N(nE )) discussed
in (2.2.38). Here we recall that the Wi are induced by N(nE ) =

∑nE
i=1 Ni or any

other positive linear combination of the Ni. The corresponding Deligne splitting
Ip,q(∆1...nE ) is determined via (2.2.39) or (2.2.40). A splitting Ip,q is called R-split,
if it obeys

Ip,q = Iq,p, for all p, q . (2.2.51)

It is crucial that the limiting F p∆ do not generally induce an R-split Deligne split-
ting. The SL(2)-orbit theorem of [76]4 remedies this problem by assigning two
matrices δ, ζ and a Hodge filtration F̂ = eζe−iδF to (F,W ) such that the new
Deligne splitting Ĩp,q derived from (F̂ ,W ) is R-split. This new structure (F̂ ,W )
is called the Sl(2)-splitting of (F,W ). We will review its construction in appendix
2.B. The Sl(2)-splitting is central to the construction of commuting sl(2)-triples as
we discuss in appendix 2.C. In particular, both are linked via the relation

Y(k) Ĩ
p,q(∆◦

1...k) = (p+ q − 3) Ĩp,q(∆◦
1...k) , (2.2.52)

where Y(k) = Y1 + . . .+Yk and Ĩp,q(∆◦
1...k) is the Sl(2)-splitting associated to ∆◦

1...k.
Note that for Calabi-Yau threefolds we have discussed after (2.2.22) that all

information contained in F p∆ can be inferred from a0 and its ζκ-derivatives and the
nilpotent elements. Hence, the existence of an Sl(2)-splitting can be reformulated
to the statement that there exists a special

ã0 = eζe−iδa0 . (2.2.53)

The ã0 for the highest point of intersection ∆1...nE will serve as a starting point
for the construction of the sl(2)-triples (2.2.49). Let us denote this by

ã(nE )
0 ≡ ã0(∆◦

1...nE
) . (2.2.54)

One then constructs the ã0 relevant at the lower intersections stepwise as we sum-
marize in appendix 2.C. The crucial point for our later discussion is the fact that the
initial step for constructing the commuting Sl(2)-triples always requires to start at
the highest intersection. The ã(nP )

0 ≡ ã0(∆◦
1...nP

) relevant for a point P ∈ ∆◦
1...nP

4More precisely Proposition 2.20 and Theorem 3.25 of [76].
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is given by [76] 5

ã(nP )
0 = exp

(
−iN−

nP +1
)

ã(nP +1)
0 = . . . = exp

(
−i
∑nE
i=nP +1 N

−
i

)
ã(nE )

0 . (2.2.55)

This implies that considering such a point P on a lower intersection also the data
of the highest intersection ∆◦

1...nE
is relevant. This non-local information will be

crucial in section 2.4 when constructing an infinite charge orbit. An explicit con-
struction of the triples (N−

i , N
+
i , Yi) for a two-parameter example is presented in

appendix 2.D.
Another important statement of the Sl(2)-orbit theorem is that the nilpotent

orbit can be written in terms of yet another orbit, namely the Sl(2)-orbit ΠSl(2).
However, in contrast to the above discussion of the nilpotent orbit approximating
the periods, the Sl(2)-orbit should be viewed as an alternative description capturing
the main structure of the limiting variation of Hodge structure. Explicitly the
relation between the nilpotent orbits and the Sl(2)-orbit are given by

Πnil ≡ exp
[ nE∑
j=1

−tjNj
]
a0(ζ) = exp

[ nE∑
j=1

−xjNj
]

·M(y) · ΠSl(2) (2.2.56)

where the Sl(2)-orbit is given by

ΠSl(2) ≡ exp
[ nE∑
j=1

−i yjN−
j

]
ã(nE )

0 (ζ) , (2.2.57)

and we recall the notation ti = xi + iyi. It is crucial here to introduce the yi-
dependent matrix M(y). The Sl(2)-orbit theorem states that M(y) can be written
as

M(y) =
1∏

r=n
gr

(
y1

yr+1 , . . . ,
yr

yr+1

)
, (2.2.58)

where gr(y1, . . . , yr) are Sp(2h2,1 + 2,R)-valued functions. Furthermore, functions
gr(y1, . . . , yr) and g−1

r (y1, . . . , yr) have power-series expansions in non-positive
powers of y1/y2, y2/y3, . . . , yr with constant term 1 and convergent in a region

R̂1...r =
{
y1

y2 > λ ,
y2

y3 > λ , . . . , yr > λ

}
, (2.2.59)

for some λ > 0. In other words, writing Πnil in terms of an Sl(2)-orbit ΠSl(2)

depends on the considered region R̂1...r in moduli space. Of course, we can always
5Note that there is an additional minus sign in the exponent compared to (4.56) of [76]. This
arises from the fact that we let N−

i act on the coefficients in an integer basis, rather then the
basis itself.
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reorder the yi sending yi → yσ(i) to be in a region R̂σ(1)...σ(r) that satisfies the
above conditions. This implies that the Sl(2)-orbit will then be adapted to this
ordering.

2.2.5 Growth of the Hodge norm
In this subsection we introduce an important result that follows from the corre-
spondence between nilpotent orbits and commuting Sl(2)s. Namely, we discuss the
asymptotic behaviour of the Hodge norm of general three-forms near the discrimi-
nant locus ∆. The Hodge norm on a smooth space Y3 is defined as

||v||2 ≡ ||v||2 =
∫
Y3

v ∧ ∗v̄ ≡ S(Cv, v̄) , (2.2.60)

where v is a complex 3-form, ∗ is the Hodge star operator, and v are the components
of v in the integral basis γI . In the pure Hodge decomposition (2.2.20) the Hodge
operator acts as ∗v = ip−qv for v ∈ Hp,q(Y3). Let us note that the Hodge norm
can also be written in terms of the bilinear form S defined in (2.2.4) and the Weil
operator C. The Weil operator acts as ip−q on (p, q)-forms and is used in [75, 76].
The definition (2.2.60) implies, for example, that the Hodge norm of the unique
(3, 0)-form Ω on Y3 is given by

||Ω||2 ≡ ||Π||2 = i
∫
Y3

Ω ∧ Ω̄ = e−K , (2.2.61)

where we have expressed the result using the Kähler potential (2.2.1) on the com-
plex structure moduli space.

Extracting the behaviour of ||v||2 when approaching a point on ∆ is, of course, a
very non-trivial task. In fact, at first, it seems impossible that this can be done at
all, since it appears to be a highly path-dependent question. To highlight this point
further, let us consider a two-dimensional moduli space, locally parameterized by
two coordinates z1, z2. We consider two divisors ∆1 and ∆2 intersecting in a
point (see also subsection 2.2.3). Clearly an intersection point P = ∆1 ∩ ∆2 can
be approached on many different paths, as indicated in figure 2.7. Recalling the
discussion of subsection 2.3.3 the points on ∆◦

1 and ∆◦
2 can be at finite or infinite

distance, and one expects that the growth of the norm ||v||2 can differ greatly
when approaching a finite or an infinite distance point. Considering, for example,
||Ω||2 the growth of the Hodge norm corresponds to the growth of the Kähler
potential which clearly is connected to the distance of the point. The issue becomes
particularly eminent when P is at this intersection of divisors with ∆◦

1 of type I and
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2 Infinite Distance Networks in Field Space and Charge Orbits

∆◦
2 of type IV, i.e. using (2.3.11) one at finite distance and one at infinite distance.

The growth of the Hodge norm along the paths in figure 2.7 then should differ
significantly. Remarkably, the growth theorem proven in [76] takes into account
this path dependence and nevertheless gives a universal result. We present this
results for v being a flat section under the Gauss-Manin connection ∇ briefly
discussed at the end of subsection 2.2.2 and briefly comment on generalizations in
(2.2.74).

To begin with let us state the growth theorem for the case that we consider points
at a single divisor ∆◦

1 at t1 = i∞, i.e. a point on ∆1 away from any intersection.
We consider a three-form v that satisfies

v ∈ Wj(N1) , Wj(N1) =
⊕
p+q≤j

Ip,q(∆◦
1) , (2.2.62)

where we recalled that Wj , defined in (2.2.38), can be decomposed into the Deligne
splitting Ip,q associated to the locus ∆◦

1 (see (2.2.40)). Here j is corresponding to
the smallest value 0, 1, . . . , 6 such that (2.2.62) holds. This is relevant due to the
fact that we have Wj+1 ⊂ Wj . Then the growth theorem [75] states, that for
Im t1 > λ and Re t1 < δ, with λ, δ being sufficiently large constants, one finds the
dominant growth

||v||2 ∼ c (Im t1)j−3 , c > 0 . (2.2.63)

Here and below the ∼ indicates that there are generally terms that grow slower than
this leading term. In particular, one can have terms proportional to (Im t1)j−3−k

for k > 0 or exponentially suppressed terms proportional to e−Im t1 . Clearly, in
this one-parameter case, path dependence is not an issue.

Let us next consider the two-parameter situation, i.e. we consider a point P on
the intersection of ∆1 and ∆2, located at t1 = i∞ and t2 = i∞, but away from
any further intersection within ∆. Then the growth theorem depends on the path
taken towards the point P at t1 = t2 = i∞. We can think of this as corresponding
to the two ways we can reach the singularity type at point P . Namely, we can first
enhance to the singularity at ∆◦

1 and then move to ∆◦
12 or we can first enhance to

the singularity at ∆◦
2 and then to ∆◦

12. This corresponds to paths 1 and 3 in figure
2.7. The relevant nilpotent elements are then

(1) ∆◦
1 → ∆◦

12 : (N1, N1 +N2) , (2.2.64)
(2) ∆◦

2 → ∆◦
12 : (N2, N1 +N2) .

Let us start with the case (1) and consider a three-form v satisfying

v ∈ Wl1(N1) ∩Wl2(N1 +N2) , (2.2.65)
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where Wl1(N1) can be split as in (2.2.62), while Wl2(N1 + N2) is associated to
N1 + N2 and hence splits into the Deligne splitting on ∆◦

12 as Wl2(N1 + N2) =⊕
p+q≤l2 I

p,q(∆◦
12). Note that here l1 and l2 are the lowest values for which (2.2.65)

is satisfied. The growth theorem of [76] now states that this v has the leading
growth

||v||2 ∼ c

(
Im t1

Im t2

)l1−3

(Im t2)l2−3 , c > 0 , (2.2.66)

when approaching the intersection point t1 = t2 = i∞. In order for this to be true,
however, one has to restrict to paths in the region

R12 =
{

Im t1

Im t2
> λ , Im t2 > λ

}
, (2.2.67)

for any constant λ > 0 and demand that Re t1,Re t2 are bounded by some con-
stant. We will denote such a restriction as a growth sector, so that all paths in
R12 are in the same growth sector. We have depicted this condition in figure 2.7.
Let us stress that the growth in (2.2.66) is polynomial as long as l1 ≤ l2. This will
always happen, for example, for the growth of the Kähler potential e−K as we will
see below.

Clearly, in order to discuss the case (2) we simply have to exchange N1 and N2

and t1 and t2 in all formulas. One thus finds that for

v ∈ Wl1(N2) ∩Wl2(N1 +N2) , (2.2.68)

one has the leading growth of the Hodge norm

||v||2 ∼ c

(
Im t2

Im t1

)l1−3

(Im t1)l2−3 in R21 =
{

Im t2

Im t1
> λ , Im t1 > λ

}
,

(2.2.69)
for any constant λ > 0 and bounded Re t1,Re t2.

While having only discussed the two-parameter case, the reader might anticipate
the form of the general growth theorem for any number of intersecting divisors.
We summarize this important result of Cattani, Kaplan, and Schmid [76] and
Kashiwara [107] in the following. Let us consider the leading growth when ap-
proaching a point P on the intersection of nP divisors ∆1, . . . ,∆nP

in ∆ located
at t1 = . . . = tnP = i∞. To simplify the notation we recall that we introduced in
(2.2.15) that ti = xi + iyi. The sectors are specified for fixed λ, δ > 0. The nP !
orderings give different overlapping sectors. We pick for the Ni the ordering

chosen ordering: N1, N2, . . . , NnP
, (2.2.70)
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Path 1

Path 2

Path 3

P

e-λ

e-λ

|z1|

|z2|

Figure 2.7: Real slice through two intersecting divisors located at z1 = e2πit1
= 0 and

z2 = e2πit2
= 0. The intersection point is the origin P = {|z1| = |z2| = 0}. The shaded

areas show the two overlapping regions (2.2.67), (2.2.69) a path to the singularity at the
origin can pass through, in order that the growth can be evaluated using (2.2.66), (2.2.69)
for the constant λ set to λ = 0.1. Three paths of different nature with respect to this are
shown.

with all other orderings obtained by exchanging Ni and ti in the following formulas.
Next we consider a v with

v ∈ Wl1

(
N(1)

)
∩Wl2

(
N(2)

)
∩ . . . ∩WlnP

(
N(nP )

)
(2.2.71)

where N(j) =
∑j
i=1 Ni and li are the lowest values for which this is true. The

leading growth of the Hodge norm is then

||v||2 ∼ c

(
y1

y2

)l1−3

· · ·
(
ynP −1

ynP

)lnP −1−3

(ynP )lnP
−3 (2.2.72)

for some c > 0. Associated to the ordering (2.2.70) the growth sector for the
allowed paths takes the form

R1...nP
=
{
ti : y1

y2 > λ , . . . ,
ynP −1

ynP
> λ , ynP > λ , xi < δ

}
. (2.2.73)

It might be interesting to stress that the proof in [76] of this theorem uses funda-
mentally the Sl(2)-orbit theorem briefly discussed in subsection 2.2.4 and much of
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the technology reviewed in this section. In particular, the relevant sector (2.2.73)
for allowed paths arises due to the convergence properties of the Sl(2)-orbit and
agrees with (2.2.59) in its yi-part.

As an application of this growth theorem, let us evaluate the growth of ||Ω||2 and
hence via (2.2.61) of the Kähler potential e−K . The first step is to approximate
the periods Π by the nilpotent orbit Πnil. The nilpotent orbit Πnil then can be
approximated by the Sl(2)-orbit as in (2.2.56), when restricting to the appropriate
sector (2.2.59). The latter is defined using the ã(nE )

0 introduced in subsection 2.2.4.
While the relation between the nilpotent and Sl(2)-orbit contains non-trivial yi-
dependent terms, one can show that they are bounded and do not alter the growth.
In fact, one has that the growth of both Πnil and ã(nE )

0 agree such that [76]6

||Π||2 ∼ ||Πnil||2 ∼
∣∣∣∣ã(nE )

0
∣∣∣∣2 , (2.2.74)

where the symbol ∼ as above indicates that we are only considering the leading
growth near the point P on the discriminant locus. We can now infer the growth
by using the location of a0 in the filtrations Wl(N−

(k)), where N−
(k) =

∑k
i=1 N

−
i in

analogy to (2.2.35). We note that 7

ã(nE )
0 ∈ Wd1+3

(
N−

(1)
)

∩Wd2+3
(
N−

(2)
)

∩ . . . ∩WdnP
+3
(
N−

(nP )
)
. (2.2.75)

The integer di is defined by(
N−

(i)
)di ã(nE )

0 6= 0 ,
(
N−

(i)
)di+1ã(nE )

0 = 0 . (2.2.76)

In other words it labels in which Ĩp,q the ã(nE )
0 resides at the various intersection

loci. Denoting the Sl(2)-split Deligne splitting on ∆◦
1...k by Ĩp,q(∆◦

1..k) one has
ã(nE )

0 ∈ Ĩ3,dk (∆◦
1...k) for k = 1, . . . , nP . Later on in subsection 2.3.1 we will also

see that di labels the type of the singularity at the intersection, i.e. one has

singularity on ∆◦
1...k is Type I, II, III, IV ⇐⇒ dk = (0, 1, 2, 3) . (2.2.77)

This will become more clear with the classification of singularities that we will
present in the next section. We will also show that there are restrictions on the
6In fact, it was shown generally in [76] that the growth result (2.2.72) also hold if one multiplies
v by either exp(

∑
i
xiNi), exp(

∑
i
tiNi), or even the matrix relating Π and a0.

7This can be inferred by using (2.2.55) extended to all a(i)
0 . The a(i)

0 are the vectors spanning
the Sl(2)-split F̂ 3 = Ĩ3,di on the intersection loci ∆◦

1...i. The fact, that the location of a(i)
0 and

a(nE )
0 follows from the commutativity of the sl(2)-triples, as we will discuss in a slightly different

context when we study the charge orbit below.
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allowed enhancements and in particular that di ≤ di+1. Using (2.2.75), together
with the fact W (N−

(i)) = W (N(i)) in the Sl(2)-orbit theorem of [76], and the general
growth result (2.2.72) we thus find

e−K ∼
∣∣∣∣ã(nE )

0
∣∣∣∣2 ∼ c

(
y1)d1 (

y2)d2−d1 · · · (ynP )dnP
−dnP −1 . (2.2.78)

This expression gives the general growth of the Kähler potential for any path
approaching P in the sector (2.2.73). Other sectors can be obtained by exchanging
the Ni and yi.

2.3 Classifying Singularities in Calabi-Yau Moduli
Spaces

In this section we summarize some general classification results that highlight the
power of the mathematical tools introduced in section 2.2. More precisely, we will
discuss a classification of Calabi-Yau threefold singularities in subsection 2.3.1,
their allowed enhancement patterns in subsection 2.3.2, and make some comments
on the classification of infinite distance points in subsection 2.3.3. A special em-
phasis is given to the discussion of the large complex structure and large volume
configurations, where the presented tools and classifications are of immediate use.
We stress that the results of this section are relevant in many different contexts that
are not related to a discussion of the Swampland Distance Conjecture. Therefore,
this section can also be read independently of the main motivation of this chapter.

2.3.1 A Classification of Calabi-Yau Threefold Singularities

Having summarized the relevant mathematical background we are now in the po-
sition to present a classification of Calabi-Yau threefold singularities and allowed
enhancement patterns. While we will mostly discuss the results of [113], we will add
some additional new insights that are particularly useful for explicit computations.

The basic idea to classify the arising singularities of Y3 is to classify the allowed
Deligne splittings Ip,q. As we described in subsection 2.2.3 these Deligne splittings
non-trivially depend on the objects F p∆ and N associated to the considered point on
∆. The Ip,q package this information in an intuitive and useful way. In particular,
one can introduce to each point of ∆ a limiting Hodge diamond containing the
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dimensions of the Ip,q given by

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

, ip,q = dimC I
p,q . (2.3.1)

Since the Ip,q represent a finer split of the cohomology near the singularity, we
can decompose original Hodge numbers for the smooth geometry at the considered
point on ∆ into the Hodge-Deligne numbers as

hp,3−p =
3∑
q=0

ip,q , p = 0, . . . , 3. (2.3.2)

Furthermore, one can deduce several properties of a limiting Hodge diamond 8

ip,q = iq,p = i3−q,3−p , for all p, q , (2.3.3)
ip−1,q−1 ≤ ip,q, for p+ q ≤ 3 . (2.3.4)

Given these properties, a first step in classifying singularities is to classify all pos-
sible Hodge-Deligne diamonds.

For Calabi-Yau threefolds the classification of limiting Hodge diamonds is greatly
simplified by the fact that one has h3,0 = 1. Using (2.3.2) that there are four
possible cases i3,d = 1, d = 0, 1, 2, 3, which we label by Latin numbers following
[113], I, II, III, IV. Furthermore, due to the symmetries (2.3.3) there are just two
independent Hodge-Deligne numbers, which we pick to be i2,1 and i2,2. In table
2.1 we will use a more pictorial way to represent the limiting Hodge diamonds. For
example, the limiting Hodge diamond for d = 2 is depicted as

0
1 1

0 i2,2 0
0 i2,1 i2,1 0

0 i2,2 0
1 1

0

c′ c′

c

c

∼=
c = i2,2

c′ = i2,1

8A detailed discussion of these properties can be found in section 5.2 of [113].
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Furthermore, we will index the singularity type with i2,2 writing

Ii2,2 , IIi2,2 , IIIi2,2 , IVi2,2 . (2.3.5)

The allowed values for i2,2 are obtained form (2.3.2) and differ for the different
singularity types as summarized in the third column of table 2.1. In total we thus
find 4h2,1 possible limiting Hodge diamonds depicted in the second column of table
2.1.

name Hodge diamond labels Young diagram rank(N,N2, N3), η

Ia
a′ a′

a

a
a+ a′ = m

0 ≤ a ≤ m

+ − ⊗a
⊗2a′ + 2

(a, 0, 0) ,
ηN has
a negative
eigenvalues

IIb
b′

b
b′

b
b+ b′ = m− 1
0 ≤ b ≤ m− 1

+ − ⊗b
− + ⊗2

⊗2b′

(2 + b, 0, 0) ,
ηN has

b negative and
2 positive

eigenvalues

IIIc
c′ c′

c

c
c+ c′ = m− 1
0 ≤ c ≤ m− 2

⊗2
+ − ⊗c

⊗2c′ − 2
(4 + c, 2, 0)

IVd d
d′ d′
d

d+ d′ = m

1 ≤ d ≤ m

− + − + ⊗1
+ − ⊗d− 1

⊗2d′
(2 + d, 2, 1)

Table 2.1: The 4m possible limiting Hodge diamonds with Hodge numbers h2,1 = m. The
label next to a dot at a point (p, q) represents the value of ip,q. A dot at (p, q) without a
label represents ip,q = 1.

In addition to enumerating the allowed limiting Hodge diamonds one can also
characterize the associated nilpotent elements N . In order to do that one has
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to classify conjugacy classes of nilpotent elements that are invariant under basis
transformations. Recall that N is an element of the Lie algebra sp(2h2,1 + 2,R)
as discussed after (2.2.12). The Lie group Sp(2h2,1 + 2,R) acts on its Lie algebra
sp(2h2,1 + 2,R) via the adjoint action, i.e. N 7→ gNg−1 for g ∈ Sp(2h2,1 + 2,R).
Classifying the conjugacy classes of nilpotent elements obtained by this equivalence
is a well-known problem and it was shown in [124, 125] that it is equivalent to
classifying signed Young diagrams. While not very involved, we will refrain from
presenting the details of this classification here, but only list the relevant result in
the fourth column of table 2.1. The result is that to each singularity type Ia, IIb,
IIIa, IVd there is a unique associated signed Young diagram which characterizes
the form of N and η. This information allows one, for example, to associate a
simple normal form of N , η to the singularity type. In order that the reader gets
an intuition for such normal forms, we give a possible choice in table 2.2. In order
to obtain the complete N , η one needs to use the building blocks of table 2.2 and
combine them in the canonical way to a higher-dimensional matrix.

We should stress that in many of the applications and explicit computations the
normal forms of table 2.2 play no role. Rather, it is often useful to have a more
basis independent way to determine the singularity type for a given N , η. In the
last column of table 2.1 we have included such a distinguishing criterion. To begin
with we note that the ranks of Nk, k = 1, 2, 3, often differ for the various singu-
larity types, as one deduces from (2.2.42), (2.2.44) and the polarization condition
(2.2.45), (2.2.46). However, there are (h2,1 − 1) pairs of Ia and IIa−2 that cannot
be distinguished by only comparing the ranks. In this case one can use again the
polarization condition to show that these cases differ by the sign of the eigenvalues
of ηN . Taking this feature into account indeed the singularity type for a given N ,
η is uniquely fixed. Clearly, the same conclusion can be reached from using the
normal forms combining table 2.1 and 2.2.

2.3.2 A Classification of allowed Singularity Enhancements

Having classified the allowed singularity types, we next turn to the discussion of
allowed singularity enhancements. More precisely, let us assume that on the locus
∆◦

1 the singularity type is specified by Typea(∆◦
1). We then want to answer the

question to which singularity types Typeb(∆◦
12′) this type can enhance further

when moving to ∆◦
12, i.e. we consider

Typea(∆◦
1) −→ Typeâ(∆◦

12) , (2.3.6)
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(signed)
Young

diagram
N η

(
0 0
0 0

) (
0 −1
1 0

)

+ −
(

0 0
1 0

) (
0 −1
1 0

)

− +
(

0 0
1 0

) (
0 1

−1 0

)


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0





0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



− + − +


0 0 0 0
1 0 0 0
0 1 0 0
0 0 −1 0




0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0


Table 2.2: List of all relevant signed Young diagrams and their associated N , η in some
normal form. The complete signed Young diagram and N , η that classify a singularity
type are composed out of these building blocks.
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where in the following we will denote the allowed enhancements by an arrow. It was
argued in [113] that imposing consistency of the polarization conditions (2.2.45),
(2.2.46) on ∆◦

1 and ∆◦
12 leads to non-trivial constraints on possible enhancements.

The resulting rules are shown in table 2.3, and their derivation is outlined later in
this section and in appendix 2.E. It should be stressed that the enhancement rules
are actually general and apply to any higher intersection and not only to the case
of two divisors ∆1, ∆2 intersecting in ∆◦

12.

starting singularity type enhance singularity type

Ia

Iâ for a ≤ â

IIb̂ for a ≤ b̂, a < h2,1

IIIĉ for a ≤ ĉ, a < h2,1

IVd̂ for a < d̂, a < h2,1

IIb
IIb̂ for b ≤ b̂

IIIĉ for 2 ≤ b ≤ ĉ+ 2
IVd̂ for 1 ≤ b ≤ d̂− 1

IIIc
IIIĉ for c ≤ ĉ

IVd̂ for c+ 2 ≤ d̂

IVd IVd̂ for d ≤ d̂

Table 2.3: List of all allowed enhancements obtained by imposing consistency of the po-
larization conditions (2.2.45), (2.2.46). These have been shown in [113] and the details of
their derivation are given in appendix 2.E.

Using the enhancement rules of table 2.3 one obtains an instructive picture of
the singularity structure of a Calabi-Yau threefold Y3 for a given h2,1. In figure 2.4
we display the two cases h2,1 = 2 and h2,1 = 3. It is interesting to note that, as
of now, it is not known whether all allowed enhancements of table 2.3 are actually
realized in some Calabi-Yau threefold.

In order to deduce the allowed enhancements one has to use a substantial amount
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of mathematics. We will limit ourselves to some essential facts and refer the reader
to appendix 2.E, where further details on the underlying constructions are pre-
sented. The main focus of this investigation lies on the primitive parts P p,q ⊂ Ip,q

that were defined in (2.2.43). We note that by using (2.2.43) one deduces that
I3,j = P 3,j and Ij,3 = P j,3 for j = 0, 1, 2, 3. Furthermore, we can apply (2.2.44)
to infer that the Ip,q split into the P p,q as

P 3,3

P 3,2 P 2,3

P 3,1 P 2,2 ⊕NP 3,3 P 1,3

P 3,0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 P 0,3

NP 3,1 NP 2,2 ⊕N2P 3,3 NP 1,3

N2P 3,2 N2P 2,3

N3P 3,3

.

(2.3.7)
The primitive subspaces are thus given by

P 6 = P 3,3 , P 5 = P 3,2 ⊕ P 2,3 , (2.3.8)
P 4 = P 3,1 ⊕ P 2,2 ⊕ P 1,3 , P 3 = P 3,0 ⊕ P 2,1 ⊕ P 1,2 ⊕ P 0,3 ,

where the single superscript on P r is the weight r = p + q of the contained P p,q.
One of the most fundamental results about this construction is that each P j with
j = 3, . . . , 6 can be shown to define a pure Hodge structure of weight j. Recall that
also the decomposition (2.2.20) on a smooth Y3 provided a pure Hodge structure,
which was the starting point of the construction of the splittings relevant at the
singularities. The main idea for looking at enhancements moving from ∆◦

1 to an
intersection ∆◦

12 is to view P j(∆◦
1) as defining the starting pure Hodge structures

that then splits into even finer mixed Hodge structures. Representing the mixed
Hodge structures by Deligne splittings, one thus has

P j(∆◦
1) −→ [Ip,q]j (∆◦

12) with 0 ≤ p+ q ≤ 2j . (2.3.9)

One can rearrange the spaces [Ip,q]j (∆◦
12) to form the Deligne splitting Ip,q(∆◦

12) of
the enhanced type. To identify the rules when this is possible makes it necessary to
use the full technology of the Sl(2)-orbit theorem [76] as done in [113] and outlined
in appendix 2.E.

As a rather simple application of the classification we can evaluate the growth
of the Kähler potential e−K for the 10 possible enhancements of table 2.3. Using
the general result (2.2.78) and the link (2.2.77) of di to the singularity type one
reads of table 2.4.
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Type d1 d2 Leading behaviour of e−K

Ia → Ib 0 0 const. or e− Im t

IIa → IIb 1 1 Im t1

IIIa → IIIb 2 2
(
Im t1

)2

IVa → IVb 3 3
(
Im t1

)3

Ia → IIb 0 1 Im t2

Ia → IIIb 0 2
(
Im t2

)2

Ia → IVb 0 3
(
Im t2

)3

IIa → IIIb 1 2
(
Im t1

) (
Im t2

)
IIa → IVb 1 3

(
Im t1

) (
Im t2

)2

IIIa → IVb 2 3
(
Im t1

)2 (Im t2
)

Table 2.4: Leading growth terms of e−K when approaching the singular locus t1 = t2 = i∞
obtained by using (2.2.77) and (2.2.78).

2.3.3 On the Classification of Infinite Distance Points

Having introduced a classification of singularities and singularity enhancements
arising in general Calabi-Yau threefold geometries, we next turn to the discussion
of infinite distance points. To define such points let us pick a point P in the complex
structure moduli space Mcs including ∆. P is said to be an infinite distance point,
if the length measured with the Weil-Petersson metric gWP of every path to this
point is infinite. Accordingly, we would call P a finite distance point if there exists
at least one path to this point that has finite length in the metric gWP. In the
following we will discuss the classification of finite and infinite distance points using
the classification of singularities presented in subsection 2.3.1.

To begin with, we note that any two points P, Q that are not on the discriminant
locus ∆ are connected by a path of finite distance in the Weil-Petersson metric.
This implies that in order to have an infinite distance point, at least one of the
points has to lie on ∆ and we chose this to be P . One then has to distinguish
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two situations: (1) P lies on a divisor ∆k away from any intersection locus, (2) P
lies on an intersection locus ∆kk′ of two (or more) divisors ∆k and ∆k′ . In the
following we will discuss the two cases in turn.

Considering a point P on a divisor ∆k that does not lie on any intersection
with other divisors corresponds to considering a one-parameter degeneration of the
Calabi-Yau manifold Y3. In this case one can prove a simple criterion when such
a point is at infinite distance. More precisely, it was shown in [126] that a point
on ∆◦

k is at finite distance if and only if NF 3(∆◦
k) = 0. Using the nilpotent orbit

(2.2.17) this is nothing else then the condition

P ∈ ∆◦
k at finite distance ⇐⇒ Na0 = 0 . (2.3.10)

It is not difficult to translate this condition to the statement that the singularity
on ∆◦

k is Type I. Thus one concludes

P ∈ ∆◦
k is finite distance point ⇐⇒ Type I , (2.3.11)

P ∈ ∆◦
k is infinite distance point ⇐⇒ Type II , Type III , Type IV .

This shows that the classification of singularities is sufficiently fine to separate
infinite and finite distance points ∆◦

k. In fact, it clearly contains more informa-
tion, since the index on the type, as introduced in (2.3.5), is not relevant for this
distinction.

Let us now turn to the more involved case that the considered point lies on an
intersection locus ∆◦

kk′ . This implies that one is not considering a one-parameter
degeneration and path-dependence becomes a very important issue. It is currently
not known an equivalent condition to (2.3.11) is true. The directions that are not
difficult to prove are

P ∈ ∆◦
kk′ is finite distance point ⇐= Type I , (2.3.12)

P ∈ ∆◦
kk′ is infinite distance point =⇒ Type II , Type III , Type IV .

To see this we note that in order to show that Type I implies that the point is finite
distance, it suffices to find a single path that is at finite distance. This path can
be easily chosen such that the question reduces to a one-parameter degeneration
with nilpotent operator Nk +Nk′ and one can use (2.3.11). Clearly, the statement
in the second line in (2.3.12) is just equivalent to the statement in the first line.
Note that (2.3.12), and its obvious higher-dimensional generalizations, can also be
stated as [127]

P is infinite distance point =⇒ ∃Nia0 6= 0 , (2.3.13)
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where a0 is associated via (2.2.17) to the point on ∆i1...il . Attempting to prove
a one-to-one correspondence as in (2.3.11) requires to carefully deal with a path
dependence.9 We believe that this is a very important problem that, however, goes
beyond the scope of the current chapter.

2.3.4 The Large Complex Structure and Large Volume Point
A prime example of an infinite distance point in complex structure moduli space
is the so-called large complex structure point. To begin with, we first have to
more formally define such points. General definitions have been discussed in [128].
However, with the classification of singularities presented in subsection 2.3.1, we
can give a very elegant general definition. We call a point a large complex structure
point if it is a type IVh2,1(Y3) point on ∆ that arises from the intersection of h2,1(Y3)
divisors ∆I , I = 1, . . . , h2,1(Y3) each being of type II, III, or IV. By this we mean
that a generic point, i.e. a point on ∆◦

I , on these ∆I has these types. While we did
not show the equivalence of this definition with the ones in [128], we will see that
it is in perfect match with the expectations from mirror symmetry.

The large complex structure points are of crucial importance in the first mirror
symmetry proposals [129]. More precisely, mirror symmetry states that the large
complex structure point is mapped to large volume point by identifying complex
structure and complexified Kähler structure deformations in Type IIA and Type
IIB compactifications. One thus has a mirror Calabi-Yau threefold geometry Ỹ3

associated to Y3. On this mirror one defines the complexified Kähler coordinates
tI , I = 1, . . . , h1,1(Ỹ3) by

B2 + iJ = tIωI , (2.3.14)

where B2 is the NS-NS two-form field and J is the Kähler form. The large volume
point is given by

tI → i∞ , I = 1, . . . , h1,1(Ỹ3) . (2.3.15)

In other words the large volume point arises from the intersection of h1,1(Ỹ3) divi-
sors in the Kähler moduli space that are individually given by tI = i∞. We depict
this in figure 2.8. Clearly, in order to consider the complete mirror moduli space
to Mcs we have to investigate the allowed values of tI . These are encoded by the
Kähler cone, which we will briefly introduce next.

In order to define the Kähler cone it is easiest to first introduce the dual Mori
cone. The Mori cone is spanned by equivalence classes of the irreducible, proper
9It was conjectured in [127] that a statement equivalent to (2.3.11) is true.
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t2 = i∞

t1 = i∞

t3 = i∞

large volume point

Figure 2.8: The large volume point arises on the discriminant locus of the Kähler moduli
space at the intersection of h1,1(Ỹ3) = 3 divisors tI = i∞.

curves on Ỹ3, i.e. one can form positive linear combinations
∑
i ai[Ci], ai > 0 of

homology classes [Ci] of such curves. The dual cone is obtained by

J ∈ H1,1(Y3) :
∫
C

J ≥ 0 , (2.3.16)

for all curves C in the (closure of the) Mori cone. Hence, when picking a Kähler
form inside the Kähler cone one ensures that all proper curves have positive vol-
ume. For the following discussion it is important to point out that the Kähler cone
is in general not simplicial. Roughly speaking this implies that we cannot repre-
sent the cone by picking h1,1(Y3) generating two-forms ωI and consider the linear
combination aIωI , aI ≥ 0. In order to connect to the discussion of the previous
subsections, we will now make a crucial simplifying assumption. More precisely,
we will consider only situations that admit a simplicial Kähler cone. While many
of our formulas are valid generally, this assumption will help us to interpret our
results more easily.

Our starting point will be the local form of the mirror periods at the large volume
point. These can be computed in various different ways, for example, by evaluating
the central charges for a set of D0-, D2-, D3-, D4-branes by using the Γ-class (see,
e.g. refs. [35–38,130]). For these branes one can introduce an appropriate K-theory
basis

(OỸ3
,ODI

, CJ ,Op), (2.3.17)

where DJ are h1,1(Ỹ3) divisors, p are points and, for h1,1(Ỹ3) curves CI , the K-
theory basis are CJ := ι!OCJ

(
K

1/2
CJ

)
(see [36], section 2.3 for their precise defini-

tion).
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We require that the curves and divisors are dual, i.e. that CJ · DI = δJI , and
that the Poincaré dual two-forms ωI to DI span the Kähler cone. Furthermore,
we define

KIJK =
∫
Ỹ3

ωI ∧ ωJ ∧ ωK , bI = 1
24

∫
Ỹ3

ωI ∧ c2(Ỹ3) , (2.3.18)

where KIJK are the triple intersection numbers and c2(Ỹ3) is the second Chern
class of Ỹ3. Using these abbreviations one finds the mirror period vector

ΠΩ(tI) =


1
tI

1
2KIJKt

J tK + 1
2KIJJ t

J − bI + O(e2πit)
1
6KIJKt

ItJ tK − ( 1
6KIII + bI)tI + iζ(3)χ(Ỹ3)

8π3 + O(e2πit)

 , (2.3.19)

where χ(Ỹ3) =
∫
Ỹ3
c3(Ỹ3) is the Euler number of Ỹ3.

Having determined the local form of the periods near the large volume point, we
use them to compute the monodromy matrix TA. Note that by (2.2.8) the action
of TA is induced by sending tA 7→ tA − 1, when taking zA = e2πitA . Explicitly we
find the (2h1,1 + 2) × (2h1,1 + 2)-matrix

TA =


1 0 0 0

−δAI δIJ 0 0
0 −KAIJ δIJ 0
0 1

2 (KAAJ +KAJJ) −δAJ 1

 , (2.3.20)

where the upper left corner corresponds to the element OỸ3
− OỸ3

in the ba-
sis (2.3.17). It is interesting to point out that due to the basis choice (2.3.17)
the TA only depends on the intersection numbers with no bI appearing. Given
these monodromies one checks that they are unipotent and we can determine the
log-monodromies NA by simply evaluating NA = log TA following their definition
(2.2.10). We thus find

NA =


0 0 0 0

−δAI 0 0 0
− 1

2KAAI −KAIJ 0 0
1
6KAAA

1
2KAJJ −δAJ 0

 . (2.3.21)

This rather simple expression determines all large complex volume log-monodromies
about single divisors in the discriminant locus of the Kähler moduli space specified
by tA = i∞. As discussed above in (2.2.30), log-monodromies around intersecting
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divisors are determined by positive linear combinations of these NA. For exam-
ple, the log-monodromies relevant for the discriminant locus given by tA = i∞,
tA

′ = i∞ are given by aNA + bNA′ with a, b > 0.
In order to also classify the corresponding singularity types using table 2.1, we

still need to determine the polarisation η. This can be done by evaluating the
negative of the Mukai pairing [35, 37, 38, 130]. On the K-theory space the Mukai
pairing of branes ξ and ξ′ is defined by

〈ξ, ξ′〉 =
∫
Ỹ3

ch(ξ∨)ch(ξ′)Td(Ỹ3) , (2.3.22)

where −∨ is the dual operation, ch(−) is the Chern character and Td(−) is the
Todd class. In the basis (2.3.17) one finds

η =


0 − 1

6KJJJ − 2bJ 0 −1
1
6KIII + 2bI 1

2 (KIIJ −KIJJ) δIJ 0
0 −δIJ 0 0
1 0 0 0

 , (2.3.23)

and it always satisfies det η = 1. The inverse of η is also computed

η−1 =


0 0 0 1
0 0 −δIJ 0
0 δIJ

1
2 (KIIJ −KIJJ) − 1

6KIII − 2bI
1 0 1

6KJJJ + 2bJ 0

 . (2.3.24)

These expressions now depends both on the intersection numbers, as well as the
second Chern class. As a side remark, let us note that the complete set of NA’s
together with η and the Hodge numbers h2,1(Ỹ3), h1,1(Ỹ3) contain the relevant
information for Wall’s classification theorem of homotopy types of complex compact
Calabi-Yau threefolds [131]. It is interesting to combine this fact with the following
classification of singularities.

Given the explicit forms (2.3.21) and (2.3.23) of NA, η it is now straightforward
to determine the singularity type using the last column table 2.1. Due to the lower-
triangular form of NA its powers N2

A and N3
A are easily computed. We immediately

see that N3
A is only non-zero if KAAA is non-vanishing. This is thus precisely the

condition for a type IVd singularity. Similarly, if and only if KAAI is non-vanishing
for one or more I we find that N2

A is non-vanishing. Hence, the NA is of type IIIc
if KAAA = 0 and KAAI non-vanishing for some I 6= A. The precise type IIIc and
IVd are now determined by evaluating the rank of the matrix KAIJ with the result
listed in table 2.5.
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It remains to discuss the cases Ia and IIb that occur if all KAAI = 0. As we have
discussed in subsection 2.3.1 they can, in general, only be distinguished if we also
consider η. In fact, we can compute ηNA and determine its number of positive and
negative eigenvalues. Explicitly, we find that

ηNA =


2bA − 1

2KAJJ δAJ 0
1
2 (KIAA −KIIA) −KAIJ 0 0

δAI 0 0 0
0 0 0 0

 , (2.3.25)

where we need to impose KAAI = 0 for all I. It can be now easily seen that
this matrix has positive eigenvalues. In fact, evaluating V TηNAV = 2 for V =
(1, 0, . . . , 0, (1 − bA)δAI , 0)T we find a positive direction. Hence, the case Ia is
actually never realized for the NA, η given in (2.3.21), (2.3.23). We thus conclude
that we can distinguish also the precise type IIb by evaluating the rank of the
matrix KAIJ as listed in table 2.5.

name rank(KAAA) rank(KAAI) rank(KAIJ )

IIb 0 0 b

IIIc 0 1 c+ 2
IVd 1 1 d

Table 2.5: This table list the conditions on NA, η given in (2.3.21) and (2.3.23) that ensure
a certain singularity type on the discriminant divisor tA = i∞ for a single coordinate.
Note that rank(KAAA) and rank(KAAJ ) are either 0, 1 depending on whether these
quantities are trivially zero or non-zero.

To conclude this section, let us note that the large volume point tA = i∞ for
all A = 1, . . . , h1,1(Ỹ3) has precisely the properties mirror dual to a large complex
structure point defined at the beginning of this subsection. To see this, let us first
show that it is a point of type IVh1,1 . In order to do that we have to analyse the
sum of all NA with positive coefficients. A convenient choice is to pick the Kähler
coordinates vA = Im tA, which are positive in a simplicial Kähler cone. Hence we
consider

N =
∑
A

vANA =


0 0 0 0

−vI 0 0 0
− 1

2v
AKAAI −vAKAIJ 0 0

1
6v
AKAAA

1
2KAJJ −vJ 0

 . (2.3.26)

89



2 Infinite Distance Networks in Field Space and Charge Orbits

If we now compute N3, we simply find a matrix which only has a single entry
proportional to the volume 1

6 KIJKv
IvJvK . Hence, the rank of N3 is 1 and we

conclude from the last column in table 2.5 that the singularity is type IVd. To deter-
mine d we need to evaluate the rank of N itself. However, the contraction vAKAIJ

is crucial in defining the metric on Kähler moduli space and is full rank [33]. So
indeed, we find that the singularity tA = i∞ is of type IVh1,1(Ỹ3). Furthermore, all
the intersecting divisors have type II, III, or type IV as discussed above.

2.4 Charge orbits and the Swampland Distance
Conjecture

In this section we analyse the Swampland Distance Conjecture (SDC) using the
powerful geometric tools about the complex structure moduli space introduced so
far. To begin with, let us first recall the statement of the SDC adapted to our
setting. It implies that when approaching any infinite distance point P along any
path γ one should encounter a universal behaviour of infinitely many states of the
theory sufficiently close to P . More precisely, picking a point Q′ in a sufficiently
small neighbourhood of the infinite distance point P , and then moving along the
geodesic towards P onto a point P ′, the SDC asserts that one should be able to
identify an infinite tower of states with masses Mm, m = 1, . . . ,∞, behaving as

Mm (P ′) ≈ Mm (Q′) e−γd(Q′,P ′) , (2.4.1)

where Mm (P ′) and Mm (Q′) are the masses of the states at P ′ and Q′, respectively.
Here d(Q′, P ′) is the distance along the geodesic in the Weil-Petersson metric de-
termined from the Kähler potential (2.2.1) and γ is some positive constant. In
other words, the SDC not only asserts that there is an infinite tower of states be-
coming massless at P , but also that this has to happen exactly in an exponentially
suppressed way (2.4.1).

The goal of this section is to identify such a candidate set of states. As in [5], we
propose that these states arise from BPS D3-branes wrapped on certain three-cycles
in the Calabi-Yau space Y3. In the case of one-modulus degenerations studied in [5]
arguments were presented, by using walls of marginal stability, that the proposed
tower is actually populated by BPS states. In this chapter, we will focus solely on
identifying the tower of states, and will not be able to show that they are indeed
populated by BPS states. We leave such an analysis for future work, and for now
will assume that the identified tower of states is indeed populated by BPS states.
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Asserting that the constructed tower indeed consists of BPS states with charges
Q, we can use the central charge Z(Q) to compute their mass M = |Z(Q)|. The
explicit form of Z(Q) is given by 10

Z(Q) = e
K
2

∫
Y3

H ∧ Ω = e
K
2 S(Π,Q) , (2.4.2)

where H is the three-form with coefficients Q in the integral basis γI , the Ω is
the (3,0)-form introduced in (2.2.2) with periods Π, and K is the Kähler potential
given in (2.2.1).

We construct the infinite set of states relevant for the SDC by introducing, what
we call a charge orbit. In the one-parameter case this is the same as the monodromy
orbit of [5]. It will be obtained by acting on a seed charge vector q0 with the
monodromy matrices relevant in a local patch around the infinite distance point
P . Due to the multi-parameter nature of our analysis, we will change notation
with respect to reference [5] and denote the infinite charge orbit by

Q (q0|m1, . . . ,mn) , (2.4.3)

where m1, . . . ,mn is a set of integers labelling the considered states, as we discuss
below. The charge orbit will be infinite, if there are infinitely many allowed values
for m1, . . . ,mn.

2.4.1 Single parameter charge orbits
To give a comprehensive introduction of the charge orbit, we will first discuss a
single parameter degeneration t1 → i∞, where we consider only the divisor ∆1 ⊂ ∆
disregarding any further intersections. In other words we consider a local patch E
intersecting ∆1, but not containing any other component of the discriminant locus
(see figure 2.9). Such one-parameter degenerations have been discussed at length
in [5]. We will introduce a slightly modified description in the following which will
then match more seamlessly unto the multi-parameter analysis.

In analogy to a one-parameter nilpotent orbit (2.2.17) and a one-parameter Sl(2)-
orbit (2.2.57), we define the charge orbit as

Q(q0|m1) ≡ exp [m1N1] q0 , (2.4.4)

where m1 is an integer. Note that since the monodromy matrix T1 = exp [N1] the
Q are simply the charges obtained by acting with the monodromy matrix Tm1

1 .
10Note that we have exchanged Π and Q in S in order to absorb the minus sign in (2.2.4).
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E
−→ charge orbit Q

∆1

P

Figure 2.9: Associating a charge orbit to a point P ∈ ∆1 in local patch E in moduli space.
In this single parameter degeneration no intersection locus of ∆1 within ∆ is in E .

Since we consider an infinite distance point P the results of subsection 2.3.3 imply
that N1 is non-trivial and thus T1 is of infinite order, i.e. there exists no m such
that Tm1 = T1. In order that the orbit is actually infinite, we further have to
demand that

N1q0 6= 0 . (2.4.5)

Hence the definition of an infinite charge orbit agrees with the one in [5].
Let us next consider the second crucial part of the distance conjecture, namely

that the infinite tower of states becomes exponentially light towards the infinite
distance point. As mentioned above, we will assume that the considered states
are BPS D3-branes, such that their masses are measured by |Z|, with the central
charge Z given in (2.4.2). Near the point P we can use the one-variable nilpotent
orbit Πnil = exp

[
t1N1

]
a0, to approximate the behaviour of the central charge

Zasy(Q) = e
K
2 S(Πnil,Q) . (2.4.6)

Note that using the results of subsection 2.2.2 the asymptotic central charge
Zasy(Q) differs from Z(Q) by terms proportional to the exponential e2πit1 , which
are strongly suppressed in the limit Im t1 → ∞. Inserting (2.4.4) into (2.4.6), we
realize that |Z(Q)| ≈ |Zasy(Q)| → 0 is equivalent to demanding

|Zasy(q0)| → 0 . (2.4.7)

This can be deduced by moving the exponential em1N1 onto Πnil and absorbing it
by a shift Re

{
t1
}

→ Re
{
t1
}

−1. Hence, in order to find an infinite massless charge
orbit Q we have to demand that the seed charge q0 satisfies (2.4.5) and (2.4.7).

Let us now construct the seed q0 for an infinite massless charge orbit Q. We
first note that there is a particular set of charges that is massless which in [5] were
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termed to be of type II. They are obtained as elements of the space

MII(Πnil) =
{

qIγI ∈ H3(Y3,Z) : S(q, Nk
1 a0) = 0 , ∀ k

}
, (2.4.8)

where we have considered vectors q over the integers Z. Note that this space
depends on the data (N1,a0) defining the nilpotent orbit. Stated differently, these
are precisely the states that are orthogonal to the nilpotent orbit Πnil. Their
asymptotic central charge (2.4.6) vanishes trivially, which implies that the full
central charge Z vanishes by exponentially suppressed terms e2πit1 .

BPS states which become massless as Im t1 → ∞, but which are not of type
II, are called type I states. In [5] arguments were presented for why, given a one-
parameter degeneration, the populated BPS states are of type I, and therefore the
tower of states of the distance conjecture should be composed of an infinite number
of type I states.

It was also shown in [5] that the mass of type I states decreases exponentially
fast for one-parameter variations approaching infinite distance. This can be easily
seen since the states become massless as a power law in Im t1, while the leading
behaviour of the Kähler potential (2.2.63) is logarithmic in Im t1. This matches
the behaviour predicted by the distance conjecture.

Let us now determine a the set of states that become massless at P . To begin
with we give a sufficient condition for a charge q to become massless at P . In
order to do that we note that the central charge Z(q) can also be written with the
help of the Hodge inner product S(Ca, b̄) =

∫
Y3
a∧ ∗b̄, which is the inner product

associated to the Hodge norm (2.2.60). Using the fact that CΠ = −i Π together
with (2.2.61) we find that Z(q) can be written as

|Z(q)| = |S(CΠ,q)|
||Π||

≤ ||q|| , (2.4.9)

where we have used the Cauchy-Schwarz inequality |S(Cv, ū)| ≤ ||v|| ||u||. We
thus conclude that if the norm ||q|| goes to zero at the singularity, the charge q
yields a massless state. Now we can use the growth theorem (2.2.62), (2.2.63) to
infer that

||q|| → 0 ⇐⇒ q ∈ WQ
i for i ≤ 2 , (2.4.10)

which identifies vector spaces that contain massless states. It is important to stress
that the condition (2.4.10) is a sufficient, but not necessary condition that a charge
q is massless.

Finally, we relate the result (2.4.10) to the classification of singularities discussed
in subsection 2.3.1. We use the fact that WC

j =
⊕

p+q≤j I
p,q and apply the clas-

93



2 Infinite Distance Networks in Field Space and Charge Orbits

sification of Hodge diamonds for the singularity Types I, II, III, and IV given in
table 2.1. Using (2.3.7) and (2.3.8) we realize that

Type I : WC
2 ⊂ MII , WC

1 = 0 , WC
0 = 0 ,

Type II : WC
2 = N1P

4 , WC
1 = 0 , WC

0 = 0 ,
Type III : WC

2 = N1P
4 ⊕N2

1P
5 , WC

1 = N2
1P

5 , WC
0 = 0 ,

Type IV : WC
2 = N1P

4 ⊕N2
1P

6 ⊕N3
1P

6 , WC
1 = N3

1P
6 , WC

0 = N3
1P

6 .

(2.4.11)

We stress that only for the Type IV singularities all spaces WC
2 , WC

1 and WC
0

are always non-zero due to the existence of the non-trivial vectors N ja0, j ≤ 3.
Finally, combining this with the requirement that Nq0 6= 0 as well as the fact that
N1Wi ⊂ Wi−2 we find that only Type IV singularities straightforwardly admit an
infinite massless charge orbit Q.

Let us have a closer look at the q0 in the case of a Type IV singularity. From
the above discussion we require q0 ∈ WQ

2 . Furthermore, we note that WC
2 =

I1,1 ⊕ I0,0 = N1P
2,2 ⊕N2

1P
3,3 and stress that

S(N1P
2,2, Nk

1 a0) = 0 , (2.4.12)

for all k, since a0 spans P 3,3. The latter condition shows that N1P
2,2 is a type II

state. Since we require the orbit to be composed of type I states, we can therefore
determine that q0 must have a non-trivial component in N2

1P
3,3, so q0 /∈ N1P

2,2.
In fact, we propose a particular element of the R-split P 3,3, which can be written
as

q0 ∼Z N
2
1 ã(1)

0 . (2.4.13)

Here we have introduced new notation ∼Z which is rather involved but has a precise
definition as follows.

Consider an element a in WC
l , where l is the smallest possible index. If it is

possible to add to a some other elements in WC
l ∩ KerN such that one obtains an

element in WQ
l , then ∼Z a is defined as the associated element of WQ

l . If it is not
possible, then ∼Z a is defined to vanish.

In utilising ∼Z in (2.4.13), we will assume that defined this way q0 is non-
vanishing. This is true in any example we have studied, but we have no proof that
it is always the case. Note that for the particular case of the one-parameter example
(2.4.13), acting with N1 on q0 will only receive a contribution from the piece N2

1 ã0,
but the other components may be necessary in general for quantisation purposes.
Note also that we have utilised ã0, rather than a0, as introduced in subsection
2.2.4. Finally, it is important to emphasise that in general ã0 may depend on the
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2.4 Charge orbits and the Swampland Distance Conjecture

coordinates along the singular locus ã0 (ξ), and so the combination of elements
involved in defining ∼Z can vary with ξ.

This conclusion seems to imply that the SDC cannot be shown using this con-
struction for the cases Type II and Type III. We know from the discussion of
subsection 2.3.3 that points on these loci are at infinite distance. In examples with
h2,1 = 1 the classification of table 2.1 shows that Type III can never be realized.
However, Type II singularities do occur in explicit examples and have been dis-
cussed in more detail in [5]. These constitute interesting cases that require further
investigation. For higher-dimensional moduli spaces, we will now show that the
above construction can be generalized yielding a remarkable way to satisfy the
SDC if intersection loci of divisor ∆i appear.

2.4.2 Defining the general charge orbit
Having discussed the one-parameter degenerations, we next propose a general form
of the charge orbit Q(q0|m1, . . . ,mn) labelling the states relevant for the SDC close
to an infinite distance point P . We stress that this requires that Q labels infinitely
many states that become massless at the point P . Hence we have to carefully
define an appropriate orbit that ensures these properties. We first give the general
expression and then show that it has the desired features.

