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Abstract

We consider the Yang-Mills field propagating on the Einstein universe and study the long-time
behaviour of small solutions. Due to the resonant character of the linearised spectrum and the
lack of dissipation of energy, this model displays interesting dynamical phenomena, while being
conformally related to the four-dimensional Anti-de Sitter spacetime.

Using the method of multiple-scale analysis, we construct the resonant system, which accu-
rately approximates the original equation. This infinite dimensional dynamical system manifests
remarkable properties, such as a three-dimensional invariant manifold. We generalise the analysis
of [1] and find non-trivial time-periodic solutions with exact energy return to the initial data and a
variety of stationary states (without energy transfer between modes). Furthermore we investigate
the turbulent behaviour of solutions with three-mode and generic initial data numerically.





Zusammenfassung

Wir betrachten das Yang-Mills Feld, welches sich auf dem Einstein Universum ausbreitet und
studieren das Langzeitverhalten von kleinen Lösungen. Aufgrund des resonanten Charakters
des linearisierten Spektrums und dem Mangel von Dissipation von Energie, zeigt dieses Modell
interessante dynamische Phänomene, während es konform verwandt ist mit der vier-dimensionalen
Anti-de Sitter Raumzeit.

Mithilfe der Methode der Mehrskalenanalyse konstruieren wir ein resonantes System, welches
die ursprüngliche Gleichung genau approximiert. Dieses unendlich dimensionale dynamische Sys-
tem manifestiert bemerkenswerte Eigenschaften, wie etwa eine drei-dimensionale invariante Man-
nigfaltigkeit. Wir verallgemeinern die Analyse von [1] und finden nicht-triviale zeitperiodische
Lösungen mit exakten Energie Rücklauf zu den Anfangsdaten und eine Vielfalt an stationären Lö-
sungen (ohne Energietransfer zwischen den Moden). Desweiteren untersuchen wir das turbulente
Verhalten von Lösungen mit drei-Moden und generischen Anfangsdaten numerisch.
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Chapter 1

Introduction

In this thesis we are studying the dynamics of the Yang-Mills field on the Einstein universe. This
model can be seen as a toy model to help us understand the instability of Anti-de Sitter (AdS)
spacetime. Anti-de Sitter is a maximally symmetric spacetime with a negative cosmological
constant. As for the other two maximally symmetric spacetimes (Minkowski, de Sitter) with
zero and positive cosmological constant, stability has been proven by [2] for Minkowski and
[3] for de-Sitter. The difference between these spacetimes is, that in Anti-de Sitter spacetimes
energy cannot dissipate towards infinity for a reflective boundary. Numerical and analytic studies
indicate that AdS is in fact unstable against black hole formation for a large class of arbitrarily
small perturbations and reflective boundary conditions [4, 5, 6]. In [7] it was shown that for the
same model, which was used to conjecture the instability of AdS [4], time-periodic solutions can
be constructed. In contrast, non-trivial time-periodic solutions do not exist for asymptotically
flat spaces [8, 9].

Asymptotically AdS spacetimes also gained a lot of attention from the AdS/CFT correspon-
dence. This duality connects the dynamics of AdS to dynamics of a certain quantum conformal
field theory in one spatial dimension less. Collapse to a black hole corresponds to the process of
equilibration and thermalization [10]. The class of small perturbations of AdS that do not form
a black hole translates to dynamical CFT configurations that do not equilibrate [11].

For the instability of AdS two features are essential: The existence of a reflective boundary
that acts as a mirror and prevents energy from dissipating and a fully resonant spectrum of
linear perturbations of AdS. The first condition is not exclusive to AdS as shown in [12], by
considering a spherically symmetric self-gravitating scalar field enclosed in a timelike worldtube
with reflecting boundary conditions. The numerical simulation indicates that arbitrarily small
perturbations evolve into a black hole. We therefore expand our perspective and also study the
long time behaviour of nonlinear waves on spatially confined domains.

An essential simplification to the nonlinear dynamical equations is the resonant approximation
[11, 13]. Other names are renormalisation method [14], time averaging [15], effective equation
[16] or multi-scale analysis [17]. This simplification is obtained by rewriting the nonlinear dy-
namical system using linearised normal modes. These equations then contain rapidly oscillating
terms. Most of these terms can be discarded when considering small perturbations. The remain-
ing terms determine the evolution on long-time scales and correspond to the interactions between
the modes. An advantage of the resonant system is that it approximates the dynamics at small
ε (size of perturbation). The resonant system is invariant under scaling, so only one simulation
is required to display the dynamics for the entire range of sufficiently small epsilon [13].

Because of the complexity of the resonant dynamics of AdS, in particular the complexity of
the interaction coefficients [13, 14, 15], it makes sense to search for simpler related systems
[5, 6, 18]. These ’toy models’ show interesting non-trivial dynamical behaviour. One can also
study designed mathematical systems that have an identical structure to the resonant system
coming from AdS dynamics [19, 20, 21]. Resonant systems derived from AdS-related studies
[22, 5, 18, 23] all indicate the same pattern: They possess exact solutions parameterised by an
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invariant submanifold and the dynamics on this manifold show exactly periodic energy transfer of
the initial state. In [1] these resonant systems are categorized and it is shown that this very large
class of solvable cubic resonant systems admits an extra conserved complex-valued quantity.

In this thesis we study the dynamics of the resonant system of the Yang-Mills field on the
Einstein universe and extend the work of [24]. After reviewing the research on Anti-de Sitter
instability in Chapter 2, we repeat basic definitions of general relativity and give an introduction
to AdS spacetime and the Einstein universe in Chapter 3. In Chapter 4 we derive the equations
of motion for the Yang-Mills field on the Einstein universe and study linear perturbations of the
static solution. The derivation of the resonant system for this model is in Chapter 5 and its
conserved quantities are given in Chapter 6. In Chapter 7 we compare the resonant system to
the PDE solution and show that it approximates the nonlinear dynamics sufficiently. Finally in
Chapter 8, we study the dynamics of the resonant system analytically and numerically.
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Chapter 2

Review of the instability of Anti-de Sitter

AdS is a ground state among asymptotically AdS spacetimes (spacetimes with the same conformal
boundary as AdS) due to the positive energy theorem [25]. Hence one naturally asks the question
about the stability for that state, i.e. do small perturbations close to the static solution remain
small for all times. For Minkowski, which is a ground state for asymptotically flat spacetimes
[26], the question has been answered by the famous paper of Christodoulou and Klainerman [2]
by proving that Minkowski is globally stable, see also the more recent work [27, 28, 29]. In the
de Sitter case, Friedrich has proved global stability for 3 + 1 dimensions [3], which was extended
to all even dimensions, c.f. [30].

The difference between asymptotically Minkowski or de Sitter spacetimes and asymptotically
Anti-de Sitter spacetimes is the timelike boundary at conformal infinity, where boundary conditions
need to be prescribed. This makes the question of stability for Anti-de Sitter more challenging
and still unproven. In 1982 Breitenloher and Friedmann showed linear stability of Anti-de Sitter
[31], which was extended and completed more recently by Ishibashi and Wald [32]. Despite of the
extensive research on asymptotically Anti-de Sitter spaces since the AdS/CFT duality conjecture
by Maldacena [10], the question of nonlinear instability of AdS space has mostly been ignored
until 2011. A few exceptions are Friedrich [33], Ishibashi and Wald [32] and Anderson [34]. In the
latter the author expects AdS space to be “dynamically stable, with the behavior of the nonlinear
exact solutions nearby to gAdS well-modeled on the linearized behavior.”

In 2011, Bizoń and Rostworowski conjectured that AdS is unstable against black hole forma-
tion for arbitrarily small perturbations. Their study on a self gravitating spherically symmetric
massless-scalar field in 3 + 1 dimensions with negative cosmological constant, showed instability
at time O(ε−2), where ε is the size of the perturbation [4]. This result was extended to AdSd+1
for d ≥ 3 in [35]. Bizoń and Rostworowski stated two essential features. The first is the exis-
tence of a timelike boundary with reflective boundary condition, which acts as a mirror, such that
energy cannot escape. The second condition is a resonant spectrum of the linear perturbation of
AdS, which leads to weak turbulence, i.e. the shift of energy from low to high frequencies [4].
Their results also raised the question, if this turbulent behaviour is specific to asymptotically AdS
spacetimes or can be found for other ’confined’ models with reflective boundary conditions.In [12]
Maliborski studied small perturbations of Minkowski inside a timelike worldtube R× S3 and gave
numerical evidence for instability. The author also answered the in [4] posed question about the
role of the negative cosmological constant Λ, that is to create a timelike boundary [12]. In three
dimensions, AdS is separated from the continuous black hole spectrum by a mass gap [36]. Small
initial data has energy below this threshold, which makes it impossible for a black hole to form.
In [37] they give numerical evidence that the evolution of small perturbations of AdS3 remains
globally smooth.

Since Bizoń and Rostworowski ignited the spark there has been extensive research to support
their conjecture. For example Buchel and Lehner [38], who extended their analysis to complex
scalar fields and reproduced the same phenomena as [4], or their studies on the stability of Boson
stars in AdS [39]. In [40] the authors showed that for the purely gravitational problem, generic
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initial perturbations lead to black hole formation. However they have also found, that if one starts
with certain individual graviton modes, so called geons, the evolution is nonlinearily stable. These
geons are the gravitational analogs to Boson stars [40]. The same authors came to the conclusion
that the non-dispersive character of the linearised spectrum is necessary for instability [41]. The
asymptotically resonant spectrum of geons [40] and Boson stars [39] is not strong enough to
trigger instability (islands of stabilities). Maliborski and Rostworoski constructed time-periodic
solutions for the model used in [4] in d + 1 dimensions (for d ≥ 2) [7].

In [11] the authors developed a new perturbative formalism, that is the Two Time Framework,
and introduced resonant approximation to the studies of Anti-de Sitter instability. In agreement
with the Two Time Framework, [14] resummed the secular terms in [4] using renormalization
group method and analytically found explicit expressions for all the non-vanishing secular terms
(extended in [15]). The resonant approximation was then applied to the system of [4] to show the
development of an oscillatory singularity [13]. In [42], studying spherically symmetric Einstein-
massless scalar fields in four to nine dimension, numerical methods have shown that the resonant
systems introduced in [41] accurately approximate the full nonlinear theory well for dimension
five to nine. In the case of four dimension the truncated system needs many more modes than in
higher dimensions, to show the dynamics in a regime where a black hole forms. They conclude
that although a lot of progress has been made in the conjecture of AdS instability, there is still
a lot to do. The method from [15] has also been deployed to develop an infinite-dimensional
flow system for the cubic wave equation in AdSd+1 [5]. Another flow system was constructed
for the cubic wave equation on the Einstein cylinder, which is conformally related to the self-
interacting conformally coupled scalar field in AdS. The constructed conformal flow then shows
remarkable properties, such as a low-dimensional invariant subspace, a wealth of stationary states
and solutions with non-trivial exactly periodic energy flows [22].

