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Abstract.
The LZ collaboration aims to directly detect dark matter by using a liquid xenon
Time Projection Chamber (TPC). In order to probe the dark matter signal, ob-
served signals are compared with simulations that model the detector response.
The most computationally expensive aspect of these simulations is the propaga-
tion of photons in the detector’s sensitive volume. For this reason, we propose to
offload photon propagation modelling to the Graphics Processing Unit (GPU),
by integrating Opticks into the LZ simulations workflow. Opticks is a system
which maps Geant4 geometry and photon generation steps to NVIDIA’s OptiX
GPU raytracing framework. This paradigm shift could simultaneously achieve
a massive speed-up and an increase in accuracy for LZ simulations. By using
the technique of containerization through Shifter, we will produce a portable
system to harness the NERSC supercomputing facilities, including the forth-
coming Perlmutter supercomputer, and enable the GPU processing to handle
different detector configurations. Prior experience with using Opticks to sim-
ulate JUNO indicates the potential for speed-up factors over 1000× for LZ, and
by extension other experiments requiring photon propagation simulations.

1 Introduction

LUX-ZEPLIN (LZ) is a direct-detection Dark Matter experiment. It consists of a Time Pro-
jection Chamber (TPC) contained within a vacuum-insulated cryostat and surrounded by an
Outer Detector (OD). The TPC consists of a 7-tonne active mass of Liquid Xenon (LXe) and
two arrays of photomultiplier tubes (PMTs) at the top and bottom of the apparatus. The OD
uses 17 tonnes of organic liquid scintillator loaded with Gadolinium (GdLS), also observed
by a suite of PMTs as illustrated in Figure 1 [1–3].

The primary objective of the experiment is to detect Weakly Interacting Massive Particles
(WIMPs) through their interactions with the LXe target mass [2]. Particle interactions in the
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active region cause ionisation, excitation and heat, which can produce photons by the prompt
scintillation (S1) and secondary electroluminescence (S2) processes [1]. Differences in in-
coming particle type, energy and position produce different combinations of position, time
and energy partition between the S1 and S2 signals. These differences allow for discrim-
ination between particle interactions. Some Neutrons and Gammas produce an additional
scintillation signal in the GdLS which allows them to be excluded [3].

WIMP signals are expected to be rare (∼ 10−4kg−1day−1), while background signals from
both local radioisotopes and cosmogenic sources are typically ∼ 106 times more frequent [4].
Substantial mitigation efforts including shielding, careful selection of detector materials, and
a deep underground location are used to reduce this factor in LZ [2]. Despite these mitigation
factors, the background rate is still expected to dominate the WIMP signal [5]. Accurate sim-
ulations and offline analyses of events and background are thus essential for the construction
of the background model used in LZ [6].

Figure 1. A schematic of the LZ detector. The components, from the inside outwards are: the TPC
(magenta), the cryostat (green) the OD (yellow) and a water tank (blue). (Taken from [6]).

BACCARAT is the LZ code for simulating particles and their interactions. BACCARAT uses
Geant4 to track particles and identify the points at which incoming particles interact with the
detector [6]. Within BACCARAT, there are two options for simulating photon propagation: full
and fast mode.

In full mode, photons and electrons generated by these interactions are fully simulated in
Geant4 using the G4S1Light and G4S2Light modules developed by LZ which track each
photon within the detector. From these simulated tracks, individual photon hits on the PMTs
are recorded. These are then passed to the DER (Detector Electronics Response) module
which simulates the response of the PMTs. This has been used in Mock Data Challenges
(MDCs) to produce data for analysers to practice on. In the fast mode, energy deposits
are passed to the NEST (Noble Element Simulation Technique) module which uses detector-
averaged quantities to generate S1 and S2 signals [6].
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which simulates the response of the PMTs. This has been used in Mock Data Challenges
(MDCs) to produce data for analysers to practice on. In the fast mode, energy deposits
are passed to the NEST (Noble Element Simulation Technique) module which uses detector-
averaged quantities to generate S1 and S2 signals [6].

