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ABSTRACT

Lattice quantum chromodynamics (QCD) is a very successful tool to
compute QCD observables non-perturbatively from first principles.
Therefore, the QCD path integral is evaluated on a discrete Euclidean
3+1-dimensional lattice.

A typical evaluation consists of two parts. First, sampling points,
called configurations, are generated at which the path integral is evalu-
ated. This is typically achieved by Markov chain Monte Carlo
(MCMC) methods which work very well for most applications but
also have some drawbacks. Typical issues of MCMC methods include
their slow error scaling and the numerical sign-problem, where the
numerical evaluation of an integral is extremely difficult due to a
highly oscillatory integrand. Alternatives to MCMC are needed for
these problems. The second part of the evaluation is the computa-
tion of the integrand on the configurations and includes the computa-
tion of quark connected and disconnected diagrams. Improvements
of the signal-to-noise ratio have to be found since the disconnected
diagrams, though their estimation being very noisy, contribute signif-
icantly to physical observables.

Methods are proposed to overcome the aforementioned difficul-
ties in both parts of the evaluation of the lattice QCD path integral.
We tested the exact eigenmode reconstruction with deflation method
for the computation of quark disconnected diagrams and applied
it to a 16> x 32 sites twisted mass lattice with a lattice spacing of
a = 0.079 fm and a pion mass of m,; = 380 MeV. The runtime of the
evaluation is reduced 5.5-fold by the tested method compared to the
standard method and thus promises a more efficient and accurate
estimate for the observable.

In addition, we tested the recursive numerical integration method,
which simplifies the evaluation of the integral to address the difficul-
ties in MCMC. We applied the method in combination with a Gauss
quadrature rule to a one-dimensional, quantum-mechanical topologi-
cal osciallator model. In practice, we found that we can compute error
estimates that scale exponentially to the correct result. A generaliza-
tion to higher space-time dimensions can be done in the future.

Moreover, we developed the symmetrized quadrature rules to ad-
dress the sign-problem. We applied them to one-dimensional QCD
with a chemical potential which gives rise to the sign-problem. We
found that this method is capable of overcoming the sign-problem
completely and is very efficient for one variable. Improvements can
be made for the efficiency of multi-variable scenarios in the future.
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ZUSAMMENFASSUNG

Gitter Quantenchromodynamik (QCD) ist ein sehr erfolgreiches Instru-
ment zur nicht-perturbativen Berechnung von QCD Observablen. Dabei
wird das QCD Pfadintegral auf einem diskreten, euklidischen,
3+1-dimensionalen Gitter ausgewertet.

Eine typische Auswertung besteht aus zwei Teilen. Zuerst werden Stiitz-
stellen, sogennante Konfigurationen, generiert, an denen das Pfadintegral
ausgewertet wird. In der Regel werden daftir Markov chain Monte Carlo
(MCMC) Methoden verwendet, die fiir die meisten Anwendungen sehr
gute Ergebnisse liefern, aber auch Nachteile bergen. Dazu gehoren die
langsame Fehlerskalierung und das numerische Vorzeichenproblem, bei dem
die numerische Auswertung eines Integrals durch einen hochoszillieren-
den Integranden sehr aufwendig ist. Alternativen zu MCMC Methoden
werden fiir diese Probleme benétigt. Im zweiten Teil der Auswertung wird
der Integrand auf den Konfigurationen ausgewertet. Dies beinhaltet die
Berechnung von Quark zusammenhidngenden und unzusammenhéngen-
den Diagrammen. Letztere tragen mafigeblich zu physikalischen Observa-
blen bei, jedoch leidet deren Berechnung an grofsen Fehlerabschédtzungen,
sodass Verbesserungen des Signal-Rausch-Verhiltnisses benttigt werden.

In dieser Arbeit werden Methoden prasentiert, um die beschriebenen
Schwierigkeiten in beiden Auswertungsteilen des QCD Pfadintegrals an-
zugehen. Fiir die Berechnung der Quark unzusammenhédngenden Dia-
gramme haben wir die Methode der exakten Eigenmodenrekonstruktion
mit Deflation getestet und auf ein Gitter, berechnet mit chiral rotiertem
Massenterm (Twisted-Mass Fermionen), mit 16% x 32 Punkten, einem Git-
terabstand von a = 0.079 fm und einer Pionenmasse von m, = 380 MeV
angewandt. Unsere Methode braucht fast 5.5 mal weniger Laufzeit im
Vergleich zur Standardmethode und verspricht somit eine effizientere be-
ziehungsweise genauere Abschitzung von Observablen.

Auflerdem haben wir die rekursive numerische Integration zur Verein-
fachung von Integralauswertungen getestet, um die Probleme von MCMC
Methoden zu adressieren. Wir haben die Methode in Kombination mit ei-
ner Gaufs Quadraturregel auf das eindimensionale, quantenmechanische
Modell des topologischen Oszillators angewandt. In der Paxis konnten
wir exponentiell skalierende Fehlerabschidtzungen berechnen. Der néchs-
te Schritt ist eine Verallgemeinerung zu hoheren Raumzeit Dimensionen.

Zusitzlich haben wir die symmetrisierten Quadraturregeln entwickelt,
um das Vorzeichenproblem zu umgehen. Wir haben diese auf die eindi-
mensionale QCD mit chemischem Potential, das zum Vorzeichenproblem
fihrt, angewendet. Unsere Berechnungen zeigen, dass diese Methode da-
zu geeignet ist, das Vorzeichenproblem zu beseitigen und sehr effizient
fiir eine Variable angewendet werden kann. Zukiinftig kann die Effizienz
fiir mehr Variablen verbessert werden.
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INTRODUCTION

Our understanding of the smallest building blocks of our world is
based on quantum physics. The standard model of particle physics
(SM) is today’s theory of all particles and interactions of visible mat-
ter in the universe. It combines Quantum Chromodynamics (QCD),
describing strong interactions, with the electroweak interaction the-
ory to form a local quantum field theory with local gauge group
SU(3) x SU(2) x U(1). Additionally, it includes six quarks, six lep-
tons, their corresponding antiparticles and the Higgs-field. Since the
introduction of the SM all experiments confirmed the theory, the most
recent and popular ones are the discovery of the top-quark [3, 7] and
the Higgs-boson [2, 34].

Despite the great success of the SM there are observations which
cannot be explain by it. There has been striking evidence from many
different observations [1, 9, 37, 78] for non-luminous matter in the
universe, called dark matter, whose nature is unknown. Moreover,
the amount of CP-violation of the standard model is insufficient to
account for the generation of an asymmetry between matter and an-
timatter in the early universe [24, 32].

There are many conceptual questions about the SM as well, such as
why masses and couplings of the particles differ by orders of magni-
tudes, why strong interactions show no CP-violation experimentally
while it is theoretically possible, how electroweak and strong interac-
tions can be unified, if gravitation can be quantized and included in
the model, and many more.

There are several experiments around the world and in space which
try to answer these questions, including telescopes, particle colliders
and low energy experiments. Today, the most powerful collider is
the Large Hadron Collider (LHC) at the research facility CERN in
Switzerland. This machine collides protons at a center-of-mass en-
ergy of order 10 TeV and measures the produced particles. To be able
to achieve accurate results from these collisions, the SM has to be
understood as good as possible. Because the quarks in the colliding
protons interact via QCD, the understanding of QCD interactions is
crucial for the correct evaluation of all experimental data.

Although QCD is included in the SM and has already been tested
successfully, at least in the high energy regime, it is difficult to com-
pute QCD observables at low energies. At energies smaller than
Aqcp ~ 250MeV, perturbation theory breaks down. Responsible is
the non-abelian nature of QCD, which results in charged gluons,
the mediators of the strong interaction and allows self-interactions



INTRODUCTION

among the gluons. This leads to an anti-screening effect of the strong
charge and to a large coupling constant at energies smaller than Agcp,
such that perturbation theory is not applicable in this regime. Two
different phenomena arise at the different energy scales: At low ener-
gies the quarks are bound, confined, in colorless states called hadrons.
At large energies the quarks are asymptotically free. Although the
energies used at the LHC are large, the evaluation of experimental
measurements for physical results needs low energy input, e.g. the
distribution of quarks in the colliding protons. Additionally, results
for some individual processes need non-perturbative input values. It
is desirable to derive these inputs directly from first principles of
QCD.

Kenneth Wilson introduced lattice gauge theory in 1974 [82] which
turned out to be a powerful tool for non-perturbative calculations in
QCD from first principles. The lattice QCD computation of expecta-
tion values of observables is based on Feynman’s path integral. In this
formalism the amplitude of interacting fields ®, e.g. a state |®,(x, t1))
going to a state |®y(y, t2)), is computed by integrating over all pos-
sible field configurations [®], weighted with e’[®/ dependent on the
action S[®] of this field configuration. If the path integral is trans-
formed to a discretized Euclidean space with Euclidean action S¢[®]
defined on a discretized space-time lattice, it can be interpreted as an
evaluation of a finite statistical system with Boltzmann weight e ~5[®.
Therefore, already tested numerical methods from statistical physics
can be applied to evaluate the integral. The continuum QCD field
theory is realized at a critical point of the statistical system. QCD
describes the interaction of gluons and quarks, therefore the lattice
QCD path integral integrates over all possible bosonic link field and
fermionic quark field configurations. Link variables are gauge trans-
porters that relate the color spaces between two neighboring lattice
sites.

Lattice observables are computed by correlation functions between
different lattice sites via the lattice QCD path integral. Therefore this
path integral, involving fermions and links, needs to be evaluated. Be-
cause the fermion action is bilinear, the fermions can be integrated out
analytically by taking into account all possible Wick contractions of
the involved quark fields. This results in two distinct diagram types:
connected diagrams propagate the quark fields between two lattice
sites and disconnected diagrams propagate the quark fields to and
from the same site. The quark propagator is the inverse of the large
Dirac matrix which is dependent on the link fields. The Dirac matrix
has to be inverted numerically for specific link configurations when
the path integral is evaluated. This is numerically very demanding
because the Dirac matrix has typically at least O(10° x 10°) entries.
In contrast to the connected diagrams, the inversion of the Dirac ma-
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trix for the disconnected diagrams needs stochastic input. Therefore
the disconnected diagrams have usually a low signal-to-noise ratio.

The bosonic path integral, that is the QCD path integral with inte-
grated out fermions, is approximated by using sampling points, link
configurations, drawn from a complicated Boltzmann distribution. In
most simulations this highly non-trivial drawing task is done by us-
ing Markov chain Monte Carlo (MCMC) methods. These methods
use importance sampling to draw sampling points preferably with a
large Boltzmann weight such that these points give a large contribu-
tion to the integral. Importance sampling can be done by creating a
Markov chain. A Markov chain is a stochastic process that generates
a sequence of link configurations, where the probability distribution
of each configuration only dependents on the previous configuration.
In lattice computations these Markov chains are created such that this
probability distribution converges to the desired Boltzmann distribu-
tion [31]. Therefore after some events in the sequence, the generated
link configurations can be used as sampling points for the bosonic
path integral.

TODAY’'S LATTICE COMPUTATIONS Finally, the computed lattice
observables should give estimates of real world quantities. Then it is
possible to compare the observables to an experimentally measured
quantity to check the correctness of the implemented QCD model and
to search for discrepancies which could come from new physics. Ad-
ditionally, a lattice result can give new insights into physics from first
principles and can give new predictions which could be tested exper-
imentally. To result in real world estimates, today’s lattice QCD sim-
ulations include the lightest four quarks, use physical quark masses
and go to small lattice spacing. In this setup the computation of sta-
tistically significant results needs runtimes of the order of months to
years, even on large-scale supercomputers. Additionally, at the preci-
sion of today’s simulations some contributions are significant which
were discarded before. This is the case for the computationally expen-
sive disconnected diagrams where quark fields propagate from and
to the same lattice site. Their computation increases the already large
runtime.

The runtime of the lattice computations depend on the accuracy of
the results that are needed. Using MCMC methods to evaluate the
bosonic path integral gives an error scaling, which leads to an asymp-
totic shrinking of the error with the number of link configurations
n by 1/+/n. This is a rather slow error scaling: to reduce the error
by one order of magnitude one needs two orders of magnitude more
configurations, which are time intensive to produce. Additionally, at
small lattice spacing, configurations in the Markov chain are highly
correlated and many configurations are needed to reach a specified
error estimate. This issue is called critical slowing-down. For some spe-
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cific systems the application of MCMC methods is especially difficult:
if the integrand of the bosonic path integral is complex and therefore
a highly oscillatory function, the near cancellations of positive and
negative contributions to the integral cannot be achieved with im-
portance sampled points from a Markov chain. This results in large
errors which scale exponentially with the lattice volume and is called
sign-problem. The sign-problem is for example the reason why simula-
tions of the early universe at the quark-gluon plasma phase (for large
values of the chemical potential) are not possible today.

NOVEL METHODS We applied and developed novel methods to re-
duce error estimates of standard path integral evaluations. On the one
hand we approached the noisy quark disconnected diagram compu-
tations. On the other hand we searched for alternatives to MCMC
methods for the evaluation of the bosonic path integral.

We applied the exact eigenmode reconstruction with deflation me-
thod to the computation of disconnected diagrams in order to reduce
the error estimate of their computations. This method combines the
ideas of using eigenvectors of the Dirac matrix in [74], and using
deflation, as e.g. in the initial guess deflation which is discussed in
detail in this thesis, such that less stochastic sources are needed in
the compuation to reach a specified error estimate. The method in-
verts the large Dirac matrix by using the matrix’s eigenvectors to
compute some part of the inverted matrix exactly. The remaining
part is computed stochastically after deflating the Dirac matrix with
its eigenvectors. We also combined the method with other improved
techniques which are already widely used for disconnected diagram
computations: stochastic sources [27], the one-end trick [4, 49, 72]
and even-odd preconditioning [39]. We implemented the method into
the Quda code [22, 36], which is highly parallelizable on graphic
cards. We applied the method using twisted mass fermions to a lat-
tice with 163 x 32 sites, lattice spacing 2 = 0.079 fm and pion mass
my; = 380MeV to get a first impression of its error estimates and
runtime in comparison to a standard method.

We searched for alternatives to MCMC methods to improve the
error scaling, avoid critical slowing-down and the sign-problem in
the evaluation of the path integral. We tested two polynomially ex-
act quadrature rules to approximate examples of bosonic integrals by
choosing sampling points deterministically, in contrast to importance
sampled points in Monte Carlo methods: the recursive numerical in-
tegration and the symmetrized quadrature rules. We applied both to
simplified models to test their abilities.

We used the recursive numerical integration method [58, 61] to
improve the error scaling and to avoid critical slowing-down. The
method uses the local coupling structure in the integrands of lattice
path integrals to simplify the evaluation of the corresponding inte-
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grals. In combination with an efficient quadrature rule this method
can give polynomially exact results. We applied the method with a
Gauss quadrature rule to the topological osciallator [25], a quantum-
mechanical system in one dimension, which has some similarities to
gauge theories.

We constructed the symmetrized quadrature rules to avoid the
sign-problem. Many methods have been developed to tackle the sign-
problem. The one described in [28, 29] uses MCMC to sample points
from a subgroup of the full symmetry group of the model. In con-
trast to this approach we used sampling points from a larger sym-
metry group of the model. This results in polynomially exact quadra-
ture rules where therefore we did not need any additional Monte
Carlo simulation. These quadrature rules are applicable to integrals
over compact groups U (N) and SU(N) for N < {2,3} and they are
based on the efficient quadrature rules on spheres in [57]. We applied
these rules first to the one-dimensional QCD [26] which is an over-
simplified QCD model with only one variable. We also applied it to
the topological oscillator, which has more integration variables and is
therefore computationally more expensive. We modified the method
to make it feasible for more variables by combining it again with
MCMC.

THIS THESIS This thesis is divided into two parts, addressing our
improvements in the computation of quark disconnected diagrams
and the evaluation of the bosonic path integral.

The first part approaches the computation of observables in lattice
QCD, specifically the computation of quark disconnected diagrams.
Here the second chapter introduces QCD and its discretization on
the lattice. It presents the path integral, its bosonic and fermionic
part, describes the computation of QCD observables on the lattice and
how they get contributions from quark connected and disconnected
diagrams. Finally it reviews some computations of disconnected dia-
gram contributions with twisted mass fermions to hadron structure
quantities.

The third chapter describes methods to improve disconnected dia-
gram computations. It first presents widely used and already tested
improved methods. Then it explains the exact eigenmode reconstruc-
tion with deflation method, its combination with other improved
methods, describes our implementation in Quda and shows error
scaling and runtime results applying the method to a small lattice.
Finally it compares runtimes with another recently developed and
very efficient method, an implementation of the Multigrid algorithm
[55].

The second part of this thesis addresses the generation of configura-
tions to approximate the bosonic path integral in benchmark models.
Here chapter four presents MCMC methods and some of their possi-
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ble issues. It introduces the basic terms and concepts of approximat-
ing an integral and describes ordinary Monte Carlo sampling, using
random sampling points for the integral approximation. It explains
importance sampling as a variance reduction technique for Monte
Carlo methods and how to draw importance sampled configurations
using a Markov chain. Finally it specifies the most common issues
that arise when using MCMC methods, its error scaling, the critical
slowing-down and the sign-problem.

The fifth chapter reports on the recursive numerical integration
method. It provides insight into the structure of typical lattice path in-
tegrals, explains how this structure is used in the method to simplify
the integral evaluation, introduces the topological oscillator model
and finally compares results of applying recursive numerical integra-
tion and MCMC methods to the model.

The sixth chapter explains the completely symmetrized quadrature
rules for only one integration variable. It explains the idea of form-
ing these quadrature rules, how to use them and introduces the one-
dimensional QCD model with a sign problem. Then it shows results
of applying the method to the model, especially for the sign-problem
region and compares it with MC results.

Chapter seven addresses the application of symmetrized quadra-
ture rules to systems with more variables. It first shows how to apply
one completely symmetrized quadrature rule from chapter six to each
variable of a multi-variable model. Then it explains how this rule can
be combined with MCMC to make the method feasible for a larger
number of variables. It introduces a complex phase to the topological
oscillator and presents results for applying both the original and the
combined method to the one-dimensional topological oscillator with
an additional complex phase factor, leading to the sign-problem. Fi-
nally it gives some possible explanations why the combined method
does not solve the sign-problem.
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DISCONNECTED DIAGRAMS IN LATTICE QCD






QUANTUM CHROMODYNAMICS ON THE LATTICE

Quantum Chromodynamics (QCD) is the theory to describe strong
interactions between quarks and gluons. In this framework hadronic
observables can be calculated. In contrast to QCD at large energies,
where perturbation theory can be used to compute expectation val-
ues due to the small strong coupling constant, QCD has a large cou-
pling constant at small energies, making it impossible to use pertur-
bation theory for computations in this limit. Unfortunately, many in-
teresting hadronic observables belong to this limit. Therefore a non-
perturbative tool to compute hadronic observables is needed. Lat-
tice Quantum Chromodynamics (LQCD) discretizes continuum QCD
and uses the path integral formalism to compute observables non-
perturbatively.

This chapter gives a short introduction to the computation of hadro-
nic observables in LQCD: It first introduces the continuum QCD ac-
tion, then presents two possible discretization schemes: Wilson and
twisted mass fermions. Then the chapter presents the actual com-
putation of observables and shows how observables which include
fermion fields get contributions from quark connected and discon-
nected diagrams. Finally it shows results of some recent hadronic ob-
servable computations, using the presented lattice QCD framework.
Here the main focus are the disconnected contributions to these ob-
servables, coming from the evaluation of the quark disconnected di-
agrams, because they have in general a smaller signal-to-noise ratio
and are subject of the next chapter.

This chapter shows that lattice QCD is a valuable tool to compute
hadronic observables non-perturbatively from first principles. The
computation of disconnected contributions to fermionic observables
is one part of the full hadronic observable computation, but results of
disconnected contributions have large uncertainties. Therefore new
methods are needed for the computation of disconnected contribu-
tions and for accurate results of some LQCD observables. Chapter 3
below presents some of these improved methods.

2.1 QUANTUM CHROMODYNAMICS

QCD describes the strong interaction involving quarks and gluons.
QCD is an SU(3) gauge invariant (Yang-Mills) theory. Its action has
two parts: the fermion part describes interactions of quarks, anti-
quarks and gluons while the gluon part specifies the interactions of
gluons among themselves.
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QUANTUM CHROMODYNAMICS ON THE LATTICE

THE FERMION ACTION iS

S = / dx* ¥(iy"D,, — m)¥. (2.1)

Here the fermion fields Ya (x) and ?ﬁ (x) have mass m and are spinors
with a Dirac index « € {0,1,2,3}, color index a € {1,2,3} and de-
pend on the four-vector x* in Minkowski space. The gamma matri-
ces are defined in appendix A. This action is SU(3) gauge invari-
ant which means that it does not change under applications of local
SU(3) transformations - local rotations among the color indices of
the quarks. This is ensured by the covariant derivative,

Ay = AT is the gluon field, consisting of color fields Aj, a €
{1, ...,8}, which belong to the eight generators T* of SU/(3). g is the
strong coupling constant.

THE GLUON ACTION is defined by

1
S =1 / dxt GGy, (2.3)
The gluonic field tensor is given by
Gy = Ay — 9 Aj, — g [ AL A, (2.4)

with the structure constant f%¢, defined by if*°T¢ = [T T']. The
third term, involving f®¢, originates from the non-abelian nature of
the SU(3) group and results in three and four gluon interactions.
This influences the dependence of the renormalized coupling g (this
is the physical in contrast to the bare coupling g) on the energy scale
u substantially: g, is small for large u (the quarks are asymptoti-
cally free) and large for small y (the quarks are confined in hadrons).
<r(p) is called running coupling. For energies smaller than Agcp ~
250MeV the perturbatively defined coupling would diverge. There-
fore the computation of low energy QCD observables is difficult.

2.2 DISCRETIZING QCD ON THE LATTICE

In 1974 Wilson introduced lattice gauge theory in [82], a Yang-Mills
theory in four-dimensional Euclidean space-time on a finite four-di-
mensional lattice. Including fermions on the lattice results in lattice
QCD (LQCD.

The lattice includes Nt sites in time direction and Ny sites in the
three spatial directions, all with the same lattice spacing a. Then the
full lattice is defined by

A = {(no,nl,nz,n3)|no € {0,1,...,NT — 1},
ny,ny,n3 € {0,1,..., Np — 1}} (2.5)



2.2 DISCRETIZING QCD ON THE LATTICE

and includes Vj,; = N} x N sites. Each lattice site n € A corresponds
to the Euclidean space-time point x = an € R%. The physical volume
of the lattice is given by V = L® x T with the lattice side lengths
L =aNp and T = aNy. Fermion fields are defined on the lattice sites
n € A. Link variables, U, (n) live on the links connecting the sites n
and n + fi, the next neighbors in direction u € {1,2,3,4}. U,(n) are
elements of the gauge group SU(3).

THE GLUON ACTION The plaquette is the simplest closed loop on
the lattice and is a possible gauge invariant object which consists out
of link variables,

Uy (n) = Uy (n)Uy(n+ p)Uy(n+0) Uy, ()T, (2.6)

with U_,(n) = U,(n — fi)". In the naive continuum limit, 2 — 0,
U, (n) is the parallel gauge transporter connected to the gluon field
Ay(x) and Uy, (n) is connected to the field strength tensor whose
components are defined in (2.4),

Uy, (n) 129 oingAux)  and Uy (n) 128 @i 3Gu (x) (2.7)

The plaquette can be used to build a discretized Euclidean gluon
action,

252 Z Z RTe[1 — Uy (n)). (2.8)

neA p,v=1
p#v

THE FERMION ACTION One possibility to discretize the fermion
action is the Wilson fermion action

F= at Z ¥ (n DW‘I’ n), (2.9)
nen

with the Wilson Dirac operator
A 1 o, A *
DW = ’)/VE(VIM —+ v‘u) + EV,,VV + m. (2.10)

The first term is the gauge covariant derivative, the second term with
the two derivatives, also called Wilson term, assures that the action
describes only one fermion and not several unphysical ones, which
occur due to the discretization. The derivatives are defined by

1

V() = (U (n)¥(n ) — ¥ (), -
V¥ (n) = (¥ (n) ~ U_u(x)" ¥ (n — )

The Wilson matrix, corresponding to the Wilson operator in (2.10),
can be split into a diagonal and a non-diagonal, next-neighbor inter-
action term,

Dw=C(l—xH), «= C=m+—. (2.12)

11
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The hopping matrix H includes all next neighbor coupling terms. The
factor C can be included into the fermion field definition.

The Wilson term, the second term in (2.10), vanishes in the naive
continuum limit, but only by the order of 4, therefore the discretiza-
tion errors of the Wilson action are of the order a. Lattice simulations
cannot go to infinitely small lattice spacing, today used values are
around 0.15 fm to 0.05 fm. Therefore it is preferable to use a fermion
action which has cutoff effects at a larger order in a. This can be done
by adding counter terms that cancel the order a terms, e.g. [71] or by
automatic order a improvement using twisted mass fermions.