Most numerical simulations of AdS instability are restricted to spherical symmetry although
there have been results without symmetry, that indicate instability of gravitational perturbations
[40] (see also their follow up work [43, 44]). In [6] a different approach to the purely gravitational
problem was applied. Using the cohomogeneity-two biaxial Bianchi IX ansatz they obtained a
simple 1 + 1 dimensional setup for AdS5 and found a similar instability phenomena as in [4].
Another numerical evidence of gravitationally collapse away from spherical symmetry was by
[45, 46], also for AdS5.

A different more recent approach was by Moschidis, who proved the instability of Einstein-
null dust system system first with an inner mirror [47] and the AdS instability conjecture for
an Einstein-massless Vlasov system [48]. The work by Moschidis [48] encourages to an analytic
understanding of Anti-de Sitter instability and that the conjecture is provable [42].
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Chapter 3

Preliminaries

In this chapter we give preliminaries from general relativity and an overview of Anti-de Sitter
spacetime and the static Einstein universe.

3.1 General Relativity
We state basic definitions from general relativity, relevant for the subsequent derivations, based
on [49]. Let us therefore consider a Lorentzian metric

g = gµνdxµdxν , (3.1)

with signature (−, +, +, +). We define the covariant derivative of a two-tensor T µν as

∇αT µν = ∂αT µν + Γµ
βαT βν + Γν

βαT µβ , (3.2)

where the Christoffel symbols Γµ
βα can be calculated through

Γα
βγ = 1

2gαβ (∂βgσγ + ∂γgσβ − ∂σgβγ) . (3.3)

Alternatively the Christoffel symbols Γµ
αβ can also be computed using the Lagrangian

L(xµ, ẋν) = 1
2gαβ(xµ)ẋαẋβ , (3.4)

where ˙ ≡ d/ds denotes the differentiation with respect to the parameter s of a geodesic s 7→ γ(s).
The Euler-Lagrange equations

d
ds

(
∂L
∂ẋµ

)
= ∂L

∂xµ
, (3.5)

yields the geodesic equation
d2xµ

ds2 + Γµ
αβ

dxα

ds

dxβ

ds
= 0 . (3.6)

The Christoffel symbols Γµ
αβ can then be identified as coefficients of the first derivative terms.

The curvature tensor for a vector field Xµ is given by

Rµ
νρσXν = ∇ρ∇σXµ − ∇σ∇ρXµ , (3.7)

which in local coordinates can be written as

Rµ
νρσ = ∂ρΓµ

σν − ∂σΓµ
ρν + Γµ

ραΓα
σν − Γµ

σαΓα
ρν . (3.8)
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3.2 Anti-de Sitter spacetime
We recall some basic facts and results from [50] and [51]. Anti-de Sitter is a solution to the
vacuum Einstein equations

Rµν − 1
2Rgµν + Λgµν = 0 . (3.9)

with cosmological constant Λ < 0. It is the unique maximally symmetric Lorentzian manifold
with negative constant scalar curvature.

We can define AdSd+1 as the hyperboloid

X2
1 + ... + X2

d − U2 − V 2 = l2 , (3.10)

of radius l, determined by the cosmological constant Λ = −d(d−1)
2l2

(c.f. [35]), embedded in a
d + 2 dimensional flat space with the metric

ds2 = dX2
1 + ... + dX2

d − dU2 − dV 2 . (3.11)

Through the parametrisation

X =rω, (ω ∈ Sd−1) , (3.12)
U =

√
r2 + l2 sin τ/l , (3.13)

V =
√

r2 + l2 cos τ/l , (3.14)

the AdSd+1 metric on the hyperboloid (3.10) is then given by

g = −(1 + r2/l2)dτ 2 + dr2

1 + r2/l2 + r2dω2 . (3.15)

We introduce dimensionless coordinates t = τ
l

and x = arctan r/l, which transform (3.15) into

g = l2

cos2 x
(−dt2 + dx2 + sin2 xdω2) , (3.16)

where (t, x) ∈ R × [0, π/2). Thus (3.15) is conformal to half of the Einstein universe R × Sd.
Conformal infinity is given by the timelike cylinder located at the boundary {x = π/2} with
topology R × Sd−1. Therefore there exists no Cauchy surfaces and Anti-de Sitter is not globally
hyperbolic. Given initial data one can only predict the evolution of null geodesics in the region
x < π. We prove that even though the spatial distance from any point to the conformal infinity
of Anti-de Sitter is infinite, null geodesics will reach it in finite coordinate time. For simplicity let
us consider d = 3.

The Lagrangian for a geodesic motion in the metric (3.15) is then

L = 1
2

l2

cos2 x
(−ṫ2 + ẋ2 + sin2 x(θ̇2 + sin2 θϕ̇2)) , (3.17)

where ˙ ≡ d/dλ denotes the differentiation with respect to the affine parameter λ. For a null
geodesic we have

l2

cos2 x
(−dt2 + dx2 + sin2 xdω2) = 0 . (3.18)

Because of spherical symmetry, we can fix the angles of S2 (dω2 = 0) and get

ṫ2 = ẋ2 . (3.19)
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Figure 3.2.1: Conformal diagram of d+1 dimensional AdS space. Every point represents Sd−1. A
null geodesic starting from t = 0 and x = 0 will reach the conformal boundary located at x = π/2
in finite coordinate time t = π/2. From this point we can only predict the future evolution with
an additional information, that is the boundary condition at the conformal boundary.

The Euler-Lagrange equation of (3.17) reads
d

dλ

(
l2

cos2 x

dt

dλ

)
= 0 , (3.20)

ṫ = E cos2 x

l2 . (3.21)

Inserting (3.21) into (3.19) yields

ẋ = ±E cos2 x

l2 , , (3.22)

x = arctan
(

±Eλ

l2

)
, (3.23)

with affine parameter λ. Therefore as λ → ∞ x → π/2, as AdS is geodesically complete. Then
from (3.19) we conclude

t = arctan
(

±Eλ

l2

)
. (3.24)

Again from λ → ∞ follows t = π/2, i.e. it takes finite coordinate time t = π/2 for a null geodesic
to reach the boundary. After this point, the evolution depends on the boundary conditions at
conformal infinity, see Fig. 3.2.1. Finally we will derive geometric properties of Anti-de Sitter.
From (3.9) we find that the scalar curvature is given by

R = −d(d + 1)
l2 . (3.25)

As for a maximally symmetric space-times [52] we can write the curvature tensor as
Rµνρσ = κ (gµρgνσ − gρνgσµ) . (3.26)

We can determine κ from contracting the curvature tensor and comparing with the scalar curva-
ture (3.25), which yields κ = −1/l2. The Ricci tensor is then given by

Rµν = − d

l2 gµν , (3.27)
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3.3 Einstein static universe
We repeat basic facts and definitions of the Einstein universe based on [51] and [49]. We
are looking for an idealised model of the universe, which is homogeneous and isotropic. A
family of spacetimes with these properties is the Friedmann–Lemaître–Robertson–Walker metric
in spherical coordinates

ds2 = −dt2 + R2(t)
(

dr2

1 − kr2 + r2dω2
)

(3.28)

with dω2 being the round metric of the unit two-sphere S2 and k = 0, ±1 depending on the
spatial curvature. The function R(t) can be determined by the equations

3Ṙ2 + k

R2 = Λ + 8πρ , (3.29)

2R̈

R
+ Ṙ2 + k

R2 = Λ − 8πp . (3.30)

These differential equations follow from the Einstein equation (3.9) with the energy-momentum
tensor of a perfect fluid

Tµν = (ρ + p)uµuν + pgµν , (3.31)

with the energy density ρ = ρ(t), the pressure p = p(t) and uµ∂µ = ∂t. Equation (3.29) is often
referred to as the Friedmann equation. For a static solution R = R0 = const the equations
(3.29) and (3.30) can be satisfied by

R = R0, Λ = 4πρ = 1
R2

0
, p = 0 . (3.32)

This characterises a solution with constant non-zero density ρ and zero pressure p, while the
cosmological constant is Λ > 0. This solution is called the Einstein universe. The solution occurs
when k = +1 and we can therefore write (3.28) with the coordinate transformation r = sin x as

ds2 = −dt2 + R2
0

(
dx2 + sin2 xdω2

)
, (3.33)

where x ∈ [0, π] and t ∈ (−∞, ∞).By rescaling t → R0t, (3.33) transforms to

ds2 = R2
0

(
−dt2 + dx2 + sin2 xdω2

)
. (3.34)
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Chapter 4

Yang-Mills on Einstein universe

In this chapter, we derive the equations of motion for the Yang-Mills (YM) field propagating on
the Einstein universe. We show that this problem can be reduced to a singular nonlinear PDE.
By considering linear perturbations around the static solutions of this PDE, we get the eigenvalue
problem for a self-adjoint operator.

4.1 The Yang-Mills field
The YM potential Aµ = Aa

µτa, where τa form a basis for the group SU(2) with the properties
[τa, τb] = ϵabcτc and τaτb = δab with a, b, c ∈ {r, θ, ϕ} define the YM field strength tensor [53]

F a
µν = ∂µAa

ν − ∂νAa
µ + ϵabcAb

µAc
ν , (4.1)

The Lagrangian density is given by

L = Tr(F a
αβF a

µνgαµgβν)
√

−g , (4.2)

where the trace is taken over the group indices. If we consider a conformally related metric
g = Ω2ĝ and the YM potential Âµ = Aµ (4.2) yields

FαβFµνgαµgβν√
−g = Ωd−3FαβFµν ĝαµĝβν

√
−ĝ , (4.3)

for a (d + 1) dimensional space-time. Hence for d = 3, solving the YM equations

∇µF µν + [Aµ, F µν ] = 0 . (4.4)

in one metric g also solves them in any conformally related metric ĝ. Therefore instead of
the Anti-de Sitter space we can consider the Einstein universe and evade the inconvenience of
choosing boundary conditions by extending the domain to the whole three-sphere.

The Yang-Mills equations do not develop singularities on AdS space-time, shown in [54], as
well as on smooth globally hyperbolic four dimensional manifolds [55]. However, the evolution
of data close to the static solution of the YM equations is still not fully explored. The long-time
behaviour of these small solutions will be examined in this thesis.