Full optical tracking using GEANT4 has been estimated to consume >95% of CPU time
used in LZ simulations. As a result, for the generation of large-scale datasets, the fastNEST
package is used to compute signal sizes which can be encoded into maps giving the proba-
bility of each outcome. These results, however, do not contain information on the times of
interactions or specific photon hits on PMTs [6].
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Figure 2. A schematic of the current LZ and proposed simulation workflow. In the current system,
BACCARAT users can choose through a macro file whether to generate output through the fast or full
chains. In the Full Chain, G4S1Light and G4S2Light simulate photon propagation and pass these to
DER which simulates the detector response, and can be used for MDCs. In the Fast Chain, energy
deposits are passed to NEST to create a map of probabilities of detector response. In the proposed
system, both chains could be replaced with one based on Opticks [6].

We propose to replace both the full and the fast simulation chain with a single system
which combines the speed of the fast-chain with the fidelity of the full-chain as illustrated in
Figure 2.

2 GPU simulations

GPUs evolved to perform real time 3D graphics rendering. Ray-tracing is one means by
which graphics can be rendered. Ray-tracing leverages the parallelism inherent in GPU-based
systems to calculate the intersection between many simulated rays of light and simulated
objects in a virtual world [7]. The similarity between this commercially available use of GPUs
and the photon propagation simulations required for particle physics experiments suggests
that with a suitable framework, substantial speed-up may be achieved in the latter case.

In the case of LZ, a replacement of the photon propagation simulations with a GPU-
based solution may allow for large-scale datasets to be generated with full fidelity modeling
of photon hits in the detector.
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2.1 Opticks: GPU Accelerated Optical Photon Simulation using NVIDIA OptiX

Opticks is an open-source project, described in detail in Blyth’s works [8–10] which are
summarised briefly in this subsection. Opticks replaces Geant4 optical photon simulation
with an equivalent implementation using GPU accelerated ray tracing from NVIDIA OptiX.
OptiX is a general-purpose ray-tracing framework developed by NVIDIA to give optimal

performance on NVIDIA’s GPUs [11–14]. OptiX works on the premise that most ray-tracing
algorithms require only a small set of operations [11]. OptiX allows users to build applica-
tions to control the generation of rays and their interactions with surfaces [15].
Opticks translates the elements of the Geant4 context that are relevant for photon sim-

ulation into appropriate forms and uploads them to the GPU. These include the detector
geometry, its optical properties, and the optical photons to be simulated [10].

The solids that make up a geometry can be translated to Opticks primitives by the
G4Opticks class. G4Opticks goes through the Geant4 volume tree and converts its com-
ponents into Opticks equivalents. It does so using constructive solid geometry (CSG) mod-
elling. In CSG, more complex shapes are created from primitives by Boolean operations such
as intersection, union and so on. The more complex the geometry, the longer the initializa-
tion time, so Opticks stores a serialization of the geometry as a geocache— a collection
of many .npy [16], .txt and .json [17] files. This avoids repeated processing [8].

Figure 3. An illustration of how OptiX integrates OptiX into a particle physics workflow. The Geant4
geometry and photon generation steps are translated by Opticks and passed over to OptiX. At ini-
tialization the Geant4 geometry is translated into a GPU appropriate form and uploaded to the GPU.
During event processing genstep data structures are collected and copied to the GPU where the optical
photon generation and propagation are performed using NVIDIA OptiX ray tracing. Once the OptiX
ray-tracing is complete, only photon hits on the PMTs are copied to the CPU for further processing.
Taken from [10].

The Boolean operations used for geometry input form a binary tree structure. Ensuring
that this tree structure is a balanced one — i.e. for each node, the sub-trees are of equal
height, thus minimising the height of the overall tree — allows for faster intersection time
and more efficient tree serialization [8].
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The Boolean operations used for geometry input form a binary tree structure. Ensuring
that this tree structure is a balanced one — i.e. for each node, the sub-trees are of equal
height, thus minimising the height of the overall tree — allows for faster intersection time
and more efficient tree serialization [8].

Instead of generating photons in a loop as is done in Geant4, a genstep data structure is
used which includes the number of photons to be generated and a line segment upon which
to generate them. By default, Geant4 has no interface to genstep. Therefore, the classes
which represent scintillation and Cherenkov processes in Geant4 were modified to collect
genstep structures. Opticks then launches parallel GPU threads to propagate these pho-
tons with NVIDIA OptiX GPU ray-tracing. OptiX implements optical photon generation
and propagation using the GPU-accelerated ray-geometry intersection provided by NVIDIA
OptiX. Opticks includes a configurable number of steps to propagate these rays through [9].