To begin with, let us stress that the definition of Q is, at first, not global on
Mcs. Rather we have to adjust the orbit according to the location of P in the
discriminant ∆. Nevertheless, the definition of Q also is not only depending on
the location of P , but rather takes into account two additional features:

(1) the intersecting patterns and singularity enhancements of the ∆i in some
sufficiently small neighbourhood E containing P ,

(2) the sector R of the path that is traversed when approaching the point P .

While the first condition will be used in showing when Q labels infinitely many
states, the second condition is crucial to ensure that they become massless. It
will be an important task to carefully spell out these two properties of Q in the
following. The reason that these features occur stems from our construction of
Q using the Sl(2)-orbit theorem introduced in subsection 2.2.4 and the growth
theorem discussed in subsection 2.2.5.

To display our proposal for the charge orbit, it is convenient to recall some
more notation from subsections 2.2.2 and 2.2.4. We consider a patch E around
the point P ∈ ∆ which might contain any type of higher intersections of divisors
∆i. This patch is defined by requiring that the nilpotent orbit (2.2.17) provides
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2 Infinite Distance Networks in Field Space and Charge Orbits

a good approximation in E to the full periods. In other words, we can drop the
exponential corrections in E as discussed in detail in subsection 2.2.2. Let us
denote the divisors intersecting in the patch E by ∆i with i = 1, . . . , nE . As usual
we denote the monodromy logarithms associated to ∆i by Ni. Furthermore, we
will consider a point P on the intersection of the first nP divisors ∆k, i.e.

P ∈ ∆◦
1...nP

, (2.4.14)

where we recall that ◦ indicates that we consider points away from any further
intersection as introduced in subsection 2.2.3. In order to use the growth theorem
for the norm of Q when approaching P we introduce the sectors Rr1...rnP

as before.
They are defined by first setting

R1...nP
≡
{
ti : Im t1

Im t2
> λ , . . . ,

Im tnP −1

Im tnP
> λ , Im tnP > λ , Re ti < δ

}
,

(2.4.15)
for some fixed λ, δ > 0. The other orderings of the indices on R1...nP

are defined
by simple permutations of the indices in all of (2.4.15). In this chapter we will
only consider paths that traverse a single sector Rr1...rnP

. Completely arbitrary
paths cannot be analysed so easily and might require to patch together sectors
of the form (2.4.15). It should, however, be stressed that this is a very mild path
dependence. We do not expect that our conclusions change for more general paths.
The setup is illustrated in figure 2.10.

Let us now turn to the proposal for the charge orbit Q. Given a path to-
wards P that traverses a single sector Rr1...rnP

we fix an ordering of nP matri-
ces Ni as (Nr1 , . . . , NrnP

). By a simple relabelling we can pick this ordering to
be (N1, . . . , NnP

) without loss of generality. The ordering of the remaining Ni,
i = nP , . . . , nE does not need to be fixed as of now. For convenience we will pick
the simplest ordering such that we have in total (N1, . . . , NnE ). In analogy the
Sl(2)-orbit (2.2.57) we now define the charge orbit as

Q(q0|m1, . . . ,mE) ≡ exp
( nE∑
i=1

miN
−
i

)
q0 , (2.4.16)

with integers mi. The first non-trivial part of the construction is the use of the
matrices N−

i in (2.4.16). These are part of the commuting sl(2)s discussed in
subsection 2.2.4 and are non-trivially constructed from the Ni given in a particular
ordering. Clearly, we pick the ordering introduced before, which was partly dictated
by the considered path towards P . Note that the construction of N−

i depends on
all other Nj with j ≥ i. If one considers situations with nP < nE this implies that
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P ∈ ∆◦
1...nP

∆◦
1...nE

∆◦
1...nP −1

Figure 2.10: Illustration of the general setup showing a patch E around a point P which
lies on the intersection of nP singular divisors, but away from any further intersections
P ∈ ∆◦

1...nP
. Within the patch, there is also a further enhancement due to an intersection

of additional divisors at ∆◦
1...nE .

they contain information about the other divisors intersection in E even though P
can be away from them. Also note that for a one-parameter case one trivially has
N1 = N−

1 , such that (2.4.16) is a natural generalization of (2.4.4).
In order to fully specify the charge orbit (2.4.16) it is crucial to determine the

properties of the intersections in E such that a seed charge q0 exists that ensures
that Q(q0|m1, . . . ,mE) yields an infinite set of charges that become massless when
approaching P . Let us thus consider a general enhancement chain within E of the
form

Type A1 → . . . → Type AnP︸ ︷︷ ︸
location of P

→ . . . → Type AnE
, (2.4.17)

where we list the singularity types on the intersection loci ∆◦
1, ∆◦

12, . . . ,∆◦
1...nP

,
. . . , ∆◦

1...nE
and indicated by a box singularity of the locus ∆◦

1...nP
containing P .

Note that we have fixed an ordering of the first nP elements Ni according to the
considered path.

Let us now summarize the results that we will show in this section.
Existence and construction of a charge orbit. We find an infinite charge orbit Q
that becomes massless at the location of a point P ∈ ∆◦

1...nP
if one of the two

conditions are satisfied:
(R1) P is on a locus ∆◦

1...nP
carrying a Type IV singularity. In other words, if

Type AnP
= IV in the enhancement chain (2.4.17).
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(R2) P is on a locus ∆◦
1...nP

carrying a Type II or Type III singularity and there
exists a higher intersection, ∆◦

1...nP +1, . . . ,∆◦
1...nE

, on which the singularity
type increases. In other words, we have Type AnP

= II or III and the en-
hancement chain (2.4.17) contains either one of the enhancements II → III,
II → IV or III → IV after the singularity type at P .

Importantly, as indicated at the beginning of this section, these results are true
for any path approaching P that stays within the growth sector (2.4.15). We
will generally show these statements employing the full power of the mathematical
machinery introduced in section 2.2 and section 2.3. Furthermore, we will explicitly
construct the seed charge q0 for all of the enhancement chains allowed by (R1) and
(R2). Given a chain (2.4.17) satisfying (R1) and (R2), we show the existence of a
seed charge q0 with the following simple features:

Type AnP
6= IV :

{
N−

(i)q0 = 0 for all i with 1 ≤ i ≤ nP ,

N−
(j)q0 6= 0 for some j with nP < j ≤ nE ,

Type AnP
= IV :

{
N−

(i)q0 = 0 for all i with 1 ≤ i < nP ,

N−
(nP )q0 6= 0,

(
N−

(nP )
)2q0 = 0.

(2.4.18)

We will show that together with the fact that P is on an infinite distance locus,
this ensures that q0 is massless along any path within the growth sector (2.4.15).

To systematically establish these claims we first discuss in subsection 2.4.3 some
general facts about the mass of the states associated to Q and q0 when approach-
ing P . We then turn to our main tool and discuss in detail in subsection 2.4.4
configurations which consists of two intersecting divisors in E , i.e. we will study
the general nE = 2 configuration. We will not only see that (R1) and (R2) are
true in this case, but also describe how a given q0 can be tracked through an
enhancement. Concretely we will consider two types of enhancement chains

nP = 1 : Type A → Type B , (2.4.19)

nP = 2 : Type A → Type B , (2.4.20)

where, as above, the box indicates the location of the point P . In this simpler
situation we will easier to construct the relevant seed charges q0 and explain how in
the cases stated above induce an infinite, massless orbit when approaching P . The
general case of having an arbitrary enhancement chain (2.4.17) will be subsequently
studied in subsection 2.4.5.

Note that while this covers many possible singularities and singularity enhance-
ments in the Calabi-Yau moduli space, there are a number of enhancements that

98
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do not lead to a simple charge orbit that is both infinite and massless for any path
in a sector. For example, we will see that if the chain (2.4.17) ends on an enhance-
ment II → III with P being at the Type III locus, a natural candidate orbit with
the desired features exists only if one excludes certain paths in the sector. More
generally, we find that all chains (2.4.17) of the form

Type A1 → . . . → Type AnE −1 → Type II or Type III , (2.4.21)

do not lead to a natural infinite and massless orbit that is path-independent within
a sector by using the methods presented in this chapter. We will discuss possible
extensions to tackle these cases in more detail in subsection 2.4.7.

2.4.3 Masslessness of the charge orbit
Let us first discuss the conditions on the charge orbit Q defined in (2.4.16) such
that it consists of states that become light at P and can serve as the states of SDC.
To do that we have to determine the behaviour of the central charge |Z(Q)| when
approaching the point P . In other words we have to ensure that

M(Q) = |Z(Q)| −→ 0 . (2.4.22)

To identify sufficient conditions for (2.4.22) we use the general growth theorem
(2.2.72) for the Hodge norm ||Q||. In order to do that we note that the central
charge Z(Q) can also be written with the help of the Hodge inner product S(Ca, b̄)
associated to the Hodge norm (2.2.60). Using the fact that CΠ = −iΠ together
with (2.2.61) we find that |Z(Q)| can be written as

|Z(Q)| = |S(CΠ,Q)|
||Π||

≤ ||Q|| . (2.4.23)

where we have used the Cauchy-Schwarz inequality |S(Cv, ū)| ≤ ||v|| ||u||. We
thus conclude that if the norm ||Q|| goes to zero at the singularity, the charge
orbit Q yields massless states.

The general discussion of subsection 2.2.5 provides us with a powerful tool to
determine the behaviour of ||Q|| near the point P . More precisely, we introduced
the multi-variable growth theorem, which allows us to evaluate the asymptotic
behaviour of Q from its location in

Wl1

(
N(1)

)
∩Wl2

(
N(2)

)
∩ . . . ∩WlnP

(
N(nP )

)
, (2.4.24)

with the N(i) introduced in (2.2.35). Given our definition of Q, the restriction to
a growth sector and ordering as discussed in subsection 2.4.2, we would rather like
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to work with the N−
(i) constructed from the commuting sl(2)s containing N−

i . Here
another fact from the Sl(2)-orbit theorem of [76] can be applied, which states that

Wl

(
N(i)

)
= Wl

(
N−

(i)
)
. (2.4.25)

Hence, we can apply the results of subsection (2.2.5) by simply replacing N(i) →
N−

(i) when staying in the ordering of the Ni used to determine N−
i .

The next step is to establish that the growth of ||Q|| is identical to this of ||q0||.
In order to do that we have to show that the location of Q and q0 in the spaces

Wl1

(
N−

(1)
)

∩Wl2

(
N−

(2)
)

∩ . . . ∩WlnP

(
N−

(nP )
)
, (2.4.26)

agree, where we recall the notation N−
(n) =

∑n
i=1 N

−
i . Now the existence of nE

commuting sl(2)-triples (2.2.49) containing the N−
i becomes relevant. In fact, each

of these triples contain the operators Yi that gives the location of a vector v in
Wl

(
N−

(j)
)
. Using (2.2.52) and (2.2.40) one has

Y(j)v = ljv ⇒ v ∈ Wlj+3(N−
(j)) , (2.4.27)

where Y(j) = Y1 + . . . + Yj as in (2.2.52). Crucially, the location of q0 and N−
j q0

agree, which implies that if q0 is massless also exp(mnP +1N
−
nP +1+. . .+mnEN

−
nE

)q0

is massless. Concerning the growth and the masslessness thus only the terms
exp(m1N

−
1 + . . . + mnP

N−
nP

) are relevant. However, due to the exponential the
location of the highest li-components of Q and q0 agree. In fact, it was already
shown in [76] that the growth does not change upon multiplying by this exponential
term. We hence conclude that with respect to the leading growth one has

||Q|| ∼ ||q0|| , (2.4.28)

and hence Q is massless for all values of m1, . . . ,mE as long as q0 is massless.
Let us finally give a sufficient condition for having ||q0|| → 0 along any path

in the considered growth sector. Using the general growth theorem (2.2.72) with
(2.2.71), it is not hard show that ||q0|| → 0 is true if one has

q0 ∈ Wl1

(
N−

(1)
)

∩Wl2

(
N−

(2)
)

∩ . . . ∩WlnP

(
N−

(nP )
)
, (2.4.29)

with lnP
< 3, l1, . . . , lnP −1 ≤ 3 .

This condition uses that if li ≤ 3, i = 1, . . . , nP − 1 then we can estimate Im ti+1

Im ti <

λ−1 in (2.4.15) and hence find that ||q0|| vanishes for any path. Let us stress that
this statement of masslessness can only be obtained on the sector R1...nP

defined
in (2.4.15), due to the path dependence in the growth theorem.
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While we have discussed in detail the masslessness of the orbit at infinite dis-
tance, the distance conjecture further states that the states in the orbit should
become massless exponentially fast in the geodesic proper distance. This is much
more difficult to prove generally for multi-parameter settings since one must calcu-
late geodesics. We leave a detailed analysis of this for future work, but will give
some evidence that it is natural to expect that the exponential behaviour is uni-
versal. First we note that the masses of the BPS states are still power-law in the
Im ti, as was the case for the one-parameter case. Therefore, if the geodesic proper
distance grows only logarithmically in the Im ti the states will becomes massless
exponentially fast.

To see evidence for the logarithmic behaviour in the multi-parameter cases we can
approximate the behaviour of the field space metric through the leading behaviour
of the Kähler potential. The growth theorem applied to the Kähler potential
implies as shown in (2.2.78) that the asymptotic leading behaviour within a given
growth sector takes the form

Kasy = −
∑
i

ri log
(
Im ti

)
, (2.4.30)

where the ri = di − di−1, with d0 = 0, are positive integers no larger than 3. The
Kähler metric derived from this asymptotic Kähler potential, which we emphasise
may not necessarily be the leading behaviour of the metric, takes the form

gi̄ ∼ diag

(
ri

(Im ti)2

)
. (2.4.31)

The proper distance dγ(P,Q) along a path γ in field space with affine parameter s
then take the form

dγ(P,Q) =
∫
γ

√
gi̄
dti

ds

dt̄̄

ds
ds . (2.4.32)

If we restrict to a path with fixed Re ti we can write this as

dγ(P,Q) =
∫
γ

[∑
i

ri

(
d log Im ti

ds

)2] 1
2

ds . (2.4.33)

For sufficiently simple paths this manifestly grows logarithmically. The distance
d(P,Q) along a geodesic path is relevant for the exponential behaviour (2.4.1) of
the SDC and we expect that it shares the logarithmic behaviour in the asymptotic
regime.
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2.4.4 The two-divisor analysis
Most of our general arguments about enhancement chains and charge orbits will be
built on the case of just two singularity loci intersecting. To study this canonical
situation, we will consider a patch E in which two discriminant divisors ∆1, ∆2

with associated monodromy logarithms N1, N2 intersect. This is depicted in figure
2.11. The point P under consideration now can be at different locations in this
configuration. We can have either P ∈ ∆◦

1, P ∈ ∆◦
2, or P ∈ ∆◦

12 = (∆1 ∩ ∆2)◦.

P1

P2

P3E −→ charge orbit Q

∆1

∆2

Figure 2.11: The canonical case of two singular divisors intersecting on a local patch E in
moduli space. The considered infinite distance points P can be located either on ∆◦

1, ∆◦
2

or ∆◦
12 as exemplified by P1, P2, and P3.

The restriction of (2.4.16) to the two-dimensional case nE = 2 is given by

Q(q0|m1,m2) ≡ exp
(
m1N

−
1 +m2N

−
2

)
q0 . (2.4.34)

Recall that the definition of N−
1 , N−

2 requires to fix an ordering. We thus distin-
guish three cases

(1) P ∈ ∆◦
1 : ordering (N1, N2) → (N−

1 = N1, N
−
2 ) , (2.4.35)

(2) P ∈ ∆◦
2 : ordering (N2, N1) → (N−

1 = N2, N
−
2 ) ,

and the sector-dependent case

(3) P ∈ ∆◦
12 :

 (N1, N2) → (N−
1 = N1, N

−
2 ) path

{
Im t1

Im t2 , Im t2 > λ
}
,

(N2, N1) → (N−
1 = N2, N

−
2 ) path

{
Im t2

Im t1 , Im t1 > λ
}
.

(2.4.36)
Note that the construction of N−

2 is a rather non-trivial task, as outlined in the
appendices. Our aim is to identify the possible enhancements for which a q0 exists
such that the charge orbit is massless and infinite.
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2.4 Charge orbits and the Swampland Distance Conjecture

We can choose, with generality, to focus on the ordering (1) above and corre-
spondingly focus only on the upper growth sector in (2.4.36). We go through each
enhancement chain Type A → Type B and track candidate charges q0 through the
enhancement. In particular, we will check the conditions (R1) and (R2) and iden-
tify the q0 that induces an infinite massless orbit. Moreover, we will show how
our construction does not necessarily yield an infinite orbit that is massless on any
path within a sector if (R1) and (R2) are violated. We show that the enhance-
ment of type Ia → Type B do not admit infinite orbits by examining the example
Ia → IVd. The path dependence will be discussed for the example IIb → IIIc .
Finally, we will also examine chains with no type enhancement by discussing the
example IIb → IIc.

For every enhancement Type A → Type B, we denote the Sl(2)-splitting of
the limiting mixed Hodge structure of Type A and Type B by (F(1),W

(1)) and
(F(2),W

(2)), respectively. Then we have a pair of commuting sl(2)-operators
(N−

1 , N
+
1 , Y1) and (N−

2 , N
+
2 , Y2). The Deligne splitting of (F(i),W

(i)) is denoted
by

H3 (Y3,C) =
⊕
p,q

Ip,q(i) , Ip,q(i) =
⊕
k≥0

(
N−

(i)
)k
P p+k,q+k(N−

(i)) , (2.4.37)

where we have also displayed the decomposition (2.2.44) into primitive parts. The
bracket notation matches that introduced in (2.2.35) and (2.2.36), so for example
W

(2)
l ≡ Wl

(
N−

1 +N−
2
)
.

2.4.4.1 The enhancement Ia → IVd

Let us first discuss the enhancement chains Ia → IVd and Ia → IVd , i.e. where
we consider P at either on a Ia locus or a IVd locus. This will also allow us
to introduce the strategy on how we relate the Hodge-Deligne diamonds along
enhancements.

Focusing first on Ia → IVd, we recall that the conditions (2.3.12) imply that
a divisor of type Ia is at finite distance. Hence we do not necessarily expect any
infinite tower of massless states as we approach the type Ia divisor in our formalism.
We will check that we can indeed not identify an infinite charge orbit associated
to this locus.

We first spell out the decomposition into primitive parts (2.3.7) associated with
the mixed Hodge structure

(
F(1),W

(1)) of type Ia

H3 (Y3,C) = P 3(N−
1 ) ⊕

[
P 4(N−

1 ) ⊕N−
1 P

4(N−
1 )
]
, (2.4.38)
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where the P i(N−
1 ) are the primitive spaces defined in (2.3.8). Note the we have used

different colours for later expositional convenience. We depict the decomposition
into primitive parts also in the Hodge-Deligne diamond in figure 2.12.

a′

a

a

a′

Figure 2.12: The Hodge-Deligne diamond of type Ia with its decomposition into primitive
parts (2.4.38). The action of N−

1 are labelled by arrows, and we use colours to highlight
the primitive subspaces P 3(N−

1 ), P 4(N−
1 ) and their images under the action of N−

1 . Since
the two sl(2)-triples are commuting, the primitive subspace P 3(N−

1 ), P 4(N−
1 ) and their

images under N−
1 are preserved by N−

2 .

As discussed in section 2.3.2, the P k(N−
1 ) carry a pure Hodge structure of weight

k on ∆◦
1, while at ∆◦

12 these degenerate into mixed Hodge structures. Specifically,
we have a pure Hodge structure of weight 3 with Hodge number (0, a′, a′, 0) on
P 3(N−

1 ), and a pure Hodge structure of weight 4 with Hodge number (0, 0, a, 0, 0)
on P 4(N−

1 ). Then the second sl(2)-triple (N−
2 , N

+
2 , Y2) induces polarised mixed

Hodge structures polarised by N−
2 coming from variation of Hodge structures on

P 3(N−
1 ) and P 4(N−

1 ). We show the Deligne splitting of these two mixed Hodge
structures and their images under the action of N−

1 in the figure 2.13.11 The sum
(2.4.38) of the mixed Hodge structures then gives a mixed Hodge structure, Ip,q(2) ,
of type IVd with d = r + a where r ≥ 1 is an integer.

We can now identify an element q0 in Ip,q(2) that looks similar to the one occurring
in the one-parameter case (2.4.13). The relevant q0 is shown in figure 2.13, and it
can be written as

q0 ∼Z
(
N−

(2)
)2ã(2)

0 . (2.4.39)

We can see also from figure 2.13 that q0 is not in the kernel of N−
2 , and so the

11Note that we do not depict the full grid for the higher weight Hodge structures, see for example
appendix 2.E for this.
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ã(2)
0

r

a′ − ra′ − r

rq0

a

a

P 3(N−
1 ) P 4(N−

1 ) N−
1 P

4(N−
1 )

Figure 2.13: The left picture shows a mixed Hodge structure, determined by some integer
r ≥ 1, on P 3(N−

1 ). The middle picture shows a mixed Hodge structure on P 4(N−
1 ). The

right picture shows the image of the middle picture under the action of N−
1 . In these

diamonds, the coloured arrows label the action of N−
2 . The colourings are in agreement

with equation (2.4.38) and figure 2.12. The sum of these three Hodge-Deligne diamonds
is the diamond of

(
F(2), W (2)), associated to the mixed Hodge structure Ip,q

(2) , of type IVd.
The circles around the dots in the first diamond indicate the location of q0 and ã(2)

0 .

charge orbit (2.4.34) is indeed infinite and given by

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z. (2.4.40)

Next we would like to check if this infinite orbit is indeed massless on ∆◦
1. This

can of course be checked by using condition (2.4.29), but in this section of two-
divisor analysis we will also spell out the growths of Hodge norm explicitly to
familiarise the reader with the formalism. To do this we follow a similar procedure
to the one-parameter case in section 2.4.1. We first determine the location of q0,
i.e. q0 ∈ Wl1

(
N−

1
)

∩Wl2

(
N−

(2)
)
. The grades l1 and l2 can be read off from figures

2.12 and 2.13 as the height of the position of q0. This then readily gives

q0 ∈ W3
(
N−

1
)

∩W2
(
N−

(2)
)
. (2.4.41)

Since approaching a point P ∈ ∆◦
1 requires to send Im t1 → ∞ while keeping Im t2

finite we use the growth theorem (2.2.63) to read off that

||q0|| ∼ c (Im t1)0 , (2.4.42)

which implies that ||q0|| does not tend to 0 at P . Hence Q(q0|m1,m2), the charge
orbit, is not necessarily massless. In terms of the condition (2.4.29), we see that
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2 Infinite Distance Networks in Field Space and Charge Orbits

the grade relevant to the type Ia divisor is l1 = 3 and it obviously does not satisfy
(2.4.29).

Let us now turn to the enhancement Ia → IVd , i.e. to the case that P is located
at ∆◦

12. We now have to utilize the multi-parameter growth theorem as outlined
in section 2.2.5. Using the location (2.4.41) in the two-parameter growth (2.2.66)
we find

||q0|| ∼ c
1

Im t2
. (2.4.43)

From this growth we can easily see that the q0 defined in (2.4.39) indeed generates
a massless charge orbit, which is infinite due to (2.4.40). In order to discuss the
path dependence of this result, we first recall that we have fixed the upper sector
in (2.4.36). It is now obvious form (2.4.43) that q0 is massless along any path in
this sector approaching P at t1 = t2 = i∞. This confirms that (R1) applies in this
case.

2.4.4.2 The enhancement IIb → IVd

The other enhancement cases where the type increases can be analysed in the same
way. The case we discuss next is the enhancement IIb → IVd, again considering
the two possible locations for P .

We first consider placing the P on the type IIb divisor, i.e. IIb → IVd. The de-
composition into primitive parts of the type IIb mixed Hodge structure

(
F(1),W

(1))
is

H3 (Y3,C) = P 3(N−
1 ) ⊕

[
P 4(N−

1 ) ⊕N−
1 P

4(N−
1 )
]
. (2.4.44)

We depict this decomposition in the Hodge-Deligne diamond of IIb in figure 2.14.
The enhancement IIb → IVd is equivalent to a decomposition of the Hodge diamond
of IVd as shown in figure 2.15.

We can now identify the element in Ip,q(2) which gives q0 as

q0 ∼Z N
−
(1)ã

(2)
0 . (2.4.45)

Again from figure 2.15 we see that q0 is not in the kernel of N−
2 and so we have

an infinite orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0 + 1

2
m2

2
(
N−

2
)2q0, for m1,m2 ∈ Z . (2.4.46)

The location of q0 is determined as well from figure 2.15 to be

q0 ∈ W2
(
N−

1
)

∩W4
(
N−

(2)
)
. (2.4.47)
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b

b′b′

b

Figure 2.14: The Hodge-Deligne diamond of type IIb with its decomposition into primitive
parts (2.4.44). The action of N−

1 are labelled by arrows, and we use colours to highlight
the primitive subspaces P 3(N−

1 ), P 4(N−
1 ) and their images under the action of N−

1 . Since
the two sl(2)-triples are commuting, the primitive subspaces P 3(N−

1 ), P 4(N−
1 ) and their

images under N−
1 are preserved by N−

2 .

b′ − r

r

r

b′ − r

ã(2)
0

b q0

b

P 3(N−
1 ) P 4(N−

1 ) N−
1 P

4(N−
1 )

Figure 2.15: The left picture shows a mixed Hodge structure on P 3(N−
1 ), the middle

picture a mixed Hodge structure on P 4(N−
1 ), and the right picture shows the image of

the middle picture under the action of N−
1 . In these diamonds, the arrows label the

action of N−
2 . The colourings are in agreement with equation (2.4.44) and figure 2.14.

The sum of these three Hodge-Deligne diamonds is the diamond of
(
F(2), W (2)) of type

IVd. Again, q0 and ã(2)
0 are denoted explicitly.

Considering a path towards P in the Type II locus ∆◦
1 amounts to keeping t2 finite

and sending t1 = i∞. The growth theorem (2.2.63) thus implies ‖q0‖ ∼ c 1
Im t1 .

In accord with the condition (2.4.29) we thus find that q0 is massless at P . We
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2 Infinite Distance Networks in Field Space and Charge Orbits

therefore deduce that the full infinite charge orbit is massless on ∆◦
1. This case

belongs to the condition (R2) in section 2.4.2 and exemplifies one of the key results
of our work.

Having identified the orbit we can return to the point discussed in section 2.4.1,
that the orbit should not only contain an infinite number of type II states. This
can be easily checked to be the case. In particular, the orbit contains an infinite
number of elements with non-vanishing components in P 0,2 (∆◦

1), which have non-
trivial contraction with ã(1)

0 . The fact that the orbit is still infinite, even after a
quotient by type II charges as proposed in [5], will hold for all the cases where we
identify such an orbit.

We can also change the position of P , considering IIb → IVd instead. Following
a similar analysis as above, we find that the choice of seed charge

q0 ∼Z N
−
(1)N

−
(2)ã

(2)
0 , (2.4.48)

yields an infinite massless charge orbit Q(q0|m1,m2) at ∆◦
12. It is useful to notice

that we have used the N−
(2) which is at the type IVd divisor, and the N−

(1) which is at
the type IIb divisor just before the enhancement. This fact is crucial in defining the
corresponding general version of the charge orbit in table 2.6. We also remark that
such a q0 always exists, because the enhancement condition (2.3) for IIb → IVd

requires that b ≥ 1. This case belongs to the condition (R1) in section 2.4.2.

2.4.4.3 The enhancement IIIc → IVd

Turning to the case IIIc → IVd we follow the same procedure as the previous two
cases, first considering IIIc → IVd. The decomposition into primitive parts of the
type IIIc mixed Hodge structure

(
F(1),W

(1)) is

H3 (Y3,C) = P 3(N−
1 ) ⊕

[
P 4(N−

1 ) ⊕N−
1 P

4(N−
1 )
]

⊕
[
P 5(N−

1 ) ⊕N−
1 P

5(N−
1 ) ⊕

(
N−

1
)2
P 5(N−

1 )
]
.

(2.4.49)

We depict this decomposition in the Hodge-Deligne diamond of IIIc in figure 2.16.
The enhancement IIIc → IVd is equivalent to a decomposition of the Hodge dia-
mond of IVd as shown in figure 2.17.

In this case we have that q0 is given by

q0 ∼Z
(
N−

(1)
)2ã(2)

0 . (2.4.50)

and we see that there is an infinite orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z . (2.4.51)
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c′ − 1c′ − 1

c

c

Figure 2.16: The Hodge-Deligne diamond of type IIIc with its decomposition into primitive
parts (2.4.49). The action of N−

1 are labelled by arrows, and we use colours to highlight
the primitive subspaces P 3(N−

1 ), P 4(N−
1 ), P 5(N−

1 ) and their images under the action of
N−

1 . Since the two sl(2)-triples are commuting, the primitive subspaces P 3(N−
1 ), P 4(N−

1 ),
P 5(N−

1 ) and their images under N−
1 are preserved by N−

2 .

c′ − r − 1

r

r

c′ − r − 1

c

c

ã(2)
0

q0

P 3(N−
1 ) P 4(N−

1 ) ⊕N−
1 P

4(N−
1 )

P 5(N−
1 ) ⊕N−

1 P
5(N−

1 )

⊕
(
N−

1

)2
P 5(N−

1 )

Figure 2.17: Pictures showing the mixed Hodge structures induced on P 3(N−
1 ), P 4(N−

1 )
and P 5(N−

1 ), together with their images under the action of N−
1 and (N−

1 )2. In these
diamonds, the coloured arrows label the action of N−

2 . The colourings are in agreement
with (2.4.49) and figure 2.16. The sum of these three Hodge-Deligne diamonds is the
diamond of (F(2), W (2)) of type IVd. As before, q0 and ã(2)

0 are denoted explicitly.

The location q0 ∈ W1(N−
1 ) ∩ W2(N−

(2)) implies by using (2.2.63) the asymptotics
‖q0‖ ∼ c

(
Im t1

)−2 in the limit t1 → i∞. Therefore, again for P ∈ ∆◦
1 we have an

infinite massless charge orbit. This case belongs to the condition (R2) in section
2.4.2.

109



2 Infinite Distance Networks in Field Space and Charge Orbits

We can also explore the candidate q0 for the enhancement IIIc → IVd and
we find the same seed q0 as in (2.4.50). The orbit stays massless approaching
∆12 along any path in the considered growth sector. It is useful to notice that
in defining the seed charge q0 around IVd, we are using the N−

(1) which is at the
type IIIc divisor just before the enhancement. This fact is crucial in defining the
corresponding general charge orbit in table 2.6. This case belongs to condition
(R1) in section 2.4.2.

2.4.4.4 The enhancement IIb → IIIc

Let us next consider IIb → IIIc and first focus on IIb → IIIc. Following the
same procedure as the previous cases, we refer to equation (2.4.44) and figure 2.14
for the decomposition into primitive parts of the type IIb mixed Hodge structure(
F(1),W

(1)). Then the enhancement IIb → IIIc is equivalent to a decomposition of
the Hodge diamond of IIIc as shown in figure 2.18.

b′ − r

r

r

b′ − r

ã(2)
0

b− 2

q0

b− 2

P 3(N−
1 ) P 4(N−

1 ) N−
1 P

4(N−
1 )

Figure 2.18: The left picture shows a mixed Hodge structure, determined by some non-
negative integer r, on P 3(N−

1 ). The middle picture shows a mixed Hodge structure on
P 4(N−

1 ). The right picture shows the image of the middle picture under the action of N−
1 .

In these diamonds, the coloured arrows label the action of N−
2 . The colourings are in

agreement with equation (2.4.44) and figure 2.14. The sum of these three Hodge-Deligne
diamonds is the diamond of

(
F(2), W (2)), associated to the mixed Hodge structure Ip,q

(2) ,
of type IIIc. The circle around the dot in the last diamond indicates the location of q0,
and the circle around the dot in the middle diamond indicates the location of ã(2)

0 .

In this case, the q0 is chosen to be

q0 ∼Z N
−
(1)ã

(2)
0 . (2.4.52)

110



2.4 Charge orbits and the Swampland Distance Conjecture

and we see that the orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z (2.4.53)

is indeed infinite.
The location of q0 is determined to be

q0 ∈ W2
(
N−

1
)

∩W3
(
N−

(2)
)
. (2.4.54)

This implies that for P on ∆◦
1, i.e. when taking the limit t1 → i∞, we find by

using (2.2.63) that ||q0|| ∼ c (Im t1)−1. Together with (2.4.53) we have an infinite
massless charge orbit. This case belongs to the condition (R2) in section 2.4.2.

We now turn to the situation IIb → IIIc . As we will show, in this case, the
masslessness of the charge orbit around the type IIIc divisor will depend on the path
along which we approach it. For concreteness our choice of q0 is still (2.4.52), but
it is important to note that one cannot find any other q0 that generates an infinite
orbit and is path-independently massless. The fate of the orbit as we approach the
point P on the type IIIc divisor is different from the previous cases. In fact, using
the growth theorem (2.2.66) for the q0-locations (2.4.54) one finds

||q0|| ∼ c
Im t2

Im t1
(2.4.55)

in the upper growth region in (2.4.36). We thus conclude that the charge orbit
remains massless at P if we approach it with a path satisfying

Massless Path : Im t2 → ∞, Im t1 → ∞ , such that Im t2

Im t1
→ 0 . (2.4.56)

The only other possible path, compatible with the considered growth sector, is

Massive Path : Im t2 → ∞, Im t1 → ∞ , such that Im t2

Im t1
→ λ > 0 . (2.4.57)

In other words, we cannot claim that the considered q0 is actually massless inde-
pendent of the path. Therefore, this case was excluded from the conditions (R1),
(R2) specifying our general construction. Clearly, in this case also the location
(2.4.54) of q0 does not satisfy the condition (2.4.29). This case belongs to the
situation described at the end of section 2.4.2.

2.4.4.5 A case without type enhancement IIb → IIc

To end our two-divisor analysis let us explore a case where no type enhancement
is present. As usual, the decomposition into primitive parts of the type IIb mixed
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Hodge structure
(
F(1),W

(1)) is given by equation (2.4.44), and it is depicted in
figure 2.14. Then IIb → IIc is equivalent to a decomposition of the Hodge-Deligne
diamond of type IIc shown in figure 2.19.

b′ − r

r

r

b′ − r

ã(2)
0b

b

P 3(N−
1 ) P 4(N−

1 ) N−
1 P

4(N−
1 )

Figure 2.19: The left picture shows a mixed Hodge structure on P 3(N−
1 ) of weight 3

with Hodge numbers (0, b′, b′, 0). The middle picture shows a mixed Hodge structure on
P 4(N−

1 ) of weight 4 with Hodge numbers (0, 1, b, 1, 0). The right picture shows the image
of the middle picture under the action of N−

1 . In these diamonds, the coloured arrows
label the action of N−

2 . The colourings are in agreement with equation (2.4.44) and figure
2.14. The sum of these three Hodge-Deligne diamonds is the diamond of (F(2), W (2)) of
type IIc. The circle around the dot in the middle diamond indicates the location of ã(2)

0 .

If we try to find a q0 such that the generated orbit is infinite and massless at
either IIb or IIc following the methods in previous cases, then we realise that such
a q0 does not exist. In particular if b = c, meaning that there is no enhancement
at all, then the second sl(2)-triple is trivial

(N−
2 , N

+
2 , Y2) = (0, 0, 0). (2.4.58)

Nevertheless, this case is relevant in the discussion of multi-divisor enhancements
in the following section. To exemplify this we consider the following simple case of
a 3-term enhancement chain

IIa → IIb → IIIc . (2.4.59)

In this chain we have already considered in (2.4.52) a q0 from the last step of
type enhancement. The next step is to estimate the Hodge norm of q0 and this
requires the location of q0 in every monodromy weight filtration of the mixed
Hodge structures of type IIa, IIb and IIIc. According to the analysis in subsection
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2.4.4.4, we have q0 staying in W2(N−
(2)) and W3(N−

(3)). Then the analysis in this
section tells us that generally q0 ∈ W3(N−

(1)). It could still be possible that we
have q0 ∈ W2(N−

(1)). However, either of these two possible locations satisfies the
massless condition (2.4.29) and hence implies that the charge orbit generated by
q0 is massless at P located at the type IIb singular locus. Analogously we can
also analyse the other cases without type enhancements Ia → Ib, IIIa → IIIb and
IVa → IVb. The results of this analysis are similar to the IIa → IIb case and
will be used to justify the analysis in the next section. In particular, it will allow
us to introduce the notation (2.4.67), which indicates that all enhancements of
non-changing type will not influence our constructions.

This completes our two-divisor analysis. We will now use these results to perform
the general multi-divisor analysis.

2.4.5 The general multi-divisor analysis

In the previous subsection we have shown when in the case of two intersecting
divisors it is possible to identify an infinite massless charge orbit depending on the
type of singularity of the divisors and at the intersection as well as the location of P .
In this subsection we will generalise the analysis to multiple intersecting divisors.
We will first give all possible enhancement chains and then stepwise apply the two-
divisor result by treating the two intersecting divisors which themselves are loci of
intersection of an arbitrary number of divisors. This is the general setup described
in subsection 2.4.2. By explicitly constructing q0 we will thus be able to show
the conditions (R1), (R2) for it to generate an infinite massless charge orbit when
approaching P .

2.4.5.1 Masslessness of the general charge orbit

In this subsection we show that one can construct for each enhancement chain
(2.4.17) an appropriate seed charge q0 that defines a massless state when approach-
ing P along any path in a fixed growth sector (2.4.15). Crucially, as stated already
in subsection 2.4.2, such a q0 only exists if the singularity type at the location of
P is either II, III, IV. These are also the singularities that occur if we demand P

to be at infinite distance.
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We thus have to consider the three following general enhancement chains

Ia1 � ... � Iak
� IIb1 � ... � IIbm � ... (2.4.60)

Ia1 � ... � Iak
� IIb1 � ... � IIbm � IIIc1 � ... � IIIcn � ... (2.4.61)

Ia1 � ... � Iak
� IIb1 � ... � IIbm

� IIIc1 � ... � IIIcn
� IVd1 � ... � IVdr

� ... ,

(2.4.62)

where the box indicates the singularity at the location of P . Note that k, m, n, and
r are integers and we allow for chains that do not admit all types. For example, in
(2.4.60), (2.4.61), and (2.4.62) we can have k = 0, i.e. start the enhancement at type
II. Furthermore, let us stress that we have only displayed the enhancement chains
until the singularity at P . This part will be relevant in studying the masslessness
of the associated q0 as we will see below. In order to show that the full orbit Q
is infinite, the enhancements after the singularity at P become relevant. We will
discuss these parts in subsection 2.4.5.2.

It will turn out to be sufficient to only focus on the type I, II, III, IV without
having information about the index required in the complete classification of sub-
section 2.3.1. Since we also want to simplify the expressions, we thus introduce the
shorthand notation

I ≡ Ia1 → . . . → Iak
,

II ≡ IIb1 → . . . → IIbm , (2.4.63)
III ≡ IIIc1 → . . . → IIIcn

,

IV ≡ IVd1 → . . . → IVdp
.

Now it is straightforward to display all appearing enhancement chains that can
occur before the singularity at P . We list them in the first column of table 2.6.

The second column of table 2.6 lists the seed charge q0 that we propose for the
corresponding chain. This charge has been constructed such that it has a universal
location in the spaces W (N−

(k)) relevant in the growth theorem of subsection 2.2.5.
In fact, tracking q0 through the various enhancements as in subsection 2.4.4 we
find for the three general chains (2.4.60)-(2.4.62) the locations

P ∈ Type II locus : q0 ∈ W3
(
N−

(I)
)

∩W2
(
N−

(II)
)

(2.4.64)

P ∈ Type III locus : q0 ∈ W3
(
N−

(I)
)

∩W2
(
N−

(II)
)

∩W1
(
N−

(III)
)

(2.4.65)

P ∈ Type IV locus : q0 ∈ W3
(
N−

(I)
)

∩W2
(
N−

(II)
)

∩W1
(
N−

(III)
)

∩W2
(
N−

(IV)
)
,

(2.4.66)
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Chain q0 location of q0

II → · · · N−
(nP )ã

(nE )
0 W2

(
N−

(II)

)
I → II → · · · N−

(nP )ã
(nE )
0 W3

(
N−

(I)

)
∩ W2

(
N−

(II)

)
III → · · ·

(
N−

(nP )

)2ã(nE )
0 W1

(
N−

(III)

)
I → III → · · ·

(
N−

(nP )

)2ã(nE )
0 W3

(
N−

(I)

)
∩ W1

(
N−

(III)

)
II → III → · · ·

(
N−

(nP )

)2ã(nE )
0 W2

(
N−

(II)

)
∩ W1

(
N−

(III)

)
I → II → III → · · ·

(
N−

(nP )

)2ã(nE )
0 W3

(
N−

(I)

)
∩ W2

(
N−

(II)

)
∩ W1

(
N−

(III)

)
IV → · · ·

(
N−

(nP )

)2ã(nE )
0 W2

(
N−

(IV)

)
I → IV → · · ·

(
N−

(nP )

)2ã(nE )
0 W3

(
N−

(I)

)
∩ W2

(
N−

(IV)

)
II → IV → · · · N−

(nP −r)N
−
(nP )ã

(nE )
0 W2

(
N−

(II)

)
∩ W2

(
N−

(IV)

)
III → IV → · · ·

(
N−

(nP −r)

)2ã(nE )
0 W1

(
N−

(III)

)
∩ W2

(
N−

(IV)

)
I → II → IV → · · · N−

(nP −r)N
−
(nP )ã

(nE )
0 W3

(
N−

(I)

)
∩ W2

(
N−

(II)

)
∩ W2

(
N−

(IV)

)
I → III → IV → · · ·

(
N−

(nP )

)2ã(nE )
0 W3

(
N−

(I)

)
∩ W1

(
N−

(III)

)
∩ W2

(
N−

(IV)

)
II → III → IV → · · ·

(
N−

(nP −r)

)2ã(nE )
0

(
N−

(II)

)
∩ W1

(
N−

(III)

)
∩ W2

(
N−

(IV)

)
I → II → III → IV → · · ·

(
N−

(nP −r)

)2ã(nE )
0

W3
(
N−

(I)

)
∩ W2

(
N−

(II)

)
∩W1

(
N−

(III)

)
∩ W2

(
N−

(IV)

)
Table 2.6: The table contains all possible enhancement chains that can arise before the
singularity at P . We use the notation (2.4.63) in the first column. The q0 associated to
each chain is listed in the second column. Note that N−

(nP −r) is the element associated
to the last type III singularity in the locus, with r as in (2.4.62). The third column lists
the location of q0 using the notation introduced in (2.4.67).

where we have introduced the shorthand notation 12

12Note the unusual pattern in W2
(
N−

(II)

)
, which contains an additional parameter k′ with k+1 ≤

k′ ≤ k + m. The crucial information here is that if Type AnP
= II, then we must have q0 ∈

W2
(
N−

(nP )

)
to ensure masslessness. Before the end of the type II chain, the location of an q0

could be pushed up by 1 to W3 but this will not affect the masslessness. In W
(
N−

(I)

)
,W
(
N−

(III)

)
and W

(
N−

(IV)

)
, such a phenomenon is not present. This justifies the shorthand notation

(2.4.67).
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W3
(
N−

(I)
)

≡ W3
(
N−

(1)
)

∩ ... ∩W3
(
N−

(k)
)
,

W2
(
N−

(II)
)

≡ W3
(
N−

(k+1)
)

∩ ... ∩W3
(
N−

(k′)
)

∩W2
(
N−

(k′+1)
)

∩ ... ∩W2
(
N−

(k+m)
)
,

W1
(
N−

(III)
)

≡ W1
(
N−

(k+m+1)
)

∩ ... ∩W1
(
N−

(k+m+n)
)
,

W2
(
N−

(IV)
)

≡ W2
(
N−

(k+m+n+1)
)

∩ ... ∩W2
(
N−

(k+m+n+r)
)
.

(2.4.67)

Note that the Wl(N−
(i)) in each line (2.4.64)-(2.4.66) is always Wl

(
N−

(nP )
)

corre-
sponding to the location of P . The shorthand notation (2.4.67) is also used in the
last column of table 2.6 giving the location of the listed q0.

We now collected all the information to show that q0 becomes massless along any
path approaching P within a growth sector. This is straightforward since we have
already established the general result (2.4.29), which gives a sufficient condition for
this behaviour. It is easy to check using the last column of table 2.6 that (2.4.29)
is satisfied.

2.4.5.2 Infiniteness of the general charge orbit

Having shown the masslessness of the charge orbit Q(q0|m1, . . . ,mnE ), we will in
this subsection check its infiniteness. The procedure is similar to the one used in
subsection 2.4.4. Let us first repeat the definition of the charge orbit (2.4.16) and
expand the exponential

Q(q0|m1, . . . ,mnE ) = exp
( nE∑
i=1

miN
−
i

)
q0

= q0 +
nE∑
i=1

miN
−
i q0 + . . . , (2.4.68)

where each mi is an integer, and the . . . indicate terms that are at least quadratic
in mi.

Furthermore, we notice that if there exists an N−
(k) with k taking any value

k = 1, . . . , nE which does not annihilate q0 then the orbit is infinite. To see this,
we set m1 = · · · = mk−1 = mk = m and mk+1 = · · · = mnE = 0. The orbit reduces
to

Q(q0|m, . . . ,m, 0, . . . , 0) = q0 +mN−
(k)q0 + 1

2
m2 (N−

(k)
)2q0 + 1

6
m3 (N−

(k)
)3q0,

(2.4.69)
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where we have used
(
N−

(k)
)4q0 = 0. If the orbit Q(q0|m, . . . ,m, 0, . . . , 0) is not

infinite, then there is an m′ 6= m such that

Q(q0|m′, . . . ,m′, 0, . . . , 0) = Q(q0|m, . . . ,m, 0, . . . , 0) ,

hence N−
(k)q0 = 0. This contradiction implies that the orbit Q(q0|m1, . . . ,mnE ) is

infinite, provided the existence of an N−
(k) that does not annihilate q0.

Let us now show that such an N−
(k) exists for the enhancement chains (2.4.17)

satisfying the conditions (R1) or (R2) of subsection 2.4.2. The simpler condition
to show is (R1), which considers enhancement chains for in which P is at a Type
IV locus. In this case the N−

(k) not annihilating the seed charge q0 is simply
N−

(k) = N−
(nP ). This immediately follows from the fact that in the Type IV case

one has
(
N−

(nP )
)3ã(nE )

0 6= 0, which implies that the relevant q0s given in table 2.6
satisfy N−

(nP )q0 6= 0.
Turning to condition (R2), we recall that it states that for every enhancement

chain with P at a Type II or Type III locus at least one further enhancement has
to occur after the location of P . Considering this enhancement to occur from the
(nP + j − 1)-term to (nP + j)-term the general expressions of the relevant chains
are

· · · → IIb1 → · · · → IIb
at nP

→ · · · → IIbm
→ IIIc1

at (nP +j)
→ · · · ,

· · · → IIb1 → · · · → IIb
at nP

→ · · · → IIbm
→ IVd1

at (nP +j)
→ · · · , (2.4.70)

· · · → IIIc1 → · · · → IIIc
at nP

→ · · · → IIIcn → IVd1
at (nP +j)

→ · · · .

We claim that in these cases the N−
(k) not annihilating q0 is given by N−

(k) =
N−

(nP +j). Indeed, since the type of the singularity increases, also the highest
power of N−

(i) not annihilating ã(nE )
0 increases. Using the relevant definitions of

q0 of table 2.6 this implies that N−
(nP +j) does not annihilate q0. In conclusion we

have found for chains satisfying (R1) and (R2) relevant N−
(k) that do not annihi-

late the seed charge q0 and thus have shown the infiniteness of the charge orbit
Q(q0|m1, . . . ,mnE ).

2.4.6 A two parameter example: mirror of P(1,1,1,6,9)[18]
The discussions so far have been general, but rather abstract. In this section we
show how to explicitly realise our approach to identifying the orbit. We consider the
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degree-18 Calabi-Yau hypersurface inside the weighted projective space P(1,1,1,6,9).
This hypersurface is denoted by Ỹ3 = P(1,1,1,6,9)[18] and has h1,1(Ỹ3) = 2. The
Calabi-Yau hypersurface of which we will consider the complex structure moduli
space is the mirror Y3 of Ỹ3. Note that the geometry and the periods of the pair
(Ỹ3, Y3) have been studied in detail in [119] as one of the early applications of
mirror symmetry.

We will consider a patch E containing the large complex structure point of Y3,
which by mirror symmetry corresponds to the large volume point of Ỹ3. Hence we
can use the formulas of subsection 2.3.4 to derive the monodromy logarithmsN1, N2

and determine the corresponding singularity type. The Calabi-Yau threefold Ỹ3

sits inside the toric ambient space with toric data

l(1) l(2)

K 1 0 0 0 0 −6 0
D0 1 0 0 −1 −1 1 −3
D1 1 1 0 −1 −1 0 1
D2 1 0 1 −1 −1 0 1
D3 1 −1 −1 −1 −1 0 1
D′ 1 0 0 2 −1 2 0
D′′ 1 0 0 −1 1 3 0

(2.4.71)

where the first column labels the toric divisors. Restricting all divisors to the
hypersurface Ỹ3 in this ambient space, the generators of the Kähler cone are chosen
to be

J1 = D0 + 3D1 , J2 = D1 . (2.4.72)

The intersection numbers Kijk = Ji · Jj · Jk in this bases are determined to be 13

K111 = 9 , K112 = 3 , K122 = 1 , K222 = 0 . (2.4.73)

13While not relevant later on, we note that the second Chern class for this example yields b1 =
1

24 c2 · J1 = 17
4 , b2 = 1

24 c2 · J2 = 3
2 .
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Inserting (2.4.73) into the general expression (2.3.21) we derive

N1 =



0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

− 9
2 −9 −3 0 0 0

− 3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0


, N2 =



0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
− 1

2 −3 −1 0 0 0
0 −1 0 0 0 0
0 3

2 0 0 −1 0


.

(2.4.74)
Furthermore, using table 2.5 we immediately determine the singularity types

∆1 =
{
t1 = i∞

}
: N1 Type IV1 ,

∆2 =
{
t2 = i∞

}
: N2 Type III0 , (2.4.75)

∆12 =
{
t1 = i∞, t2 = i∞

}
: N1 +N2 Type IV2 ,

where we note that ∆12 is nothing else then the large complex structure or large
volume point and hence has the maximal enhancement IVh2,1 .

In order to construct the charge orbits, we next have to explicitly construct
the vector ã(2)

0 , i.e. the limiting vector at ∆12, and the two nilnegative elements
N−

1 , N−
2 in the commuting sl(2)-pair associated to the enhancements III0 → IV2

and IV1 → IV2. The corresponding derivation is lengthy, but follows the steps
outlined in subsection 2.2.4. The details of this computation are presented in the
appendices 2.B, 2.C and 2.D. Firstly, one uses the large complex structure periods
rotated to an R-split representation to derive

ã(2)
0 =

(
1, 0, 0, −17

4 , −3
2 , 0
)T

. (2.4.76)

The commuting sl(2)-pair for the enhancement IV1 → IV2 are then shown to be

N−
1 =



0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

− 9
2 −9 −3 0 0 0

− 3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0

 , N−
2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

3 0 0 0
0 0 0 0 0 0

 . (2.4.77)
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In contrast, for the enhancement III0 → IV2 we find the sl(2)-pair

N−
1 =



0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
− 1

2 −3 −1 0 0 0
0 −1 0 0 0 0
0 3

2 0 0 −1 0

 , N−
2 =



0 0 0 0 0 0
−1 0 0 0 0 0

3
2 0 0 0 0 0

− 15
4 − 9

4 − 3
2 0 0 0

− 3
2 − 3

2 −1 0 0 0
3
2

9
4

1
2 −1 3

2 0

 .

(2.4.78)
With these results we immediately compute the infinite charge orbits for this patch
in moduli space. Using (2.4.34) for the cases (2.4.35), (2.4.36) and inserting q0

proposed in table 2.6 we find

(1) P ∈ ∆◦
1 : Q = (0, 0, 0, 9, 3,−9m1)T

,

(2) P ∈ ∆◦
2 : Q = (0, 0, 0, 1, 0,−m2)T

, (2.4.79)

(3) P ∈ ∆◦
12 :


Q = (0, 0, 0, 9, 3,−9m1)T for

{
Im t1

Im t2 , Im t2 > λ
}
,

Q = (0, 0, 0, 1, 0,−m2)T for
{

Im t2

Im t1 , Im t1 > λ
}
.

Let us stress that by our general arguments all three orbits are infinite and massless
at the location of the P under consideration. The infiniteness is immediate due to
the dependence on m1,m2, while the masslessness can alternatively be explicitly
checked by a tedious but straightforward computation using the results of appendix
2.D. It is also nice to see that the charges are actually quantized. This is non-trivial,
since ã(2)

0 as well as N−
1 , N−

2 contain rational entries.
We close this section by discussing how the general properties and ideas we have

outlines are realised in the charge orbits (2.4.79). Firstly, we recall that ∆◦
2 is a

Type III locus and hence the one parameter arguments of subsection 2.4.1 and
reference [5] would suggest that there is no infinite orbit. Indeed the orbit Q is
independent of m1 and hence not generated by the N−

1 = N2 associated to ∆◦
2.

However, we see in (2.4.79) that this orbit is ‘inherited’ from the enhancement
locus, i.e. induced by the second monodromy logarithm N−

2 not directly associated
to ∆◦

2. Secondly, we stress that the expression for Q in case (3) is indeed path
dependent. If one approaches ∆◦

12 via a path almost touching ∆◦
1, we find that the

orbit agrees with the one of case (1). This is not surprising, since this is the infinite
orbit of the Type IV1 singularity along ∆◦

1 which is transferred to ∆◦
12. Moving

towards ∆◦
12 along a path almost touching ∆◦

2 we find a completely different charge
orbit depending on m2.
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2.4.7 Discussion on properties of the charge orbit
To summarise, in this section we have shown how to identify infinite massless
charge orbits using data which is not completely local but rather associated to a
patch where singular divisors can intersect. In particular, this significantly extends
the infinite charge orbits that were identified in [5]. It also forms a starting point
towards a global understanding of the infinite towers of states associated to the
monodromies in the full moduli space.

A first point to stress is that our current definition of Q and q0 vitally uses
the commuting sl(2) algebras (2.2.49). In particular, this fact has been exploited
in subsection 2.4.3 to show that Q and q0 have the same Hodge norm growth.
However, the usage of the commuting sl(2) basis containing N−

i could be just an
intermediate step to show the desired results. In fact, it is an important strategy
of [76, 113] to translate the final statement back to the formulation with the Ni.
It may be that a similar result can be shown for our constructions. Therefore, a
natural candidate charge orbit is then

Q̃(q̃0|m1, . . . ,mnE ) ≡ exp
( nE∑
i=1

miNi

)
q̃0 , (2.4.80)

which is the natural analogue to (2.4.16). In order to identify the seed charge q̃0,
we would then require that it satisfies the massless condition (2.4.29) within the
monodromy weight filtration W

(
N(i)

)
in order to generate an orbit that becomes

massless when approaching P within a growth sector. This requirement is natural
due to the fact that W

(
N−

(i)
)

= W
(
N(i)

)
as already stated in (2.4.25). More

concretely, unpacking the filtration W
(
N(i)

)
with definition (2.2.38) and using the

concrete Hodge-Deligne diamonds of singularity types shown in table 2.1, we see
that the seed charge has to obey, for every i = 1, . . . , nP − 1:

• If Type Ai = I or II, then N(i)q̃0 = 0;
• If Type Ai = III, then there exists charge vectors bi and ui with N(i)ui = 0

such that q̃0 = N(i)bi + ui;
• If Type Ai = IV, then there exists charge vectors wi and xi with N(i)wi = 0

and
(
N(i)

)3xi = 0 such that q̃0 = wi +N(i)xi.