4.2 Derivation of the Yang Mills equation
We study the SU(2) Yang-Mills field propagating on the Einstein universe

ds2 = −dt2 + dΩ2
3 , (4.5)

with the metric on a round sphere given by

dΩ2
3 = dx2 + sin2 x(dθ2 + sin2 θdϕ2) , (4.6)
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and coordinate ranges x, θ ∈ [0, π] and ϕ ∈ [0, 2π).
For the Yang Mills field the most general spherically symmetric parameterisation of the gauge
connection can be written as [53]

A = W1τ3dt + W2τ3dx + (W3τ1 + W4τ2)dθ + (cot θτ3 + W3τ2 − W4τ1) sin θdϕ , (4.7)

where the coefficients W1, W2, W3, and W4 will all depend on t and r. For our work we will make
the “magnetic ansatz” from [56] and use the “abelian gauge” representation [57] by choosing
W1, W2, W4 = 0. The Yang Mills connection with W3 ≡ W then reads

A = Wτ1dθ + (cot θτ3 + Wτ2) sin θdϕ . (4.8)

The field strength tensor (4.1) is then given by

F = (Ẇ τ1dt+W ′τ1dx) ∧ dθ

+ (Ẇ τ2dt + W ′τ2dx − (1 − W 2)τ3dθ) ∧ sin θdϕ , (4.9)

where the notation ˙ ≡ ∂t and ′ ≡ ∂x is used. The action function of the Yang Mills field then
yields

S =
∫

Tr(FµνF µν)
√

−gdd+1x . (4.10)

For the contravariant expression of F in (4.10) we calculate Fµνgαµgβν , with the inverse of the
metric tensor given by

gµν =


−1 0 0 0
0 1 0 0
0 0 csc2 x 0
0 0 0 csc2 x csc2 θ

 . (4.11)

Then the contravariant Yang-Mills curvature in matrix form reads

F µν =


0 0 −Ẇ csc2 x τ1 −Ẇ csc x csc2 θ τ2
0 0 W ′ csc2 x τ1 W ′ csc2 x csc θ τ2

Ẇ csc2 x τ1 −W ′ csc2 x τ1 0 −(1 − W 2) csc4 x csc θ τ3
Ẇ csc x csc2 θ τ2 −W ′ csc2 x csc θ τ2 (1 − W 2) csc4 x csc θ τ3 0

 .

(4.12)

The action functional reduces to

S = 4π
∫ (

−Ẅ 2 + W ′2 + (1 − W 2)2

2 sin2 x

)
dxdt . (4.13)

From this, one can derive the equation of motion, using

∂µ
∂L

∂µW
− ∂L

∂W
= 0 , (4.14)

and we finally get the YM equation for the potential W

∂2
t W = ∂2

xW + W (1 − W 2)
sin2 x

. (4.15)

Alternatively the equation of motion can also be obtained from the Euler-Lagrange equation
(4.4). To calculate the covariant derivative one needs to compute the Christoffel symbols Γλ

µν

for the metric (4.17) as

Γx
θθ = − sin x cos x, Γx

ϕϕ = − sin x cos x sin2 θ ,

Γθ
xθ = Γθ

θx = cot x, Γθ
ϕϕ = − sin θ cos θ ,

Γϕ
xϕ = Γϕ

ϕx = cot x, Γϕ
θϕ = Γϕ

ϕθ = cot θ ,

(4.16)
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where all other symbols are zero. Therefore the components of the covariant derivative are

∇µF µν =


Ẇ cot θ csc2 x τ1

−W ′ cot θ csc2 x τ1
(−Ẅ + W ′′) csc2 x τ1

(−Ẅ + W ′′) csc2 x csc θ τ2

 , (4.17)

and

[Aµ, F µν ] =


−Ẇ cot θ csc2 x τ1
+W ′ cot θ csc2 x τ1

−W (W 2 − 1) csc4 x τ1
−W (W 2 − 1) csc4 x csc θ τ2

 . (4.18)

Plugging (4.17) and (4.18) into (4.4) we recover the YM equation.
The conserved energy of (4.14) is then given by

E(W ) = 1
2

∫ π

0

(
(∂tW )2 + (∂xW )2 + (1 − W 2)2

2 sin2 x

)
, (4.19)

which induces the regularity condition W (t, 0) = W (t, π) = ±1. Therefore we get two distinct
topological sectors. Normally we would not need to have boundary conditions because W is
defined on a compact domain but we are looking for finite energy solutions. Solutions with initial
data in a sector stay in that sector during time evolution. Normally we would not need to have
boundary conditions because W is defined on a compact domain but we are looking for finite
energy solutions

W (t =0, x) = f(x) , (4.20)
∂tW (t =0, x) = g(x) . (4.21)

Note that equation (4.14) has a reflection symmetry, which means if W is a solution then −W
is also a solution.

4.3 Linear perturbations
The static solution of (4.14) satisfies the differential equation

0 = ∂2
xS + S(1 − S2)

sin2 x
. (4.22)

In each sector exists a unique static solution. The trivial solution S0(x) = 1 with energy E = 0
and the nontrivial solution S1(x) = cos x found by [58] with energy E = 3π/8. Linearisation
around these static solutions SN(x), N = 0, 1 leads to

W (t, x) = SN(x) + u(t, x) , (4.23)
∂2

t u + L(SN)u + f(u) = 0 , u(t, x = 0) = 0 = u(t, x = π) , (4.24)

where the self-adjoint operator L on the Hilbert space L2([0, π], dx) is given by

L = −∂2
x + 3S2

N − 1
sin2 x

, (4.25)

and the nonlinearity by

f(u) = 3SN + u

sin2 x
u2 . (4.26)
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Dropping the nonlinear part of (4.24) and separation of variables u(t, x) = eiωjtej(x) yields the
eigenvalue problem

ω2
j ej(x) = Lej(x) . (4.27)

with eigenfunctions as

ej(x) = Nj sin2 xP
(3/2,3/2)
j (cos x) , (4.28)

Nj =

√
(j+2)!(j+3)!

2(j+2)

2(j + 3/2)! , (4.29)

where P
(3/2,3/2)
j (z) are the Jacobi polynomials. The eigenmodes of L satisfy

(ej|ek) = δjk , (4.30)

with the inner product on the Hilbert space defined as

(f |g) :=
∫ π

0
f(x)g(x)dx . (4.31)

The eigenvalues are given as

ω2
j =

(j + 2)2 , S0(x)
(j + 2)2 − 3 , S1(x)

(4.32)

j = 0, 1, 2, ... .

The eigenvalues ωj are natural numbers, therefore the solutions are linearly stable in both cases
of S(x). The eigenfunctions are the same for both static solutions due to the fact that their
operators L commute. The difference in the eigenvalues has consequences for the dynamical
behaviour of each solution. For S0 we have equally spaced eigenvalues and therefore a resonant
spectrum, whereas for S1 eigenvalues are only asymptotically equidistant. It is expected that the
latter case leads to limited turbulent behaviour. Evolution of data close to S0 leads to resonant
energy transfer and therefore turbulent behaviour. This energy transfer between the modes αj

can be measured by the Sobolev norms [59]. The Sobolev norms are defined as

||u(t, ·)||s :=
∑

j≥
ω2s

j |αj|2
 1

2

. (4.33)

As shown in [24], in the S1 case, the Sobolev norms saturate very fast and stay bounded. Energy
flow between the modes is limited which is also shown in the energy spectra, as it equilibrates
very fast. Therefore we will from now on only consider the resonant case S0 = 1.

12



Chapter 5

Derivation of resonant system

In this chapter we will derive the resonant system for the Yang-Mills equation on the Einstein
universe. First we show how naïve perturbation theory produces secular terms that may accu-
mulate on long time scales and therefore invalidate solution. In order to remove these secular
terms we introduce a new time variable and hence find an approximation for the exact solution.
We also find an explicit formula for the interaction coefficients of this resonant system. Lastly
we show the symmetries that this resonant system possess. We begin with the weakly non-linear
perturbation analysis. For small ε ≪ 1 we expand the solution

u(t, x) = εu(1)(t, x) + ε2u(2)(t, x) + ε3u(3)(t, x) + ... . (5.1)

5.1 First order
At the leading order, we recover the linearised problem

∂2
t u(1) + L(S)u(1) = 0 , (5.2)

thus a generic solution can be written as

u(1)(t, x) =
∑
j≥0

c
(1)
j (t)ej(x) =

∑
j≥0

(
αje

iωjt + ᾱje
−iωjt

)
ej(x) . (5.3)

The coefficients αj are determined by the initial conditions u(t, x)|t=0 and ∂tu(t, x)|t=0.

5.2 Second order
Only looking at the second order terms we get

∂2
t u(2) + Lu(2) = −

3
(
u(1)

)2

sin2 x
, (5.4)

and make the ansatz

u(2)(t, x) =
∑
l≥0

c
(2)
l (t)el(x) . (5.5)

By projecting (5.4) onto the eigenmode el(x) and using the property (4.30) we obtain a system
of second order differential equations

d2

dt2 c
(2)
l (t) + ω2

l c
(2)
l (t) = −(s(2)|el) , s(2) = 3(u(1))2

sin2 x
, (5.6)
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First we verify that there are no resonances present in (5.6). We therefore show that no secular
terms appear in the projection

(s(2)|en) = s(2)
n (t) = 3

∑
jk

c
(1)
j (t)c(1)

k (t)
(

ejek

sin2 x

∣∣∣∣ en

)
= 3

∑
jk

c
(1)
j (t)c(1)

k (t)Mjkn

= 3
∑
jk

(
αjαkei(ωj+ωk)t + αjᾱkei(ωj−ωk)t + ᾱjαkei(−ωj+ωk)t + ᾱjᾱkei(−ωj−ωk)t

)
Mjkn , (5.7)

where we introduced
Mjkn =

(
ejek

sin2 x

∣∣∣∣ en

)
, (5.8)

see Sec. 5.4 for computation and properties of this integral.
By projecting the source term onto the Fourier mode e−iωnt we are checking if the r.h.s. of

(5.6) acquires a resonant term, i.e. a secular term that appears if the inhomogeneity is itself
a solution of the homogeneous equation [17]. Such a secular term causes the solution to grow
rapidly by at least a factor of t. By (5.7) we get∫ 2π

0
dt s(2)

n (t)e−iωnt = 3
∫ 2π

0
dt
∑
jk

(
αjαkei(ωj+ωk−ωn)t

+αjᾱkei(ωj−ωk−ωn)t + ᾱjαkei(−ωj+ωk−ωn)t + ᾱjᾱkei(−ωj−ωk−ωn)t
)

Mjkn , (5.9)

which is only non-zero for combinations of ±ωj ± ωk − ωn = 0. As we show in 5.4 all the terms
in (5.9) are equal to zero as for ωj + ωk = ωn, ωj − ωk = ωn and −ωj + ωk = ωn the Mjkn

vanish. Note that −ωj − ωk ̸= ωn is not possible for any j, k, n ∈ N0. We conclude that there
are no resonant terms at the second perturbative order.