2.3 TWISTED MASS LATTICE QCD

One way to achieve O(a) improvement is using twisted mass fermions.
Twisted mass fermion fields are flavor doublets of up- and down-type

quarks x = (4tm, dim)T, defined in a twisted mass basis, which is chi-
rally rotated to the physical basis ¥ = (u,d)T,

W _ W
Y =exp(izrsm)r, ¥ =xexp(iz1sT), (2.13)

where 73 acts in flavor space. The twist angle is defined by w =
arctan(u/m), where the mass m and the twisted mass p > 0 are con-
nected to the quark mass via M = /m? + u?. The twisted mass ac-
tion of the light mass-degenerate doublet, consisting of up and down
quark, is given by

sy x Ul =a* ) xX(n)(Dwla + ipysT)x(n). (2.14)

nen

Compared to the Wilson action in (2.9), Sf{tm includes the additional
twisted mass term. The Wilson Dirac operator, defined in (2.10), is
applied to each twisted mass quark field separately. The term sand-
wiched between the flavor doublets ¥ and x is the Wilson twisted
mass Dirac operator, a diagonal operator matrix in flavor space with
entries D, /; = Dw % iuys, each acting on one entry of the flavor
doublets. Writing S%*™ in the physical basis gives

e,m RV RV 1 *
SE™MY, Y, U] = a4;‘F(n)('yV§(Vy +V)+
1 eiwrsT ivﬂvy + M)¥(n), (2.15)

where only the Wilson term, which is needed to remove fermion dou-
blers but is also responsible for the order a discretization errors, is
rotated. It can be shown that observables computed with the twisted
mass action at maximal twist w = 7 have either discretization errors
of O(a?) or are zero in the continuum limit, due to their transforma-
tion under discrete chiral transformations [51, 56]. In the continuum



2.4 THE PATH INTEGRAL

limit the twisted mass formulation describes conventional QCD [53,

56] and can therefore be used as an alternative to the Wilson action.
For heavier quarks, like strange and charm quarks s and ¢, which

are not approximately degenerate, the action of the flavor doublet

X = (Stm, Ctm) 7 is

S;t;“ x.x U] = at ZX(DWJIZ + iy'y5rl + eT3)X, (2.16)
X

with y,e > 0. The strange and charm quark masses are associated
with mg = M — € and m. = M + € [52].

The twisted mass formulation is used in all simulations in chapter 3.
In most calculations the physical basis is used if not written otherwise
because it is more convenient to compute e.g. two-point functions.

2.4 THE PATH INTEGRAL

The QCD action can be discretized on a lattice. But a tool is needed
to compute hadronic observables, such as hadronic masses and form
factors. This tool is the path integral formalism, which can be used
to compute amplitudes of interactions. The physical path integral
in Minkowski space is difficult to evaluate numerically because it
includes an highly fluctuating integrand. But the evaluation of the
discretized Euclidean path integral is similar to the evaluation of a
correlation function of a statistical canonical ensemble and therefore
numerically possible. The continuum limit of the discretized system
can be approached at a critical point of the statistical system. There-
fore the Euclidean path integral can be used as a tool to compute
physical expectation values. This section introduces the physical and
Euclidean path integral and describes its evaluation in lattice QCD,
showing all steps of a typical lattice QCD simulation.

It especially shows that the lattice QCD path integral includes two
types of integrals, one over fermionic degrees of freedom, the other
over the links. Due to their very different nature, both integrals are
evaluated differently in the simulation. The fermionic degrees of free-
dom can be integrated out analytically, resulting in quark propaga-
tors. The remaining integral over the links is approximated by choos-
ing sampling points (configurations) from a Boltzmann distribution.

2.4.1  The Euclidean path integral

In quantum field theory all physical information about the system is
stored in an infinite set of vacuum expectation values of time-ordered
products of Heisenberg field operators ®;(x), ®»(y), ... , called the
Green’s function, e.g.

G(x,y, ) = (O] T[by (x)a(y)..] [0}, (2.17)

13
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which can be interpreted as the amplitude of interactions of the fields
P (x), P2(y), ... in the vacuum. This amplitude can be computed with
the path integral, summing over all possible field configurations [®],
each one weighted by eiSI®l) dependent on the action S of the system,

f d q)l CDZ eis (]

d@ o] ) (2.18)

Gxy,..) =

This Green’s function is not suited for numerical calculations. For
lattice computations a Wick rotation from Minkowski-space to Eu-
clidean space is done, sending t — —it and therefore iS — —S°.
In lattice QCD the interacting fields are the fermion fields ¥ and ¥
and the link variables U. In the following O[¥, ¥, U] stands for any
gauge invariant combinations of theses involved fields and is called
observable function. Then the Euclidean Green’s function gives the
expectation value of the observable O,

(0) ¥ G¢(0) = % / d[u] / d[¥, ¥] O[F, ¥, U] e S'T¥U,

(2.19)
with
Z= / d[u] / d[¥,¥] e STEHU (2.20)
=TI Ii[duy(n) (2.21)
neA ji=1
d[¥,¥] = U\];[]i[lﬁd‘if ad‘lf(f)( n)e, (2.22)
e f e o=

for fermion flavors f. For a finite lattice, equation (2.19) is similar to
a statistical canonical ensemble correlation function with Boltzmann
distribution e~ and Z can be called partition function. Hence, the
expectation value (O) can also be described by the operator O, the
Hamiltonian operator H and the inverse temperature T of the system,

(0) = %tr[@ e TH], Z = trle TH]. (2.23)

Statistical methods can be applied to the Euclidean path integral
(2.19). The inverse temperature of the system is equivalent to the lat-
tice extent in time direction T = aNr. A zero temperature expectation
value results from taking the limit Ny — oco. It can be shown that the
continuum limit Green’s function G(O) can be realized by the ex-
pectation value (O) at a critical point of the statistical system that is
described by S°. At this critical point the longest correlation length,
given by the inverse of the pion mass, diverges. This can be realized
by tuning the parameters, here the bare coupling ¢ and the bare mass
m to their critical values g*, m*. The parameters ¢ and m also depend
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on the lattice spacing a and the expectation value (O) is dependent
on a, g(a) and m(a). The continuum limit of (O) is reached for a — 0
if m and g are tuned with a in an appropriate way, such that they
reach ¢* and m”* respectively,

(0)(g(a), m(a),a) =% G(O), for m(a) =3 m*
and g(a) i 9. (2.24)
To reach a physical situation, the tuning has to be done such that the
ratio of the pion mass over the nucleon mass is given by its physical
value. To keep the physical volume V of the lattice fixed when ap-
proaching the continuum limit, the number of lattice sites is chosen
according to a4, such that L = aNy and T = aNt remain constant.

2.4.2  Evaluating the path integral on the lattice

The path integral in (2.19) includes integrals over fermionic degrees
of freedom ¥ and ¥ and links U. The fermionic degrees of freedom
are Grassmann numbers. Because the fermion action (2.9) is bilinear
in the fermion fields, the fermion fields can therefore be integrated
out analytically. Hence, the path integral can be written in the form
(O) = ((O)r[U])¢. Then the inner fermionic path integral is an ana-
lytic expression and dependent on the link configuration [U],

1 —— e _qe [y
@Mmzzmﬂ/ﬂ%wqyyme%WWL (2.25)
vmhaﬂn:/ﬂ?wh*ﬁww. (2.26)
The outer link integral integrates out the links,

(0) = ((O)ltl) = 5 [ dlu) Zeu] (O)plur)e Y, (227)

with Z = / d[u)zp[u]e=S6lUl, (2.28)

There are three steps involved to compute a lattice expectation value
(0), and a forth one to approach the continuum limit:

1. Generate N link field configurations [U] from the distribution
e 56U Z (U]
————, compare (2.27).

2. Evaluate (O)¢[U] in (2.25) for each link configuration.

3. Approximate the link path integral in (2.27) by the average over
all evaluated (O)p[U],

1

(0) = ((O)¢U])c ~ 55 Y _(O)¢[U] (2.29)
[

15
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4. Approach the continuum limit by using smaller lattice spacings
while adjusting the coupling constants g and m accordingly.

The generation of the link configurations in step 1 on a finite lat-
tice is typically done by a Markov chain Monte Carlo method, using
a Markov chain to create subsequent configurations [U] which are
drawn from the normalized Boltzmann distribution M Us-
ing these configurations results in the approximation of the link path
integral in (2.29). For large number of configurations #[U] the error

estimate of this approximation shrinks with the number of configura-

tions as 1//#[U]. Markov chain Monte Carlo methods are described
in more detail in chapter 4.

The fermion fields are Grassmann numbers, that means they anti-
commute, e.g. {¥, ¥} = 0. Because the fermion action in (2.9) is bi-
linear, the fermionic integral in (2.25) can be solved analytically. The
expectation value of products of Grassmann numbers is given by the
Wick theorem. For two fermion fields of the same flavor, located at
lattice sites m and n it is

(¥(m)¥ (m))r = a=*G(n|m), (2:30)

where G(n|m) = D~!(n|m) is the inverse of the Dirac matrix and
propagates the fermion from m to n. Depending on the used fermion
discretization the Dirac matrix can be Dy, the matrix form of (2.10)
for Wilson fermions, or Dy = ip7ys for twisted mass fermions. For an
even and larger than two number of fermion fields the expectation
value is the sum over all possible combinations of two fermion fields,
called Wick contractions. This leads to different types of diagrams
that contribute to the expectation value. This is elaborated in section
2.5.4.

Also the fermionic partition function, needed in the generation of
the configurations in step 1, can be integrated analytically: It is the
determinant of the Dirac matrix, for a fermionic doublet ¥ = (u, d)T:
Zp[U] = det(D,[U]) det(D4[U]). In contrast to e 5c[U, these determi-
nants are non-local quantities and specific Markov chain Monte Carlo
methods are needed to handle the Boltzmann distribution involving
them.

2.5 COMPUTING OBSERVABLES ON THE LATTICE

The path integral formalism can be used to compute amplitudes of
hadron field interactions on the lattice. These amplitudes include in-
formation on the involved hadrons, which can to be extracted. There-
fore hadron fields need to be defined on the lattice, amplitudes of
hadron interactions need to be computed and the information needs
to be singled out from these amplitudes. Information, like hadronic
masses or form factors, can be extracted from two-point and three
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point correlation functions. This section describes how to choose fields
which interpolate hadron fields on the lattice, shows how important
hadronic observables are derived from two- and three-point correla-
tion functions and finally how different types of diagrams contribute
to two- and three-point functions.

This section especially shows that masses and decay constants can
be deduced from two-point functions, while hadron structure observ-
ables, like form factors, charges and transition amplitudes can be de-
rived from a combination of two- and three-point functions. Addi-
tionally, this section shows that these two- and three-point functions
consists of two parts, a connected part, describing propagations of
fermions from one lattice site to another, and a disconnected part,
characterizing fermion loops.

2.5.1 Interpolating fields

A hadron state |h(p)) with momentum p can be simulated on the
lattice through an interpolating operator O(n) at site n that creates
a state |O(n)) = O(n)|0) with quantum numbers that match the

hadron quantum numbers, such that O(n) has a non-zero overlap
with |h(p)),

Zeiaﬁ'ﬁ (h(p)| O(n) [0) # 0. (2.31)

Hadronic quantum numbers, e.g. isospin I, isospin component I,
charge Q, spin | and parity P arise by combining the quark spinors ¥
accordingly. The quark fields of up- down- and strange quarks have
quantum numbers (with quark spin S)

¥ S 1 I, Q P
1 1 1 2

w3 2 t2 53~
1 1 1 1

d 3 3 -2 =3 ~
1 2

s 5 0 0 5 —

Additionally, the hadron operator O should only create color-singlets.
Only these color-states are invariant under an SU(3) transformation
and are therefore the only ones projected out of the link path integral
in (2.27).

Then a meson can be simulated by the bilinear interpolating field

O(n) =7, (n)a Tap q2(n)p (232)

with the quark fields g; and g, and T, see table 2.1, chosen according
to the quantum numbers of the meson. Using flavor doublets ¥ =
(u,d)T, interpolating meson fields can be written as

O(n) = ¥(m)T 3¢ (n), (2:33)

17



18

QUANTUM CHROMODYNAMICS ON THE LATTICE

state L ¥ particles

Scalar 0t 1,9 fo, a0, K5, ...
Pseudoscalar 0~  s5,90ys 7+, 0,1, K5 KO, ...
Vector 1= y,77 5 0%w K¢, ...
Axial vector 17T ;75 ai, fi, ...

Tensor I 9 hy, by, ...

Table 2.1: A bilinear interpolating field q1I'q, simulates a meson with quark
content g142 on the lattice, if it matches the meson’s quantum
numbers, here spin |, parity P and charge conjugation C. (y; €

{’)/1/ Y2, ,)/3})

where 7, acts in flavor space, being either 73 + i1, 73 or 1. Then the
interpolating fields with 73 i1, and 73 form an isotriplet or isovector
state with I = 1 and the ones with T = 1 form an isosinglet or
isoscalar state with I = 0.

Baryons contain three quarks, therefore the singlet color wave func-
tion is, in contrast to mesons, antisymmetric and the baryon interpo-
lating field has the form

O(11)s = €abe Poe Ty q1(n)s (qz(n)g Tg, 43(n)y), (2:34)

where P projects the baryon to definite parity, e.g. P+

zero momentum fields. To describe baryons with J* = 1", (I'4,T8) =
(1, C7ys) can be used.

2.5.2  Two-point functions

Hadronic interpolating fields can be propagated through the lattice
to deduce, as a result of their propagation characteristics, some of
their properties. The mass and decay constant of a hadron can be
computed from the expectation value (O(1n)O(0)) of an interpolating
hadron field O being created at site m (translational invariance allows
to choose m = (0,0)) and a similar hadron field being annihilated at
site n = (ny,7). The two-point function C?P!(n) is usually defined as
the connected correlation function of two interpolating fields,

C%t(n) = (0(n)0(0)) — (O(n)) (O(0)). (2.35)

A Fourier transformation results in a dependence on momentum p
instead of spatial site vector 7,

C¥'(ny, ) = Y _ e P71 C%Y(ny, 7). (2.36)
7l

For large times the two-point function decays exponentially,

Czpt(l’lt, I‘j) lar&t,T A e_tAEl, (237)
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with euclidean time t = an; and extent of the lattice in time direc-
tion T = aNt. At zero momentum of the hadron interpolating field,
p= 6, AE is the mass of the ground state hadron and the amplitude
A is proportional to the decay constant of this state. In the follow-
ing this exponential decay is derived and for brevity only the time-
dependence of fields are shown explicitly, C%*(1;) = C2P(n;, §).
Using (2.23), the mentioned expectation value can be written as

(0(1)0(0)) = 5 TO(m)B(0) e ™A1 (239)
This expression is converted to the Schrodinger picture, where opera-
tors are time-independent. In this picture the time dependent Heisen-
berg-picture operators in (2.38) can be written as O(n;) = etf Qe
The eigenvector basis |n) of the Hamiltonian can be used to evalu-
ate the trace in (2.38). Additionally, a complete set of orthonormal

vectors, 1 = Y, |m) (m| is inserted just before O to give

(Om)0() = 5 Y- (1] O™ |m) (m|Ge "% n),  (230)

1 — v R ~
:ZZe En o= (T=DE: (3| O |m) (m| O |n) .  (2.40)

If t and T — t are large, the largest contributions come from the eigen-
states with smallest eigenvalues, Ey < E; < ... < E, and the operator
O filters out the states that have quantum numbers according to O
with ground state |1),

— large t 1 A _
(0(1)0(0)) ot [1(01O]0) Ze Th0

+] (0] O|1) |2 (e H(Er—Eo)~TEo 1 g (Ex—Eo)=TEr)
—i—@(e*t(EZ*EO)*TEO + ef(Eszo)*TEz)]’ (2.41)

The factor e "5 can be pulled out in the numerator and the denom-
inator Z = Y, e Er, and all energies can be converted into energy
differences to the vacuum, AE, = E, — Eo. The term | (0| O |0) |? is the
squared vacuum expectation value of the field O and just the second
term in equation (2.35), which is removed in the two-point function.
For large T all terms of the denominator except the first one vanish
and also in the numerator some terms disappear to result in

large t<T
—

Cth(nt) ‘ <0’ o) |1> ‘Z(eftAEl _i_e(th)AEl)

+ O(e B lt=TIAE)), (2.42)

Forp = 0 itis AE; = m;, the mass of [th excited state. Therefore the ex-
ponential decay of the two-point function includes the masses of the

particles which are created by O, denoted by the term
O(e !E 4 elt=T)AE) in (2.42). The interpolating field O creates not

19



20

QUANTUM CHROMODYNAMICS ON THE LATTICE

only the ground state with mass mj, but also excited states. The
ground state mass can be extracted from the exponential decay of
(2.42) when using large time t.

Additionally, the decay constant of the ground state can be calcu-
lated from the amplitude of the two-point function, | (0| O [1) |2.

2.5.3 Three-point functions

Hadron structure observables, like form factors, charges or transition
amplitudes, can be obtained from matrix elements of hadron inter-
actions. The matrix element of two baryons with momentum p,p’ in
states |a(p)) and |b(p)) respectively, interacting through an operator
G with some Dirac structure T, is given by

(b(p)| G(T) |a(p’)) = u(p) B(q,T) u(p"), (2.43)

with the baryon spinors u, % and some function B(g,I'), dependent
on the initial and final baryon states and the structure of the operator
G. B(gq,T) includes the hadron structure observables: For the same
initial and final state and zero momentum transfer, B(I') includes
the coupling or charge g¢ of the baryon to the field G created by G.
With finite momentum transfer, B(g,T) includes form factors f(g?) of
the interaction. For different initial and final states, B(g,T’) includes
transition amplitudes between these states. Examples of these matrix
elements and the concrete form of B(g,T') are given in section 2.6.

On the lattice, the matrix element in (2.43) for the same initial and
final state with zero momentum transfer can be derived from the ex-
pectation value (O(n;)G(it)O(0)) of a hadron field O(m) at lattice site
n (choose again m = (0,0)), an operator G(i) at site i = (i;,i) and a
hadron field O(n) at site n = (n;, 7). Both operators O and O are con-
structed such that they only overlap with baryon states. The hadronic
three-point function C3Pt(n;, 7, i;), using Fourier transformation with
momentum p of initial and final state, is defined as the connected cor-
relation function of three interpolating fields, similar to the two-point
function in (2.35), and decays exponentially for large times,

o . —tAE
C3pt(1’lt, p, Zt) 1arge_t’>tI’T Ae f 1/ (244)

with t = any, t; = aiy and T = aNt. The amplitude A is proportional
to the matrix element (1| G |1) of the baryon ground state |1) interact-
ing with the field G. This matrix element has the form of (2.43) and
therefore can give the charge gc.

The exponential decay in (2.44) can be deduced using the men-
tioned expectation value and the definition in (2.23),

(O(m)G(i)0(0)) = ZTH{O(m)G(k)O(0) e ™A, (2.45)
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The time-dependent operators are converted to the Schrodinger pic-
ture, the trace is evaluated and two complete sets of states are inserted
to give

(O(n)G(i)0(0)) = % Y elEEn) ati(EnEr) o~ TE:.

ILmmn
(1| O|m) (m| G |n) (n[O1)  (246)

For large T the largest contributions come from the vacuum state

<O(nt)G<1t)5<0)> ]arﬁg“ % Zet(EofEm) etl(Emen) e—TEO .

mn

(0] O [m) (m| G |n) (n| O0).
(2.47)
Additionally, for large t and t; the largest contributions come from
the eigenstates with the smallest eigenvalues that are filtered out by
the operators O and G,

— 1 o,
(0(n)G(ir)O(0)) " (VEV)

+e751 (0[O [10) (16| G |1c) (10] O |0)
_}_O(eAEl(t[*T) _|_ eAE](f*f]*T))‘ (248)
For O and G having different quantum numbers, additional contribu-
tions occur in O(...) which involve energies of different states. The
vacuum expectation values is subtracted in the definition of the three-

point function.
It is not straightforward to deduce the matrix element (1| G |1) from

the exponential decay of the three-point function. Therefore the ratio
of three-point over two-point function is introduced,

C2pt(nt>

_ e "*F1(0]0]10) (16| G |1c) (10| O [00)
e 'E1 (0] O 10) (1] O |0)

~ (1| G|1) + O(e”PEAE)E 4 o= (AB=AR)(E-H) (5 51)

R(ny, ir) (2.49)

(2.50)

For large times this ratio cancels the contributions of the exponential
decay and the amplitudes involving the operators O and O and ex-
cited states are suppressed. The ratio gives the matrix element of the
hadron ground state interacting with the operator G.

For  # 0 this ratio is more complicated, but still consists of some
combination of two-point and three-point functions.

2.5.4 Quark-connected and -disconnected diagrams

Hadron observables can be computed by evaluating two- and three-
point functions of hadron interpolating fields, that means evaluating
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the path integral in (2.27) with analytically solvable fermionic inte-
gral (2.27). In general, this fermionic integral gets contributions from
quark-connected and -disconnected diagrams. In the following the
analytic solution of the fermionic path integral is derived for a spe-
cific two-point function, showing the two diagram types. The shown
principle can be applied to any other two-point function, as well as
to three-point functions.

The isoscalar interpolating meson field involving only up and down
quarks is given by

1 -
0= \ﬁ(ufu +drI'd), (2.52)

for a general I'-matrix.
The fermionic two-point function, that is the fermionic path inte-
gral in (2.27) over two correlating meson fields, OO is given by,

C= % ((aru UTu)r + (ATd dTd) g + (AT dTd) + <Erdaru>p) .
(253)

With the hadron source O at site 0 and the sink O at site n, the first
term of (2.53), ignoring a factor 1/2, is given by

Cr(n) = (u(n)Tu(n) u(0)Iu(0))r. (2.54)

The Wick contractions, the possible combinations of # and u are here

C1() = ((m)Th(n ) (O)TH(0)) -+ (i) T (m)iu(0)Th(0))
disconnected connected (2.55)

Already here it is obvious that C; is composed of two very distinct
objects. The second one connects the two sites n and 0, such that one
u is created at n and annihilated at 0 and one u vice versa and is
called connected part. The first summand separates n and 0, one u is
created and annihilated at 0, the other at n, and is therefore called
disconnected part or loop. By reordering and taking into account the
anticommutation relations of fermions, it is

Ci(n) = Tr[l (u(n)u(n))¢] Tr[l (u(0)u#(0))F]
—Tr[l (u(n)i(0))u T (u(0)i(n))u] (2.56)
= Tr[l G,(n|n)] Tr[l G,(0]0)] disconnected
—Tr[T G, (n|0) T G,(0|n)] connected, (2.57)

where (2.30) with 2 = 1 is used in the second step.
C; depends on the I'matrix of the simulated meson and the up-
quark propagator G, the inverse Dirac matrix for the up-quark’. The

1 The Dirac matrices for up and down quarks differ in the twisted mass formulation.
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other terms in the two-point correlation function in (2.53) include
similar terms, some are dependent on the down-quark propagator
Gg. The Dirac matrix for a specific link configuration is known, but
its inversion is computationally expensive because of its large size,
for typical lattice computations at least O(10° x 10°). Therefore the
main part of computing two-point functions is the inversion of the
Dirac matrix. Equation (2.57) shows clearly that the connected part
needs only the one-to-all propagator G,(n|0) with one fixed source,
where the disconnected part needs the all-to-all propagator G, (n|m)
with m = n. In contrast to the computation of G,(n|0), the evaluation
of the all-to-all propagator G(n|m) needs stochastic input. Therefore
its estimation is much noisier than the one of G(n|0).

Disconnected contributions occur only in correlation function where
quark and anti-quark from the same lattice site are contracted, there-
fore for interpolating fields which include g and 7 of the same quark-
flavor. This is the case for the meson isoscalar (I = 0) two-point func-
tion in (2.52), corresponding to (2.33) with 7, = 1. The meson isovec-
tor (I = 1) has three components: I, = 0 with 7, = 13 (~ ul'u — drd)
results in disconnected diagrams in the two-point function, which
cancel each other in the case of exact isospin symmetry, D, = D,.
The two-point functions of the other two components do not get con-
tributions from disconnected diagrams. For baryon two-point func-
tions also no disconnected contributions exist because one baryon
interpolating field (2.34) is generated out of only quark or only anti-
quark fields and therefore only quark and anti-quark from different
nodes are contracted. For baryonic three-point functions the insertion
operator G has to be isoscalar-like in order to produce disconnected
contributions.

The values of connected and disconnected parts can vary between
different fermion discretization schemes. The next section presents
values of disconnected contribution to observables for twisted mass
fermions.

2.6 DISCONNECTED DIAGRAMS IN NUCLEON STRUCTURE OBSERV-
ABLES

As already discussed in section 2.5.4, disconnected diagrams can only
occur if at least one interpolating field or operator in the two- or three-
point function consists of a g4 combination for one specific quark-
flavor g. It is not clear beforehand how large the disconnected contri-
bution to an observable is, therefore computations of connected and
disconnected parts have to be done to find that out. Here some com-
putation results of nucleon structure observables with disconnected
contributions are presented for the twisted mass fermion discretiza-
tion. From these results it becomes clear that the disconnected contri-
butions vary in size from observable to observable and contribute to
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some of the observables significantly. Additionally, the error estimates
of some disconnected contributions are rather large. Therefore the
computation of disconnected diagrams is important and optimized
methods for their computation need to be developed.

The nucleon is still not fully understood. Therefore many lattice
QCD calculations focus on the computation of its charges and form
factors. The general matrix element for these computation is

(N(p,s')| Orq IN(p,5)) (2.58)

for a nucleon N with momentum p and spin s and an insertion opera-
tor Or,q, compare (2.43). The matrix elements that include an isoscalar
operator get contributions from disconnected diagrams. Operators
for the two light degenerate quarks, Or .4, as well as operators for
the heavier strange Ors and charm Or . quarks are defined by

1 _

Ol",u+d = E (uru + drd)/ (2-59)
Ors =sls, (2.60)
Or, = cIc. (2.61)

It should be noted that the matrix elements using Or s or Or . only get
disconnected contributions because the nucleon includes no valence
strange or charm quarks with which the strange or charm quarks
from the insertion operator could contract.

Results of charges and form factors of some recent lattice computa-
tions for different I'-matrices are shown in the following. These sim-
ulations use physical quark masses for two different lattice: Ny = 2,
48% x 96 lattice sites, 2 = 0.0938(2) fm [11, 12] and Ny = 2+1+1,
323 x 64 lattice sites, a = 0.082(4) fm [4]. The resulting observables in
the articles are given in Table 2.2, the text below states the percent-
age of the error estimate of connected and disconnected part over the
full value (connected part plus disconnected part). For the presented
results the relative error estimates of the disconnected parts are signif-
icantly larger than the typical error estimates of the connected parts
for the charges of charm and strange quark, which are purely discon-
nected, and the structure functions (x),.,4 and B4?(0), both derived
from the vector derivative matrix element.