Furthermore, the following conditions are imposed at position nP :

• If Type AnP
= II, then there is a charge vector a such that q̃0 = N(nP )a;

• If Type AnP
= III, then there is a charge vector unP

with
(
N(nP )

)2unP
= 0

such that q̃0 = N(nP )unP
;
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• If Type AnP
= IV, then there are charge vectors c and wnP

with(
N(nP )

)2wnP
= 0, such that q̃0 =

(
N(nP )

)2c +N(nP )wnP
.

Finally to ensure infiniteness, we require the existence of an N(j) with nP ≤ j ≤ nE

such that N(j)q̃0 6= 0. Applying the growth theorem as before we see that the seed
charge q̃0 satisfying the above properties becomes massless when approaching P

within a growth sector if either of the two conditions (R1), (R2) of subsection
2.4.2 are satisfied. Moreover the resulting Q̃ is infinite by the same reasoning
in subsection 2.4.5.2. We would then claim that this Q̃ becomes massless when
approaching P within the same growth sector as q̃0. Let us stress, however, that
establishing full equivalent to the results of subsections 2.4.3 and 2.4.5, including
the explicit constructions of table 2.6, without using the commuting basis would
require more work and will be left for the future.

We have discussed how the intersection points can be utilised to build the infinite
distance networks in moduli space, which follow the rules of enhancement in table
2.3. If we consider such a network we can identify orbits in patches which contain
type IV loci or intersections which enhance the singularity type.14 Once such an
orbit is identified, it will retain its identity along any finite distance along the
singularity curve moving away from this local patch. This is because the limiting
Hodge structure is defined over the full singular locus. If we move an infinite
distance away, so towards a different intersection with some other infinite distance
locus, then it is more difficult to track this orbit. We actually expect that the
charge orbit can be ‘transferred’ between singular divisors which intersect even
when there is no enhancement of the singularity type. By this we mean that a set
of charges identified by a charge orbit on one divisor has a corresponding set on
the divisor which intersects it. This is supported by tracking the Hodge-Deligne
diamonds from one divisor to the other through the intersection. Should we be
able to track the orbit this way, we would be able to identify an infinite charge
orbit over a full intersecting infinite distance network. However, we leave a detailed
study of this possibility for future work.

In [5] it was shown that the monodromy charge orbit is fully populated by BPS
states as long as one of the charges corresponds to a BPS state. This was shown
for the only case where such an orbit could be identified, which is for type IV
singularities. In this chapter, we are not able to show such a connection between
the charge orbit and BPS states. This is not unexpected, the argument of [5] was
based on walls of marginal stability. While being away from a wall of marginal

14Note that this implies the identification always holds in the large volume regime of the mirror.
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stability ensures that a BPS state remains in the spectrum, this is not a necessary
condition, i.e. there are many examples of BPS states which by, charge and energy
conservation alone, could decay to other BPS states. So one expects that the
spectrum of BPS states has some finer underlying structure. The utilisation of
the charge orbits in this chapter amounts to a proposal that this finer structure
includes the population of charge orbits by BPS states, at least asymptotically
towards infinite distance.

2.5 Conclusions
In this chapter we studied aspects of the Swampland Distance Conjecture in the
complex structure moduli space of Calabi-Yau manifolds. In this context, the
set of infinite distance loci in field space can be understood both generally and
precisely. We utilised the powerful mathematical tools of the orbit theorems and
mixed Hodge structures to analyse infinite distance points in complete generality,
so any infinite distance point in any Calabi-Yau threefold. We showed that any
infinite distance point is part of a locus in moduli space to which we can associate
a set of discrete topological data, its Hodge-Deligne diamond, that defines its key
characteristics. We also showed how to extract this data from the monodromy,
associated to axion-type shifts, about the infinite distance locus. The data can
be used to completely classify infinite distance loci in the moduli space, and this
classification includes an understanding of how different infinite distance loci can
intersect and change their type. In this way, the different types of infinite distance
loci form a rich intersecting infinite distance network. We showed that there are
rules for how such intersections can occur and so for which kinds of infinite distance
networks can be built. These rules and networks therefore are uncovering a new
perspective on the distance conjecture where global structures in the field space
are emerging.

The intersections between different types of infinite distance loci are clearly cen-
tral to this global perspective, and so naturally most of the investigation was fo-
cused on them. Within a local patch in field space containing such an intersection,
we were able to reach a significant number of results regarding the nature of the
infinite tower of states of the distance conjecture. More precisely, to each infinite
distance locus one can associate a nilpotent matrix N , and when the loci intersect
the different matrices commute. However, a remarkable result of [76], known as
the general Sl(2)-orbit theorem, shows that the nilpotent matrices can further be
completed into fully commuting sl(2) algebras. This can be thought of as a type of
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factorisation of the infinite distance loci, and greatly simplifies the analysis of the
intersections. In particular, it allows for a rather precise identification of an infinite
tower of states in terms of a charge orbit. This orbit generalises the monodromy
orbits presented in [5] by utilising the commuting structure of the sl(2) algebras.
Importantly, it can be generalised recursively to any number of intersecting infinite
distance loci. We then established general conditions when such a charge orbit can
define an infinite tower of states that become massless when approaching the infi-
nite distance point. More specifically, we have explicitly constructed a candidate
charge orbit for any infinite distance point that has another infinite distance locus
of higher type in its vicinity. This non-local construction allowed us to identify the
tower of states of the distance conjecture for a more general set of infinite distance
loci than was done in [5], thereby making progress towards a complete identifica-
tion of the tower of states globally on the moduli space. However, it is important
to state that in [5], by utilising walls of marginal stability, the monodromy orbits
were shown to be populated by actual BPS states in the spectrum. We are not
able to reach such a result for the more general charge orbits introduced in this
chapter. We therefore leave a study of the precise relation between charge orbits
and BPS states for future work.

One particularly interesting new aspect of the distance conjecture in the context
of intersecting infinite distance loci is that the mass spectrum of BPS states picks
up a dependence on the path of approach to the intersection. The results of
[76] allowed us to quantify this path dependence rather precisely, showing how to
classify paths into different growth sectors, and to determine how the masses of
the tower of states behave within each growth sector. We find the encouraging
result that the particular form of the infinite charge orbit of states is such that
the states become massless independently of the path of approach, within a given
growth sector. This lends further evidence to the proposal in [5] that the tower of
states associated to the monodromy action induces the infinite distance divergence,
since there are no infinite distance paths of approach whereby the tower remains
massive.

Our results show that there is a rich structure at infinite distances in field spaces
of theories of quantum gravity. While we made significant progress at uncovering
some of this structure, we believe that there is much more to discover. The close ties
to the existing rich and deep mathematical framework of nilpotent orbits suggest
that much of this structure is general. By this we mean that many of the results can
be formulated just by an association of a nilpotent matrix to an infinite distance
point. Such an association is rather natural from the perspective of quantum
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gravity as discussed in [5]. There are two ways to motivate this. The first is
that the nilpotent matrix is associated to a discrete gauge symmetry, an axion
shift, which is promoted to a continuous global symmetry at infinite distance.
The infinite distance and infinite tower of states can then be understood as a
quantum gravity obstruction to the global symmetry limit. The second way is in
the context of emergence of infinite distances, so the idea that the infinite distance
is itself induced by integrating out the tower of states. Then the nilpotent matrix
associated to it is a remnant of the structure of this tower. The appearance of
nilpotent matrices, associated to axion transformations, was also found in [132].
This ties in nicely also to the ideas of [63] where potentials on field spaces are also
controlled by the towers of states. Motivated by these results, we believe that it
is a natural expectation that nilpotent elements, and the rich structure associated
to them which we have been exploring in this chapter, may underlie much of the
universal behaviour of quantum gravity theories at large distances in field space.

While our work was motivated by the distance conjecture, the results are signif-
icant also purely as a study of Calabi-Yau moduli spaces. We have adapted the
recent results on relations between polarised mixed Hodge structures [113] to the
moduli space, expanded on them and developed their connection to distances in
the space. We have also presented the first, to our knowledge, computation of
the commuting sl(2) triples of matrices at intersections of infinite distance loci, or
from the Hodge-theoretic perspective, at degenerations of polarized mixed Hodge
structures.

Our analysis was focused on the complex structure moduli space, but we have
also discussed the mirror dual configuration in some detail. More precisely, we
have explicitly determined the monodromy matrices relevant in the complexified
Kähler cone when encircling the large volume point in a higher-dimensional moduli
space. We showed that by only using the triple intersection numbers and the sec-
ond Chern class of the mirror threefold one is able to classify the monodromies and
the arising infinite distance singularity types in this large volume regime. In this
large volume regime we can then directly apply our findings on the charge orbit.
They immediately imply that we have shown that to every infinite distance point
in the large volume regime we can identify an infinite charge orbit that becomes
massless at this point. Crucially the considered point does not have to be the
large volume point itself, but rather any partial limit will also share this feature.
Let us stress that we expect that our construction of the charge orbit is also valid
relevant in string compactifications that are not directly the mirror to the consid-
ered Type IIB configurations [81]. Moreover, it is interesting to point out that this
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perspective gives a new way to systematically classify allowed triple intersection
numbers and hence allowed Kähler potentials. In fact, the associated polarized
mixed Hodge structure incorporates more canonically the positivity conditions on
various couplings, while the growth theorem ensures that possible cancellations are
ruled out. It would be very interesting to systematically explore the power of this
new perspective for questions beyond the distance conjecture.

Appendices

2.A Monodromy filtrations and mixed Hodge
structures

In this appendix we give a short review of some further mathematical concepts
relevant for this chapter. We first introduce a pure Hodge structure and its asso-
ciated Hodge filtration. A pure Hodge structure of weight w provides a splitting
of the complexification VC = V ⊗ C of a rational vector space V by the Hodge
decomposition

VC = Hw,0 ⊕ Hw−1,1 ⊕ . . .⊕ H1,w−1 ⊕ H0,w , (2.A.1)

with the subspaces satisfying Hp,q = Hq,p with w = p + q, where the complex
conjugation on VC is defined with respect to the rational vector space V . Using
the Hp,q one can also define a Hodge filtration as F p = ⊕i≥pHi,w−i satisfying

VC = F 0 ⊃ F 1 ⊃ . . . ⊃ Fw−1 ⊃ Fw = Hw,0 , (2.A.2)

such that Hp,q = F p ∩ F̄ q. A polarized pure Hodge structure requires addi-
tionally the existence of a bilinear form S(·, ·) on VC, such that the conditions
S(Hp,q,Hr,s) = 0 for p 6= s, q 6= r and ip−qS(v, v̄) > 0 for any non-zero v ∈ Hp,q

are satisfied.
The crucial extra ingredient relevant to define a (limiting) mixed Hodge struc-

ture, is the so-called monodromy weight filtration Wi. It was defined in (2.2.38)
using the kernels and images of the nilpotent matrix N . The rational vector sub-
spaces Wj(N) ⊂ V can alternatively be defined by requiring that they form a
filtration

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ . . . ⊂ W2w−1 ⊂ W2w = V , (2.A.3)
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with the properties

1.) NWi ⊂ Wi−2 (2.A.4)
2.) N j : Grw+j → Grw−j is an isomorphism, Grj ≡ Wj/Wj−1 . (2.A.5)

The quotients Gri contain equivalence classes of elements of Wi that differ by
elements of Wi−1. When VC also admits a Hodge filtration F p as in (2.A.2),
we require that N is compatible with this structure and acts on it horizontally,
i.e. NF p ⊂ F p−1.

We are now in the position to define a mixed Hodge structure (V,W,F ), induced
by the filtrations Wi and F q on the vector space V . The defining feature of this
structure is that each Grj defined in (2.A.5) admits an induced Hodge filtration

F pGrCj ≡ (F p ∩WC
j )/(F p ∩WC

j−1) , (2.A.6)

where GrCj = Grj ⊗C and WC
i = Wi ⊗C are the complexification. In other words,

in the notation of (2.A.1) we spilt each Grj into a pure Hodge structure Hp,q as

Grj =
⊕
p+q=j

Hp,q , Hp,q = F pGrj ∩ F qGrj , (2.A.7)

where we recall that w = p + q is the weight of the corresponding pure Hodge
structure. The operator N is a morphism among these pure Hodge structures.
Using the action of N on Wi and F p, we find NGrj ⊂ Grj−2 and NHp,q ⊂
Hp−1,q−1. Note that this induces a jump in the weight of the pure Hodge structure
by −2, while the mixed Hodge structure is preserved by N .

2.B Construction of the SL(2)-splitting
In this appendix we review the construction of the matrices δ and ζ that are used
to construct a special R-split mixed Hodge structure (V, F̂ ,W ), first discussed in
subsection 2.2.4, via

F̂ = eζe−iδF . (2.B.1)

The mixed Hodge structure (V, F̂ ,W ) is called the SL(2)-splitting of the limiting
mixed Hodge structure (V, F,W ). Here we denote by (V, F,W ) a vector space V
with filtrations F p and Wi, see appendix 2.A. As in subsection 2.2.3 the latter
is induced by some nilpotent N . Using (2.2.39) and (2.2.40) we can determine a
Deligne splitting VC =

⊕
Ip,q from the data (F,W ). On this splitting there is

a semisimple operator T , called the grading operator, that acts on the subspace
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⊕
p+q=l I

p,q as multiplication by l. Let T be the complex conjugate of the grading
operator T defined by

T (v) := T (v), (2.B.2)

for all v ∈ VC. Then T and T are related by a conjugation by e−2iδ

T = e−2iδTe2iδ, (2.B.3)

where the real operator δ sends every Ip,q to its “lower parts”:

δ(Ip,q) ⊂
⊕
r<p
s<q

Ir,s, for all p, q. (2.B.4)

Thus we can solve equation (2.B.3) with an Ansatz satisfying (2.B.4) for the opera-
tor δ. Furthermore δ commutes with N and preserves the polarisation δTη+ηδ = 0.
Such an operator δ is unique. Let

F̃ := e−iδF, (2.B.5)

and the mixed Hodge structure (V, F̃ ,W ) is R-split. For a mathematically precise
discussion we refer to Proposition 2.20 of [76].

The second operator ζ further builds another R-split mixed Hodge structure out
of (V, F̃ ,W ). Its construction is indirect and we refer to section 3 and Lemma
6.60 of [76] for the full original discussion. Also section 1 of [133] contains a good
review of the ζ operator and in its Appendix the authors worked out some explicit
expressions that will be used in our computation.

To find ζ, we first compute a ‘Deligne splitting’ of the operator δ: Let VC =⊕
Ĩp,q be the Deligne splitting of the R-split mixed Hodge structure (V, F̃ ,W ),

then this Deligne splitting induces a decomposition of δ

δ =
∑
p,q>0

δ−p,−q, (2.B.6)

where each component δ−p,−q precisely does the following:

δ−p,−q(Ĩr,s) ⊂ Ĩr−p,s−q, for all r, s. (2.B.7)

The operator ζ admits the same kind of decomposition

ζ =
∑
p,q>0

ζ−p,−q, (2.B.8)
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and its relation with δ is given by the equation in Lemma 6.60 of [76]

eiδ = eζ

∑
k≥0

(−i)k

k!
adkN (g̃k)

 , (2.B.9)

where every g̃k is an real operator preserving the polarisation η of the real vector
space V and adN (−) = [N,−] is the adjoint action. The main outcome of this
formula useful for us is that, upon decomposing δ and ζ into their (−p,−q) com-
ponents and solving for ζ−p,−q, we get a polynomial in δ−p,−q and the iterated
commutators among various components δ−p,−q.

Specialising to weight-3 degenerating variation of Hodge structures, the possible
non-vanishing components of ζ−p,−q are restricted to 1 ≤ p, q ≤ 3. Then according
to the Appendix of [133], we have the following explicit expressions

ζ−1,−1 = 0, ζ−1,−2 = − i
2
δ−1,−2, ζ−1,−3 = −3i

4
δ−1,−3, ζ−2,−2 = 0, (2.B.10)

ζ−2,−3 = −3i
8
δ−2,−3 − 1

8
[δ−1,−1, δ−1,−2], ζ−3,−3 = −1

8
[δ−1,−1, δ−2,−2],

while the remaining ζ−q,−p are obtained from ζ−p,−q by replacing all i by −i and
δ−r,−s by δ−s,−r. Summing all ζ−p,−q, we get a formula for ζ that is valid in
weight-3 degenerating variation of Hodge structures given by

ζ = i
2

(δ−2,−1 − δ−1,−2) + 3i
4

(δ−3,−1 − δ−1,−3) + 3i
8

(δ−3,−2 − δ−2,−3)

− 1
8

[δ−1,−1, δ−1,−2 + δ−2,−1 + δ−2,−2]. (2.B.11)

2.C General procedure to construct the commuting
sl(2)s

The construction of commuting sl(2)s is part of the multi-variable SL(2)-orbit
theorem in [76]. We summarise its construction in this section for completeness.

Finding the commuting sl(2)-triples associated to the intersection ∆1,...,nE needs
nE -times iteration. One starts with the mixed Hodge structure (F∞,W

nE ), where
F∞ is the limiting Hodge filtration extracted by nilpotent orbit theorem, and WnE

is the monodromy weight filtration associated to the nilpotent cone σ(N1, . . . , NnE )
generated by the monodromies N1, . . . , NnE , i.e.,

WnE = W (N1 + · · · +NnE ). (2.C.1)
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The limiting mixed Hodge structure (F∞,W
nE ) will be used as the input of the

first iteration of the construction. Let the index k = nE , which will be counted
downwards after each iteration.

For each iteration with index k, we denote the input mixed Hodge structure by
(F ′,W k). Then one computes the SL(2)-splitting (Fk,W k) of (F ′,W k). Further-
more, one finds the Deligne splitting of the mixed Hodge structure (Fk,W k)

VC =
⊕
p,q

Ip,q(Fk,Wk). (2.C.2)

Record the semisimple grading operator Y(k) which acts on each subspace by mul-
tiplication

Y(k)v = (p+ q − 3)v, for every v ∈ Ip,q(Fk,Wk). (2.C.3)

And set the mixed Hodge structure (eiNkFk,W
k−1) as the input of the next itera-

tion, which carries index k − 1.
The loop stops once k = 0. In the end, we get a bunch of grading operators

Y(nE ), . . . , Y(1) associated with R-split mixed Hodge structures

(FnE ,W
nE ), . . . , (F1,W

1) .

For convenience, set Y(0) = 0.
The next step is to find the nilpotent elements N−

i in each triple (N−
i , N

+
i , Yi).

Every N−
i is determined by diagonalising the adjoint action of Y(i−1): Decompose

Ni into eigenvectors of the adjoint action of Y(i−1)

Ni =
∑
α

Nα
i , (2.C.4)

where Nα
i satisfies [Y(i−1), N

α
i ] = αNα

i . Then the nilnegative element is extracted
N−
i := N0

i . Note that one always has N−
1 = N1 since Y(0) = 0.

The neutral elements are set to be

Yi = Y(i) − Y(i−1). (2.C.5)

Since Y(0) = 0, we have Y0 = Y(0).
Finally, we complete the triples by solving the equations defining an sl(2)-triple

[Yi, N+
i ] = 2N+

i , [N+
i , N

−
i ] = Yi, (2.C.6)

for the nilpositive element N+
i , which is required to also preserve the polarisation

(N+
i )Tη + ηN+

i = 0. (2.C.7)

We have thus found the commuting sl(2)-triples (N−
i , N

+
i , Yi) for i = 1, . . . , nE

according to theorem (4.20) of [76].
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2.D An example: commuting sl(2)s in the mirror of
P(1,1,1,6,9)[18]

This section aims to exemplify the structures of section 2.2 and 2.4, by analysing
the periods and Hodge structure of an explicit Calabi-Yau threefold geometry.
More precisely, we will denote by Ỹ3 the degree-18 Calabi-Yau hypersurface inside
the weighted projective space P(1,1,1,6,9) and denote by Y3 its mirror. We show in
detail how the associated commuting sl(2)-pair for the variation of Hodge structure
on Y3 arises from the study of its complex structure moduli space. We also illus-
trate several abstract constructions introduced in the previous sections, including
the Deligne splitting (2.2.39) and the associated canonical SL(2)-splitting MHS in
SL(2)-orbit theorem of appendix 2.B. Note that the geometry and the periods of
the pair (Ỹ3, Y3) have been studied in detail in [119] as one of the first applications
of mirror symmetry.

2.D.1 Introduction to the example

∆12 (IV2)

∆1 (IV1)

∆2 (III0)

Figure 2.20: Two singular divisors ∆1 and ∆2 intersect at the large complex structure
point ∆12, where the corresponding types of degenerations are also labelled. The coloured
divisor shows one of the possible ways of approaching the large complex structure point,
namely moving along the type-III0 divisor towards the type-IV2 intersection. This choice
is equivalent to a choice of the ordering of the monodromies as (N2, N1), so that we have
the singularity enhancement from ∆◦

2 to ∆◦
12.

We focus on 2-moduli degeneration in this section. The geometric setup is that
we sit near the large complex structure point, where locally the moduli space
contains two copies of punctured disk as shown in figure 2.20. From the period
vector around the large complex structure point, we extract the limiting Hodge
filtration F (∆◦

12), whose top component F 3(∆◦
12) is generated by a(2)

0 . Then
(F (∆◦

12),W (N1 + N2)) is a limiting mixed Hodge structure. In accordance with
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appendix 2.C, we denote F∞ := F (∆◦
12) and W 2 := W (N1 +N2) in the following

discussion.

2.D.1.1 The periods of Y3 around the large complex structure point

In this section we give the periods of Y3 around the large complex structure point
following the method described in section 2.3.4. The toric and relevant topological
data of Ỹ3 is given in section 2.4.6 and we remark that the Euler characteristic of
Ỹ3 is χ(Ỹ3) = −540.

Furthermore, the generators of the Mori cone C1, C2 dual to J1, J2 are chosen
to be

C1 = J2 ∩ J2, C2 = D0 ∩ J2, (2.D.1)

so that the following K-theory basis for branes

(OX◦ ,OJ1 ,OJ2 , C1, C2,Op) (2.D.2)

yields the asymptotic period vector around the large complex structure point and
the polarisation matrix:

ΠΩ(t1, t2) =



1
t1

t2

9
2 (t1)2 + 3t1t2 + 1

2 (t2)2 + 9
2 t

1 + 1
2 t

2 − 17
4 + · · ·

3
2 (t1)2 + t1t2 + 3

2 t
1 − 3

2 + · · ·
3
2 (t1)3 + 3

2 (t1)2t2 + 1
2 t

1(t2)2 − 23
4 t

1 − 3
2 t

2 − 135iζ(3)
2π3 + · · ·


,

(2.D.3)

η =



0 −10 −3 0 0 −1
10 0 1 1 0 0
3 −1 0 0 1 0
0 −1 0 0 0 0
0 0 −1 0 0 0
1 0 0 0 0 0


, (2.D.4)

where ti is the coordinate on the Kähler moduli space of Ỹ3, under the mirror map
it corresponds to the coordinates zi on the complex structure moduli space of Y3

via ti = 1
2πi log zi + · · · . The full period can be acquired by solving the Picard-

Fuchs equation on the space Y3 and matching the leading logarithmic behaviour of
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the solution with the above asymptotic period. We do not give the full instanton-
corrected period vector since it is not relevant to our discussion.

The monodromy operator Ti is then induced by sending ti 7→ ti − 1:

T1 =



1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0
0 −9 −3 1 0 0
0 −3 −1 0 1 0
0 9 2 −1 0 1


, T2 =



1 0 0 0 0 0
0 1 0 0 0 0

−1 0 1 0 0 0
0 −3 −1 1 0 0
0 −1 0 0 1 0
0 2 0 0 −1 1


,

(2.D.5)
and they are already unipotent. Their corresponding logarithms Ni := log Ti are
given by

N1 =



0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

− 9
2 −9 −3 0 0 0

− 3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0


, N2 =



0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
− 1

2 −3 −1 0 0 0
0 −1 0 0 0 0
0 3

2 0 0 −1 0


.

(2.D.6)
According to the classification in table 2.1, we especially find that the degeneration
types shown in figure 2.20.

To find the commuting sl(2)-triples, we need the full characterisation of the
Hodge filtration 0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = VC. According to special geometry,
the period generating Hodge flags lower than F 3 can be obtained by taking various
derivatives with respect to ti. We make the following choice

Π(t1, t2) =
(

ΠΩ, ∂t1ΠΩ, ∂t2ΠΩ,
1
9
∂2
t1ΠΩ, ∂2

t2ΠΩ,
1
9
∂3
t1ΠΩ

)
, (2.D.7)

where the coefficient 1
9 is chosen for convenience. Each entry in Π(t1, t2) is under-

stood to be a column vector, representing the Hodge basis in terms of the multi-
valued integral basis {γi}. Further explanation of the period matrix representation
can be found in the next subsection.

2.D.2 The commuting sl(2)-pair associated to III0 → IV2

In this subsection, we compute the commuting sl(2)-pair arising from a degenera-
tion from type III0 to IV2, which amounts to an ordering (N2, N1). We also denote
N(2) = N2 +N1.
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2.D.2.1 Initial data: the mixed Hodge structure around the large volume
point

Let (γ5, γ4, γ3, γ2, γ1, γ0) be the multi-valued integral basis in terms of which the
Hodge basis are represented as the period matrix. Upon looping zi 7→ e2πizi

counterclockwise, they experience the monodromy transformation (γ5, . . . , γ0) 7→
(γ5, . . . , γ0)Ti which is equivalent to sending ti 7→ ti − 1 in the period matrix. We
first define a set of untwisted basis elements by setting

(e5, e4, . . . , e0)t1,t2 := (γ5, γ4, . . . , γ0)t1,t2e−t1N1−t2N2 (2.D.8)

where the subscript t1, t2 reminds us that all the base vectors are (t1, t2)-dependent.
The basis {ei(t1, t2)} are invariant under the monodromy transformation. Then
the limiting Hodge filtration is extracted by sending t1, t2 → i∞:

Π∞ = lim
t1→i∞
t2→i∞

et
1N1+t2N2Π(t1, t2)

=



w3 w21 w22 w11 w12 w0

e5 1 0 0 0 0 0
e4 0 1 0 0 0 0
e3 0 0 1 0 0 0
e2 − 17

4
9
2

1
2 1 1 0

e1 − 3
2

3
2 0 1

3 0 0
e0 − 135iζ(3)

2π3 − 23
4 − 3

2 0 0 1


, (2.D.9)

where the constant {ei} basis are now understood as the limit of the untwisted
basis {ei(t1, t2)} as t1, t2 → i∞.

For clarity, we explain the meaning of the period matrix: A Hodge filtration
0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = VC is characterised by a Hodge basis (w3, . . . , w0)
generating the Hodge flags. In our 2-moduli example whose Hodge numbers of the
middle cohomology H3(Y3,C) are always (1, 2, 2, 1), we have

F 3 = spanC{w3}, F 2 = spanC{w3, w21, w22}, (2.D.10)
F 1 = spanC{w3, w21, w22, w11, w12}, F 0 = spanC{w3, w21, w22, w11, w12, w0}.

Then the period matrix representing a Hodge flag consists of column vectors ex-
pressing the Hodge basis {wi} in terms of the single-valued integral basis {ei}. For
example, in the above period matrix Π∞, the basis w22 = e3 + 1

2e2 − 3
2e0. In the

following, every operator acting on F will be regarded as transforming the {wi}
vectors, whose action is computed as right multiplication on the period matrix.
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While the above usage of nilpotent orbit theorem is regraded as a change of the
integral basis so we have the (inverse) action of e−t1N1−t2N2 on the left. For clar-
ity, we have labelled the column and rows in every period matrix representing the
Hodge filtration in a limiting mixed Hodge structure.

We also need the monodromy weight filtration W 2 := W
(
N(2)

)
associated to

the cone σ(N1, N2). It is simply given by

W 2
6 = spanR{e5, e4, e3, e2, e1, e0}

∪
W 2

5 = W 2
4 = spanR{e4, e3, e2, e1, e0}

∪
W 2

3 = W 2
2 = spanR{e2, e1, e0}

∪
W 2

1 = W 2
0 = spanR{e0}

(2.D.11)

One can check that this filtration indeed satisfies the following conditions:

N12 : W 2
i → W 2

i−2 for every i,

Nk
12 : GrW

2

3+k → GrW
2

3−k is an isomorphism for every k.

From now on, it is helpful to forget the geometric origin of this limiting mixed
Hodge structure and only regard it as a construction in linear algebra. To clar-
ify: We fix a 6-dimensional real vector space V with a distinguished real basis
(e5, . . . , e0) and two nilpotent matrices N1, N2 expressed in the {ei}-basis. The
mixed Hodge structure to work with is then (V, F∞,W

2).

2.D.2.2 First round: finding the SL(2)-splitting of (V, F∞, W 2)

Firstly we need to find the Deligne splitting of (V, F∞,W
2). Denote the Deligne

splitting by VC =
⊕
Ip,q∞ and it can be computed by directly applying the definition

(2.2.39). The result is given in the Hodge diamond in figure 2.21 and we note that
the shape of the Hodge diagram clearly shows that at the large complex structure
point ∆12 the degeneration type is IV2.

We can further check that the splitting satisfies the conjugation property that
Ip,q∞ = Iq,p∞ for all p, q except

I3,3
∞ = I3,3

∞ mod I0,0
∞ ,

hence the mixed Hodge structure (F∞,W
2) is not R-split.
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w0

w12w11

w21 w22

w3

Figure 2.21: The Hodge diamond of the mixed Hodge structure (V, F∞, W 2), in which
each dot near the (p, q)-site represents a base vector of the corresponding subspace Ip,q

∞ .
The arrows show the action of N(2).

The grading operator T and its complex conjugate T defined in appendix 2.B
expressed in the Hodge basis (w3, . . . , w0) can be directly read out from figure 2.21

T =



6 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 0


, T =



6 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0

810iζ(3)
π3 0 0 0 0 0


. (2.D.12)

Then the δ operator written in the {wi} basis is solved to be

δ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 135ζ(3)
2π3 0 0 0 0 0


. (2.D.13)

It is easily seen that the δ operator only has the δ−3,−3 component, hence the ζ
operator is simply ζ = 0.

Computing F2 = e−iδF∞ we have found the SL(2)-splitting (F2,W
2) of (F∞,W

2).
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The filtration F2 is represented by its period matrix

Π2 =



w
(2)
3 w

(2)
21 w

(2)
22 w

(2)
11 w

(2)
12 w

(2)
0

e5 1 0 0 0 0 0
e4 0 1 0 0 0 0
e3 0 0 1 0 0 0
e2 − 17

4
9
2

1
2 1 1 0

e1 − 3
2

3
2 0 1

3 0 0
e0 0 − 23

4 − 3
2 0 0 1


. (2.D.14)

And it is clear that this mixed Hodge structure (F2,W
2) is R-split

2.D.2.3 The second round: finding the SL(2)-splitting of (F ′, W 1)

We now proceed to the second round of the computation. The starting point of
this round is the mixed Hodge structure (F ′,W 1), where W 1 = W (N2) is the
monodromy weight filtration associated to N2, and F ′ = eiN1F2. One can check
that the weight filtration is now given by

W 1
6 = W 1

5 = spanR{e5, e4, e3, e2, e1, e0}
∪

W 1
4 = W 1

3 = spanR{e3, e2, e1, e0}
∪

W 1
2 = W 1

1 = spanR{e2, e0}
∪
W 1

0 = 0

(2.D.15)

and the period matrix Π′ representing F ′ is

Π′ =



w′
3 w′

21 w′
22 w′

11 w′
12 w′

0
e5 1 0 0 0 0 0
e4 i 1 0 0 0 0
e3 0 0 1 0 0 0
e2 − 35

4 + 9i
2

9
2 + 9i 1

2 + 3i 1 1 0
e1 −3 + 3i

2
3
2 + 3i i 1

3 0 0
e0 − 29i

4 − 41
4 −3 i i 1


. (2.D.16)

Denote the Deligne splitting of (F ′,W 1) by VC =
⊕
I ′p,q. Using the formula

(2.2.39) we find the Deligne splitting of (V, F ′,W 1) shown in figure 2.22.
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w′
12 − 2iw′

0 w′
12

w′
22 − 6iw′

11 + 3iw′
12 w′

22

w′
3 − 2iw′

21 + 3iw′
22 w′

3

Figure 2.22: The Hodge diamond of the mixed Hodge structure (V, F ′, W 1), in which each
dot near the (p, q)-site represents a base vector of the corresponding subspace I ′p,q. The
arrows show the action of N2. The diamond is clearly of type III0.

We further remark that this splitting satisfies I ′p,q = I ′q,p for all p, q except

I ′3,2 = I ′2,3 mod I ′2,1 ⊕ I ′1,0 ⊕ I ′0,1,

I ′2,1 = I ′1,2 mod I ′1,0.

The Deligne splitting in figure 2.22 yields the following grading operator T ′ and
its complex conjugate T ′ expressed in the Hodge basis (w′

3, . . . , w
′
0)

T ′ =



5 0 0 0 0 0
0 5 0 0 0 0
0 −3 3 0 0 0
0 0 0 3 0 0
0 0 0 −1 1 0
0 0 0 0 0 1


, T ′ =



5 0 0 0 0 0
0 5 0 0 0 0

−6i −3 3 0 0 0
0 −18i 0 3 0 0
18 −18i −6i −1 1 0

−24i −18 0 −2i 0 1


.

(2.D.17)
The operator δ′ written in the Hodge basis (w′

3, . . . , w
′
0) is solved to be

δ′ =



0 0 0 0 0 0
0 0 0 0 0 0
3
2 0 0 0 0 0
0 9

2 0 0 0 0
9i
4

9
4

3
2 0 0 0

3 − 9i
4 0 1

2 0 0


. (2.D.18)

This matrix does not seem to be real because we are working in the complex basis
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{w′
i}. If we transform it into the (e5, . . . , e0) basis using the period matrix Π′ then

all of its entries are real numbers. Hence δ′ is indeed a real operator.
Let F̃ ′ = e−iδ′

F ′, and we have found the first R-split mixed Hodge structure
associated with (F ′,W 1). Let (w̃′

3, . . . , w̃
′
0) = (w3, . . . , w0)e−iδ′ and we have a new

set of Hodge basis {w̃′
i}. The Deligne splitting of (F ′,W 1) is the same as in figure

2.22 with all w′
i replaced by w̃′

i. Then the decomposition of the operator δ′ is found
to be

δ′ = δ′
−1,−1 + δ′

−2,−2 + δ′
−3,−1 + δ′

−1,−3, (2.D.19)

where δ′
−p,−q maps Ĩ ′r,s to Ĩ ′r−p,s−q. The components are given by, in the w̃′

i basis,

δ′
−1,−1 =



0 0 0 0 0 0
0 0 0 0 0 0
3
2 0 0 0 0 0
0 9

2 0 0 0 0
0 0 3

2 0 0 0
0 0 0 1

2 0 0


, δ′

−2,−2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3i
4

3
4 0 0 0 0

0 − 3i
4 0 0 0 0


,

(2.D.20)

δ′
−3,−1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3i
2

3
4 0 0 0 0

3 − 3i
2 0 0 0 0


, δ′

−1,−3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 3

4 0 0 0 0
0 0 0 0 0 0


.

(2.D.21)
Furthermore, all components are commuting with each other [δ′

−p,−q, δ
′
−r,−s] = 0.

The operator ζ ′ given in terms of its decomposition ζ ′ =
∑
ζ ′

−p,−q only has two
non-vanishing components ζ ′

−1,−3 and ζ ′
−3,−1, hence, written in the (w̃′

3, . . . , w̃
′
0)

basis

ζ ′ = 3i
4

(δ′
−3,−1 − δ′

−1,−3) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 9
8 0 0 0 0 0

9i
4

9
8 0 0 0 0


. (2.D.22)

Finally, applying the operator eζ′ to F̃ ′, we arrive at the SL(2)-splitting (F1,W
1)

associated to (F ′,W 1). The period matrix Π1 representing the Hodge filtration
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F1 = eζ
′
e−iδ′

F ′ is

Π1 =



w
(1)
3 w

(1)
21 w

(1)
22 w

(1)
11 w

(1)
12 w

(1)
0

e5 1 0 0 0 0 0
e4 i 1 0 0 0 0
e3 − 3i

2 0 1 0 0 0
e2 − 17

4 + 15i
4

9
2 + 9i

4
1
2 + 3i

2 1 1 0
e1 − 3

2 + 3i
2

3
2 + 3i

2 i 1
3 0 0

e0 − 7i
2 − 23

4 − 3
2

i
2 i 1


(2.D.23)

2.D.2.4 Final output: the commuting sl(2)-pair

With the two SL(2)-splittings (Fi,W i) we can now compute the commuting sl(2)-
pair. First we read out the semisimple grading Y(i) which acts on Ip,q(Fi,W i) as
multiplication by p + q − 3. Writing now everything in the real basis (e5, . . . , e0)
for convenience, we have

Y(1) =



2 0 0 0 0 0
0 2 0 0 0 0
0 −3 0 0 0 0

− 25
2 12 1 −2 3 0

−3 3 0 0 0 0
0 − 37

2 −3 0 0 −2


,

Y(2) =



3 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−17 9 1 −1 0 0
−6 3 0 0 −1 0
6 −23 −6 0 0 −3


,

(2.D.24)

so the neutral elements in the sl(2)-pair are

Y1 = Y(1), Y2 = Y(2) − Y(1) =



1 0 0 0 0 0
0 −1 0 0 0 0
0 3 1 0 0 0

− 9
2 −3 0 1 −3 0

−3 0 0 0 −1 0
0 − 9

2 −3 0 0 −1


. (2.D.25)
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In addition, N−
1 = N2 is already one of the nilnegative elements. We kindly remind

the reader that the particular ordering (N2, N1) of the monodromies is adopted so
as to study the degeneration III0 → IV2.

To find the other nilnegative element N−
2 , we compute the decomposition of N1

into the eigenvectors of the adjoint representation [Y(1),−]. Denote the decompo-
sition N1 =

∑
Nα

1 , where [Y(1), N
α
1 ] = αNα

1 is the component corresponding to
the eigenvalue α. Bearing in mind that any component Nα

1 must also preserve the
polarisation (Nα

1 )Tη + ηNα
1 = 0, we find that

N1 = N−4
1 +N−2

1 +N0
1 , (2.D.26)

where

N−4
1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − 9

4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, N−2

1 =



0 0 0 0 0 0
0 0 0 0 0 0

− 3
2 0 0 0 0 0

− 3
4 − 9

2 − 3
2 0 0 0

0 − 3
2 0 0 0 0

0 9
4 0 0 − 3

2 0


,

(2.D.27)
and the N0

1 is what we need for the nilnegatives

N−
1 = N2, N−

2 = N0
1 =



0 0 0 0 0 0
−1 0 0 0 0 0

3
2 0 0 0 0 0

− 15
4 − 9

4 − 3
2 0 0 0

− 3
2 − 3

2 −1 0 0 0
3
2

9
4

1
2 −1 3

2 0


. (2.D.28)

The last step is to find the nilpositive element N+
i . Solving the equations

[Yi, N+
i ] = 2N+

i , [N+
i , N

−
i ] = Yi, (N+

i )Tη + ηN+
i = 0,
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simply yields the following unique pair of matrices

N+
1 =



0 −3 −2 0 0 0
−3 3 0 0 −2 0

1
2 0 1 −2 6 0

− 53
4 9 9

2 −1 −6 −3
− 9

2 − 5
2 0 0 −3 −2

33
2 − 69

4 − 3
2 3 5

2 0


,

N+
2 =



0 −1 0 0 0 0
0 0 0 0 0 0

− 3
2

3
2 0 0 −1 0

− 3
4 − 3

4 − 3
2 0 − 1

2 −1
0 3

2 0 0 0 0
9
4 − 9

4 0 0 3
2 0


.

(2.D.29)

One can finally check that the (N−
i , N

+
i , Yi) with matrices in the (e5, . . . , e0)

basis given by (2.D.28), (2.D.29), (2.D.25) are indeed two sets of sl(2)-Lie algebra
elements and the two sets of operators commute with each other. This completes
our computation of the commuting sl(2)-pair arising from the III0 → IV2 degener-
ation in the complex structure moduli space of the Calabi-Yau threefold Y3.

2.D.3 The commuting sl(2)-pair associated to IV1 → IV2

The other singularity locus ∆1 in the moduli space of Y3 has the type IV1. In
this subsection we also work out the commuting sl(2)-pair as we move along ∆1

towards the large complex structure point of type IV2. This amounts to switch
the ordering of the monodromy cone to (N1, N2). The computation is essentially
the same as the III0 → IV2 degeneration, so we only list the results here without
explanation.

2.D.3.1 The two SL(2)-splittings

The starting point (F∞,W
2) is the same as the starting point of III0 → IV2, hence

also its SL(2)-splitting is the same (F2,W
2) with the period matrix (2.D.14). Now,

we consider the limiting mixed Hodge structure (F ′,W 1) where F ′ = eiN2F2 and
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W 1 = W (N1). The period matrix of F ′ is now given by

Π′ =



w′
3 w′

21 w′
22 w′

11 w′
12 w′

0
e5 1 0 0 0 0 0
e4 0 1 0 0 0 0
e3 i 0 1 0 0 0
e2 − 19

4 + i
2

9
2 + 3i 1

2 + i 1 1 0
e1 − 3

2
3
2 + i 0 1

3 0 0
e0 − 3i

2 − 25
4 − 3

2
i
3 0 1


, (2.D.30)

and the monodromy weight filtration W 1 has now the form

W 1
6 = spanR{e5, e4, e3, e2, e1, e0}

∪
W 1

5 = W 1
4 = spanR{e4, e3, e2, e1, e0}

∪
W 1

3 = spanR{−e4 + 3e3, e2, e1, e0}
∪
W 1

2 = spanR{3e2 + e1, e0}
∪

W 1
1 = W 1

0 = spanR{e0}

(2.D.31)

So the Deligne splitting VC =
⊕
I ′p,q is found to be in the figure 2.23.

w′
0

w′
11

−w′
21 + 3w′

22 + 6iw′
11 − 6iw′

12 −w′
21 + 3w′

22

w′
21

w′
3

Figure 2.23: The Hodge diamond of the mixed Hodge structure (V, F ′, W 1), in which each
dot near the (p, q)-site represents a base vector of the corresponding subspace I ′p,q. The
arrows show the action of N1. The diamond is clearly of type IV1.
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This structure is again far from R-split, and we can check that Ip,q = Iq,p for
all p, q except

I ′3,3 = I ′3,3 mod I ′2,2 ⊕ I ′1,2 ⊕ I ′2,1 ⊕ I ′1,1, (2.D.32)
I ′2,2 = I ′2,2 mod I ′1,1 ⊕ I ′0,0,

I ′2,1 = I ′1,2 mod I ′0,0,

I ′1,1 = I ′1,1 mod I ′0,0.

Reading out the grading and solving for δ′, we find, in the (w′
3, . . . , w

′
0) basis

δ′ =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
i 3 1 0 0 0

−i 0 0 0 0 0
2
9 0 − i

3
1
3 0 0


, (2.D.33)

which consists of real elements once we transform back to the {ei} basis.
The operator δ′ now admits the following Deligne splitting

δ′ = δ′
−3,−3 + δ′

−2,−1 + δ′
−1,−1 + δ′

−1,−2, (2.D.34)

where various components are given by

δ′
−3,−3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2
9 0 0 0 0 0


, δ′

−2,−1 =



0 0 0 0 0 0
− 1

6 0 0 0 0 0
1
2 0 0 0 0 0
i 0 0 0 0 0

−i 0 0 0 0 0
0 0 − i

3 0 − 1
6 0


,

δ′
−1,−1 =



0 0 0 0 0 0
1
3 0 0 0 0 0
0 0 0 0 0 0
0 3 1 0 0 0
0 0 0 0 0 0
0 0 0 1

3
1
3 0


, δ′

−1,−2 =



0 0 0 0 0 0
− 1

6 0 0 0 0 0
1
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − 1

6 0


,

(2.D.35)

with the only non-vanishing commutator

[δ′
−2,−1, δ

′
−1,−2] = −3i

2
δ′

−3,−3. (2.D.36)

144



2.D An example: commuting sl(2)s in the mirror of P(1,1,1,6,9)[18]

Then the only non-vanishing components of ζ ′ are ζ ′
−1,−2 and ζ ′

−2,−1, hence they
sum to the ζ ′ operator

ζ ′ = i
2

(δ′
−2,−1 − δ′

−1,−2) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 1
2 0 0 0 0 0

1
2 0 0 0 0 0
0 0 1

6 0 0 0


, (2.D.37)

where the matrix is written in the {w′} basis.
The Hodge filtration F1 = eζ

′
e−iδ′

F2 is given by its period matrix Π1

Π1 =



w
(1)
3 w

(1)
21 w

(1)
22 w

(1)
11 w

(1)
12 w

(1)
0

e′
5 1 0 0 0 0 0
e′

4 0 1 0 0 0 0
e′

3 0 0 1 0 0 0
e′

2 − 17
4

9
2

1
2 1 1 0

e′
1 − 3

2
3
2 − i

3
1
3 0 0

e′
0 0 − 23

4 − 3
2 0 0 1


, (2.D.38)

thus we have arrived at the SL(2)-splitting (F1,W
1) of (F ′,W 1).

2.D.3.2 The commuting sl(2)-pair

For convenience we express everything in the (e5, . . . , e0) basis in this subsection.
We read out the grading elements

Y(1) =



3 0 0 0 0 0
0 1 1

3 0 0 0
0 0 0 0 0 0

−17 9 2 −1 0 0
− 71

12 3 2
3 − 1

3 0 0
0 −23 − 77

12 0 0 −3


,

Y(2) =



3 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−17 9 1 −1 0 0
−6 3 0 0 −1 0
0 −23 −6 0 0 −3


,

(2.D.39)
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so that the neutral elements are given by

Y1 = Y(1), Y2 = Y(2) − Y(1) =



0 0 0 0 0 0
0 0 − 1

3 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0

− 1
12 0 − 2

3
1
3 −1 0

0 0 5
12 0 0 0


. (2.D.40)

Decompose N2 =
∑
Nα

2 into the eigen-components of the action [Y(1),−] and
we have

N2 = N−3
2 +N−2

2 +N0
2 , (2.D.41)

where

N−3
2 =



0 0 0 0 0 0
1
3 0 0 0 0 0

−1 0 0 0 0 0
1 0 0 0 0 0
1
2 0 0 0 0 0

− 1
2 0 − 1

6
1
3 −1 0


, N−2

2 =



0 0 0 0 0 0
− 1

3 0 0 0 0 0
0 0 0 0 0 0

− 3
2 −3 −1 0 0 0

− 1
2 −1 − 1

3 0 0 0
1
2

3
2

1
6 − 1

3 0 0


,

(2.D.42)
and the remaining N0

2 together with N1 constitute the nilnegative elements

N−
1 = N1, N−

2 = N0
2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

3 0 0 0
0 0 0 0 0 0


. (2.D.43)

Finally we can complete the (N−
i , Yi) into the complete sl(2)-triples (N−

i , N
+
i , Yi)
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with nilpositive elements

N+
1 =



0 −3 −1 0 0 0
− 17

9 2 2
9 − 4

9 0 0
0 0 0 0 0 0

− 17
2

9
2

3
4 −2 0 −3

− 17
6

7
4

1
3 − 2

3 0 −1
391
36 − 23

2 − 23
18

23
9 0 0


,

N+
2 =



0 0 0 0 0 0
− 1

12 0 − 1
6

1
3 −1 0

1
4 0 1

2 −1 3 0
− 1

4 0 − 1
2 1 −3 0

− 1
8 0 − 1

4
1
2 − 3

2 0
5

48 0 5
24 − 5

12
5
4 0


.

(2.D.44)

This completes our computation of the commuting sl(2)-pair for the degeneration
from IV1 to IV2.

2.E Deriving the polarised relations
In this section we summarise the definition of polarised relation proposed in [113]
and exemplify the derivation of the relation IIIc → IVd̂ in table 2.3.

For the ease of notation, we follow [113] to consider an entire Hodge-Deligne dia-
mond at once. Given a Hodge-Deligne diamond consisting of Hodge-Deligne num-
bers {ip,q}, we can define an integer-valued function ♢(p, q) := ip,q on the lattice Z×
Z. On the other hand, we define a Hodge-Deligne diamond of a variation of weight-
w Hodge structure polarised by N with Hodge numbers (hw,0, hw−1,1, . . . , h0,w) to
be any integer-valued function ♢(p, q) on the lattice Z × Z such that

w∑
q=0

♢(p, q) = hp,w−p, for all p, (2.E.1)

and satisfying the usual symmetry properties

♢(p, q) = ♢(q, p) = ♢(w − q, w − p), for all p, q, (2.E.2)
♢(p− 1, q − 1) ≤ ♢(p, q), for p+ q ≤ w. (2.E.3)

In this fashion the sum ♢ = ♢1 +♢2 of two Hodge-Deligne diamonds ♢1 and ♢2

is naturally defined pointwise

♢(p, q) := ♢1(p, q) + ♢2(p, q). (2.E.4)
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And also the shifted Hodge-Deligne diamond ♢[a] of ♢ is defined to be

♢[a](p, q) = ♢(p+ a, q + q). (2.E.5)

Now it comes to the enhancement relation [113]. Let (F1, N1) and (F2, N2)
be two nilpotent orbits with limiting mixed Hodge structures (F1,W (N1)) and
(F2,W (N2)). Denote ♢(F1, N1) and ♢(F2, N2) respectively their Hodge-Deligne
diamonds. Considering a possible degeneration relation (F1, N1) → (F2, N2) there
is the following equivalent condition:

Every primitive subspace P k(N1) (3 ≤ k ≤ 6) of (F1,W (N1)) carries a weight-
k Hodge structure P k(N1) =

⊕
p+q=k P

p,q(N1). Denote its Hodge numbers by
jp,q1 := dimC P

p,q(N1). Let ♢(F ′
k, N

′
k) be a Hodge-Deligne diamond of the variation

of weight-k Hodge structure polarised by S(·, Nk
1 ·) on P k(N1) with Hodge numbers

(jk,0, jk−1,1, . . . , j0,k) where S is the polarisation bilinear form (2.2.4). If one can
decompose ♢(F2, N2) as

♢(F2, N2) =
∑

3≤k≤6
0≤a≤k−3

♢(F ′
k, N

′
k)[a], (2.E.6)

where ♢(F ′
k, N

′
k)[a] is the shifted Hodge-Deligne diamond defined above, then the

degeneration relation
(F1, N1) → (F2, N2) (2.E.7)

holds. The converse is also true.
We refer the reader to [113] for details.
We exemplify the above condition on the relation IIIc → IVd̂. Firstly we list

the primitive Hodge-Deligne sub-diamond of IIIc containing only primitive Hodge-
Deligne numbers jp,q1 and the Hodge-Deligne diamond of IVd̂:

c′ − 1

c

c′ − 1
k = 3

k = 4

k = 5

d̂′

d̂

d̂

d̂′

IIIprim
c IVd̂
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2.E Deriving the polarised relations

For the relation IIIc → IVd̂ to hold, we need to find three Hodge-Deligne di-
amonds with Hodge numbers (0, c′ − 1, c′ − 1, 0), (0, 0, c, 0, 0) and (0, 0, 1, 1, 0, 0)
that sums (with proper shifts) to IVd̂. The following are three such Hodge-Deligne
diamonds

c′ − r − 1
r

r

c′ − r − 1

c

♢(F ′
3, N

′
3) with r ≥ 0 ♢(F ′

4, N
′
4) ♢(F ′

5, N
′
5)

for (0, c′ − 1, c′ − 1, 0). for (0, 0, c, 0, 0). for (0, 0, 1, 1, 0, 0).

Then we consider the sum

♢(F ′
3, N

′
3) + ♢(F ′

4, N
′
4) + ♢(F ′

4, N
′
4)[1] + ♢(F ′

5, N
′
5) + ♢(F ′

5, N
′
5)[1] + ♢(F ′

5, N
′
5)[2]

(2.E.8)
which can be depicted as

c′ − r − 1

c+ r + 2

c+ r + 2

c′ − r − 1

and we expect that this diamond agrees with the Hodge-Deligne diamond of IVd̂.
This is possible if the condition

d̂ = c+ r + 2, (2.E.9)

together with the usual r ≥ 0, 0 ≤ c ≤ h2,1 − 2 and 1 ≤ d̂ ≤ h2,1 are satisfied.
Hence we have derived the condition c+ 2 ≤ d̂ for the relation IIIc → IVd̂ in table
2.3.
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3 Asymptotic Flux Compactifications and
the Swampland

This chapter is based on: T. W. Grimm, C. Li and I. Valenzuela,
Asymptotic Flux Compactifications and the Swampland, JHEP 06
(2020), 009, [erratum: JHEP 01 (2021), 007], [arXiv:1910.09549].

In this chapter, we initiate the systematic study of flux scalar potentials and
their vacua by using asymptotic Hodge theory. To begin with, we consider F-theory
compactifications on Calabi-Yau fourfolds with four-form flux. We argue that a
classification of all scalar potentials can be performed when focusing on regions in
the field space in which one or several fields are large and close to a boundary. To
exemplify the constraints on such asymptotic flux compactifications, we explicitly
determine this classification for situations in which two complex structure moduli
are taken to be large. Our classification captures, for example, the weak string
coupling limit and the large complex structure limit. We then show that none
of these scalar potentials admits de Sitter critical points at parametric control,
formulating a new no-go theorem valid beyond weak string coupling. We also check
that the recently proposed asymptotic de Sitter conjecture is satisfied near any
infinite distance boundary. Extending this strategy further, we generally identify
the type of fluxes that induce an infinite series of Anti-de Sitter critical points,
thereby generalizing the well-known Type IIA settings. Finally, we argue that
also the large field dynamics of any axion in complex structure moduli space is
universally constrained. Displacing such an axion by large field values will generally
lead to severe backreaction effects destabilizing other directions.