The solution of the system of differential equations (5.6) with initial conditions c
(2)
l (0) = 0 =

d
dt

c
(2)
l (0) is

c
(2)
l (t) = − 1

ωl

(
sin ωlt

∫ t

0
s(2)

n (ξ) cos ωlξdξ − cos ωlt
∫ t

0
s(2)

n (ξ) sin ωlξdξ
)

, (5.10)

Using (5.7) we get

c(2)
n (t) = 3

∑
jk

Mjkn

(
− 1

ωn

)(
sin ωlt

∫ t

0
c

(1)
j (ξ)c(1)

k (ξ) cos ωlξdξ

− cos ωlt
∫ t

0
c

(1)
j (T )c(1)

k (ξ) sin ωlξdξ
)

, (5.11)

Performing the ξ integral we obtain

c(2)
n (t) = 3

∑
jk

Mjkn

(
Z++

jknαjαkei(ωi+ωk)t + Z−−
jknᾱjᾱkei(−ωi−ωk)t

+ Z+−
jknαjᾱkei(ωi−ωk)t + Z−+

jknᾱjαkei(−ωi+ωk)t

+Zjkn(α)eiωnt + Z̄jkn(α)e−iωnt
)

, (5.12)

where

Z++
jkn = 1

(ωj + ωk)2 − ω2
n

= Z−−
jkn , (5.13)

Z+−
jkn = 1

(ωj − ωk)2 − ω2
n

= Z−+
jkn , (5.14)

Zjkn(α) = − 1
2ωn

(
αjαk

ωj + ωk − ωn

+ ᾱjαk

−ωj + ωk − ωn

(5.15)

+ αjᾱk

ωj − ωk − ωn

+ ᾱjᾱk

−ωj − ωk − ωn

)
, (5.16)
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5.3 Third order
The differential equation at the third order is given by

∂2
t u(3) + Lu(3) = −6u(1)u(2) + (u(1))3

sin2 x
, (5.17)

As before we make an ansatz

u(3)(t, x) =
∑
j≥0

c
(3)
j (t)ej(x) . (5.18)

Using (5.18) and projecting (5.17) onto the mode el(x) we get a system of coupled differential
equations for the mode coefficients c

(3)
l

d2

dt2 c(3)
n (t) + ω2

nc(3)
n (t) =

(
s(3)

∣∣∣ en

)
= − 6

∑
jk

c
(1)
j c

(2)
k ( ejek

sin2 x

∣∣∣∣ en) −
∑
jkl

c
(1)
j c

(1)
k c

(1)
l ( ejekel

sin2 x

∣∣∣∣ en) , (5.19)

which using (5.8) and
Kjkln =

(
ejekel

sin2 x

∣∣∣∣ en

)
, (5.20)

can be written as

d2

dt2 c(3)
n (t) + ω2

nc(3)
n (t) = −6

∑
jk

c
(1)
j c

(2)
k Mjkn −

∑
jkl

c
(1)
j c

(1)
k c

(1)
l Kjkln , (5.21)

For the computation and properties of Kjkln see Sec. 5.4. Next, as in the second perturbative
order we look for resonant terms in the source s(3). Thus, as before we project onto the Fourier
mode, ∫ 2π

0
dt
(

s(3)
∣∣∣ en

)
e−iωnt . (5.22)

For the cubic part of (5.22) we find

∫ 2π

0
dt


(
u(1)

)3

sin2 x

∣∣∣∣∣∣∣ en

 e−iωnt =
∑
jkl

Kjkln

∫ 2π

0
dtc

(1)
j c

(1)
k c

(1)
l e−iωnt

=
∫ 2π

0
dt

∞∑
jkl

(
αjαkαle

i(ωj+ωk+ωl−ωn)tKjkln + αjᾱkαle
i(ωj−ωk+ωl−ωn)tKjkln

+ ᾱjαkαle
i(−ωj+ωk+ωl−ωn)tKjkln + ᾱjᾱkαle

i(−ωj−ωk+ωl−ωn)tKjkln

+ αjαkᾱle
i(ωj+ωk−ωl−ωn)tKjkln + αjᾱkᾱle

i(ωj−ωk−ωl−ωn)tKjkln

+ ᾱjαkᾱle
i(−ωj+ωk−ωl−ωn)tKjkln + ᾱjᾱkᾱle

i(−ωj−ωk−ωl−ωn)tKjkln

)
= 2π

+++∑
jkl

αjαkαlKjkln + 3
++−∑
jkl

αjαkᾱlKjkln + 3
+−−∑
jkl

αjᾱkᾱlKjkln

 ,

(5.23)

where we used the following notation for resonant sums:

+++∑
jkl

=
∞∑

j,k,l=0
n+2=j+2+k+2+l+2

,
++−∑
jkl

=
∞∑

j,k,l=0
n+2=j+2+k+2−(l+2)

,
+−−∑
jkl

=
∞∑

j,k,l=0
n+2=j+2−(k+2)−(l+2)

, (5.24)
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and the symmetry properties of Kjkln. Similarly as for the second perturbative order, secular
terms appear whenever a combination of eigenfrequencies satisfies ωj ± ωk ± ωl = ωn. Note that
−ωj − ωk − ωl = −ωn is not possible for j, k, l, n ∈ N0. Using the following property

Kjkln = 0 , j + k + l + 2 < n , (5.25)

which is valid for all perturbations of indices, (5.23) simplifies to

∫ 2π

0
dt


(
u(1)

)3

sin2 x

∣∣∣∣∣∣∣ en

 e−iωnt = 2π
++−∑
jkl

3Kjklnαjαkᾱl . (5.26)

Therefore, the only resonant contribution coming from (u1)3 term is the ωj + ωk − ωl = ωn

combination, denoted as the + + − sum in (5.26).
For the u(1)u(2) term we find
∫ 2π

0
dt

(
6u(1)u(2)

sin2 x

∣∣∣∣∣ en

)
e−iωnt = 6

∫ 2π

0
dt
∑
jk

c
(1)
j c

(2)
k

(
ejek

sin2 x

∣∣∣∣ en

)
e−iωnt

= 6
∫ 2π

0
dt
∑
jk

(
αje

iωjt + ᾱje
−iωjt

) 3
∑
lmk

Mlmk

(
Z++

lmkαlαmei(ωl+ωm)t + Z−−
lmkᾱlᾱmei(−ωl−ωm)t

+ Z+−
lmkαlᾱmei(ωl−ωm)t + Z−+

lmkᾱlαmei(ωl−ωm)t

+ Zlmk(α)eiωkt + Z̄lmk(α)e−iωkt
)Mjkne−iωnt . (5.27)

Using the property
Mjkn = 0 , n > j + k , (5.28)

if any of the indices is bigger we can show that

1. for Z++
lmk term with the eiωjt factor:

ωl + ωm + ωj = ωn ⇒ l + m = −j + n − 4 ,

k > l + m ⇒ k > n − j − 4 ⇒ Mlmk = 0 ,

n > j + k ⇒ k < n − j ⇒ Mjkn = 0 ,

which means for every k ∈ N, k is always either bigger than n− j −4 or smaller than n− j
for all possible n, j and therefore Mjkn or Mlmk is zero, so the whole term vanishes.

2. for Z++
lmk term with the e−iωjt factor:

ωl + ωm − ωj = ωn ⇒ l + m = j + n ,

k > l + m ⇒ k > j + n ⇒ Mabj = 0 ,

n > k + j ⇒ k < n − jMijl = 0 ,

which means there exist k ∈ N for which these integrals do not vanish.

3. for Zlmk(α) with the e−iωjt factor:

−ωj + ωk = ωn ⇒ j = k − n − 2 ,

k > n + j ⇒ k > k − 2 ⇒ Mjkn = 0 ,

so for all k ∈ N, Mjkn is always zero.
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Going through every term in a similar fashion, we find that (5.26) reduces to
∫ 2π

0
dt

(
6u(1)u(2)

sin2 x
|en

)
e−iωnt =

∫ 2π

0
dt18

∑
jk

∑
ml

(
Z+−

lmkαjαlᾱmei(ωj+ωl−ωm−ωn)t

+Z−+
lmkαjᾱlαmei(ωj−ωl+ωm−ωn)t + Z++

lmkᾱjαlαmei(−ωj+ωl+ωm−ωn)t
)

MlmkMjkn

= 2π18
∑

k

++−∑
jlm

αjαlᾱm(Z+−
lmkMlmk + Z−+

mlkMmlk)Mjkn +
++−∑
ljm

αjαlᾱmZ++
ljk MljkMmkn

 ,

(5.29)

where in the last equality we renamed the indices appropriately. Next, using Z++
ljk = Z++

jlk and
the following symmetries Z+−

lmk = Z−+
mlk and Mljk = Mjlk, see (5.13) and (5.15) respectively, we

get
∫ 2π

0
dt

(
6u(1)u(2)

sin2 x
|en

)
e−iωnt

= 2π18
∑

k

++−∑
jlm

αjαlᾱm(2Z+−
lmkMlmkMjkn + Z++

ljk MljkMmkn)


= 2π18
++−∑
jlm

αjαlᾱmM̃jlmn , (5.30)

with
M̃jlmn =

∑
k

(2Z+−
lmkMlmkMjkn + Z++

ljk MljkMmkn) , (5.31)

Finally, the resonant terms on the RHS of (5.19) are∫ 2π

0
dt
(
s(3)|en

)
e−iωnt = −2π18

++−∑
jlm

αjαlᾱmM̃jlmn − 2π
++−∑
jkl

3Kjklnαjαkᾱl , (5.32)

Such terms lead to secular growth of the solution u(3), which invalidates perturbative expansion
(5.1) at t ∼ ε−2.

5.4 Interaction Coefficients
In this section we will show some of the properties of the integrals Kijkl and Mijk, which we
have already used in 5.2 and 5.3 to simplify the resonant terms. Using properties of the Jacobi
polynomials we also derive an explicit formula for these integrals, saving us a lot of time and
computational power.