SCALAR CHARGE The nucleon scalar matrix element with I' =1,
R _ 1
(N(p )| Os, IN(p,9)) = i) [ 361O) | a(ps) @62

gives the scalar charge G1(0) = gI. This is the coupling of the nu-
cleon to scalar particles and, in particular, to the Higgs field, and is
therefore an essential ingredient in beyond the standard model (BSM)
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physics. Direct detection experiments of dark matter candidates mea-
sure the recoil energy of nuclei scattered off a dark matter candi-
date. In many BSM theories this candidate is a weakly interacting
massive particle (WIMP), interacting with nucleons through a Higgs
boson because of its large mass. At zero momentum transfer the spin-
independent elastic cross section of this process is proportional to the
squared scalar matrix element [44] and is therefore very sensitive to
the value of the matrix element (2.62). There are no direct experimen-
tal measurements of g;, but there are phenomenological values of the
related o-term, e.g. [10]. The error estimate for computation in [12] of
the connected part of g™ is approximately 6% of the full g% value,
while the error estimate of the disconnected part is around 3%. The
error of the fully disconnected g% is 24% and of g¢ is 23%.

TENSOR CHARGE The tensor matrix element uses
1
I'= o™ = 3[yu 7] for

(N ()| O [N(p, ) = i) | 3 AT 01 | ()
(2.63)

to get the tensor charge A7,,(0) = g%. It gives the leading contri-
bution of the electric dipole moment of the quarks to the neutron
electric dipole moment (nEDM). This neutron electric dipole moment
is CP-violating and is therefore a good indicator for BSM physics.
The standard model nEDM is supposed to be around 10-3%¢ - cm,
but new physics models, such as supersymmetry have larger nEDMs
[84]. There are measurements of the tensor charge, e.g. [18]. In [12]
the connected part of g?rd has an error estimate of 3%, while the
disconnected part has 1%. The error of the fully disconnected g7 is

estimated by 23% and the one of g% 103%.

AXIAL CHARGE The axial charge is known very well experimen-
tally [76] and is computed by the axial-vector current with I' = 57,

(N ()] Ol IN(p,9)) = () | 365 05| (1),
(2.64)

with G’ (0) = g'. It gives the intrinsic spin carried by the quarks,
which is % g’ The isovector axial charge is measured quite accurately
in the neutron beta decay [76]. In [4] the connected part error of gf’d
is 3%, the disconnected part error 2% large. The error for g% is given

by 15%.
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QUARK MOMENTUM FRACTION AND TOTAL ANGULAR MOMEN-
TUM The vector derivative matrix element uses the symmetrized

—
derivative operator T = y{#D"},

/ v — nl1
(N ()] O IN(p5)) = i (p, ') | A% 007 (),
(2.65)

for the average momentum fraction of a quark g in the nucleus,
A2, (0) = (x)g. In [4] the connected part error estimate of (x), 4 is
4%, the one of the disconnected part 12%.

Structure functions as Al,(4%) for q> # 0 give more insight into
the internal structure of the nucleon. The total angular momentum
of one quark is computed via two of these structure functions, J; =
3({x)q + B2,(0)), using the g2 # 0 vector derivative matrix element

(NG, )| O IN(p,5)) = i (p',) | 3084 | w5,

iotwey pvt {ngv}
A () = Ao ()7 p) + Blo(42) = + Cholg®) =
(2.66)

Byo and Cyp can be deduced by computing the matrix element at var-
ious momenta and do an extrapolation to 4> = 0. In [4] the error
estimate of the connected part of B%r 4 is 4%, for the disconnected
part 80%. The angular momentum of the quarks is computed in [4]
to J, = 0.202(78) and J; = —0.078(78).

GLUON TOTAL ANGULAR MOMENTUM AND NUCLEON SPIN The
forming of the nucleon spin from its constituents was unclear since
in 1987 the European Muon Collaboration found that the spin of the
quarks constitute only a small fraction of the nucleon spin [19, 20].
Recent experiments suggest a non-zero gluonic spin contribution [8,
45], but are very imprecise. On the lattice the gluon total angular

momentum can be computed via O"‘/Vg = Flw F, ) with

/ v — !/ 1 )
(N ()] O IN(p5)) = (") | 34550071 p,),
(2.67)

with (x)g = A5,(0) being the gluon form factor. The gluon’s angular
momentum is J; = 3((x)¢ + B3,(0)). This calculation is done in [11],
omitting B3,(0). The computation is purely disconnected and gives
an error of 6% on (x)¢. The nucleon spin can be calculated, using Ji’s
sum rule [65] [y = L, J; + J;, which is checked in [11] with a result

Jn = 0.541(79) to sum up to 1.
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conn. oncomn_—[%]  disc. SAdise_[%)]  ref.
gutd 8.221(610) 6.4  1.249(266) 2.8 [12]
g 0.329(78) 23.7 [12]
g 0.062(14) 23.0 [12]
gt 0.582(16) 2.9 —0.0213(54) 1.0 [12]
ST —0.00319(72) 22.7 [12]
g5 —0.00263(272) 103.2 [12]
gt 0.576(13) 2.6 —0.0699(89) 1.8 [4]
o —0.0227(34) 15.0 [4]
(X)uya  0.586(22) 3.6 0.027(76) 124 [4]
By —0.035(16) 44 —0.33(29) 79.5 [4]
(x)q 0.267(16) 59 [11]

Table 2.2: The relative error estimates of the disconnected part of nucleon
charges and form factors are larger than the relative error esti-
mates of the connected parts. Results of some recent twisted mass
lattice computations.






IMPROVED METHODS FOR DISCONNECTED
DIAGRAMS

The accurate computation of quark disconnected diagrams is cru-
cial to precise measurements of many QCD observables, see section
2.6. A disconnected diagram results from integrating out fermions
in the path integral. The quark fields in the observable, which can
be contracted by some Dirac structure I', are combined via Wick-
contractions. Contractions that include only quarks at the same lattice
site give rise to disconnected diagrams, compare section 2.5.4. A dis-
connected diagram describes the propagation of a quark field from
one lattice site n € A to itself and is therefore defined via the all-to-all
propagator G(n|m) with m = n. Its general form is

L(n,T) = tr[G(n|n)T], (3.1)

compare (2.57), and can be called loop as well. Projection to some def-
inite spatial hadron momentum L(p, n;,I'), as it is needed for hadron
observables, results in a sum over spatial site vector 7 in (3.1) and the
need for G(n|n) for all n. The propagator is the inverted Dirac matrix
D where its corresponding operator is defined in (2.10) for Wilson
fermions and in section 2.3 for twisted mass fermions. The inversion
of the Dirac matrix is done by solving several linear equations

DY = b, (3-2)

for ¥, with varying right-hand sides b. Finding the solution ¥ to one
equation (3.2) is denoted by one inversion. This is also done to com-
pute the one-to-all propagator G(n|m,) with fixed source my, which
is needed in the connected diagrams. However, the all-to-all propa-
gator needs the solution of orders of magnitude more equations (3.2)
and is therefore computationally much more demanding. Several im-
proved methods have been developed to invert D. These methods
can be split into improvements reducing the runtime of one inversion
(3.2) and improvements reducing the number of inversions needed to
arrive at a given error estimate of the solution in equation (3.1).
Despite these improved methods, disconnected diagram computa-
tions still suffer from long runtimes to get meaningful results. Hence,
with the given supercomputer resources, there is still demand for ad-
ditional methods to be able to make statements about specific observ-
ables in a reasonable total runtime. A promising idea to reduce the
runtime is to use the eigenmodes of the Dirac matrix D in the solving
algorithm. We implemented the exact eigenmode reconstruction with
deflation method to compute one part of the twisted mass loop in
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(3.1) exactly with the help of the Dirac matrix eigenvectors and the
other part stochastically via (3.2) by deflating the Dirac matrix with
the same eigenvectors.

This chapter introduces different methods to improve the compu-
tation of disconnected diagrams. First, it presents two methods to
reduce the number of inversions, stochastic sources and the one-end
trick, and two to reduce the runtime per inversion, even-odd precon-
ditioning and initial guess deflation. The chapter mainly focuses on
the exact eigenmode reconstruction with deflation method and shows
results of this method’s application. Finally the performance of this
method is compared to the Multigrid method, which reduces the run-
time per inversion very efficiently.

In our test case of applying exact eigenmode reconstruction with
deflation we found a performance gain of approximately 5.5. This
gain was achieved because we found that the method does not only
reduce the runtime of one inversion, but reduces also the number of
inversions needed to arrive at a given error estimate. The so-gained
runtime can be used to reduce the error estimate for more precise
observable results. There are active developments on improving the
computation of disconnected diagram contributions and the exact
eigenmode reconstruction with deflation method presents one poten-
tial step to more precise computations of noisy observables on the
lattice. One recent advance in this field was achieved with the Multi-
grid algorithm, which gives performance gains up to order 100 when
applied to twisted mass. In the future this development of discon-
nected diagram computations can lead to lattice results with error
estimates that are smaller than experimental uncertainties and there-
fore are very well suited as input to experimental analysis, in tests
of the standard model and in the finding of new physics parameters
spaces.

3.1 STOCHASTIC SOURCES

Instead of computing a one-to-all propagator value Gg,(n|mg) with

ba
point sources by solving the 12 equations

szﬁ(m|n)Gﬁao (”|m0) = OmmyOanyOaay (3-3)

ab bag
with the Dirac matrix D for all color and Dirac indices a9 and «y,
the computation of disconnected diagrams needs all-to-all propaga-

tor values Gg,(n|m). This means Vi, times more inversions of the
ba
form (3.3), which results for QCD-computations in at least O(10°) in-

versions. Instead, R stochastic sources 7, also called random vectors,
can be used, see Appendix A in [27], to solve the R equations

Dag(m|n)‘fg(n) = 11& (m). (3-4)
a b



3.2 ONE-END TRICK

Here, R is normally of the order 10° but can also be of the order 10,
depending on the computed observable and the desired final error
estimate. Equation (3.4) can be solved efficiently with the Conjugate
Gradient' (CG) [81] or some related algorithm. Then the loop in (3.1),
omitting color and Dirac indices and changing the position of the
source index for better readability, is approximated by

R
) = & Ll T ¥(m) +0 () 5:5)

if the stochastic sources are chosen such that

I%I—I}c}o E Z 77% - 5mn§aﬁ5ab/ (36)

I}l—{rc}oﬁ Z 7704 = )/ (3.7)

where 0a(m) denotes the zero vector in all indices &, a, m. Best results
a
were found by using the Z, noise, more specifically Z; ® Z,, such
that 75 (x) € {\%(il +1)} [42, 48]. These sources introduce stochas-
a

tic noise, which decreases with 1/vR, dependent on the number of
stochastic sources used. This noise is added to the gauge noise com-
ing from the fact that not infinitely many configurations are used in
the evaluation of the path integral in (2.29). It is important to men-
tion that there is no summation convention used in (3.5) for m and
the summation over Dirac and color indices is carried out but not
shown in (3.5) explicitly.

3.2 ONE-END TRICK

For twisted mass fermions the one-end trick [4, 49, 72] combines the
computation of two loops via stochastic sources into one computa-
tion. This enhances the signal-to-noise ratio of the result and there-
fore lead to a reduced number of inversions needed. These two loops
of the form (3.1) in one computation incorporate u-quark and d-quark
propagator. Depending on the observable, more specifically whether
it includes an isovector or isoscalar state, this combination is either
G, — G4, where the standard one-end trick can be used, or G, + Gy,
where the general one-end trick can be applied. It is important to
mention that the Dirac- and iso-structure of states differ between
their physical and twisted mass representation and this section is
only concerned with twisted mass fermions. Additionally, note that
for twisted mass fermions D, — D, is nonzero.

In most simulations DYDY = D*b is solved instead of (3.4) because the solving CG
algorithm needs a positive definite matrix.
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STANDARD ONE-END TRICK For an observable including an isovec-
tor state, the disconnected diagram evaluation needs the computation
of

L*~(m,T) = tr[(Gu(m|m) — Gy(m|m))T]. (3-8)
The twisted mass Dirac matrix, compare section 2.3, has the property

Dy(m|n) — Dy(m|n) = —2ipySpn (3-9)
& Gu(m|n) — Ga(m|n) = =2ipy_ Gy(m|l) 7° Gy(I|n) (3.10)
I

= —2iu Y Ga(m|)G4*(Iln)~°,  (3.11)
1

where D, = 7° Dd+’y5 was used in the last step. With G4G;" = G,G,T ]
GGT, (3.8) becomes

L*(m,T) = —2in Ztr[ (m|n)G*( |m)'y5F}. (3.12)
Inserting unity in form of (3.6) between G and G' results in
LA (i, T) = — 2H Zzu[ (m[m) e ()t (1) G (1) 7°T]
nl r=
+0 <1> (3.13)
7R 3.13

Now the equations

D(n|m)¥,(m) = n,(n) (3-14)

for just one flavor u or d have to be solved for ¥,(m) such that
Y, (m) ~ G(m|n)n,(n) can be plugged in (3.13),

L= (m, T) Ztr [‘i’* 5r‘ff,(m)] +0 (\1@) .

(3-15)

Therefore, although there are two propagators present in (3.8), the
inversions in (3.14) have to be done for only one of them.

The signal-to-noise ratio of L*~? is more favorable when using the
one-end trick, [30]. The one-end trick uses the fact that the vector
product (over Dirac and color indices) of ¥, and ¥} in (3.15) approx-
imates the matrix product (over Dirac, color and space-time indices)
of G and G,

Y () ¥ () = z(zc L) ) <Zm ()G ( |m>

=Y_G(m|1)G*(I|m) + noise (3.16)
1



3.3 EVEN-ODD PRECONDITIONING

to compute L*~4. This has a signal of order 3 - 4 - Vi,; due to the matrix
multiplication GG in all Dirac, color and lattice indices. The error is
of order /(3 -4 - Viy)? because (3 -4 - Vi,;)? entries of the noise vector
11y are involved in the multiplication (Gy,) - (77 G') and therefore the
signal-to-noise ratio is of order one. Without the trick the loop L*~
is computed by using (3.5) for both matrices G; and G, separately,

1

;;‘P,(m)qf(m) == (Z}; G(mll)m(l)> 17 (m)

7

= G(m|m) + noise. (3.17)

This has a signal of order one because G(m|m) denotes only one
value. The error is of order /3 -4 - V),;; because there are 3 -4 - Vi
noise entries involved in the multiplication (Gny) - ;f in (3.17) and
the signal-noise ratio is of order \/W Therefore the signal-to-noise
ratio order of the one-end trick outperforms the one not using the
trick.

GENERAL ONE-END TRICK For an observable including an isoscalar
state, the disconnected diagram evaluation needs the computation of

L (m,T) = tr[(Gy (m|m) + Gz (m|m))T]. (3.18)
The twisted mass Dirac matrix has the property
Dy (m|n) + Dg(m|n) = 2Dw, (3.19)

with the Wilson Dirac matrix Dy, see (2.10). Applying the same steps
as in the standard one-end trick results in

L (m,T) = = Ztr [‘I”L ) Y°Ty° DW‘I’r(m)] +0 <\/1E> .

(3.20)

3.3 EVEN-ODD PRECONDITIONING

Most simulations in lattice QCD use even-odd preconditioning to in-
crease the speed of one inversion. The condition number ¢ of the
matrix D quantifies how hard it is to solve (3.4) for ¥, in fact the
number of iterations for a CG algorithm is proportional to /¢ [81].
The condition number is a measure for how close D is to the unit
matrix, which would give a solution to (3.4) directly. The condition
number of a normal matrix as D'D can be computed by [81]

Amax(DTD)

(D) = (D7D

(3.21)
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Preconditioning multiplies a preconditioning matrix &7 to both sides
of (3.4) to arrive at

PDY = Lb, (3.22)

such that the condition number of &D is smaller and therefore is
closer to one than the condition number of D.

For even-odd preconditioning [39] the lattice is divided into two
sub-lattices, one with all even lattice number sites, one with all odd
ones. Because the lattice interactions are restricted to next-neighbor
interactions, there are only even-odd and odd-even interaction and
(3.2) can be written as

D€€ DGO ‘FC — b€ ( 2)
Doe Doo) \¥o by) -

The Wilson Dirac matrix, and therefore also the Wilson Dirac twisted
mass matrix, can easily be divided into diagonal terms G, Gy, and
non-diagonal terms Gy, Goe, shown in (2.12). Multiplying both sides
of (3.23) by the preconditioning matrix

G 0
C@ = ee ( -2 )
<_DoeGee 1) >

results in the two equations

(Doo - DoeGeeDeo)‘Po - bo - DEUGL’EbL’/ (3-25)
‘Pe - Gee(be - Deo\Fo>- (326)

The first one can be solved for ¥, by some inversion algorithm, e.g.
CG. Then Y, can be derived from the second equation and (3.23) is
fully solved. The inversion of (3.25) is fast because it is done on the
odd sub-lattice, which is half the size of the full lattice and it has a
better condition number than the original equation (3.23) [64].

This even-odd preconditioning approach is possible because D,
is diagonal and therefore easy to invert, which is just plugged into
(3.25). For the Wilson Dirac matrix it is Gw,, = Dw, = 1, compare
(2.12). The even-odd form of the twisted mass Wilson Dirac matrix
differs from the Wilson Dirac matrix in the diagonal terms D, /4,, =
D,/4,, = 1+ iu7y°, but is still diagonal itself and therefore easy to
invert as well,

_ 1 : 5
Gujdee = m(ﬂ Fipy’). (3-27)

3.4 INITIAL GUESS DEFLATION

The initial guess deflation method uses eigenmodes of the Dirac ma-
trix D to increase the speed of one inversion. In most applications
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the iterative CG algorithm or some related algorithm is used to solve
the equation (3.2).The error of the CG algorithm after N iterations is
bounded by A < 4N, for ¥ > 0 depending on the condition number
of the involved matrix® [81]. The initial error can be reduced if the
algorithm already starts with a good initial guess of the solution, Y.
By default this vector is chosen to be the zero-vector. But if ¥ is close
to or even approximates the wanted solution Gb, it is possible that
less iterations are needed to arrive at a specified error estimate. Of
course the asymptotic error scaling of ¥V is not modified by choos-
ing a good initial guess, but already few less needed iteration due to
a reduced initial CG error can lead to significant runtime gains in the
computation of observables, especially if many observables are com-
puted from the same inverted Dirac matrix, e.g. to result in different
hadron structure observables.

More information is needed to find this approximate solution. One
possible way is to decompose the Dirac matrix into its eigenvalues
and eigenvectors: Every diagonalizable Hermitian N X N matrix, here
DD, can be decomposed into its N eigenvectors v; and correspond-
ing eigenvalues A;.

N N
i 1
D'D =Y Awpo!, (D'D)'=) xviv;r (3.28)

i=1 i=1 M

Computing all eigenvectors and eigenvalues of D'D and plugging
them into (3.28) would result in a fully exact result for (D'D)~! with-
out any need for an inversion algorithm. But in lattice QCD the Dirac
matrix has normally N ~ O(10%) and therefore the computation of
all eigenvectors and eigenvalues is very time intensive. Exact defla-
tion computes the Ngy eigenvectors with the smallest eigenvalues,
because they give the most important contribution to (D'D)~! in
(3.28). Then,

(D'D) ! =~ Z /\—vivf. (3.29)

With these smallest eigenvalues the starting vector can be chosen to
be

Nev 1 s s
Yo=Y, vio; | D b ~ Gb. (3.30)
i=1 Vi

On the other hand the computation of the eigenvectors needs extra
runtime.

This approach is used e.g. in [5] to reduce the computational cost
to compute disconnected quantities.

el N
2= for condition number c.
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3.5 EXACT EIGENMODES RECONSTRUCTION WITH DEFLATION

The previous section 3.4 presents a method which uses eigenmodes
of the operator to reduce the runtime of one inversion in the form
of an initial guess (3.30) for the linear equation that has to be solve.
But the computation of the eigenmodes is very time intensive, there-
fore it would be preferable to use the full potential of the eigenmodes
not only as an initial guess but for approximating the full propaga-
tor by using equation (3.29). This approximation is further described
in more detail and applied to disconnected diagrams in [74], as well
as in [13]. We implemented a method that not only uses this exact
reconstruction of eigenmodes to compute one part of the propagator
exactly, but also computes the other part stochastically by precondi-
tioning the Dirac matrix with the eigenmodes. This reduces the run-
time of one inversion as well as the number of inversions needed to
arrive at a specific statistical uncertainty.

This section presents the principle of the method in more detail,
describes how it is combined with the one-end trick to decrease the
runtime even more, explains the difficulty combining it with even-
odd preconditioning, gives some details about our implementation
and finally shows first results.

Our test of exact eigenmodes reconstruction on a 16% x 32 lattice
gave an 5.5 times smaller runtime than not using the method. This
shows a potential for more accurate computations of disconnected
diagrams when using the method. On the other hand, the new Multi-
grid algorithm gives a much better speed-up rate and is therefore
presently superior for computing propagators for twisted mass
fermions.

3.5.1 The Principle

Similar to the initial guess deflation in Section 3.4 the exact eigen-
modes reconstruction with deflation uses the Ngy lowest eigenvalues
with its corresponding eigenvectors, here to approximate the propa-
gator (D'D)~1. With these eigenvectors, one part of the inverse ma-
trix can be computed exactly using the eigenvectors, and one part can
be computed stochastically. The projector

Ngy
P(m|n) = ; v;(m)of (n) (3-31)

splits the matrix (D'D)~! into one part £, which is projected to
the eigenvector space and is computed exactly, that means without
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stochastic sources and one part S, where the eigenvector space is pro-
jected out and which needs stochastic sources,

(D'D)"' =P(D'D)"" + (1~ P)(D'D)"" (3-32)
=&+8. (3-33)

Then the exact part is calculated via

E(m|n) =Y P(m|l)(D'D)~(I|n) (3-34)
l
Ngv N
=) vi(m Z (3-35)
i=1 :1
Ngv 1
= Y Loy (m)of (n). (3:36

The other part is computed stochastically,

i )+0O (&) , (3.37)

similar to (3.5), but by solving

S(mln) =

% \

(1 - P)(D'D)Y¥,(m) = y,(m), (3-38)
such that
S=1-P)(D'D)'4+0 (\}E) (3-39)

compare (3.32). Equation (3.38) can be rewritten, using that (1 —
P)2=1,to

(D'D)Y¥,(m) = (1 - P)y,(m), (3-40)

such that the deflation of the matrix in (3.38) is equivalent to a defla-
tion of the sources, which can be implemented easily.

Equation (3.38) can be interpreted as a linear equation with a pre-
conditioning matrix & = (1 — P). The deflated matrix (1 — P)(D'D)
is deflated by the Ngy smallest eigenvectors, that means Amin ((1 —
P)(D'D)) > Amin(D'D) and therefore, wusing (3.21),
¢((1-P)(D'D)) < ¢(D*D). Hence, the inversion of (1 — P)(D'D)
in (3.38) is faster than inverting the full matrix D'D. We computed
the minimal eigenvalue of D*D in our simulation described in section
(3-5.4) to be 2.4 - 107, We found that 100 eigenvectors are enough to
deflate the matrix efficiently, compare section (3.5.5) below, and then
the 100" eigenvalue, 1.3107 - 10~ approximates the minimal eigen-
value of (1 — P)D'D. The maximal eigenvalue is not changed by the
deflation. Therefore the condition number ¢ is reduced around 550
times and the number of CG iterations, proportional to /c, decreases
by a factor of approximately 23.
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Therefore exact eigenmodes reconstruction with deflation has two
main advantages: each inversion is faster because of this precondi-
tioning and the method reduces the stochastic errors by computing
one part of the observable exactly, which means that fewer inversions
are needed in total to arrive at a specified error. Of course these ad-
vantages in runtime are reduced by the additional initial runtime to
compute the eigenvectors. Therefore the parameter Ngy, the number
of eigenvectors used, has to be chosen dependent on the actual setup
of the simulation, i.e. the lattice size, the gauge coupling and the
quark mass, to achieve an overall gain in runtime.

3.5.2 Application to the standard one-end trick

The standard one-end trick can be modified to incorporate exact eigen-
modes reconstruction with deflation to increase the efficiency of the
loop computation. Starting from (3.12) one loop is computed by

L(m,T) = —2iu Ztr[ (m|n)G¥( \m)’yST] (3-41)

def

The Ngy lowest eigenvectors of the matrix D,'D, = D,'D, = D'D,
which is related to the propagator via (DJrD)f1 = GG" with

(D'D)(m|n)vi(n) = Ajvi(m), i€ {l,..Nev}, (3.42)
are used to define the projector

Nev

P(m|n) = Z v; (3-43)
Adding a zero to (3.41) gives
L(m,T) = —2iu Z(tr[ (m|n)G* (n yz)p(zymwr}

+ tr[c(m|n)c+(n|1) (1 — P)(I|m) 75@)
(3.44)
= —2ip (E(m,T) + S(, 1,T)). (3.45)

It follows the evaluation of the exact part £ and the deflated part S.

EXACT PART Because being Hermitian, the operator DD can be
diagonalized by all its N eigenvectors

D(m|n) = Z Ajvi(m (3-46)

& (D*D)”(m\n) =)y oilmpel () (.47
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Therefore,
- Ztr[(D*D) ! m)1) P(1|m) 75r] (3.48)
]

N 1 Ny

R (Bt (Booren) o1
i=1"" j=

(3-49)
Ny
= p» % tr [v]*(m) 7T v]-(m)], (3.50)

using the orthogonality of the eigenvectors Y, v} (I)v;(l) = j;.

STOCHASTIC PART In the stochastic part, (1 — P) is a projector,
therefore (1 — P)(1 — P) = (1 — P). Additionally, (1 — P) commutes
with GG, therefore

Ztr[ (m|n)GY(n|l) (1 — P)(I|m) > } (3.51)

= Y tr| (1= P)(m|l") G(I'[m)G* (nll) (1 = P)(1|m) 7T |

n,ll
(3-52)

The stochastic sources in (3.6) can be used to insert unity between G
and G'

S(m,T) :O(\F> ;n 2., (353)

: tr[(ﬂ = P)(m|I") G('|n) i () (1) G*(1"|1) (1 = P) (1]m) 75T]

The deflated propagator (1 — P)G can be approximated by perform-
ing stochastic inversions 7,

DY¥,(m) = (1 — P)y,(m). (3-54)
The solutions of (3.54),
¥, (m) =) (1= P)(m[l)G(I'|n) n:(n), (3:55)
U'n

and its transpose can be used in the stochastic part (3.53) such that it
reads

r) = ;;tr [} (m) 7%, (m)]. (3.56)

A similar procedure is possible to incorporate exact eigenmode recon-
struction with deflation into the general one-end trick.