Tests comparing the performance of Opticks with a Geant4-based photon simulation of
another detector — the Jiangmen Underground Neutrino Observatory (JUNO) detector [18]
— recorded a speed-up factor of 1660 in optical photon simulation [8]. Additionally, im-
proved performance was observed with very simple analytic geometries when compared with
the JUNO geometry, which suggested that there is potential for improvement by optimisation
of geometry modelling.

The current stable build of Opticks is based on NVIDIA OptiX version 6.5. OptiX
version 7.0 was released in 2019, and includes a new low-level API which allows greater
flexibility for Multi-GPU systems and larger datasets [14]. OptiX version 7 does not pro-
vide backwards compatibility to code, including Opticks, which were built for previous
versions of OptiX. An ongoing project to allow Opticks to use the latest OptiX version
and features is ongoing between the authors and NVIDIA and discussed elsewhere in these
proceedings [19].

3 Integrating with LZ

A number of challenges exist in relation to the integration of Opticks to the LZ work-
flow. These impact the inputs and outputs of the Opticks and the corresponding outputs of
BACCARAT and inputs to DER [6] it will interact with.

As shown in Subsection 2.1, the preferred mechanism for photon generation in Opticks
is to modify the Cherenkov and scintillation processes to use the genstep structure. How-
ever, if Opticks is to be incorporated as a modular component of the LZ workflow, changes
which would impact other modules should be avoided. Additionally, initial experiments in
defining the LZ TPC in terms of the ∼10 primitive shapes for which Opticks provides in-
tersection functions have proven difficult [20–22]. Finally, the definition of the LZ geometry
currently used generates a highly unbalanced tree structure which is known to create inef-
ficiencies [8, 9, 20–22]. Ongoing work will focus on the slowest solids by changing the
implementation to address these inefficiencies.

Further, the output format of Opticks PMT hits is not identical to the outputs from
BACCARAT which are used as inputs to DER. As a result, some translation will be needed to
ensure compatibility. Finally, it is desirable to have an optional system for running perfor-
mance metrics on Opticks when used for LZ.

To this end, it is proposed to develop a lightweight API which will:

• Translate the outputs of BACCARAT particle physics simulations to genstep structures.

• Translate the Opticks outputs to suitable inputs for DER.

• Enable timing, memory consumption and throughput metrics on request.

4 Supercomputer Implementation

Data simulation and processing for LZ is carried out at the National Energy Research Sci-
entific Computing (NERSC) center [23]. The supercomputer facilities at NERSC provide
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Figure 4. Schematic of the layered operational structure used to integrate Opticks with the LZ and
NERSC workflows. LZ geometry and photon generation are passed to an API which transforms these
inputs into a format suitable for Opticks, which acts as a wrapper for OptiX raytracing. To operate on
NERSC systems, a Shifter container is used to provide access to libraries and dependencies.

the volume of computing capabilities required to carry out the large number of simulated
LZ events required to provide confidence in their predictions [3, 6, 23]. The system cur-
rently used by LZ simulations is Cori, a Cray XC40, with peak performance of about 30
petaflops [24]. However, Cori’s production system does not have GPU nodes, and therefore
Opticks is unable be used on this system to leverage the OptiX GPU capabilities [25]. In
2018, 18 nodes were added to Cori, each with several V100 GPU accelerators. These nodes
are intended for porting, development, and testing; and are being used for early Opticks
testing [26].

The forthcoming Perlmutter supercomputer will be a production-scale GPU-accelerated
system, including 1500 GPU-accelerated nodes with 4 NVIDIA A100 Tensor Core GPUs
each for a total of 6000 cores [27]. It is expected that software built and tested on CoriGPU
will work with minor changes on Perlmutter. Expected changes include configuration settings
such as the CUDA Compute Capability setting, which is 8.0 for Perlmutter’s A100s and 7.0
for CoriGPU’s V100s [26–28]. Current development effort is focused on ensuring portability
through containerisation as discussed in Section 5 [29].