5.4.1 Properties
One can easily see that the integrals

Kijkl =
(

eiejek

sin2 x

∣∣∣∣ el

)
, (5.33)

Mijk =
(

eiej

sin2 x

∣∣∣∣ ek

)
, (5.34)

are symmetric for all permutations of indices i, j, k, l ∈ N. Another property is that these integrals
will vanish for a certain set of indices. To show this, we will express the eigenfunctions in terms
of Jacobi polynomials, using the coordinate transformation y = cos x [60]

en(y) ∼ (1 − y2)P (3/2,3/2)
n (y) , (5.35)
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where we skip the irrelevant numerical factors. Therefore the integral reads

Kijkl ∼
∫ 1

−1
dy (1 − y2)5/2P

(3/2,3/2)
i (y)P (3/2,3/2)

j (y)P (3/2,3/2)
k (y)P (3/2,3/2)

l (y) . (5.36)

The Jacobi polynomial can also be expressed as [61]

P (α,β)
n (y) ∼ (1 − y)−α(1 + y)−β dn

dyn
((1 − y)α+n(1 + y)β+n) , (5.37)

which gives us

Kijkl ∼
∫ 1

−1
dy (1 − y2)P (3/2,3/2)

i (y)P (3/2,3/2)
j (y)P (3/2,3/2)

k (y) dl

dyl
((1 − y)3/2+l(1 + y)3/2+l) .

(5.38)

Integrating by parts we find that Kijkl = 0 if

l > i + j + k + 2 , (5.39)

because (1 − y2)P (3/2,3/2)
i (y)P (3/2,3/2)

j (y)P (3/2,3/2)
k (y) is a polynomial of order i + j + k + 2. We

partially integrate (5.38) l times yields

Kijkl ∼
∫ 1

−1
dy

dl

dyl

(
(1 − y2)P (3/2,3/2)

i (y)P (3/2,3/2)
j (y)P (3/2,3/2)

k (y)
)

((1 − y)3/2+l(1 + y)3/2+l) .

(5.40)
Therefore differentiating more than i+ j +k +2 times gives 0. Because of the symmetry of Kijkl

this is true for any permutation.
Analogously for the Mijk integral we can write

Mijk ∼
∫ 1

−1
dy P

(3/2,3/2)
i (y)P (3/2,3/2)

j (y) dk

dyk
((1 − y)3/2+k(1 + y)3/2+k) . (5.41)

And with the same argumentation as before, Mijk = 0 if

k > i + j . (5.42)

5.4.2 Computation of the integrals
For the computation of the Kijkl integral we will again use the coordinate transformation y =
cos x

Kijkl ∼
∫ 1

−1
dy (1 − y2)3/2(1 − y2)P (3/2,3/2)

i (y)P (3/2,3/2)
j (y)P (3/2,3/2)

k (y)P (3/2,3/2)
l (y)

=
∫ 1

−1
dy (1 − y2)3/2P

(3/2,3/2)
i (y)P (3/2,3/2)

j (y)P (3/2,3/2)
k (y)P (3/2,3/2)

l (y)

−
∫ 1

−1
dy y2(1 − y2)3/2P

(3/2,3/2)
i (y)P (3/2,3/2)

j (y)P (3/2,3/2)
k (y)P (3/2,3/2)

l (y) (5.43)

From [62] we have the property

P λ,λ
i (x)P λ,λ

j (x) = (λ + 1)i(λ + 1)j

(2λ + 1)i(2λ + 1)j

min(i,j)∑
k=0

(λ + i + j − 2k + 1
2)(i + j − 2k)!

(λ + i + j − k + 1
2)k!(i − k)!(j − k)!

×
(2λ + 1)i+j−k(λ + 1

2)k(λ + 1
2)i−k(λ + 1

2)j−k

(λ + 1
2)i+j−k(λ + 1

2)ij+−2k

P
(λ,λ)
i+j−2k(x)

=
min(i,j)∑

k=0
Lij(k)P (λ,λ)

i+j−2k(x) , (5.44)
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which yields for the first term

Kijkl ∼
∫ 1

−1
dy (1 − y2)3/2

min(i,j)∑
m=0

min(k,l)∑
n=0

Lij(m)Lkl(n)P (3/2,3/2)
i+j−2m (y)P (3/2,3/2)

k+l−2n (y)

=
min(i,j)∑

m=0

min(k,l)∑
n=0

Lij(m)Lkl(n) δi+j−2m,k+l−2n

Ni+j−2mNk+l−2n

, (5.45)

where we used the orthogonality property (4.30)∫ 1

−1
dy (1 − y2)3/2NiNj(1 − y2)P (3/2,3/2)

i (y)P (3/2,3/2)
j (y) = δij , (5.46)

in the last line of (5.45). For the y2 term of (5.43) we use the property from [63]

xP (a,b)
n (x) = 2(n + 1)(n + a + b + 1)

(1 + a + b + 2n)(2 + a + b + 2n)P
(a,b)
n+1 (x)

+ b2 − a2

(a + b + 2n)(2 + a + b + 2n)P (a,b)
n (x) + 2(n + a)(n + b)

(a + b + 2n)(1 + a + b + 2n)P
(a,b)
n−1 (x) , (5.47)

which is true for all n ∈ N0. Analogously we can compute the Mijk integral

Mijk ∼
∫ 1

−1
dy (1 − y2)3/2P

(3/2,3/2)
i (y)P (3/2,3/2)

j (y)P (3/2,3/2)
k (y)

=
∫ 1

−1
dy (1 − y2)3/2

min(i,j)∑
m=0

Lij(m)P (3/2,3/2)
i+j−2m (y)P (3/2,3/2)

k (y)

=
min(i,j)∑

m=0
Lij(m) δi+j−2m,k

Ni+j−2mNk

. (5.48)

With these formulas we can efficiently compute the integrals (5.32).

5.5 Resonant approximation
In order to remove the resonances from (5.32) we use the multi-scale approach [64] and repeat
our perturbation analysis. Therefore we introduce the ’slow time’ dependence τ = ϵ2t and get

u = u(t, τ, x) . (5.49)

By treating the two time scales t an τ as independent variables the partial time derivative trans-
forms to

∂2
t u(t, x) → ∂2

t u(t, τ, x) + 2ϵ2∂t∂τ u(t, τ, x) + ϵ4∂2
τ u(t, τ, x) . (5.50)

For the solution at first order the coefficients c
(1)
j (t) are now depending on τ , i.e. (5.3) becomes

u(1)(t, τ, x) =
∑
j≥0

c
(1)
j (t, τ)ej(x) =

∑
j≥0

(
αj(τ)eiωjt + ᾱj(τ)e−iωjt

)
ej(x) , (5.51)

There are no changes to the second order solution (5.12), whereas at third order we get

∂2
t u(3) + 2∂t∂τ u(1)

n + Lu(3) = −6u(1)u(2) + (u(1))3

sin2 x
, (5.52)
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c.f. (5.17). By setting the projection onto the Fourier mode {eiωlt} to zero we remove the
resonant terms ∫ 2π

0
dt
(
−2∂t∂τ u(1) + s(3)|en

)
e−iωnt = 0 . (5.53)

Evaluating the integral (5.53) we get

∫ 2π

0
dt
(
−2∂t∂τ u(1) + s(3)|en

)
e−iωnt =∫ 2π

0
dt(−2)iωn

(
α′

n(τ)eiωnt − ᾱ′
n(τ)e−iωnt

)
e−iωnt +

∫ 2π

0
dt
(
s(3)|en

)
e−iωnt

= −4πiωnα′
n(τ) − 2π18

++−∑
jlm

αjαlᾱmM̃jlmn − 2π
++−∑
jkl

3Kjklnαjαkᾱl , (5.54)

By setting (5.53) to zero we ensure that the the solution u(3) is bounded. This only hold if the
coefficients αn(τ) satisfy the following system of equations and therefore cancel out the resonant
terms in (5.52)

2iωn
dαn

dτ
= −18

++−∑
jlm

αjαlᾱmM̃jlmn −
++−∑
jlm

3Kjlmnαjαlᾱm , (5.55)

where we renamed the indices in the last term. We will refer to (5.55) as the resonant system.
Defining

Sjlmn = −18M̃jlmn − 3Kjlmn , (5.56)

we rewrite (5.55) as

2iωn
dαn

dτ
=

++−∑
jlm

Sjlmnαjαlᾱm . (5.57)

Note that (5.57) is invariant under scaling

αn(τ) → ε−1αn(τ/ε2) . (5.58)

5.6 Symmetries of the resonant system
Similar to [22] the system (5.57) enjoys the following symmetries θ, τ0 ∈ R

Global phase shift: αn(τ) → eiθαn(τ) , (5.59)
Mode-dependent phase shift: αn(τ) → einθαn(τ) , (5.60)

Time translation: αn → αn(τ + τ0) . (5.61)

The resonant system (5.57) is Hamiltonian with

H =
∑

jlmn
j+l=m+n

Sjlmnαjαlᾱmᾱn , (5.62)

and the symplectic form ∑
n 4iωndᾱn ∧ dαn:

2iωnα̇n = 1
2

∂H

∂ᾱ
. (5.63)
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Chapter 6

Conserved quantities

In this section we give three conserved quantities of the resonant system (5.57) and show their
conservation analytically and numerically. The symmetries (5.59)-(5.61) lead to the following
three conserved quantities [65]

J =
∑

n

ωn|αn|2 , (6.1)

E =
∑

n

ω2
n|αn|2 , (6.2)

H =
∑

jlmn
j+l=m+n

Sjlmnαjαlᾱmᾱn . (6.3)

The simultaneous conservation of E and J implies that energy cannot all be transferred to higher-
n modes without also transferring energy to lower-n modes, leading to more complex turbulent
behaviour [66].

6.1 Conservation of E
In the following we show that E = ∑

i ωi|αi|2 is constant along the flow generated by the resonant
system. Inserting (5.57) into the derivative of E we find

d

dτ
E =

∑
l

ω2
l (α̇lᾱl + αl

˙̄αl) = 1
2i

∑
l

ωl

++−∑
ijk

(Sijklαiαjᾱkᾱl − Sijklαkαlᾱiᾱj)

= 1
4i

∑
l

++−∑
ijk

(Sijklωl + Sijlkωk)(αiαjᾱkᾱl − αkαlᾱiᾱj) .

(6.4)

Here we used the symmetry of the α term with respect to k and l. Next, using the identity

Sijkl = Sjilk ⇐⇒ i + j − k = l , (6.5)

we rewrite the sum as

d

dτ
E = 1

4i

∑
l

++−∑
ijk

(Sijklωl + Sjiklωk)(αiαjᾱkᾱl − αkαlᾱiᾱj)

= 1
2i

∑
l

++−∑
ijk

Sijkl(ωl + ωk)(αiαjᾱkᾱl − αkαlᾱiᾱj) ,

(6.6)

where we used that the α term is symmetric with respect to (i ↔ j). Now we note that Sijkl is
symmetric under the pair exchange (i ↔ k) and (j ↔ l),

Sijkl = Sklij ⇐⇒ i + j − k = l , (6.7)
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therefore the contraction of Sijkl(ωl + ωk) with the antisymmetric α-term is zero and we get

d

dτ
E = 0 . (6.8)

The numerical results for two-mode initial data also indicate conservation of E, see Fig. 6.3.1.