3 Because the CG algorithm needs a symmetric, positive definite matrix, in practice
DYDY, (m) = (1 — P)Dty,(m) is solved.
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3.5.3 Combination with Even-Odd Preconditioning

It is preferable to combine exact eigenmodes reconstruction with de-
flation with even-odd preconditioning to enhance the performance.
But its application is not straightforward. Although we did not use
this combination in the computation of the results shown below in
3.5.5, this subsection explains the difficulty of this combination and
how it can be resolved. We concluded that to combine exact eigen-
modes reconstruction with deflation with even-odd preconditioning
using twisted mass fermions, the eigenvectors of both, the full and
the preconditioned matrix have to be computed. Here the number
of eigenvectors for each of these two eigenvector sets has to be opti-
mized, such that the larger initialization time is finally compensated
by the faster inversion time, as done e.g. in [6].

Combining these two methods means to compute the exact part of
the inverse Dirac matrix with the eigenvectors of the full matrix and
then evaluate the deflated part by using even-odd preconditioning to
solve the linear equations in (3.40). In this second step the even-odd
preconditioned equation (3.25),

(Doo - DoeGeeDeo)‘Fo = bo - DEOGEEbEI (3-57)

includes the matrix Dy, — D GeeDeo, which should be deflated in the
exact eigenmode reconstruction with deflation method. To deflate it,
its eigenvectors are needed. It would be preferable if these eigenvec-
tors do not have to be computed from scratch, but if they could be
recomputed from the eigenvectors of the full matrix. This subsection
shows these attempts: we did not find a way to recompute the eigen-
vectors of the even-odd twisted mass Dirac matrix from the eigenvec-
tors of the full twisted mass Dirac matrix. Therefore both eigenvector
sets are needed to combine exact deflation with even-odd precondi-
tioning. Of course, an alternative is to not deflate the matrix in (3.57)
and only use the eigenvectors of the full matrix to compute some part
of the propagator exactly.

The eigenvectors v of the full matrix can be split in an even and an
odd part by reordering its entries; then the eigenvalue equation is

Dv = (Dee Deo) <06> =A (ve> . (3-58)
Doe Doo Do Vo
Combining the two equations involved in (3.58) gives

(Doe(A — Dee) " Do + Dio)vo = Av,. (3.59)

On the other hand, the eigenvalue equation of the even-odd precon-
ditioned matrix in (3.57) with eigenvectors u, and eigenvalues A, is

(Doo - DoeGeeDeo)uo = Aol (3~6O)
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In case of the Wilson Dirac matrix, Dy,, = Dw,, = 1, therefore
Gwee = 1 and equation (3.59) reads

(DWoeDWeo - jl)z)gv = /\W(AW - Z)Ugv' (3-61)
Equation (3.60) gives
(1 - DWoeDWeo)uLN = Agvugv_ (3-62)

Therefore the eigenvectors of the precondition odd matrix are the
same as the ones of the odd part of the full matrix, u}’ = v/, for
AWV = —AW(AW —2). Then theoretically, the inverse Dirac matrix can
be estimated using exact eigenmodes reconstruction with deflation:
One part is computed exactly with the eigenvectors and eigenvalues
of the full matrix (v}¥,v!Y)T and A", while the other part is evaluated
with even-odd preconditioning by deflating equation (3.57) with the
eigenvectors u}’ = v}’ and eigenvalues —AW (AW —2).

In the case of the twisted mass operator, D, /4,, = Dy/4,, = 1%
ipy® and therefore here G, 4,, is not trivial, as it is the case for the Wil-
son matrix. Hence we did not find a way to relate equations (3.59) and
(3.60) for A/ £ 0, and therefore to find a relation between the eigen-
vectors of the precondition odd matrix and the eigenvectors of the
full matrix. Therefore, for twisted mass fermions both sets of eigen-
vectors have to be computed separately to combine exact eigenmode
reconstruction with deflation and even-odd preconditioning.

3.5.4 Implementation

In order to get accurate results of physical quantities in a reasonable
amount of time, not only methods need to be improved, but the sim-
ulations need to run on supercomputers. These supercomputers con-
sist of thousands of nodes, each containing O(10) cores and often also
graphic units, enabling programs to run most of their computations
in parallel. The simulation programs have to be written such that
they can parallelize their work efficiently. We used the Quda library,
designed for large lattice QCD calculations, and the ARPACK pack-
age to compute eigenvectors. It follows a short overview over both
Quda, ARPACK and our implementation of the exact eigenmode re-
construction with deflation method. We built and used the packages
and written code on the Piz Daint supercomputer of the Swiss na-
tional computing center, [33], where up to 2400 hybrid nodes can be
used to highly parallelize the computation on graphic cards.

QupA The Quda library [22, 36] is an open source software package
to perform lattice QCD calculations using Graphic Processing Units
(GPUs). Computations on GPUs are highly parallelizable and can be
generally used since NVIDEA developed Cuda (Compute Unified De-
vice Architecture), a general purpose language to program on GPUs
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[79]. Quda combines Cuda code, written in kernels which are run on
the GPUs, and C++ code, which is executed on CPUs. It uses the Mes-
sage Passing Interface (MPI) [46] for inter- and intra-node multi-GPU
communication.

The Quda library includes different Dirac operators and several
solvers. Additionally there exist kernels and an interface to efficiently
perform contractions of two and three-point functions and discon-
nected quark loops for several 1000 noise vectors and for Fourier
transformations.

ARPACK The ARnoldi PACKage (ARPACK) [70] is a numerical soft-
ware library, written in FORTRAN77, which can compute extreme
eigenvalues and eigenvectors of matrices and works very efficiently
for large sparse matrices. It uses a modification of the Arnoldi process,
the Implicitly Restarted Arnoldi Method (IRAM). This algorithm is
an iterative Krylov space method, similar to the Conjugate Gradient
method and only needs the application of the matrix to a vector as an
input.

The call to this package is implemented inside Quda, such that
computation and usage of the eigenvectors can be performed in the
same job and therefore time- and storage-intensive writing to and
reading from disk is not needed. Additionally, the application of the
matrix to a vector can be done on GPUs, which makes the procedure
to compute the eigenvectors very fast.

In this work we implemented the full procedure to use exact eigen-
modes reconstruction with deflation in Quda and the analysis of the
results in R [50]. To this end we wrote two functions, one for the com-
putation of the exact part, the other one for the deflated part. The
function to compute the exact part combines the eigenvectors and
eigenvalues, which are computed via ARPACK, in such a way that
the already implemented one-end trick can be applied, which partly
evaluates (3.50).

The function to compute the deflated part uses functions from the
CBLAS library [21, 69] for the vector and matrix operations, MPI [47]
to distribute the vector and matrix operations over several processes
and the already implemented CG solver algorithm and one-end trick.
It creates stochastic sources, deflates each source, compare (3.54), uses
the conjugate gradient solver to solve the equation in (3.54) and com-
bines the solution with its transpose using the one-end trick function,
which partly evaluates (3.56). We implemented the deflation to run
on CPUs such that we did not have to write additional Quda-kernels.
The already implemented and runtime intensive solver algorithm and
the one-end trick are running on GPUs. Because the GPUs have no
shared memory, our implemented functions take care of the copying
of vectors to and from GPUs.
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The analysis contracts the exact part and the deflated parts of each
source with a chosen gamma matrix, compare (3.50) and (3.56), av-
erages the deflated part over all sources and combines the resulting
exact and deflated part via (3.45) to L"~%. Tt estimates the stochastic
error of this loop by the variance over the single source deflated parts.

3.5.5 Results

Having derived exact eigenmodes reconstruction with deflation and
combining it with the one-end trick to compute loops, the potential of
this new setup has to be tested on a lattice configuration, both for the
correctness of the implementation and whether it indeed provides an
improvement as anticipated.

We used one twisted mass 16° x 32 configuration with N = 2,a
twisted mass p = 0.004, coupling ¢ = 1.24, tuned x, = 0.160856, lat-
tice spacing 2 = 0.079 fm and pion mass m, = 380MeV [35]. With
and without exact eigenmodes reconstruction with deflation we em-
ployed stochastic sources and the one-end trick, but did not use even-
odd preconditioning. The method not using exact eigenmode recon-
struction with deflation is in the following called standard method. We
used only results for momentum § = 0 and computed results of
L(n,T) = Y5 L(n,T) with n = (#,n;). This loop is computed for

O(1000) stochastic sources. This section shows only results of the
def

standard one-end-trick with T' = 1: L*~%(n;) = L*~%(n;, T = 1). This
section first compares loop results, then error estimates and finally
runtimes of the new and the standard method.

THE LOOP We used an already tested implementation of the com-
putation of loops without using exact eigenmode reconstruction, called
standard method, to check the implementation. We found that for
enough sources both methods converge to the same loop result. The
standard method needs more than 10* sources to give an approx-
imately stable loop estimate, see Figure 3.1 for timeslice n; = 1,
and it is not clear whether even more sources are needed. The loop
computed with the exact eigenmode reconstruction with deflation
method using 100 eigenvectors gives a stable result for much less
sources, here we used maximally 4000 sources. Plots for different
timeslices are shown in Figures B.1 and B.2.

THE ERROR BEHAVIOR The error estimate using exact eigenmode
reconstruction is proportional to 1/+/R, the expected error behavior
when using stochastic sources, see Figure 3.2. Additionally, the error
estimate using the new method is around four times smaller than
using the standard method. Therefore, the number of sources needed
for the new method to give the same error estimate as the standard
method should be reduced by a factor of approximately 4% = 16.
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Figure 3.1: For enough sources the exact eigenmode reconstruction with de-

flation method converges to the same loop value as the standard
method, here shown for timeslice n; = 1.
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Figure 3.2: The error estimate using exact eigenmode reconstruction with
deflation is proportional to 1/ /R and smaller than the error es-
timate from the standard method.
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Figure 3.3: The same error estimate that is reached with the standard
method for 2000 sources is reached with the new method for
only 146 sources.

We checked this explicitly for timeslice one, see Figure 3.3. The er-
ror estimate from the standard method using 2000 sources is
AL"~%(1) = 0.38. The exact eigenmode reconstruction with deflation
method results in this error estimate for only 146 sources, it needs
approximately 13.7 times less sources, which is a bit smaller than the
factor 16 we expected before.

Additionally, the statistical uncertainty resulting from the exact
eigenmode reconstruction with deflation method depends on the num-
ber of eigenvectors included. Figure 3.4 shows that the smallest eigen-
values used in the method have the most effect on the error estimate,
as expected from (3.47): Using only five eigenvectors in the exact
eigenmode deflation shrinks the error estimate by more than a factor
of two, but the error estimate using 250 eigenvectors is only slightly
smaller the the one using 100 eigenvectors.

THE RUNTIME The smaller error estimates that can be achieved
with the exact eigenmode reconstruction with deflation method in
comparison to the standard method are promising, but in the end the
runtime to get these error estimates decides whether the method is an
improvement over the standard method. For timeslice one we found
a runtime gain of approximately 5.5 over the standard method for
100 used eigenvectors. This gain results out of three factors: the less
sources needed for the new method, the faster inversions, but also
the additional time to compute the eigenvectors, all of them visible
in Figure 3.5. First, the number of sources that are needed by the new
method, 146, to reach the same error estimate as the standard method
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Figure 3.4: The smallest eigenvalues used in the new method shrink the er-
ror estimate the most, compared to the standard method.

with 2000 sources, is marked in Figure 3.5. Second, each inversion of
the new method is a bit faster than a standard inversion because it
inverts a matrix which is deflated with its eigenvectors. This is visible
in the smaller slope of the new method runtime in Figure 3.5. And
third, the method has to compute the needed eigenvectors at the start
of its application, which is runtime intensive: For the full computa-
tion with 146 sources the computation of the 100 used eigenvectors,
shown as the intercept of the runtime at R = 0 in Figure 3.5, takes ap-
proximately 70 % of the full runtime. In the end, the exact eigenmode
reconstruction with deflation method needs 500 core — h to result in
the same error estimate as the standard method using 2731 core — h,
which is a runtime gain by a factor of approximately 5.5.

CONCLUDING REMARKS We showed that a runtime gain can be
achieved with the exact eigenmode with deflation method on one
configuration. Therefore we did not take into account the gauge noise,
fluctuating results from different configurations, but which is expec-
ted to have a similar effect for our method and the standard one. The
eigenvectors used in our method have to be computed for each con-
figuration individually and a more thoroughly check for the optimal
number of eigenvectors should be done with more configurations.
Additionally, the method should be tested for simulations extrapo-
lating the continuum limit and for a physical quark mass. Especially
when approaching the continuum limit the computation of eigenvec-
tors becomes more time intensive: Extrapolating to the continuum
limit means using smaller lattice spacings and for a fixed physical
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Figure 3.5: Using the exact eigenmode reconstruction with deflation method
with 100 eigenvectors results in a runtime gain of approximately
a factor six to result in the same error estimate as the standard
method.

lattice volume the number of lattice sites has to be increased. The
eigenvectors have a number of components, which is proportional to
the number of lattice sites and therefore the effort to compute them
grows for larger volumes. Additionally, for larger number of lattice
sites the eigenvector spectrum becomes denser and the number of
eigenvalues below a certain cutoff grows. The advantage of the exact
eigenmode reconstruction with deflation method over the standard
method has to be checked here.

All these tests were not done in this thesis, mainly because at the
time of testing the exact eigenmode reconstruction with deflation
method, the Multigrid method was applied to twisted mass fermion
lattices and gave orders of magnitude better gains than the here pre-
sented method.

3.6 MULTIGRID

Shortly after the here presented tests of the exact eigenmodes recon-
struction method, the Multigrid algorithm was applied to twisted
mass fermions and resulted in very good performances. This subsec-
tion shortly introduces the idea of the Multigrid method and presents
a comparison of Multigrid and exact eigenmodes reconstruction with
deflation method.

The Multigrid method solves the equation DY = b on a coarser
grid and then uses this solution as a preconditioner to the equation on

47



48

IMPROVED METHODS FOR DISCONNECTED DIAGRAMS

the original lattice. This preconditioning reduces the runtime of each
inversion. There are several different implementations, the Adaptive
Aggregation-based Domain Decomposition Multigrid method [55]
was already successfully applied to twisted mass fermions [13, 23].
The method has many parameters, e.g. the size of the lattice blocks
that are used as lattice sites on a coarser grid, or the number of levels
of coarser grids to be used, which all have to be tuned once to the
lattice ensemble the method is applied to. Additionally, the described
Multigrid method needs some initialization time due to the creation
of the coarser grid.

The Multigrid algorithm applied to twisted mass fermions in [13]
is implemented in the tmLQCD-framework [63], the implementation
of the Multigrid algorithm in QUDA is still experimental. Therefore
we were not able to compare both methods directly, using the same
architecture. [13] compares the Multigrid to the CG performance on
a 483 x 64 lattice at the physical point with Ny = 2. To invert 1000
sources the Multigrid is around 220 times faster than CG method and
this performance gain is approximately similar for larger numbers
of sources as well. Our performance gain of approximately 5.5 of
the exact eigenmode reconstruction with deflation over the standard
method with CG using 2000 sources is significant but clearly smaller
in comparison to that.

A direct comparison of the Multigrid method described in [13] ap-
plied to twisted mass configurations and the initial guess deflation,
see section 3.4 was done by the group of Constantia Alexandrou at
the Cyprus Institute and the University of Cyprus on a 48 x 96 lat-
tice at the physical point with Ny = 2. It can be assumed that the
performance of the initial guess deflation gives a rough approxima-
tion of the performance of the exact eigenmode reconstruction with
deflation in two of three points: First, the initialization time should
be comparable, which is needed to compute the eigenvectors of the
Dirac matrix in both cases. Second, the scaling of the runtime depen-
dent on the number of sources can possibly be comparable because
in both cases the use of the eigenvectors speeds up the inversions. On
the other side, the initial guess deflation does not use the eigenvec-
tors to approximate the final solution directly, as done in the exact
part of the exact eigenmode reconstruction and which, as seen in sec-
tion 3.5.5, is responsible for a lower number of inversions needed to
arrive at a given error estimate than the standard method.

Figure 3.6 shows that the Multigrid method in comparison to the
standard method using CG and the initial guess deflation gives the
smallest runtime for all numbers of sources R. For fewer than 100
sources the runtime of the initial guess deflation is almost constant
and large, due to its large initialization time needed to compute the
eigenvectors, here 1600. The initialization time of the Multigrid
method is much smaller, as well as its runtime per inversion. Estimat-
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Figure 3.6: The initial guess deflation is not competitive with the Multigrid
algorithm due to its very long initialization time and its larger
runtime per inversion.

ing the exact eigenmode reconstruction with deflation runtime by the
initial guess deflation runtime, it is probable that the exact eigenmode
reconstruction with deflation does not outperform the Multigrid algo-
rithm.

The Multigrid method is so powerful because it only depends weak-
ly on the condition number of the Dirac matrix D since the system is
preconditioned by the solution of a linear equation on a coarser grid.
Especially for simulations at the physical point this is very impor-
tant: there the twisted mass is very small and increases the condition
number of the Dirac matrix. Additionally, in the Multigrid method
no time intensive eigenmodes computation is needed.
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MARKOV CHAIN MONTE CARLO INTEGRATION

To compute observables in lattice QCD, high-dimensional integrals
have to be solved. The path integral in (2.27) is an integral over all link
variables on the lattice. Typical lattices have more than O(10°) link
and a numerical evaluation of the integral can be demanding. Monte
Carlo (MC) methods use random numbers to approximate an integral
and have an asymptotic error scaling with the number of sampling
points which does not depend on the number of integration variables.
This makes them very attractive for high-dimensional integral evalua-
tions. In the method of importance sampling these random numbers
are chosen according to the normalized Boltzmann distribution. This
leads to a variance reduction compared to ordinary MC sampling.
In general any probability distribution which approximates the inte-
grand reasonably well can be used for importance sampling. If impor-
tance sampling is done by using a Markov chain, a specific stochas-
tic process, it is called Markov chain Monte Carlo (MCMC) sampling.
This chapter describes how these methods work and what their draw-
backs are: The chapter introduces how to numerically approximate
integrals in general by choosing sampling points and weights of the
integrand. It explains MC methods, importance sampling and how to
choose sampling points from a probability distribution using Markov
chains. Finally, the chapter discusses some issues that arise when us-
ing MCMC methods.

This chapter shows that MC methods and more specifically MCMC
methods are a very efficient way to evaluate the high-dimensional
path integral. On the other hand the application of these methods can
lead to some issues: the MC error scaling is quite slow, for a specified
error estimate the runtime of the MCMC algorithm grows substan-
tially when approaching the continuum limit and the MCMC method
has difficulties in giving reasonable error estimates when applied to
complex integrands. Hence these issues have to be investigated and
new methods have to be developed to approach these problems.

4.1 APPROXIMATING INTEGRALS

An integrable function f : R — IR can be numerically integrated by
an n-point quadrature rule [38],

[faxfx) ~ i‘;wifai), 1)

with sampling points tq,...,t, € R and weights wy, ..., w, € R.
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Common integrals in lattice gauge theory have many more than
only one integration variable. The number of integration variables is
in the following called d. The integration variables x1,...,x; € D are
combined in a vector x = (x1,...,%;) € D for some phase space D.
Then an integral of a function f : D* — R or C is given by

Li(f) :/Ddx1 .../Ddxdf(x1,...,xd) :/Ddda:f(a:). (4-2)

The number d is also called the dimension of the integral. For the
lattice QCD path integral with out-integrated fermions in (2.27) the
integration variables are the link variables of the lattice with integra-
tion measure given in (2.21), D = SU(3) and d = 4V},.

Integrals of the form (4.2) can be evaluated numerically by a cuba-
ture rule [41],

Li(f) = Qual(f) = éwif(ti)z (43)

with sampling points ¢1,...,t, € DY and corresponding weights
wy,..., W, €R.

One special cubature rule for a high-dimensional integral is the
application of quadrature rules to each integral over one variable x,
in(4.2), ¢ €{1,...,d},

m

/Ddng(xl,...,xb...,xd) ~ Zujf(xh...,xg,l,tj,le ...,Xd).

j=1

Here u; € R are the weights of this specific quadrature rule and
t; € D are the sampling points . Applying this quadrature rule to all
integrals in (4.2) gives a cubature rule which approximates I;(f),

Qutal(f) = Y iy ujpf (b oo 1), (4-4)

n=1 ja=1

By setting n &, equation (4.4) can be viewed as a summation of
the form (4.3), where each w; corresponds to some u;, - - - u;, and the
vector t; is given by (t;,...,t;,). This special cubature rule is called
product rule. The product rule involves m? sampling points ¢;. For
lattice QCD applications d is given by 4V},; and is therefore at least
d ~ O(10°) for typical lattice QCD computations. With this large d
already for m = 2 the number of terms in (4.4) are astronomically
high (m? > 2105). Therefore using the product rule is not an option
for lattice QCD applications.

In the following only d-dimensional integrals are discussed and
def

I=1I;and Q = Qnq is used for brevity.
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4.2 ORDINARY MONTE CARLO SAMPLING

The integral I(f) in (4.2) can be estimated by MC sampling. Given a
sequence t1, 1y, ... of independent, identically distributed elements in
the phase space D? then also f(t1), f(t2),... are independent, identi-
cally distributed elements which have variance

var{f(t1)} = var{f(t)} = ... Evar{f(t)} = I(f*) — (I(f))*.

Then an estimator for I(f) is the MC cubature rule

QUC(f) = . Y f(t), 43

a cubature rule in the form of (4.3) with equal weights w; = % The
strong law of large numbers states that QMC(f) converges almost
surely (a.s.), that means with probability one, to I(f) if the number
of sampling points n goes to infinity [68],

n—oo

QYC(f) 2 1(f)- (4-6)

The set of possible exceptions from this law does not need to be empty
but has probability zero. If ¢ = var{f(t)} is finite, the Central Limit
Theorem states that for large n the probability, Pr, that the MC esti-
mate QM€ (f) lies in between I(f) — z% < QME(F) < I(f) +z% for
z € R is given by [54]

o 1 2

lim Pr{|(QY(f) — I(f))| < =)= _deﬁe*%. (4-7)

From (4.7) it is clear that the MC error scales asymptotically with
1/+/n.

In practice o is not known. An unbiased estimator ¢ with ?Tn:?ooa is
given by

0 = nil Zl (£t - QMC(f>)2. (4.8)

In MC simulations the MC standard error, 6/+/1, is reported.

The MC error scaling with 7 is independent of the number of in-
tegration variables d, which makes it very attractive for applications
to high-dimensional integrals. On the other hand, the asymptotic MC
error scaling of O(1/+/n) is quite slow: to decrease the error esti-
mate by one order of magnitude, the number of samples has to be
increased by two orders of magnitude. There are variance reduction
methods to reduce the error estimate of the MC method and therefore
the number of samples needed for a given error estimate. These re-
duction methods can reduce the error estimate by an n-independent
factor but do not change the overall error scaling.
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4.3 IMPORTANCE SAMPLING

One of the variance reduction techniques for MC methods is impor-
tance sampling. The integral in (4.2) can be written as [77]

f(z)
I =/ d =/ d —L. :
1P = [ def@) = [ depa)lS 49
If p(x) is positive and normalized, [,dx p(xz) = 1, it can be inter-
preted as a probability density function. If random vectors ¢; can be
generated according to the distribution 7r(x) = dxp(x), then an esti-
mator of the integral is given by

L& ()
MEMC () — = = .10
QUME(f) = - ;h ey (4:10)
préio;\l’;itlity
7(t:)

The function p(x) is chosen such that it approximates f(x) reason-
ably well in shape and such that random numbers can be gener-
ated according to the distribution 77(x). Then important contributions
f(t) to the integral I(f) are considered with a larger probability in
QVEMC(£) than in QYC(f) in (4.5)

The Euclidean path integral in (2.27) strongly suggests to use the
normalized Boltzmann-factor in the distribution 77(x). The path in-
tegral to compute the expectation value of an observable O has the
generic form

(O) =1(0,p) = W, (4.11)

with weight p. In lattice QCD the weight is given by
o(z) = Z¢(z) e=5:(®) with Zr defined in (2.26) and S¢ in (2.8) and the

integration variables are the links, see (2.21). With 7t(x) = fdd? 58) >
0 an estimator for I(O, p) is given by
1 n
QUMEOp) =— ) Ot). (4.12)
t,‘i;}th
probability

7e(ti)

The difficult part is to choose the sampling points ¢ according to the
probability distribution 77(x). This can be done by creating a Markov
chain.

This estimate is called QM“MC(f), a Markov chain Monte Carlo estimate, because
for most applications the vectors t; are chosen by a Markov chain, discussed in the
next section.
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4.4 MARKOV CHAINS

A stochastic process in discrete time is a sequences t1, 1y, ... of ran-
dom elements of a countable or non-countable set, the state space.
This sequence is a Markov chain if the conditional distribution of
t,11 given ty, ..., t, depends on t, only and the discrete time is called
Markov time. A Markov chain is specified by two ingredients, the
initial distribution of t; and the transition probability distributions which
specify the conditional distribution of ¢, given ¢,.

In the following only stationary Markov chains are considered. A
Markov chain is stationary if the distribution of ¢, does not depend
on n. This implies stationary transition probabilities, that means that
the conditional distribution of ¢, given ¢, does not depend on n. A
probability distribution 7 is called invariant or equilibrium for speci-
tied transition probabilities if the Markov chain that results from us-
ing that distribution as the initial distribution is stationary. To create
a Markov chain with random elements ¢ that are distributed accord-
ing to 7t one has to find the transition probability P such that 7 is
invariant, 71 = P7t. For more details on Markov chains the reader is
referred to [31].