3.1 Introduction
The asymptotic de Sitter conjecture [63] (see [62, 134] for previous formulations)
reviewed in Section 1.3.2 claims a universal bound on the potential that forbids
de Sitter vacua when approaching any infinite distance limit in field space and
hence implies that there is a sort of Dine-Seiberg problem [135] for any scalar field
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3 Asymptotic Flux Compactifications and the Swampland

near any infinite distance limit. The universality claim is motivated in [63] by a
connection to another conjecture, the so-called Swampland Distance Conjecture
[4, 57], which asserts the universal existence of an infinite tower of massless states
at any infinite field distance limit. Crucial to this present chapter will be the
fact that in the search of evidence for the Swampland Distance Conjecture the
works [5,81,136] uncovered a universal structure in any large field limit in geometric
moduli spaces. It turns out that this structure also constraints the form of the
flux-induced scalar potentials and provides us a tool to systematically classify such
potentials at any large field limit and promote the above conjectures into precise
statements linked to this universal structure. We will not only provide significant
evidence for the asymptotic de Sitter conjecture [63], but also bring a new angle to
the origin of the set of seemingly infinite number of Anti-de Sitter vacua of [137] and
get general constraints on axion scalar potentials relevant for backreaction issues
in axion monodromy [138–140] that are related to the refined Distance Conjecture
[57,58].

To answer systematically questions about the scalar potentials arising in string
theory, we initiate the general study of flux compactifications in any region of
field space that involves a large field limit. We call such settings asymptotic flux
compactifications in the following. These compactifications will share the common
feature that they capture limits that occur when approaching the boundary of
the field space which, however, is not constrained to be of infinite distance in the
field space metric. Asymptotic flux compactifications often describe an effective
theory in which, at least in a dual description, a small coupling constant ensures
that the leading perturbative expansion suffices to study the properties of the
system. Two famous examples are Type IIB orientifold flux compactifications
carried out at small string coupling, and Type IIA flux compactifications studied
in the large volume regime [7, 8, 41]. We argue in this chapter that also the flux
scalar potential in more general asymptotic limits can be systematically studied
by using F-theory compactified on a Calabi-Yau fourfold with G4-form flux. The
complex structure moduli space of such fourfolds has a very rich structure, which
allows us, among others, to recover flux potentials encountered at weak string
coupling or large volume. Clearly, interpreting the various limits might require
to move to a dual frame, as we will show by relating the flux scalar potentials in
F-theory, Type IIB orientifolds and Type IIA orientifolds via mirror symmetry.
Although, in general, such a dual description does not necessarily correspond to a
perturbative string theory. It turns out that considering all possible asymptotic flux
compactifications of F-theory goes beyond these well-known settings and yields a
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3.1 Introduction

set of new characteristic scalar potentials. These insights then allow us to generalize
the no-go theorems for flux-induced de Sitter vacua to more general asymptotic
regimes beyond string weak coupling. Let us remark that our results also go beyond
the Maldacena-Nuñez no-go theorem [141] as the F-theory potential also includes
the contribution from higher derivative terms and more exotic seven-branes, such
as the ones combining into orientifold planes.

The mathematical machinery that we will employ is part of asymptotic Hodge
theory, which in particular implies that there exists a so-called limiting mixed
Hodge structure at any asymptotic limit to the boundary of the moduli space.
These mixed Hodge structures encode crucial information about the behavior of the
(p, q)-decomposition of forms on the compactification manifold in the asymptotic
limits in complex structure moduli space. In particular, asymptotic Hodge theory
provides an asymptotic expression of the Hodge norm [76] that we will use heavily
in this chapter. It also allow us to discuss the conditions on self-dual fluxes in
the asymptotic regime. Furthermore, it is crucial that all allowed limiting mixed
Hodge structures can be classified by using the underlying sl(2)-representation
theory [113], as has been done for Calabi-Yau threefolds in [136]. Our analysis aims
to give the first steps towards a classification of asymptotic regimes in Calabi-Yau
fourfolds and subsequently all asymptotic flux-induced scalar potentials induced
by G4-flux. Let us note that this machinery has been proven useful to test the
Swampland Distance Conjecture and the Weak Gravity Conjecture [142] in Calabi-
Yau string compactifications [5, 81,82,136,143]1.

In this chapter we will study asymptotic flux compactifications with G4 with
a focus on asymptotic limits given by only two fields becoming large. In other
words, we will consider regions near codimension-two boundary loci in the com-
plex structure moduli space and leave the generalization to higher codimensions
for future work. We classify all possible asymptotic two-variable large field lim-
its in general Calabi-Yau fourfolds, both at finite and infinite field distance. We
then focus on the strict asymptotic regime in which two fields and their ratio are
large. Physically this implies a suppression of certain perturbative corrections,
while mathematically it corresponds to using the so-called sl(2)-orbit approxima-
tion. It is then possible to explicitly derive the asymptotic scalar potential for all
such strict asymptotic regimes (see table 3.5). This allows us to study the struc-
ture of flux vacua and obtain a no-go theorem that forbids the presence of de Sitter
vacua at parametric control near any large field limit of two fields parametrizing

1See [60, 116, 117, 138–140, 143–153] for other works testing the Swampland Distance Conjecture
in the context of asymptotic string compactifications.
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3 Asymptotic Flux Compactifications and the Swampland

complex structure deformations. The details of the no-go and assumptions can be
found in section 3.6.4. The list of scalar potentials also allows us to explicitly test
the asymptotic Sitter conjecture of [63] and to show that it is satisfied if we are
dealing with infinite distance limits. Note that we do not discuss the stabilization
of Kähler structure moduli. Remarkably, our findings can be interpreted as stating
that a subsector of moduli, which one aims to stabilize near the boundary, already
imposes strong constraints on the vacuum structure. This becomes more apparent
when considering the flux scalar potentials in a more general context in which it
yields a generalization of the Type IIA no-go of [154].

Crucially, we therefore also consider a more general class of flux scalar potentials
that capture, in particular, the potentials found in Type IIA flux compactifications
[16]. These potentials are, in contrast to the standard F-theory flux potentials
not positive definite and hence can admit Anti-de Sitter vacua. In particular, it
was argued in [137] that a seemingly infinite series of flux vacua exists in Type
IIA at weak string coupling and large volume. We identify the special fluxes
that are necessary to generate such sequences and check if they can exist at the
various limits in moduli space. More precisely, such fluxes are necessarily having
vanishing Hodge norm in the asymptotic limit and drop out from the tadpole
constraint. This implies that they cannot correspond to self-dual fluxes and hence
would induce a backreaction on the geometry in the F-theory context. Remarkably,
their construction and existence seems deeply related to the infinite charge orbits
presented in [5, 136] in the study of the Swampland Distance Conjecture.

Our approach also allows us to generally analyze the backreaction effects of
axion monodromy inflationary models in Calabi-Yau manifolds, in which the role
of the inflaton is played by an axion with a flux-induced potential. It was shown
in [138–140] for particular examples that displacing an axion for large field values
implies in turn a displacement of the saxionic fields which backreacts on the kinetic
term of the axion such that the proper field distance grows only logarithmically
with the inflaton vev. This further implies that the cut-off scale set by the infinite
tower of states of the Distance Conjecture also decreases exponentially in terms
of the axionic field distance and invalidates the effective theory. It was argued
[138–140] that for closed string axions with a flux-induced potential generated
at weak coupling and large volume, these backreaction effects cannot be delayed
but become important at transplanckian field values, disfavoring certain models of
large field inflation. However, it remained as an open question if the backreaction
can be delayed in other setups by generating a mass hierarchy between the axion
and the saxions [139, 155] (see also [156, 157]). Here, we will show with complete
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3.2 Flux compactifications on Calabi-Yau fourfolds

generality that the backreaction cannot be delayed for any axion belonging to the
complex structure moduli space of F-theory Calabi-Yau compactifications in the
asymptotic regimes analyzed in this chapter, as long as we move along a gradient
flow trajectory. The reason is that the parameter that controls the backreaction
becomes independent of the fluxes at large field for any two-moduli asymptotic limit
of the moduli space of a Calabi-Yau fourfold. Interpreted in the Type IIB context
this result implies that neither closed string complex structure deformations, nor
open-string seven-brane deformations can provide axions where backreaction effects
can be made small. This provides new evidence for the refined Distance Conjecture
[57,58].

The outline of the chapter goes as follows. We start in section 3.2 by reviewing
the scalar potential of N = 1 compactifications of M/F-theory on a Calabi-Yau
fourfold with G4 flux, and the chain of dualities that reduce the setting to four
dimensional Type IIB and IIA flux compactifications. In section 3.3, we will intro-
duce the machinery to study these flux compactifications in the asymptotic regimes
of the moduli space. Key results are the asymptotic decomposition of the fluxes
adapted to the different limits and the asymptotic behavior of the Hodge norm,
which allow us to determine the universal leading behavior of the flux-induced
scalar potential at the asymptotic limits. In section 3.4 we explain this structure
in the context of an N = 1 supergravity embedding and its relation to the dual
description of the scalar potential in terms of three-form gauge fields. A com-
plete classification of all possible two-moduli asymptotic limits in the Calabi-Yau
fourfold is performed in section 3.5 together with the flux-induced scalar potential
arising in each case. In section 3.6 we analyze the vacua structure of this poten-
tial and get a new no-go theorem for de Sitter as well as new insights regarding
infinite sets of families of AdS vacua. The analysis of the axion dependence of the
scalar potential and the implications for axion monodromy models are discussed
in section 3.7, while section 3.8 contains our conclusions.

3.2 Flux compactifications on Calabi-Yau fourfolds
In this section we introduce the setup that we investigate in detail in this chap-
ter. Concretely, we will be interested in flux compactifications of F-theory and
Type IIB orientifolds that can be studied via the duality to M-theory. We will
thus first recall in subsection 3.2.1 the scalar potential VM of M-theory compacti-
fied on a Calabi-Yau fourfold with G4 flux and introduce the tadpole cancellation
condition [158, 159]. We briefly comment on how VM lifts to a four-dimensional
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3 Asymptotic Flux Compactifications and the Swampland

scalar potential of an N = 1 compactification of F-theory on an elliptically fibered
Y4. In subsection 3.2.2 we then recall how the F-theory setting reduces to a four-
dimensional flux compactified Type IIB on an orientifold background. Restricting
the allowed background fluxes we also show how a specific scalar potential (3.2.16)
in Type IIA flux compactification can be described within this setting and we
will later on analyze generalizations of such potential by loosening the correlation
between the coefficients in the remaining sections.

3.2.1 Four-form flux and the scalar potential
In this section, we elaborate on the contents reviewed in Section 1.2.4. As recalled
in Section 1.2.4, compactifications for M-theory, or rather eleven-dimensional su-
pergravity, on a Calabi-Yau fourfold leads to a three-dimensional effective super-
gravity theory with N = 2 supersymmetry. This theory is characterized by a
Kähler potential, determining the metric of the dynamical scalars, and a super-
potential, inducing a non-trivial scalar potential for these fields. In case one is
considering a smooth Calabi-Yau fourfold the superpotential is only induced by
four-form fluxes G4, which parametrize non-vanishing vacuum expectation values
of the field-strength Ĝ4 of the M-theory three-form Ĉ3 through four-cycles of the
internal space Y4. Such fluxes Ĝ4 can also induce a gauging of the theory [44,160],
but we will not discuss this part of the effective action in any detail in the fol-
lowing. We will also be not concerned with the quantization of fluxes, since this
discreteness property will not be of significance in the later analysis.

Performing the dimensional reduction the three-dimensional scalar potential in
the Einstein frame takes the form

VM = 1
V3

4

(∫
Y4

G4 ∧ ?G4 −
∫
Y4

G4 ∧G4

)
(3.2.1)

where V4 is the volume of Y4 and ? is the Hodge-star on Y4. Note that the derivation
of VM requires to perform a dimensional reduction with a non-trivial warp-factor
and higher-derivative terms [161–166]. The warp-factor equation integrated over Y4

furthermore induces a non-trivial consistency condition linking flux and curvature.
This tadpole cancellation condition takes the form

1
2

∫
Y4

G4 ∧G4 = χ(Y4)
24

, (3.2.2)

where χ(Y4) =
∫
Y4
c4(Y4) is the Euler characteristic of Y4. The condition (3.2.2)

has to be used crucially in the derivation of (3.2.1) and leads to the second term.
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3.2 Flux compactifications on Calabi-Yau fourfolds

The scalar potential (3.2.1) depends via the Hodge-star and V4 both on the
complex structure moduli and Kähler structure moduli of Y4. Since our main target
will be to investigate the vacua in complex structure moduli space, it is convenient
to split the scalar potential with respect to these two sets of moduli. We will
do that by demanding that the flux under consideration satisfies the primitivity
condition

J ∧G4 = 0 , (3.2.3)

which should hold in cohomology and defines the primitive cohomology H4
p(Y4,R).

This condition forces the scalar potential induced by this flux to only depend on the
complex structure moduli and the overall volume factor. In fact, one shows [167]
that it then can be written as

VM = eKGIJ̄DIWDJW , (3.2.4)

where K is a Kähler potential, determining the metric GIJ̄ and its inverse GIJ̄ ,
and W a holomorphic superpotential. The derivative appearing in (3.2.4) are given
by DIW = ∂IW + (∂IK)W , with ∂I are derivatives with respect to the complex
structure moduli fields of Y4. Note that a term proportional to |W |2 does not arise
due to the no-scale condition for the Kähler moduli.

Let us introduce the various quantities appearing in expression (3.2.4) in more
detail. Firstly, we have introduced the Kähler potential K = −3 log V4+Kcs, which
absorbs the overall volume factor and depends on the Kähler potential Kcs. The
latter determines the metric GIJ̄ = ∂zI∂z̄JKcs on the complex structure moduli
space Mcs of Y4. In general, Kcs is a very non-trivial function of the complex
structure moduli zI , I = 1, . . . , h3,1(Y4). Explicitly it can be written as

Kcs(z, z̄) = − log
∫
Y4

Ω(z) ∧ Ω̄(z̄) , (3.2.5)

where Ω is the, up to rescalings, unique (4, 0)-form on Y4. Note that Ω varies
holomorphically in the fields zJ . Secondly, we have used that the superpotential
depending on the complex structure moduli takes the form [51]

W (z) =
∫
Y4

G4 ∧ Ω(z) . (3.2.6)

In order to simplify the notation, let us introduce a bilinear form 〈 · , · 〉 and the
Hodge norm ‖ · ‖ by defining

〈v, v′〉 ≡
∫
Y4

v ∧ v′ , ‖v‖2 ≡
∫
Y4

v ∧ ?v̄ , (3.2.7)
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Note that 〈 · , · 〉 is symmetric for Calabi-Yau fourfolds. Using this notation one
finds that (3.2.5) and (3.2.6) reduce to

Kcs = − log〈Ω, Ω̄〉 = − log ‖Ω‖2 , W = 〈G4,Ω〉 , (3.2.8)

where we have used that ?Ω = Ω. Furthermore, we can write the scalar potential
(3.2.1) elegantly as

VM = 1
V3

4

(
‖G4‖2 − 〈G4, G4〉

)
= 1

2V3
4

‖G4 − ?G4‖2 . (3.2.9)

It will be crucial for our later discussion to recall some well-known features
of the vacua of (3.2.1), (3.2.4). If we look for supersymmetric vacua one has to
demand DIW = 0 and W = 0, where the later condition arises when considering
a W independent of the Kähler structure moduli. Hence, in the (p, q)-Hodge
decomposition of the primitive cohomology H4

p(Y4,C), defined by the vanishing
of the wedge product of these forms with J as in (3.2.3), supersymmetric fluxes
are of type (2, 2). Clearly, the potential (3.2.4) is vanishing for these vacua. In
fact, it is important to stress that if one demands that the equations of motion for
a background solution are strictly satisfied, one has

G4 = ?G4 , (3.2.10)

and the scalar potential (3.2.1) vanishes identically. Therefore, in order to obtain
non-trivial Anti-de Sitter or de Sitter solutions we have to violate (3.2.10) in the
vacuum. In order that this does not destabilize the solution, this has to be done
in a controlled way, as we discuss in more detail below.

Let us close the recap of the fourfold compactifications by noting that the scalar
potential (3.2.9) admits a lift to four-dimensional F-theory compactifications if
Y4 is elliptically fibered with a threefold base B3 [40]. In order to discuss this
up-lift in some more detail, we note that the restriction to primitive fluxes G4 is
important in the following discussion. In fact, in contrast to some of the Kähler
moduli, the complex structure moduli of Y4 will equally be complex scalar fields
in a four-dimensional F-theory compactification. Therefore, for primitive flux the
combination ‖G4‖2 − 〈G4, G4〉 in (3.2.9) will lift directly to four dimensions. The
overall volume, however, has to be split into a volume of the base B3 denoted by
Vb and the volume of the fiber as discussed in [44]. Identifying the fiber volume
with the radius of the circle connecting M-theory and F-theory, we then obtain the
F-theory scalar potential

VF = 1
V2

b

(
‖G4‖2 − 〈G4, G4〉

)
. (3.2.11)
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3.2 Flux compactifications on Calabi-Yau fourfolds

Crucially, this result contains the volume Vb of a Type IIB compactification per-
formed in ten-dimensional Einstein frame and no further dilation factors appear in
the overall prefactor. In the next subsection we will discuss how (3.2.11) reduces
to the flux potential of a Type IIB orientifold compactification. The latter then
relates to a Type IIA flux potential via mirror symmetry.

3.2.2 Relation to flux vacua in Type IIB and Type IIA orientifolds
In this section we briefly discuss how the G4 flux compactifications introduced
in section 3.2.1 are linked with flux compactifications of Type IIB and Type IIA
orientifolds. In particular, we will recall the well-known results about Type IIA
flux vacua following [16,137,154]. This will make it easier to compare later on our
results to previous no-go theorems found in the literature.

Let us first discuss how the first term in the F-theory scalar potential (3.2.11)
given by the Hodge norm of G4 reduces to the well known flux induced scalar
potential of Type IIB Calabi-Yau orientifold compactifications. This requires to
perform Sen’s weak coupling limit [168], which is a well-know limit in complex
structure moduli space and will arise as a special case of the more general discussion
introduced in the next section. Concretely, it requires to send the imaginary part of
one of the complex structure moduli, namely the one corresponding to the complex
structure modulus of the generic elliptic fiber of Y4, to be very large. Denoting this
modulus by S one then identifies S = C0 + ie−φB , where φB is the ten-dimensional
dilaton. This implies that ImS � 1 is indeed the weak string coupling limit. The
flux G4 splits as G4 = H3 ∧ dy + F3 ∧ dx, where dx and dy are the two one-forms
on the generic elliptic fiber and H3 and F3 are NS-NS and R-R fluxes in Type IIB,
respectively. Inserting this form of G4 into the F-theory potential (3.2.11) and
using the standard torus metric, one finds that Type IIB orientifold flux potential
takes the form

VIIB = e3φB

4(VB
s )2

[
e−φB

∫
Y3

H3 ∧ ?H3 + eφB

∫
Y3

F3 ∧ ?F3 −
∫
Y3

F3 ∧H3

]
. (3.2.12)

Note that VB
s is the volume of the Calabi-Yau threefold emerging in the orientifold

limit in the ten-dimensional string frame. The volume is related to Vb via VB
s =

Vbe
3φB/2 and one has B3 = Y3/Z2. This implies also that the Hodge norm in

(3.2.12) now only includes the dependence on the complex structure moduli of the
threefold Y3, which were part of the complex structure moduli of the fourfold Y4.
It is straightforward to express (3.2.12) in terms of the complex flux F3 −SH3 and
then determine the well-known orientifold flux superpotential.
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Let us now turn to discussing Type IIA orientifold compactifications with fluxes.
Their effective action can also be determined by direct dimensional reduction from
massive IIA supergravity [16]. However, we can alternatively use mirror symmetry
to derive the effective theory of Type IIA on the mirror Calabi-Yau orientifold.
By mirror symmetry, the complex structure moduli are mapped to Kähler moduli
in Type IIA, while the four dimensional Type IIB dilaton eDB = eφB/

√
VB
s gets

mapped to the Type IIA dilaton eDA = eφA/
√

VA
s . It will be convenient for us to

define 2

s = e−φA
(VA
s )1/2

|ΩA|
, u = (VA

s )1/3 , (3.2.13)

where we defined |ΩA|2 ≡ i
∫
Ỹ3

Ω̄A ∧ ΩA. The mirror identification of the fields
implies

e−φB ↔ s , VB
s ↔ |ΩA|2 , |ΩB |2 ↔ VAs , (3.2.14)

with the definition |ΩB |2 ≡ i
∫
Y3

Ω̄B ∧ ΩB.
The different components of the R-R three-form fluxes map to Type IIA R-R

p-form fluxes with p = 0, 2, 4, 6. The NS-NS flux, though, can yield different
components mapping to NS-NS flux, metric fluxes or non-geometric fluxes in IIA.
For simplicity in this section, let us illustrate the result only for the R-R fluxes
and the NS-NS component which maps to a NS-NS flux in IIA. Using (3.2.13) and
(3.2.14) the Type IIA scalar potential dual to (3.2.12) reads

VIIA = 1
4s3|ΩA|4

( s
u3 |ΩA|2

∫
Ỹ3

H3 ∧ ?H3 + 1
su3

∑
p

∫
Ỹ3

Fp ∧ ?Fp −
∫

O6/D6
F0H3

)
.

(3.2.15)
In performing this duality one has to realize that also the Hodge star maps non-
trivially under mirror symmetry (see e.g. [16, 169] for a more detailed discussion).
Interestingly, not only all these fluxes have the same M-theory origin in terms
of G4, but also the contribution from O6-planes can be derived from the second
term in (3.2.1). Since the orientifold planes are geometrised in M-theory, they
will contribute to the Euler characteristic of the fourfold which appears in the
tadpole cancellation condition (3.2.2). This term is topological so the only moduli
dependence arises from the overall volume factor. Hence, there is an additional
factor 1/s3 when comparing the Type IIB/F-theory scalar potential (3.2.11) and
Type IIA scalar potential (3.2.15) arising from the change to the string frame and
the use of the mirror map. For later reference it will be useful to write (3.2.15) in
2Note that s = ReCZ0 in the notation of [16]. The factor i

∫
Ω ∧ Ω̄ was not included in [154].
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a more compact form in the case one has only one volume modulus, namely u. In
this case one show that

∫
Ỹ3
Fp ∧ ?Fp ∝ u6−2p and (3.2.15) becomes

VIIA = 1
4s3

( s
u3 ÂH3 + u3

s
ÂF0 + u

s
ÂF2 + 1

su
ÂF4 + 1

su3 ÂF6 − Âloc

)
, (3.2.16)

where we have absorbed |ΩA|4 in the definitions in the coefficients Âloc and the
non-negative ÂH3 , ÂF0 , . . . , ÂF6 ≥ 0 .

The typical advantage of working using the M-theory language is that, as we
have seen, Type II objects with different nature are described in a unified way
in M-theory. However, this is not the only advantage. Notice that the volume
and dilaton fields in Type IIA map to complex structure and dilaton in Type IIB
respectively, and both lift to complex structure of the fourfold in M-theory. By
studying different points in the complex structure moduli space of the fourfold we
are, therefore, considering different limits for the volume and dilaton in Type IIA.
Only a very special point in this complex structure moduli space corresponds to
the large volume and small coupling limit in Type IIA, and only near this special
point we can follow the chain of dualities by staying within the regime in which
the Type IIA supergravity description is under control. Therefore, another clear
advantage of studying these effective theories in the M-theory language, is that
we can in fact move to other points in the complex structure moduli space of the
fourfold in a controlled way, which allows us to study the effective theory beyond
the large volume and weak coupling limit of Type IIA.

The question that drives our work is whether the conclusions and no-go’s ob-
tained from studying the structure of flux vacua at large volume and weak cou-
pling limits are also valid when exploring other infinite distance limits of the mod-
uli space. For this purpose, we will introduce a mathematical machinery that
will allow us to compute the asymptotic splitting of G4 into different components
adapted to each type of infinite distance singularity. In the well known case of the
large complex structure point, this asymptotic splitting of G4 corresponds to the
different components that map to the RR and NS fluxes in Type IIA. However, this
may vary at other special points of the moduli space. Together with this asymp-
totic splitting we will provide the moduli dependence of each component, which
will allow us to study the asymptotic structure of flux vacua in general grounds in
section 3.6.

161



3 Asymptotic Flux Compactifications and the Swampland

3.3 Asymptotic flux potential
In this section we discuss flux compactifications restricted to the asymptotic regime
in the complex structure moduli space of a Calabi-Yau fourfold Y4. The moduli
space regions of interest are near limits in moduli space in which Y4 becomes
singular. To begin with, we first explain in section 3.3.1 how the moduli dependence
of the the (4, 0)-form Ω can be approximated in each asymptotic regime when
knowing the monodromy matrices and a limiting four-form a0 associated to the
singular locus. We also briefly discuss how this data can be used to classify the
limits. Furthermore, we then sketch in section 3.3.2 that the same data defines, very
non-trivially, an orthogonal split of the fourth cohomology group, and hence the
flux space, into smaller vector spaces V` with certain remarkable properties. In fact,
in section 3.3.3 we show that it can be used to give an asymptotic approximation
to the Hodge norm in (3.2.1) and hence the flux scalar potential itself. Using
these insights, we are then able to show in section 3.3.4 that self-dual fluxes take
a particularly simple form in the strict asymptotic regime. In addition we define a
certain new class of fluxes in section 3.3.5, which are relevant in determining the
scaling limits of the scalar potential.

3.3.1 Asymptotic limits in Calabi-Yau fourfolds
In the following we will discuss the considered limits in the complex structure
moduli space Mcs(Y4). The limits of interest are taken to reach the boundary
of Mcs(Y4) at which Y4 becomes singular. Of particular interest will be the ones
which lead us to points that are of infinite geodesic distance in the metric GIJ̄
derived from (3.2.5). A well-known example of such a degeneration point is the
large complex structure point, but the following statements apply to all infinite
distance points that can also lie on higher-dimensional degeneration loci. One
describe the degeneration loci of Y4 locally as the vanishing locus of n coordinates
z1 = · · · = zn̂ = 0.3 We can also introduce new coordinates tj = 1

2πi log zj , such
that the limits of interest are given by

tj → i∞ , j = 1, . . . , n̂ , (3.3.1)

with all other coordinates ζκ finite. In the following we will set

tj = φj + isj , (3.3.2)
3This equation describes the intersection of n̂ divisors in a blown-up version of the complex
structure moduli space.
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such that (3.3.1) corresponds to sending sj → ∞, while the φj approach any finite
values.

Since we will be interested in the region close to the degeneration locus of Y4,
we will consider large values of s1, . . . , sn̂. In this case we can use a result of [75]
that the limiting behavior of Ω is approximated by the so-called nilpotent orbit
Ωnil which takes a much simpler form than the general Ω and will be introduced
next. Firstly, Ωnil depends on the monodromy matrix Tj associated to the tj = i∞
point. To define the monodromy matrix, one needs to choose a flat basis for the four-
form cohomology H4

p(Y4,R) and identify the (4, 0)-form Ω with its period vector
Π under such an integral basis. This period vector Π solves the Picard-Fuchs
equations associated to the complex structure deformation. Then the monodromy
matrix appears if one asks how the period vector Π transforms under tj → tj + 1,
i.e. it is defined via

Π(. . . , tj + 1, . . .) = T−1
j Π(. . . , tj , . . .) , (3.3.3)

where the appearance of the inverse of Tj is purely conventional. In the following
we will use a shorthand notation writing a matrix action on a form. This is always
understood as having the matrix acting on the integral basis of four-forms. For
example, equation (3.3.3) is then expressed as

Ω(. . . , tj + 1, . . .) = TjΩ(. . . , tj , . . .) , (3.3.4)

where the inverse arises due to the action on the basis rather than on the coefficient
vector.

If Tj possesses a non-trivial unipotent part, it defines a nilpotent matrix 4

Nj = log Tj . (3.3.5)

The Nj form a commuting set of matrices and one has 〈Nj · , · 〉 = −〈 · , Nj · 〉. The
nilpotent orbit theorem of [75] states that Ω is approximated by the nilpotent orbit
5

Ω(t, ζ) = et
iNia0(ζ)︸ ︷︷ ︸
Ωnil(t,ζ)

+O(e2πitj ) , (3.3.6)

4In the following we will assume that we have transformed the variables zj and tj , such that only
the unipotent part of Tj is relevant in the transformation (3.3.3). This procedure causes us to
lose some of the information about the monodromies of orbifold singularities, but the aspects
crucial to the infinite distances are retained.

5Note that this statement is true up to an overall holomorphic rescaling of Ω. Such rescalings
yield to a Kähler transformation of K given in (3.2.5). Unless otherwise indicated the following
discussion is invariant under such rescalings.
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where we sum in the exponential over i = 1, . . . , n̂. Here a0 is a holomorphic
function in the coordinates that are not send to a limit (3.3.1). Note here that
the exponential yields a polynomial in ti, since the Ni are nilpotent matrices.
The important statement of (3.3.6) is that the vector Ωnil approximates Ω up
to corrections that are suppressed by e2πitj in the limit of large s1, . . . , sn̂. The
nilpotent orbit is the starting point for our analysis of the asymptotic regions in
Mcs.

Let us note that all possible nilpotent matrices N , defined via (3.3.5), arising
from the degeneration limits (3.3.1) of Calabi-Yau fourfolds can be classified sys-
tematically [113]. This classification proceeds analogously to the one of singularity
types occurring for Calabi-Yau threefolds discussed in [113, 136]. In the fourfold
case one distinguishes five general types denoted by I, II, III, IV, and V. Following
a similar strategy as for Calabi-Yau threefolds we enumerate all singularity types
of the primitive middle Hodge numbers (1, h3,1, m̂, h3,1, 1), where m̂ denotes the
dimension of the primitive part H2,2

p (Y4) of H2,2(Y4).
One way of distinguishing these cases is by asking what the highest power of N

is that does not annihilate a0, i.e. one determines the integer d satisfying

Nda0 6= 0 , Nd+1a0 = 0 . (3.3.7)

Since d ≤ 4, one finds exactly five cases, d = 0, . . . , 4 corresponding to the singu-
larity types I, . . . ,V. As for Calabi-Yau threefolds each of these types has further
sub-types. For fourfolds one can label them by two indices and write:

Ia,a′ 0 ≤ a ≤ a′ ≤ h3,1 2a′ − a ≤ m̂

IIb,b′ 0 ≤ b ≤ b′ ≤ h3,1 − 1 2b′ − b ≤ m̂

IIIc,c′ 0 ≤ c ≤ c′ ≤ h3,1 − 1 2c′ − c ≤ m̂− 2
IVd,d′ 1 ≤ d+ 1 ≤ d′ ≤ h3,1 − 1 2d′ − d ≤ m̂

Ve,e′ 1 ≤ e ≤ e′ ≤ h3,1 2e′ − e ≤ m̂

(3.3.8)

The precise connection of N to the singularity type is summarized in table 3.1.

3.3.2 Asymptotic split of the flux space
In the following we want to introduce a basis of G4 fluxes, which is adapted to the
limits (3.3.1) discussed in the previous subsection. It turns out that in order to use
the mathematical machinery that we will introduce next, one has to first divide
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Type
Action on a0 Rank of

highest d : Nda0 6= 0 N N2 N3 N4

Ia,a′ d = 0 2a′ − a a 0 0

IIb,b′ d = 1 2b′−b+2 b 0 0

IIIc,c′ d = 2 2c′ + 4 c+ 2 0 0

IVd,d′ d = 3 2d′ + 4 d+ 4 2 0

Ve,e′ d = 4 2e′ + 2 e+ 2 2 1

Table 3.1: Classification of the arising limits and singularities occurring in the complex
moduli space of Calabi-Yau fourfolds.

the space into growth sectors. One such growth sector is given by

R12···n̂ =
{
tj = φj + isj

∣∣∣s1

s2 > γ, . . . ,
sn̂−1

sn̂
> γ, sn̂ > γ, φj < δ

}
, (3.3.9)

where we can chose arbitrary positive γ, δ. Other growth sectors can be obtained
by the same expression but with permuted sj .

Let us now introduce a basis for the G4. It will depend on the following set of
data: (1) the monodromy matrices Ni and the vector a0 appearing in (3.3.6), (2)
the growth sector (3.3.9) which one considers. Given this data it was shown in [76]
that one can always find an associated set of

commuting sl(2,C)-triples : (N−
i , N

+
i , Yi) , i = 1, . . . , n̂ , (3.3.10)

which captures the asymptotic behavior of the (3.3.6) and its derivatives. These
triples satisfy the standard commutation relations

[Yi, N±
i ] = ±2N±

i , [N+
i , N

−
i ] = Yi . (3.3.11)

In practice it it non-trivial to construct these sl(2,C)-triples starting with the data
defining the nilpotent orbit (3.3.6). For Calabi-Yau threefolds an explicit example
was worked out in [136]. In the following we will assume that the steps summarized
in [136] have been performed and the commuting triples to the considered limit
are known.
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The sl(2,C)-triples can now be used to split the primitive cohomology group
H4

p(Y4,R) into eigenspaces of Yi. Let us introduce

H4
p(Y4,R) =

⊕
`∈E

V` , ` = (`1, . . . , `n̂) , (3.3.12)

where `i ∈ {0, . . . , 8} are integers representing the eigenvalues of Y(i) = Y1+· · ·+Yi,
i.e.

v` ∈ V` ⇐⇒ Y(i)v` = (`i − 4)v` . (3.3.13)

In writing (3.3.12) we have introduced the set E of all possible vectors ` labelling
non-trivial V` and collecting all eigenvalue combinations of (Y(1), . . . , Y(n̂)). The
allowed vectors in E are determined by investigating the properties of the singu-
larity occurring in the limit (3.3.1) and we will see in more detail below. The
sl(2,C)-algebra allows to derive several interesting properties of the vector spaces
V`. For example, one finds that

dimV` = dimV8−` , (3.3.14)

where we abbreviated 8 = (8, . . . , 8), which implies that V`
∼= V8−`. Furthermore,

the spaces V` satisfy the orthogonality property

〈V`, V`′〉 = 0 unless ` + `′ = 8 , (3.3.15)

as can be inferred by using the fact that 〈 · , Y(i) · 〉 = −〈Y(i) · , · 〉. In other words us-
ing (3.3.12) one finds a decomposition of an element H4

p(Y4,R) into sets of pairwise
orthogonal components.

Applied to the fluxes G4 ∈ H4
p(Y4,R), this decomposition implies an asymptotic

split of the flux space into orthogonal components

G4 =
∑
`∈E

G`
4, where G`

4 ∈ V` for every ` ∈ E . (3.3.16)

This flux splitting will be the key of our starting program to classify possible flux
scalar potentials in string compactifications.

3.3.3 The asymptotic behavior of the Hodge norm
In the following we will introduce one of the most non-trivial consequences of the
splitting (3.3.12), by arguing that it determines the asymptotic behavior of the
Hodge norm. To begin with let us recall some facts about the Hodge star operator
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?. To define its action on the primitive middle cohomology H4
p(Y4,C) we can

introduce the Hodge decomposition

H4
p(Y4,C) = H4,0 ⊕H3,1 ⊕H2,2

p ⊕H1,3 ⊕H0,4 . (3.3.17)

As long as the manifold Y4 is non-singular the action of ? is simply given by ?vp,q =
ip−qvp,q, for any element vp,q ∈ Hp,q. Clearly, since the (p, q)-split in (3.3.17)
depends on the choice of complex structure, it will vary when changing the complex
structure moduli. This is the origin of the complex structure moduli dependence in
(3.2.1). Close to a degeneration point of Y4 we expect that also ? takes a simplified
form, just as the (4, 0)-form Ω simplifies as discussed in section 3.3.1. In fact, we
stated around (3.3.6) that Ω simplifies, when dropping exponentially suppressed
corrections, to the nilpotent orbit Ωnil. This approximation can also be applied to
the Hodge star operator ? as we will discuss in the following.

Let us start with a general element of G4 ∈ H4
p(Y4,R), which we can consider to

be our G4-flux. We want to evaluate the Hodge metric by using Ωnil rather than
the complete (4, 0)-form Ω. This can be done systematically, when extending the
nilpotent orbit construction to the whole cohomology as we discuss in appendix
3.B. In this way one finds

‖G4‖2 =
∫
Y4

G4 ∧ ?G4 = 〈CnilG4, G4〉 + O(e2πitj ) , (3.3.18)

where Cnil(t, ζ), the Weil operator associated to the nilpotent orbit, captures the
moduli dependence on the fields tj through terms involving et

iNi as appearing
in the nilpotent orbit (3.3.6). We will introduce Cnil properly in appendix 3.B.
Crucially, due to the fact that the tj dependence of Cnil is simplified due to the
nilpotent orbit approximation, we find that its dependence on the axions φi = Re ti

can be made explicit by writing

Cnil(t, ζ) = eφ
iNiĈnile

−φiNi , Ĉnil ≡ Cnil(φi = 0) . (3.3.19)

We can use this identity by defining ρ(G4, φ) = e−φiNiG4 and deduce that (3.3.18)
becomes

‖G4‖2 =
∫
Y4

G4 ∧ ?G4 = 〈Ĉnilρ, ρ〉 + O(e2πitj ) , (3.3.20)

where crucially all φi dependence is now captured by ρ(G4, φ) when neglecting
the exponentially suppressed corrections. Let us note that we can expand the φi-
dependent vectors ρ in any basis vA, A = 1, . . . , dimH4

p(Y4,R) as ρ = %Av
A. If we
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also give the basis expression ZAB = 〈Ĉnilv
A, vB〉 for the inner product, we can

write (3.3.20) as
‖G4‖2 = ZAB%A%B + O(e2πitj ) . (3.3.21)

It turns out that there is a clever choice of basis vA, which allows us to also make
the field dependence on the scalars si = Im ti explicit. This basis is adapted to the
splitting (3.3.12) as we will discuss in the following.

Let us consider the real four-form G4 and determine its split into vector spaces
V` by expanding G4 =

∑
`∈E G

`
4 as in (3.3.16). These vector spaces further satisfy

to be orthogonal with respect to the inner product

〈C∞V`, V`′〉 = 0, for `′ 6= ` . (3.3.22)

where C∞ is the Weil operator inducing a natural limiting Hodge norm

‖v‖∞ = 〈C∞v, v〉 , (3.3.23)

which is defined using only the structure at the limiting locus (3.3.1). It is there-
fore independent of the coordinates t1, . . . , tn̂, while non-trivially varying with the
remaining coordinates ζκ. The operator C∞ will be introduced in more detail in
appendix 3.B. We also point out that equation (3.3.15) and (3.3.22) imply the
following behavior of this Weil operator

C∞ : V` → V8−`, (3.3.24)

for all `, i.e., C∞ exchanges V` and V8−`. For the purpose of this section, it is
enough to remark that the flux norm satisfies the following direct sum decomposi-
tion on the split (3.3.12),

‖G4‖2
∞ =

∑
`∈E

‖G`
4‖2

∞ , (3.3.25)

thanks to the orthogonality property (3.3.22) which forces all non-diagonal terms
to vanish.

The next step is to move a bit away from the singular loci in order to recover
the dependence on the scalar fields of the Hodge norm. First, in order to explicitly
keep the axion dependence, we use (3.3.19) to also include the exponential e−φiNi

and expand

ρ(G4, φ) ≡ e−φiNiG4 =
∑
`∈E

ρ`(G4, φ) , ρ`(G4, φ
i = 0) = G`

4 , (3.3.26)

where ρ` is the restriction of e−φiNiG4 to the vector space V`. Notice that the com-
ponents ρ` satisfy the same asymptotic orthogonality properties as G`

4, regardless
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of the value of the axions. We can then use this expansion to get an asymptotic
expression for the Hodge norm [76, 107] with all dependence on φi and si being
explicit. More precisely, one has

‖G4‖2 ∼ ‖G4‖2
sl(2) =

∑
`∈E

(s1

s2

)`1−4
· · ·
(sn̂−1

sn̂

)`n̂−1−4
(sn̂)`n̂−4 ‖ρ`(G4, φ)‖2

∞ .

(3.3.27)
where we have introduced the Weil operator Csl(2) by setting

‖G4‖2
sl(2) ≡ 〈Csl(2)G4, G4〉 . (3.3.28)

More detailed discussion on the operator Csl(2) can be found in appendix 3.B.
This operator captures the leading dependence on the saxionic coordinates si but
neglects all sub-leading polynomial corrections of the form si/si+1 for the corre-
sponding growth sector (3.3.9). Hence, it is only a good approximation once a
growth sector is selected and provides the asymptotic form of the Hodge norm
along when considering the si in the growth sector with γ � 1. From now on,
we will denote this regime of validity the strict asymptotic regime, in opposition
to the asymptotic regime which captured all polynomial corrections and neglected
only the exponentially suppressed terms of order O(e2πitj ). In the mathematical
terminology, the latter corresponds to the nilpotent orbit result while the strict
asymptotic regime is given by the sl(2)-orbit approximation. We have summarized
the different approximations of the Hodge operator and their regime of validity in
table 3.2.

This strict asymptotic behavior of the Hodge norm is a very powerful result that
will allow us to classify all possible flux scalar potentials and their vacua arising
in the asymptotic regions of string compactifications. All we need is to provide a
list of all possible values of the integer vector ` = (`1, `2, . . . , `n̂) ∈ E associated
to the different singular limits. This classification will be performed in section
3.5.2 for the case of two moduli becoming large in a Calabi-Yau fourfold. Notice
also that the operator Csl(2) still satisfies the same orthogonality properties as C∞

with respect to the vector spaces V`, implying that the flux scalar potential will
be simply given by a sum of squares, simplifying enormously the analysis of flux
vacua.

We close this subsection by stressing that the symbol ∼ in (3.3.27) indicates
that this expression displays the strict asymptotic behavior of the Hodge norm. In
fact, this statement is actually well-defined. The expression (3.3.27) implies that
for s1/s2, . . . , sn̂−1/sn̂ > γ, i.e. in a growth sector (3.3.9), there exist two positive
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constants α, β such that

α‖G4‖2
sl(2) ≤ ‖G4‖2 ≤ β‖G4‖2

sl(2) . (3.3.29)

The constants α, β do, in general, depend on γ, but are independent of G4. Note
that this inequality has the immediate consequence that we have to be careful
when approximating the Hodge norm ‖G4‖2 with ‖G4‖2

sl(2), since it limits our
ability to infer detailed information about ‖G4‖2 from the much simpler norm
‖G4‖2

sl(2). In general, only in the limit γ → ∞ the constants α, β will approach
each other and the norm ‖G4‖2 converges to ‖G4‖2

sl(2). However, there can be
particular situations in which ‖G4‖2

sl(2) provides the full result for the Hodge norm
up to exponentially suppressed corrections, as we will explain more carefully when
discussing the supergravity embedding in section 3.4.1.

Regime of
validity:

Asymptotic
si large

Strict asymptotic
R1···n̂ with γ � 1

At boundary
si = ∞

Approximating
Hodge-operator:

Cnil Csl(2) C∞

Corrections: drop O(e2πitj ) drop sub-leading si

si+1 -polys ti-independent

Table 3.2: Weil operators and their regime of validity.

3.3.4 Self-dual fluxes in the strict asymptotic regime
In this subsection we discuss a first way of finding vacua of the potential (3.2.1) by
restricting to asymptotically self-dual fluxes. Note that this potential is positive
definite when written in the form (3.2.4) and vanishes when considering vacua
in which the flux G4 satisfies the self-duality condition (3.2.10). Recall that the
self-duality condition is a necessity if we want the vacuum to solve the equations
of motion of the eleven-dimensional supergravity. This condition fixes the moduli,
since it involves the moduli-dependent Hodge star ?. As in the previous subsection,
we can thus ask the question if, at least in the asymptotic regime, one can give
an explicit moduli dependence of the self-duality condition and eventually fix the
moduli explicitly.

In order to study moduli stabilization we thus replace ? with its asymptotic
counterparts Cnil, defined in (3.3.18), and Csl(2), defined in (3.3.28). In the former
case one neglects exponentially suppressed corrections in the variables ti that are
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taken to the limit. Using (3.3.19), we find that the self-duality condition (3.2.10)
is approximated by

Ĉnil ρ(G4, φ) = ρ(G4, φ) . (3.3.30)

Expanded into a basis this equation gives still a very complicated set of equations
even in the ti. To further decouple these equations we will move deeper into the
asymptotic regime as in section 3.3.3. Let us thus consider the asymptotic expres-
sion of (3.2.10) using Csl(2). In this case we can exploit the fact that everything
splits into the V` and we can extract the explicit ti moduli dependence. We thus
consider the asymptotic self-duality condition

Csl(2)G4 = G4 . (3.3.31)

In order to separate this condition into multiple equations we introduce a basis
for the V` as

v`
i`

: spanR
{
v`

1, . . . , v
`
dimV`

}
= V` , (3.3.32)

where ` ∈ E is a vector as before. We normalize these basis vectors with respect
to the inner product, such that

〈v`
i`
, v8−`
j8−`

〉 = δi`j8−`
, 〈v`

i`
, v`′

j`′ 〉 = 0 for ` 6= 8 − `′ , (3.3.33)

where we recall that the orthogonality (3.3.15) of the V` enforces all other products
to vanish. We also abbreviate the inner product between the basis vectors as

K`
i`j`

= 〈C∞v
`
i`
, v`
j`

〉 , 〈C∞v
`
i`
, v`′

j`′ 〉 = 0 for ` 6= `′ , (3.3.34)

where we note that 〈C∞ · , · 〉 is block-diagonal on the V` as noted in (3.3.25). Now
we can expand

G4 =
∑
`∈E

G`
4 =

∑
`∈E

∑
i`

gi`` v
`
i`
, (3.3.35)

with gi`` being the ‘flux quanta’ of the G4.
With these preliminaries we can now split (3.3.31) into scalar equations. We

first evaluate the product of (3.3.31) with the basis {vm
im

} introduced in (3.3.32).
Using the orthogonality conditions (3.3.33) and (3.3.34) we find(s1

s2

)m1−4
· · ·
(sn̂−1

sn̂

)mn̂−1−4
(sn̂)mn̂−4 〈C∞ρm, v

im
m 〉 = 〈ρ8−m, v

im
m 〉 . (3.3.36)

In order to interpret this expression, we set for the moment φi = 0, which implies
that this expression reduces to(s1

s2

)4−m1
· · ·
(sn̂−1

sn̂

)4−mn̂−1
(sn̂)4−mn̂ =

gimm Km
imjm

gjm
8−m

, m not summed, (3.3.37)
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with Km
imjm

and gimm defined in (3.3.34), (3.3.35), respectively. Note that the right-
hand-side only depends on the fluxes gimm , gim8−m and, via Km

imjm
(ζ), the coordinates

ζκ not taken to a limit. This implies that the combination of the si appearing on
the left-hand side are fixed when imposing the asymptotic self-duality condition
(3.3.31). Whether or not this fixes a particular si, or even all of them, depends on
the vectors ` ∈ E , and we will determine all possible sets for two s1, s2 in section
3.5.3.

3.3.5 Unbounded asymptotically massless fluxes
In this subsection we want to define a specific type of four-form flux that will be
relevant in finding vacua in an asymptotic flux compactification. The basic idea is
to identify a flux Ĝ4 that does not contribute to the tadpole cancellation condition
(3.2.2) and thus, at lease taking into account only this constraint, can be made
arbitrary large. However, it is clear that such a flux cannot satisfy the self-duality
condition (3.2.10) and hence violates the equations of motion. We therefore also
require the flux to have an asymptotically vanishing norm ||Ĝ4||2. As we will
discuss in detail below, precisely such fluxes enable us to construct vacua that are
under parametric control.

Let us stress that the complete flux under consideration will be of the form

G4 = Ĝ4 +G0
4. (3.3.38)

Here the flux Ĝ4 is defined to have the following properties

(1 a) 〈Ĝ4, Ĝ4〉 = 0 , (1 b) 〈Ĝ4, G
0
4〉 = 0 , (3.3.39)

(2) ‖Ĝ4‖ → 0 on every path with t1, . . . , tn̂ → i∞ in (3.3.9).(3.3.40)

while the rest of the fluxes will be part of G0
4. In the following we will call the

fluxes satisfying (1 a) and (1 b) to be unbounded, since they are not restricted by
the tadpole condition (3.2.2). The fluxes satisfying (2) will be called asymptoti-
cally massless in the following. As explained above, this latter condition has been
introduced to ensure that the self-duality condition (3.2.10) is only violated mildly
and restored in the limit. In fact, 〈Ĝ4, Ĝ4〉 = 0 implies that Ĝ4 cannot be self-dual
at any finite value of the moduli, since otherwise 〈Ĝ4, Ĝ4〉 = ‖Ĝ4‖2 > 0. In the
following, we will explain how to identify these unbounded asymptotically massless
fluxes Ĝ4 in complete generality.

The split of the fourth cohomology into V` as in (3.3.12) and the general growth
property of the Hodge norm (3.3.27) gives us a powerful tool to specify the fluxes
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3.3 Asymptotic flux potential

that satisfy the condition (3.3.40). Recall that the asymptotic form of the Hodge
norm was given in (3.3.27) and takes the form

‖G4‖2 ∼
∑
`∈E

(s1

s2

)`1−4
· · ·
(sn̂−1

sn̂

)`n̂−1−4
(sn̂)`n̂−4 A` , (3.3.41)

where we have set
A` ≡ ‖ρ`(G4, φ)‖2

∞ > 0 . (3.3.42)

Let us use this to identify the asymptotically massless part Ĝ4. Since by defini-
tion ρ`(G4, φ) ∈ V` we directly infer from (3.3.41) that a sufficient condition that
‖Ĝ4‖2 → 0 on all paths with t1, . . . , tn̂ → i∞ in (3.3.9) is that Ĝ4 has only compo-
nents in the V` with `1, . . . , `n̂−1 ≤ 4 and `n̂ < 4. To see this one can use that in
(3.3.9) all fractions (s1/s2)−1,. . . ,(sn̂−1/sn̂)−1 are bounded and the power (sn̂)`n̂−4

ensures that ‖Ĝ4‖2 vanishes asymptotically.
Note that this analysis suggests that it is natural to split the vector space

H4
p(Y4,R) into three vector spaces as

H4
p(Y4,R) = Vlight ⊕ Vheavy ⊕ Vrest , (3.3.43)

where we define

Vlight =
⊕

`∈Elight

V` , Elight = {`1, . . . , `n̂−1 ≤ 4, `n̂ < 4} , (3.3.44)

Vheavy =
⊕

`∈Eheavy

V` , Eheavy = {`1, . . . , `n̂−1 ≥ 4, `n̂ > 4} .(3.3.45)

Using the growth result (3.3.27) one infers that G4 ∈ Vlight is equivalent to the
statement that ‖G4‖ → 0 on every path with t1, . . . , tn̂ → i∞ in (3.3.9). Similarly,
one sees that G4 ∈ Vheavy is equivalent to demanding ‖G4‖ → ∞ on every path
to the limit in the considered growth sector. It is not difficult to see from (3.3.15)
and (3.3.14) that

〈Vlight, Vlight〉 = 0 , 〈Vheavy, Vheavy〉 = 0 , (3.3.46)

and that Vlight and Vheavy can be identified as vector spaces. With these observa-
tions at hand the asymptotically massless fluxes satisfy

Ĝ4 ∈ Vlight . (3.3.47)

Note that this identification immediately implies also condition (1 a). In contrast,
condition (1 b) should be read as a constraint on both Ĝ4 and G0

4. In fact, we will
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3 Asymptotic Flux Compactifications and the Swampland

see that for a given choice of fluxes in G0
4 we will have to switch off components in

Ĝ4 to select only those asymptotically massless fluxes Ĝ4 which have a vanishing
inner product with G0

4 to find a solution to both (1), (2).
Finally, let us notice that the condition (3.3.47) is equivalent to the condition

imposed over the charge lattice of BPS states in [5,81,136] to find a tower of states
that become massless at the singular loci, as predicted by the Swampland Distance
Conjecture. Analogously, the condition to be unbounded resembles to the condition
of stability [5]. A BPS state in a monodromy orbit cannot fragment into two BPS
states if they are mutually local, i.e. if the inner product (1 b) vanishes. Therefore,
the same element in H4

p(Y4,R) that generated a tower of massless stable BPS states
at the singular loci gives rise here to an unbounded asymptotically massless flux
which is necessary to construct vacua at parametric control. This puts manifest an
intriguing relation between the Swampland Distance Conjecture and the presence
of vacua at parametric control which deserves further investigation in the future.

3.4 Supergravity embedding and three-forms
In this section we will study the N = 1 supergravity embedding of the scalar poten-
tial at the asymptotic limits of the moduli space. We will provide the asymptotic
form of the Kähler potential and superpotential arising in these limits in section
3.4.1 and explain what the strict asymptotic approximation taken in the previous
section means for these supergravity quantities. In section 3.4.2, we will relate
our results to the dual field theory description in terms of three-form gauge fields
commonly used for axion monodromy models. This will allow us to provide a geo-
metric meaning to the underlying structure revealed by the the three-form gauge
fields in string flux compactifications. The reader only interested in the results of
our analysis of flux vacua can safely skip this section.

3.4.1 Asymptotic limits and the N = 1 supergravity data
Equivalently to studying the asymptotic limits of the scalar potential we can also
determine the asymptotic behavior of the Kähler potential (3.2.5) and flux super-
potential (3.2.6). This analysis will highlight various properties of the asymptotic
limits and clarify our approximation taken in the strict asymptotic regime.

Let us begin by investigating the Kähler potential (3.2.5), which can be written
in a more compact form as indicated in (3.2.8). The moduli dependence in Kcs on
ti, ζκ arises through the appearance of Ω. As a first approximation when taking
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3.4 Supergravity embedding and three-forms

the limit ti → i∞, we will replace Ω with the nilpotent orbit Ωnil as discussed
around (3.3.6). Inserting the expression for Ωnil we can use the properties of Ni in
〈 · , · 〉 to write

Kcs
nil = − log〈Ωnil, Ω̄nil〉 = − log〈e2isjNja0(ζ), ā0(ζ̄)〉 . (3.4.1)

Since Nj are nilpotent operators, the exponential in (3.4.1) can always be expanded
to get a polynomial with a finite number of terms. This implies that Kcs, in the
nilpotent orbit approximation with all exponential corrections e2πitj dropped, is
the logarithm of a polynomial in the si and is independent of the axions φi. Kcs

nil
still depends on a considered variable si if Nia0 6= 0. This latter condition is a
necessary condition for the limit to be at infinite distance in the metric derived from
Kcs. The appearance of the continuous shift symmetries φi → φi + ci at infinite
distance singularities was recently discussed in [5] in the context of the Swampland
Distance Conjecture. It is important to stress that Kcs

nil given in (3.4.1) is not yet
the strict asymptotic expression obtained by using the growth result (3.3.27). In
fact, to apply this growth estimate one first has to fix a growth sector (3.3.9) and
expand (3.4.1) in powers of the ratios si/si+1 to obtain

Kcs
sl(2) ∼ − log

[(s1

s2

)d1
· · ·
(sn̂−1

sn̂

)dn̂−1
(sn̂)dn̂f(ζ, ζ̄)

]
, (3.4.2)

where di is the highest power of N1 + · · · + Ni acting on a0 that is non-zero as
in (3.3.7). In other words, the estimate (3.4.2) extracts the leading power of the
coordinates si from the general expression (3.4.1) in a sector (3.3.9). This implies
that not only exponential corrections are omitted, but also sub-leading polynomial
corrections in the coordinates si.