6.2 Conservation of J
Next we show that J = ∑

i ωi|αi|2 is conserved, see Fig. 6.3.2

d

dτ
J =

∑
l

ωl(α̇lᾱl + αl
˙̄αl)

= 1
2i

∑
l

++−∑
ijk

Sijkl(αiαjᾱkᾱl − αkαlᾱiᾱj).
(6.9)

Again because of the symmetry of Sijkl under the pair interchange (i, j) ↔ (k, l) from (6.7) the
contraction with the α term is zero, and we conclude

d

dτ
J = 0 . (6.10)

6.3 Conservation of H
Finally we will look at the conserved quantity H = ∑

ijkl Sijklαiαjᾱkᾱl. First we calculate

∂H

∂ᾱn

=
∑
ijkl

Sijklαiαj
∂ᾱk

∂ᾱn

ᾱl + Sijklαiαjᾱk
∂ᾱl

∂ᾱn

=
∑
ijk

Sjinlαiαjᾱk + Sijlnαiαjᾱk

= 2
∑
ijk

Sjiknαiαjᾱk

= 4iωnα̇n ,

(6.11)

where we used the symmetry of the α term with respect to (i ↔ j) and (6.5). The derivative
∂H
∂αn

can be calculated analogously

∂H

∂α n
= −4iωn

˙̄αn . (6.12)

Hence we get

d

dτ
H =

∑
n

(
∂H

∂αn

α̇n + ∂H

∂ᾱn

˙̄αn

)
=
∑

n

(
4iωn

˙̄αnα̇n − 4iωnα̇n
˙̄αn

)
= 0 ,

(6.13)

and therefore H is conserved. The numerical evolution of H for two mode initial data is shown
in 6.3.3.
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Figure 6.3.1: Evolution of the absolute value of the relative error E−E0
E0

of the quantity E with
two-mode initial data truncated to 64 modes. We conclude that E is conserved.
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Figure 6.3.2: Evolution of the absolute value of the relative error J−J0
J0

of the quantity J with
two-mode initial data truncated to 64 modes. We conclude that J is conserved.
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Figure 6.3.3: Evolution of the absolute value of the relative error H−H0
H0

of the quantity H with
two-mode initial data truncated to 64 modes. We conclude that H is conserved.
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Chapter 7

Comparison to PDE solution

In this Chapter we compare our resonant system to the PDE-solution and show that the resonant
system indeed gives a good approximation for timescales O(ε−2). We will be comparing the
coefficients of both solutions via the ansatz (5.51).

7.1 Numerical solution of the PDE
For the PDE solution we consider the nonlinear partial differential equation (4.24)

∂2
t u = −Lu − 3 + u

sin2 x
u2 . (7.1)

We evaluate the PDE on the grid

xi = 2i − 1
2N

π , i = 1, ..., N . (7.2)

Generally in the Spectral approach [67], one chooses the zeros of eigenfunctions as the grid. In
our case the zeros of (4.28) are non-equidistant, hence we use the grid (7.2), which is equidistant
and the best analytic approximation for the zeros of the eigenfunctions [68]. We can then write
the operator (4.25) as

(Lu)i = −(∂2
xu)i + 2

sin2 x
ui , (7.3)

with
(∂2

xu)i =
N∑

j,k≥0
(B′′)ij(B−1)jkuk , (7.4)

where (B′′)ij = ∂2
xej(x)|xi

and (B)ij = ej(xi). These preparations transform the PDE (7.1) into
an ODE system, which can be solved numerically. For the initial data we write

u(t, x)|t=0 =ε
∑
l≥0

(αl(0) + ᾱl(0)) el(x) , (7.5)

=
∑
l≥0

flel(x) , (7.6)

∂tu(t, x)|t=0 =ε
∑
l≥0

iωl (αl(0) − ᾱl(0)) el(x) , (7.7)

=
∑
l≥0

plel(x) , (7.8)

c.f. (5.3). Therefore we get

αl(0) = 1
2ε

∫ π

0

(
u(0, x) − i

ωl

∂tu(0, x)
)

el(x) (7.9)

= 1
2ε

(
fl − i

ωl

pl

)
, (7.10)
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and for two mode initial data α(0) = 1
2(1, 1/2, 0, ...)

u(t, xi)|t=0 =ε
(

e0(xi) + 1
2e1(xi)

)
, (7.11)

∂tu(t, xi)|t=0 =0 . (7.12)

We integrate the system of ODE using Mathematica’s NDSolve. Now to compare this solution
with the resonant system we will compare the coefficients cj(t) from (5.3), i.e.

cj(t) =
N∑

i≥0
(B−1)jiui(t) , (7.13)

for the PDE solution.

7.2 Numerical evolution of the resonant system
We truncate our system to 64-modes

2iωn
dαn

dτ
=

64∑
jlm

j+l=m+n

Sjlmnαjαlᾱm , (7.14)

and solve it using fourth order Runge-Kutta method. The coefficients calculated from the resonant
system are given by

c̃j(t) = ε
(
αj(ε2t)eiωjt + ᾱj(ε2t)e−iωjt

)
. (7.15)

We conclude from Fig 7.2.0 that the truncated resonant system (7.14) derived in Sec. 5 is a valid
approximation for the PDE solution in timescales t/ε2. As ε → 0 the resonant system solution
converges to the PDE solution. But due to the scaling property (5.58) we can conclude about
the behaviour of solutions in the limit ε → 0, making numerical calculations very cost efficient.
Hence the resonant system approximates the PDE solution sufficiently.
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Figure 7.2.0: Evolution of the second mode of the truncated resonant system (blue) and the
PDE solution (orange) with two mode initial data. Top panel. Size of perturbation ε = 0.1.
Bottom panel. Size of perturbation ε = 0.05. The resonant system approaches the PDE solution
as ε → 0.
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Chapter 8

Dynamics of the resonant system

In this section, we will study the dynamics of the resonant system that we derived in Sec. 5.5.
We will start with the simplest form of initial data, that is, one-mode initial data. Since single-
mode initial data remains stationary, we proceed with two-mode initial data leading to non-trivial
evolution. While initially only the lowest-two modes are excited, the resonant system (5.57)
induces energy transfer to higher-n modes. The evolution of two-mode initial data suggest that
the solutions stay on an invariant manifold as in [22]. We then solve the equations describing the
dynamics on this invariant manifold explicitly and show that the motion on the invariant manifold
is periodic and the range of motion is bounded for all solutions within this ansatz. In the end we
will look at perturbed two mode initial data and generic initial data, and numerically compute
their solutions for long times.

8.1 One-mode initial data
The resonant system (5.55) admits solutions of the form

αn(τ) = Ane−iλnτ , (8.1)

with time-independent frequencies λn = λ − nΩ and coefficients An for some real λ and Ω.
These solutions we call stationary states, because there is no energy transfer between the modes.
Inserting (8.45) into (5.55) we get the following nonlinear ’eigenvalue’ problem

ωn(λ − nΩ)An =
++−∑
ijk

SijknAiAjĀk . (8.2)

The simplest solutions of this algebraic system are the one-mode stationary states with Ω = 0

αn(τ) = cδNne
−i

SNNNN
ωN

|c|2τ
, (8.3)

for any non-negative integer N , c ∈ C. Hence solutions with one-mode initial data, such as

αn(0) = (1, 0, 0, 0, 0, ...)T , (8.4)

remain stationary as the solutions in (8.3) do not allow energy transfer between the modes.

8.2 Three-dimensional invariant manifold
In this chapter we give a similar analysis of the resonant system (5.55) as in [1]. Although,
the interaction coefficients of the resonant system given in (8.26) does not fulfill the symmetry
assumptions made in [1], we are still able to derive a three dimensional invariant subspace with
remarkable properties.
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8.2.1 Derivation
In [1] the authors have found a class of resonant systems, which all arise from cubic non-linearity.
Such systems all admit a perfectly resonant spectrum and are of the form

i
dβn

dτ
=

++−∑
mkl

Cnmklβkβlβ̄m =
∞∑

m=0

n+m∑
k=0

Cnmk,n+m−kβ̄mβkβn+m−k , (8.5)

with C0000 = 1. The coefficients are symmetric under simultaneous perturbation (n ↔ m), (k ↔
l) and under pair interchange (n, m) ↔ (k, l). These infinite-dimensional Hamiltonian systems
admit special analytic solutions and a complex conserved quantity. Following their work [1] we
will bring (5.57) into the same form as (8.5) by the substitution αl = βl/

√
ωl, the redefinition

of interaction coefficients

Cnmkl = Snmkl√
ωnωmωkωl

ω2
0

S0000
, S0000 = − 40

3π
, (8.6)

and a suitable rescaling of time τ → τ S0000
2ω2

0
.

Similar to [1] we find that

Z =
∑
n≥0

√
(n + 1)(n + G)β̄n+1βn , G = 4 , (8.7)

is a conserved quantity. The conservation can be shown numerically as seen in Fig. 8.2.0.
Motivated by [1, 22] and the evolution of two-mode initial data, see Fig. 8.2.1. We propose

that the solution stays on an invariant manifold of the form

βn(τ) = fn (b(τ) + na(τ)) p(τ)n , fn =
√

(n + 1)(n + 2)(n + 3)
6 , (8.8)

Note that for p → 0 with b and (a − b)p finite, two mode initial data is included in the ansatz
(8.8). Thus, in the language of [1] our system is of the G = 4, γ = 5/8 class/type. Following
[1] we introduce the definitions

g(n,m)
p =

n+m∑
k=0

kp fkfn+m−k

fnfm

Cnmk,n+m−k , (8.9)

Fp(x) =
∞∑

k=0
kpf 2

k xk , (8.10)

Performing the sums, we find that g(n,m)
p with p = 0, 1, 2 has to satisfy

g
(n,m)
0 = 1 , (8.11)

g
(n,m)
1 = 1

5 (n + 4m) , (8.12)

g
(n,m)
2 = 1

25
(
n2 + 16m2 + 4(n + m) + 10nm

)
, (8.13)

to give closure to the ansatz (8.8). Fp(x) is then given by

Fp(x) =
(

x
d
dx

)p 1
(1 − x)G

, G = 4 , (8.14)

cf. [1]. Inserting (8.8) into (8.5) we get

i

(
ḃ + ȧn + (b + an) n

ṗ

p

)
=

∞∑
j=0

f 2
j xj(b̄ + āj)

n+j∑
k=0

fkfn+j−k

fnfj

Cnjk,n+j−k(b + ak)(b + a(n + j − k)) , (8.15)
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Figure 8.2.0: Evolution of the conserved quantity Z for two mode initial data truncated to 64
modes. Top panel. The real part of the relative error Z−Z0