If the Markov chain with transition probability P is chosen such

that it leaves the distribution 7(x) = fddw;ég)

chain can be used to create the sampling points for the cubature rule
QMEMC (O, p) in (4.12) which is then called MCMC cubature rule. If a
stationary Markov chain has a unique invariant distribution, then the

strong law of large numbers also applies to Markov chains [31],

is invariant, the Markov

n—y00

QYME(0,p) 2 1(0,p)- (4-13)

Because this statement involves almost sure convergence, that means
the convergence happens with probability one®, the convergence hap-
pens from almost all starting points ;.

Under certain conditions also the Central Limit Theorem holds,

Jim Pr(|(QUM(0,0) ~ 1(0,0) €272) = [(dr e,
(4.14)

for z € R. This is similar to the Central Limit Theorem stated in the
MC case (4.7) but in contrast to the MC sampling points, the MCMC
sampling points ¢; are not independent. Therefore o? is not simply
given by var{O(t)}, but by [31]

0% = var{O(t)} + Zki cov{O(t;),O(tix)}- (4.15)
-1

2 Compare description around (4.6).
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The Central Limit Theorem in (4.14) states that the MCMC error
scales asymptotically with 1/+/n. The conditions such that the Cen-
tral Limit Theorem applies are more complicated than in the ordinary
MC case in (4.7), where only a finite variance is required. A discus-
sion on these conditions can for example be found in [31], section
7.7.

For stationary Markov chains 02 does not depend on i and can be
written as

Pt =0+2) (4.16)
k=1

with the variance of uncorrelated values oy = var{O(t) } and their cor-

relation op = cov{O(¢;), O(t;,x} whichis mdependent of i. In practice
H

0 is not known. An estimator & with & — ¢ is given by [80]

W-1
2 Y &, (4.17)
k=1

with W chosen to balance the systematic error due to the truncation,
with the statistical error and

0 = 2 L (O(t) = QYE(0,0))(O(tik) — QMNE(O, ),

for a large enough K. In MCMC simulations the MCMC standard
error 0/+/n is reported.

The Metropolis algorithm in its original form [73] was the first prac-
tically used MCMC algorithm and was developed further by different
people, e.g. [60]. For an unnormalized equilibrium probability distri-
bution #, it works as follows:

1. When the current state of the Markov chain is x, propose a
new state y which has a conditional proposal probability density
given z, denoted by q(z, ).

2. Compute the ratio

_ h(y)q(y, =)

rne,y) = , (4.18)
@)= he)gta,y)
using the unnormalized equilibrium distribution /.
3. Accept the proposed move y with acceptance probability
min(1,7(z,y)). (4.19)

The algorithm works only if h(z) > 0 and g(x,y) > 0 for state
x. In lattice simulations the Metropolis algorithm is often used for
pure gauge theory with i(z) = e %(®) and a proposal probability
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which is symmetric, q(z,y) = q(y, ), and local. Local means that
for a Markov state € = (x1,...,x4) with d = 4Vj;; a new Markov
state y is proposed by changing only one variable x; to y;, y =
(x1,...Xi—1,Yi, Xi+1,- - ., X4). Because this local change in the variable
x results in a local change of the action S (x), (x,y) is only depen-
dent on the local action change in the vicinity of lattice site i. Updat-
ing the full lattice, that is all entries in x, needs d Metropolis-steps.
Therefore the cost of the local Metropolis algorithm scales linearly
with the lattice volume V.

Using non-local changes possibly of all d variables in the proposal
probability would in general result in large changes in the action S¢,
the acceptance rate for configurations where the new action S (y) has
increased in comparison to S{;(«) would be very small and therefore
the system would move only slowly through the phase space D?. The
algorithm becomes also very slow when local changes in the phase
space result in non-local changes of hi(x), e.g. in full QCD for h(x) =
Zp(x) e=5:(*), Here Zp(x) is dependent on the determinant of the
Dirac matrix, which is a non-local quantity. An MCMC algorithm
which can efficiently be applied to actions including fermions is the
Hybrid Monte Carlo method [43].

4.5 ISSUES OF MARKOV CHAIN MONTE CARLO METHODS

MCMC is used in many physics applications to numerically evaluate
the involved integrals. It is well suited for high-dimensional integra-
tions and there are efficient methods to apply it to the lattice QCD
path integral. But the method has also some issues: Despite the al-
ready mentioned slow error scaling of O(1/+/n) with the number of
sampling points 1, there are some situations where the method re-
sults in very large MCMC error estimates which can make it impossi-
ble to get any significant outcome. On the one hand this is happening
when approaching the continuum limit of the discretized Euclidean
path integral, where the sampling points are highly correlated. On
the other hand the application of MCMC is difficult for complex inte-
grands. This section describes both issues in more detail.

This section shows that the MCMC algorithms can be improved
with some techniques to reduce the described issues but in order to
overcome them completely, different alternative methods have to be
developed. Some of these alternative methods are presented in the
next chapters.

4.5.1  Autocorrelations

Sampling points created through a Markov chain are correlated. Each
sampling point is created out of the previous one and therefore they
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are not independent. This is reflected by the covariance terms o} in

(4.16).
The integrated autocorrelation time is given by

def O 2 o
Tint o 1+ Zk; . (4.20)
Therefore ¢? is given by the variance of uncorrelated data oy times
the autocorrelation time Tin¢. The the number of samples 7 to reach a
specific MCMC error estimate ¢/ +/n is proportional to Tint.

The autocorrelation time depends on the specific algorithm used
to create the Markov chain and on the observable O. In the contin-
uum limit the longest correlation ¢ of the system diverges. In QCD
¢ is given by the inverse of the pion mass. The autocorrelation time
depends on this correlation length via [56],

Tint X gz‘ (4'21)

with dynamical critical exponent z > 0, which depends on the updat-
ing algorithm. Therefore T, and also the MCMC standard error es-
timate grow very large when approaching the continuum limit. This
behavior is called critical slowing-down.

There are algorithms which have very small exponents z, such that
the critical slowing-down is not problematic. One example is the Clus-
ter algorithm, [75, 83], an MCMC algorithm which creates clusters of
lattice points with similar characteristics and updates all points in
this cluster together. Unfortunately, this algorithm is not applicable
to all models, especially not to gauge theories.

4.5.2 The sign-problem

If the weight function p(x) in the path integral in (4.11) is non-positive,
it is impossible to interpret it as a probability density function for im-
portance sampling.

This is the case for an important set of problems, namely for QCD
systems with a non-vanishing quark chemical potential® y. In contrast
to systems in the QCD vacuum with zero quark chemical potential,
systems with a non-zero background density of quarks have u > 0.
One possibility to include the chemical potential in the lattice Dirac
operator is the redefinition of the temporal derivatives in (2.11) [56]

A

Vo¥(n) = (e Up(m)¥ (1 +0) — ¥(n)), .
4.22
Vit (n) = (¥(n) — e U o(n)"¥ (n —0))

Therefore the term in the Dirac operator in (2.10) with 7 (and one
part of the Wilson term) depends on the chemical potential. This ef-
fects the determinant of the Dirac matrix, it can be complex because

3 In the following, i only denotes the chemical potential and not the twisted mass.
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the Dirac matrix is no longer ys-Hermitian, ysDw 5 = D;S\,. Now it is
¥sDw (u)vs = Diy(—u) and therefore det[Dy (u)] = det[Dw(—p)]*,
which means that the determinant can be complex for u # 0. This
determinant occurs in the fermionic partition function, e.g. Zp(x) =
det(Dw(x)) for a single fermion flavor (compare the description af-
ter (2.30)), which is part of the weight function p(z) = Z(x)e %6(®)
in (2.27). The complex weight function cannot be used to create a
Markov chain because it is non-positive and results in oscillatory in-
tegrands in the path integral (4.11).

Using ordinary MC sampling without any importance sampling
described in section (4.2) instead of MCMC for oscillatory integrands
with complex p is possible but very inefficient. Evaluating this inte-
gral numerically shows a sign-problem: Positive and negative contribu-
tions that cancel each other in an exact computation are not chosen
symmetrically in the numerical evaluation of the integral and only
cancel for an infinite number of sampling points. Therefore these
types of integrals result normally in large error estimates. The sign-
problem scales with the lattice volume because p depends on the ac-
tion which involves a sum over all lattice sites.

If p is complex, the sign-problem can occur and p cannot be used
to create points in a Markov chain. Despite the alternative to use or-
dinary MC without any importance sampling, MCMC methods can
be applied anyway if the weight function is redefined: By decom-
posing p = wo into its real modulus ¢ € R and complex phase factor
w(z) = e?®) ¢ C for §(z) € R, only o can be used as the new weight
function and the complex phase factor is subjoined to the observable
O,

0 JAEO@CE@)

O = 10w =z w@efa)

_ Jds Ofxw(@)ole) [z plz)
Jdvol)  [dwalwiol)

=1(Ow,0) I(a},Q) (4.23)

An estimator of this expectation value can be computed via MCMC
dzo(x)
Jdye(y)
and I(w, o) separately. Still, the complex phase factor is highly fluctu-

ating, especially for larger 6 and therefore with this reweighting tech-
nique it is still challenging to compute significant results for large 6
values.

using the real probability distribution to estimate I(Ow, 0)
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MCMC is the method of choice for most lattice QCD simulations.
Typical lattice QCD simulations have to approximate integrals with
at least 10° integration variables, but the MCMC error scaling does
not depend on this number of variables, compare chapter 4. Chapter
4 also demonstrated that using MCMC can lead to some issues. If the
integrand is real, there are two main ones: First, the configurations
that are created by a Markov chain are correlated. This correlation di-
verges near the critical point of the model and therefore leads to large
error estimates of observables when approaching the continuum limit.
Second, the slow error scaling of MCMC methods results in a large
effort to reduce the error estimate of an observable. New methods are
needed to attack these problems. But these methods still need to be
competitive for large numbers of variables. The recursive numerical
integration (RNI) described in [58, 61] is such a method. It exploits
the local structure of typical integrands of lattice path integrals to
simplify the corresponding integrals, such that each full integral can
be approximated by recursively applied quadrature rules. For these
quadrature rules we used the efficient Gaussian quadrature rule, ap-
plied the method to a one-dimensional O(2)-model and compared
its efficiency with MCMC methods. The method as presented here is
only applicable to one-dimensional models. Results are published in
[14] and [16].

This chapter first analyzes the structure of typical integrands, then
describes the RNI method, introduces the O(2) model of the topolog-
ical oscillator and shows numerical results of a topological oscillator
observable, computed with the RNI method.

We found that the method gives accurate results near the critical
point, computations of errors are possible in a region where the er-
ror scales exponentially and the method needs less runtime than an
optimal MCMC algorithm to reach a specified error estimate. There-
fore the recursive numerical integration method is a very promising
alternative to MCMC, at least when applied to a one-dimensional
problem. A generalization to U/ (N) and SU(N) variables with appro-
priate quadrature rules is possible. In the future this method should
be generalized such that it is also efficiently applicable to models with
higher dimensions. It is not clear yet, whether the method can finally
be applied to QCD.
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5.1 STRUCTURE OF INTEGRANDS

RNI uses the structure of an integrand to simplify the corresponding
integral evaluation. In lattice field theory, expectation values of ob-
servables are computed by the path integral, compare (4.11). The in-
volved integrals in numerator and denominator have integrands that
include the weight function p and an observable O. RNI uses the fact
that most physical models have only local interactions. These local
interactions are simulated with low-order couplings and in most sim-
ulations only next-neighbor couplings are considered. Then it can be
possible to decompose p and O into factors which are only dependent
on nearest-neighbor variables. For example, in pure gauge theory
with configurations U consisting of entries U, (1) with u € {1,2,3,4}
and 1 € A, the weight function p(U) = e %:(U) can be split by using
the definition of the action in (2.27),

4 p ~
neA pv=1
pF#v
Recall that Uy, (n) = Uy, (n)Uy,(n + f)U,(n + 0)'U,(n)" (2.6) and de-
fine
{14 ) —
o(A, B,C,D) & o R(TE1-ABCD]) (5.2)

Then the weight function can be written as

4
e 56U =TT TT e(Upu(n), Uy(n + ), Uy(n +0), Uy (n)). (5.3)
neA uv=1

pFv
Each p-term is only dependent on four link variables, which are all
part of the smallest possible, non-trivial, closed loop. This factoriza-
tion of the weight can be used to simplify the evaluation of the inte-
gral over this weight function [dU e=5(U).

If this factorization of an integrand is possible, it can be used to
simplify the integral evaluation. We tested this method with a sim-
pler model, where both numerator and denominator integral of the
expectation value can be factorized. We considered a one-dimensional
quantum-mechanical system with d lattice sites, periodic boundary
conditions, (1) variables and only two next-neighbor couplings per
site. In contrast to QCD, we used U(1) variables that are located at
the lattice sites. For example, the variable U; = e is located at lat-
tice site j with a; € [0, 7). In the following, only the &; variables are
shown and o = (a3, ..., 7). The weight function of the model is given
by p(a). The expectation value of an observable O is then given by

_ JdaO(a)p(a)
0= Jdap(a)

(5-4)
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We used a weight function form that is similar to the form in (5.3)
but applicable to the described one-dimensional /(1) model,

u

p(a) = [T pi(ait1, ai). (5.5)
i=1
This function consists of local weight functions p; that are only depen-
dent on two variables «; 1 and «;.
We considered the observable Z‘le O;(aj11, ;) and correlations of
it, therefore the general observable function is given by

; k
O(a) = (Zoi<“z’+1/“z’)> , (5.6)

i=1
where k € N,k < d defines the number of correlations. The full
integrand of the numerator in (5.4), f(a) = O(a) - p(«), is then given
by

f(Oé) = <H Ozi Xip41, &, ) (Hp] a]+1/‘x])> (57)

]_

et

d d
£o%
d d
Z E ‘X]H/ ‘X]) (5.8)
= =1 :l

Here, we have collected all O; and p; terms in ff"ik . Consider for
example k = 5 and d = 20. Then e.g. for the multi-index (iy, ..., i5) =
(1,1,2,9,1) there are factors

o o3, ot il
0,5, A1 o 91 (5.9)
s _ fHL_ o 2l g

and all other f'*! = p; for j > 9. Because integration is linear, the
following considerations use a fixed multi-index (iy, ..., ) and con-
sequently omit it if not stated otherwise. Then both integrands in
(5.4), f(a) = O(@) - p(e) in the numerator and f(a) = p(a) in the
denominator, have the same structure,

d
fla) = Efz‘(“iﬂﬂxi)- (5.10)

5.2 RECURSIVE NUMERICAL INTEGRATION

RNI uses the structure of the integrand f in (5.10) to simplify the
computation of the integral

1) = [, desf(e). (5.11)
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Here f can be O - p or p to compute numerator or denominator of
the expectation value (O) in (5.4), respectively. We used the integrand
structure to split the integral into d nested one-variable integrals. This
means that the cubature rule of the full integral consists of d recursive
one-variable quadrature rules, which can be solved very efficiently.
This section explains the three main ingredients to an estimate of (5.4)
with RNI: the cubature rule for an integral with the structure (5.10),
the specific cubature rules for numerator and denominator of (5.4)
and the efficient Gaussian quadrature rule that can be used inside
the cubature rule.

CREATING THE CUBATURE RULE The integral of (5.10) can be
rewritten with recursive integration as described in [58, 61]. Because
of next-neighbor couplings each lattice point a; appears only twice
in f(a), in f; and f;_; and therefore the integral can be written as d
nested one-variable integrals I;,

d
I(f) = /Ddﬂfl---/Dled Hfi(“iz“i—&-l) (5.12)

= /Ddle... (/Dd“d—l fa—a(ag—n,mq_1)- (/Dd"‘dfdfl(“d—lr“d) 'fd("‘dr“dﬂ)) )

I

i

I

This full integral can be computed recursively: I; integrates out a,
first, then I;_; integrates out a;_; and so on until finally I} = I(f)
integrates out «1. These integrations are approximated by using an
n-point quadrature rule for each integral.

To avoid under- and overflow of the single quadrature rule results
we actually used quadrature rules to approximate I = cl,-li with
¢; > 0 chosen adaptively. Then the final integral is computed via
I = (Hle ci) I*. For brevity the method is described in the following
without this trick.

A quadrature rule of the form' (4.1) is used for each one-variable
integral in (5.12). The integrand of I; depends on three variables a;_1,
ag and «ag4q. The variable a; is integrated out, therefore the quadra-
ture rule Qu(fs-1- fa1) L0, of I depends on two variables,

Qulwg—1,aq41] = Y w0 fa_1(wa_1, ") - fa(t', &g 41). (5.13)
r=1

For better readability the quadrature indices of the sampling points ¢
and weights w" are written as superscripts. There are other integrals
which integrate over a;_; and a1 and each integral is approximated

In this chapter the indices i of quadrature rule Q; and integral I; should not be
confused with the indices d or n of I; and Q, 4 in section 4.1, which are not shown
here.
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by a similar quadrature rule than (5.13). These quadrature rules in-
clude sums over sampling points " for a;_; and t* for wy,q with
m,k € {1,...,r}. We used the same set of sampling points for each
quadrature rule. Therefore the quadrature rule for I; can be written
as

Qult", ] = Zwrfd L(E ) - fa(E,8) 2 Q. (5.14)

Each f;(#", tX) can be interpreted as a matrix entry of a matrix M;, and
with diag(w) = diag(w!, w?,...,w") equation (5.14) can be written in
matrix notation,

Q4 = M, - diag(w) - My, (5.15)

where all matrices have n x n entries. The next integral to be approx-
imated in the recursive approach of (5.12) is

Li—1(wg—p,00441) = /Dd“d—l fa—o(wa—2,aq-1) - Ia(wg—1, 4+1)-

(5.16)

Using a similar quadrature rule as in (5.14) it is
Qi-1= My, -diag(w) - Qu (5.17)
= M,_, - diag(w) - My_; - diag(w) - My, (5.18)

where (5.15) is inserted. The quadrature rule is used for all other in-
tegrals in (5.12) recursively until I, =~ Q; = (H’L_ll M; - diag(w)) M.
Due to periodic boundary conditions with a1 = a1 the last integral
is then

I=5hL= /l;dﬂél L(a1,a1), (5.19)
n d

Q=01 =) wh(t't)=tr [H (M; - diag(w )] (5.20)
r=1 i=1

THE NUMERATOR AND DENOMINATOR CUBATURE RULE  The de-
rived cubature rule in (5.20) is applicable to integrands of the form
(5.10). This rule has to be applied to numerator I(p) = [da p(a) and
denominator I(Op) = [daO(a)p(a) of (5.4) separately. Therefore,
the specific integrand form of the numerator in (5.8) with summation
over the multi-index has to be taken into account. Additionally, the
cubature rules can be simplified when assuming isotropy for the local

weights in (5.5), p1 = p2 = ... = pg4 o 0.
Then, for the denominator f(a) = p(a) itis My = ... = My £ M.
This gives

Qp) = tr[(Mdiag(w))’] = tr[(diag(v/w) Mdiag(v/w))].
(5-21)

67



68

RECURSIVE NUMERICAL INTEGRATION

A real symmetric matrix can be diagonalized, resulting in a diagonal
matrix D which includes eigenvalues A; of Mdiag(w) and it is

Q(p) = [D] =} Af. (5-22)

Either (5.21) or (5.22) can be used to approximate the denominator
integral in (5.4). For both it is valid that the smaller the matrix M,
the faster Q is computed. Because M has n x n entries, a quadrature
rule is needed that uses few sampling points n to result in a good
approximation of each integral I;.

The integrand of the numerator is given by f(a) = O(a) - p(«)
and it’s form is given in (5.8). Because of the sum over the multi-
index (i, ..., i) in (5.8) the matrices M; have a multi-index. From

(5.7) it is clear that the f]-”"'lk are in general not equal to p;, but also

different from each other. The quadrature rule of the numerator is
given by

d d -1
QOp)=) ..) tr ll—I(M]l1 """ g .diag(w))]. (5.23)
=1 i=1 |j=0

Here, the trace of a product of d matrices (M;l"“’ik diag(w)) has to
be computed for each multi-index. Note that in practice k < d and
therefore it happens that adjacent M; coincide. This reduces some of
the products to matrix powers which can be computed slightly faster.

THE GAUSSIAN QUADRATURE RULE The main question becomes

how to choose the sampling points and weights which determine the

matrices M;. More specifically, our goal is to produce the best error es-
timate for the quadrature rules Q; with as few sampling points as pos-
sible, because the number of sampling points affects the number of

entries of the M; quadratically. We used the Gaussian n-point quadra-
ture rule, see [81]. It approximates integrals of the form | abdx W(x)f(x)
with a function W(x) that is positive and continuous on the interval

[a,b]. The quadrature rule is given by

/abdx W(x)f(x) =~ éwrf(tr) =Q. (5.24)

Note that in our case, W(x) = 1. The rule is exact when f(x) is a
polynomial of degree 2n — 1. This is archived by choosing the sam-
pling points ¢, and the weights w, through orthogonal polynomials
pn(x), associated with the weight function W(x). For W(x) = 1 these
are the Legendre polynomials. The ¢, are the roots of the nth polyno-
mials p,(x) and the w, are chosen by the condition

- _ J {polpo), k=0
r:lek<tr)wr { 0, kefl,n—1} ’ (5.25)
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see [81]. If f is not a polynomial but continuously differentiable on
[a,b], the quadrature error of (5.24) is given by [81]

def (Zﬂ)
s _g=/t (2n§§) (palp), (5.26)

for some ¢ € [a,b]. The error scales asymptotically (for large 1) as’
@ (ﬁ) The Stirling formula (n! ~ 27t (%)n asymptotically) ap-
proximates the factorial to give

oc~0 <exp(—2n In n)%) (5.27)

asymptotically. One drawback using Gaussian integration is that all
sampling points change when using the (1 + 1)-point quadrature rule
instead of the n-point quadrature rule in (5.24). This is very different
from MCMC integration, where one additional sampling point from
the Markov chain is added to the already existing sampling points of
the n-point quadrature rule to form a (1n 4 1)-point rule.

5.3 THE TOPOLOGICAL OSCILLATOR

We applied the RNI to the topological oscillator, described for ex-
ample in [25]. We chose this model to test RNI on a simple one-
dimensional model, but one that also has non-trivial characteristics,
such as a topological charge. The topological oscillator describes a
particle with mass M moving along a circle with radius R and there-
fore I = MR? moment of inertia. The Lagrangian of the system is
given by

2 = 10+ Gw)?, 528)

with x% + y? = 1. This is analogous to the O(2) sigma-model in quan-
tum field theory if the coordinates (x,y) of the mass are interpreted
as scalar fields (¢1,¢7). Then & is invariant under the transforma-
tion ¢; — Tj;¢; with T € O(2). This is generalizable to O(N) sigma-
models.

With polar coordinates and inverse finite temperature T the action
of the topological osciallator is given by

T
S= é /O dt (3:)>. (5-29)

To solve this model on a computer, the time can be discretized by 4
timesteps with distance a. The inverse finite temperature is then in-
terpreted as the time extent of the lattice with T = a-d. We used

For Legendre polynomials the correct asymptotic error scaling is %, [66], which
1

is slightly improved over @
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particular form for the discretized derivative, a non-linear term

(0r)* ~ (1 — cos(@i11 — 1)),

a
1
2

M=~

1
S = 2 (1 —cos(@it1— i) - (5-30)

i=1

One characteristic observable of this model is its topological charge,

d
Qtop = % Z(@H—l - q)l) mod 27T/ (531)
i=1
which describes here the number of complete revolutions of the rotor
in the time period T and is therefore an integer number. The topologi-
cal charge is also an important quantity in QCD, where it is connected
to chiral symmetry and the mass of the 7’-meson. The width of the
topological charge distribution is the topological charge susceptibil-

ity,

QZ
Xtop = ;—(‘)p. (5‘32)

This xiop is an observable function, which is of the form (5.6) with
k=2
The model approaches the continuum limit for  — co. The contin-

uum limit of the topological susceptibility is (xop) Hazg s [25].

5.4 NUMERICAL RESULTS

Section (5.2) describes the RNI method and its error scaling. Whether
the asymptotic error scaling can be reached has to be tested in practice
to check the advantage of RNI over MCMC methods. We computed
the topological susceptibility in the topological oscillator model and
compared it to result from an optimal MCMC simulation. This sec-
tion shows results approaching the continuum limit of the topological
osciallator, first computed with MCMC, then with the RNI method.
After that it demonstrates the error scaling of the RNI method and
finally compares the runtime of both, RNI and MCMC, methods.

We found that the Cluster algorithm is an optimal MCMC algo-
rithm for the application to the topological oscillator and therefore a
challenging comparison algorithm for the RNI method. We saw that
the RNI method gives correct results near the continuum limit and
that its error decays at least exponentially. We finally measured that
the RNI method needs orders of magnitude less runtime than the
cluster algorithm. All in all the RNI method gives better results than
the optimal cluster MCMC algorithm when applied to the topolog-
ical oscillator. The next step is to develop the method further to be
applicable to larger dimensional models and check the advantage of
the method over MCMC methods there.
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Figure 5.1: Computing the topological susceptibility with the Metropolis al-
gorithm is difficult when approaching the continuum limit be-
cause the autocorrelation times grows substantially.

MCMC RESULTS APPROACHING THE CONTINUUM LIMIT The
Cluster algorithm described in [83] can directly be applied to the
topological oscillator. It is an optimal MCMC algorithm for the topo-
logical oscillator and therefore a good comparison method to the RNI
method. Approaching the continuum limit of the model, £ — oo, criti-
cal slowing-down described in section 4.5 is happening, which can be
reduced significantly by the Cluster algorithm. We demonstrated this
by applying the Metropolis and the Cluster algorithm to the model
and comparing their results. We approached the continuum limit by
keeping the moment of inertia fixed, I = 0.25, and decreasing the
lattice constant a while keeping the full lattice extent T = a-d = 20
constant. In the following this limit is only denoted by a — 0. For
I = 0.25 the continuum topological susceptibility is given by 72,
compare below (5.32). We used a constant number of configurations,
N = 10°.