In a next step we look at the flux superpotential W introduced in (3.2.6). The
approximation of neglecting exponential corrections is again implemented by replac-
ing Ω with Ωnil in the asymptotic regime. Using the shorthand notation (3.2.8) we
thus find

Wnil = 〈G4,Ωnil〉 = 〈ρ(G4, φ), eis
jNja0〉 , (3.4.3)

where ρ(G4, φ) was defined in (3.3.26). Despite the fact that we have dropped
exponential corrections, this expression captures the field dependence in a non-
trivial way. Let us expand ρ into some basis. To be concrete we use the basis
associated to the splitting of H4

p(Y4,R) given by the V`, and denote it by

v`
i`

: spanR
{
v`

1, . . . , v
`
dimV`

}
= V` , (3.4.4)

175



3 Asymptotic Flux Compactifications and the Swampland

where ` ∈ E is a vector as before. We thus write ρ = %i`` v
`
i`

, such that (3.4.3) takes
the form

Wnil =
∑
`∈E

∑
i`

%i`` (G4, φ) Γ`
i`

(s, ζ) , Γ`
i`

= 〈v`
i`
, eis

jNja0〉 . (3.4.5)

The remarkable fact about this expansion is, on the one hand, that we succeeded to
separate the φi and si dependence. On the other hand, we have done this cleverly,
such that the Γ`

i`
are polynomials of a highest si-power determined by `, and the

singularity type. Concretely they admit the expansion

Γ`
i`

= (is1)d1−4+`1(is2)d2−d1+`2−`1 · · · (isn̂)dn̂−dn̂−1+`n̂−`n̂−1 Γ̂`
i`

(s1

s2 ,
s2

s3 , . . . , s
n̂
)
,

(3.4.6)
where Γ̂`

i`

(
s1

s2 ,
s2

s3 , . . . , s
n̂
)

involves subleading polynomial corrections in the coor-
dinates si. To determine the sl(2)-approximation, denoted for us as the strict
asymptotic result, we have to further drop out the subleading polynomial correc-
tions in the coordinates ratios si/si+1 in (3.4.6), so that Γ̂`

i`
becomes just a constant

Γ̂`
i`

∼ c`
i`

and the superpotential reads6

Wsl(2) =
∑̀
∈E

∑
i`

%i`` (G4, φ) c`
i`

(s, ζ)(is1)d1−4+`1(is2)d2−d1+`2−`1 · · · (isn̂)dn̂−dn̂−1+`n̂−`n̂−1 .

(3.4.7)
This, together with (3.4.2), will give rise to the leading growth of the scalar

potential given in (3.3.27). We will see in section 3.4.2 that this expansion also
allows us to extract the crucial information when formulating the theory using
Minkowski three-form gauge fields.

To sum up, the strict asymptotic approximation consists of neglecting, not only
the exponentially suppressed corrections, but also subleading polynomial terms in
the coordinates si. This can be done in a consistent way near any singular limit of
the moduli space and provides the leading behavior of the scalar potential for each
growth sector (3.3.9). In terms of the supergravity embedding, it corresponds to
considering a factorizable Kähler potential that keeps only the leading term, i.e.
the logarithm of a monomial of degree dn̂, and a superpotential where each axionic
6It is possible to get the same result for the superpotential if first extracting the leading depen-
dence on the coordinates si and denoting

%` ≡ 〈ρ(G4, φ), N(d1−4+l1)/2
1 N

(d2−d1+l2−l1)/2
2 · · ·N(dn̂−dn̂−1+ln−ln̂−1)/2

n̂ a0〉 .
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3.4 Supergravity embedding and three-forms

function %i`` is multiplied by a single saxionic monomial of degree dn̂ − 4 + ln̂. This
yields a scalar potential that can be expressed as a sum of squares as in (3.3.27).

Let us close this section by noting that the expressions arising in the strict
asymptotic approximation can have a clear physical interpretation as neglecting
some perturbative and non-perturbative corrections. This is for example the case
in the famous Sen’s weak coupling limit in Type IIB and the mirror Type IIA duals
at large volume, in which the dependence on the dilaton can be factorized in the
Kähler potential to leading order in α′. Hence, the sl(2)-norm provides the correct
dilaton-dependence of the scalar potential at tree level and neglects α′-corrections
that will mix the dilaton and the Kähler moduli. However, such an interpretation
fails in other types of limits, where the subleading polynomial corrections have
nothing to do with α′-corrections. It remains as an open question for the future
to study how sensitive to this approximation our results are for the flux vacua
presented in the next sections.

3.4.2 Relation to Minkowski three-form gauge fields
The asymptotic flux splitting and the nilpotent orbit result for the scalar potential
at the large field limits derived in section 3.3 have a very intuitive physics inter-
pretation in terms of the dual formulation of Minkowski three-form gauge fields,
as we will explain in the following.

First, let us notice that each infinite distance limit of the form (3.3.1) is charac-
terized by the appearance of some axions φi = Re ti whose discrete axionic shift
symmetry is inherited from the monodromy transformation Ti around the singular
locus located at si = Im ti → ∞. In the context of the complex structure moduli
space of Calabi-Yau compactifications, the axions can receive a flux-induced scalar
potential which is multi-branched, i.e. only the combined discrete transformation
of the axion and the fluxes leave invariant the effective theory.

The scalar potential of an axion can always be described in a dual picture by
means of a coupling to the field strength of a space-time three-form gauge field
F4 = dC3 [170–172]. Allowing for the presence of multiple axions and three-forms
gauge fields, the scalar potential reads

V = −ZAB(si)FA4 FB4 + FA4 %A(φi) (3.4.8)

where A,B run over the number of three-form gauge fields. Here ZAB(s) is the
kinetic matrix of the three-form gauge fields and is parametrized by the saxions,
while all the dependence on the axion appears only through the shift symmetric
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3 Asymptotic Flux Compactifications and the Swampland

functions %A(φ). In particular, it has been shown in [173, 174] that the flux in-
duced scalar potential of Type II compactifications can always be brought to the
above form, where ZAB and %A were derived by dimensional reduction from ten-
dimensional Type II supergravity to four dimensions.7 The functions %A are a shift
symmetric combination of the internal fluxes and the axions that can be generically
expressed [132] as

%A = (e−φiNi)BA qB (3.4.9)

where Ni are nilpotent matrices associated to the discrete axionic symmetries and
qB a vector of internal fluxes.

Upon integrating out the three-form gauge fields via their equations of motion,

?FA4 = ZAB%B (3.4.10)

the scalar potential becomes

V = ZAB(s)%A(φ)%B(φ) (3.4.11)

which corresponds to a quadratic form on %A. It was also shown in [173] (see also
[132,174,178–182]) that the above scalar potential reproduces the usual form of the
scalar potential derived from the N = 1 supergravity formulae in four dimensional
flux compactifications when combined with the contribution of localized sources.

Interestingly, the form (3.4.11) is the same expression for the scalar potential
found in (3.3.21) upon applying the nilpotent orbit theorem in the asymptotic
regime. Each flux component in (3.3.26) corresponds to the on-shell result of a
four-form (3.4.10) and the nilpotent matrices in (3.4.9) are the same nilpotent
operators Ni = log Ti of (3.3.5) in which the entire formalism is based on. This
is expected from the fact that both formalisms rely on the presence of axionic
shift symmetries inherited from the monodromy transformations and, therefore,
become manifest in these asymptotic regimes. Let us remark that, even if the
discrete shift symmetries are valid everywhere in the moduli space, the notion of
an axion as a scalar field enjoying an approximate continuous shift symmetry is
only valid in these asymptotic regimes. Let us also notice that this dual description
in terms of four-form fields is independent of supersymmetry and can in principle
even describe non-perturbative potentials [183]. It would be thus very interesting to
further explore how the asymptotic Hodge theory approach can be interlinked with
7Note a three-form with action (3.4.8) naturally arises when computing the Type IIA scalar
potential [16]. Furthermore, three-forms are essential when studying the couplings to D-branes
[175–177].
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the use of four-forms and how much of the structure derived with the four-forms
has in fact a geometric counterpart. To give another example, the flux sublattice of
dynamical fluxes found in [181] has a deep relation with the massless components in
the asymptotic flux splitting of section 3.3.2 which would be interesting to further
investigate in the future.

Finally, we would like to remark that the strict asymptotic approximation taken
in (3.3.27) allows us to further express the potential as the sum of asymptotically
orthogonal flux components at the large field limit. In other words, it is always
possible to find a basis such that the kinetic matrix ZAB of the four-forms is nearly
block-diagonal in the sense that the non-diagonal terms are subleading with respect
to the diagonal ones. The strict asymptotic approximation consists of neglecting
these non-diagonal terms so that the potential becomes a sum of squares,

V =
∑
`∈E

Z`(s)‖ρ`(G4, φ)‖2 =
∑
`∈E

∑
i`,j`

Z`
i`j`

(s) %i`` (φ)%j`

` (φ) (3.4.12)

with the exception of a possible remnant coming from tadpole cancellation. Here,
we have used again the expansion (3.4.4) into a basis of vectors associated to the
flux splitting into orthogonal V` vector spaces, such that ρ = %i`` v

`
i`

. Using the
growth theorem (3.3.27) we can infer the leading behavior of each block diagonal
piece of the inverse metric ZAB(s),

Z`
i`j`

∼
(s1

s2

)`1−4
· · ·
(sn̂−1

sn̂

)`n̂−1−4
(sn̂)`n̂−4K`

i`j`
(3.4.13)

where K`
i`j`

was defined in (3.3.34). This is something that could not be determined
only in terms of the four-forms. Hence, our classification of the asymptotic flux
splittings at the large field limits of Calabi-Yau manifolds can allow us to derive the
three-form gauge field metrics and with them, the axionic monodromic potential,
at other types of singularities beyond the typical case of the large complex structure
limit. Furthermore, this monodromic potential written à la Dvali-Kaloper-Sorbo
in terms of four-forms is useful to construct axion inflationary models and study
the viability of large field ranges. In section 3.7 we will exploit our formalism to
derive general conclusions about backreaction issues and large field ranges in axion
monodromy models.

Let us finally mention that this bilinear form of the potential has been proven
to be very useful to minimize the scalar potential of weakly coupled Type IIA flux
compactifications and study the vacua structure in a systematic way [139,182]. In
fact, the ansatz assumed in [182] is precisely guaranteed by the strict asymptotic
approximation yielding (3.4.13). In this chapter, we will exploit the algebraic
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structure arising in the strict asymptotic regime to study the vacua structure at any
asymptotic limit of the complex structure moduli space of a Calabi-Yau manifold.

3.5 General two-moduli limits
In this section we apply the machinery introduced in the previous sections for
two-moduli families of Calabi-Yau fourfolds. More precisely, we investigate the
limits (3.3.1) with n̂ = 2 in the complex structure moduli space of any Calabi-Yau
fourfold Y4 with h3,1 = 2. We first set up notations in order to get familiar with
the asymptotic splitting of H4

p(Y4,R) in the two-moduli setting in subsection 3.5.1.
Then, in subsection 3.5.2, we list all possible limits and corresponding singularity
types that can occur in this moduli space. As a consequence, we are able to infer
the asymptotic splitting of the flux space for each limit. To exemplify the use of
these results, we focus in subsection 3.5.3 on a particular limit and discuss all pos-
sible decompositions G4 = Ĝ4 +G0

4, with Ĝ4 being an unbounded asymptotically
massless flux. This data will be used in the next section to establish universal
no-go results on flux vacua.

3.5.1 Asymptotic flux splitting and scalar potential
Let us consider the complex structure moduli space of a Calabi-Yau fourfold Y4 with
h3,1 = 2. We are interested in the case n̂ = 2 in (3.3.1) sending both coordinates
to a limit. Around such a limit we introduce local coordinates t1, t2 denoted by

t1 = φ1 + is , t2 = φ2 + iu , (3.5.1)

such that Y4 becomes singular at s, u → ∞. For any chosen positive γ, δ we can
consider two growth sectors (3.3.9) given by

R12 =
{

(t1, t2)
∣∣∣ s
u
> γ, u > γ, φi < δ

}
, R21 =

{
(t1, t2)

∣∣∣u
s
> γ, s > γ, φi < δ

}
.

(3.5.2)
The first sector R12 can be interpreted as capturing paths in which s grows faster
than u when approaching the limit s, u → ∞, while R21 exchanges the roles of s
and u. Let us consider R12, after possible renaming, and divide the limit into two
steps. We first go to the singular locus s → ∞ and call the arising singularity type
Type A, where we necessarily find one of the types listed in (3.3.8). In a second step
we send u → ∞ arriving at singularity type Type B from the list (3.3.8). In this
situation, we say that the sector R12 is associated to the singularity enhancement

Type A → Type B . (3.5.3)
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Importantly, we are able to classify all possible singularity types, as already dis-
cussed in section 3.3.1, and determine all allowed enhancements, as discussed in
section 3.5.2.

Associated to an enhancement Type A → Type B, there is an asymptotic splitting
of H4

p(Y4,R) introduced in (3.3.12). In the two-moduli case it takes the form

H4
p(Y4,R) =

⊕
`=(m,n)∈E

Vmn , (3.5.4)

where we explicitly spelled out the indices on the subspaces Vmn. The set E depends
on the enhancement Type A → Type B and will be given explicitly in subsection
3.5.2 for each possible enhancement. Using (3.5.4) a general flux G4 can be decom-
posed as

G4 =
∑

(m,n)∈E

Gmn4 , Gmn4 ∈ Vmn , (3.5.5)

and we also introduce the expansion

e−φiNiG4 =
∑

(m,n)∈E

ρmn , ρmn ∈ Vmn , (3.5.6)

Then the growth of the norm ‖G4‖2 can be inferred from (3.3.41) and reads

‖G4‖2 ∼
∑

(m,n)∈E

( s
u

)m−4
un−4 Amn(G4, φ) , (3.5.7)

where we defined Amn = ‖ρmn‖2
∞ > 0. Inserting this asymptotic growth into the

M-theory scalar potential, we have

VM ∼ 1
V3

4

( ∑
(m,n)∈E

sm−4un−mAmn −Aloc

)
, (3.5.8)

where we have set Aloc ≡ 〈G4, G4〉, which is independent of the moduli. The scalar
potential (3.5.8) will be the starting point of our study of flux vacua in section 3.6.

In the next section we aim to establish no-go results for vacua of (3.5.8) that
are under parametric control. This control is encoded in the fluxes and hence the
coefficients Amn. Whether or not a flux can be made very large is determined
by the tadpole constraint (3.2.2). In section 3.3.5 we have introduced a type
of flux, denoted by Ĝ4, that does not contribute to the tadpole constraint and
has an asymptotically vanishing contribution to the scalar potential. Clearly, the
determination of the allowed splits Ĝ4, G0

4 depends crucially on the set of possible

181



3 Asymptotic Flux Compactifications and the Swampland

indices E appearing in the asymptotic splitting (3.5.4). In particular, we recall
from (3.3.47) that

Ĝ4 ∈ Vlight =
⊕

(m,n)∈Elight

Vmn , (3.5.9)

and hence the vectors in Elight crucially determine the allowed Ĝ4. It is the power
of the used formalism that we can classify systematically all possible singularities
and hence all possible splits (3.5.4). In the next subsection, we will show a full clas-
sification of singularity types of Calabi-Yau fourfolds with h3,1 = 2. We determine
all possible singularity enhancements, the associated asymptotic splittings, and the
form of the sets E and Elight. For each of these cases one can then determine all
possible Ĝ4 as we exemplify for an example in section 3.5.3.

3.5.2 Classification of two-moduli limits and enhancements
therein

In this section we summarize the classification of all possible singularity types that
can arise in a Calabi-Yau fourfold with h3,1 = 2, when both complex structure
variables tend to a limit (3.3.1). Following a similar strategy as for Calabi-Yau
threefolds, as discussed in detail in [113, 136], we enumerate all singularity types
of the primitive middle Hodge numbers (1, 2, m̂, 2, 1). Here we denoted by m̂ the
dimension of the primitive part H2,2

p (Y4) of H2,2(Y4). As explained in section 3.3.1,
there are five major types I, II, III, IV, and V. Each type is supplemented by two
indices as shown in (3.3.8). The classification is summarized in table 3.3. In fact,
the appearance of each type depends on the primitive Hodge number m̂. When
0 ≤ m̂ ≤ 3, not all types can occur. To avoid singling out special cases, we will
assume m̂ ≥ 4. The cases dropped with this assumption admit the same features
as some of the cases we consider here and thus will not alter our conclusions.

182



3.5 General two-moduli limits

I I0,0, I0,1, I0,2, I1,1, I1,2, I2,2

II II0,0, II0,1, II1,1

III III0,0, III0,1, III1,1

IV IV0,1

V V1,1, V1,2, V2,2

Table 3.3: Table showing all 16 singularity types that can occur in a two-moduli family
of Calabi-Yau fourfolds with primitive Hodge number m̂ ≥ 4.

Given the list of allowed singularity types in table 3.3, we can now check which
singularities can occur in an enhancement where we send s, u to infinity succes-
sively. As in (3.5.3) we can send s → ∞ to get a singularity type Type A and then
u → ∞ to get a singularity type Type B. We say Type A gets enhanced to Type B.
There are intricate rules guarding the possible enhancements among different sin-
gularity types. And these rules determine the asymptotic splitting directly. These
rules are described in [113] following the classic work [76], and its application in
Calabi-Yau threefold degenerations can be found in [113,136]. Following the same
procedure as in [136], we determine the enhancement network among the types
given in table 3.3. The result is shown in figure 3.1.8

8It was recently pointed out in [83] that this strategy, applied to the Kähler moduli side, can be
employed to classify Calabi-Yau manifolds.
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3 Asymptotic Flux Compactifications and the Swampland

I0,0

V1,1

Figure 3.1: The enhancement network of Calabi-Yau fourfolds with primitive middle
Hodge numbers (1, 2, m̂, 2, 1) with m̂ ≥ 4. In this graph, an edge Type A → Type B
indicates an enhancement of singularity type from Type A to Type B. Note that the en-
hancement relation is not transitive, as can be easily checked in, e.g., the enhancement
chain II0,0 → II0,1 → III0,0.

It is worth pointing out that the type II enhancements occur, for example, at
the Sen’s weak coupling limit when the Calabi-Yau fourfold is used as an F-theory
background. This has been discussed in detail in [184]. In a two-moduli limit
as discussed here, one can combine the weak coupling limit with another limit
in complex structure moduli space. In fact, as we will discuss below an example
enhancement that occurs when combining Sen’s weak coupling limit with another
limit to reach the large complex structure point of Y4. Concretely one finds in this
case

II0,1 → V2,2 , (3.5.10)

where we have displayed the enhancement for which we first send s → ∞ and
then u → ∞ as required for the growth sector R12 in (3.5.2). The limit s → ∞
corresponds to the weak coupling limit.

Having determined all possible enhancements we can also compute for each case
the associated asymptotic splitting (3.5.4). The results are shown in table 3.4. We
will demonstrate the usage of this table in the following subsection in which we
discuss one case in detail and determine the allowed unbounded asymptotically
massless fluxes Ĝ4.

Given the data summarized in table 3.4 it is not hard to derive the corresponding
scalar potentials VM using (3.5.8). For completeness, we list the results in table 3.5.
It is interesting to point out that all potentials obtained in this way actually come in
pairs. There are two ways we find agreeing potentials, which we listed in table 3.5.
Firstly, note that some of the sets E in table 3.4 are simply identical, as, for example,
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3.5 General two-moduli limits

Enhancements Elight Erest Eheavy

I0,1

I0,2 (3, 3), (4, 3) (4,4) (4,5), (5,5)

I1,1 (3, 2) (3, 4), (4,4), (5, 4) (5,6)

I1,2 (3, 2), (4, 3) (3, 4), (4,4), (5, 4) (4,5), (5,6)
I1,2 (3, 3), (4, 2) (4,4) (4,6), (5,5)

I2,2 (3, 2), (4, 2) (3, 4), (4,4), (5, 4) (4,6), (5,6)

II0,1 (3, 3), (4, 3) (4,4) (4,5), (5,5)

II1,1 (3, 2), (4, 3) (3, 4), (4,4), (5, 4) (4,5), (5,6)

III0,1 (3, 3), (4, 2) (4,4) (4,6), (5,5)

III1,1 (3, 2), (4, 2) (3, 4), (4,4), (5, 4) (4,6), (5,6)

V1,2 (3, 3), (4, 0), (4, 2) (4,4) (4, 6), (4,8), (5,5)

V2,2 (3, 2), (4, 0), (4, 2) (3, 4), (4,4), (5, 4) (4, 6), (4,8), (5,6)

I0,2
I1,2 (3, 2), (3, 3) (3, 4), (4,4), (5, 4) (5,5), (5,6)

I2,2 (3, 2) (3, 4), (4,4), (5, 4) (5,6)

I1,1

I1,2 (2, 2), (4, 3) (4,4) (4,5), (6,6)

I2,2 (2, 2), (4, 2) (4,4) (4,6), (6,6)

II1,1 (2, 2), (4, 3) (4,4) (4,5), (6,6)

III1,1 (2, 2), (4, 2) (4,4) (4,6), (6,6)

V2,2 (2, 2), (4, 0), (4, 2) (4,4) (4, 6), (4,8), (6,6)

I1,2 I2,2 (2, 2), (3, 2) (3, 4), (4,4), (5, 4) (5,6), (6,6)

II0,0
II0,1 (3, 3), (4, 3) (4,4) (4,5), (5,5)

II1,1 (3, 3), (4, 2) (4,4) (4,6), (5,5)

II0,1

II1,1 (3, 2), (3, 3) (3, 4), (4,4), (5, 4) (5,5), (5,6)

III0,0 (3, 2) (3, 4), (4,4), (5, 4) (5,6)

V2,2 (3, 0), (3, 2)
(3, 4), (3, 6), (4,4),

(5, 6), (5,8)
(5, 2), (5, 4)

III0,0
III0,1 (2, 2), (4, 3) (4,4) (4,5), (6,6)

III1,1 (2, 2), (4, 2) (4,4) (4,6), (6,6)

III0,1 III1,1 (2, 2), (3, 2) (3, 4), (4,4), (5, 4) (5,6), (6,6)

III1,1 V2,2 (2, 0), (2, 2), (4, 2) (2, 4), (4,4), (6, 4) (4, 6), (6, 6), (6,8)

IV0,1 V2,2 (1, 0), (1, 2), (3, 2) (3, 4), (4,4), (5, 4) (5, 6), (7, 6), (7,8)

V1,1
V1,2 (0, 0), (2, 2), (4, 3) (4,4) (4,5), (6, 6), (8,8)

V2,2 (0, 0), (2, 2), (4, 2) (4,4) (4,6), (6, 6), (8,8)

V1,2 V2,2 (0, 0), (2, 2), (3, 2) (3, 4), (4,4), (5, 4) (5,6), (6, 6), (8,8)

a

b

Table 3.4: Asymptotic splittings of all enhancements shown in figure 3.1. We assume
m̂ ≥ 4, otherwise not all enhancements can occur. A boldface (m, n) indicates that Vmn

contains some highest weight form amn
jmn

defined around equation (3.7.4). Note that we
did not include the 16 cases I0,0 → Type B, since these are simply the one-modulus
enhancements with all elements in E of the form (4, m). The enhancement I0,1 → I1,2

has two different E set configurations, and we distinguish them by adding small labels a

and b on top of the arrows.
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3 Asymptotic Flux Compactifications and the Swampland

for the enhancements I0,1 → III0,1 and II0,0 → II1,1. Secondly, two potentials
might agree if we exchange the names s ↔ u. This happens, for example, for
the enhancements II0,1 → V2,2 and IV0,1 → V2,2. Recall that all enhancements in
table 3.4 are determined for fixed growth sector R12 defined in (3.5.2), which allows
for the limit of sending first s → ∞ and then u → ∞. However, we can also look at
the other sector R21, in which the roles of s and u are exchanged. This implies that
a certain form of a potential can arise from two different enhancements depending
on the considered growth sector, the chosen names s, u, and thus the order of
limits. The physical significance of such phenomenon is not completely clear, but
it appears to be partially related to the possibility of realising the combinations of
enhancements that yield identical scalar potentials in geometry. This topic will be
studied more systematically in future works.

3.5.3 Main example: enhancement from type II singularity
In this subsection we focus on an enhancement from the type II singularity, i.e.
II0,1 → V2,2. This is one case appearing in table 3.4 and we already noted around
(3.5.10) that it plays a special role, since it involves Sen’s weak coupling limit. In
fact, we will see later that it precisely reproduces the potential and de Sitter no-go
result of [154].

Vlight Vrest Vheavy

E (3, 0) (3, 2) (3, 4) (3, 6) (4, 4) (5, 2) (5, 4) (5, 6) (5, 8)

Vmn V30 V32 V34 V36 V44 V52 V54 V56 V58

dimVmn 1 1 1 1 m̂− 2 1 1 1 1

Basis v30 v32 v34 v36 vκ v52 v54 v56 v58

Flux number f6 f4 f2 f0 gκ h0 h1 h2 h3

Table 3.6: The data of the asymptotic splitting of the primitive middle cohomology
H4

p(Y4,R) associated with the enhancement II0,1 → V2,2. The basis and flux numbers of
the subspace V44 are denoted by gκ and vκ with κ = 1, . . . , m̂ − 2. Note that we assume
m̂ ≥ 4, so all the subspaces are present in the asymptotic splitting.

Let us first record the asymptotic splitting associated to this enhancement. Ac-
cording to table 3.4, we have Elight = {(3, 0), (3, 2)}, Eheavy = {(5, 6), (5, 8)}, and
Erest = {(3, 4), (3, 6), (4, 4), (5, 2), (5, 4)}. The asymptotic splitting is then explicitly
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3.5 General two-moduli limits

Enhancements Potential VM

I0,1 V1,2
c1
s + c2

u4 + c3
u2 + c4u

2 + c5u
4 + c6s− c0V1,1

I0,1 V2,2
c1
us + c2

u4 + c3
u2 + c4u

s + c5s
u + c6u

2 + c7u
4 + c8us− c0V1,2

I1,1 V2,2
c1
s2 + c2

u4 + c3
u2 + c4u

2 + c5u
4 + c6s

2 − c0V1,1

II0,1 V2,2
c1
u3s + c2

us + c3u
s + c4u

3

s + c5s
u3 + c6s

u + c7us+ c8u
3s− c0IV0,1

I0,1 I1,2
c1
us + c2

u + c3u
s + c4s

u + c5u+ c6us− c0
I0,2

I0,1 II1,1II0,1

I0,1 I1,2

c1
s + c2

u2 + c3u
2 + c4s− c0

I1,1

I0,1 III0,1III0,0

II0,0 II1,1I1,1

I0,1 I2,2
c1
us + c2

u2 + c3u
s + c4s

u + c5u
2 + c6us− c0

I1,2

I0,1 III1,1III0,1

I0,1 I0,2

c1
s + c2

u + c3u+ c4s− c0
I0,1 II0,1

II0,0 II0,1

I0,1 II0,1II0,0

I0,1 I1,1
c1
us + c2u

s + c3s
u + c4us− c0I0,2 I2,2

II0,1 III0,0

I1,1 I2,2

c1
s2 + c2

u2 + c3u
2 + c4s

2 − c0
I1,1 III1,1

III0,0 III1,1

I1,1 III1,1III0,0

III1,1 V2,2
c1
u2s2 + c2

s2 + c3
u2 + c4u

2

s2 + c5s
2

u2 + c6u
2 + c7s

2 + c8u
2s2 − c0

a

b

Table 3.5: Enhancements and their associated asymptotic scalar potential VM. In this
table, we group together the enhancements that are simply identical or identical as we
exchange the growth sector R12 and R21, i.e., exchange s with u. In each box there are
two arrows with the upper one valid for the growth sector R12 and the lower one valid for
the growth sector R21. The double-arrow cases, e.g. III1,1 → V2,2 in the last row, have
the scalar potential VM symmetric in s and u. The coefficients ci with i > 0 are positive,
while the sign of c0 is undetermined.
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3 Asymptotic Flux Compactifications and the Swampland

given by

H4
p(Y4,R) = V30 ⊕ V32 ⊕ V34 ⊕ V36 ⊕ V44 ⊕ V52 ⊕ V54 ⊕ V56 ⊕ V58 , (3.5.11)

where the dimension and basis of each subspace is summarized in table 3.6 and we
have also recorded our choice of notation for the flux numbers in the enhancement
II0,1 → V2,2. The flux numbers are defined to be the coefficient of a flux G4 in the
basis shown in table 3.6 to the asymptotic splitting, i.e.

G4 = f6v30 +f4v32 +f2v34 +f0v36 +gκvκ+h0v52 +h1v54 +h2v56 +h3v58 . (3.5.12)

The particular names of flux numbers are chosen for convenience of our discussion
in section 3.6.3 when we show that our formalism reproduces well-known existing
no-go results. Furthermore, taking into account the orthogonality relation (3.3.15),
we normalize the basis such that

〈v30, v58〉 = 〈v32, v56〉 = 〈v34, v54〉 = 〈v36, v52〉 = 1. (3.5.13)

The pairing in the basis vκ of V44 will be denoted by ηκλ. It is positive, i.e. one
has ηκλgκgλ > 0 for non-zero gκ.

Applying the asymptotic splitting of flux (3.5.12) and table 3.6 to the asymptotic
behavior of the scalar potential (3.5.8), we have

VM ∼ 1
V3

4

(
Af6
u3s + Af4

us + Af2u

s + Af0u
3

s + Ah0s

u3 + Ah1s

u +Ah2us+Ah3u
3s+A44 −Aloc

)
,

(3.5.14)
where Aloc = 〈G4, G4〉 and the coefficients in the growth terms are defined accord-
ing to our notation of flux numbers in table 3.6 as follows

Af6 = ‖ρ30‖2
∞ , Af4 = ‖ρ32‖2

∞ , Af2 = ‖ρ34‖2
∞ ,

Af0 = ‖ρ36‖2
∞ , Ah0 = ‖ρ52‖2

∞ , Ah1 = ‖ρ54‖2
∞ ,

Ah2 = ‖ρ56‖2
∞ , Ah3 = ‖ρ58‖2

∞ , A44 = ‖ρ44‖2
∞ .

Note that all A’s are positive and still functions of the axions φ1, φ2 via the ex-
ponential in (3.5.6). Setting φi = 0 one finds that Af6 ∝ (f6)2, Af4 ∝ (f4)2 etc.
With the asymptotic splitting (3.5.12) and the normalization (3.5.13), the tadpole
condition (3.2.2) can be expressed as

χ(Y4)
24

= 1
2

〈G4, G4〉 = f6h3 + f4h2 + f2h1 + f0h0 + 1
2
ηκλgκgλ. (3.5.15)

Now we discuss the separation G4 = Ĝ4 + G0
4 of a flux G4 into an unbounded

part Ĝ4 and a remaining part G0
4. First we deal with the unbounded component
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3.5 General two-moduli limits

Ĝ4 which belongs to Vlight. By checking table 3.6, we see that the requirement
Ĝ4 ∈ Vlight implies that an unbounded flux Ĝ4 can contain components f6 or f4.
Also the first orthogonality in (3.3.39) and the massless condition (3.3.40) on Ĝ4

are automatically satisfied because we ask for Ĝ4 ∈ Vlight.

Once an unbounded part G4 is identified, the second condition in (3.3.39) can be
used to restrict the remaining part G0

4. The general results are displayed in table
3.7. We explain its derivation in an example where we take f6 as the unbounded
flux, i.e. we set Ĝ4 = f6v30. Then, subtracting Ĝ4 from the splitting (3.5.12) we
have the following form of G̃0

4 which needs further restriction

G̃0
4 = f4v32 + f2v34 + f0v36 + gκv

κ + h0v52 + h1v54 + h2v56 + h3v58.

According to our normalization (3.5.13), it is readily computed that

〈
Ĝ4, G̃

0
4

〉
= 2f6h3. (3.5.16)

Hence the second condition in (3.3.39) implies h3 = 0, i.e.

G0
4 = f4v32 + f2v34 + f0v36 + gκv

κ + h0v52 + h1v54 + h2v56. (3.5.17)

In this way, we have separated the flux components in G4 into an unbounded flux
component f6 and the remaining flux components f4, . . . , h2, with the condition
that the flux component h3 = 0 is absent. Inserting the condition h3 = 0 into the
tadpole condition (3.5.15), we see that the tadpole condition is then satisfied by
the remaining components

f4h2 + f2h1 + f0h0 + 1
2
ηκλgκgλ = χ(Y4)

24
. (3.5.18)

We can now repeat this analysis for all combinations of possible unbounded fluxes
f6 and f4, we obtain table 3.7. This data will be used in section 3.6 to determine
the vacua of (3.5.14).
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Ĝ4 G0
4 Condition on G0

4 Self-dual Pairs in G0
4

f6 f4, f2, f0, gκ, h0, h1, h2 h3 = 0 (f4, h2), (f2, h1), (f0, h0)

f4 f6, f2, f0, gκ, h0, h1, h3 h2 = 0 (f6, h3), (f2, h1), (f0, h0)

f6, f4 f2, f0, gκ, h0, h1, h2, h3 f6h3 + f4h2 = 0 (f2, h1), (f0, h0)

Table 3.7: All possible ways of separating G4 into an unbounded flux Ĝ4 and a remaining
part G0

4. The third column, condition on the remaining part, is coming from the second
orthogonality in (3.3.39). The tadpole condition can be found by applying the third
column to (3.5.15) and it is satisfied by the remaining flux components. The forth column
lists possible self-dual components inside G0

4 which is introduced in section 3.3.4 and will
be used in section 3.6.1.

3.6 Asymptotic structure of flux vacua
In this section we will analyze the vacua structure of the flux-induced scalar poten-
tial in the strict asymptotic regimes of the field space. We will focus on asymptotic
two-moduli limits of the form (3.3.1) in the complex structure moduli space of a
Calabi-Yau fourfold. These limits are characterized by two scalar fields, denoted
as s, u, becoming large and the choice of a growth sector in (3.5.2), i.e. an order
in the growth of the fields. We will select R12 describing paths in which s grows
faster than u, but the results for the other growth sector can be trivially found
after exchanging the roles of s and u and renaming the coordinates.

A complete classification of these two-moduli limits in the complex structure
moduli space of a Calabi-Yau fourfold was performed in section 3.5 together with
the scalar potential arising in each case (see table 3.5). Our starting point will,
therefore, be the general asymptotic form of the flux potential derived in (3.5.8)
and given by

V = 1
sα

( ∑
(m,n)∈E

Amns
m−4un−m −Aloc

)
≡ 1
sα

( N∑
i=1

Amini
smi−4uni−mi −Aloc

)
.

(3.6.1)
where the possible values for (m,n) are given in table 3.4 and depend on the type
of limit under consideration. Recall that one just has to plug the values (m,n) of
table 3.4 into eq. (3.6.1) to recover all possible potentials shown in table 3.5. For
later convenience, we have re-labelled the elements of E as (mi, ni), i = 1, . . . ,N ,
where N is the number of different pairs (m,n) ∈ E that can occur in each limit.
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3.6 Asymptotic structure of flux vacua

Notice that the coefficients Amn are not arbitrary but depend on the integer
fluxes and axions as in (3.3.42). However, we will leave them as free parameters in
this section except for their sign, since they are restricted to be positive definite in
the strict asymptotic regime (see eq.(3.3.42)). This way, we can keep our analysis
more general and our results will also apply to higher dimensional moduli spaces
with h2,1 > 2 in which there are more spectator fields in addition to the two moduli
becoming large. In those situations, the coefficients Amn will also be functions of
these spectator fields, but the moduli scaling of s and u is expected to be the
same. Interestingly, we will be able to formulate a no-go theorem for de Sitter only
based on the scaling of s and u and independent of the concrete value of Amn as
long as they remain positive. Only in section 3.7 we will specify again the concrete
values for Amn to study axion stabilization and derive some universal results about
backreaction effects in axion monodromy models.

The reader might have also noticed that we have included an additional overall
factor 1/sα in (3.6.1) in comparison to (3.5.8). This will allow us to map our
results to Type IIA flux compactifications, in which an additional factor of the
dilaton appears upon performing mirror symmetry and going to the Einstein frame
of Type IIA, as reviewed in section 3.2.2. This factor is known to be 1/s3 in the
weak coupling limit, but we will leave the power also as a free parameter since its
value is undetermined for any of the other limits of our list beyond weak coupling.

Therefore, the general potential (3.6.1) includes all the asymptotic potentials
arising in M-theory flux compactifications in a Calabi-Yau fourfold (and their cor-
responding F-theory/Type IIB duals) if we set α = 0, but can also describe other
asymptotic string compactifications. The goal in this section is to take this general
form of the asymptotic potential and analyze its vacuum structure. We will be
particularly interested in whether this potential can admit any kind of vacuum at
parametric control. Interestingly, since we have left the coefficients Amn as arbi-
trary parameters, the above potential can also potentially yield AdS vacua. This
is impossible in F-theory/Type IIB flux compactifications as the coefficients Amn
are correlated such that the potential is positive definite. However, it can occur in
Type IIA flux compactifications where Aloc can receive contributions from other
sources like metric fluxes or other components of NS flux which do not map to H3

or F3 fluxes in Type IIB. Hence, our general form of the potential will also allow
us to study the conditions to get candidates for AdS vacua at parametric control.
It is important to keep in mind, though, that they are only candidates in the sense
that one should further check that the resulting values for Amn are compatible
with some top-down string construction.
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3 Asymptotic Flux Compactifications and the Swampland

Since this section contains many different interesting results about the structure
of asymptotic flux vacua, let us add here a short outline of what comes next.
In sections 3.6.1 and 3.6.2 we will describe our strategy to determine the (non-
)existence of vacua at parametric control. We will then apply this strategy to a
particular example corresponding to the familiar Sen’s weak coupling limit and
discuss the existence of dS and AdS vacua in section 3.6.3. Afterwards, we will
apply the same methodology to all possible limits classified in section 3.5 and
present the results for de Sitter in section 3.6.4 and for AdS vacua in section 3.6.5.

3.6.1 Flux ansatz and parametric control
In this chapter, we are interested in the presence of critical points at parametric
control, i.e. for parametrically large field values of the scalars s, u. Let us recall
that this is an additional constraint we need to impose as the asymptotic flux
potential of (3.6.1) can in general yield vacua at finite values of s, u that are not
necessarily large. Furthermore, we need to require to stay in a growth sector in
order to be consistent with the strict asymptotic approximation, so the ratio s/u
also needs to be large.

As it will become more clear through the following sections, we find that it is
impossible to get any critical point at parametrically large field values of s, u if
all fluxes are bounded by tadpole cancellation. Therefore, it becomes necessary to
add some unbounded flux that can be adjusted to be large in the asymptotic limit.
For this reason, we will assume the following general Ansatz for the fluxes,

G4 = Ĝ4 +G0
4 (3.6.2)

where Ĝ4 is an asymptotically massless unbounded flux with respect to the remain-
ing background fluxes in G0

4. This special class of fluxes were introduced in section
3.3.5. We require them to be massless, in addition to unbounded, so that they only
violate the self-duality condition mildly and it is restored in the limit. The fluxes in
G0

4 cannot be scaled to be large, but still must be consistent with generating a crit-
ical point at parametric control. We will consider two options, self-dual fluxes or
more general fluxes with the same asymptotic scaling, as described in the following.

Self-dual fluxes G0
4 :

Let us first consider in G0
4 only fluxes that are self-dual in the strict asymptotic

regime. The self-duality condition on the G4-flux in the strict asymptotic regime
was given in (3.3.31). In order to simplify the discussion and highlight the main
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3.6 Asymptotic structure of flux vacua

properties we assume that every subspace Vmn is one-dimensional, except for V44.
Because of the property (3.3.24) of the operator C∞ and its relation to the Csl(2)
operator (3.3.27) (see also (3.B.14)), given an (m,n) ∈ E , the minimal form of a
non-vanishing self-dual flux should be

G4 = gmnv
mn + g8−m 8−nv

8−m 8−n , (3.6.3)

where vmn is the basis vector of Vmn and no sum over m,n is taken in (3.6.3).
The self-dual condition (3.3.37) on such G4 further specializes for the case of two
moduli into the following form

sm−4un−mgmnKmn = g8−m 8−n , (3.6.4)

where Kmn = ‖vmn‖2
∞. One realizes immediately that in most cases, if we im-

pose two such conditions then both moduli s and u are fixed and one can find
(finitely) many vacua by just imposing the self-duality conditions. All these vacua
are Minkowski as the vacuum energy vanishes. It remains to check whether solving
such self-dual conditions stabilizes the moduli inside the strict asymptotic regime,
where s/u and u are required to be large. Since the product of flux components
gmng8−m 8−n contributes to the tadpole condition, we see that it is not possible
to make both s/u and u parametrically large. So there are actually no vacua at
parametric control using only self-dual fluxes.

We now turn on only one pair of self-dual components and allow for an un-
bounded massless flux as in (3.6.2). In this case, we can rewrite the self-dual
condition (3.6.4) into

u =
(
g8−m 8−n

gmnKmn

) 1
n−m

sβ , (3.6.5)

where β = 4−m
n−m . This actually imposes a correlation between two moduli in terms

of fluxes that are bounded by tadpole condition. The possibilities for the exponent
β are:

1. β < 0 The modulus u grows inversely with s, so it is not possible to get
vacua at parametrically large field values of both s and u.

2. β = 0 The modulus u is completely fixed into a ratio of flux numbers
bounded by the tadpole condition, so it is not possible to make it parametri-
cally large.

3. 0 < β < 1 In this case there is no obstruction to make s/u and u large,
but only one combination is fixed.
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4. β ≥ 1 This case also includes β = ∞, where s is fixed into a ratio of flux
numbers bounded by the tadpole condition. It is not possible to make s/u
arbitrarily large to be consistent with the strict asymptotic approximation.

We can then see that only case 3 could yield vacua at parametric control. Since
only one combination of s, u can be stabilized with the self-dual pair of fluxes, the
other combination needs to be fixed by turning on some massless unbounded flux
components so that we can dial both s/u and u into large values. To see this
we substitute u given in terms of s by (3.6.5) back into the scalar potential and
minimize the remaining one-variable potential with respect to s. The potential
reads

V ∝ 1
sα

∑
(m̂,n̂)∈Ê

(
Âm̂n̂ s

m̂−4+β(n̂−m̂) − Âloc

)
, (3.6.6)

where the sum only involves now unbounded massless fluxes. Recall that m̂ ≤ 4
and n̂ < 4 are required for the flux to be massless. Interestingly, this potential
can never yield de Sitter critical point for case 3 in which 0 < β < 1, since all the
terms involve negative powers of s. In F-theory/Type IIB flux compactifications,
the contribution from Aloc cancels with the contribution from the pair of self-dual
fluxes such that Âloc = 0. However, if we insist of keeping Âloc as a free parameter
so that it survives some negative contribution to the potential (as could occur in
Type IIA flux compactifications), the potential (3.6.1) might also have AdS vacua.
We check that, for all potentials in table 3.5, only the enhanced limit II0,1 → V2,2

could yield an AdS vacuum at parametric control with 0 < β < 1. This case indeed
corresponds to the famous large volume and weak coupling limit in IIA. We will
explain in more detail this vacuum in section 3.6.3.

General flux G0
4 :

Next, we will consider a more general situation in which any flux can appear in
G0

4, but still keeping the condition that the vacuum is at parametric control. Non
self-dual fluxes can arise, for instance, from backreaction effects of localized sources
in the string compactification. A way to implement the condition of parametric
control is to require that all terms in the potential that are necessary to stabilize
the moduli should scale in the same way as s, u → ∞. In other words, we will look
for solutions of the form

s ∼ λp , u ∼ λq , (3.6.7)

with p, q positive such that λ can be taken to be parametrically large. Each poten-
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tial term will then scale as

Vi ∼ Aiλ
ri , ri = (mi − 4 − α)p+ (ni −mi)q , (3.6.8)

if Ai corresponds to a contribution from G0
4. For massless unbounded fluxes in

Ĝ4, there is no such a constraint as the flux can always be scaled up to yield the
desired asymptotic scaling with λ.

We then require that a solution of the type (3.6.7) must be found only using
unbounded massless fluxes and terms in G0

4 yielding the same value for r and
therefore scaling the same way with λ. This guarantees that the solution will still
exist in the limit λ → ∞, i.e. at parametrically large values of s, u. As a final check
if a solution is found, we need to require that p > q in order to have the ratio s/u
large and be consistent with the strict asymptotic approximation. Similar scaling
arguments to look for parametrically controlled vacua have also been recently used
in [185,186] for the weak string coupling limit in Type IIA compactifications. Let
us stress that the non-trivial part of our analysis does not lie in applying such
scaling arguments, but rather in identifying the asymptotic potentials that can
arise in a valid flux compactification.

We will show the results for our main example in section 3.6.3, and then for all
possible two-moduli limits in sections 3.6.4 and 3.6.5 in the case of dS and AdS
vacua respectively. But first, let us discuss our method to solve the minimization
equations in a systematic and convenient way.

3.6.2 Minimization conditions
In order to study the existence of extrema of the potential (3.6.1) we will translate
the existence problem into a more convenient formulation using methods from
linear optimization. To begin with, we note that the extrema of V are determined
by the conditions

u∂uV =
N∑
i=1

(ni −mi)Vi = 0 , (3.6.9)

s∂sV =
N∑
i=1

(mi − 4 − α)Vi + αVN +1 = 0 , (3.6.10)

where we have defined

Vi ≡ Amini

sα
smi−4uni−mi , VN +1 = Aloc

sα
, (3.6.11)
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such that V =
∑N
i=1 Vi − VN +1. We have introduced VN +1 in order to treat Aloc

in analogy with other terms by associating it a scaling m = n = 0. We further
define

V0 ≡ |V |∂V=0 , (3.6.12)

i.e. introduce the absolute value of the potential at this extremum. The definition
of V0 implies that at the extremum one has

N∑
i=1

Vi − VN +1 ± V0 = 0 , (3.6.13)

where the positive sign implies an Anti-de Sitter extremum while the negative sign
a de Sitter extremum. The equations (3.6.9), (3.6.10), and (3.6.13) can be packed
into the following homogeneous system Av = 0 with

A =

 m1 − 4 − α m2 − 4 − α · · · α 0
n1 −m1 n2 −m2 · · · 0 0

1 1 · · · −1 ±1

 (3.6.14)

and vT = (V0, V1, V2, . . . , VN +1). Notice that we will have as many columns as
contributions Vi to the potential with different mi, ni plus one.

We can now use Stiemke’s theorem which states that either a linear homogeneous
system Av = 0 possesses a solution with all variables positive or there exists a linear
combination of the equations that has all non-negative coefficients, one or more of
which are positive. Applied to our problem, one thus finds that either there exists
a vT = (V0, . . . , VN +1) such that

Av = 0 , Vκ > 0 , κ = 0, . . . ,N + 1 , (3.6.15)

or there exists a πT = (a, b, c) 6= 0 such that

(ATπ)κ ≥ 0 , κ = 0, . . . ,N + 1 . (3.6.16)

This second condition will be much easier to prove, and will allows us general-
ize some no-go theorems about de Sitter. Stiemke’s theorem thus implies that
(3.6.1) has no extremum with cosmological constant ∓V0 if the following system of
inequalities is feasible, i.e. has a non-trivial solution,

a(mi − 4 − α) + b(ni −mi) + c ≥ 0 , (3.6.17)
αa− c ≥ 0 , (3.6.18)

±c ≥ 0 , (3.6.19)
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where let us recall that + stands for AdS and − for dS. In other words, there
will not be a dS (AdS) critical point if one can find a, b ∈ R such that (3.6.17) is
satisfied for every pair (mi, ni) and c ≤ 0 (c ≥ 0). Notice that it only makes sense
to impose the second inequality it if VN 6= 0. Analogously, if no non-trivial solution
is found to (3.6.17), then the system has a critical point which is a solution of the
minimization conditions (3.6.9). In order to determine whether it corresponds to
a minimum or a maximum one would need to further study the Hessian matrix
∂i∂jV . However, in this chapter, we will restrict ourselves to analyze the presence
of critical points in general.

3.6.3 Parametrically controlled vacua for the main example
In this section we will analyze the presence of asymptotic flux vacua at para-
metric control for a particular example: the enhancement II0,1 → V2,2 in a two-
dimensional moduli space. This enhancement is one of the possible limits appearing
in table 3.4 and served as our main example in section 3.5.3. The importance of
this example arises from the fact that it corresponds to the well known Sen’s weak
coupling limit and large complex structure limit in Type IIB. It can also be mapped
to Type IIA at weak coupling and large volume, which will allow us to recover some
no-go theorems for de Sitter vacua found in Type IIA compactifications [154,187].
We will not find new results in this section, but it will serve us to exemplify the
methodology that we will later apply to the other asymptotic limits of the moduli
space of a Calabi-Yau fourfold.

The Sen weak coupling limit (s → ∞) corresponds to a Type II0,1 singular divisor
[184, 188]. When intersecting with a Type IV0,1 corresponding the large complex
structure point (u → ∞), it enhances to a Type V2,2 singularity of codimension-
two at the intersection. The values of m,n consistent with this type of singularity
are given in table 3.4 and imply a scalar potential of the form

V ∼ 1
sα

(
Af6
u3s + Af4

us + Af2u

s + Af0u
3

s + Ah0s

u3 + Ah1s

u +Ah2us+Ah3u
3s±Aloc

)
,

(3.6.20)
as already stated in (3.5.14). From the perspective of Type IIB perturbative string
theory (α = 0), the fluxes denoted as fp (hp) correspond to different components
of R-R flux F3 (NS-NS flux H3). as discussed in section 3.2.2. When mapping the
potential to Type IIA flux compactifications at weak coupling and large volume
(so α = 3), it is important that we stay in the growth sector with s/u large, so
that the 10d string coupling gs remains small (see (3.2.13)). The R-R flux F3 maps
to R-R fluxes Fp in Type IIA (that is why we have chosen the notation), while
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only h0 maps to a NS flux in Type IIA. The other components have a more exotic
interpretation in terms of geometric h1 and non-geometric h2, h3 fluxes in Type
IIA . In fact, the moduli dependence of the term proportional to h1 can also arise
as a contribution from the six-dimensional Ricci scalar in case the manifold has
positive curvature, or from KK monopoles. The term Aloc has the right moduli
dependence of a contribution from O6-planes. Since only the moduli dependence
matters and not the specific value of the coefficients Amn, our results will apply to
compactifications involving any of these ingredients or any other object exhibiting
the same moduli dependence as the above terms. See e.g. [189–198] for works
attempting to construct classical de Sitter vacua using these ingredients. Notice
that other types Oq-planes or NS5-branes are not captured in this setup, as their
moduli dependence does not have a geometric interpretation in terms of G4-fluxes
in M/F-theory.

First of all, let us prove that in case that all fluxes are bounded, i.e. cannot
take arbitrarily large values, it is impossible to have any AdS or dS extrema at
parametric control. In order to get a solution at parametric control, we will apply
Stiemke’s theorem only to those terms that can scale with the same power of λ in
(3.6.8). The groups of terms that give rise to the same asymptotic scaling are:

p = q : (f4, h0) , (f2, h1, Aloc) , (f0, h2) , (3.6.21)
p = 2q : (f2, h0) , (f0, h1) , (3.6.22)
p = 3q : (f0, h0, Aloc) . (3.6.23)

In particular, the pairs (f0, h0) and (f2, h1) correspond to self-dual pair of fluxes
that exhibit the same asymptotic scaling that the negative term Aloc. We can now
check whether (3.6.17) can be satisfied for any of the above groups. The answer
is that we can always find a solution to Stiemke’s problem, meaning that there is
no way to solve the minimization conditions at parametric control. Hence, there
is nor AdS or dS minimum at parametric control if all fluxes are bounded.

It is not hard to see, however, that the preceding analysis is too restrictive to
establish a general no-go statement, since it neglects the possibility to also adjust
the fluxes to become large in the asymptotic limit. As explain in section 3.3.5, fluxes
are expected to be bounded if they contribute to the tadpole cancellation condition.
However, there is a special class of fluxes, namely the unbounded massless fluxes
introduced in section 3.3.5, that do not contribute to the tadpole condition and
violate the self-duality mildly. For this reason, in section 3.5.3, we identified all
possible unbounded massless fluxes compatible with the singular limit taken for
our main example (see table 3.7). In the following, we will consider a total flux
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of the form (3.6.2) where we allow for unbounded massless fluxes Ĝ4 in addition
to the group of flux terms (3.6.21)-(3.6.23) denoted as G0

4. This means that we
can always scale up Ĝ4 to achieve the desired asymptotic scaling on λ fixed by
the scaling of the fluxes in G0

4. Schematically, the procedure to find an AdS or dS
minimum at parametric control goes as follows:

1. We select the fluxes in G0
4 such that all of them exhibit the same asymptotic

scaling. This imposes an extra constraint in table 3.7. In this case, there are
six possibilities given by equations (3.6.21)-(3.6.23).

2. We add any massless flux Ĝ4 which is unbounded with respect to the choice
of G0

4, following table 3.7.

3. We check whether the Stiemke’s problem (3.6.17) has a non-trivial solution.

G0
4 Ĝ4 sαV0 AdS vacuum dS vacuum

(f4, h0) f6, f4 λ−2q No No

(f2, h1, Aloc) f6, f4 λ0 Yes if α > 0 No

(f0, h2) f6 λ2q No No

(f2, h0) f6, f4 λ−q No No

(f0, h1) f6, f4 λq No No

(f0, h0, Aloc) f6, f4 λ0 Yes if α > 0 No

Table 3.8: All possible fluxes that have the potential to provide a minimum at parametric
control.

The results are summarized in table 3.8. Interestingly, the addition of the un-
bounded massless fluxes allow us to find now AdS but not dS vacua. This is
expected from previous results in the literature [154], since the scalar potential
(3.6.20) agrees with the one in [16, 154] when taking α = 3. Hence, we recover
the no-go theorems for de Sitter [154, 187, 191] in Type IIA flux compactifications
at weak coupling and large volume based on the moduli scaling of the potential,
including RR, NS and metric fluxes, O6-planes and even positive curvature. We
also slightly generalize it by including geometric and non-geometric fluxes yielding
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3 Asymptotic Flux Compactifications and the Swampland

the moduli dependence associated to h1, h2 and h3. The requirement of keeping
parametric control of the vacuum is what usually fails in previous classical de Sitter
construction attempts, as also recently noticed in [186,199].

Regarding the AdS vacua, let us recall that they only appear thanks to leaving
Aloc free instead of completing a perfect square. Therefore, they are not exactly
the mirror duals of the Type IIB potentials with G3-flux, but there should be some
additional contribution to Aloc. In such a case, we find that there are only two
possible candidates for AdS vacua at parametric control as long as α > 0. These
two possibilities indeed correspond to the pair of what would-be self-dual fluxes
in IIB in the case that Aloc was not a free parameter, but they loose such an
interpretation in IIA.