Z0
. Bottom panel. The imaginary part

of the relative error Z−Z0
Z0

. We conclude that Z is conserved over the course of simulation.

where x = |p|2 and dot denotes differentiation with respect to τ . In terms of g(n,m)
p this yields

i

(
ḃ + ȧn + (b + an) n

ṗ

p

)
=

∞∑
j=0

f 2
j xj(b̄ + āj)

(
−a2g

(n,m)
2 + a2g

(n,m)
1 (j + n) + bg

(n,m)
0 (a(j + n) + b)

)
. (8.16)

By the definitions (8.11)-(8.13), the RHS of (8.16) is a quadratic polynomial in n and m.
Performing the summation over j using (8.10) and (8.14), transforms the RHS into a quadratic
polynomial in n. The LHS is a quadratic polynomial in n as well. Comparing the coefficient of
both polynomials we get three ordinary differential equations for the functions a, b and p. The
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Figure 8.2.1: Mode amplitude spectrum for two-mode initial data truncated to 64 modes. The
slope of the amplitude spectra is oscillating and showing turbulent behaviour. This oscillating
behaviour is indicating stability of two-mode initial data. The kinks are due to truncation of the
resonant system to 64 modes. They do not reflect the true dynamics of the system [69].

ansatz (8.8) is indeed preserved by (8.5) if the following differential equations are satisfied

iȧ =
4a2

(
x(64x + 11)ā + (−16x2 + 17x − 1) b̄

)
25(x − 1)6 −

21ab
(
4xā − (x − 1)b̄

)
25(x − 1)5 , (8.17)

iḃ = −
16a2x2

(
(4x + 2)ā − (x − 1)b̄

)
5(x − 1)7 +

5b2
(
4xā − (x − 1)b̄

)
5(x − 1)5 (8.18)

−
20abx

(
(4x + 1)ā − (x − 1)b̄

)
5(x − 1)6 , (8.19)

iṗ = −
4ap

(
4xā − (x − 1)b̄

)
25(x − 1)5 , (8.20)

Using the ansatz (8.8) and performing the sums in (6.1)-(6.3), the conserved quantities can
be expressed in terms of a, b and p as follows:

J̃ =
−8(x − 1)x Re

(
ab̄
)

+ 4x(4x + 1)|a|2 + (x − 1)2|b|2

(x − 1)6 , (8.21)

N = −
4x
(
(x − 1)

(
(x − 1)|b|2 − 2

(
4x Re

(
ab̄
)

+ Re
(
ab̄
)))

+ (16x2 + 13x + 1) |a|2
)

(x − 1)7 ,

(8.22)

H̃ = 1
5(x − 1)12

[
16a2x2

(
10
(
−4x2 + 3x + 1

)
āb̄ +

(
80x2 + 40x + 3

)
ā2 + 5(x − 1)2b̄2

)
+ 5b2(x − 1)2

(
(x − 1)b̄ − 4xā

)2

−40ab(x − 1)x
((

−8x2 + 7x + 1
)

āb̄ + 4x(4x + 1)ā2 + (x − 1)2b̄2
)]

, (8.23)

Z = −
4p̄
(
(x − 1)

(
−b(4x + 1)ā − 5axb̄ + (x − 1)|b|2

)
+ 10x(2x + 1)|a|2

)
(x − 1)7 , (8.24)

Note the following relation
H̃ = J̃2 − S2 , (8.25)
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where

S = 4
√

2
5

x

(x − 1)6 |a|2 , (8.26)

The conserved quantities (8.21)-(8.23) can be related to the conserved quantities defined in
(6.1)-(6.3) by

J̃ =
∑

n

|βn|2 = J , (8.27)

N =
∑

n

n|βn|2 = E − J , (8.28)

H̃ =
∑

jlmn
j+l=m+n

ω2
0

S0000
Sjlmnβjβlβ̄mβ̄n = ω2

0
S0000

H (8.29)

The conservation of Z can be verified by (8.17)-(8.20) but we make no claim about the con-
servation of (8.7) outside of the ansatz (8.8). The system (8.17)-(8.20) can be solved explicitly
using the conservation laws. For our purposes we will limit ourselves to the inspection of x from
which we can conclude the behaviour of the spectrum |βn|2.

8.2.2 Periodic motion on the invariant manifold
In the following we analyse the motion on the invariant manifold (8.8). Hence we show that x is
periodic in time and therefore the spectrum |βn|2. First we start off by expressing |a|2, |b|2 and
Re(ab̄) as functions of the conserved quantities. From (8.26) we get an expression for |a|2 and
therefore for the other two quantities

|a|2 =

√
5
2S(x − 1)6

4x
, (8.30)

|b|2 =1
2(x − 1)4

(
2N(x − 1) + J(8x + 2) + 5

√
10Sx

)
, (8.31)

Re
(
ab̄
)

=
(x − 1)5

(
2N(x − 1) + 8Jx +

√
10S(9x + 1)

)
16x

. (8.32)

The equation (8.20) can be used to get an evolution for ẋ

ẋ

x
= 8

25(x − 1)4 Im(ab̄) (8.33)

Next, defining
y = x

1 − x
(8.34)

and making use of (Im(ab))2 = |a|2|b|2 − (Re(ab))2, together with (8.30)-(8.32) one can express
the square of ẏ in terms of the conserved quantities

(ẏ)2 = −2N2 + 2
√

10NS − 5S2

1250 + 2
625y

(
4NJ +

√
10NS + 2

√
10JS − 25S2

)
− 2

625y2
(
8J2 + 25S2

)
, (8.35)

This equation is of the form of energy conservation for a one-dimensional harmonic oscillator
with the solutions

y = A sin (Ωτ + φ) + B , φ = const , (8.36)

31



where we can read off the values of

Ω = 1
25

√
16J2 + 50S2 , (8.37)

A = ±

√
S
(√

10J − 5S
)

(2N2 + 8NJ − 25S2)

8J2 + 25S2 , (8.38)

B = 4NJ +
√

10NS + 2
√

10JS − 25S2

16J2 + 50S2 . (8.39)

Therefore y is periodic, which transfers to x and hence βn being periodic through (8.30)-(8.32)
and

|βn|2 = f 2
n

(
|b|2 + 2n Re(āb) + n2|a|2)

)
xn . (8.40)

The solution y oscillates between y+ and y− given by y± = B ± A and so we can conclude that
the range of motion of y, described by (1 + y+)/(1 + y−) is uniformly bounded for all solutions.
To show this we write

1 + y+

1 + y−
= (1 + y+)2

(1 + y+)(1 + y−) ≤ (1 + y+ + y−)2

1 + y+ + y− + y+y−
. (8.41)

This form has the advantage that we can express y+ + y− and y+y− directly through the coeffi-
cients of the polynomial (8.35) which is simpler than using the explicit expressions (8.37)-(8.39).
More specifically

(1 + y+ + y−)2

1 + y+ + y− + y+y−
=

4(N + 2J)2
(
4J +

√
10S

)2

(8J2 + 25S2)
(
2N2 + 2N

(
8J +

√
10S

)
+ 32J2 + 8

√
10JS + 5S2

)
≤ 2(4J +

√
10S)2

8J2 + 25S2 . (8.42)

Since we have

J = |4xa − (x − 1)b|2
(x − 1)6 +

√
5
2S ≥

√
5
2S , (8.43)

it follows that
1 + y+

1 + y−
≤ 24

5 . (8.44)

This implies that for fixed y− the maximum value of |p| is bounded. Consequently solutions
within the invariant manifold remain regular, and in particular any combination of two lowest
mode initial data. In contrast, if p was not bounded and therefore x → 1, the decay of the
spectrum 8.40 would decrease, indicating instability, as it was observed in [4]. A bound on x also
means a bound on the Sobolev norms (4.33) from which stability follows.

8.2.3 Stationary states
As in Sec. 8.1 the resonant system (5.57) admits solutions of the form

αn(τ) = Ane−iλnτ , (8.45)

with time-independent frequencies λn = λ − nΩ and coefficients An for some real λ and Ω. We
now consider these stationary states within the ansatz (8.8) where they take the form

b(τ) = b(0)e−iλτ , a(τ) = a(0)e−iλτ , p(τ) = p(0)e−iΩτ . (8.46)
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Substituting this into the system (8.17)-(8.20), we can solve it explicitly. First we consider the
case a(0) = 0. Here the solution is given by

b(t) = c exp
(

− i|c|2τ
(x − 1)4

)
, (8.47)

and p(t) = const and x = |p|2. We plug this solution into (8.40) which leads to

|αn|2 = f 2
n

ωn

(
|b(0)|2

)
xn . (8.48)

For x → 0 (two-mode-initial data) this yields an exponential decay as in Fig. 8.2.2. Therefore
we observe that the solution (8.47) approaches the one-mode stationary solution, where only the
zeroth mode is initially excited, asymptotically. Non-zero a and Ω = 0 yields

b(0) = −4cx, a(0) = (1 − x)c, λ = − 12|c|2x
5(x − 1)4 , (8.49)

and therefore the spectrum behaves as

|αn|2 ∼ f 2
n

ωn

(
n2|a(0)|2 + O(x) + O(x2)

)
xn . (8.50)

As we take x → 0 the zeroth mode will not be excited in the solution (8.49), see Fig. 8.2.3.
In addition, x is restricted by the condition that κ :=

√
x2 − 22x + 1 should be real. Therefore

for x < x∗ = 11 − 2
√

30 ≈ 0.0455 there exists a pair of two-parameter families of stationary
states with Ω ̸= 0 and Re (c) ̸= 0

a±(0) = (1 − x)c , (8.51)

b±(0) = −1
2c

(
(9x + 1) ± κ

sgn(Re(c))

)
, (8.52)

Ω± = − 2|c|2

25(x − 1)3

(
(x + 1) ± κ

sgn(Re(c))

)
, (8.53)

λ± = |c|2

50(x − 1)3

(
−(41x + 25)κ sgn(Re(c))

50(x − 1) ± (25 − 41x)
)

. (8.54)

Inserting these solutions into the ansatz (8.8) yields the spectrum

|αn|2 = f 2
n

ωn

|c|2
(1

4(9x + 1) ± κ)2 − n(1 − x)((9x + 1) ± κ) + n2(1 − x)2
)

xn . (8.55)

For x → 0, κ → 1 we get the following for the ’+’ solution in (8.51)-(8.54)

|αn|2 ∼ f 2
n

ωn

(
1 − 2n + n2 + O(x) + O(x2)

)
xn . (8.56)