The Metropolis algorithm shows the expected critical slowing down
behavior towards the continuum limit. The integrated autocorrela-
tion time for the topological susceptibility grows rapidly towards the
continuum limit, see Fig. 5.1, as it is expected from equation (4.21).
Therefore, the error estimate for the topological susceptibility grows
to large values in the continuum limit as well. For the Cluster algo-
rithm we found autocorrelation times that do not exceed 10, also for
as small g-values as a = 0.002.

Reasonable simulations approaching the continuum limit are only
possible with the Cluster algorithm. This becomes especially clear
from the direct comparison of the topological susceptibility behavior
towards the continuum limit, computed with both algorithms in Fig.
5.2. The error estimate from the Metropolis algorithm becomes very
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Figure 5.2: Approaching the continuum limit, reasonable error estimates are
only possible with the Cluster algorithm, whose results come
close to the continuum value of Xtop, the black line, for very small
a-values.

large for a < 0.05. The result from the Cluster algorithm at a = 0.002
is close to the analytically computed continuum value % and has a
relatively small error estimate.

RNI RESULTS APPROACHING THE CONTINUUM LIMIT We found
that the topological susceptibility computed with RNI as described
in section 5.2 approaches the continuum limit expectation value. The
results using RNI and the Cluster algorithm behave similarly towards
the continuum limit, see Fig. 5.3, using I = 0.25 and n = 120 sampling
points for RNIand N = 10° sampling points for the Cluster algorithm.

ERROR SCALING OF RNI  We found that for n = 200 the error re-
sulting from using n instead of infinitely many sampling points in
the RNI method decays exponentially. Because RNI is a deterministic
method, the error of an observable for a given number of sampling
points n cannot be computed by the statistical fluctuations as done
for MCMC methods, but can be computed as the difference to the
exact result, which is normally not available. We estimated the error
by choosing a large value 1, where we assumed that xiop is approxi-
mated quite well. We computed the difference to xiop(11g) for n < nyg,

Axiop(n) = |Xtop (1) — Xtop (11g)]- (5:33)

This truncation error behaves exponentially for m 2 200, see Fig 5.4,
where we used a = 0.4, [ = 0.25 and ng; = 560. The blue line indicates
an exponential fit to the data points n > 200. This means that for
n 2 200 the exponential scaling of the estimation of the asymptotic
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Figure 5.3: The topological susceptibilities, computed with MCMC (clus-

ter algorithm) and RNI (Gauss quadrature), behave similarly to-

wards the continuum limit value 7—2.

scaling in (5.27) is reached. Theoretically, for even larger n one would
1

however expect that the error scales with O <W)’ compare (5.26).
RUNTIME COMPARISON OF MCMC AND RNI Our simulations
showed that the RNI method needs orders of magnitude less run-
time than the Cluster algorithm to result in a specified error estimate
on an observable. Because of its error scaling it is clear that the RNI
method can give smaller errors than the Cluster algorithm if enough
sampling points are used. But is the method also advantageous for
lower n-values, where the error scaling is not yet in the exponential
error scaling regime? Cluster algorithm and RNI method work very
differently and therefore the runtime to compute an observable with
a specified error is the best direct comparison of the efficiency of both
methods.

With fixed 2 = 0.1 and I = 0.25, our Cluster algorithm measure-
ments resulted in an error estimate that decreases proportional to
t~1/2 for runtime ¢, see Figure 5.5, consistent with the typical MCMC
error scaling in section 4.4. We used between 10% and 10° sampling
points and repeated the measurements for each number of sampling
points several times to get an error estimate on both, t and Axiop.
The error estimate on ¢ arises due to a fluctuating workload on the
computer because of other processes that are running on it, as well
as changing Cluster sizes and distributions of the Cluster algorithm.
The error estimate on Axiop originates from the stochastic nature of
the algorithm.

The RNI method, using between 10 and 300 sampling points with
ng = 400, resulted in orders of magnitude smaller errors, see
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Figure 5.4: The error of the RNI method scales at least exponentially when
using enough sampling points 7. The blue line indicates an ex-
ponential fit to the data points n > 200.

Figure 5.5. The exponential error scaling is not visible here, the asymp-
totic regime of the method is not yet reached with the used numbers
of sampling points.

All in all, the RNI method results in orders of magnitude smaller
errors than the Cluster algorithm for a fixed runtime or equivalently,
the RNI method needs orders of magnitude less runtime than the
Cluster algorithm to arrive at a fixed error estimate, already for a
number of sampling points where the RNI error does not yet scale
exponentially.
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Figure 5.5: The runtime to arrive at a given topological susceptibility error
estimate is orders of magnitudes smaller when using the RNI
method than using the cluster algorithm.






COMPLETELY SYMMETRIZED QUADRADURE
RULES

MCMC methods are used for most lattice QCD computations. Sec-
tion 4.5.2 showed that it is not possible to use MCMC methods in
their original form if the integrand is complex, e.g. when introducing
a chemical potential y. Furthermore, variations of the method do not
give satisfactory results for specific parameters, e.g. large u. As dis-
cussed in section 4.5.2, this is called the sign-problem. For example,
it is the reason why we cannot simulate QCD in the early universe
and therefore a big obstacle to understanding the transition from the
quark gluon plasma region to the confinement region at lower tem-
perature. The RNI method in combination with the Gaussian quadra-
ture rule as described in chapter 5 is a polynomially exact numeri-
cal integration method and solves some issues of MCMC integration.
However, the Gaussian quadrature rule is only defined in real space
and therefore cannot be applied to complex integrals. In chapter 5
the ¢/(1) variables of the topological osciallator can be converted to
real space, using only angles instead of complex phases, whereas this
is not possible for QCD link variables in SU(3). In this chapter we
show that there are alternative quadrature rules that are applicable to
SU(3) variables and can be used to avoid the sign-problem.

We developed polynomially exact quadrature rules which are ap-
plicable to complex integrands with one variable in a compact group.
They give exact results up to machine precision for polynomial inte-
grands and are based on fully symmetric quadrature rules on spheres
from [57]. We applied these symmetrized quadrature rules for U(N) and
SU(N) with N < 3 to the one-dimensional QCD model with a chem-
ical potential. This is an over-simplified model of QCD with only one
variable. In the sign-problem parameter region we compared the re-
sults from symmetrized quadrature rules with results from MC sim-
ulations. Results are published in [15, 17].

This chapter first explains how the symmetrized quadrature rules
are constructed, then introduces the one-dimensional QCD model
and finally shows and analyzes numerical results from applying the
symmetrized quadrature rules to the model.

In practice, we found that the symmetrized quadrature rule error
estimates are orders of magnitude smaller than MC error estimates,
especially in the sign-problem parameter region, and are only limited
by the machine precision used, in contrast to the MC results. Hence
the method is able to avoid the sign-problem for the compact vari-
ables, e.g. SU(3). However, to be able to apply the method to full
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QCD, it has to be generalized to more than one variable. A first at-
tempt of an application to a one-dimensional model with more vari-
ables is presented in chapter 7 below.

6.1 POLYNOMIALLY EXACT QUADRATURE RULES OVER COMPACT
GROUPS

A recently developed method to solve the sign-problem is described
in [28, 29] and applied to the one-dimensional QCD with one link
variable U € SU(3). This model has a sign-problem, the function
p(U) in the path integral (4.11) is complex and therefore standard
MCMC methods cannot be applied. In the articles [28, 29], the vari-
ables are grouped into subsets () with |Q)| number of elements, such
that the sum of their individual weights p(U) in each subset is real
and positive, o = ﬁ Yveap(V), and therefore MCMC can be ap-
plied.

If the subsets consist of Z3 rotations and complex conjugation,
Qu = {ez%ik UeS U : ke {1,2,3}} for U € SU(3) whose ele-
ments are all in SU(3) again, g, is real and positive for maximally
five fermion flavors [28]. Then the integral

B fsu(3)dUO(U)p(U)
10p) = fsu(s)duP(u)

— du ——Ou < L ZO(V)p(V)>,

SU(3) fsu(s)du o0y \ 70| Qul veQu

(6.1)

(6.2)

can be approximated by MCMC choosing variables according to the
distribution 0q, / [, (3)dll o0y -

The approach discussed in this chapter generalizes the ideas un-
derlying [28, 29] to larger symmetry groups than the cyclic group
Z3. 1t is an interesting question which finite subgroups of SU(3) are
best suited for this technique. Note that it is not straightforward to
find such symmetry groups where the () satisfy the condition that
00, is real and positive. This is also true for other types of interac-
tion, in general A/ (N) and SU(N) with N > 1. Since fully symmetric
quadrature rules are know on spheres [57], we derived fully sym-
metrized quadrature rules on the compact groups SU(N) and U(N)
with N < 3 from these rules on spheres. Since the resulting rules on
compact groups are polynomially exact, an additional MCMC simu-
lation is unnecessary and the involved subsets ();; do not have to be
chosen such that 0, is real and positive.

This section first presents the simple quadrature rule for ¢/(1) and
explains fully symmetric quadrature rules on spheres of [57]. It shows
how integrals over spheres can be transformed into integrals over
compact groups SU(N) and U(N) with N € {2,3}. Based on this
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transformation and the quadrature rules on spheres it presents the
completely symmetrized quadrature rules on these compact groups,
which are polynomially exact.

6.1.1 Symmetric quadrature rules on U (1)

It is easy to choose a symmetrized quadrature rule on ¢/(1). The inte-
gration can be approximated by using m equidistant sampling points
on the complex unit-circle with equal weights 1/m. The quadrature
rule is called a spherical design [40],

[ duf) ~ Quoy £ Zf ), 63)

u()

for some function f. Note that if f is a polynomial of maximal degree
(m — 1), equation (6.3) is an equality on machine precision.

In general, spherical designs are defined on unit n-spheres S", em-
bedded in an (n + 1)-dimensional space, S" = {x € R"*!: |z| = 1}.
Here, U(1) corresponds to S!, the unit-circle. To apply this to larger
groups, like U(N) or SU(N), these groups have to be expressed in
terms of spheres first and then a spherical design has to be found
for these unit spheres. Since it is difficult to find spherical designs
for high-dimensional spheres, we used weighted spherical designs,
i.e. polynomially exact quadrature rules that may not be of equal
weight and transformed them to polynomially exact quadrature rules
for U(N) and SU(N) with N € {2,3}. In the following the weighted
spherical designs are introduced and the quadrature rules for ¢/(N)
and SU(N) are deduced from them.

6.1.2 Symmetric quadrature rules on spheres

We used the polynomially exact quadrature rules on 5" given in [57]
which are described in the following. They are based on the Lagrange
interpolating polynomials. A function f : R — R with (m + 1) known
support points (xy, f(xx)) can be approximated by a polynomial P of
degree m,

m

P(x) = Y f(x) Li(x) Z Fxe) Im‘[ aam iy (6.4)
7

k=0 k=

with the Lagrange polynomials L [81]. Then a possible quadrature
rule of degree m for [dx f(x) is the integral over the interpolating
polynomial,

= /dx P(x). (6.5)
R

This section presents the generalization of this quadrature rule to
polynomials on spheres, gives an example on how the quadrature
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rule chooses points on the 2-sphere in R?, and shows a possible error
estimate computation for these quadrature rules.

QUADRATURE RULE The quadrature rule in (6.5) can be general-
ized to integrations of functions f : S"-1 5 R. In what follows, such
a function is approximated by a polynomial, which can be integrated
straightforwardly. Similarly to (6.4), the interpolating polynomial is
defined by sampling points ¢ € S"~! and the corresponding function
values f(t). To obtain a polynomial which is symmetric in ¢ one re-
places f(t) with f{t} that denotes the average over a set of points
symmetric to ¢,

Atr = 2C1(t) ;f(sltIISZtZ/---/Sntn)- (6.6)

Here c¢(t) is the number of non-zero entries in ¢ and the sum runs
over all possible sign combinations with s; = £1 for t; # 0.

The sampling points are chosen in the following way: ¢ € S"~!
means that [t| = # + 5+ ... + 3 = 1. This can be achieved by ¢t =

(tpy, ..., up,) with" u; = \/% for pj € Np and Y/ ; pi = m € Nxo.
All such points t can be labeled by the vector p = (p1, ..., pn) and we

refer to the corresponding point as t,,.
Then the interpolating polynomial for f is given by

n pi—1 2

Por(z)= Y f{t,,}q rg L_“;. (6.7)

lp|=

Here |p| = m is the abbreviation for }}' ; p; = m. The integral over
§"~1 of this polynomial is the quadrature rule for [, dx f(x):

Qswi(f) = [ dePsi(z) (6.8)

gn—1
np[lxl_u

Z f{tp} da:HH

|p|=m

&f Y f{tp}wp. (6.10)

|p|=m

> (6.9)

It has polynomial degree 2m + 1 with weights w,, defined by the inte-
gral over S"~1 in (6.9). For a specified m the weights can be computed,
some are shown in [57].

EXAMPLE The surface of a ball is a 2-sphere in three-dimensional
space. Sampling points on this sphere have three entries because t €
S? and also p € IN2 . Choosing m = 1 means that p; + p, + p3 = m =
1, which is possible for three district p € {(1,0,0), (0,1,0),(0,0,1)}.

i+p

1 More generally u; = |/ 47 i

forsome 0 < pu <1.
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With m = 1 there are two distinct sampling point entries ug = v/0/1 =
0 and u; = +/1/1 = 1. The sampling points are chosen with respect
to p, therefore there is one sampling point per p, t, = (up,, Up,, p,):

t1,00) = (uy,ug,u0) = (1,0,0),
to,1,0 = (4o, u1,u0) = (0,1,0), (6.11)
t(0,01) = (1o, 1o, u1) = (0,0,1).

In general t, is not equal to p. The number of non-zero entries in

each tis c¢(t) =1 (for m # 1 these c(t) are in general not the same for
every t), therefore it is

Fltaon) = 5 (F(+1,0,0) + f(-1,0,0)),
Fltio} = 5 (F0,1,0) + £0,-1,0)), (612)
Fltaon) = 5 (F0,0,41) + £(0,0,-1)),

with the same weights for all three functions, w, = 47”, [57]. By con-

struction, points whose coordinates are permutations of each other
have the same weight. Thus, the quadrature rule Qs (f) in (6.10) has
to satisfy 3w = Qg (1) and Qg (1) is the volume of the full surface,
Qg(1) = vol(S?) = 47, therefore w = 471/3. For larger m the weights
in general differ among each other. The quadrature rule sums over all
possible p vectors:

Qee(f) = 20 S(F(1,0,0) + F(~1,0,0) + £(0,1,0) + £(0,~1,0)
+£(0,0,1) + £(0,0,—1)). (6.13)

This quadrature rule uses six symmetric points on the sphere, all
with the same weight. This is a polynomially exact rule for integrals
of polynomials of degree 2m +1 =3 for m = 1.

f(x) = x3 is a polynomial of degree 2 and therefore should be inte-
grated exactly by Qg.. Additionally, the integral over the 2-sphere of
f(x) is not too complicated to solve analytically. In spherical coordi-
nates with x3 = cos 6 this integral is

27 T . 2 477
I (f) :/0 d(,b/o df sinf cos” 6 = R (6.14)

In the quadrature rule (6.13) only the values f(0,0,1) = 1 and
f(0,0,—1) = 1 are non-zero. Then Qs (f) = # gives the same value
as the analytic calculation (6.14).

For m = 1 the symmetrized quadrature rule on S" has 2(n + 1)
sampling points.
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ERROR ESTIMATE To compute an error estimate for Qg.1(f), the
quadrature rule in (6.10) can be randomized by applying random
orthogonal n x n matrices Z, ZT7 =1, to the vectors tp [571,

Qgn1(f,Z) Z f{Ztp} wp. (6.15)

|p|=m

If M matrices Z; are chosen randomly according to the Haar measure
from the set of all matrices in the orthogonal group, Qg.1(f, Z) is an
unbiased estimator for [, dx f(z),

Qsn1(f,2) = + ZQS” 1(f, Zi) (6.16)

with the error estimate

N
AQgn1 = \] Z Qo 1(f,Z) = Qo 1(£,2))". (6.17)

1:1

6.1.3 Connection between compact groups and spheres

The groups U(N) and SU(N) with N € {2,3} can be connected to
products of spheres S" via

SU(N) =~ 8% x 8% x ... x §?N-1, (6.18)

U(N) ~ St x 8% x ... x §2N-1, (6.19)

For an isomorphism which preserves the group structure,

DX S%-1 — G with G € {U(N),SU(N)}, the integral over the

Haar-measure of G can be written as the integral over the products
of spheres,

/G dU F(U) = /S  dzgn /5 dzgns o [ dages

gn+2

. /5 dmsn f(@(wszwfl,mszzxf_m e ,SCSn+2,:B5n)),
(6.20)
withn = 1forUd(N) and n = 3 for SU(N) [17]. Here x is an element
on the k-sphere. The polynomially exact quadrature rules on spheres
in section 6.1.2 can be used to estimate integrals over compact groups,

if the isomorphism @ for the given group is known. In the following,
® is given for SU(N) and U(N) with N € {2,3}, [15].

SU(2) The isomorphism for SU (2) is given by
CDSM(Z) : 53 — SU(Z),
T — <x1 +ixy —(x3+ixa) ) . (6.21)

X3+ ixy (x1+ix2)*
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SU(3) For SU(3) spherical coordinates of S° are needed,

¥ : [0,27)° x [0,%) — S5,

cos a1 sin ¢
sin aq sin ¢

sin &y cos ¢ sin ¢

(a1, a2, 03, p1, P2) — _ (6.22)
COSs &y COS ¢ Sin ¢
sin a3 cos ¢ cos ¢y
COS 3 COS ¢p1 COS P2
Then the seeked isomorphism is
D3y : S % S° — SU(3), (6.23)
(z,y) — A(Y '(z)) - B(y). (6.24)
with the matrices
1 e’ cos ¢ 0 e/ sin ¢
A(‘Y_ (w)) = | _eie sin ¢y sin ¢, e—ilar+as) Cos ¢ itz cos Py singy |/ (625)
—e®singy cosy —e Mt singy e/ cos Py cos P
x1+ixa —(x3+ixg)* 0
B(y) = | xs+ixy (x1+ix2)* 0] (6.26)

0 0 1

Y~ !(z) is the inverse transformation of (6.22) from Euclidean to spher-
ical coordinates. S; denotes S° without its poles, ¢; = 0 or ¢ = 0
because there the inverse transformation is not unique. The therefore
excluded set is a null set, thus ®g;(3) can still be used in (6.20).

U(2) The isomorphism for U (2) is
Dya) 1 SPx ST = U(2), (6.27)
(z, ) = Pgy2)(z) - el (6.28)

The vector y € S! is written as a complex phase e’®.

U(3) The isomorphism for U (3) is then given by
Dsy3): 57 x SPx ST U(3), (6.29)
(CIB, y/“) — @51,{(3)(213, y) em' (630)

6.1.4 Symmetrized quadrature rules on compact groups

An integral over compact groups U (N), SU(N) for N € {2,3}
can be written as integrals over spheres using equation (6.20) and the
shown isomorphisms & in section 6.1.3. These integrals over spheres
can be approximated by the quadrature rule given in (6.10). In the
following, the derived symmetrized quadrature rules over compact
groups are shown.
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SU(2)

Qsu(f) = ¥ wpf{<fpl+{tpz —<tp3+gtp4>*>}

tpy + 1tp, (ifp1 —}—ltpz)*

lpl=m
(6.31)
= Y wpf{Psup)(tp)}, (6.32)
[p[=m
with f{®g2)(tp)} = Zsf(q)SZ/{ 2)(81t1, -, Sutn)), sampling points
t, and weights w), on S
SU(3)
QSL{( Z Uq Z wpf{q)su (Sq/ p)} (6.33)

lal= p[=

where s, and v, are the sampling points and weights on S° and ¢,
and w,, are the sampling points and weights on S3.

U(1)

ka

Quy(f)

(6.34)

This is the spherical design in (6.1.1). Its number of sampling points is
denoted by my, (1) to distinguish it from m in the weighted spherical
designs for U (N) and SU(N).

U(2)
_2mik
Qu2)(f) = Z Z Wp fAPsu2) (tp) €™M },
) Ipl=
(635)
where ¢, and w,, are the sampling points and weights on S>.
U(3)
My (1
Qsu) (f) Z vg Y, W
k=1 [g|=m  [p[=m
2mik
‘f{q)su(3)(3qrtp) -emum }, (6.36)

where s, and v, are the sampling points and weights on S° and ¢,
and w,, are the sampling points and weights on S°.
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6.2 ONE-DIMENSIONAL LATTICE QCD

Because the presented symmetrized quadrature rules are polynomi-
ally exact, they can possibly avoid the sign-problem. To test this, we
applied the rules to a model with a sign-problem where the MC sim-
ulations become unfeasible. Preferably, analytic results are known for
the model to directly compare the quadrature results to them. And
to apply the symmetrized quadrature rules in section 6.1.4 directly, a
model with only one variable is needed.

The one-dimensional QCD model with chemical potential [26] has
all these desired properties. It describes fermions on a string, inter-
acting via compact links. It is an oversimplified version of the four-
dimensional QCD and has some similar characteristics. On the one
hand, a chemical potential in QCD leads to non-vanishing baryon
density and is an important parameter in the dense early universe.
The sign-problem for large chemical potential, compare section 4.5.2,
prevents the understanding of the early universe. On the other hand,
both QCD models have the chiral condensate observable, which is a
measure for chiral symmetry breaking in the model. In four-dimen-
sional QCD this breaking is responsible for fundamental character-
istics of our world, like the meson masses, especially the light pion
masses.

This section first presents the discretized Euclidean action of the
model and its chiral condensate, which can be derived from the par-
tition function of the model. Then it shows that by rewriting the par-
tition function, the model is only dependent on one variable and fi-
nally gives analytic results for the partition function using different
compact groups.

THE MODEL The one-dimensional lattice contains L discretized
time-steps, with lattice spacing a. The quark field (here just one flavor
is used) with mass m is described by L Grassmann-variables ¥;, each
one associated to one lattice point. The interaction between the quark
field components is described by L compact link-variables U;. We in-
vestigated the model using different groups,
U; € {U(1),U(N),SU(N) : N € {2,3}}. A chemical potential u > 0
describes a non-vanishing baryon density. The discretized Euclidean
action is given by

L iz —p
— — et __ e H__
SE(U/ Y, T) =a Z <m1Pi‘Pi + ZTi-s—luiTi - Z\Fj_l LI;“F1>
i=1
L iz —p
— e e +
=q .Z;‘Iji <m5i,]- + Zéi'jjq LI]- — g(si,]‘,luj > ‘Yj,
1=

(6.37)
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with ¥ = (¥4,...,YL), ¥ = (Y1,...,¥Y1)T and U = (Uy, ..., Ur)T. This
can be written in terms of the Dirac matrix ©(U),

YU, YY) =a¥D(U)Y, (6.38)
with
mly Sl eruf
—tuf omly Sl
—H i
D(U) = Tl oevogth ,
_ezﬂ uj, miy FUL1
- U, —<tuf . mily
(6.39)

where all empty entries are zero. This is the oversimplified one-dimen-
sional version of the QCD fermion action in (2.9). The following cal-
culations use a = 1. The expectation value of the chiral condensate
is

x = (F¥) = % / dy / 47 / dU ¥ ¢S (TX0), (6.40)

with the partition function Z = [d¥ [dY [dU e S (Y¥U) The chi-
ral condensate is a measure for the chiral symmetry breaking in the
model, which results here from the non-zero quark mass m. Using
the definition of the action in (6.37), x can be written as

Om”Z

X = — (6.41)

Because the action in (6.38) is bilinear in the fermion fields, the in-
tegration over them can be done analytically, such that the partition
function is

Z= / AU det(D(U)). (6.42)

REDUCING THE DIMENSIONS The dimension of this integration
(over L variables U;) can be reduced by using the structure of ©(U)
and gauge invariance. The determinant of a block decomposed matrix

_(4 B is de = de e — ~1B).
X_<C D) det(X) = det(A) det(D — CA™'B)
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Starting with A = mly and applying this block decomposition to
det®(U) iteratively gives [15]

.'.
L L
detD(U) = det (Hmj +2 ke (H u,~> +
j=1 j=1

L
+ (-2 tel ] uj), (6.43)
j=1

with 7711 = m,

Vj 2,3,..,L—1},
m; m+ 41’171]'_1 ] € { }
) 1 L-1 (_1)]’+1272j
mp =m—+ + Z 1

The determinant in (6.43) is only dependent on the product of all U;’s,
u= H]-L:1 U;. Because the Haar measure is independent of multipli-
cation with other group elements, the partition function Z does not
change if the gauge U; = 1 forall j € {1,..,L —1} and UL = U is

used. Therefore the determinant is only dependent on one variable,
detD(U) = det <c1 +oUt +c3u),

L
with ¢; = i,
E ! (6.44)
) = 2L e_LV,

c3 = (—1)k27Lelr,

For U € {U(N),SU(N)} the determinant in (6.44) is a polynomial of
degree N in the entries of U, which is also the case for its derivative
9y det D (U).

The determinant in (6.44) is complex. Therefore it cannot be used
as a weight function for MCMC methods. Especially for ¢; < ¢, c3,
which means m < Ly, the determinant is dominated by the com-
plex matrix U and the sign-problem arises when using ordinary MC
methods without any importance sampling described in section 4.2.

ANALYTIC RESULTS The integral over the determinant in (6.42) can
be computed analytically,

ZU1)) =,
Z(U(2)) = ¢f — cacs,

Z(SU(2)) = & —cacs + G5 + 63, (6.45)
Z(U(3)) = ¢ = 2c10963,

Z(SU(3)) = 3 —2c1coc3 + 65 + 3

87



88

COMPLETELY SYMMETRIZED QUADRADURE RULES

From (6.45) is follows that the partition functions for A/ (N) and SU(N)
with N € {2,3} are related via

Z(SU(N)) = Z({U(N)) 4 Y + &Y. (6.46)
6.3 NUMERICAL RESULTS

We tested whether the symmetrized quadrature rules given in section
6.1.4 avoid the sign-problem in one-dimensional QCD. We computed
the chiral condensate with ordinary MC and symmetrized quadra-
ture rules and compared the results from both methods. We used
ordinary MC without importance sampling to circumvent the prob-
lem of det® € C which cannot be used as a weight function for
importance sampling. We investigated the chiral condensate using
link variables U € {U(1),U(2),U(3),SU(1),SU(2)}. In the follow-
ing U(N) and SU(N) denote the compact groups with N < 3. This
section first visualizes the sign-problem in MC simulations. Then it
presents results, first for the partition function as a first step towards
the chiral condensate, and then for the chiral condensate itself. For
both, partition function and chiral condensate, first the analytic solu-
tions are discussed and then the numerical results are presented.