Let us first consider the group of flux terms (f0, h0, Aloc) with unbounded f4.
This is precisely the combination of fluxes used in [137] to get supersymmetric
AdS vacua at parametrically large volume and small coupling in massive Type
IIA. Taking Af4 ∼ λ2 and α = 3, the moduli and the potential energy will scale
asymptotically as

s ∼ λ3/2 , u ∼ λ1/2 : s

u
∼ λ , V ∼ 1

λ9/2 . (3.6.24)

This implies that if one makes Af4 large enough, λ1/2 > γ ≳ 1, the vacua indeed
lie in the growth sector (3.5.2) and the nilpotent orbit approximation (3.3.6) is
valid. Actually, one finds that for this setting one can make γ stepwise larger
when increasing the flux Af4 . In this limit the strict asymptotic approximation
using the sl(2)-norm (3.3.27) becomes more accurate, such that the existence of
the considered vacua can indeed be trusted. However, let us stress that there could
be other reasons for which this vacuum cannot be lifted to a true top-down string
theory construction. Here, we are only checking if the scaling of the moduli is
adequate to generate a vacuum at parametric control.

The Type IIA setting has several interesting features that follow from the scaling
behavior (3.6.24). Firstly, one sees that the Hubble scale H =

√
V /M2

p becomes
parametrically small when sending λ → ∞. Secondly, as stressed in [137] these
Type IIA solutions also enjoy a separation of scales between the Hubble scale and
the Kaluza-Klein scale. The KK scale in Type IIA Calabi-Yau compactifications
is given by

MKK = gsMp

(VA
s )2/3 ∼ Mp

st1/2 ∼ λ−7/4 , (3.6.25)

implying H/MKK ∼ λ−1/2 → 0. This would go against the strong versions of the
AdS conjectures put forward in [200, 201]. In principle, it also seems possible to
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get a similar result using the unbounded massless flux f6 instead of f4 but this pos-
sibility should, however, be discarded when we further impose axion stabilization
as discussed in section 3.7.

The other possible candidate for AdS vacuum arises from considering the group
of terms (f2, h1, Aloc) with unbounded f4 or f6 (as in [202]). However, in this
case s and u scale the same way, implying that s/u cannot be made large and
the strict asymptotic approximation fails. Hence, this vacuum cannot be trusted
in our setup. Let us mention, though, for completeness, that the vacuum energy
and the KK scale also scale the same way at the asymptotic limit in this example,
H ∼ MKK ∼ λ−3/2 , implying that there would not be scale separation unlike in
the previous example.

3.6.4 No-go results for de Sitter at parametric control
The power of using the theory of limiting MHS, is that it allows us to go beyond
the singularities corresponding to large volume and weak coupling and study the
asymptotic vacua structure for any other type of limit in a systematic way. As
explained, the type of limit will determine the moduli scaling of the flux potential
by providing the values of m,n in (3.6.1) that are allowed in each case. In this
section, we will generalize our previous results to other types of singularities in
the Calabi-Yau four-fold as long as they can be understood as the singular limit
of only two moduli becoming large. These two moduli can correspond to any
two complex structure moduli of the fourfold, so either bulk complex structure,
dilaton or 7-brane moduli in Type IIB. All possible singular limits of this type
have been classified in table 3.4 and the potentials have been explicitly written
in table 3.5. We will take the same ansatz for the fluxes as in (3.6.2), including
some unbounded massless fluxes Ĝ4 in addition to fluxes with the same asymptotic
scaling in G0

4. This guarantees that the minima of the potential (if any) will occur
at parametrically large field values of the moduli. We find the following no-go
theorem:
No-go statement: There is no dS critical point at parametric control near any two
large field limit of a Calabi-Yau fourfold in the strict asymptotic approximation
if the scalar potential V vanishes at the limit s, u → ∞.

Let us recall that this no-go is valid for any possible two large field limit of a
Calabi-Yau fourfold. Hence, our results go beyond previous no-go theorems found
at the large volume and weak string coupling limits of Type II CY compactifica-
tions [154, 185–187, 191, 199, 203]. Generically our settings, if they have a Type II
interpretation at all, will yield situations in which one is not at weak string cou-
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pling. The systematics to argue for the validity of our statement, though, is very
similar to the one taken for previous no-go theorems in which the moduli scaling
of individual terms in the potential is exploited.

Our no-go also goes beyond the famous Maldacena-Nuñez no-go theorem [141]
in the context of four-dimensional N = 1 compactifications, which is based on solv-
ing the equations of motion of the internal geometry when there are only p-form
gauge fluxes. Our starting scalar potential in M-theory includes higher deriva-
tive terms, as we also include the term depending on the Euler characteristic of
the Calabi-Yau fourfold (3.2.2).9 Under M/F-duality and the application of mir-
ror symmetry, terms are well-known to map to effects arising, for example, from
O6-planes. Furthermore, a certain G4-flux component maps under this duality
chain to the Romans mass. In addition we have further generalized our discussion
by allowing for independent potential terms. This can prevent cancellations and
correlations between the different terms assumed in the analysis of [141].

To avoid confusion, let us clearly list the assumptions that enter in the derivation
of the above de Sitter no-go theorem. We require:

• Only two fields, denoted as s and u, become large although the moduli space
can be higher dimensional.

• Parametric control: the vacuum should survive in the asymptotic limit as
explained around (3.6.7), i.e. for parametrically large field values of s and u.

• Strict asymptotic approximation: we only keep the leading asymptotic growth
of each term of the potential, as explained below (3.3.27).

• The potential should vanish asymptotically in the limit s, u → ∞.

The first three assumptions will be relaxed in future work. As for the last one,
it should be understood more as a consistency constraint to keep control of the
compactification. Only self-dual fluxes satisfy the equations of motion of the Calabi-
Yau, but have vanishing potential. To keep the analysis as general as possible, we
have allowed for any type of flux that could ever be present, which implies that
we are also allowing for some breaking of the self-duality condition. However, we
impose that the potential should still vanish asymptotically so this breaking is mild
and can be understood as a perturbation over the warped Calabi-Yau geometry.
Otherwise, it seems to us that the potential should not be trusted if it diverges at
9See [163–166] for a complete treatment of M-theory higher-derivative terms relevant at this
order.
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the large field limit. Let us recall that this is a very mild assumption and most likely
not enough to guarantee consistency of the scalar potentials we study. However,
since we already get a no-go theorem for de Sitter, there is no need of reducing
even further the list of examples by imposing further constraints like satisfying the
equations of motion of the internal geometry, which is obviously a much harder
task.

We can conclude that, for the moment, our findings are compatible with a gener-
alized Dine-Seiberg problem [135], conjectured in [62,63], valid for any asymptotic
limit of a string compactification, forbidding the presence of de Sitter vacua at
parametric control.

Finally, we can also check the (asymptotic) de Sitter conjecture [62] in our set-
ting. This conjecture, not only implies the absence of dS vacua, but goes beyond
it by providing a bound on the slope of the potential that also disfavors slow roll
inflation. More precisely, it was conjectured in [62, 63] that there is an order one
constant γ such that

|∇V | ≡ |(∂zKV )GKL̄(∂z̄LV )|1/2 ≥ γV . (3.6.26)

In the remaining of this subsection we ignore the axion dependence, and write
all partial derivatives with respective to saxions ∂i = ∂

∂si . Let us assume that we
can establish the following bound

f−2 ≥ (κiksk)Gij(κjl s
l) , (3.6.27)

where κik is some constant matrix which we will determine below. Then we can
use Cauchy-Schwarz to show the following estimate

(∂iV Gij∂jV )1/2 ≥ f(∂iV Gij∂jV )1/2((κiksk)Gij(κjks
k))1/2 ≥ f∂jV (κjks

k) (3.6.28)

Therefore, if the following inequality holds

f∂jV (κjks
k) ≥ γV (3.6.29)

then also the conjectured de Sitter bound is satisfied.
Let us next recall the Stiemke’s problem we are using to prove for the absence

of dS vacua,

a(mi − 4 − α) + b(ni −mi) + c ≥ 0 , (3.6.30)
αa− c ≥ 0 . (3.6.31)
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If this system of inequalities has a solution with c ≤ 0 (c ≥ 0), then the potential
does not have a dS (AdS) extremum. Notice that the first inequality also implies
that

N∑
i=1

(a(mi − 4 − α) + b(ni −mi) + c)Vi − (c− αa)VN +1 ≥ 0 (3.6.32)

as Vi, VN +1 > 0. This further implies

as∂sV + bu∂uV ≥ −cV (3.6.33)

which corresponds to (3.6.29) with

κss = a , κuu = b , c = −γ/f (3.6.34)

and all others vanishing. Hence, as long as (3.6.27) is satisfied, we can show that
the conjecture (3.6.26) holds by using the Stiemke’s inequality (3.6.30) again.

Let us then check (3.6.27). The leading behavior of the metric can be computed
from the asymptotic form of the Kähler potential in (3.4.2), obtaining

gt1 t̄1 = d1

s2 , gt2 t̄2 = d2 − d1

u2 (3.6.35)

where d1, d2 are integers characterizing the singularity type as discussed after
(3.4.2). Therefore, by only using this leading term of the metric, it is trivial to
check that the bound (3.6.27) gets saturated for

f−2 = ad1 + b(d2 − d1) (3.6.36)

The next to leading order terms for the metric will be further suppressed in the
asymptotic regime. Combining this with (3.6.34) we get that the parameter in the
de Sitter conjecture is given by

γ2 = |c|2/(ad1 + b(d2 − d1)) (3.6.37)

where a, b, c are constrained to satisfy (3.6.33). We have already checked that it
is always possible to find some values of a, b, c such that the Stiemke’s inequalities
(3.6.30), and thus (3.6.33), are satisfied for all two-moduli limits of the Calabi-Yau
fourfold. The remaining question is whether this solution implies γ ∼ O(1). For
this reason we check if the system (3.6.30) has a solution with γ > 1, which is
a stronger condition. Interestingly, we find that there is always such a solution,
implying that the bound (3.6.27) is always satisfied for any limit as long as d1 6= 0
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and/or d2 − d1 6= 0 and α = 0 in (3.6.1). If d1 = d2 = 0, then the enhanced
singularity is of Type I, meaning that it is at finite distance, while α = 0 selects
the potentials coming from Type IIB/F-theory flux compactifications. If α 6= 0 the
bound (3.6.29) is only satisfied if both d1 6= 0 and d2 −d1 6= 0. However, this bound
is a stronger condition than (3.6.26) so it does not imply that de Sitter conjecture
is not satisfied but only that we cannot determine its fate by considering only the
leading term of the field metric.

To sum up, we find that the de Sitter bound (3.6.26) is satisfied for any asymp-
totic limit in F-theory flux compactifications which is at infinite distance in the
complex structure moduli space of a Calabi-Yau fourfold. This nicely matches with
the argument in [63] that relates the de Sitter Conjecture and the Distance Con-
jecture, as the latter only concerns infinite distance regimes. For finite distance
singularities, the bound (3.6.27) is not necessarily satisfied to leading order so the
analysis becomes more difficult and we leave it for future work.

3.6.5 Candidates for AdS minima at parametric control

Let us analyze the conditions to get AdS vacua at parametric control. First of
all, let us stress again that an AdS vacuum is not possible in Type IIB/F-theory
Calabi-Yau compactifications as the potential is definite positive. Even if there is a
negative contribution coming from localized sources, it always completes a perfect
square when imposing tadpole cancellation. However, an AdS vacuum might ap-
pear when dualizing the setup to Type IIA and assuming additional contributions
to the tadpole cancellation conditions that do not necessarily impose anymore the
completion of the perfect square. These additional sources can correspond for ex-
ample to other fluxes that do not simply map to G3 fluxes in Type IIB. They will
modify the value of the coefficients Amn and usually make Aloc to also depend on
the complex structure moduli, but the moduli dependence of each term on the IIA
dilaton s and the IIA Kähler modulus u is expected to be the same. Since we
are not specifying the value of the coefficients Amn here, this possibility is auto-
matically incorporated in our analysis. Furthermore, there is an additional overall
dilaton factor appearing in the dualization process that makes the negative contri-
bution Vloc to become moduli dependent. This moduli dependence of the negative
contribution is essential to get AdS vacua, as we will see.

The main observation of this section is that, in order to get a vacuum at para-
metric control, it is necessary to have an unbounded massless flux Ĝ4 satisfying the
properties in (3.3.39) and (3.3.40). Otherwise, in the absence of this flux, it is easy
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3 Asymptotic Flux Compactifications and the Swampland

to check that the inequalities (3.6.17) always admit a solution with c ≤ 0 implying
the absence of AdS vacua at parametric control. In this section, we identify the
unbounded massless fluxes Ĝ4 that arise at the different limits of table 3.4 for a
given choice of G0

4. Recall that the background fluxes in G0
4 are chosen to have

the same asymptotic scaling in order to yield minima at parametric control. From
all possible combinations of fluxes, there are only seventeen yielding a candidate
for AdS vacua at parametric control as long as α > 0, listed in table 3.9. Notice
that we are only checking for extrema of the potential, so they could correspond to
either minima or maxima. However, even if s and u can be made parametrically
large, we need to also check that s/u is large so that we remain in a growth sector
(3.5.2) and the strict asymptotic approximation is valid.

For this purpose, we need to provide the asymptotic scaling of the moduli at the
large field limit. This scaling of the moduli, as well as the scaling of the vacuum
energy, can be determined even without providing the explicit solution for the
scalars at the minimum, as we explain in the following. Let us denote Âm̂n̂ as the
flux coefficient associated to Ĝ4 and A0

mini
the ones corresponding to G0

4. The
potential reads

V = 1
sα

(
Âm̂n̂

s4−m̂um̂−n̂ −Aloc

)
+ 1
sα

A0
mini

s4−miumi−ni
(3.6.38)

where all terms must scale the same way asymptotically in order to survive at the
large field limit and yield a minimum at parametric control. Taking into account
that we can scale up the flux Af̂ ∼ λ2 and denoting the scaling of the moduli as

s ∼ λp , u ∼ λq (3.6.39)

with p, q > 0, we get that the following equalities should hold true,

2 + p(m̂− 4) + q(n̂− m̂) = 0 (3.6.40)
(mi − 4)p+ (ni −mi)q = 0 . (3.6.41)

This guarantees that all terms scale the same way with λ in the limit λ → ∞.
Furthermore, if an AdS solution exists, the vacuum energy will necessarily scale as

|V0| ∼ λ−αp . (3.6.42)

Notice that p, q are uniquely determined due to (3.6.40) and (3.6.41), so they
can be determined case by case. In table 3.9 we have included two columns with
the asymptotic scaling of s and u in each case. Remarkably, only one case allows
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3.6 Asymptotic structure of flux vacua

for s/u large, meaning that the other solutions cannot actually be trusted as they
go away from the strict asymptotic regime. Interestingly, this single solution with
s/u large corresponds to the familiar case with f0, h0 fluxes and unbounded f4 or
f6 in the enhancement II0,1 → V2,2. This is the example already found in Type
IIA flux compactifications in [137,202], and was discussed in great detail in section
3.6.3. It is quite remarkable that there are not other AdS vacua at parametric
control appearing at any of the other limits of the Calabi-Yau fourfold.

It has been recently conjectured that AdS vacua with scale separation are in the
swampland [201, 204]. This means that there should be an infinite tower of states
with mass of the same order than the vacuum energy. If this tower corresponds
to a KK tower, it further implies that there is no scale separation between the
external and internal dimensions. In Type IIA Calabi-Yau compactifications at
weak coupling, the KK scale is given by

MKK = gsMp

ν2/3 ∼ Mp

su1/2 ∼ λ−p−q/2 (3.6.43)

where we have replaced the asymptotic scaling of the moduli (3.6.39) in the last
step. This would imply the following ratio with respect to the vacuum energy,

H

MKK
∼ λ−αp/2+p+q/2 (3.6.44)

where we have defined H ≡
√

|V0|/Mp. A scale separation would then be possible
if p > q/(α− 2). Unfortunately, we cannot determine α in general. We only know
that α = 3 at the large volume and weak coupling point, which corresponds to
the enhanced singularity of our main example in section 3.6.3. In that case, scale
separation occurs since p > q, i.e. the dilaton s grows faster than the volume u.
Hence, for α = 3 the condition of being in the strict asymptotic regime is correlated
to exhibit some scale separation.

In table 3.9 we have included a column specifying the value of (3.6.44) at each
of the limits yielding AdS vacua. Interestingly, none of them would exhibit scale
separation except for the typical example of weak coupling and large volume of
Type IIA mentioned above and discussed more carefully around eq.(3.6.24). How-
ever, it is important to remark that the use of the KK scale (3.6.43) beyond the
weak coupling limit is questionable and the results of this last column should not
be taken very seriously. An alternative way to define a cut-off scale valid at any
infinite distance singularity, regardless whether it occurs at weak coupling or large
volume, could be by means of the Swampland Distance Conjecture. At each infinite
distance singularity, there will be an infinite tower of states becoming exponentially
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3 Asymptotic Flux Compactifications and the Swampland

light, and the cut-off of the effective theory is given at most by the species scale
of this tower. This tower has been identified in a systematic way for every infinite
distance singular limit of Calabi-Yau threefolds in [5,81,136] and we leave the anal-
ogous analysis for fourfolds for future work. It would be interesting to check if any
of the examples in table 3.9 could enjoy a scale separation between the vacuum
energy and this SDC cut-off.

In fact, there seems to be an even deeper relation between these AdS vacua and
the Distance Conjecture. We have seen that an unbounded massless flux is re-
quired to get candidates for AdS vacua at parametric control. The presence of this
type of fluxes has the same mathematical origin than the presence of an infinite
massless tower of stable charged states at the large field limit. The ‘masslessness’
condition for which the Hodge norm ||Ĝ4||2 should asymptotically vanish is equiv-
alent to the condition required in [5] for a charged BPS state to become massless
at the singular limit in a Calabi-Yau threefold. Furthermore, the condition to be
‘unbounded’ resembles the condition of stability for the BPS state [5]. The in-
finiteness of the tower would correspond, though, to whether the flux coefficient
Âm̂n̂ = ||ρm̂n̂(Ĝ4, φ)||∞ depends on the axionic fields.

3.7 Asymptotic structure of flux vacua: axion
dependence

In the previous section we have discussed the stabilization of the fields si, corre-
sponding to the imaginary part of ti = φi + isi, by studying the potential (3.6.1).
The goal of this section is to also include the dependence on the axions φi. Firstly,
we will discuss the constraints that arise upon imposing stabilization via fluxes for
the candidate AdS minima discussed in section 3.6.5. Secondly, we will derive some
universal backreaction effects that appear when displacing the axions at large field
values and discuss their implications for axion monodromy inflationary models.

3.7.1 Axion stabilization
So far we have studied the minimization of the potential with respect to the saxions
si and ensured that the vacua are at large values of si. The axions do not need
to be stabilized at large field values to have a minimum at parametric control.
Hence, even if we have an axionic flat direction, this could be stabilized by higher
order or non-perturbative corrections to the scalar potential. This implies that,
in order to derive no-go theorems for de Sitter vacua at parametric control, it is
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G0
4 Ĝ4 s u H/MKK

(3, 4), (4, 4), (5, 4) (3, 2) λ1 λ1 λ0

(3, 4), (4, 4), (5, 4) (4, 3) λ2 λ2 λ0

(3, 4), (4, 4), (5, 4) (4, 2) λ1 λ1 λ0

(3, 4), (4, 4), (5, 4) (4, 0) λ1/2 λ1/2 λ0

(3, 4), (4, 4), (5, 4) (3, 3) λ2 λ2 λ0

(3, 4), (4, 4), (5, 4) (2, 2) λ1 λ1 λ0

(3, 4), (4, 4), (5, 4) (3, 0) λ1/2 λ1/2 λ0

(3, 6), (4, 4), (5, 2) (3, 0) λ1 λ1/3 λ−1/3

(3, 6), (4, 4), (5, 2) (3, 2) λ3/2 λ1/2 λ−1/2

(2, 4), (4, 4), (6, 4) (2, 0) λ1/2 λ1/2 λ0

(2, 4), (4, 4), (6, 4) (4, 2) λ1 λ1 λ0

(2, 4), (4, 4), (6, 4) (2, 2) λ1 λ1 λ0

(1, 2), (4, 4), (7, 6) (1, 0) λ1/3 λ1 λ1/3

(1, 2), (4, 4), (7, 6) (3, 2) λ1/2 λ3/2 λ1/2

(3, 4), (4, 4), (5, 4) (1, 0) λ1/2 λ1/2 λ0

(3, 4), (4, 4), (5, 4) (1, 2) λ1 λ1 λ0

(3, 4), (4, 4), (5, 4) (0, 0) λ1/2 λ1/2 λ0

Table 3.9: All possible combinations of flux terms yielding an AdS extremum (assuming
α > 0). In the last column we have replaced α = 3 to relate to Type IIA perturbative
string theory. The notation has been chosen according to table 3.4 in which we provide
the integers ` = (m, n) ∈ E associated to each flux term. Only the shaded examples
present s/u large, consistent with the strict asymptotic approximation.

sufficient to study stabilization of the saxions. Clearly, if we aim to find a fully-
fledged minimum, it is crucial to study axion stabilization as well. For this reason
it is interesting to study the fate of the AdS extrema found in section 3.6.5 upon
studying axion stabilization. It turns out that minimization of the potential with
respect to the axions imposes additional constraints on the values of the limiting
flux norm A` = ‖ρ`(G4, φ)‖2

∞ that can invalidate some of the AdS extrema found
previously.

Let us repeat for convenience the asymptotic form of the scalar potential in the
strict asymptotic approximation. In the limit of two (saxionic) fields becoming
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large with s
u > γ, u > γ, the potential reads

V = 1
sα

( ∑
(m,n)∈E

‖ρmn(G4, φ, ψ)‖2
∞︸ ︷︷ ︸

Amn

sm−4un−m − Vloc

)
(3.7.1)

where φ ≡ φ1 and ψ ≡ φ2 are the axionic partners of s and u respectively, as in
(3.5.1). The ρmn arise as in (3.5.6) from the split into the vector spaces Vmn. In
this section we will make the replacement Ni → N−

i in (3.5.6), as this will simplify
our discussion significantly. The operator N−

i was introduced in (3.3.10) as part of
the commuting sl(2)-triples in section 3.3.2. We note that using Ni would induce
new mixed terms that are, however, suppressed in the strict asymptotic regime.
Moreover, we expect that the conclusions of section 3.7.2 are not altered under the
exchange Ni ↔ N−

i . Therefore, we will now consider

ρ−(G4, φ) = e−φiN−
i G4 =

∑
(m,n)∈E

ρ−
mn . (3.7.2)

In order to proceed it will be convenient to use an explicit basis of Vmn denoted by
vmnjmn

as in section 3.3.4. We will show in the following how such a basis can be con-
structed by starting with some highest weight states, and applying the successive
action of the lowering operators N−

i .
Firstly, we recall that given an sl(2)-algebra with generators {N−, Y,N+} as

in (3.3.10), every (finite dimensional) irreducible representation is isomorphic to
a vector space generated by a highest weight vector âp+4, defined by demanding
that (N−)pâp+4 6= 0 while (N−)p+1âp+4 = 0, and its images under N j . In other
words the irreducible representation can be written as

spanC{âl+4, N−âl+4, . . . , (N−)lâl+4} . (3.7.3)

A general representation of this sl(2)-algebra is then given by a direct sum of
irreducible representations. Therefore it suffices to specify a set of highest weight
vectors to fix a representation of the sl(2)-algebra.

In the case of two-moduli case introduced in section 3.3.2, we have two copies
of commuting sl(2)-algebras acting on H4

p(Y4,R), turning it into a representation
of two sl(2)-algebras. In order to specify a basis for H4

p(Y4,R), we introduce the
highest weight vectors âp+4,q+p+4

κ ∈ Vp+4,q+p+4 with p, q ≥ 0. These states are
characterized by the highest powers p, q of N−

1 and N−
2 that are not annihilating

âκ ≡ âp+4,q+p+4
κ as

(N−
1 )pâκ 6= 0 , (N−

1 )p+1âκ = 0 , (3.7.4)
(N−

2 )qâκ 6= 0 , (N−
2 )q+1âκ = 0 .
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The index κ labels how many such highest weight states exist for the considered
splitting. For example, there could be multiple âκ in one Vp+4,q+p+4. In mathemat-
ical terms these highest weight states capture the information about the primitive
part of Vp+4,q+p+4. Let us next discuss how the highest weight vectors span the
spaces Vm,n. Each vector spaces Vmn is defined to be the simultaneous eigenspace
of Y1 and Y1 + Y2. Using the sl(2)-algebra we can generate a special basis vmnjmn

of
Vm,n by acting with N−

1 and N−
2 on all highest weight vectors as{

vm,njmn

}dimVm,n

jmn=1 =
{

(N−
1 )a(N−

2 )b âm+2a,n+2a+2b
κ

}
, (3.7.5)

where we have to use all highest weight states and therefore also collect the pos-
sible choices for the index κ. Before using this basis in studying the axions, it
is worthwhile to add two observations. Firstly, in a Calabi-Yau fourfold there is
always a highest weight vector a0 which belongs to V4+d1,4+d2 , where d1, d2 are
integers characterizing the singularity type as discussed after (3.4.2). Secondly,
we note that the basis given by (3.7.5) is not yet compatible with our normaliza-
tion (3.3.33), and we would reverse some signs for some of the basis vectors to
ensure compatibility. It turns out the that normalization will not be relevant in
this section and it suffices to use the basis (3.7.5).

Let us now return to our discussions of the axion-couplings appearing in (3.7.1).
We first expand the ρmn into the basis (3.7.5) writing

ρ−
mn =

∑
jmn

%jmn
m,n(φ, ψ) vm,njmn

, no sum over (m, n) , (3.7.6)

where %mn(φ, ψ) are the axion-dependent coefficient functions. We now show by
using (3.7.5) that

∂φ%
jmn
m,n = −%jmn

m+2,n+2 , ∂ψ%
jmn
m,n = −%jmn

m,n+2 , (3.7.7)

which holds due to the fact that the axions φ, ψ appear through an exponential
factor e−φiNi in (3.7.2). It is now straightforward to minimize the scalar potential
(3.7.1) with respect to the axions (φ, ψ). We first rewrite it in terms of the %jmn

m,n

as in (3.4.12). The minimization conditions then read

∂φV = − 2
sα

∑
(m,n)∈E

∑
imn
jmn

Zmnimn,jmn
%imn
m,n %

jmn

m+2,n+2 = 0 , (3.7.8)

∂ψV = − 2
sα

∑
(m,n)∈E

∑
imn
jmn

Zmnimn,jmn
%imn
m,n %

jmn

m,n+2 = 0 , (3.7.9)
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with the asymptotic from of Zmnimn,jmn
given in (3.4.13). From these conditions

(3.7.8) and (3.7.9), it is eminent that the stabilization of axions by fluxes imposes
additional relations between the different %jmn

m,n-functions and, therefore, in the
coefficients Amn. For instance, if an axion appears only through one function
%
jm′n′
m′,n′ , the above minimization conditions imply that this %jm′n′

m′,n′ has to vanish at
the minimum. This determines the vacuum expectation value of the axion in terms
of the internal fluxes, but also implies that all terms proportional %jm′n′

m′,n′ are absent
when studying the stabilization with respect to the saxions. Therefore, extrema of
the potential that arise from self-dual fluxes found in section 3.6.5 might disappear
when imposing these further constraints as some flux terms might not be present
anymore.

For concreteness, let us illustrate the implications of these constraints in our
main example of section 3.6.3. Using (3.7.2) and (3.5.12) we get

%30 = f6 − f4ψ + 1
2
f2ψ

2 − 1
6
f0ψ

3 − h0φ+ h1φψ − 1
2
h2φψ

2 + 1
6
h3φψ

3, (3.7.10)

%32 = f4 − f2ψ + 1
2
f0ψ

2 − h1φ+ h2φψ − 1
2
h3φψ

2 , %56 = h2 − h3ψ, (3.7.11)

%34 = f2 − f0ψ − h2φ+ h3φψ , %54 = h1 − h2ψ + 1
2
h3ψ

2, (3.7.12)

%36 = f0 − h3φ , %52 = h0 − h1ψ + 1
2
h2ψ

2 − 1
6
h3ψ

3 , %58 = h3, (3.7.13)

which matches with the %-functions coupled to the three-form gauge fields obtained
from dimensionally reducing Type II compactification in [173]. In section 3.6.3 we
found only two possible candidates for AdS vacua at parametric control, shown in
table 3.8. It can be checked that if we want to keep the unbounded flux term Vf6

in the last row of the table, then we also need to turn on some h1, h2 or h3 flux.
Otherwise, (3.7.8) implies that %30 = 0 at the minimum. For Vf4 , there are no new
restrictions appearing. The analysis for the other types of asymptotic limits should
be performed analogously. However, as explained in section 3.6.5, this example was
the only one leading to an AdS vacua at parametric control consistent with the
growth sector, so we conclude the analysis here.

3.7.2 Backreaction in axion monodromy inflation
It is also interesting to study the implications of the form (3.7.1) of the scalar
potential for axion monodromy inflation [205, 206]. In such models one axion is
displaced far from its minimum and then rolls down to its true vacuum. In order
that such a model can be implemented, one would like to slowly roll down the scalar
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3.7 Asymptotic structure of flux vacua: axion dependence

potential along an almost purely axionic direction to keep control of the potential
over large field excursions. However, backreaction effects can be very important
and must be properly taken into account [207]. In the context of F-term axion
monodromy models [208–211] in Calabi-Yau compactifications, this constitutes a
real challenge [156, 157] as the problem is linked to the difficulties of achieving
significant mass hierarchies. In particular, as pointed out in [138] and further
analysed in [139, 140], a large displacement of an axion φ can severely modify the
saxion vevs which backreact on the kinetic axionic term and substantially reduce
the field range. In those papers, it was found by analyzing various examples that,
in typical F-term axion monodromy models in Calabi-Yau compactifications, the
saxion vev behaves at large field as

〈s〉 ∼ λφ (3.7.14)

implying the following backreacted kinetic term for the axion

L ⊃ 1
s2 (∂φ)2 ∼ 1

λ2φ2 (∂φ)2 (3.7.15)

and only a logarithmic growth of the proper field distance ∆φ ∼ 1
λ log φ. Further-

more, as predicted by the Swampland Distance Conjecture, large field distances
are accompanied by an exponential drop-off of the quantum gravity cut-off due to
an infinite tower of states becoming massless as s → ∞. Due to (3.7.14), a large
displacement of φ implies necessarily a large displacement on the saxion s, so the
quantum gravity cut-off behaves as

ΛQG ∼ exp{(−λ∆φ)} (3.7.16)

spoiling inflation at distances ∆φ > λ. It was argued [138] that λ is an order one
parameter in Planck units if the axion corresponds to the closed string sector of
Type II compactifications. More generally, λ might be related to the mass hierarchy
between the axion and the saxion [139], allowing for some room to get large field
ranges, although this mass hierarchy seems very difficult to get in fully-fledged
global string compactifications and is usually incompatible with keeping the moduli
masses below the Kaluza-Klein scale [140]. It is still an open question whether this
mass hierarchy can truly be obtained in a well controlled string compactification.

Although promising, this analysis of the backreaction in axion monodromy is
very model dependent and is missing some general understanding of the underly-
ing reason for which the minimization of the potential should always imply (3.7.14)
at large field. Interestingly, we can now revisit this issue by taking advantage of
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the universal tools that the mathematical machinery of asymptotic Hodge theory
provides. This will allow us to prove (3.7.14) for most of the two-parameter large
field limits arising in the Calabi-Yau compactification studied in the previous sec-
tions and, more importantly, provide the underlying geometric reason for such a
linear backreaction at large field.

Let us first state the observation that aim to show in the following. We consider
two-parameter field limits with saxion-axion pairs (s, φ) and (u, ψ). Our main
focus will be on the (u, ψ)-pair, since the arguments are essentially identical for
the (s, φ)-pair. We first extract the leading potential V (ψ), obtained by keeping the
term in each Amn in (3.7.1) that is dominant for large ψ. Below we will identify
the two-parameter limits in which V (ψ) enjoys the following homogeneity property

V (ψ)(s, ζu;φ, ζψ
)

= ζh V (ψ)(s, u;φ, ψ
)
, (3.7.17)

for some homogeneous degree h. Let us now assume that V (ψ) has a extremum
〈u〉 > 0, i.e. one demands that

0 = ∂uV
(ψ)∣∣

u=〈u〉 . (3.7.18)

Then, assuming that the scalar potential V (ψ) is a polynomial in u, 1/u, and ψ, we
find that 〈u〉 satisfies the linear-backreaction relation

〈u〉 ∼ λψ , (3.7.19)

as in (3.7.14). Therefore, our target is to check the homogeneity property (3.7.17)
at leading order in ψ for all possible two-parameter enhancements.

We note that the intuition for the property (3.7.17) to hold is rather simple.
Notice first that the axion ψ is always accompanied with a power of N−

2 , since
it only appears via ρ−(G4, φ) = e−φN−

1 −ψN−
2 G4, see (3.7.2). Now one can use

the fact that N−
2 (Vm,n) ⊂ Vm,n−2, which is a simple consequence of the sl(2)-

algebra, that the image of any basis vector vn,mjmn
under N−

2 will be proportional to
vm,n−2
jm n−2

. We then deduce that while a flux along the basis vector vmnjmn
yields a term

proportional to sm−4un−m in the scalar potential, the vector N2v
m,n
jmn

will induce a
term proportional to sm−4un−m−2. In other words, the action of N−

2 reduces the
power of u by 2 in the scalar potential. Since one N−

2 is accompanied by a ψ, in
the scalar potential term will be proportional to ψ2, which precisely compensates
the reduced u-power. This suggests that the scalar potential indeed can admit
the homogeneity behavior (3.7.17), at least if the potential is not generated by a
too degenerate set of highest weight states am,njmn

as we see in the remainder of the
subsection.
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Following the discussion on the sl(2)-representations in subsection 3.7.1, we now
expand G4 in the special basis generated from highest weight vectors as in (3.7.5),

G4 =
∑

(m,n)∈E

gm,nv
m,n . (3.7.20)

In this expansion we have suppressed the sum over jmn to simplify the notation.
This simplification will not alter our discussion about axion backreaction. The
crucial point is that the special basis (3.7.5) allows us to split G4 into terms as

G4 =
∑
κ

G4(âκ) , (3.7.21)

where âκ are the highest weight vectors introduced in (3.7.4) and G4(âκ) is the part
of G4 whose basis elements are only generated by âκ. Crucially, the decomposition
(3.7.21) is orthogonal with respect to the norms || · ||∞ and || · ||sl(2) discussed
in section 3.3.3. It will therefore suffice to discuss the potential induced by the
individual components G4(âκ) and then add the various terms together.

The next step is to carry out the expansion (3.7.2) of the flux ρ−(G4, φ) into the
special basis (3.7.5). It is straightforward to compute

ρ−(G4, φ) =
∑
a,b

∑
(m,n)∈E

(−1)a+b

a!b!
φaψbgmn(N−

1 )a(N−
2 )b vm,n

=
∑
a,b

∑
(m′,n′)∈E

(−1)a+b

a!b!
φaψbgm′+2a,n′+2a+2b v

m′,n′
, (3.7.22)

where in the last equality we have shifted the sum over (m,n), so we obtain the
flux component

%mn =
∑
a,b

(−1)a+b

a!b!
φaψbgm+2a,n+2a+2b , (3.7.23)

for each (m,n) ∈ E . For each %mn we now extract the terms that have the leading
growth in ψ and then determine their contributions in the scalar potential using
(3.3.27) in the strict asymptotic regime. Let us denote by bmn the highest power of
ψ appearing in (3.7.23) for which gm+2a,n+2a+2bmn

6= 0. This implies the leading
ψ contribution in %mn is given by

%mn ∼
∑
a

(−1)a+bmn

a!bmn!
φaψbmngm+2a,n+2a+2bmn

. (3.7.24)
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In the strict asymptotic regime the leading scalar potential V (ψ) will then take the
schematic form

V (ψ)(u, ψ) ∼=
∑

(m,n)∈E

ψ2bmnun−m , (3.7.25)

where the factor 2 in the ψ-power arises due to the norm-squared appearing in the
asymptotic growth expression (3.3.27). Note that we have omitted all factors that
are not related to ψ and u. It is eminent that this V (ψ)(u, ψ) is not necessarily
homogeneous and rather one finds

V (ψ)(ζu, ζψ) ∼=
∑

(m,n)∈E

ζn−m+2bmn ψ2bmnun−m , (3.7.26)

whether or not one can factor out ζ as an overall scaling depends on the bmn.
In order to identify the situations in which V (ψ)(u, ψ) given in (3.7.25) is actually

homogeneous, we need to further characterize the exponents n−m+ 2bmn. Here
the split (3.7.21) becomes important. Since the potential splits into a sum in this
decomposition it will suffice to discuss one of the terms depending on one of the
highest weight vectors â ≡ âκ′ . In other words, we study the potential generated
by the flux G4(â) and later piece all potentials together. It will also be important
to introduce the highest power µ ≡ µ(G(â)) of N−

2 that does not annihilate G4(â)
as

(N−
2 )µG4(â) 6= 0, (N−

2 )µ+1G4(â) = 0 . (3.7.27)

The axion ψ appears in the scalar potential generated by this flux if µ > 0. Let us
now note that gm+2a,n+2a+2bmn entering the leading term in (3.7.24) is associated
to the basis vector vm+2a,n+2a+2bmn . Since we are concerned with the G4(â) part
of the potential, we know that this basis element can be obtained by acting on
the highest weight vector â by acting with (N−

1 )c, (N−
2 )d for some c, d ≥ 0 as in

(3.7.5). This implies that â ∈ Vm+2a+2c,n+2a+2bmn+2c+2d such that

vm+2a,n+2a+2bmn = (N−
1 )c(N−

2 )dâ . (3.7.28)

By using the definition (3.7.4) we know that the highest power q ≡ q(â) of N−
2

that does not annihilate the highest weight vector â is given by

q = n−m+ 2bmn + 2d . (3.7.29)

Since µ is defined to be the highest power of N−
2 that does not annihilate G4(â),

one also has

(N−
2 )µvm+2a,n+2a+2bmn 6= 0 , (N−

2 )µ+1vm+2a,n+2a+2bmn = 0 , (3.7.30)
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since otherwise its flux component will not survive in the leading order of ψ in %mn.
Expressing the basis vector using the highest weight vector â by inserting (3.7.28)
and using that (3.7.28) contains d additional powers of N−

2 we infer that (3.7.30)
implies

µ+ d = q . (3.7.31)

Inserting (3.7.29) into this expression we find the relation

n−m+ 2bmn = 2µ(G4(â)) − q(â) . (3.7.32)

This equation completely determines the highest power of ψ appearing in (3.7.25).
Note also that the left-hand side of this expression is the scaling of the individual
terms in (3.7.26), while the right-hand side depends on the highest power q(â) of
N−

2 that does not annihilate â and the highest power µ(G4(â)) of N−
2 that does not

annihilate G4(â). In other words, we have translated the question of homogeneity
into a condition on the highest weight state â and the flux G4(â). By plugging this
into (3.7.26), the flux scalar potential satisfies

V (ψ)(ζu; ζψ) =
∑
κ

ζ2µ(G4(â))−q(â) V (ψ)(G4(âκ)) , (3.7.33)

where we have used that we can split the leading flux scalar potential as V (ψ)(u;ψ) =∑
κ V

(ψ)(G4(âκ)) since the involved norms split orthogonally with respect to the
split (3.7.21). We can now determine under what circumstances the potential
becomes homogeneous at large field as in (3.7.17).

The simplest case in which the homogeneity property (3.7.17) of V (ψ) is realized
arises when we assume that G4 contains only flux directions generated from a single
â. This implies that the sum (3.7.21) only contains a single term. In this case the
homogeneity is immediate from (3.7.32), since there is just a single q = q(â) and
each term in (3.7.26) has the same power ζ2µ−q. Our main example discussed in
section 3.5.3 displays such behavior, as all spaces Vmn (except for V44, which is not
relevant here10) can be spanned by basis vectors built from â = a0 and one has
q(â) = d2 − d1 = 3.11 Clearly, our main example is very special in this respect.
However, the simple homogeneity argument extends to many other fluxes also in
10The constant terms V44 and Vloc always break the homogeneity property. However, it can be

shown that, as long as there is some flux with a growth proportional to a positive power of
u, then these constant terms only involve a subleading correction to (3.7.25) which becomes
negligible for ψ � 1.

11Strictly speaking one has to transform the a0 into its sl(2)-analog denote by ã0 in [136]. With the
notation defined in (3.7.4) one can also write this element as a4+d1,4+d2 with (d1, d2) = (1, 4).
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other enhancements. Interestingly, cases in which there is a single highest weight
state âκ can be understood as arising from a superpotential in a two-dimensional
moduli space. In these cases, all the flux terms arise from â = a0 and the linear
backreaction is automatically satisfied.

On the other hand, the homogeneity is not automatic if (3.7.21) contains parts
from different heights weight vectors âκ. This can occur, for instance, when there
are more moduli than those sent to a limit, and whose dependence is typically
hidden in the value of a0. Assuming that the basis elements in G4 are built from
two highest weight vectors â1, â2, we need to check whether or not

2µ(G4(â1)) − q(â1) = 2µ(G4(â2)) − q(â2) . (3.7.34)

In order to check if this condition can be violated we inspect Table 3.4 and read
of the possible q = y − x (and p = x − 4) of the highest weight vectors âκ = âx,yκ
in each enhancement. The easiest way to violate (3.7.34) is to consider the cases
with µ = 0, in which some terms of the scalar potential are independent of ψ, and
pick two appropriate highest weight vectors from Table 3.4. More involved are
situations in which µ > 0. In these cases, one identifies that only special fluxes in
the enhancements I0,1 → I2,2, I0,1 → III1,1, I0,1 → V2,2 can violate (3.7.34).12

Let us note that violating (3.7.34) does not imply that the linear relation (3.7.14)
is necessarily violated. In fact, we can proceed to order the terms V (ψ)(G4(âκ))
in (3.7.33) by their scaling with ζ and denote the highest weight component with
maximal 2µ − q by â1. Clearly, if the condition ∂uV

(ψ)(G4(â1)) = 0 allows to fix
u to a vacuum 〈u〉1 then one has a linear backreaction 〈u〉1 ∼ λ1ψ as in (3.7.14).
The additive terms appearing in the full V (ψ) are then only yielding sub-leading
corrections that are proportional to 1/ψn, n ≥ 0. In other words, also in these
more involved situations, one cannot avoid a leading term in 〈u〉 proportional to
the axion at large field.

It is also important to emphasize that the leading term in the axions for each
flux term has the same coefficient given by the same internal flux, so it can be
factorized out and plays no role in the minimization process. This implies that λ
in (3.7.14) becomes a parameter λ ∼ O(1) independent of the fluxes for the case
of h3,1 = 2. Hence, in this case, one cannot use the fluxes to tune the parameter
to be small, and the backreaction issues found in Calabi-Yau threefolds seem to
be also present in the complex structure moduli space of Calabi-Yau fourfolds. If
there are more moduli than those taken to the limit, λ could also depend on these
12The enhancements violating the to (3.7.34) analog condition in the (s, φ) coordinates for µ > 0

are I1,2 → I2,2, III0,1 → III1,1, and V1,2 → V2,2.
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spectator moduli, but its precise numerical value and how much it can be tuned
goes beyond the scope of this chapter. This nicely links to the results obtained
in [156]. Interestingly, these properties remain to be true when replacing N−

i by
Ni, i.e. when returning to the original expression for the scalar potential, since the
leading terms will keep their characteristic behavior. This further strengthens the
deep link of these homogeneity properties to the underlying geometric structure
and deserves more study in the future.

If the homogeneity result persists in general, it clearly has important implica-
tions for axion monodromy inflation. The fact that λ ∼ O(1) implies that the
backreaction cannot be delayed and that the exponential drop-off of the cut-off
(3.7.16) will occur as soon as the axionic field takes transplanckian field values.
In this sense, inflating along an axionic direction does not allow one to travel fur-
ther than inflating along the saxion, and both types of trajectories are sensitive
to the exponential drop-off of the cut-off predicted by the Swampland Distance
Conjecture [57]. This is consistent with the refined Distance Conjecture [58] and
the transplanckian censorship [212]. Let us recall, though, that we are only study-
ing gradient-flow trajectories satisfying (3.7.18), while there could be other type
of trajectories yielding successful inflation for a few times Mp. Hence, although
highly constraining the structure of the asymptotic potentials, the phenomenologi-
cal impact of our result is unclear. In any case, we find remarkable that the linear
backreaction found in [138–140] is indeed tied to a deep underlying mathemati-
cal structure arising at the asymptotic limits, which allow us to check the large
field behavior of gradient flow trajectories in a model independent way and test
in very general terms the swampland conjectures [57, 58, 212, 213] that disfavor
transplanckian field ranges.

3.8 Conclusions
Motivated by the recent swampland conjectures on de Sitter and Anti-de Sitter
vacua in string theory and progress on the Swampland Distance conjecture, we
initiated in this chapter the systematic study of flux compactification at asymptotic
regions in field spaces. Such asymptotic flux compactifications turn out to be
remarkably constrained by the arising universal structure at the boundaries of
geometric moduli spaces. This structure is described by asymptotic Hodge theory
and corresponds to the appearance of so-called limiting mixed Hodge structures
at each limit. While generally these constructions are mathematically involved,
we have exploited two of their features in this chapter that are directly useful
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in flux compactifications: (1) the asymptotic expression for the Hodge norm and
the asymptotic flux potential can be determined and systematically approximated,
(2) the appearing regimes and asymptotic behaviors can be classified using sl(2)n̂-
representation theory. Importantly, these statements are true for any Calabi-Yau
fourfold and hence allow us to infer general conclusions about the validity of the
swampland conjectures and common features of all effective theories arising in these
asymptotic regimes.

In order to systematically study the asymptotic flux scalar potentials we have
focused in this chapter on F-theory compactifications on Calabi-Yau fourfolds with
G4 and then generalized the configurations to allow for non-positive definite poten-
tials as they occur in Type IIA flux compactifications. We classified all possible
two-field limits in such settings and determined all flux induced scalar potentials
that can occur in the strict asymptotic regime. It is important to stress that these
potentials are rather constrained and it seems hard to infer simple rules for their
construction without referring to the underlying asymptotic Hodge theory. With
this set of scalar potentials at hand, we were able to show that none of them pos-
sesses de Sitter vacua, at least, when demanding parametric control and looking at
scaling limits of the coordinates. This allows us to establish a new no-go theorem
for de Sitter in section 3.6.4 extending the existing literature. This no-go is in
accord with the recent asymptotic de Sitter conjecture [63] and we showed that
the latter is indeed satisfied if one focuses on infinite distance limits in F-theory
flux compactifications. We did, however, not show that the bound on the potential
suggested in [62, 63, 134] is satisfied for finite distance singular limits, but rather
leave this as an interesting task for future research.

It is interesting to highlight that our asymptotic approach sheds new light on flux
vacua that have been investigated in the past [7, 8]. We have seen that imposing
self-duality on the fluxes imposes simple conditions on the large moduli in the
strict asymptotic regime, since the associated Hodge operator identifies pairwise
eigenspaces of the underlying sl(2)-structure. Self-duality in the vacuum ensures
consistency with the equations of motion of F-theory and M-theory and leads to
Minkowski vacua in these settings. To violate this condition only minimally, we
introduced the notion of asymptotically massless flux by imposing that its Hodge
norm vanishes when taking the asymptotic limit. Such fluxes can be unbounded
by the tadpole constraint and are crucial when trying to engineer chains of vacua
with parametrically controlled stabilized moduli. In fact, in our generalized settings
these unbounded asymptotically massless fluxes allow to identify infinite chains of
candidate AdS vacua at parametric control, in analogy to the F4 flux component
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in the Type IIA vacua of [137]. It turns out that the demand for parametric
control actually yields the conditions for being in the strict asymptotic regime
and hence ensures self-consistency of our approximation. However, even if these
candidate vacua seemingly become increasingly well controlled as one approaches
large field values, more work would be required to ensure consistency of the global
compactification. While we believe that our findings illuminate the underlying
structure, which is also key in the Type IIA vacua of [137], our analysis does
not show the existence of these vacua. In fact, we have pointed out that the
geometric requirements to have infinite chains of candidate AdS vacua appear to
be similar to the ones relevant for the Swampland Distance Conjecture [5, 136],
which puts conditions on the validity of effective theories. We hope that this
refined understanding will eventually help to elucidate the status of such chains of
AdS vacua.

Last but not least, we also analyze the axion dependence on the scalar poten-
tials and obtain universal features about the large field behavior of gradient flow
trajectories. Deeply linked to the underlying mathematical structure, we get that
the potential becomes to leading order a homogeneous function at large field for
any asymptotic limit, implying a linear backreaction on the moduli when displac-
ing the axions. This provides the geometric origin of the backreaction pointed out
in [138] and extends it to Calabi-Yau fourfolds, so it can also potentially apply to
D7-brane moduli. We also find that the parameter controlling the backreaction is
flux-independent so it cannot be tuned small for h3,1 = 2, constraining the length of
these trajectories to transplanckian values before the effective theory breaks down.
This sheds new light to the open debate [138–140, 145, 155–157, 214] about back-
reaction issues in F-term axion monodromy [208–211, 215] and provides evidence
for the refined Distance Conjecture [57, 58]. It would be interesting to study how
much of this story can be extrapolated to other compactifications [207]. Let us
remark, though, that our current asymptotic analysis does not actually establish
strong constraints on inflation at the moment. Such large field inflationary models
often only require axion displacements of a few orders Mp which are not necessarily
excluded even if λ ∼ O(1) [216], in agreement with current experimental bounds.

Our findings immediately suggest several interesting and tractable problems to
address in the future. To begin with, it would be desirable to extend the analysis
of two-field limits to sending more fields to be large. The classification of all
possible appearing structures would then allow one to analyze all possible flux
scalar potentials, at least, in the strict asymptotic regime. It is curious to see
if the no-goes on de Sitter vacua and the constructions of Anti-de Sitter vacua
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can be generalized, possibly by employing inductive arguments. A challenging but
exciting task is to then leave the strict asymptotic approximation and show that
the findings persist. This would require to include corrections containing fractions
of coordinates and induce numerous mixed terms into the flux scalar potentials.
Furthermore, we are not including the effect of the warping on the geometry, so
it would be interesting to study how this warping factor could modify the results.
Eventually it is also desirable to generalize the classification of scalar potentials by
going beyond Calabi-Yau manifolds. Let us stress that the used machinery, based
on asymptotic Hodge theory, is not restricted to Calabi-Yau manifolds. In fact, it
is actually algebraic in nature and not even requires the existence of an underlying
geometric setting.

In conclusion, the presented chapter might be viewed as only a first step to-
wards a much bigger goal of classifying the scalar potentials that can arise in
string compactifications. The universal mathematical structure that emerges in
the asymptotic regimes might not only allow us to test the Swampland Conjec-
tures, but also yield new universal patterns and constraints that any low energy
effective theory should satisfy to be consistent with a UV string theory embedding.
Even if we are restricted to the asymptotic limits of the moduli space, let us recall
that these regions correspond to regimes in which approximate global symmetries,
weakly coupled gauge theories, and an Einstein gravity description typically arise.
If one could show that the realization of these properties is necessarily tied to these
asymptotic regimes, the systematic analysis of these limits could have important
implications for phenomenology. For the moment, this universal structure indeed
hints that there should be an underlying physical reason as of why all the effec-
tive field theories arising at these limits share some common features. This could
be related to the restoration of global symmetries, the notion of emergence, the
ubiquitous presence of string dualities, or something still to be discovered.

Appendices

3.A Brief summary of the underlying mathematical
machinery

In this section, we briefly introduce the mathematical machinery, theory of degen-
erating variation of Hodge structure, behind the asymptotic splitting (3.3.12) and
the growth estimation (3.3.27). More information on this theory for physicists can
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be found in [5, 81, 82, 136]. The original mathematical papers are [75, 76, 107] and
the discussion of enhancements among singularity types can be found in [113].

While the whole machinery is very general, for the sake of concreteness, let us
focus on the primitive cohomology H4

p(Y4,C) of a Calabi-Yau fourfold Y4. When
the fourfold Y4 is smooth, the cohomology H4

p(Y4,C) enjoys a Hodge decomposition

H4
p(Y4,C) =

⊕
p+q=4

Hp,q, (3.A.1)

where Hq,p = Hp,q and we denote by H2,2 the primitive part of the space of
harmonic (2, 2)-forms. The above decomposition depends on the complex structure
on the fourfold Y4. As one deforms the complex structure while keeping Y4 smooth,
one varies the Hodge decomposition (3.A.1). This is described by the theory of
variation of Hodge structure on the vector space H4

p(Y4,C).
As discussed in the main text of this chapter, for interesting physics to occur, one

often needs to push the complex structure moduli to certain limit in the complex
structure moduli space, to the extent that one is left with a singular Calabi-Yau
fourfold Y4. When this happens, mathematicians showed that the cohomology
H4

p(Y4,C) of a singular Calabi-Yau usually cannot support a Hodge decomposition
like (3.A.1). Instead, another structure, called the limiting mixed Hodge structure
replaces the role of the Hodge decomposition (3.A.1). This structure is commonly
defined in terms of filtrations, but here we refer to a characterization of such a
structure showing its similarity with the Hodge decomposition (3.A.1). A more
precise description in terms of filtrations is provided in appendix 3.B.

To define a limiting mixed Hodge structure, one first fix the dimension of various
subspaces h4−q,q = dimH4−q,q in (3.A.1). Then a limiting mixed Hodge structure
on the primitive cohomology H4

p(Y4,C) is given by a decomposition (called Deligne
splitting)

H4
p(Y4,C) =

⊕
0≤p,q≤4

Ip,q, (3.A.2)

where a generalized conjugation property given by (3.B.9) on Ip,q and Iq,p holds.
Moreover, certain conditions on the dimensions of the subspaces Ip,q in (3.A.2)
have to be satisfied. They are

dim Ip,q = dim Iq,p, dim Ip,q = dim I4−q,4−p, for all p, q,
dim Ip,q ≤ dim Ip+1,q+1, for p+ q ≤ 2, (3.A.3)

4∑
p=0

dim Ip,q = h4−q,q, for all q.
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As discussed in [113] and exemplified for Calabi-Yau threefolds in [136], the
conditions on the dimensions of the subspaces (3.A.3) are enough to classify all13

possible (R-split) limiting mixed Hodge structures (3.A.2) on the middle cohomol-
ogy H4

p(Y4,C) up to some change of basis. Since the conditions are about numerical
dimensions, it is handy to record these numbers on a 5 × 5 lattice, with the left-
bottom corner representing p = 0, q = 0, and p grows to the right horizontally
while q grows upwards vertically. These grids recording the dimensions of Ip,q are
called Hodge-Deligne diamonds. As an example, we show the list of Hodge-Deligne
diamonds in the two-moduli example discussed in section 3.5.2. The results are
given in table 3.10. Note how the diamonds reflect the conditions in (3.A.3).