Here we see that the decline at the first mode is due to n = 1 being the root of the polynomial
1 − 2n + n2, see Fig. 8.2.4. For the ’−’ solution the spectrum approximates to

|αn|2 ∼ f 2
n

ωn

(
n2 + O(x) + O(x2)

)
xn . (8.57)

Analogously to the nonzero a and Ω = 0 case the zeroth mode will not be excited in this
stationary solution as in Fig. 8.2.4. The xn term dominates in all solutions for larger n leading
to an exponential decay. The analytic solutions of the stationary states coincide with the data
from the truncated resonant system, confirming the ansatz (8.8).
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Figure 8.2.2: Mode amplitude of a stationary state with a(0) = 0 and Ω = 0 showing expo-
nential decay. The initial parameters are p(0) = 0.001 and c = 0.1.
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Figure 8.2.3: Mode amplitude of a stationary state with a(0) ̸= 0 and Ω = 0. The initial
parameters are p(0) = 0.001 and c = 0.6
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Figure 8.2.4: Mode amplitude of a stationary state of the ’+’ family of solutions with a(0) ̸= 0
and Ω = 0. The initial parameters are p(0) = 0.01 and c = 1.
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Figure 8.2.5: Mode amplitude of a stationary state of the ’−’ family of solutions with a(0) ̸= 0
and Ω = 0. The parameters are p(0) = 0.01 and c = 1
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8.3 Three-mode initial data
After we were able to show analytically that the evolution of two-mode initial data stays bounded,
it is only natural to consider three-mode initial data now. For this we choose the initial data to
be of the form

αn(0) = 1√
ω2

0(2 + δ2)

(
1,

ω0

ω1
,
ω0

ω2
δ, 0, ...

)
, (8.58)

so that the total energy (6.2) does not change with different values of δ ∈ (0, 1). Numerical
simulations show that the Sobolev norms (4.33), which are a measure of turbulent behaviour,
i.e. energy transfer from lower l-modes to higher l-modes, are not bounded, except for δ < 0.44
and δ > 0.8 see Fig. 8.3.1. The Sobolev norms vary with different δ. Small δ corresponds to
initial data with the lowest two modes excited and δ → 1 to initial data with the first and second
mode excited. Therefore a small Sobolev norm for δ close to 0 and close to 1 is obvious from
our analysis before. A maximum is reached at δ = 0.5 and δ = 0.7, c.f Fig. 8.3.2, however
for 0.8 < δ < 1 the norms decrease again. Further numerical examination (longer times τ) of
the δ = 0.7 and δ = 0.8 norms show that truncation to 64 modes was not enough and longer
evolution is needed. The Sobolev norms Fig. 8.3.3 and mode amplitude spectrum for delta 0.7,
we see that the norms seem saturated and the spectrum is equilibrating, see Fig. 8.3.5. For the
δ = 0.8 on the other hand, higher Sobolev norms are not bounded and the spectrum 8.3.4 is
slowly increasing Fig. 8.3.6. The variation between different s norms indicates that energy is
transferred from lower to higher frequencies and if the norms are saturated, the energy also flows
back.

To conclude stability for three mode initial data, we would have to expand our numerical
simulation to longer τ and higher l modes, and then confirm that also higher Sobolev norms are
bounded for initial data with 0.44 ≤ δ ≤ 0.8. Because of our limitation to Mathematica, this
cannot be done in a reasonable time.

0 2000 4000 6000 8000 10000

50

100

500

1000

5000

104

Figure 8.3.1: Evolution of Sobolev norms with s = 5 for three-mode initial data for a 64-mode
truncated resonant system and with different initial data δ = 0.1 (dark blue), 0.16 (dark orange),
0.33 (green), 0.41 (red), 0.44 (purple), 0.5 (brown), 0.6 (blue), 0.7 (yellow), 0.8 (lilac), 0.9 (dark
green). We do not see saturation for 0.44 ≤ δ ≤ 0.8.

36



0.2 0.4 0.6 0.8

0

2000

4000

6000

8000

10000

12000

14000

Figure 8.3.2: Maxima of s = 5 Sobolev norms for different perturbations of two-mode initial
data. The Sobolev norm takes a minimum for two mode initial data. The most turbulent
behaviour can be observed in the region 0.4 ≤ δ ≤ 0.8.
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Figure 8.3.3: Sobolev norms with s = 2, ..., 6, with different line colors, from bottom to top
and δ = 0.7 initial data. We cannot conclude saturation for this initial data. Further examination
is needed.
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Figure 8.3.4: Sobolev norms with s = 2, ..., 6, with different line colors, from bottom to top
and δ = 0.8 initial data. Even though lower norms seem to be saturated, higher norms are not.
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Figure 8.3.5: Evolution of the mode amplitude spectrum for δ = 0.7 three-mode initial data.
The spectrum equilibrates.
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Figure 8.3.6: Evolution of the mode amplitude spectrum for δ = 0.8 three-mode initial data.
The spectrum grows with τ .

8.4 Generic initial data
We found that the solutions of the resonant system for two mode initial data are time-periodic.
For three-mode initial data we were not able to conclude stability. To further examine the question
of instability we consider a generic type of initial data and compare our results.

We therefore choose a Gaussian like localized distribution of the form

u(t, x)|t=0 = 0 , ∂tu(t, x)|t=0 = ε
sin2 x

2 exp
(

−4 sin2 x

2

)
. (8.59)

For the resonant system (5.57), we must bring this initial data into a compatible form. Evaluating
the condition (8.59) with the ansatz (5.51) yields

u(t, x)|t=0 = ε
∑
j≥0

(αj(0) + ᾱj(0)) ej(x) = 0 , (8.60)

with eigenfunctions ej(x) defined in (4.28). From this we conclude that

αj(0) = −ᾱj(0) . (8.61)

The other initial condition of (8.59) yields

∂tu(t, x)|t=0 =ε
∑
j≥0

iωl (αj(0) − ᾱj(0)) ej(x)

=ε
∑
j≥0

2iωlαj(0)ej(x) . (8.62)

Now the initial condition for the resonant system is give by

αj(0) = 1
2iωj

∫ π

0
∂tu(0, x)ej(x)dx

= 1
2iεωj

∫ π

0
ε
sin2 x

2 exp
(

−4 sin2 x

2

)
ej(x)dx . (8.63)

Numerical evolution of Sobolev norms (4.33) shows saturation of higher norms, see Fig. 8.4.1.
The variation between different s norms indicates turbulent energy transfer from lower l-modes
to higher l-modes and back, as was observed in [24]. This energy transfer is also noticed in the
spectrum of the mode amplitude, see Fig. 8.4.2.
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Figure 8.4.1: Sobolev norms with s = 1, ..., 6, with different line colors, from bottom to top
for ε = 100 generic initial data. Higher Sobolev norms vary evidently from lower norms. This
indicates energy flow from low l-modes to higher l-modes The s = 1 norm corresponds to the
conserved quantity E.
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Figure 8.4.2: Evolution of the mode amplitude spectrum for generic initial data with ε = 100.
The spectrum equilibrates.
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Chapter 9

Summary and Conclusion

In this thesis we studied the dynamics of the Yang-Mills field on the Einstein Universe. Motivated
by the instability of Anti-de Sitter spaces, we chose this toy model because of the conformal
invariance of the Yang-Mills field in 3 + 1 dimension and the conformal relation between AdS
spacetime and the northern hemi-sphere of the Einstein universe R × S3. We reviewed the last
decades of research on AdS instability focusing on the conjecture by Bizoń and Rostworowski [4].
After stating basic definitions of general relativity, we gave an introduction to AdS spacetimes
and the Einstein universe. We then derived the equations of motion of the Yang-Mills field and
obtained a 1 + 1 dimensional nonlinear PDE. This PDE admits two static solutions, each of
them in a different topologically distinct sector. Because of the previous studies by Maliborski
[24] we decided on perturbations around the static solution S(x) = 1 with a fully resonant
linear spectrum. It has been shown [70] that an asymptotically resonant spectrum, as for the
other solution S(x) = cos x is not strong enough to trigger turbulent behaviour and instability.
Performing perturbative analysis of small solutions around the static solution we found secular
terms, generated by nonlinearities. These secular terms falsify naïve perturbation theory, but can
be removed introducing a ’slow’ time, c.f. [17, 60, 71].

Repeating the perturbative analysis with two timescales, we obtained a coupled system of
ODEs (resonant system) with a scaling property, that lets us conclude about the behaviour
of arbitrarily small perturbations. We were able to find an explicit formula for the interaction
coefficients of the resonant system. The system also admits symmetries from which we concluded
three conserved quantities and showed their conservation analytically and numerically for two-
mode initial data.

We showed that the resonant approximation does indeed give a good approximation to the
nonlinear PDE and approaches the PDE solution as the size of the perturbation decreases. With
the scaling property we can conclude about solutions with the same initial data in the limit ϵ → 0
from just calculating one solution.

Following the analysis of [1] we proposed that the resonant system admits a three-dimensional
invariant manifold, on which the dynamics can be solved explicitly. These solutions show exact
returns of the energy spectrum and their motion is bounded, i.e. the energy transfer from lower-
to higher frequency modes cannot be made more turbulent by tuning initial conditions. The
existence of time-periodic solutions is due to the lack of dissipation of energy [7]. In this analysis
we have also found an additional complex valued conserved quantity and nontrivial stationary
states.

To further examine the dynamics of our model we considered different kind of three-mode
initial data. These solutions mostly showed saturated higher Sobolev norms and an equilibrated
amplitude spectrum. The growth of the Sobolev norms lets us conclude to energy transfer from
lower- to higher frequency modes. However some of the initial data has continuously increasing
Sobolev norms and monotonically decreasing slopes of the amplitude spectrum. For this initial
data and other data close to it, we have to extend our numerical calculations to longer times
and more modes. Because of our restriction to Mathematica this cannot be done in a reasonable
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times, but will be completed in the near future. To close our examination of the dynamics of
the resonant system we considered generic initial data. We observed turbulent energy transfer,
equilibrated energy spectrum and saturated Sobolev norms. In contrast to [13] we do not observe
the typical behaviour for the evolution of the mode amplitude, that indicates instability.

For the future one can extend the numerical studies on three-mode initial data by choosing
a faster programming language and making use of parallel computing. The search for more
stationary states can be continued and their stability properties analysed.

We have derived the resonant system for the Yang-Mills field on a sphere and studied its
dynamics. This toy model does not exhibit instability as Einstein-AdS, because the energy transfer
stops at some point in time, in contrast to what has been observed in [13], and is therefore not
the best model to consider. However non-linear partial differential equations on bounded domains
have interesting non-trivial dynamics, such as turbulent behaviour, time-periodic and stationary
solutions, and are worth investigating.
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