We found large MC error estimates for the partition function, es-
pecially for U(N) variables in the region Ly > m. In this region
Z(U(N)) is very small. Each MC step gives a value which can be
much larger than Z(U(N)) and the average over all MC step val-
ues cannot resolve these small Z(U/(N)) values. By applying sym-
metrized quadrature rules, large values seem to cancel each other
and give error estimates that are smaller by orders of magnitude. This
means that the presented rules can be used to avoid the sign-problem.
Here the tested integrands are polynomials of maximal degree three,
but the rules should also work for integrands with larger polynomial
degrees or integrands that can be approximated by polynomials. The
efficiency of the application of the method to models with more vari-
ables has to be tested and the method possibly has to be developed
further, see chapter 7 for such an attempt.

In the application of the symmetrized quadrature rules to the com-
putation of the chiral condensate we used that the integrands, det®
and d,, det®, are polynomials of degree N. Therefore the rules are
exact on machine precision if M1y — 1 = N, compare section 6.1.1,
and 2m +1 = N, compare section 6.1.2. For simplicity we used for
all rules the numbers for N = 3, therefore myq) = 4 and m = 1. As
given in section 6.1.2, for m = 1 the symmetrized quadrature rule on
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S? includes eight sampling points, while the one on S° includes 12
points. This results in

8, G=38U(2
9, G =SU(@3)
#0c =144, G=U(1) (6.47)
32, G=U(2)
384, G=U(3)

numbers of sampling points for the symmetrized quadrature rules on
compact groups given in section 6.1.4.

For ordinary MC sampling we used the quadrature rule given in
(4.5). For the partition function this rule is given by

1 MC +
Z(G) ~ NiMC k:Z; det(C] + CZuk + C3Uk), (648)
UeG

for G € {U(1),U(2),U(3),SU(2),SU(3)}. When comparing MC re-
sults with results from the symmetrized quadrature rules we used
the same numbers of sampling points as the symmetrized quadrature
rule for the corresponding group G, Nyic = #Qg, compare (6.47). The
Uy’s are uniformly distributed random matrices.”

For both MC and symmetrized quadrature rules we computed the
error estimate by the relative deviation from the analytic value,

‘Onumerical - Oanalytic|

AO =

, 6.
|Oana1ytic| ( 49)
for O € {Z, x}. We computed the standard deviation from this error
by repeatedly using on the one hand the MC quadrature rules with
different seeds and on the other hand the symmetrized quadrature
rules with different random orthogonal matrices, compare (6.17).

6.3.1 Visualizing the sign-problem

MCMC methods cannot be applied straightforwardly to the model
because of its complex “weight” factor det ® (U). Therefore, we used
ordinary MC by choosing random matrices U € U(N) and SU(N)
and computed numerator and denominator for x in (6.41) separately.
For example, for SU(2) with m = 0.25, L = 8 and y = 1 the MC error
estimate in (6.49) stays almost constant over a large range of numbers
of sampling points Nyic and is of order one, see Fig. 6.1. Here the sys-
tem is in the situation Ly > m where the sign-problem occurs. Due

We chose uniformly distributed points on spheres (using a vector with normally
distributed coordinates) and used the isomorphisms described in section 6.1.3 to
convert them to SU(N) and U (N) matrices.

89



90 COMPLETELY SYMMETRIZED QUADRADURE RULES
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Figure 6.1: The chiral condensate MC error stays almost constant over a
large range of numbers of sampling points Nyc for small quark
masses m with Ly > m and is of order one.

to the error estimate being of order one, it is not possible to obtain
a statistically significant result for x. In the following, the parameter-
space of the mass m is analyzed, while the chemical potential is fixed
to a constant y = 1. Then the sign-problem region should occur for
m < 1.

6.3.2  The partition function

Computing the partition function is the first step towards the compu-
tation of the chiral condensate. This section first presents the analytic
partition function, analyzes where the sign-problem can occur and
how this problem can be solved. Then it shows the numerical results,
compares the MC error estimates with the expectations from the an-
alytic partition functions and contrasts the symmetrized quadrature
rule error estimates with the MC error estimates. Finally is presents
results of the partition function error estimates where we used a
much larger machine precision in the computation than double pre-
cision to check whether in principle arbitrary machine precision can
be reached. We used constant 4 = 1 and L = 20.

ANALYTIC RESULTS For all tested groups SU(N) and U(N), the
partition function is small for small mass m and large for large m, see
Figure 6.2 for SU(3) and U(3) exemplary. For small m the partition
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function of U(N) is very small, for U(3) of O(10~?°). In the same re-
gion the partition function of SU(N) is approximately c) + ¢, due
to the additional summand in Z(SU(N)) in (6.46). Due to our choice
of parameters, it is c; < c3, compare their definitions in (6.44), and
therefore in the following )Y + ¢}’ & ¢} is used. In contrast to ¢; and
2, the parameter c3 is dependent on m, compare (6.44). For m 2 1,
the additional summand of Z(SU(N)), ¢}, is not relevant in compar-
ison to the summand ¢} in the partition functions of all groups in
(6.45). Therefore the partition functions for SU(N) and U (N) behave
similarly in this region.

For the MC method it is almost impossible to result in the very
small values of Z(U(N)) for small m. This is due to the large or-
der of magnitude of the values computed with MC. An MC value is
computed by averaging over the integrand det(c; + coU" + c3U), eval-
uated at different sampling points U, compare (6.48). Each integrand
evaluation at one MC-step can result in a relatively large value. This
value can be estimated by |c;|N + |c2|N + |c3|N because the integrand,
the determinant, is a polynomial of degree N and can be estimated
by its term with the largest exponent which is |c1 |V + |c2|N + |c3|N ~
lc1|N + |e3|N for U € U(N) or SU(N), since |U| < 1. This estimate
of one integrand evaluation, |c1|N + |c3|N, is in the following called
integrand evaluation scale. For small m this evaluation scale is approx-
imately |c3|N (because then |c;| < |c3|), which is shown in figure
6.2. For the average in (6.48) over many such single integrand eval-
uations of the determinant at m < 1 to give a result much smaller
than the integrand evaluation scale |c3|N, as for Z(U(N)), values of
different sampling points need to cancel each other. For MC meth-
ods, where the matrices are chosen randomly, this is very unlikely to
happen. On the other side, MC methods should have no problems
with analytic values around or above the integrand evaluation scale
lc1|N + |c3|N and therefore for computations of Z(U(N)) for m > 1
and for Z(SU(N)) in the full m-range.

The symmetrized quadrature rules in section 6.1.4 have the same
integrand evaluation scale as MC, for each sampling point the de-
terminant is evaluated. But because the sampling points are chosen
symmetrically, evaluations of the determinant for different sampling
points cancel each other and can, in contrast to MC, result in smaller
averages over single evaluations than the integrand evaluation scale.
For example, for U(1) it is Z(U(1)) = fu(l)dll(q + Ut + c3U)
with analytic solution Z(U(1)) = ¢1, because fu(l)du Ut = 0 and
fu(l)du czU = 0. In an MC computations with m < 1 and therefore
c1 < c3 (as well as ¢ < c3 as states before), each evaluation of the
integrand c1 + U™ + c3U gives a value in the vicinity |c3|, which is
large due to the factor e'* inside it. A symmetrized quadrature rule,
for simplicity only with two sampling points € = 1 and €™ = —1,
would include evaluations at both ¢3 and —c3. These two evaluations
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Figure 6.2: The partition functions of SU(N) and U (N) for constant y and
L differ in the small mass region m < 1, where Z(U(N)) shrinks
to very small values, while Z(SU(N)) stays around the order of
the integrand evaluation scale of the quadrature rules.

cancel each other if they are considered with the same weight, and
therefore this symmetrized quadrature rule gives a much better esti-
mate for Z(U(1)) than MC methods.

NUMERICAL RESULTS We compared MC and symmetrized quadra-
ture rule errors AZ, both computed via (6.49) and averaged over 50

independent computations for a standard deviation estimate. Our ob-
tained error estimates can be explained by the analytic partition func-
tion shapes analyzed above and can be roughly split into a small m

(m < 1079°), a large m (m > 10°°) and a transition region, which are

visualized in figures 6.3 and 6.2.

For small m, MC cannot simulate the very small partition function
results of U(N), the error estimates are at least O(10%), see bottom
row in figure 6.3. In contrast, in the same region the error estimates
for SU(N) partition functions, top row in figure 6.3, are much smaller,
smaller than O(10~Y), because in comparison to Z(U/(N)), the SU(N)
partition function has an additional summand |c3|V, which is of the
order of each MC-step evaluation.

For all tested groups the error estimates at large m are almost at
machine precision, less than O(107!2). Here the partition function
value is very large and therefore easy to approximate with integrand
evaluations of the order |c1|N + |c3|V.

The U(N) error results show a monotone behavior. For SU(N)
an error peak occurs around m ~ 1. At this mass the variance of
Z(SU(N)) is probably largest, but further investigations are needed
here to fully understand this behavior [17].

The symmetrized quadrature rule error estimates are orders of
magnitude smaller than the MC ones in the small m region, see figure
6.3. For SU(N) the error estimates are at machine precision over the
full shown mass range and do not show a peak around m ~ 1. This is
due to the symmetric and not fully random choice of the integration
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Figure 6.3: In the region m < 1 where the sign-problem occurs, the sym-
metrized quadrature rules result in much better partition func-
tion error estimates than MC quadrature rules for all shown
groups.

points. In the small m region the errors of Z(U(N)) are still orders
of magnitude larger than 10~'°. This results from the fact that the
symmetrized quadrature rules still sum values of the order of magni-
tude |c3|N on machine precision, here double precision. The cancella-
tion of values cannot resolve values below double precision times the
order of magnitude of each integrand evaluation, 10716 - |c5|N. Fig-
ure 6.3 shows that in the small m region the difference between MC
and symmetrized quadrature rule error estimates for ¢/ (N) is around
10716,

USING 1024 BIT EXTENDED PRECISION NUMBERS We also used
1024-bit extended precision numbers, which have around 27102* ~
10~31% machine precision, to check numerically that the symmetrized
quadrature rules can in principle give arbitrary results.

For AZ(SU(3)) and AZ(U(3)) we used 10 independent measure-
ments to estimate the standard deviation, due to the much larger
computational effort for these two groups, for all other groups we
used 50 independent measurements. The MC error estimates do not
differ significantly from the double precision results, see Figure 6.4,
because the integrand evaluation of order |c1|N + |c3|N is responsible
for the error. Only for large m the error decreases to much smaller
values than possible with double precision. Here, the computed MC
results get closer and closer to the analytic value because of the small
machine precision and the large and growing analytic partition func-
tion.
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Figure 6.4: Also for 1024-bit extended precision numbers the error estimates
from the symmetrized quadrature rules are around machine pre-
cision while the MC error estimates do not differ significantly
from the MC error estimates computed with double precision.

The error estimates of the symmetrized quadrature rules are for all
m and groups around machine precision, 10721, For Z/(N) and small
masses, there is a slightly larger error estimate of maximally 10~2%
measurable, which is again due to the fact that the polynomially exact
quadrature rules cannot resolve values smaller than 107! times the
integrand evaluation scale.

6.3.3 The chiral condensate

The chiral condensate is defined by x = 9,,Z/Z. In all calculations we
computed both numerator and denominator separately and finally
divided them. This section first shows analytic results, where both
ingredients, 0,,Z and Z, are analyzed and compared to each other
to estimate possible problematic regions in MC simulations. Then it
presents numerical results, here directly using 1024-bit precision num-
bers, compares the MC error estimates with the expectations from
the analysis of the analytic results and compares the symmetrized
quadrature rule error estimates with the MC error estimates. We used
constant y =1 and L = 8.

ANALYTIC RESULTS Because in the numerical experiments we com-
puted both numerator and denominator of the chiral condensate sep-
arately, we analyzed both ingredients, d,,Z and Z, analytically. We
analytically calculated 9,,Z by symbolic differentiation of the analytic
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Figure 6.5: For m < 1 the SU(N) chiral condensate, x = 0,,Z/Z, is mostly
determined by its very small numerator, while for ¢/(N) both
numerator and denominator are smaller than the integrand eval-
uation scale of the quadrature rules.

forms in (6.45). The integrand evaluation of 9,,Z is of the same order
as of Z, |c1|N + |e3|N.

For m < 1 and SU(N) we found that the numerator d,,Z is much
smaller, O(10719), than the integrand evaluation scale, see figure 6.5
for SU(2) and U (2) exemplary, while Z, as seen before, is of the same
order as the evaluation scale. Therefore in this region for MC it is very
hard to compute 9,,Z and therefore also ) accurately. In the same re-
gion for U (N) both numerator and denominator are small compared
to the integrand evaluation scale. It is likely that MC systematically
overestimates both values and hence in the ratio these systematic ef-
fects can cancel. Therefore it can be possible to compute x values with
MC that are more accurate than the MC estimates of numerator and
denominator by themselves.

Form > 1, Z(U(N)) and Z(SU(N)) grow very large and are there-
fore easy to simulate, while 0,,Z is smaller and decreases for larger
m. Therefore, the accuracy of numerically computing x depends here
mostly on how accurate the numerator 9,,Z can be estimated.

NUMERICAL RESULTS We used again 1024-bit precision numbers
and symbolically differentiated equation (6.44) to arrive at a formula
for 0,,Z, which is again dependent on U and can be integrated numer-
ically. The numerical error estimates can be explained by the analytic
values of Z and 0,,Z and can again be roughly split into a small m
(m < 1071, a large m (m > 10°°) and a transition region, plotted in
tigures 6.6 and 6.5.

For MC computations in the small m region, Ax(SU(N)) are larger
than one, see figure 6.6, due to the very small 9,,Z values in this
region, which are difficult to compute via MC. For U(N) the error
estimates in this region are all of order one. Here analytic values of
both numerator and denominator of x are smaller than the integrand
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Figure 6.6: The symmetrized quadrature rule error estimates of the chiral
condensate are approximately at machine precision for all shown
groups, in contrast to the MC error estimates, which are of order
one or even larger for m < 1 and are a result of the sign-problem.

evaluation scale but an overestimation of both with MC can possibly
cancel in y, as states above.

For large m all groups have a smaller MC error estimate than in the
small m region, due to the very large and therefore easy to simulate
analytic Z values. In this region the error estimates seem to stay con-
stant for larger m, opposed to the AZ behaviors in figure 6.4, probably
because of the small and decreasing 0,,Z values here.

Here again the symmetrized quadrature rules give error estimates
approximately at machine precision up to very small m values, see
figure 6.6.

64 CONCLUDING REMARKS

The numerical results show that the symmetrized quadrature rules
are not only polynomially exact quadrature rules theoretically, but
also give significant results in the sign-problem region in practice,
where MC simulations have error estimates of the order one. In the
sign-problem region MC cannot dissolve the small analytic values
of the partition function and the chiral condensate. It is possible for
the symmetrized quadrature rules to result in these small values be-
cause it uses sampling points which are symmetrically distributed on
spheres and lead to cancellations of large values.

The symmetrized quadrature rules are rules for one integration
variable and we applied them to the one-dimensional QCD model
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that has only one independent variable. The next step is to generalize
the method such that it is applicable to models with many variables.






SYMMETRIZED CUBATURE RULES FOR
MORE-DIMENSIONAL INTEGRALS

In lattice field theory, parameter regions of specific models cannot
be reached due to the sign-problem of the applied MCMC methods,
as discussed in section 4.5.2. For example, this is the reason why
the early universe cannot be simulated and therefore the transition
between a quark gluon plasma and the confinement of quarks in
hadrons is not fully understood. Chapter 6 presents polynomially ex-
act, completely symmetrized quadrature rules, which avoid the sign-
problem entirely and are applicable to gauge theories, among others
also to SU(3), the gauge group of QCD. But the presented quadra-
ture rules approximate only integrals with one integration variable. It
is important to generalize these rules to models with more variables
to avoid the sign-problem also there. We investigated two different
cubature rules which generalize the completely symmetrized quadra-
ture rules from chapter 6 to more variables. We restricted these two
rules to (1) variables even though a generalization to U/ (N) and
SU(N) variables for N € {2,3} is in principle possible.

Our object of study was the topological osciallator, a one-dimen-
sional model with ¢/(1) variables and an artificially enforced sign-
problem. The first cubature rule we tested, is a straightforward gen-
eralization of the completely symmetrized /(1) quadrature rule in
chapter 6 and therefore called completely symmetrized cubature rule
(CSCR). We developed a second cubature rule, which combines the
sampling points of the completely symmetrized quadrature rule,
called symmetrization points, with an MCMC simulation to make its
computation feasible for a large number of variables in the model.
Results are published in [59].

This chapter first explains both methods. It then presents an al-
tered topological oscillator model with a complex phase which is de-
pendent on the parameter  and introduces a sign-problem. It shows
numerical results of applying the two cubature rules to this model
and finally discusses possible explanations for why they behave very
differently.

For small numbers of variables we were able to compute errors
with the CSCR that shrink exponentially with the number of sym-
metrization points. The method yields small error estimates for all
values of 6§ > 0, where MCMC has shortcomings due to the sign-
problem. But the rule is disappointingly inefficient when applied to
a model with many variables. Therefore, the CSCR avoids the sign-
problem and gives a similar fast error scaling than obtained for the
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one-variable completely symmetrized quadrature rule in chapter 6,
but it is not feasible for applications to models with many variables.

The results of the combined method agree with MCMC results.
Conversely, the error estimate grows for larger numbers of symmetriza-
tion points used. Additionally, for § > 0 the combined method gives
even larger errors than already obtained for § = 0. It does not im-
prove the MCMC error estimate and does not circumvent the sign-
problem. A possible reason is, that the method uses for efficiency
reasons only a portion of all possible combinations of symmetriza-
tion points, such that most desired cancellations of large fluctuations
cannot occur. Therefore, other methods have to be developed to gen-
eralize the results of the polynomially exact, completely symmetrized
quadrature rules of chapter 6 to more variables.

7.1 SYMMETRIZED CUBATURE RULES

In a model with d variables U = (U, ..., Uy) with Uy, ..., Uz € U(1)
and weight function p(U) the expectation value of an observable
O(U) is the integral

1(0p) _ Ju@ydUOWU)p(U)
Ip) — fyppdUp(U)

In lattice field theory this integral is evaluated numerically. Chapter
6 presents a method to compute the integrals I(Op) and I(p) in a
polynomially exact way, but only for models with one variable U.
This can be interpreted as a special case of (7.1) with d = 1. In this
case, the integral of the numerator in (7.1) can be approximated by
the completely symmetrized quadrature rule

(0) = 1(0,p) = (7.1)

kf O(si)p(sx) (7.2
=1

1
10p) = | | dUOWp(U) =
with sampling points s, = e, compare (6.3). Because these sam-
pling points lie symmetric on the unit-circle and are used in chapter
6 to cancel large fluctuations, they are called symmetrization points.
The denominator can be computed similarly. Almost all interesting
models have more than one variable and therefore the completely
symmetrized quadrature rule needs to be generalized to d > 1. This
section presents such generalized cubature rules.

The quadrature rule in (7.2) can be generalized to more variables in
a straightforward manner, resulting in the CSCR. Unfortunately, its
number of required sampling points depends exponentially on the
number of variables and is therefore unfeasible for a large number of
variables. We developed an alternative method to be more efficient
by combining the symmetrization points with an MCMC simulation.
The MCMC simulation is used to approximate a slightly different
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integral than the one that gives the expectation value. This slightly
different integral involves the symmetrization points and its MCMC
approximation gives therefore possibly smaller error estimates than
standard MCMC simulations. The expectation value we seek can be
recomputed from this symmetrized integral if the observable is a poly-
nomial.

7.1.1  The completely symmetrized cubature rule

The one-variable quadrature rule of chapter 6, e.g. in (7.2), can be
directly applied to the general case

()= [, f), 7:)

for f = Op or f = p. A possible CSCR Q(f) is the product rule, dis-
cussed in section 4.1: The integral in (7.3) is split into one-dimensional
integrals

/ du1/ duz.../ du,
u(1) u(1) u(1)

and the corresponding quadrature rule of (7.2) for Op = f is applied
to each of them:

QUXR(f) = id Z Z F(Skys-eer Sk, ), (7-4)
1o

= Y f(to). (7.5)
=1

This cubature rule needs m? sampling points ¢; = (s, ..., S¢,), where

sy = e’ . Since the one-variable quadrature rule in (7.2) is polynomi-
ally exact, the CSCR in (7.5) is polynomially exact as well. To compute
expectation values as shown in (7.1), CSCR is applied to numerator
I(Op) and denominator I(p) separately.

As already mentioned in section 4.1, for integrals with d > 0, for
example in the case of QCD, the number of required sampling points
is m? and therefore the product rule in (7.5) cannot be efficiently com-
puted this way.

7.1.2  Combining symmetrization with MCMC

We developed a different approach than the product rule to be able to
apply the symmetrization points more efficiently to a large number of
integration variables d. As discussed in chapter 4 MCMC methods are
efficient for high-dimensional integrals, that means for a large num-
ber of integration variables. Therefore we combined the symmetriza-
tion points with an MCMC step.
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A combination of symmetrization points and MCMC is used in [28,
29] and shortly explained in section 6.1. This method can be applied
to a model with one variable U and a sign-problem. Our combined
method differs from this approach and can best be explained in com-
parison to it. A sign-problem arises if the “weight” function p in (7.1)
is complex. MCMC cannot be used with a complex weight function,
therefore the method in [28, 29] chooses subsets ()7 of the full phase
space such that their combined weight 0o, (p) = ﬁ Yvea, (V)
is real and positive. Each MCMC step generates one subsets with
the probability distribution o, (p)/([dUcq,(p)) and the expecta-
tion value of an observable O is computed via the integral

_ aﬂu(p) 1
1O.p) = /du [dUoq,(p) (mu(p)\ﬂu! VEZQUO(V)p(V)> '
(7.6)

We applied a slightly modified version to a model with more than
one variable U = (U, ..., Uy;) € U(1)%. We also used subsets Qs of
the phase space and applied MCMC to generate these subsets. But
in contrast to the above described method we did not search for spe-
cific subsets for which the combined weight oq,, is positive. We used
the method of reweighting discussed in section 4.5.2 to be able to
apply MCMC to an integral with a complex weight p = ow € C
with ¢ € R and w € C. Here the complex phase factor w is an os-
cillatory function. In reweighting, the complex part w of the weight
is handled as part of the observable and the expectation value of
O is computed via I(O,p) = Il(?w“js)
integrals with real weight ¢, one with observable function Ow, the
other one with w, have to be evaluated. This means that the highly
oscillatory part of the integrands of both integrals are the new observ-
ables Ow and w. We averaged observables over subsets ()7, such that
large fluctuations can cancel each other, e.g. ﬁ Yvea, O(V)w(V).
The specific subsets are drawn according to the real subset weight
ooy, (0) = \Oliu\ Yveay 0(V). This subset weight and averaged observ-
able can be used to define the integral

, compare (4.23). Therefore two

P(owe) = fau ot <|01U| Vezm,o(v)”(v)> ’

(7.7)

which has a similar form as (7.6). In contrast to (7.6), the two factors
of p, 0 and w, are separated such that each one occurs in a different
part of (7.7). This means that even by setting w = 1 (and therefore
p = 0) (7.7) differs from (7.6). We found that if Ow is a polynomial
in the U; variables, I(Ow, 0) can be recomputed from I¥™(Ow, 0).
Similarly I(w, 0) can be recomputed from ™ (w, ¢). Therefore in the
combined method we first estimated I®V™(Ow, ) and I¥™(w, 0) by
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drawing subsets Qg from o, with MCMC. From these estimates

we derive an estimate for I(Ow, 0) and I(w, 0) to finally arrive at an
1(Ow,0)
Hw,0)
Qg that include the symmetrization points of the completely sym-

metrized quadrature rule. Unfortunately, we found that this ansatz
did not yield the desired precision and clearly still suffered from
the MCMC typical sign-problem. This chapter proceeds to describe
our findings in detail and leave it as an open question whether this
method can be modified such that the sign-problem can be elimi-
nated.

In the following (7.7) is written as as Y™ (0, ¢), where O can be
Ow or w,

estimate for the expectation value (O) = . We used subsets

~ (TQ ~
90, 0) = / au 2005 (7.8)
de 00y v

with subset weight 0q,, < ooy (0),

1
UQU - m VZ Q(V)r (7-9)

€Oy

and subset observable

~ 1 ~
Oq,, = — O(V). (7.10)
U ’QU| V;)U ( )

This section describes in the following first how gy is chosen in

detail, then how I(0,¢) can be derived from I¥™(0, ¢) and finally
IOy, ()

how a MCMC step is performed with the subset weight TaUon, (@)°

CHOOSING SUBSETs The approach (7.6) for one variable

U € SU(B), explained in section 6.1, uses the subset

Qu = {e%ik Ue3 ut:ke {1,2,3}}. Generalized to more - here

U(1) - variables U € U(1)% and number of symmetrization points m

the subset is given by

2niky 27iky 2miky
Qu = {(GT Uj,e ™ Up,...,e m le) : k]' € {1,...,1’(1}}.