The enhancement relations of the form Type A → Type B are then derived by
decomposing the Hodge-Deligne diamond of Type A and recombining into the dia-
mond of Type B in a way coherent with the sl(2)-triples (3.3.10). Precise statements
of the recipe can be found in [113] and exemplified in [136]. For the two-moduli
case, the enhancement network is displayed in figure 3.1. When we derive each
enhancement relation, we obtain the asymptotic splitting (3.3.12) simultaneously.
Explicit example of this asymptotic splitting in Calabi-Yau threefolds can be found
in [82]. We can also characterize the asymptotic splitting as follows. Let

⊕
Ip,qA

and
⊕
Ir,sB denote the Deligne splitting of Type A and Type B, respectively. Then

Vmn ∼=

( ⊕
p+q=m

Ip,qA

)
∩

( ⊕
r+s=n

Ir,sB

)
, (3.A.4)

as complex vector spaces, where Vmn is understood to be the complexification.
Note that in the above expression it is valid to take the intersection on the RHS
as Ip,qA and Ir,sB are subspaces of the same vector space, H4

p(Y4,R). This finishes
our brief discussion on the underlying mathematical machinery.

3.B Norms associated with some special Hodge
structures

In this section, we introduce norms associated with various special Hodge struc-
tures, including the asymptotic norm ‖ · ‖2

∞, which appears in the coefficients in
13In fact, these conditions can fully classify the R-split limiting mixed Hodge structures up to some

change of basis on the middle cohomology of a Calabi-Yau threefold. On Calabi-Yau fourfolds,
there might be complications [113]. We expect that these complications do not change much
of our physical conclusions, and we will address these complications in future work.
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I

I0,0 I0,1 I0,2

(m̂≥0) (m̂≥2) (m̂≥4)

m̂ m̂−2 m̂−4

I1,1 I1,2 I2,2

(m̂≥1) (m̂≥3) (m̂≥2)

m̂ m̂−2 m̂

II

II0,0 II0,1 II1,1

(m̂≥0) (m̂≥2) (m̂≥1)

m̂ m̂−2 m̂

III

III0,0 III0,1 III1,1

(m̂≥2) (m̂≥4) (m̂≥3)

m̂−2 m̂−4 m̂−2

IV

IV0,1

(m̂≥2)

m̂−2

V

V1,1 V1,2 V2,2

(m̂≥1) (m̂≥3) (m̂≥2)

m̂ m̂−2 m̂

Table 3.10: Sixteen possible Hodge-Deligne diamonds with h3,1 = 2, corresponding to 16
singularity types given in table 3.3. We denote h2,2 = m̂ and ip,q = dim Ip,q. Then the
number of dots around the lattice point at (p, q) represents the value of ip,q, and the label
at (2, 2) represents the value of i2,2. The subscripts under a type are recording i3,3 and
i3,3 + i3,2, respectively.
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the asymptotic Hodge norm (3.3.27), and Weil operators C∞, Csl(2) inducing these
norms. We will adopt an approach different from appendix 3.A, by introducing
everything in terms of filtrations so that the interested reader can compare the
statements with mathematical literature [75,76].

First we recall the definition of polarized Hodge structure on the primitive co-
homology H4

p(Y4,C). To ease the notation, we denote the underlying integral co-
homology HZ := H4

p(Y4,Z) and its complexification H := H4
p(Y4,C). A polarized

Hodge structure of weight 4 on H is given by a decreasing filtration

0 ⊂ F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H, (3.B.1)

such that
F p ⊕ F 5−p ∼= H, for all p. (3.B.2)

We denote this Hodge structure on H by F when there is no danger of confusion.
With such definition of a Hodge structure, one can rewrite it into the form of Hodge
decomposition in (3.A.1) by setting the subspaces Hp,q = F p∩F q, where p+q = 4.

A Hodge structure F given by (3.B.1) also defines a Weil operator CF , which is
a linear automorphism of H such that when restricted to the subspace Hp,q = F p∩
F q, it acts as a scalar multiplication by ip−q: For every v ∈ Hp,q, define CF (v) =
ip−qv. A polarization form of the structure (3.B.1) is given by an integer-valued
bilinear form on HZ, S : HZ × HZ → Z and extended to the whole complexified
space H linearly, such that S(F p, F 5−p) = 0 for all p and S(CF (v), v) > 0 for all
non-zero v ∈ H.

To compare with the existing discussion in section 3.3.3, we see that taking
F p = ⊕r≥pH

r,4−r in the Hodge decomposition (3.A.1) gives us a Hodge filtration.
Also the role of the Hodge star operator on the Calabi-Yau fourfold is played by
the Weil operator, and the polarization form is given by the intersection bilinear
form 〈v, w〉 =

∫
Y4
v ∧ w.

When we move into limits in the complex structure moduli space, in general the
cohomology H will not support the existence of a pure Hodge structure. But we
can still study the behavior of the Hodge structure in the limit. The machinery
allowing such study is given by the theory of limiting mixed Hodge structures,
which is developed in [75,76]. The essential tool is a special generalization of pure
Hodge structures, called limiting mixed Hodge structures. Let us briefly introduce
such structures.

To define a limiting mixed Hodge structure on H, one still needs to specify a
decreasing filtration

0 ⊂ F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H, (3.B.3)
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but we do not impose conjugation property (3.B.2) on these F p subspaces.
Furthermore, a new ingredient, weight filtration comes into the game. In the

context of limiting mixed Hodge structures associated with limits of Hodge struc-
ture (3.B.1) of weight 4, the weight filtration is given by the monodromy weight
filtration W (N) depending on a given real nilpotent operator N ,

0 ⊂ W0(N) ⊂ W1(N) ⊂ · · · ⊂ W8(N) = HR, (3.B.4)

where HR := H4
p(Y4,R). The monodromy weight filtration is defined as the unique

increasing filtration on HR such that

NWk(N) ⊂ Wk−2(N), (3.B.5)

Nk : W4+k(N)
W3+k(N)

∼−→ W4−k(N)
W3−k(N)

, (3.B.6)

for all k. There is a compatibility condition on the filtrations F and W : On each
graded quotient Wk(N)

Wk−1(N) , the filtration F induces a pure Hodge structure of weight
k. Precise discussions on the definition of mixed Hodge structures can be found
in [76]. We often denote a limiting mixed Hodge structure by (F,W (N)) or simply
(F,N).

The filtrations F and W are related to the Ip,q splittings discussed in appendix
3.A. In fact, the splitting H =

⊕
Ip,q is defined to be the unique splitting [76] such

that, for all p, q, k,

F p =
⊕
r≥p

Ir,s, (3.B.7)

Wk =
⊕
r+s≤k

Ir,s, (3.B.8)

Ip,q = Iq,p mod
⊕
r<p
s<q

Ir,s. (3.B.9)

The ‘big mod’ in the last condition (3.B.9) looks annoying and those mixed
Hodge structures without this ‘big mod’ deserves a special name. A mixed Hodge
structure such that its Ip,q-splitting satisfies Ip,q = Iq,p for all p, q is said to be R-
split. To every mixed Hodge structure, Deligne [76,112] constructed a real operator
δ such that the mixed Hodge structure (e−iδF,W ) is R-split. This operator δ is
unique with certain properties, and we refer the reader to [76] for full discussion.

The limiting mixed Hodge structures and pure Hodge structures in limits are
related by the nilpotent orbit theorem. Recall that locally the limit in the com-
plex structure moduli space is given in local coordinates t1, . . . , tn̂ by sending
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t1, . . . , tn̂ → i∞. To each singular locus tj → i∞ there is an associated nilpo-
tent operator Ni, the logarithm of the monodromy operator. We usually record
the change of the (4, 0)-form Ω in a variation of Hodge structure on the primitive
middle cohomology of a Calabi-Yau fourfold by period integrals. To describe the
content of nilpotent orbit theorem, one needs to describe the dependence of the
full Hodge filtration F (t) on the complex structure moduli. The nilpotent orbit
theorem tells us that the varying Hodge filtration F (t) in the limit t → i∞ can be
approximated by the so-called nilpotent orbit Fnil(t), which is a filtration given by

Fnil(t) = e
∑

i
tiNiFnil, (3.B.10)

where Fnil is the decreasing filtration defining a mixed Hodge structure, i.e., it
does not necessarily satisfy (3.B.2). In section 3.3.1, the vector generating the
subspace F 4

nil is denoted by a0. The filtration Fnil and the monodromy weight
filtration W n̂ := W (N1 + · · · + Nn̂) together define the limiting mixed Hodge
structure (Fnil,W

n̂) associated to the degeneration of Hodge structure F (t). From
the discussion in the last paragraph, there is an operator δ associated to this
limiting Hodge structure such that (e−iδFnil,W

n̂) is R-split.
In section 3.3.2, we also discussed that when a singularity enhancement occurs,

a set of commuting sl(2)-triples with nilnegative elements N−
1 , . . . , N

−
n̂ can be

associated to such an enhancement. One conclusion of the sl(2)-orbit theorem
in [76] states that, the filtration defined by

F∞ = ei
∑n̂

i=1
N−

i e−iδFnil, (3.B.11)

actually satisfies (3.B.2): F p∞ ⊕ F 5−p
∞

∼= H, for all p, and is polarized by the
intersection bilinear form 〈 · , · 〉. In other words, F∞ is a pure Hodge filtration of
weight 4 polarized by 〈 · , · 〉. Let C∞ be its Weil operator, then the asymptotic
norm is defined by

‖v‖2
∞ = 〈C∞v, v〉 . (3.B.12)

What remains to be defined is the operator Csl(2). This is the operator that
brings the si/si+1 scaling into the norm estimate (3.3.27). It is defined via the
help of another operator

e(s) :=
n̂∏
j=1

exp
{

1
2

log
(
sj
)
Yj

}
, (3.B.13)

where Yi are the neutral elements in the commuting sl(2)-triples (3.3.10), and e(s)
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operates on each subspace V` as a scalar multiplication by

(s1

s2

) l1−4
2 · · ·

(sn̂−1

sn̂
) ln̂−1−4

2 (sn̂)
ln̂−4

2 .

Then the operator Csl(2) is defined as

Csl(2) := e−1(s)C∞e(s). (3.B.14)

It is clear that the norm defined under Csl(2) is given by expression (3.3.27). Note
also that for any real vector v one has ‖v‖2

sl(2) =
〈
Csl(2)v, v

〉
= 〈C∞e.v, e.v〉, as e is

an isometry of the polarization pairing. So our condition (3.3.31) on asymptotic self-
dual fluxes G4 with respect to Csl(2) can also be written as a self-duality condition
on e.G4 with respect to F∞.
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4 Universal Axion Backreaction in Flux
Compactifications

This chapter is based on: T. W. Grimm and C. Li, Universal
axion backreaction in flux compactifications, JHEP 06 (2021), 067,
[arXiv:2012.08272].

In this chapter, we study the backreaction effect of a large axion field excur-
sion on the saxion partner residing in the same N = 1 multiplet. Such config-
urations are relevant in attempts to realize axion monodromy inflation in string
compactifications. We work in the complex structure moduli sector of Calabi-Yau
fourfold compactifications of F-theory with four-form fluxes, which covers many of
the known Type II orientifold flux compactifications. Noting that axions can only
arise near the boundary of the moduli space, the powerful results of asymptotic
Hodge theory provide an ideal set of tools to draw general conclusions without the
need to focus on specific geometric examples. We find that the boundary structure
engraves a remarkable pattern in all possible scalar potentials generated by back-
ground fluxes. By studying the Newton polygons of the extremization conditions
of all allowed scalar potentials and realizing the backreaction effects as Puiseux
expansions, we find that this pattern forces a universal backreaction behavior of
the large axion field on its saxion partner.

4.1 Introduction and discussion
Axion monodromy inflation [171, 205–208] is an intriguing suggestion to realize
large-field inflation in string theory. In such models, an axion is initially placed
at a transplanckian distance away from its true vacuum and then rolls down to-
wards the vacuum to drive inflation. The naive axion periodicity is extended in
axion monodromy models by first unfolding the field range of the axion to the real
line, i.e. by extending its field range to the universal covering space of the periodic
axion space. An axion scalar potential is then introduced to break the approxi-
mate continuous shift symmetry of the axion. Such a potential is required to fulfil
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a modified realization of a discrete axionic shift-symmetry in the sense that it is
invariant under a combined transformation of the axion and some of the parame-
ters in the potential, e.g. flux numbers. The combined transformation is called a
monodromy transformation. In potentials realizing such monodromy symmetries
one can then hope to implement inflation over multiple periods of the axion in a
controlled fashion.

Early studies [205, 206] of axion monodromy inflation focus on its realization in
non-supersymmetric Type II string compactifications with various NS-branes or
D-branes. To establish such compactifications delicate control issues have to be
addressed to ensure the validity of the reduction. To have from the outset more
control over the stability of the setting, so-called F-term axion monodromy models
were proposed in [145,207–211]. These models consider axion monodromy inflation
in the context of supersymmetric flux compactifications of string theory and will
serve as the main motivation for this chapter. In these settings the axion scalar
potential is induced by turning on various background fluxes of higher form fields
and the monodromy is realized by simultaneously shifting the axion and some flux
numbers. An apparent merit of the F-term axion monodromy inflation is that
various moduli of the compactified string theory share the flux-induced F-term
scalar potential with the axion inflaton candidates, so that the study of the moduli
stabilization and axion inflation are naturally linked.

The connection between the axion and moduli scalar potential forces one to
consider the backreaction of the axion inflaton candidate on the vacuum expec-
tation value of the moduli fixed by the F-term scalar potential. Since large field
inflation requires a transplanckian displacement of the axion, it is alarming when
such a large-field backreacts on the vacuum expectation value of geometric moduli
of the compactification, since this requires to consider the dynamics of the com-
bined axion-saxion system. This issue is pointed out in [138] and further analysed
in [139, 140], by investigating examples in various classes of string compactifica-
tions. Their findings confirm the worry, that in these examples, a large axion
excursion does indeed backreact on the geometric moduli in a linear fashion, so
that the moduli is pushed towards the boundary of the moduli space at infinite
distance. Invoking the Distance Conjecture [57, 58] the axion monodromy infla-
tion program then faces more challenges as studied in the examples of [138–140].
More precisely, the Distance Conjecture states that in an effective field theory
consistent with quantum gravity, a transplanckian displacement in field space is
accompanied by additional light degrees of freedom, signalling a breakdown of the
effective field theory. The linear backreaction of the axion onto the saxion can
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thus be responsible for a breakdown of the effective theory. It remains an open
debate [138–140, 145, 151, 155–157, 214] whether or not this backreaction can be
avoided or sufficiently delayed to realize F-term axion monodromy models, see also
the recent [87] where the authors argue that the linear backreaction is the maxi-
mum non-geodesity that would be consistent with the Distance Conjecture from a
bottom-up perspective. The arising problems are also related to the difficulty of
creating mass hierarchies in flux compactifications, as studied in [156,157].

In order to study the axion backreaction problem, it is desirable to identify a
general and controlled setting with a variety of axion-like fields. The complex
structure moduli space of Calabi-Yau manifolds provides such a general arena.
Firstly, it has long been known that the complex structure moduli descent to
complex scalars in the effective theory. Secondly, it became clear in the advent of
flux compactifications that these fields can obtain a scalar potential when allowing
for non-trivial background fluxes [7, 8]. Within such flux compactifications, it
was found in [217, 218] that fields with approximate continuous shift symmetry,
i.e. axion fields, can only arise near certain boundary components of the complex
structure moduli space. Near such a boundary component, the monodromy as one
loops around the boundary descents to an approximate continuous shift-symmetry
of the real part of the considered complex structure modulus, which is broken into a
genuine discrete axionic shift-symmetry by non-perturbative effects. Moreover, by
turning on background fluxes, one gets a scalar potential for the complex structure
moduli which are decomposed into the axionic-like fields and the moduli controlling
the geometry, and it is the very same monodromy transformation generating the
shift-symmetry that is used as the monodromy transformation in the axion inflation
scenario.

A concrete setting that allows us to examine complex structure axions and their
flux-induced scalar potentials arises from F-theory compactifications on Calabi-
Yau fourfolds. As briefly reviewed in Section 1.2.4, such compactifications lead to
an N = 1 supersymmetric effective action [41, 44] with a classical scalar potential
induced by background four-form flux G4. It is also well-known that a part of G4

induces a non-trivial F-term potential [51] and it will be this part which will be
relevant in the present chapter. The merit of studying complex structure axions
in F-theory compactifications is at least two-fold. Firstly, the complex structure
axions include the R-R zero-form axions of Type IIB string theory and also are
dual to NS-NS two-form axions of Type IIA via duality. Moreover, one consis-
tently incorporates certain axions that are associated to D-branes. Secondly, the
scalar potential induced by the four-form flux in F-theory is particularly amenable
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to be studied by asymptotic Hodge theory [75, 76] near the boundary of the com-
plex structure moduli space as demonstrated in [13, 218]. These techniques have
developed into a powerful tool to address various swampland conjectures in an
example independent way [5, 13, 81, 83–86, 136, 218]. In particular, it has been ob-
served in [218] that one can systematically analyze the axion backreaction using
asymptotic Hodge theory.

In this chapter we generalize and complete the analysis of [218] and investigate,
in full generality, the backreaction within a single axion-saxion pair arising near
any boundary of the complex structure moduli space. Remarkably, we are now able
to combine the insights from asymptotic Hodge theory and Newton polygons asso-
ciated with Puiseux expansions to establish that there is universally a backreaction
of the axion on its saxion partner which grows when considering large field values
of the axion. To achieve this goal we first note that the asymptotic Hodge theory
provides near every boundary in moduli space an approximation to the all relevant
functions in the effective theory via the so-called nilpotent orbit [75]. The nilpotent
orbit thus gives a near-boundary expansion that, by using the results of [75, 76],
can be encoded by a set of boundary data.1 A crucial part of this boundary data
is a set of commuting sl(2)-algebras which decompose the middle cohomology of
Calabi-Yau manifold into different sl(2)-representations. Also splitting a general
four-form flux into such representations gives us precise control about the limiting
behavior of Hodge norm and allows us to make the axion and saxion dependence
in the scalar potential explicit. In fact, we find that the underlying sl(2)-structure
ensures that the possible asymptotic scalar potentials generated by four-form fluxes
form a rather constrained set. Systematically going through all allowed cases we
can then study the axion backreaction generally. We do this by explicitly deriving
the saxion vacuum expectation value determined by the extremization equation
of the scalar potential. We evaluate this saxion vacuum value depending on the
axion as a parameter and study the behavior of the solution in the limit when
this parameter becomes large. The solution to this problem is given by Puiseux
expansions, which present the solution as a fractional power series whose leading
power is determined by a handy graphical tool called the Newton polygon. With
the scalar potentials derived using asymptotic Hodge theory the Newton polygon
provides visual guidance to the leading backreaction behavior of the saxion vac-
uum expectation value. This lets us uncover a universal backreaction behavior
generalizing the result of [138–140, 218] that is present around any singularity in

1It was recently suggested in [13] that this is reminiscent of a holographic perspective, with an
actual underlying bulk and boundary theory.
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the Calabi-Yau fourfold complex structure moduli space.
Now we would like to state our results more concretely. In this chapter we focus

on the backreaction of one complex structure axion field φ on the saxion modulus
s in the same N = 1 multiplet. We find that, when a vacuum exists, a large
displacement of the axion φ always backreacts on the saxion vacuum expectation
value s in the following fashion

s(φ) = cφγ + O
(

1
φ

)
, (4.1.1)

where the prefactor c > 0 is a positive number and the exponent 0 < γ ≤ 2 is a
rational number. There could be several different sets of c and γ corresponding
to one flux configuration. We find that in almost every case, one has a solution
with γ = 1, which agrees with the linear backreaction behavior found in [138–140,
218]. The cases with γ > 1 are rather restricted to the extent that only γ = 2
is allowed and they also need to satisfy a technical condition which is discussed
at the end of section 4.4.3. We find only two flux configurations that generate
γ = 2 backreaction and they have no γ = 1 branch. In contrast, we do not find
additional restrictions on cases with 0 < γ < 1 besides that the exponent γ should
be rational. However, we note that for these cases there is sometimes a co-existing
γ = 1 branch. Regarding the prefactor c in the backreaction, the possibility that
c depends on flux numbers cannot be ruled out. Physically this implies that one
cannot completely exclude a delayed backreaction. In section 4.4.3 we give a simple
condition on the flux such that the delay cannot occur.

In view of our findings there are several interesting further studies that can
be undertaken. Recalling the relation with the Distance Conjecture, it would be
interesting to study the γ 6= 1 cases and the condition on the delay of a backreaction
in the future. One first extension is to take into account subleading corrections
following the strategy in [13] and check whether these extend the class of scalar
potentials can arise. Furthermore, in this chapter we have only exploited the
conditions for s to be at an extremum of the potential and not incorporated the
additional constraints that actually is at a minimum. Hence, the relation (4.1.1)
gives the necessary behavior also at minima, but it could well be that some of
the cases with γ 6= 1 are not arising in an actual minimum. We would also like
to point out that while for finding extrema it is sufficient to focus on one axion-
saxion pair, the analysis of the conditions for having an actual minimum requires
a more complete treatment of all involved moduli. We have already formulate the
setting and the analysis in a general multi-variable language and we believe that it
is desirable, while technically more difficult, to generalize the study of backreaction
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to a multi-variable setting where the vacuum expectation values of all saxions are
considered.

This chapter is structured as follows. In section 4.2, we introduce the physi-
cal setting of Calabi-Yau fourfold compactifications of F-theory, review variations
of Hodge structures, and rewrite the F-theory scalar potential using Hodge the-
ory. In section 4.3, we discuss the reason why only near the boundary of the
complex structure moduli space axions can emerge, review the relevant part of
asymptotic Hodge theory, and provide the asymptotic form of the F-theory scalar
potential near the boundary. In section 4.4, after briefly setting up the notation
for sl(2)-representations and reviewing the notion of Puiseux series and its asso-
ciated Newton polygon, we expand the asymptotic scalar potential and solve the
backreacted vacuum expectation value of the geometric moduli. There we will not
only encounter the general backreaction behavior, but also collect apparent coun-
terexamples. Those counterexamples are then ruled out at the end of that section.
Finally, in appendix 4.A we provide some technical details of asymptotic Hodge
theory used in the main text.

4.2 F-theory on Calabi-Yau fourfolds with G4-flux
In this section we introduce in more detail the context in which we study axion
backreaction and moduli stabilization. More precisely, we will introduce part of
the low-energy supergravity theory arising when considering F-theory compactified
on a family of Calabi-Yau fourfolds Y carrying G4-flux in section 4.2.1. We will
then express the induced flux scalar potential depending in terms of the Hodge
decomposition in section 4.2.2 and comment on the use of the Hodge filtration.
This chapter repeats certain parts of Section 3.2.1 in order to adapt the notations
into the present work.

4.2.1 Scalar potential and its complex structure dependence
As reviewed in Section 1.2.4, we first compactify M-theory with G4-flux on Calabi-
Yau fourfolds Y to obtain a three-dimensional N = 2 effective supergravity theory
with a scalar potential for the complex structure moduli and Kähler structure
moduli induced by the flux [167]. To connect this setting to an F-theory compact-
ification we assume that Y admits a two-torus fibration. The three-dimensional
action is then lifted to a four-dimensional N = 1 supergravity theory by shrinking
the volume of the two-torus fiber of Y . This procedure defines the reduction of
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F-theory on the Calabi-Yau fourfold Y to obtain a four-dimensional effective the-
ory [41, 44]. Crucial for our considerations is the fact that the complex structure
moduli of Y reside in chiral multiplets both in the three-dimensional effective the-
ory obtained from M-theory and the four-dimensional effective theory derived by
the lift to F-theory. It was shown in [5,217,218] that within the complex structure
moduli space, fields with approximate shift symmetry, i.e. axion fields, can only
arise near the boundaries of moduli space. These boundaries will have to satisfy
certain conditions, which we will recall below. It is with these axions and their
partner saxions that will be the focus of this chapter.

Let us now discuss the scalar potential induced by a background flux G4 ∈
H4(Y,Z/2). It is well-known [167] that the three-dimensional scalar potential
arising in the M-theory reduction takes the form

V = 1
V3

4

(∫
Y

G4 ∧ ∗G4 −
∫
Y

G4 ∧G4

)
, (4.2.1)

where ∗ is the Hodge-star operator of Y and V4 is the volume of the Calabi-Yau
fourfold Y . Note that the scalar potential depends on complex structure and the
Kähler structure deformations through the Hodge-star operator in the first inte-
gral. Furthermore, in V there is an additional Kähler structure moduli dependence
through the overall volume factor. Without further inclusion of localized sources
such as M2-branes filling the three-dimensional spacetime, the G4-flux needs to
satisfy the following tadpole cancellation condition [159]

1
2

∫
Y

G4 ∧G4 = χ(Y )
24

. (4.2.2)

The scalar potential (4.2.1) can be cast into a form compatible with N = 2 su-
persymmetry in three dimensions. Instead of reviewing the whole construction of
the characteristic N = 2 data, we will henceforth focus only on the complex struc-
ture moduli dependence of the Hodge star in (4.2.1). This amounts to requiring
that our G4-flux lives in the primitive middle cohomology H4

p(Y,Z) [167], which
is equivalent to stating that if J ∈ H1,1(Y ) is the Kähler class of the Calabi-Yau
fourfold Y the fluxes under consideration satisfy the condition J ∧G4 = 0. Insert-
ing this condition into (4.2.1), the resulting scalar potential can be shown to arise
from a Kähler potential K and a superpotential W [51, 167] given by

K = − log
∫
Y

Ω ∧ Ω̄ , W =
∫
Y

Ω ∧G4 , (4.2.3)

where Ω is the, up to rescaling, unique (4, 0)-form on Y and hence represents
H4,0(Y,C).
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Let us note that we make a further simplification that will keep our discussion
accessible. In order to not deal with integer cohomology and the many associated
subtleties, we will not be careful about the quantization of the G4 flux [219] and
often write G4 ∈ H4

p(Y,R). While imposing the quantization conditions on G4 is
important in deriving numerical values and establishing finiteness results [13, 14]
it will not be altering the conclusions about backreaction that we obtain in this
chapter.

4.2.2 Scalar potential and the Hodge filtration
In order to identify the conditions for axions to arise in the complex structure
moduli space and to study their backreaction effects, we need to put the above
expression for the scalar potential into a Hodge-theoretic context. Let us review
some of the relevant definitions in order to establish notations. For more complete
information, we refer the math article [101] and the recent physics application
[13,136].

To begin with, we note that the primitive middle cohomology of a smooth Calabi-
Yau fourfold Y carries a pure Hodge structure of weight four, which is described
by the Hodge decomposition

H4
p(Y,C) = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4 , (4.2.4)

satisfying Hp,q = Hq,p. Note that the H2,2 here denotes primitive (2, 2)-forms,
i.e. it is a shorthand for H2,2 ∩ H4

p(Y,C), and all subspaces Hp,q different from
H2,2 are automatically primitive in the Calabi-Yau fourfold setting. In practice it
is more useful to use an equivalent description in terms of the Hodge filtration

0 ⊂ F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H4
p(Y,C) , (4.2.5)

satisfying F p ⊕F 4−p+1 ∼= H4
p(Y,C). One can recover the Hodge decomposition by

setting Hp,q = F p ∩ F q. On the other hand, given a Hodge decomposition, the
corresponding Hodge filtration is given by

F p =
⊕
r≥p

H4−r,r . (4.2.6)

The Hodge structure will change as one deforms the complex structure of the
Calabi-Yau, and the merit of using Hodge filtration is that the filtration will change
holomorphically with respect to the complex structure moduli tI . The variation
of Hodge structure is captured by the period map F (t), which records the whole
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Hodge filtration F p, p = 0, ..., 4, corresponding to the complex structure moduli
tI .

Moreover, the Hodge structure is polarized by the symmetric intersection form
on the Calabi-Yau fourfold

〈α, β〉 =
∫
Y

α ∧ β , (4.2.7)

for α, β ∈ H4
p(Y,C). There is also a Weil operator CF , depending on the Hodge

filtration F , defined by

CF (α) = ip−qα , for α ∈ Hp,q . (4.2.8)

It is a standard result that on the primitive middle cohomology of a Calabi-Yau
fourfold, the Weil operator coincides with the Hodge star operator. With the help
of the polarization form and the Weil operator, we can define the Hodge inner
product and its associated Hodge norm

〈α|β〉F = 〈CFα, β〉 , (4.2.9)
‖α‖2

F = 〈α|α〉F , (4.2.10)

which depends on the Hodge filtration F .
For later reference, we also need to introduce the symmetry group of the variation

of Hodge structures: It is the group G of linear automorphisms of H4
p(Y,C) that

preserves the dimension of Hodge filtration and the polarization pairing 〈 · , · 〉.
There is also a real counterpart GR of this symmetry group that consists of the
automorphisms of H4

p(Y,R). More concretely, in the case of Calabi-Yau fourfolds,
we have

G = SO(2 + h2,2
p + 2h1,3,C) , and GR = SO(2 + h2,2

p , 2h1,3) , (4.2.11)

where h2,2
p = h2,2 − h1,1 is the dimension of the space of primitive (2, 2)-forms.

This number follows from the Lefschetz decomposition. Namely, one has

H2,2 = H2,2
p ⊕ JH1,1

p ⊕ J2H0,0
p , H1,1 = H1,1

p ⊕ JH0,0
p , H0,0

p = H0,0 , (4.2.12)

where JHp,p = {J ∧ α|α ∈ Hp,p} ⊂ Hp+1,p+1 contains the cup product between
the Kähler class and (p, p)-classes. Since we are working with Calabi-Yau spaces,
h0,0 = 1. From the last two equalities, one finds h1,1

p = h1,1 − 1. And then
h2,2

p = h2,2 − h1,1 follows.
We can now re-express the F -term scalar potential in the Hodge theoretical

language: Note that our G4 is real, so the scalar potential induced by G4 can now
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be written as
V (t) = 1

V3
4

(‖G4‖2
F (t) − 〈G4, G4〉) . (4.2.13)

The first term contains the Hodge norm of G4 evaluated at the Hodge structure
F (t). This is the term that we will focus on in the study of the backreaction of
axions on the vacuum expectation values of stabilized saxions.

4.3 Complex structure axions and asymptotic Hodge
theory

In this section we explain that in order to identify axionic directions in complex
structure moduli space we have to be at its boundaries, i.e. approach a limit in
which the associated Calabi-Yau fourfold degenerates. Furthermore, we will see
that the considered boundary has to satisfy a set of conditions [5, 217, 218]. To
formulate these conditions we have to introduce some additional facts about the
moduli space and, in particular, the behavior of the Hodge decomposition (4.2.4)
near its boundaries. This forces us to briefly review parts of asymptotic Hodge
theory that is relevant to our study of the axion backreaction problem. In section
4.3.1 we will briefly recall why axions arise near the boundaries of the moduli space
and introduce the so-called nilpotent orbit that describes the asymptotic form of
the Hodge decomposition. In section 4.3.2 we then explain how one can associate to
each boundary sets of commuting sl(2)-triples and a well-defined boundary Hodge
structure. The asymptotic form of the scalar potential is then determined in section
4.3.3. We first introduce the normal form of the period mapping F (t) near any
boundary and use it to find the asymptotic expression of the Hodge norm. That
asymptotic expression will be used in our study of the axion backreaction problem
in the next section. The aim of this section is to briefly introduce the relevant
results without going into mathematical details. We will supply further details in
appendix 4.A. The precise mathematical statements summarized in this section
are contained in the review [101] and the original papers [75], [76]. For a more
physical formulation that emphasizes similar parts of asymptotic Hodge theory,
see [13,136].

4.3.1 Axions at the boundary of moduli space
In this section we identify the regions in the complex structure moduli space in
which one can find fields that admit approximate continuous shift symmetries and
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hence can be interpreted as axions. In order to do that we first recall that the
discrete symmetries of the moduli space are encoded by the so-called monodromy
group. These monodromy symmetries can then lead to an approximate continuous
shift symmetry near the boundaries of moduli space.

In the following we will introduce stepwise a local description of the region near
the boundaries in moduli space along which the associated Calabi-Yau manifold
Y degenerates. We begin by fixing local coordinates zI , where I = 1, . . . , h3,1,
for a patch around a boundary locus of codimension n in the complex structure
moduli space. We choose these coordinates such that the boundary is located at
zi = 0 for all i = 1, . . . , n. It will also often be useful to implement the coordinate
transformation 2

ti = 1
2πi log zi . (4.3.1)

The new set of coordinates ti take value in the upper half plane, and the singularity
is now located at ti → i∞, for i = 1, . . . , n. The coordinates ti can be further
decomposed into real and imaginary parts

ti = φi + isi . (4.3.2)

The real parts φi are the candidate axions if one is close to the boundary si = ∞ as
we will see below. In fact, the φi can enjoy an approximate shift-symmetry if the
monodromy transformation associated to the boundary satisfies certain conditions.
In cases in which the φi are identified as axions the imaginary parts si is often
referred to as saxion. We will sometimes use this terminology more loosely, by
referring to the coordinates si, φi as saxion and axion without always stressing
the extra condition on the associated monodromy transformation. Note that from
(4.3.1) we see that ti takes value in the upper half plane, so we have a basic
constraint si > 0. The region close to the boundary is characterized by si � 1.

The next data one needs to record is the monodromy operators that arise when
encircling the boundary locus zi = 0, i = 1, ..., n. There are n monodromy opera-
tors and they are defined as the monodromy of the period map F (t), introduced
after (4.2.6), when one loops around the singular locus: When ti → ti + 1 (equiva-
lently zi → e2πizi), the period map changes F (ti + 1) = TiF (ti). In our geometric
setting, where the variation of Hodge structure is induced from the deformation
of Calabi-Yau complex structures and that there is an integral basis of the primi-
tive middle cohomology H4

p(Y,C), one can choose the coordinates in the complex

2The coordinates ti are actually local coordinates on the universal cover of the near boundary
patch in the moduli space.
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structure moduli space such that the monodromy matrices take the form

Ti = eNi , (4.3.3)

where Ni are nilpotent matrices. Note that the operators Ti are elements of the real
symmetry group GR given in (4.2.11), while the Ni are elements of the associated
real algebra gR.

The monodromy matrices Ti, or rather the associated Ni, are essential in evalu-
ating the Hodge decomposition (4.2.4) near the boundary. In general, the Hodge
structure will degenerate exactly on the boundary si = ∞ and has to be replaced
by a more sophisticated structure, a so-called ‘limiting mixed Hodge structure’,
which we will describe in section 4.3.2. The starting point for construction of this
structure is Schmid’s nilpotent orbit theorem [75, 76]. It states that around the
boundary locus si = ∞, i.e. when si � 1, the period map F (t) is well approxi-
mated by the nilpotent orbit of the following form

Fpol(t) = et
iNiF0 , (4.3.4)

where we sum in the exponential over i = 1, . . . , n. In fact, the nilpotent orbit can
be viewed as the essential part of the period map that arises by dropping certain
exponential corrections O(e2πitj ), while still keeping a well-defined Hodge decom-
position. Note that this implies that in many limits non-perturbative corrections
are still recorded in Fpol(t) as discussed in more detail in [13,89]. Note that (4.3.4)
immediately implies that in order that Re ti = φi is an axion with an approximate
shift symmetry unbroken by O(e2πitj )-corrections we have to consider a boundary
with Ni non-vanishing.

While we will bypass using the Kähler potential and superpotential (4.2.3), let us
remark that we have given these quantities in terms of the holomorphic (4, 0)-form
Ω. In order to get the naive nilpotent orbit approximation Knil for K we can now
apply the fact that also F 4 = H4,0 admits a representation (4.3.4). This implies
that Ω, after possibly fixing an overall rescaling, can be expressed as

Ω(z) = et
iNia0︸ ︷︷ ︸

Ωnil(t)

+O(e2πitj ) . (4.3.5)

Here a0 can still be a holomorphic function in the coordinates that are not sent to
a limit. Inserting this expression we can now write

Knil = − log〈Ωnil, Ω̄nil〉 = − log〈e2isjNja0, ā0〉 , (4.3.6)
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which is thus a logarithm of a polynomial in the si with a finite number of terms.
This implies that Knil is independent of the axions φi, while Knil still depends on a
considered variable si if Nia0 6= 0. We therefore conclude that a sufficient condition
that φi is an axion with an approximate continuous shift symmetry φi → φi + ci

is that N ia0 6= 0. This latter condition is a necessary condition for the limit to
be at infinite distance in the metric derived from K [126]. The appearance of the
continuous shift symmetries at infinite distance singularities was discussed in [5]
in the context of the Distance Conjecture. In the following, we will not restrict
our attention to cases where Nia0 6= 0, since this restriction is not necessary for
our arguments to go through. While we have not checked that the Kähler metric
indeed depends on the φi only through exponential corrections, we will see that in
either case this does not alter our analysis. In the following we will refer to φi as
axions whenever Ni 6= 0.

In a related matter, let us stress that, in general, the expression (4.3.6) cannot be
used to compute the Kähler metric, since taking the nilpotent orbit approximation
and taking derivatives with respect to the moduli does not commute. Nevertheless,
we can use the full result (4.3.4) for the nilpotent orbit of the complete Hodge
filtration to compute the Kähler metric or derivatives of the superpotential. As
mentioned above, we will bypass this issue completely by working directly with the
scalar potential (4.2.13) and apply the approximations to this expression. In the
remainder of this section we will show how starting from the nilpotent orbit (4.3.4)
we can derive an approximate scalar potential with an explicit dependence on the
axions φi.

4.3.2 The boundary sl(2)-structures associated to a
degeneration

In the last subsection we have argued that in order to have candidate axion fields
φi in complex structure moduli space some of the complex structure moduli need to
be close to the boundary of this moduli space. Furthermore, we have seen that the
Ni associated to this boundary have to be non-vanishing. To study the dynamics of
the axions we thus need to evaluate the asymptotic behavior of the scalar potential
(4.2.13) near the boundary. As will become apparent below the highly non-trivial
SL(2)-orbit theorem developed in [75] and [76] provides the necessary information
about the near boundary region to attack this problem. In the following we will
briefly review the ingredients of the SL(2)-orbit theorem needed in this chapter.

The main result discussed in section 4.3.1 is the fact that one can associate to
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each boundary in moduli space a nilpotent orbit (4.3.4). This orbit encodes the
Hodge structure (4.2.4) near the boundary at si = ∞, i = 1, . . . , n. In summary, we
have the data (Fpol, N1, . . . , Nn), which is regarded as the input of the SL(2)-orbit
theorem. The data constructed by the SL(2)-orbit theorem includes a collection of

commuting sl(2)-triples: (N−
i , N

0
i , N

+
i ) , for i = 1, . . . , n , (4.3.7)

and a
boundary Hodge structure: F∞ . (4.3.8)

The commuting sl(2)-triples satisfy the standard relations

[N0
i , N

±
i ] = ±2N±

i , [N+
i , N

−
i ] = N0

i , (4.3.9)

and the boundary Hodge structure is again a weight-four pure Hodge structure
on the primitive cohomology H4

p(Y,C) polarized by the intersection bilinear form
〈 · , · 〉. Unpacking the definition, this means that one is able to define its associated
Hodge decomposition

H4
p(Y,C) =

⊕
p+q=4

Hp,q
∞ , where Hp,q

∞ = F p∞ ∩ F q∞ , and Hp,q
∞ = Hq,p

∞ ,

(4.3.10)
such that the following polarization condition is satisfied

〈Hp,q
∞ ,Hr,s

∞ 〉 = 0 , unless (p, q) = (s, r) . (4.3.11)

We can also define its associated Weil operator and Hodge norm according to
equations (4.2.8) to (4.2.10)

C∞(α) = ip−qα , for α ∈ Hp,q
∞ ,

〈α, β〉∞ = 〈C∞α, β〉 , (4.3.12)
‖α‖∞ = 〈α, α〉∞ ,

where we abbreviate the F∞ appearing in subscripts as ∞ to ease the notational
burden.

To proceed further, it is convenient to denote the cumulated sum by braced
subscripts. For example, we have

N0
(i) = N0

1 + · · · +N0
i . (4.3.13)

Because the operators N0
i commute with each other, their cumulated sums N0

(i)
also mutually commute [N0

(i), N
0
(j)] = 0, thus they have common eigenspaces. In
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other words, the operators N0
(i) define a multi-grading

H4
p(Y,R) =

⊕
`=(l1,...,ln)

V` , (4.3.14)

where each V` is the simultaneous eigenspace of N0
(i) with eigenvalue li 3, i.e.

N0
(i)v` = liv` , for v` ∈ V` and i = 1, . . . , n . (4.3.15)

The multi-grading (4.3.14) is defined on the real cohomology because the operators
N0
i are elements of gR. In the following, we will also work with complexified multi-

grading by allowing complex linear combinations.
The multi-grading (4.3.14) and the boundary Hodge structure F∞ are compatible

with each other in the sense that the multi-grading is orthogonal with respect to
the Hodge inner product 〈 · | · 〉∞, i.e.

〈V`|V`′〉∞ = 0 , unless ` = `′ . (4.3.16)

Furthermore, this Hermitian Hodge inner product becomes a symmetric positive-
definite inner product after being restricted to the real cohomology H4

p(Y,R), hence
we can always choose a real orthonormal basis {ei`} for each V`:

V` = spanR{ei`} , and 〈ei`|ej`′〉∞ = δijδ``′ . (4.3.17)

Such choice of orthonormal basis will be used in our analysis of the scalar potential
(4.2.1) near the boundary in section 4.4.

4.3.3 Asymptotic form of periods and the scalar potential
Now we come back to the study of the asymptotic behavior of the scalar potential
(4.2.13) near the boundary. Our focus will be its first term containing the Hodge
metric evaluated at F (t). We will first introduce a normal form of the period
mapping F (t), which factors F (t) into nice pieces. Moreover, each factor in the
normal form has a good limiting property near the boundary where si = ∞. These
limits combine into each other, yielding an asymptotic form of the scalar potential
that will be the object studied in section 4.4.

In order to write down the normal form, we need again the data of the nilpotent
orbit (Fpol, N1, . . . , Nn) defined in (4.3.3) and (4.3.4). In addition, we require an
extra piece of information: a holomorphic function Γ(z) valued in the Lie algebra
3Note that our convention differs from the convention in [218] by a constant shift of four.
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gR. This function satisfies certain properties that are reviewed in appendix 4.A.
For the moment we only need to know its existence. Then the normal form of the
period map [101] is given by

F (t) = et
iNieΓ(z)F0 = eφ

iNieisiNieΓ(z)F0 , (4.3.18)

where we remind the reader that the tj-dependence in the Γ(z)-function is intro-
duced via zj = e2πitj as in (4.3.1). The normal form provides a convenient factor-
ization of the period mapping into group elements eφiNi ∈ GR and eisiNi ,eΓ(z) ∈ GC

acting on the filtration F0.
We will now introduce a natural action of GC on the Hodge norm, which will not

only let us factor out the axion dependence in the scalar potential, but also turn
the general study of Hodge norm in the bulk near the boundary into the study of
the Hodge norm induced by F∞ at the boundary. This action is defined as follows.
For every element g ∈ GC and form α, β ∈ H4

p(Y,C), there is a tautological relation

〈α|β〉F = 〈gα|gβ〉gF . (4.3.19)

This relation then equips the following action of g on the Hodge norm of α

‖α‖gF = ‖g−1α‖F . (4.3.20)

These properties of the Hodge norm and the normal form of the period mapping
allow us to factor out the axion dependence in the scalar potential. More precisely,
using the action of GC on the Hodge norm we can write

‖G4‖F (t) =
∥∥∥e−φiNiG4

∥∥∥
eisiNieΓ(z)F0

. (4.3.21)

In accordance with the nilpotent orbit theorem discussed in section 4.3.1 (see ap-
pendix 4.A for more details) near the boundary si = ∞, the term eΓ(z) will provide
exponentially suppressed corrections. It is in this sense that near the boundary
the dependence of ‖G4‖F (t) in the axion φi and saxion si are separated. Note also
that the operator e−φiNi being an element in the group GR by definition preserves
the polarization form: 〈e−φiNiG4, e

−φiNiG4〉 = 〈G4, G4〉. These facts instruct us
to define the modified G4-flux including the axions in [218]

ρ(φ,G4) = e−φiNiG4 . (4.3.22)

This redefinition has also been motivated and discussed intensively in [132,173,182].
In this chapter we find it more convenient to not use this redefinition ρ(φ,G4), but
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rather always directly display G4. In summary, the scalar potential expressed using
the split (4.3.21) takes the form

V (t) = 1
V3

4

[∥∥∥e−φiNiG4

∥∥∥2

eisiNieΓ(z)F0
− 〈G4, G4〉

]
. (4.3.23)

Let us now turn to a more in-depth study of the asymptotic form of the scalar
potential (4.3.23) near the boundary. In higher-dimensional moduli spaces, the
asymptotic behavior can depend on the path along which one approaches the
boundary si = ∞. In order to regulate this, we need to introduce the growth
sector

R1···n =
{
s1

s2 ≥ λ, . . . ,
sn−1

sn
≥ λ, sn > λ

}
, (4.3.24)

where we consider λ ≥ 1. The definition of the growth sector binds with an
ordering of the variables ti. Setting λ = 1 one can cover the entire neighborhood
of the boundary by growth sectors obtained by considering every ordering in the
variables ti. In the following we will focus on one of these sectors, namely R1···n,
after possibly renaming the coordinates. Gluing these sectors together can be a
non-trivial task, but is not of importance in the remainder of this chapter. Note
that eventually we will work in the ‘strict asymptotic regime’, i.e. we will assume
λ � 1.

In order to analyze the asymptotic behavior of the Hodge norm, i.e., the first
t-dependent term in (4.3.23), we will introduce an operator e(s) following [101]. It
is defined by

e(s1, . . . , sn) = exp
{

1
2

(log sr)N0
r

}
, (4.3.25)

where r is being summed from 1 to n. One of the motivations behind the introduc-
tion of the e(s)-operator is the property

e(s)eφ
jNje(s)−1 = exp

{
n∑
j=1

φj

sj

[
N−
j +

∑
αj>0

N ′
j,αj(

s1

s2

)αj
1/2 · · ·

(
sj−1

sj

)αj
j−1/2

]}
, (4.3.26)

where Nj is the log-monodromy operator introduced in (4.3.3), N−
j is the corre-

sponding lowering operator in the commuting sl(2)-triples introduced in (4.3.7).
The operators N ′

j,αj are nilpotent operators living in gR. The derivation of this
expression together with the precise definition of the operators N ′

j,αj can be found
in appendix 4.A. The main point is that if one moves towards the boundary si = ∞
within the growth sector R1···n, while not keeping the candidate axion φi finite,
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the terms proportional to N ′
j,αj are polynomially suppressed. This implies that in

the limit of large si we find within R1···n the limiting behavior

e(s)eφ
jNje(s)−1 → exp

( n∑
j=1

φj

sj
N−
j

)
, (4.3.27)

e(s)eisjNje(s)−1 → exp
(

i
n∑
j=1

N−
j

)
, (4.3.28)

where the second line can be obtained from the first by formally setting φj = isj .
If we look at the normal form of the period mapping (4.3.18), we see that some
limiting expressions related to eΓ(z) and F0 are also needed. We state the correct
form of the limits here, and refer to appendix 4.A for their derivation

e(s)eΓ(z)e(s)−1 → 1 ,

exp
(

i
n∑
j=1

N−
j

)
e(s)F0 → F∞ , (4.3.29)

where F∞ is the boundary Hodge filtration.
Combining the normal form of the period mapping (4.3.18) and equations (4.3.27)

to (4.3.29) gives us the following limiting expression of the period mapping F (t)
near the boundary si = ∞ in the growth sector R1···n

F (t) → e(s)−1 exp
( n∑
j=1

φj

sj
N−
j

)
F∞ . (4.3.30)

The above result can be applied immediately to the study of the scalar potential
(4.3.23). Combining the action of GC on the Hodge norm and the asymptotic
expression of the period mapping (4.3.30), we have 4∥∥∥e−φiNiG4

∥∥∥
eisiNieΓ(z)F0

=
∥∥∥e(s)e−φiNiG4

∥∥∥
e(s)eisiNieΓ(z)F0

∼
∥∥∥∥ exp

( n∑
j=1

−φj

sj
N−
j

)
e(s)G4

∥∥∥∥
∞
. (4.3.31)

So in the strict asymptotic regime λ � 1 in (4.3.24), the scalar potential (4.3.23)
has the following asymptotic form

V (t) ∼ 1
V3

4

[∥∥∥∥exp
( n∑
j=1

−φj

sj
N−
j

)
e(s)G4

∥∥∥∥2

∞
− 〈G4, G4〉

]
. (4.3.32)

4As usual, the symbol ∼ indicates that the quantities on both sides approximate each other
increasingly well as one move towards the considered boundary.
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4.4 Axion backreaction on the saxion vacuum

This asymptotic form of the scalar potential is the main result from asymptotic
Hodge theory that we will use in the following. The important thing to note is
that all dependence in (4.3.32) on the axions φi and the saxions si is explicit and
given in terms of the boundary structure. In particular, the norm ‖ · ‖∞ is both
well-defined and independent of ti, but can depend still on the coordinates not
considered to be near the boundary. Combined with the underlying sl(2)-structure
we can use this form of the potential to tackle the stabilization of saxions in the
presence of large displacement of axions.

Let us close this section with a short comment on the apparent discrepancy be-
tween (4.3.32) and our result in section 7 of [218]. The reason of the discrepancy
is that in [218] we replaced all Ni in the expression of ρ(φ,G4), given in (4.3.22),
by their commuting sl(2)-counterparts N−

i . This was done to simplify the compu-
tation, but it neglected the contributions from the difference between Ni and N−

i .
Had the replacement not been done, the two approaches are equivalent because

‖e(s)ρ(φ,G4)‖∞ ∼
∥∥∥∥ exp

( n∑
i=1

−φi

si
N−
i

)
e(s)G4

∥∥∥∥
∞
, (4.3.33)

which is the step deriving (4.3.31). The left-hand-side of the above equation is
the object studied in [218] whereas the right-hand-side is the object studied in this
note.

4.4 Axion backreaction on the saxion vacuum
In this section we study the backreaction of a large displacement of an axion,
denoted by φk, on the saxion vacuum expectation values. This forces us to discuss
moduli stabilization within the general scalar potential (4.3.32), which is a very
hard problem. In particular, while we know the field dependence of (4.3.32) on
the fields ti, we have no control over its dependence on the coordinates of complex
structure moduli space not considered close to the boundary. Here the power of
asymptotic Hodge theory comes to the rescue, since it allows us to control at least
the positivity properties and the hierarchy of certain couplings that cannot be
further specified. We will then focus on one pair of axion and saxion (φk, sk) and
study the stabilization of the saxion sk via the potential (4.3.32) to its vacuum
expectation value sk. To simplify notation we use in this section the definition:

s ≡ sk , φ ≡ φk . (4.4.1)
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We then find that whenever we try to fix s and assume that the associated axion
φ is large, we find the following universal relation

s(φ) ∼ c φγ + O
(

1
φ

)
, (4.4.2)

where c is a positive number, and 0 < γ ≤ 2 is a rational number. While our
expression is slightly more general, the relation (4.4.2) shows that one always en-
counters the type of backreaction that was found in [138–140]. In fact, we will
argue in the end of section 4.4.3 that in most cases one indeed has γ = 1, and
in general γ < 1 can appear if some special choices of parameters are allowed.
The γ > 1 cases are even rarer in the sense that only two valid special cases with
γ = 2 are found. In other words, the fact that one cannot displace the axion by
very large values without destabilizing the saxion is a consequence of the boundary
sl(2)-structure introduced in the last section. We stress, however, that we will not
be able to make statements about the precise value of c and its dependence on the
fluxes and other moduli. While c cannot be made zero, we will not exclude the
possibility that it can be made small by fine-tuning leading to a somewhat delayed
backreaction [139, 155–157]. A short discussion on the dependency of c and the
flux numbers can also be found at the end of section 4.4.3.

Our study relies heavily on the action of the commuting sl(2)-triples on the
cohomology H4

p(Y,R), hence we will start with reviewing some elementary facts
about sl(2)-representations in section 4.4.1. The boundary sl(2)-structure then
allows us to bring the asymptotic scalar potential into a convenient form and can
be extremized in the limit of large axion. This amounts to solving a one-parameter
family of one-variable polynomial equations and study how the root depends on
the parameter in certain limits. This kind of problem is exactly studied by a
well-known mathematical tool called the Puiseux expansion, whose information
is registered in a pictorial way in the so-called Newton diagram. We will review
the notion of Puiseux expansions and their associated Newton diagrams in section
4.4.2. Having introduced these additional tools we turn in section 4.4.3 to the
detailed study of the asymptotic scalar potential and its extremization condition.
With the help of the boundary sl(2)-structure and the Newton diagram, we will
show that almost all flux configurations will give an axion backreaction behavior
of the form (4.4.2). We will also enumerate all possible flux configurations that
can potentially generate a backreaction behavior different from (4.4.2). These flux
configurations are then studied case-by-case in section 4.4.4. Interestingly, none of
them actually yields a valid solution, in the sense that each case generates a saxion
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vev leading term that is either negative or imaginary. We conclude this section
with a list of bad cases, where some explicit examples are also provided.

Before we start, let us state again the scalar potential (4.3.32) focusing only on
a single axion-saxion pair (φ, s), but allowing for a slight generalization with an
overall factor. More precisely, we will consider in the following the scalar potential

V (φ, s) := 1
sα

[∥∥∥∥exp
(

− φ

s
N−

)
e(s)G4

∥∥∥∥2

∞
−Aloc

]
, (4.4.3)

where we have set N− ≡ N−
k and recall that the e(s)-operator is defined in (4.3.25).

The localized contribution that does not depend on the complex structure moduli
is collectively denoted by Aloc. Following [218], we have included the overall scaling
1/sα with an undetermined power α. This factor can be thought of as arising from
V4 in (4.3.32) and enables a comparison between the F-theory potential and the IIA
scalar potential [16,137]. Around the weak coupling limit of F-theory, the value of
α is known to be 3 when s is related to the Type IIA dilaton as discussed in detail
in [218]. In general it is not known how large α is near other singularities. However,
requiring that the scalar potential (4.4.3) is finite as s → ∞ restricts the possible
range of α. We will find that after imposing this restriction the backreaction (4.4.2)
is universal.

4.4.1 A brief review of representations of the sl(2)-algebra
It turns out that asymptotics of (4.4.3) with respect to (φ, s) ≡ (φk, sk) only
depends on the behavior of the G4-flux under the action of the k-th commuting
sl(2)-triple, whose lowering and number operators are denoted by (N−, N0), respec-
tively. We will abuse the notation and denote the k-th sl(2)-triple (N−

k , N
0
k , N

+
k )

just by (N−, N0). In this subsection let us recall some elementary facts of sl(2)-
algebra representations [220]. We work over the real numbers since the sl(2)-triple
and G4-flux are real, nevertheless the theory holds for complex representations as
well. We align with the notation in section 4.2 of [13].