There are limitations on the supercomputer systems at NERSC which makes direct use
of Opticks impractical. Security is a significant concern with all NERSC systems. As a
result, standard users will never have root/administration privileges, so unlike on a standalone
computer, there are restrictions on what the user is permitted to do. For example, users are
not typically permitted to install software via package managers like yum, and will have strict
restrictions on the paths they have read and write access to. In addition, the versions of
software or libraries that are supported and available are large but finite [30, 31].
Opticks, on the other hand, is dependent on a large number of libraries and depen-

dent software [25, 32]. Many of these libraries are version-dependent and the calls to them
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in Opticks will not work with earlier (e.g. Boost) or later (e.g. OptiX) versions [33].
Opticks is currently changing over from Python2 to Python3 [34], and while Python 3.7.8
is preferred, there remains some potential for issues to arise [35]. Additionally, at runtime,
Opticks— unless run with the --production flag set — writes output to some locations
within its build environment, but which a NERSC user might not have write access to [25]. Fi-
nally, Opticks scripts frequently specify paths in which installed components of the system
are expected to be found, either explicitly (e.g. /usr/local) or implicitly (e.g.$HOME) [32].
This makes it unsuitable for direct use on the supercompter systems.

5 Containerisation

The solution to this challenge is to use containerisation [29]. Containerisation allows for
software to be standardised and portable [36, 37]. Docker is the leading containerisation
system currently in use [36]. Software, libraries, and data can be bundled together into a
Dockerfile [38], which can be built into an image which can be published or stored in a
public or private repository such as Dockerhub [39]. At runtime, containers are generated
from these images which share the host OS kernel and therefore can be more lightweight and
portable than Virtual Machines [36].
Shifter is the preferred solution for containerisation at NERSC [37, 40, 41]. Shifter

is built upon Docker [37, 38] and uses much the same structure of Dockerfile, image and
container [38, 40].

The user can never be root in Shifter [40], whereas the default in Docker is for the
user to be root [38]. Therefore, Shifter users have reduced permissions relative to Docker
users. Furthermore, Shifter images are mounted as read-only, which prevents the user from
running any software that requires write access mounted in the container [40]. On the other
hand, Shifter permits access to NERSC parallel file systems and allows directories in these
file systems to be mounted to the container in locations the user specifies [40]. Therefore, the
user may mount a path they have read/write access to on a location they would not normally
be able to use to simulate a suitably write-enabled environment.

6 Implementation: opticks_on_shifter

In order to allow Opticks to run on CoriGPU, a Shifter image called
opticks_on_shifter has been produced [29, 42, 43]. Using the base image
nvidia/cuda:11.0-devel-centos7 [44], this container was created by following
the Opticks install instructions [32] and converting the relevant commands into a
Dockerfile [42]. This Dockerfile was then built progressively in a test environment
called Maeve. Maeve is equipped with three NVIDIA Titan X GPUs, and allows for iterative
development using Docker to install libraries which would not be permitted on CoriGPU.
Development on Maeve was halted after the external build tools were installed and before
the opticks-full command was called to complete the installation of Opticks itself. This
is because the final build stages are hardware-aware and the Titan X GPUs on Maeve do not
match the V100s on CoriGPU nor the A100s on the forthcoming Perlmutter.

This prepared environment was then pushed as an image to dockerhub [43] and pulled
to CoriGPU. On CoriGPU, a Shifter container was created by launching this image. The
Opticks-specific contents of this were then copied to the NERSC $SCRATCH file system
and the container was closed. The container was then relaunched with the copied contents
on $SCRATCH mounted over the corresponding locations in the image. The opticks-full
command was then called to complete the installation of Opticks.
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Figure 5. A schematic of the process by which the image opticks_on_shifter was created. Using
NVIDIA’s cuda:11.0-devel-centos7 as a base, a Dockerfile was created to build the Opticks
dependencies on maeve. An image containing these dependencies was uploaded to Dockerhub. That
image was pulled to Cori and the relevant contents copied to $SCRATCH. Then the container could be
run with that contents mounted from $SCRATCH.

6.1 Advantages and Disadvantages

The approach used here has a number of advantages and disadvantages. Some of these are in-
herent to containerisation, particularly with Shifter, while others are specific to this system
or others similar to it.

The advantages of this approach are:

• Containerisation inherently allows for portability, particularly relevant as this system will
have to be ported to Perlmutter for production use.

• Locking in the correct versions of dependent software at the docker image stage ensures
the requirements for Opticks will always be met.

• Even if compatibility-breaking upgrades are pushed by software vendors, they will not
affect the controlled environment of the container.