For any integer d ≥ 0, there is a (d + 1)-dimensional irreducible representation
Wd of the sl(2)-algebra (N−, N0). One can specify a special state |d, d〉 in Wd

called the highest weight state of weight d. It satisfies the property

(N−)d |d, d〉 6= 0 and (N−)d+1 |d, d〉 = 0 . (4.4.4)

A basis of the representation Wd can then be constructed out of the highest weight
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state |d, d〉 and the lowering operator N− as follows

Wd = spanR{|d, d〉 , |d, d− 2〉 , . . . , |d,−d〉} , (4.4.5)

where
|d, d− 2n〉 = 1

n!
(N−)n |d, d〉 , (4.4.6)

for n = 0, . . . , d. These vectors are also eigenstates of the N0 operator, satisfying

N0 |d, l〉 = l |d, l〉 . (4.4.7)

We call the eigenvalue l the weight of the state |d, l〉. This state also satisfy

(N−)
d+l

2 |d, l〉 6= 0 and (N−)
d+l

2 +1 |d, l〉 = 0 . (4.4.8)

Note that by construction, d+ l is always an even non-negative number.
Now we make contact with the boundary sl(2)-structure. In equation (4.3.7),

a series of commuting sl(2)-triples is introduced at the boundary of the complex
structure moduli space. These commuting sl(2)-algebras act on H4

p(Y,R) and,
in particular, turn H4

p(Y,R) into a real representation of the k-th sl(2)-algebra
(N−, N0). According to the above discussion of representations of sl(2)-algebras,
H4

p(Y,R) enjoys the following decomposition

H4
p(Y,R) =

4⊕
d=0

W[d] , (4.4.9)

where
W[d] = Wd

1 ⊕ · · · ⊕ Wd
µd

(4.4.10)

consists of µd copies of irreducible representations Wd
id

of dimension d+1. Different
highest weight states with the same d-label are distinguished by the index id =
1, . . . , µd: they are denoted by |d, d; id〉 ∈ Wd

id
and their descendants are denoted

similarly by |d, ld; id〉. One also sees that each basis vector in (4.4.5) has a well-
defined eigenvalue under the action of N0. Hence we relate the orthonormal basis
(4.3.17) adapted to the multi-grading to the basis vectors in (4.4.5) in a one-to-one
manner. We fix the basis (4.4.5) in this way, so that two basis vectors in (4.4.5)
are orthogonal to each other unless they carry identical indices d, ld and id.

4.4.2 A brief review of the Puiseux expansion
To determine the backreacted saxion vacuum expectation value, we need to study
how the root of a one-parameter family of polynomial equations change with respect

252



4.4 Axion backreaction on the saxion vacuum

to the parameter. This type of question can be studied expanding the solution into
Puiseux series. In this subsection we briefly review the use of the Puiseux expansion
and Newton diagram. We will not show any proof of the facts and the interested
reader can find the proof in [221].

For simplicity, we work over the complex numbers in this subsection so that every
polynomial always has roots. When we apply the Puiseux expansion to analyze
the axion backreaction, we will always require the existence of a vacuum. This
means that the polynomial arising from the first derivatives of the scalar potential,
see (4.4.23) below, is assumed to have a real root. The method of expanding the
root into a Puiseux series also applies in such circumstances.

The Puiseux expansion studies generalized polynomial equations in two variables
F (s, φ̂) = 0, with the variable φ̂ being distinguished in the sense that the powers
of φ̂ are allowed to be negative. The equation F (s, φ̂) = 0 can also be regarded
as a one-variable polynomial equation with a parameter φ̂. Around φ̂ = 0, any s

satisfying F (s, φ̂) = 0 can be regarded as a function of φ̂. The series representation
of s(φ̂) is given by the Puiseux expansion, which is a fractional power series. More
precisely, let us assume the following form of a generalized polynomial

F (s, φ̂) = a0(φ̂) + a1(φ̂)s+ · · · + an(φ̂)sn , (4.4.11)

where every ai(φ̂) is a polynomial in φ̂ and 1/φ̂ with complex coefficients

ai(φ̂) =
∑
j

aij φ̂
j . (4.4.12)

Then the Puiseux expansion states that, near φ̂ = 0, any root of the equation
F (s, φ̂) = 0, regarded as a function s = s(φ̂), can be expanded as

s(φ̂) = c

φ̂γ
+

∞∑
i=0

ciφ̂
i/m , (4.4.13)

where c and ci are complex numbers, γ is a rational number and m is a positive
integer. Our focus is on the leading power γ. Knowing that any s-root must admit a
fractional power series expansion (4.4.13), the determination of γ is standard: One
inserts the expansion (4.4.13) back to the original equation (4.4.11) and solves for
the γ that makes the lowest order terms cancel. This whole procedure was encoded
by Newton into an intuitive gadget called the Newton polygon which we introduce
next. We would like to comment that despite determining γ is straightforward
once one has the Ansatz (4.4.13), the significance of the Puiseux expansion lies in
the proof of convergence of the fractional series [221].
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4 Universal Axion Backreaction in Flux Compactifications

To determine γ pictorially, we need to first define the Newton diagram ∆(F ) of
F (s, φ̂) as follows

∆(F ) =
{

(i, j) ∈ R2 | aij 6= 0 in F (s, φ̂)
}
, (4.4.14)

which simply consists of the dots (i, j) on the plane such that a term siφ̂j with
non-vanishing coefficient aij 6= 0 appears in the generalized polynomial F (s, φ̂). By
our assumption on the polynomial F , its Newton diagram ∆(F ) will only occupy
the half plane i ≥ 0. Then the Newton polygon of F is defined to be the lower
convex hull of ∆(F ). To illustrate the definition with an example let us consider
the polynomial

F (s, φ̂) = a1

φ̂2
+ a2s

2 + a3

φ̂2
s3 + a4s

5 , (4.4.15)

where a1, a2, a3 and a4 are non-zero numbers. This polynomial arises in a specific
2-moduli degeneration of Calabi-Yau fourfolds.5 The Newton diagram and Newton
polygon is shown in Figure 4.1.

j

i

−2

2 5

Figure 4.1: The Newton diagram ∆(F ) of the polynomial (4.4.15) consists of the four solid
dots shown in this figure. The corresponding Newton polygon, the lower convex hull of
the Newton diagram, is labelled by double lines. The vertical axis labels the powers of φ̂

while the horizontal axis labels the powers of s.

The Newton polygon consists of several segments. Each segment with slope γ
determines a possible leading exponent γ in the Puiseux expansion (4.4.13). In our
example (4.4.15), with Newton polygon shown in Figure 4.1, the polygon consists
of two segments with slopes 0 and +1. So around φ̂ = 0, the equation has the

5The degeneration is classified as of type I01 → V22 with the G4 flux chosen to be G4 = g42v42 +
g34v34 in the convention of [218].
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following roots represented by Puiseux expansions

s1(φ̂) = c1

φ̂
+

∞∑
i=0

c1,iφ̂
i/m , (4.4.16)

s2(φ̂) = c2 +
∞∑
i=1

c2,iφ̂
i/n , (4.4.17)

where m,n are positive integers. In our application, the φ̂ here actually stands for
the inverse of an axion field 1/φ and s stands for the corresponding saxion partner
s. Hence the first solution s1(φ̂) represents a linear-backreacted saxion vacuum
expectation value, while the second solution s2(φ̂) stays finite at large φ.

4.4.3 Determining the backreacted saxion vacuum
We now have all the tools we need to attack the axion backreaction problem. Using
the sl(2)-basis, we will first expand the asymptotic scalar potential (4.4.3) into a
generalized polynomial in (s, φ). Then we will look closer at the shape of the
Newton diagram to deduce the leading term in the backreacted saxion vev s(φ).

Let us begin by decomposing the G4-flux according to (4.4.9) as

G4 =
4∑
d=0

µd∑
id=1

d∑
nd=0

gd,d−2nd;id |d, d− 2nd; id〉 , (4.4.18)

where gd,d−2nd;id is the flux-component of the highest weight representation Wd

with weight d−2nd. Note that the e(s)-operator defined in (4.3.25) acts on a basis
state |d, ld; id〉 by scalar multiplication

e(s) |d, ld; id〉 = s
ld
2 f̂d,ld;id |d, ld; id〉 , (4.4.19)

where f̂d,ld;id can be a non-vanishing function6 of all other complex structure co-
ordinates. Then by a direct computation, the asymptotic scalar potential is found
to be

V = 1
sα

[∥∥∥∥exp
(

− φ

s
N−

)
e(s)G4

∥∥∥∥2

∞
−Aloc

]
(4.4.20)

= 1
sα

[ 4∑
d=0

µd∑
id=1

d∑
nd=0

d∑
bd=nd

(
bd
nd

)2

sd−2bdφ2(bd−nd)g2
d,d−2nd;id f̂

2
d,d−2nd;id −Aloc

]
,

6Note that in our multi-grading notation in [218], the ld here corresponds to the lk − lk−1 index
of |d, ld; id〉 in the [218].
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where in the last step we have used the orthonormal property of the basis states. We
have highlighted the dependency of V only on the pair (φ, s) and moved the depen-
dencies on the other complex structure moduli into the various f̂ . Note that the flux
number gd,d−2nd;id is always accompanied by the non-vanishing function f̂d,d−2nd;id .
We therefore introduce the redefinition ĝd,d−2nd;id = gd,d−2nd;id f̂d,d−2nd;id to shorten
the equations. The expanded asymptotic scalar potential now takes the form

V (φ, s) = 1
sα

[ 4∑
d=0

µd∑
id=1

d∑
nd=0

d∑
bd=nd

(
bd
nd

)2

sd−2bdφ2(bd−nd)ĝ2
d,d−2nd;id −Aloc

]
.

(4.4.21)
With the expansion of the asymptotic scalar potential, we can impose a constraint
on the undetermined exponent α. We require that the potential V (φ, s) does not
blow up in the limit s → ∞. Physically this means that the boundary of the moduli
space is viable, not obstructed by the potential. This translates to the constraint
that

α ≥ max
gd,d−2nd;id

6=0
{d− 2nd, 0} , (4.4.22)

which says that α should not be smaller than the largest weight carrying a non-zero
flux component appearing in G4.

Since we are going to study the situation where φ is large, it is instructive to
change variable to φ̂ = 1/φ so that the limit φ → ∞ corresponds to φ̂ → 0. In this
coordinate (s, φ̂), we denote the derivative of V with respect to s by F (s, φ̂). A
simple computation leads to

F (s, φ̂) = ∂V

∂s
= 1
sα

[
αAloc
s

+
4∑
d=0

d∑
nd=0

Fd,nd
(s, φ̂)

]
, (4.4.23)

where we have grouped the summand according to d and nd as

Fd,nd
(s, φ̂) =

d∑
bd=nd

Cd,nd;bd
sd−2bd−1φ̂−2(bd−nd) , (4.4.24)

and the coefficient is given by

Cd,nd;bd
=

µd∑
id=1

(−α+ d− 2bd)
(
bd
nd

)2

ĝ2
d,d−2nd;id . (4.4.25)

Note that in general Cd,nd;bd
6= 0 unless for special combinations of α, d, and bd.

For the sake of discovering the general properties of the solution that are directly
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4.4 Axion backreaction on the saxion vacuum

related to the boundary sl(2)-structure, let us temporarily assume that the value
of α does not make any of the coefficients Cd,nd;bd

vanish. We will discuss the
consequence of special choices of α that kill some coefficients Cd,nd;bd

in the end of
this subsection.

Now we have the stage set up: In order to study the backreacted saxion vev, we
should solve the extremization condition F = 0 with the polynomial F given in
(4.4.23) by the Puiseux series. In order to find the Puiseux series, we should draw
the Newton diagram of the polynomial F . It turns out that it is more instructive to
first look at the Newton diagram of every Fd,nd

and then assemble them together
into the Newton diagram of F .

For every d and nd, we first note that not every power of s in Fd,nd
is positive.

In order to apply the method of Puiseux expansions, we need to pull out sufficient
power of 1/s so that the remaining polynomial has only positive powers on s. So
we define

F̃d,nd
= sd+1Fd,nd

=
d∑

bd=nd

Cd,nd;bd
s2(d−bd)φ̂−2(bd−nd) . (4.4.26)

Let us check the shape of ∆(F̃d,nd
). Denote the powers of s by a, the powers of

φ̂ by b, and draw the Newton diagram on the (a, b) plane. It is easy to see that
it has all dots aligned along the line segment of slope +1 intersecting the a-axis
at (2(d− nd), 0) and the b-axis at (0,−2(d− nd)). This immediately prompts the
following important observation as we fix a d and perform the sum over nd.

Let us fix a d, and let ñd be the smallest nd such that gd,d−2nd;id 6= 0. If there
are multiple possible id for such flux components, we just arbitrarily pick one since
only the values of d and nd matter. This flux component corresponds to one of the
highest weight components gd,d−2ñd;id of G4 inside W[d]. The sum over nd with
the fixed d takes the following form

d∑
nd=ñd

Fd,nd
= 1
sd+1

d∑
nd=ñd

F̃d,nd
. (4.4.27)

The Newton diagram of each F̃d,nd
has been analyzed above. We notice that if we

take the lower convex hull to find the Newton polygon of (4.4.27) at this stage,
the polygon only depends on the lowest line in the Newton diagram, i.e. the one
generated by F̃d,ñd

. This implies that when we further sum over d as in (4.4.23)
and aiming to find the Newton polygon of the entire F , only the Newton diagram
of F̃d,ñd

matters for every d. This observation instructs us to just focus on the
highest weight component gd,d−2ñd;id for every d.
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With the above discussion, the derivative of V (4.4.23) becomes

F (s, φ̂) = αAloc
sα+1 +

4∑
d=0

F̃d,ñd
(s, φ̂)

sα+d+1 + · · · , (4.4.28)

where we put the summation that correspond to nd > ñd for each d into dots since,
as discussed above, they will not compete for the Newton polygon hence will not
alter the analysis with the Puiseux expansion.

Now we are ready to build the Newton polygon for the polynomial F . Firstly
we stack all the Newton diagrams of F̃d,ñd

on one (a, b)-plane. Generic pictures
coming from a G4-flux containing two different d’s are shown in the left pictures
in Figure 4.2 and 4.3. In order to apply the Puiseux expansion, we need to further
eliminate all negative powers of s in F . Denote the highest d in G4 by d̃, and note
that

F̃ = sα+d̃+1F = αAlocs
d̃ +

4∑
d=0

sd̃−dF̃d,ñd
+ · · · (4.4.29)

no longer has negative power of s so we can in turn study the solution of F̃ = 0
by Puiseux expansions. The extremization condition F = 0 is equivalent to F̃ = 0
since we assume s > 0.

The resulting Newton diagram of F̃ is simply a combination of the Newton
diagrams of various sd̃−dF̃d,ñd

, and each of which is itself the Newton diagram of
F̃d,ñd

with a shift towards the a-direction, i.e. along the horizontal axis in Figure 4.2
and 4.3, by an amount of d̃−d. In particular, the Newton diagram of sd̃−dF̃d,ñd

will
have dots aligned along a line of slope +1 that intersects the a-axis at (d̃+d−2ñd, 0).
Moreover there will be an extra point (d̃, 0) coming from the term with Aloc as
coefficient, if α 6= 0. The Newton polygon is then found by taking the lower convex
hull of the Newton diagram of F̃ . Generic pictures of the Newton diagram and
Newton polygon of F̃ generated by a G4-flux containing two different d’s are shown
in the right pictures in Figure 4.2 and 4.3.
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b

a

−→

b

a

Figure 4.2: One typical configuration of the Newton diagram generated by a G4-flux
containing two different d’s. In the left figure, we superpose all Newton diagrams of F̃d,ñd .
The solid line corresponds to F̃d̃,ñd̃

of the highest d̃, and the dashed line corresponds a
possible lower d. On the right we show the end result. The double lines correspond to
the Newton polygon of F̃ . In the situation shown in this figure, the two segments of
the Newton polygon have both positive slopes, indicating an axion backreaction behavior
(4.4.30) that drives one into the regime of the Distance Conjecture.

β

α

−→

β

α

Figure 4.3: Another typical configuration of the Newton diagram generated by a G4-flux
containing two different d’s. In the left figure, we superpose all Newton diagrams of F̃d,ñd .
The solid line corresponds to F̃d̃,ñd̃

of the highest d̃, and the dashed line corresponds a
possible lower d. On the right we show the end result. The double lines correspond
to the Newton polygon of F̃ . In the situation shown in this figure, the segment of the
Newton polygon with positive slope will generate an axion backreaction behavior similar
to Figure 4.2, while the segment with negative slope will generate a backreaction (4.4.33)
that drives s away from the boundary of the complex structure moduli space.

According to the general structure of the Puiseux expansion reviewed in section
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4.4.2, each segment in the Newton polygon of F̃ with a positive slope γ > 0
corresponds to an axion backreaction behavior of the following form

s(φ) = cφγ + O
(

1
φ

)
, (4.4.30)

which generalizes the linear backreaction behavior found previously in the literature
[138–140]. Here c is a constant that could depend on the flux numbers. We cannot
formulate an general condition on the independence of c on the flux numbers,
nevertheless an obvious situation is when there is only a single component G4 =
g |d, ld; id〉, such that ld > 0. In such simple cases, the flux number g will be
factored out in the equation determining c, leading to a prefactor c independent
from the flux-number g. Note that the analogs of such sl(2)-elementary fluxes play
a special role in the analysis of the Weak Gravity Conjecture in [84,86].

We also find additional constraints on the possible value of γ. Recall that our
assumption on the value of α is such that it does not make any of the dots in
the Newton diagram disappear. This implies that the right-most segment of the
Newton polygon will be always of slope +1 when it is not formed by translating
a single dot, i.e. it is neither from a component of the form |d,−d〉 nor from the
term containing Aloc. Note that the convexity condition on the Newton polygon
implies that the slope of its various segments increase from left to right. We thus
conclude that the backreaction of the large axion on the saxion vev always satisfy
γ ≤ 1. The γ = 1 cases exactly agree with the linear backreaction behavior found
in [138–140]. The 0 < γ < 1 cases are more subtle. One can look for these cases
by the method that is used study to bad cases discussed below, and we find that
the 0 < γ < 1 cases appear exactly when the right-most segment in the Newton
polygon is a point. The physical significance of such cases still remains unclear.

Until this point we have assumed that α takes a general value such that none of
the coefficients Cd,nd;bd

defined in (4.4.25) vanishes. Let us relax this assumption
and check the consequences. Following the same arguments above, for every d

that appears in the flux G4, we need to focus on the highest weight component
|d, ñd; id〉 which generates a series of terms in the polynomial F̃d,ñd

that draw
a segment of dots in the Newton diagram of F̃ . Since we are interested in the
lower convex hull in order to obtain the Newton polygon, only missing dots at
each end of the segment will likely cause trouble. We see from (4.4.25) that for a
fixed |d, ñd; id〉, if α = −d then the leftmost dot of the segment disappears, and if
α = d − 2ñd then the rightmost dot vanishes. Let us first check what happens if
a leftmost dot disappears: Taking into account the condition on the range of α in
(4.4.22), we see that only the dot corresponding to the state |0, 0〉 could disappear
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in such a circumstance when α = 0. However this will extend the possible values
of γ and we have also checked that it will not invalidate the discussion of the bad
cases in the following subsection, either. On the other hand, when the rightmost
dot disappears, new phenomena do appear. We check all possible cases with the
method that is used to study bad cases discussed below and find two possible cases
that generate backreaction with γ = 2. They all require α = 1 and are given by

G
(A)
4 = g1 |3, 1〉 + g2 |2, 0〉 =⇒ sA(φ) = 8g2

1
Aloc − g2

2
φ2 + O

(
1
φ

)
, (4.4.31)

G
(B)
4 = h1 |1, 1〉 + h2 |0, 0〉 =⇒ sB(φ) = 2h2

1
Aloc − h2

2
φ2 , (4.4.32)

where we require that g1, h1 6= 0, while g2, h2 can be switched off. Note that a
missing rightmost dot can surely also generate a backreaction with 0 < γ < 1. It
would be interesting to investigate the implication of these γ = 2 cases together
with all the aforementioned γ < 1 cases.

Having finished the discussion on the cases with γ > 0, let us look at its contrary:
each segment with a negative slope −δ < 0 corresponds to the following solution

s(φ) = c

φδ
+ O

(
1

(φ)δ+1

)
, (4.4.33)

which implies that the saxion will move away from the boundary of the moduli
space as the axion traverse a large field distance. A typical configuration causing
such cases is shown in Figure 4.3. It remains to rule out the backreaction solution
of type (4.4.33). A flux configuration potentially generating solution (4.4.33) is
dubbed as a bad case. In the next subsection we systematically look for bad cases
and show that these solutions (4.4.33) are all invalid.

4.4.4 Bad cases and their elimination
In this section, we systematically analyze bad flux configurations that can poten-
tially generate the following backreaction behavior

s(φ) = c

φδ
+ O

(
1

φδ+1

)
, (4.4.34)

where δ ≥ 0. The Newton polygon of F makes a systematic enumeration of these
cases possible.

Let us start by noting that for a root of type (4.4.34) to appear, there must be
segment of negative slope in the Newton polygon of F . Translating this condition to
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the G4 flux, one sees that there must be at least two different d̃ > d′, whose highest
weight components correspond to the basis vectors |d̃, d̃− 2ñd̃〉 and |d′, d′ − 2ñd′〉,
such that

d′ − ñd′ ≥ d̃− ñd̃ . (4.4.35)

This instructs us to enumerate the bad cases according to their number of highest
weight components, and there are only three possibilities: two, three and four
different d’s appearing in G4. Using the enhancement rules [136, 218], we can
further reduce the possible cases by noting that d = 4 and d = 3 components
cannot co-exist. The same argument also shows that bad cases with four different
highest weight components cannot exist, either. Thus we are only listing two- and
three-component bad cases in the following subsections.

4.4.4.1 Bad cases with two different d’s

These are the fluxes of the following form

G4 = g1 |d̃, d̃− 2ñd̃〉 + g2 |d2, d2 − 2ñd2〉 , (4.4.36)

where d̃ > d2 and ñd̃ and ñd2 satisfy condition (4.4.35). There are 16 possible such
fluxes and they are listed in Table 4.1.

We hereby present an analysis of case 13. We denote its flux configuration as

G4 = g1 |3,−3〉 + g2 |2, 0〉 . (4.4.37)

Such a flux configuration can appear, for example, in a degeneration of Calabi-Yau
fourfold with h3,1 = 3. Following the notation of the singularity types in [218], the
enhancement of singularity type can be II0,1 → V3,3.

The asymptotic scalar potential reads

V (s, φ) = 1
sα

(
ĝ2

1
s3 + ĝ2

2 + 2ĝ2
2φ

2

s2 −Aloc

)
. (4.4.38)

The extremization condition is given by

0 = F̃ (s, φ̂) = α(Aloc − ĝ2
2)s3 − 4(α+ 2)ĝ2

2φ̂
−2s− (α+ 3)ĝ2

1 . (4.4.39)

Upon inspecting the scalar potential (4.4.38), a necessary condition for it to be
not blowing up when s → ∞ is α ≥ 0. Furthermore, we impose Aloc > 0, otherwise
there will be a runaway towards s → ∞. We display the Newton polygon in Figure
4.4.
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Case g1 g2 δ c Reason

1 |4, 0〉 |2, 2〉

0 √
− (α+4)g2

1
(α+2)g2

2

Imaginary

2 |4,−2〉 |2, 0〉

3 |4,−4〉 |2, 0〉

4 |4,−2〉 |2, 2〉 1

5 |4,−4〉 |2, 2〉 2

6 |4,−2〉 |1, 1〉 0 3
√

− (α+4)g2
1

(α+1)g2
2

7 |3,−1〉 |1, 1〉 0 √
− (α+3)g2

1
(α+1)g2

28 |3,−3〉 |1, 1〉 1

9 |4,−4〉 |1, 1〉 2
3

3
√

− (α+4)g2
1

(α+1)g2
2
(1, ω, ω2)

10 |3, 1〉 |2, 2〉
0

− (α+3)g2
1

(α+2)g2
2

Negative

11 |3,−1〉 |2, 0〉

12 |3,−1〉 |2, 2〉
2

13 |3,−3〉 |2, 0〉

14 |3,−3〉 |2, 2〉 4

15 |2, 0〉 |1, 1〉 0
− (α+2)g2

1
(α+1)g2

216 |2,−2〉 |1, 1〉 2

Table 4.1: Bad cases with two different d’s. In the c column we have omitted non-essential
normalization factors to display their shared properties. The last column points out the
reason that invalidates the solution to c. Case 9 has three solutions to its prefactor c, and
they differ from each other by a factor of ω = e2πi/3.

b

a1

φ̂−2s

s3

Figure 4.4: The Newton polygon of (4.4.39). It has a segment generating backreaction
s ∼ cφ and another segment corresponding to s ∼ cφ−2.
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From the Newton polygon in Figure 4.4, we read out that there are two possible
solutions, one with leading term proportional to φ and the other with leading term
proportional to 1/φ2. More explicitly, they are

s1,±(φ) = ±

√
4(α+ 2)ĝ2

2
α(Aloc − ĝ2

2)
φ+ O

(
1
φ

)
,

s2(φ) = − (α+ 3)ĝ2
1

4(α+ 2)ĝ2
2

1
φ2 + O

(
1
φ3

)
. (4.4.40)

Note that among these three roots, only s1,+ is positive when Aloc > ĝ2
2 . We

thus conclude that for the flux (4.4.37), either there is a runaway in s, or there is
a vacuum with the linear backreaction behavior

s(φ) =

√
4(α+ 2)ĝ2

2
α(Aloc − ĝ2

2)
φ+ O

(
1
φ

)
, (4.4.41)

when the axion φ is large. We would also like to point out the ĝ2 is actually a
product between g2 and a non-vanishing function on the saxions other than s.
Depending on the value of these saxions, the linearly backreacted s could even
disappear. Another remark is that the leading coefficient in s(φ) depends on the
flux number g2 and the localized contribution Aloc, indicating that the backreaction
effect could be delayed. A further investigation into such cases is left for future
work.

4.4.4.2 Bad cases with three different d’s

In this subsection, we list all essential flux configurations containing three different
d’s that are likely bad. By essential, we mean that the focus will be on the cases
whose leading backreaction coefficient is determined by all three components. In
the situation where this coefficient is only determined by two components, it re-
duces to one of the cases listed in Table 4.1. Upon inspecting possible shapes of
the Newton diagram, one sees that we need to find a flux configuration

G4 = g1 |d̃, d̃− 2ñd̃〉 + g2 |d2, d2 − 2ñd2〉 + g3 |d3, d3 − 2ñd3〉 , (4.4.42)

satisfying the following conditions

d̃ > d2 6= d3 , (4.4.43)
d̃− ñd̃ = d2 − ñd2 = d3 − ñd3 , (4.4.44)
d̃− 2ñd̃ < d2 − 2ñd2 < d3 − 2ñd3 . (4.4.45)
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4.4 Axion backreaction on the saxion vacuum

In the end there are only two bad cases and we discuss them in turn. The first one
is given by

G
(1)
4 = g1 |4,−2〉 + g2 |2, 0〉 + g3 |1, 1〉 , (4.4.46)

which induces a scalar potential of the form

V1(s, φ) = 1
sα

(
16ĝ2

1φ
2

s4 + ĝ2
1
s2 + ĝ2

2 + 4ĝ2
2φ

2

s2 + ĝ2
3φ

2

s
+ ĝ2

3s−Aloc

)
. (4.4.47)

The condition one imposes on α is that α ≥ 1. The extremization condition F̃1 = 0
is given by

F̃1 = (1 − α)ĝ2
3s

5 + α(Aloc − ĝ2
2)s4 − (1 + α)ĝ2

3φ̂
−2s3 − (2 + α)(ĝ2

1 + 4ĝ2
2φ̂

−2)s2 − 16(4 + α)ĝ2
1φ̂

−2 ,

(4.4.48)
whose Newton diagram is given in the left picture in Figure 4.5. From the diagram
we see that there is a potential bad root with δ1 = 0. The pre-factor c1 should
satisfy the following cubic equation

(1 + α)g2
3c

3
2 + 4g2

2(2 + α)c2
2 + 16(4 + α)g2

1 = 0 . (4.4.49)

Note that the coefficient in every term in the above equation is positive. In other
words, there is no sign-flip in the list of coefficients in the above polynomial equation
with real coefficients. The Descartes’ rule of signs tells us that the number of
positive root of a real polynomial equation is bounded by the number of sign-flips
in its list of coefficients. Hence we conclude that even if the above quartic equation
has a real root c2, it will nevertheless be negative. This rules out the first bad case.

The last case to consider is given by

G
(2)
4 = g1 |3,−1〉 + g2 |2, 0〉 + g3 |1, 1〉 . (4.4.50)

The corresponding scalar potential has the form

V2(s, φ) = 1
sα

(
9ĝ2

1φ
2

s3 + ĝ2
1
s

+ ĝ2
2 + 4ĝ2

2φ
2

s2 + ĝ2
3φ

2

s
+ ĝ2

3s−Aloc

)
. (4.4.51)

And one has again the constraint α ≥ 1. Its extremization condition F̃2 = 0 is
given by

F̃2 = (1 − α)ĝ2
3s

4 + α(Aloc − ĝ2
2)s3 − (1 + α)(ĝ2

1 + ĝ2
3φ̂

−2)s2 − 4(2 + α)ĝ2
2φ̂

−2s2 − 9(3 + α)ĝ2
1φ̂

−2 ,

(4.4.52)
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4 Universal Axion Backreaction in Flux Compactifications

whose Newton diagram is given in the right picture in Figure 4.5. It indicates
again a potential bad root with δ2 = 0, whose pre-factor c2 satisfies the following
quadratic equation

ĝ2
3c

2
2 + 4(2 + α)ĝ2

2c2 + 9(3 + α)ĝ2
1 = 0 , (4.4.53)

which has no positive real root again by Descartes’ rule of sign. Hence this case is
ruled out.

β

α

−2

2 4 5
β

α

−2

2 3 4

Figure 4.5: The left picture is the Newton diagram of equation (4.4.48), and the right pic-
ture corresponds to (4.4.52). Note the both diagrams show a possible linear backreaction
behavior in addition to the bad constant backreaction solution.

To conclude, we have ruled out all possible bad cases which induce the backre-
action behavior (4.4.34) by showing that their accompanying pre-factor c is either
negative or purely imaginary. This leads to our conclusion that a large displace-
ment of an axion φ can only backreacts on its saxion partner s in the way shown
in equation (4.4.30) with rational exponent 0 < γ ≤ 2.

Appendices

4.A More detailed properties of the commuting
sl(2)-triples

This appendix fills in some detail of the derivation of (4.3.26) and (4.3.29). We
follow the proof of lemma (4.5) in [101]. In order to do this we need to take a
closer look at the limiting mixed Hodge structure and the induced splittings on
the infinitesimal isometry Lie algebra g. For definiteness we will (mostly) align
with the mathematical notations in [101] in this appendix.
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4.A More detailed properties of the commuting sl(2)-triples

Recall that the Lie algebra gR consists of the infinitesimal isometries for weight
four variation of Hodge structure. Concretely, it can be identified with gR =
so(2 + h2,2

p , 2h1,3), where hp,q are the Hodge numbers of the family of Calabi-
Yau fourfolds and h2,2

p is the complex dimension of the space of primitive (2, 2)-
forms. The complexification of gR is denoted by g and can be identified with
g = so(2 + h2,2

p + 2h1,3,C). We present these identifications merely to make the
exposition more concrete but these will not be used in the following discussion.

Recall further that the log-monodromy operatorsN1, . . . , Nn introduced in (4.3.3)
define the monodromy weight filtration W (n) = W (N1 + · · ·+Nn)[−4] on the primi-
tive middle cohomology H4

p(Y,C). The monodromy weight filtration together with
the limiting Hodge filtration Fpol introduced in (4.3.4) define the limiting mixed
Hodge structure (Fpol,W

(n)) on H4
p(Y,C). We denote the Deligne splitting associ-

ated to the (Fpol,W
(n)) by

H4
p(Y,C) =

⊕
p,q

Ip,q , (4.A.1)

satisfying

F ppol =
⊕
r≥p

Ir,s , W
(n)
k =

⊕
r+s≤k

Ir,s , and Ip,q = Iq,p mod
⊕
r<p
s<q

Ir,s . (4.A.2)

The Deligne splitting is functorial, which puts a Deligne splitting on the Lie algebra

g =
⊕
p,q

gp,q , (4.A.3)

whose components can be concretely identified as

gp,q =
{
X ∈ g | X(Ir,s) ⊂ Ir+p,s+q} . (4.A.4)

Recall that the SL(2)-orbit theorem constructs a set of commuting sl(2)-triples,
whose lowering and number operators are denoted N−

r and N0
r , respectively in

section 4.3.2. We have also defined the partial sums

N0
(r) = N0

1 + · · · +N0
r , for all r . (4.A.5)

Moreover, the SL(2)-orbit theorem constructs a series of R-split special mixed
Hodge structures from the limiting mixed Hodge structure (Fpol,W

(n)). We denote
these mixed Hodge structures by (F(r),W

(r)) and briefly state their relation to the
nilpotent orbit data (Fpol, N1, . . . , Nn). Firstly, there is a Hodge filtration F(n) built
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4 Universal Axion Backreaction in Flux Compactifications

out of the data (Fpol, N1, . . . , Nn). The R-split mixed Hodge structure (F(n),W
(n))

is called the SL(2)-splitting of the limiting mixed Hodge structure (Fpol,W
(n)).

Then each of the remaining (F(r),W
(r)) is built recursively by taking the SL(2)-

splitting of the mixed Hodge structure (eiNr+1 ,W (r+1)), where the weight filtration
is give by W (r) = W (N1 + · · · + Nr)[−4]. The construction of SL(2)-splitting is
a bit involved and we refer to the math papers [76] and [101] for more precise
information. This is also reviewed recently in a physics paper [136].

We need three important properties of the mixed Hodge structures (F(r),W
(r)).

Firstly, although the filtrations W (r) are defined using the operators N1, . . . , Nr,
it turned out (by SL(2)-orbit theorem) that it agrees with the monodromy weight
filtration defined by the lowering operators in the commuting sl(2)-triples

W (r) = W (N1 + · · · +Nr)[−4] = W (N−
1 + · · · +N−

r )[−4] . (4.A.6)

Secondly, denote the Deligne splitting of (F(r),W
(r)) by

H4
p(Y,C) =

⊕
p,q

Ip,q(r) . (4.A.7)

We have
N(r)(Ip,q(r) ) ⊂ Ip−1,q−1

(r) . (4.A.8)

Lastly, the eigenspaces of the number operators N0
(r) are defined in terms of Ip,q(r)

as
N0

(r)v = lv , for all v ∈
⊕

r+s=l+4

Ir,s(r) . (4.A.9)

There is another splitting of the real Lie algebra gR coming from the commuting
sl(2)-triples. Since the number operators commute with each other, their partial
sums also mutually commute

[N0
(r), N

0
(s)] = 0 , for all r, s . (4.A.10)

Using the Jacobi identity, one sees that the adjoint actions adN0
(r)

( · ) = [N0
(r), · ]

on the Lie algebra g also commute with each other

[adN0
(r)
, adN0

(s)
] = 0 , for all r, s . (4.A.11)

Hence these commuting adjoint actions induce a multi-grading on the Lie algebra
g

g =
⊕

`=(l1,...,ln)

g` , (4.A.12)
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4.A More detailed properties of the commuting sl(2)-triples

where each component is the simultaneous eigenspace of all adN0
(r)

:

[N0
(r), X] = lrX , for all X ∈ g` and r = 1, . . . , n . (4.A.13)

The eigenvalues l1, . . . , lr are all integers due to the general property of sl(2)-
representations.

These two splittings (4.A.3) and (4.A.12) will be the central objects in this
appendix.

4.A.1 The map e(s)eφiNie(s)−1

Let us reproduce the definition of the e(s)-operator for convenience

e(s1, . . . , sn) = exp
{

1
2

(log sr)N0
r

}
, (4.A.14)

where in the exponential we sum over r. It turns out that rewriting the above
definition in terms of the partial sums N0

(r) is more suitable for our purpose in this
appendix. To achieve this we formally set sn+1 = 1 and redefine variables

σr = sr

sr+1 , for all r = 1, . . . , n . (4.A.15)

With the variables σr one has

e(s1, . . . , sn) = exp
{

1
2

(log σr)N0
(r)

}
. (4.A.16)

We will proceed using the new form (4.A.16) of the e(s)-operator.
Let us spell out the expression e(s)eφiNie(s)−1 we want to compute

e(s)eφ
iNie(s)−1 =

∞∑
k=1

(φi)k

k!
e(s)Nk

i e(s)−1

=
∞∑
k=1

(φi)k

k!
(Ade(s)(Ni))k

= eφ
i Ade(s)(Ni) , (4.A.17)

where Ade(s)(Ni) = e(s)Nie(s)−1 is the adjoint action of the group element e(s)
on the Lie algebra element Ni. Recall that the adjoint action of the Lie algebra on
itself is defined to satisfy

AdeX (Y ) = eadX (Y ) , for all X,Y ∈ g . (4.A.18)
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So we have reduced the quantity that we want to compute into

e(s)eφ
iNie(s)−1 = exp

{
φie

1
2 (logσr) adN0

(r) (Ni)
}
, (4.A.19)

where summation over i and r are assumed and we have used the new form (4.A.16)
of e(s)-operator. From this expression we see that the important data one needs is
the commutator [N0

(r), Ni]. This commutator depends on the relative position of r
and i.

Let us first consider the case when r ≥ i. From the property (4.A.8), we see (by
contradiction) that the same property must hold for each Ni with i ≤ r

Ni(Ip,q(r) ) ⊂ Ip−1,q−1
(r) , for i = 1, . . . , r . (4.A.20)

This automatically forces the relation

[N0
(r), Ni] = −2Ni , for all r ≥ i , (4.A.21)

by the characterization (4.A.4) of the Deligne splitting on the Lie algebra and the
property (4.A.9).

Next we look at the case r < i. In such case we no longer have good control over
the commutator [N0

(r), Ni]. The best result one has is simply that Ni preserves the
filtration W (r). One way to see this is to use an explicit characterization of the
monodromy weight filtration in remark (2.3) of [110] with the (−4)-shift

W
(r)
l =

∑
j≥max{−1,l−4}

(KerN j+1
(r) ) ∩ (ImN j−l+4

(r) ) , (4.A.22)

and note that Ni commutes with N(r).
Using again (4.A.4), (4.A.9), and the general property of the Deligne splitting

(4.A.2), we conclude that the eigen-decomposition of Ni with respect to the action
of adN0

(r)
has only non-positive eigenvalues.

We can have more control over the eigenvalues by investigating the multi-grading
(4.A.12). Remembering that r < i, let us diagonalize actions of all adN0

(r)
on

Ni simultaneously. We split Ni = N−
i + N ′

i , such that adN0
(r)

(N−
i ) = 0 for all

r = 1, . . . , i− 1. And further decompose the remaining N ′
i according to the multi-

grading (4.A.12)
N ′
i =

∑
αi

1,...,α
i
i−1>0

N ′
i,αi

1,...,α
i
i−1
, (4.A.23)

where αir > 0 labels the eigenvalue of adN0
(r)

on Ni,[
N0

(r), N
′
i,αi

1,...,α
i
i−1

]
= −αirN ′

i,αi
1,...,α

i
i−1

, for i > r. (4.A.24)
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Moreover, it can be checked that each αir is also an integer, and the components
N−
i , N ′

i,αi are nilpotent.
To summarize, for every i = 1, . . . , n, one has a decomposition

Ni = N−
i +

∑
αi>0

N ′
i,αi , (4.A.25)

where αi = (αi1, . . . , αii−1) denotes the collection of positive integer eigenvalues,
such that [N0

(r), N
−
i ] = 0 for all r > i, and

[N0
(r), Ni] =

−2Ni , for i ≤ r ,

−
∑
αi>0 α

i
rN

′
i,αj , for i > r .

(4.A.26)

It is then straightforward to plug (4.A.26) into (4.A.19) and conclude

e(s)eφ
iNie(s)−1 = exp


n∑
i=1

φi

si

N−
i +

∑
αi>0

N ′
i,αi

( s1

s2 )αi
1/2 · · · ( si−1

si )α
i
i−1/2

 .

(4.A.27)
This finishes the derivation of equation (4.3.26). We would like to point out that
due to the nilpotent operators, this equation is actually polynomial in φ and s.
This is in contrast to the quantity we want to compute in the next subsection.

4.A.2 The map e(s)eΓ(z)e(s)−1 in the limit
Following the procedure in the previous subsection, we have

e(s)eΓ(z)e(s)−1 = exp
{
e

1
2 (logσr) adN0

(r) (Γ(z))
}

= 1 + e
1
2 (logσr) adN0

(r) (Γ(z)) + · · · ,

(4.A.28)
where a summation over r under the exponential is assumed. In the above ex-
pression we only displayed up to the first order term in the outer exponential in
hindsight as it will turn out that this first order term will be exponentially sup-
pressed in the limit σr → ∞, so that the expression (4.A.28) will approach 1
exponentially as shown in the first equation in (4.3.29).

The expression (4.A.28) again instructs us to look into the commutator [N0
(r),Γ(z)].

Unfortunately, we cannot work out an expression for (4.A.28) as “concrete” as
(4.3.26). The best general result we have here is the limit.

Let us first state some general property of the mapping Γ(z) following [101].
Firstly, the mapping Γ(z) is holomorphic in z and satisfies Γ(0) = 0, which means
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that it enjoys a series expansion around z = 0

Γ(z1, . . . , zn) =
∑

k1,...,kn≥0

Γk1,...,knzk1
1 · · · zkn

n , (4.A.29)

with Γ0 = 0. Secondly, proposition (2.6) in [101] states that Γ(z) satisfies

[Nj ,Γ(z1, . . . , zj = 0, . . . , zn)] = 0 , for all j = 1, . . . , n . (4.A.30)

Combining the above identity for all j ≤ r, we have

[N(r),Γ(0, . . . , 0, zr+1, . . . , zn)] = 0 , for all r = 1, . . . , n . (4.A.31)

Let us decompose the series expansion of Γ(z) in (4.A.29) further with respect
to the multi-grading (4.A.12)

Γk1,...,kn =
∑

`

Γk1,...,kn

` . (4.A.32)

The conclusion here is that, for a fixed set of ` = (l1, . . . , ln), if a component lr > 0,
then

Γ0,...,0,kr+1,...,kn

l1,...,lr>0,...,ln = 0 , for all kr+1, . . . , kn . (4.A.33)

This can be seen, e.g., again by looking at the general expression of the weight
filtration on the Lie algebra g. Note that the monodromy weight filtration on
the Lie algebra g no longer has the (−4)-shift, so one concludes that operators
commute with N(r) lives below level lr ≤ 0.

Define
Γ`(z) =

∑
k1,...,kn

Γk1,...,kn

` . (4.A.34)

Let us check the first order term in (4.A.28). For a fixed ` = (l1, . . . , ln), we have

e
1
2 (logσr) adN0

(r) (Γ`(z)) = (σ1)
l1
2 · · · (σn)

ln
2 Γ`(z) . (4.A.35)

We would like to find the limit e(s)eΓ(z)e(s)−1 as σr → ∞ for all r. In order to
do so, we choose any norm ‖ · ‖ on the Lie algebra g and first check ‖Γ`(z)‖. For
all possible j = 1, . . . , n, there are two possibilities: If lj > 0, then with (4.A.33),
we have

∥∥Γl1,...,lj>0,...,ln(z)
∥∥ =

∥∥∥∥∥∥
∑

k1,...,kj>0

Γk1,...,kn

l1,...,ln
zk1

1 · · · zkn
n

∥∥∥∥∥∥ ≤ M

j∑
i=1

e−cis
i

, (4.A.36)
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for some positive constants M and ci in the limit σr → ∞ for all r. We have used
the relation zi = e2πiti = e−2πsi

e2πiφi . Plug this back into (4.A.35) and we have∥∥∥∥e 1
2 (logσr) adN0

(r) (Γ`(z))
∥∥∥∥ ≤ M(σ1)

l1
2 · · · (σn)

ln
2

j∑
i=1

e−ciσ
i···σn

. (4.A.37)

Note that we have used the relation sj = σj · · ·σn.
A second possibility is lj ≤ 0 and in such cases the estimate (4.A.37) holds

trivially (recall that Γ`(0) = 0 for all `).
In conclusion, the first order term in (4.A.28) satisfies the estimate (4.A.37),

which means that in the limit σr → ∞ it goes to 0 exponentially. We have thus
conclude that e(s)eΓ(z)e(s)−1 → 1 with exponentially suppressed corrections in the
limit σr → ∞ for all r.

4.A.3 The filtration e(s)F0 in the limit
We will be short in this section and mainly refer the reader to the papers [76]
and [101]. The result we would like to show is that in the limit where all σr → ∞,
one has

e(s)F0 → F(n) . (4.A.38)

Combining with the definition that

F∞ = e
iN−

(n)F(n) , (4.A.39)

this shows the second equation of (4.3.29).
Here are some facts [101] about the relation between F0 and F(n). There exists

an operator η ∈ gR such that
F0 = eηF(n) . (4.A.40)

The operator η satisfies
η(Ip,q) ⊂

⊕
r<p
r<q

Ir,s . (4.A.41)

Moreover the operator η commutes with every (r, r)-morphism of the mixed Hodge
structure (W (n), F(n)).

Let us decompose the operator η with respect to the multi-grading (4.A.12)

η =
∑

`

η` . (4.A.42)
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Then the property (4.A.41) implies that ln < 0. Furthermore, recall from (4.A.20)
every Nr with r = 1, . . . , n−1 is a (−1,−1)-morphism of the mixed Hodge structure
(W (n), F(n)), we have [Nr, η] = 0 for all r = 1, . . . , n−1. According to the definition
of the monodromy weight filtration, this implies that lr ≤ 0. So we have

e(s)eηe(s)−1 = exp
{
e

1
2 (logσr) adN0

(r) (η)
}

= exp


∑

l1,...,ln−1≤0
ln<0

(σ1)
l1
2 · · · (σn)

ln
2 ηl1,...,ln

 → 1 , (4.A.43)

in the limit where every σr → ∞.
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Summary

In this summary we give a short overview of the content of this thesis. The idea
of the entire thesis is to use asymptotic Hodge theory of the internal Calabi-Yau
space in string compactification to study the four-dimensional physics near various
corners of the field space. This approach sets up some universal understandings of
the swampland program in quantum gravity.

The first chapter is an introduction, and the remaining three chapters are based
on the three publications produced by the author and collaborators during the
PhD research. One ongoing research on tame geometry and swampland is only
mentioned, but not included, in this thesis.

The first chapter introduces the basic concepts used in this thesis. We introduce
string compactification, which connects the higher dimensional string spacetime
with the lower dimensional physical spacetime. The lower dimensional physics is
neatly encoded in the geometry of the compactification manifold. We also introduce
the idea of swampland, which is a program aiming to distinguish consistent-looking
effective field theories that are compatible with quantum gravity from those that
are not. The last part of the introduction builds an intuition about asymptotic
Hodge theory, and provides ample references for further study.

The second chapter uses asymptotic Hodge theory to study the swampland dis-
tance conjecture. The setting is type IIB string theory compactified on Calabi-Yau
threefolds, and we examine the distance conjecture in the complex structure mod-
uli space of the Calabi-Yau’s. With the help of Hodge theory, we equip every limit
in the moduli space with an algebraic structure, and classify all possible structures
that can appear within a Calabi-Yau. When the Calabi-Yau admits multiple-stage
degenerations, all possible transitions between the corresponding algebraic struc-
tures are also classified. Thus, an intricate network of the algebraic structures
associated with infinite distance limits is discovered. Using this network of alge-
braic structures, we are able to find the light tower of states in the swampland
distance conjecture in most infinite distance limits. The approach is exemplified
in detail in two-parameter models.

The third chapter uses asymptotic Hodge theory to study the swampland de
Sitter conjecture near the corners in the scalar field space. The setting is F-theory
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compactified on Calabi-Yau fourfolds with four-form flux, and we work in the com-
plex structure moduli space of the fourfolds. There are again algebraic structures
associated to every asymptotic limit in the complex structure moduli space of
Calabi-Yau fourfolds, and these algebraic structures can be classified. Using the
classification, we further exhaust the possible forms of the scalar potentials in the
asymptotic limits. We carry out this program in detail for two-parameter families
of Calabi-Yau fourfolds, and study the vacuum structure of these theories near the
asymptotic limit. We confirm the de Sitter conjecture near the asymptotic limits.
Via dualities, these F-theoretical conclusions generalise the known results in type
IIA and IIB orientifold settings. In the end, we use the same approach to write
down possible asymptotic forms of the axion potentials in the axion monodromy
inflation models, and we study the backreaction of axions on saxions. We dis-
cover that the previously found linear backreaction behaviour of axions on saxions
in some examples are intimately related to asymptotic Hodge theory in the field
space.

The fourth chapter inquires further the topic at the end of chapter three. We
examine more closely the implication of asymptotic Hodge theory on the axion
monodromy inflation models. We work again in the complex structure moduli space
of F-theory compactified on Calabi-Yau fourfolds. The problem is approached
differently than in chapter three, using no classifications of the algebraic structures
associated to the limits of the field space. Thus, the asymptotic form of the axion
monodromy potential is generally studied. The backreaction of axions on saxions
is attacked using the Puiseux series solution of the vacuum equations, and the
method is exemplified in two-parameter models. We confirm that, besides some
exceptional cases, the linear backreaction of axion on saxion found previously in
several examples are universal in axion monodromy models.
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Samenvatting

In deze samenvatting geven we een kort overzicht van de inhoud van dit proef-
schrift. Het idee van het hele proefschrift is om de asymptotische Hodge-theorie
van de interne Calabi-Yau-ruimte bij snaartheorie compactificaties te gebruiken
om de vierdimensionale fysica nabij verschillende hoeken van de veldruimte te
bestuderen. Deze benadering zorgt voor een aantal universele inzichten in het
moeraslandprogramma in kwantumzwaartekracht.

Het eerste hoofdstuk is een inleiding, de overige drie hoofdstukken zijn gebaseerd
op de drie publicaties die de auteur en medewerkers tijdens het promotieonderzoek
hebben geproduceerd. Een lopend onderzoek naar tamme geometrie en moerasland
wordt alleen genoemd, maar niet opgenomen in dit proefschrift.

Het eerste hoofdstuk introduceert de basisconcepten die in dit proefschrift wor-
den gebruikt. We introduceren snaartheorie compactificaties, die de hoger-dimensionale
ruimtetijd van snaren verbindt met de lager dimensionale fysieke ruimtetijd. De
lager-dimensionale fysica is netjes gecodeerd in de geometrie van de compactifi-
catievariëteit. We introduceren ook het idee van het moerasland, een programma
dat erop gericht is om consistent-ogende effectieve veldtheorieën die compatibel
zijn met kwantumzwaartekracht te onderscheiden van theorieën die dat niet zijn.
Het laatste deel van de inleiding bouwt een intuïtie op over waar de asymptotische
Hodge-theorie over gaat, en biedt voldoende referenties voor verder onderzoek.

In het tweede hoofdstuk wordt de asymptotische Hodge-theorie gebruikt om het
moeraslandafstandsvermoeden te bestuderen. De setting is type IIB snaartheo-
rie gecompactificeerd op Calabi-Yau drievariëteiten, en we onderzoeken het afs-
tandsvermoeden in de complexe structuur moduliruimte van de Calabi-Yau’s. Met
behulp van de Hodge-theorie rusten we elke limiet in de moduliruimte uit met
een algebraïsche structuur, en classificeren we alle mogelijke structuren die binnen
een Calabi-Yau kunnen voorkomen. Wanneer de Calabi-Yau meertrapsdegener-
aties toelaat, worden ook alle mogelijke overgangen tussen de overeenkomstige
algebraïsche structuren geclassificeerd. Zo wordt een ingewikkeld netwerk van de
algebraïsche structuren ontdekt die geassocieerd zijn met oneindige afstandslimi-
eten. Met behulp van dit netwerk van algebraïsche structuren kunnen we de toren
van lichte toestanden vinden in het moeraslandafstandsvermoeden in de meeste
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oneindige afstandslimieten. De aanpak wordt in detail geïllustreerd in modellen
met twee parameters.

Het derde hoofdstuk gebruikt de asymptotische Hodge-theorie om het De Sitter-
vermoeden nabij de hoeken in de scalaire veldenruimte te bestuderen. De setting
is F-theorie gecompactifieerd op Calabi-Yau viervariëten met vier-vorm flux, en we
werken in de complexe structuur moduliruimte van de viervariëten. Er zijn weer
algebraïsche structuren geassocieerd met elke asymptotische limiet in de complexe
structuur moduliruimte van Calabi-Yau viervariëteiten, en deze algebraïsche struc-
turen kunnen worden geclassificeerd. Met behulp van de classificatie werken we de
mogelijke vormen van de scalaire potentialen in de asymptotische limieten verder
uit. We voeren dit programma in detail uit voor families met twee parameters van
Calabi-Yau viervariëteiten, en bestuderen de vacuümstructuur van deze theorieën
nabij de asymptotische limiet. We bevestigen het vermoeden van het De Sitter-
vermoeden nabij de asymptotische limieten. Via dualiteiten veralgemeniseren deze
F-theoretische conclusies de bekende resultaten in de type IIA en IIB orientifold
settings. Uiteindelijk gebruiken we dezelfde benadering om mogelijke asymptotis-
che vormen van de axionpotentialen in de axion-monodromie inflatiemodellen op te
schrijven, en bestuderen we de terugreactie van axions op saxions. We ontdekken
dat het eerder gevonden lineaire terugreactiegedrag van axions op saxions in som-
mige voorbeelden nauw verband houdt met de asymptotische Hodge-theorie in de
veldenruimte.

Het vierde hoofdstuk bestudeerd het onderwerp aan het einde van hoofdstuk
drie verder. We onderzoeken de implicatie van asymptotische Hodge-theorie op
de axion-monodromie inflatiemodellen in meer detail. We werken opnieuw in de
complexe structuur moduliruimte van F-theorie gecompactificeerd op Calabi-Yau
viervariëteiten. Het probleem wordt anders benaderd dan in hoofdstuk drie, waar-
bij geen classificaties worden gebruikt van de algebraïsche structuren die verband
houden met de limieten in de veldenruimte. Zo wordt de asymptotische vorm van
de axion-monodromie potentiaal algemeen bestudeerd. De terugreactie van axions
op saxions wordt aangevallen met behulp van de Puiseux-reeksoplossing van de
vacuümvergelijkingen, en de methode wordt geïllustreerd in modellen met twee
parameters. We bevestigen dat, afgezien van enkele uitzonderlijke gevallen, de
lineaire terugreactie van axions op saxions die eerder in verschillende voorbeelden
werd gevonden, universeel is in axion-monodromiemodellen.
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