The drawbacks of the system are:

• If there were any exploits or vulnerabilities in the software upon which this system depends,
these will be persisted in the container even after the vendor provides the necessary patches.

• When the decision is made to upgrade the software or its dependencies, then the upgrade
process will have to go back to an early stage of this process and this may be laborious.
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the requirements for Opticks will always be met.

• Even if compatibility-breaking upgrades are pushed by software vendors, they will not
affect the controlled environment of the container.

The drawbacks of the system are:

• If there were any exploits or vulnerabilities in the software upon which this system depends,
these will be persisted in the container even after the vendor provides the necessary patches.

• When the decision is made to upgrade the software or its dependencies, then the upgrade
process will have to go back to an early stage of this process and this may be laborious.

• Some bars to portability such as the hardware-aware components of opticks-full may
not be apparent.

7 Performance Benchmarking

The measure of success for any new system is whether it outperforms existing systems. We
require the proposed system to be faster than the full-chain and have greater predictive value
than the fast-chain described in Section 1. The ideal outcome would be to match or outper-
form the fast-chain for speed and the full-chain for fidelity. In the case of the result being
between these two extremes, some combined metric would be needed to determine the utility
of the system. This latter remains an open point of research.

Speed is relatively straightforward to measure. The initial approach will be to measure
the wall-clock time for the completion of a simulation of some fixed collection of photons
through the LZ geometry. Current predictions of success in this factor are promising. As
stated in Subsection 2.1, the comparison of Opticks with Geant4 for the JUNO experiment,
gave a speed-up factor of 1660 for optical simulations [8].

The BACCARAT fast chain simulations achieved a speed-up factor of 20 by comparison
with the full chain in LZ testing [6]. In practical terms, the overall speed-up factor for LZ
with GPU optical propagation simulations are expected to give similar performance to the
fast chain, as optical photon propagation represents �95% of the CPU time in full chain
simulations. Thus, the remaining �5% factors may be expected to come to dominate, giving
a speed-up factor of 20.

Figure 6. Illustrative example of the expected reduction in runtime for the GPU-enchanced simulation
chain by comparison with the existing full-chain.

Opticks includes validation testing in which one executable calls both Geant4 and
Opticks simulations [8]. Identical input photons and random seeds are passed to each sys-
tem, allowing the outputs to be a near-perfect match [8]. Use of this validation testing in the
case of the JUNO geometry demonstrated that the system was vulnerable to fragile CSG mod-
elling, but with this corrected, discrepancies were <0.25% for mis-aligned photon histories
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and <0.05% of deviant photons within matched histories [8]. Applying this system to the LZ
geometry will permit similar metrics to be taken. Should performance for LZ closely match
the experience with JUNO, then this will be considered a success. The increased complexity
of the current LZ model may increase its vulnerability to CSG modelling errors or issues such
as photons with grazing incidence. Iterative development of a more refined model of the LZ
detector is expected to mitigate these concerns.

8 Conclusions

This paper describes the potential for Opticks to fill the role of a GPU-based optical photon
propagation model for LZ. LZ’s existing system, BACCARAT, uses two separate simulation
paths, the fast chain and the full chain [6]. In simulations of the JUNO experiment, Opticks
has been shown to successfully integrate NVIDIA’s GPU-based OptiX ray-tracing framework
with Geant4 particle physics simulations [8].

A key challenge of this work is integrating Opticks with the LZ framework and the
NERSC computing systems. The approach to solve this is a layered, modular one, where
BACCARAT outputs are passed through an API wrapper script and Opticks outputs are
passed back through the same system [29]. Development of this API and its integration
with BACCARAT are important next steps for this project. Iterative development of a robust
CSG model of the LZ detector is also ongoing.

In order to fit the requirements of the NERSC computing ecosystem, a Shifter [37] con-
tainer has been developed that allows Opticks to run on CoriGPU. opticks_on_shifter
works by bundling Opticks with its dependencies and then mounting those on a writable
partition on the NERSC NFS. This allows the final setup of hardware-aware software com-
ponents to be carried out on the hardware on which the software must run. This should assist
with portability from the CoriGPU development environment to the Permutter production
system.

Predictions based on prior tests of Opticks on JUNO indicate reason to be optimistic
that the new system has the potential to closely match the full chain for fidelity of modelling,
and closely match the fast chain for speed.
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