(7.11)

This set includes m“ vectors. We already saw in the completely sym-
metrized cubature rule in section 7.1.1 that it is not feasible to use m?
points for large d. However, it is also plausible that every symmetriza-
tion point s = e’% should be combined with every variable U; at
least once. Therefore, we chose m different vectors (sk1 U, ..., s, Uy)
in such a way that every s, k € {1,...,m} is assigned to some U; ex-
actly once: inspired by [62], we chose at each lattice point j a random
permutation P; : (1,...,m) — (P;(1),...,P;(m)). To each variable U;
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we applied the symmetrization points sp.(y), £ € {1,...m}. The result-
ing subset is dependent on the choice of the permutations at all lattice
points P = (Pl, ... /Pd)/

()Ig]z = {(Spl(f)ull 5p,(0) Uy, ... SP,(0) Ud) b€ {1’ m}} (7 12)

This means that at each lattice point all m symmetrization points are
taken into account, but lattice-wide only m of all m? possible combi-
nations of symmetrization points are used. To reduce the variance of
the choice of permutations & we averaged over Ngets € IN different

choices &2, for &2. Then, if subsets Qéz” are chosen according to the
dUU gz

probability distribution Toze = W the MCMC cubature rule
for I%™(O, 0) in (7.8) is given by
Net. 1 n _
™(0, 0) - (O 1
Q ( Q Nsets ; n 1:21 ng (7 3)
Q77" with
probability
7'[0911

i

In the following, the elements in the subset Qg—z in (7.12) are written
using the vectors s = (Spy(),Spy(0), - -2 8py(0)) and U = (Uy, ..., Uy)
via

OF ={s7U:Lec{l,...,m}}. (7.14)

Then |Qgy| = m and (7.9) and (7.10) can be written as

1 m
"0y = o Y- o(s7U), (7.15)
[7
~ 1 & -
Ong = — Y O(s7'U). (7.16)
(=

RELATE [; wiTH I;*™  Equation (7.13) is a possible cubature rule to
approximate the symmetrized integral Y™ (O, o) , but eventually the
expectation value of some observable O should be computed, (O) =

I1(0,p) = (ij Q)) Therefore, 1(0, ¢) for O € {Ow, w} is needed.

We found that if O is a monomial in the variables up,je{l,...,d},
the integrals I%™ (O, ¢) and (0O, ¢) can be related via

1"™(0,¢) = cI(0, ), (7.17)
with some constant ¢ € C. Indeed, consider the monomial
d

ow) =1ur, (7.18)
t=
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where a; € INg determines the exponent of each U;. We also view
the exponents as a vector @« € IN{. By using the definitions (7.15)
and (7.16), the integral IY™ (O, ¢) in (7.8) is given by

sym de O'QU OQU
sym — de o (7.19)
_ de (221:1 Q(SgyU)) (kazl O(S?U)) (7.20)

m [dU (57 o(s70))

For brevity & is in the following not shown. Numerator and de-
nominator can be manipulated separately by using the properties of
the Haar measure. In the numerator the product of two sums can be
split into two parts, one part with the same index in both sums, k =/,
and the other part with the rest,

N(I%™) = / dU ;O(sw)g(sw)

+/dU Y O(siU)o(s¢U). (7.21)
éél;é:kl

Due to the properties of the Haar-measure it is
N(I¥™) = m /dU O(U)o(U)

n / dU Y O(sys;'U)o(U). (7.22)
Eék;é:kl

The last step can be applied to the denominator as well,

(™) = w? [dU o(U). (7.23)

Then numerator and denominator combine to

pym _ NOI™) 1 [dUO(U) o(U)
D(I¥™) “m  [dU o(U)
1a [dU O(sys; 'U)o(U) X

The first term is 1(O, ¢) times 1/m, compare (7.1). The second term
can be manipulated using the monomial form of the observable de-
fined in (7.18),

1 m [AU T, (Sn(é)ﬁk)ul) A

(k=1 JdU o(U)
T4k

1_, -
™= ]
10,0+

m2

(7.25)
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This can be simplified further, splitting first the product over t in two
products, then applying again the definition of the field O in (7.18)
and finally recognizing another (0, 0),

]_ ot de H (U)
sym =_ Sp,(0)Sp,
ngkZUH(m k> deQ )
14k
(7.26)
1, 1 & 4 1\ [dUO(U)o(U)
=] — Sp(0)Sp
m m2 /glg( Pi(e k)) JdU o(U)
(7-27)
. 1 1 ™ 4 L\
=1(0, 0) m+m%k21t]1<spt(f)spt(k)) . (7.28)
4k
If the factor
~. def 1 1 & d _ at
C,@(O) = a + @ Zkzzull (spt(g)spt%k)) ’ (7.29)
O£k

is non-zero, I(0, ¢) can be derived from the symmetrized integral
%™(0, ) via

10,0~ (5

Then based on (7.13) the cubature rule to approximate I(0, ¢) is given

™0, o). (7.30)

ts Onz
- 1 Noets 1 n QU}Z
0,0) = — —. 31
Q( Q) Nets =1 1221 C2, (O) 7:31
Q" with
probability
ﬂQg\aﬂ

This deviation is also valid if the exponents in (7.18) are real numbers,
a; € R and if O includes an additional constant factor. It should be
noted that the correction factor c»(0O) is independent of the lattice
Variables U;. Additionally, c»(O) in (7.29) can be redefined without a
factor if also the subset weight and observable in (7.15) and (7.16)
are defmed without the 1}1 factor. This factor cancels in (7.31).

It is not only possible to compute with this method expectation
values of observables which are monomials in the involved variables,
but also polynomial observables are possible: if P is a polynomial of
the form

d d d
=Y 0,(U) =Y [Tu™, (7.32)

v=1 v=1t=1
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with different exponent vectors a(v) for each summand, each mono-
mial O, of the form (7.18) has its own correction factor ¢, (O,). Then
the combined cubature rule for an integral I(5, ¢) is given by

‘ O o
_ 1 Nsefb 1 n d ZJ,Q .a
1 U,
QPY(P,q) = -~ —= (7.33)
Neets ;=1 1 l; vZ:I ¢2,(0v)
09;” with
probability
7'[0 P,

1

USING MCMC TO cOMPUTE Q°*™  The cubature rule in (7.31) ap-
proximates the integral I1(0, ¢) by using MCMC. Here subsets Q¢/
are chosen from the probability distribution

Mae = 77—

dependent on the permutation set &. We used the Metropolis MCMC
algorithm, discussed in section 4.4, to draw sampling points from the
probability distribution 7, 2 One Metropolis step updates one link
variable U; at lattice point j and consists of three sub-steps:

a. At lattice point j we chose
new __ jgrold  _imr
upey = ugd .- e, (7.34)
with a uniform random number r € [—1, 1).

b. Then we computed the symmetrized weight of the old and new

variable,
Oﬂyold _ l f: (S u s uold S u )
Qu = mg,lg Pr(0) U1y wes Spiey Uy s Spy(0)Ud )
(735)
oamew — 1 i (s u s urew, ..., s Uy)
Ou  — mgilQ Pi(0)Y1s s Sp )Y s Spy(0)Ud ) -
(7.36)
c. Finally we accepted U7*" if
Pnew
70
Uﬂ;old > (7-37)
U

with a uniform random number r € [0, 1).

Step b seems very time intensive. This is problematic because the
Metropolis step is repeated very often in the simulation. But for a
local real weight ¢ the subset weight o Z does not need to be fully
recomputed for every U7*". In a one-dimensional pure gauge model
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one variable U; couples only to its nearest neighbors U;, 1 and U; 1.

Therefore the weight has the form o(U) = e 5(U) = e~ o Se (U, Uki)
with action S. If one U; changes, only two terms, S; and S; 1, are
changing. Therefore the new action can be computed using the old
action and two local action changes

S(U)new — S(U)Old . (S?ld Sold ) + (Snew + SI’IEW) ] (7.38)
The same is true for the symmetrized actions S(s,U )"V, ¢ € {1,..,m},

S(seU)™™ = S(s,U)°4=8;(sp () U, 5p, () Uji1) (7:39)
—Si_i(s pj,l(z)ujflzspj(@ufld)
+Si(sp ) Ui ™, sp,,, () Uj+1)
+Sj-1(sp_, (o) Uj-1,5p, () U ™).

The symmetrized weight is given by
Jnew — Z exp SgU)neW). (7'40)

For all symmetrization indices ¢ in (7.39) we computed and saved
S(s,U)°M once at the start. Then for each Metropolis step we com-
puted S(s,U)™" using (7.39) for all ¢, saved them in an array and
computed 0"} NeW via (7.40). If Unew is accepted, all S(s,U)° are over-
written by S (.s U)ev,

7.2 THE TOPOLOGICAL OSCIALLATOR WITH A COMPLEX PHASE

The topological oscillator describes a particle moving along a circle
in time and is discussed in section 5.3. Its Euclidean action in (5.30)
depends on the angle ¢; at timestep or lattice site t of the particle and
can also be written in terms of /(1) variables U; = e'?",

d

5°(9) = = 3(1 — cosprir — ), (741)
t=1
d
S(U) = L Y RO - U ). (742)
t=1

The number of integration variables is d, the number of lattice sites.
The weight function is given by o(U) = e~5(U).
We investigated the link correlation observable,

—

d
=3 Y U Uy (7.43)
t=1

by computing its expectation value (¢) = I(.Z,p). This function
< is a polynomial in the U;’s. Each of its summands is therefore a
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monomial of the form (7.18), required to relate the expectation value
to symmetrized integrals.

We introduced a complex phase factor w € C to the model such
that integrals involving p = gw are complex and a sign-problem can
occur in the evaluation of these integrals. In reweighting, w is part of
the observable. Therefore, to apply the combined method, w has to
be a polynomial. We chose a particular form that is similar to (7.18),

d
e
C(J(U) — e—ZGthl P — | | ut_el (744)
t=1

with an angle 0 € [0,271), a parameter of the model. This form is
a slightly modified version of the complex phase factor used in the
topological oscillator model in [25].

7.3 NUMERICAL RESULTS

Section 7.1 describes two methods that use symmetrization points in
order to improve the error scaling and to avoid the sign-problem for
models with more than one variable. Their applicability, error scaling
and the occurrence of the sign-problem have to be tested in practice.
We computed the link correlation expectation value of the topological
oscillator model, with and without the complex phase factor. This
section presents the numerical results of applying both methods, first
the CSCR, then the method combining symmetrization points and
MCMC, to the topological oscillator.

For small number of variables we were able to compute errors with
CSCR that shrink exponentially when increasing the number of sym-
metrization points m. Without a complex phase factor our computa-
tions resulted in machine precision error estimates. For a complex
phase factor with 6 € [0.0001, 1] - 27t the method resulted in orders of
magnitude smaller error estimates than the standard MCMC method.
On the other hand we used only small lattices with up to six lattice
points and the method is unfeasible when going to larger number of
points.

We found that the combined method, using symmetrization points
in combination with MCMC steps, results in values comparable to
MCMC results, but with very large error estimates. The error estimate
even rises with \/m and therefore much more statistics is needed here.

All in all, the CSCR is very well suited to avoid the sign-problem,
but only for very small lattices, and therefore is unfeasible when ap-
plied to larger dimensional models. The combined method does not
improve the error estimates of MCMC and therefore cannot be used
to avoid the sign-problem. Possible explanation why the method per-
forms poorly are given in section 7.4.
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Figure 7.1: Not many symmetrization points m are needed for the CSCR
to get results consistent with MCMC simulations for small lat-
tice sizes d, some different couplings I/a and without a complex
phase factor.

7.3.1  Applying the completely symmetrized cubature rule

We applied the CSCR described in section 7.1.1 to the topological
oscillator. We computed the expectation value of the link correla-
tion by applying the rule to numerator and denominator separately,

e CSCR( ¢
(&) =1(Z,p) = I(fé ’))) 7 Qchq({é F))), for different numbers of sym-
metrization points m used. The error of the rule is estimated by a
truncation error, comparing the results for different m to a result with

a large, constant m,,

AZ)(m) = [(Z£)(m) — (L) (mg)]. (7.45)

We compared the CSCR results with results from the Cluster MCMC
algorithm [83], using 10° sampling points. We used reweighting to
apply the Cluster algorithm to a complex integrand and applied the
statistical bootstrap resampling method describe e.g. in [56] to com-
pute error estimates for the MCMC results.

This section shows results first without and then with a complex
phase factor.

WITHOUT COMPLEX PHASE FACTOR The CSCR gives link correla-
tion results which are comparable to MCMC results for m 2 7. We
used lattices with d € {4,5,6} sites, coupling I/a = 1 on the left of
Figure 7.1, and d =4, I/a = {0.1,1,10} on the right of Figure 7.1.
The corresponding truncation errors are computed via (7.45) for
mg = 30 for constant I/a = 1 and my = 40 for constant d = 4 and are
shown in Figure 7.2. For m ~ O(10) the truncation error shrinks ex-
ponentially until it reaches machine precision. CSCR needs less sam-
pling points to reach the same error estimate as the MCMC method
with 10° sampling points: with I/a = 1 the lattice with six sites needs
m ~ 6 and therefore around 6° ~ 5-10* sampling points. Even a
large factor of I/a = 10 with four lattice sites needs m ~ 15 and
therefore around 15* ~ 5.1 - 10* sampling points. Both numbers are
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Figure 7.2: The truncation error of the CSCR shrinks exponentially until it
reaches a plateau at machine precision when applied to the topo-
logical oscillator without a complex phase factor.

smaller than 10° MCMC sampling points. This advantage of CSCR
over MCMC is of course only valid for very small number of lattice
sites used.

WITH COMPLEX PHASE FACTOR Applying the CSCR to the topo-
logical oscillator with a complex phase factor and d = 4, [/a =1
gives much more precise results than MCMC, especially for 6 >
0.3 - 27, see Figure 7.3 which includes error bars for both methods.
For 6 2 0.3-2m the MCMC algorithm results in large error esti-
mates, showing the sign-problem. For the combined method we used
more 6-values and m = 80. The resulting R(.¢) values in figure 7.3
show large fluctuations for different 6-values due to the choice of the
complex phase factor w in (7.44). CSCR and standard MCMC results
agree with each other but the truncation errors of the CSCR are much
smaller such that they are not visible in the figure.

The truncation errors are computed via (7.45) with mg; = 100 and
their behaviors dependent on m are shown in Figure 7.4. Similar to
the case with 8 = 0, compare figure 7.2, also here the error shrinks
exponentially for m 2 30 but with a smaller exponent, such that for
m < 90 machine precision is not yet reached. The size of the error for
the different f-values depends on the value of R(.Z) shown in figure
7.3.

Figure 7.5 shows that this scaling behavior is already apparent for
very small 6-values around 6 > 107%-27m.

7.3.2  Applying the combined cubature rule

In the combined method the expectation value of the link correlation
is computed via

[(Zw,0)  QPY(ZLw,0)
I(w,0) Q(w,0)

(Z) =12, we) = : (7.46)
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Figure 7.3: The CSCR gives much more precise results than MCMC simula-
tions when including a complex phase factor such that the CSCR
truncation errors are not visible in this figure. The fluctuations
of R(.Z) come from the choice of the complex phase factor.

AR(L)

m

Figure 7.4: The truncation error of the CSCR applied to the topological oscil-
lator with a complex phase factor scales exponentially for large
enough m. Note that the 6-values in the legend appear in the
order of the error size at m = 80.
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Figure 7.5: Already for very small 6-values, around 6 > 10~* - 27, the dif-
ferent error scaling behavior in comparison to the case § = 0 is
visible for CSCR.

The link correlation observable in (7.43) is a polynomial, therefore in
the nominator (7.33) is used, while in the denominator (7.31) is used.
An error estimate is computed via the statistical bootstrap resampling
method.

The correction factors involved are dependent on the exponent vec-
tor o of the observable monomials, compare (7.18) and (7.32), here
Zw and w, with &, = %UUH U;. For w = 1 the exponent vec-
tor of %, is given by a(v), = —1, a(v)p41 = 1 and a(v);y = 0 for
k={me{1,...,d} : m # t,t + 1}. Plugging this in (7.29) gives the
correction factor

11 & A 1
co(L) = o+ @&kgl (sr0rm) ™) (sp0 ) ™)
04k
(7.47)
For general w the exponents of Z,w are given by a(v), = —1 -6,

2(v)pr1 = 1—0 and a(v)y = —0 for k = {m € {1,...,d} : m #
t,t + 1}. Therefore the correction factor is given by

11 ! .
co(Zw) = —+ 5 V. (snonw) ") (shawnam) ™)
k=1
T4k

: li[ (Spt(e) (SP,(k))71> s

=1
(7-48)
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w is a monomial with oy = —0,t € {1,...,d} and the correction factor
is given by
1 1 &M Nt
cop(w) ==+ sp(e)(Sp ()~ . (7-49)
- mzé@éﬂl}( (0 (nw) )

We chose random permutation forming permutation sets & with the
shuffling algorithm described in [67].

This section presents first the distribution of the correction factors

c»(0) for randomly chosen & and possible cuts on this correction
factor to assure that c »(0) # 0 and therefore that (7.30) is valid. Then
it shows results of the link correlation from the combined method,
first without, then with a complex phase factor. In this section a lat-
tice with d = 4 lattice points and coupling I/a = 1 is used. In our
implementation we redefined the correction factor in (7.29), as well as
the subset weight and observable in (7.15) and (7.16) without a factor
%, as mentioned in section 7.1.2 after (7.31).
THE CORRECTION FACTOR The relation of I(0, ¢) and I¥¥™(0, o)
in (7.30) is only applicable if ¢z (O) # 0. Very small correction factors
would afflict our sample by introducing unnaturally large contribu-
tions to the targeted expectation value. But there is no reason why
the correction factor in (7.29), which is dependent on the permuta-
tion set & used, should not be small. Therefore we investigated the
distribution of the corrections factor for different permutation sets
and a possible cut on this factor. More specifically we investigated
the distribution of c»(.%,) - m,v € {1,...,d} with w = 1 exemplary.

We found that more than 99% of the computed values of ¢ »(.%,) - m
are equal or larger than 1072 for all tested m € {1,10,50,100}, see
Figure 7.6. Most values (over 90%) lie in the region [0.1,10). Here we
computed the correction factors of 10* different permutation sets &%
and repeated the computation ten times for an error estimate.

This means that there are some but few factors that are much
smaller than one and can give unnaturally large contributions. To
avoid these small factors we applied a cut to the correction factor,
which rejects all sets which include at least one ¢ »(.%,) value smaller
than the cut value. We checked the amount of rejected sets for dif-
ferent cut values cmin. We found that for cpin - m = 1072 only max-
imally 5% of the sets are rejected, see Figure 7.7. This percentage
grows rapidly when using cpin - m = 1071, as expected from the dis-
tribution in Figure 7.6, then more than 30% of the proposed sets are
rejected. Here the simulation ran until 100 sets were accepted and this
experiment was repeated ten times for an error estimate.

For the further experiments we chose the cut value to be cpmin =
102 to reject only few sets because this cut is not physically mo-
tivated but computationally necessary and we did not want to in-
duce a systematic bias by rejecting too many sets. Additionally, a
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Figure 7.6: Less than 1% of the correction factor values ¢ (%) - m,v €
{1,...,d} are smaller than 10~ for the shown m values. All plots
have the same logarithmic scale.
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Figure 7.7: For the lower bound cpi, - m = 1072 on the correction factors
less than 5% of the proposed sets are rejected. This percentage
increases significantly to more than 30% (for all m > 1) when

using cmin - m = 10-L
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Figure 7.8: Results of the combined method (MCMC + symmetrization
points) agree with pure MCMC results, but the error estimate of
the combined method grows for larger number of symmetriza-
tions m to much larger values than the MCMC error estimates.

larger amount of rejected sets leads to longer runtimes because new
sets have to be created and checked again. We also checked that for
Cmin = 1072 the result of the link correlation expectation value, also
for 6 > 0, is compatible with the corresponding standard-MCMC
value.

WITHOUT COMPLEX PHASE FACTOR With w = 1 we approxi-
mated (.Z) = I(Z,0) with the cubature rule QP°Y(.Z,0) in (7.33).
We found good agreement with the MCMC Cluster algorithm results
in general, but observed growing error estimates depending on m,
see Figure 7.8. We used 10® configurations with 10 permutation sets
each and compared the results to the Cluster algorithm using 10°
configurations. The growing error suggests that for larger m signifi-
cantly larger statistics is needed to reach the precision of the Cluster
algorithm. Possibly the error estimate increases proportional to y/m
because for larger m more term are included in the sum of %, 2, com-
pare (7.16), which can lead to larger variations of g@{;‘*’ for different

subsets Q)¢ and therefore to a larger error estimate of (7).

WITH COMPLEX PHASE FACTOR We found that already for as
small 6-values as 6 = 0.01 - 27t the combined method results in signifi-
cantly larger errors than found with 6 = 0 for m > 1, while the values
agree with MCMC results in the error bars, see Figure 7.9. Again the
error estimate of the combined method increases with /m. For the
combined method we used 100 configurations with 10* permutation
sets each and compared it to the Cluster algorithm with 10° configu-
rations.

For larger 0-values the situation becomes worse and, similarly to
pure MCMC simulations, the presented combined method cannot re-
liably compute expectation values of the link correlation variable. The
combined method is not able to beat MCMC or even solve the sign-
problem of MCMC. Possible explanations, why the combination of
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Figure 7.9: Results of the combined method (MCMC + symmetrized quadra-
ture rule) for & = 0.01 - 271 agree with pure MCMC results, but
the error estimate of the combined method grows for larger num-
ber of symmetrizations m to much larger values than the MCMC
error estimates.

the symmetrized quadrature rules with MCMC does not work well,
are discussed in the next section.

7.4 POSSIBLE EXPLANATIONS

Section 7.3.2 shows that the proposed combination of the MCMC
method with symmetrization points does not result in improved error
estimates in comparison to standard MCMC. The method does not
solve the sign-problem for the topological osciallator with a complex
phase factor. On the other hand section 7.3.1 shows that the CSCR
gives a superior error scaling than standard MCMC methods and re-
sults in low error estimates, especially for an application to the topo-
logical osciallator with a complex phase factor. We wanted to find an
explanation for the large difference between the error estimates of the
two presented methods. There are mainly two behaviors of the error
estimate of the combined method that differ from the error estimate
behavior of the CSCR: The error estimate grows with /m and the
error estimate is very large for 6 > 0. In the following both behaviors
are discussed.

THE ERROR ESTIMATE GROWS WITH m  The increase of the error
estimate with the number of symmetrizations m used is probably due
to an increased number of summands in the symmetrized observable
and weight in (7.15) and (7.16) for larger m. This leads to larger fluc-
tuations of Op 2z between different subsets Q77 in the cubature rule
(7.31) that are not compensated by cancellations because only m of
all m? combinations of symmetrization points are used in the sym-
metrized observable and weight, see explanation below. This results
in a large error estimate of the cubature rule.
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THE ERROR ESTIMATE GROWS SIGNIFICANTLY FOR 6 > 0 The
large error estimates for simulations with 6 > 0 possibly result from
the fact that the combined method as we used it includes m points in
the subset ng , dependent on the permutation set & = (P, ..., P;)
and does not use Qg in (7.11) with m? entries. m¥ sampling points
are also used in the CSCR, (7.13). We investigated the distribution of
the summands in the CSCR to check how the cancellations for 6 > 0
are happening and whether cancellations can also occur if not all
sampling points used in the CSCR are taken into account.

The CSCR computes both numerator and denominator of an ex-
pectation value in (7.1) separately. Using the CSCR, compare (7.5),
the partition function (the denominator) with a complex phase factor
is computed via

Z = QR (p) Z (7.50)

for p = wg with ¢, = (sj,...,s;,) and s; = e Equation (7.50) is the
sum over all possible combinations of symmetrization entries s;.

We investigated the distributions of the real part of the partition
function summands,

d

S (R(p(tr)) —x), (7.51)
1

3

1
Tpz)(x) = i -

for x € [0,1]. We found that for larger 6 values more negative sum-
mands occur, see Figure 7.10 ford =4, I/a = 1 and m = 30. For large
6, e.g. 0 = 0.5- 27, the R(Z) distribution of positive and negative en-
tries is very similar, and therefore a large part of the summands are
canceling each other. We found similar results for the numerator of
the expectation value in (7.1).

The combined method uses subsets that only involve m summands
out of the m? summands in the complete symmetrization. The choice
of the summands depends on the randomly chosen permutation set
& . For most randomly chosen & the cancellations that are happen-
ing with m? summands cannot happening with m summands, result-
ing in a much worse result than obtained for the CSCR. To check this
theory we truncated the sum in (7.50) up to some maximal value,

1o
Ztrunc 7 Z x] 7 (752)
where O[] denotes the Heaviside step function. We also computed
the truncated numerator Agunc(x) of the expectation value,
A = QY5R(Zp), and computed the truncated link correlation,

Atrunc (x )

ﬁrunc(x) = Zt (x) .
runc

(7.53)
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Figure 7.10: For larger 6 more negative summands appear in Z. For § =
0.5 - 27t the negative and positive summand distributions are
similar and therefore many cancellations are happening in Z.

For x < 1 not all m? summands or sampling points are taken into
account. We investigated which x-value is needed such that this trun-
cated link correlation gives the physical value (.Z). R(Zirunc) shows
a similar behavior for 6 = 0 and 0 = 0.01 - 271: the larger the value
of the truncation value x, the less R(%unc) is changing, shown in
Figure 7.11a. R(.Z) is reached for x 2 0.8. I(Lrunc) for 6 = 0.01- 27
differs slightly from zero for small x, where few summands are taken
into account and is approximately zero for x 2 0.8, compare Figure
7.11b. These figures demonstrate that to arrive at the final physical
result for %, most of the m? summands have to be taken into ac-
count. Of course, here we chose a specific order of the summands
which affects the truncation result and the behavior shown in Figure
7.11 could look differently when taking a different order into account.
Anyway, these Figures make it plausible that the m summands we
used in the combined method, chosen in a random manner, are not
enough to arrive at the final (¢) value and lead to large error es-
timates when averaging over different Z.unc estimates, already for
small & = 0.01 - 2.

For 6 = 0.5- 27 the behavior of both real and imaginary part of
Zirune becomes unpredictable, see Figure 7.12. There is no hierarchy
visible between values at small and large x and the final physical
value is only reached if almost all summands, x ~ 1 are taken into
account. Truncating the sum leads to a highly irregular behavior of
the link correlation with results that can be far away from the final
value.
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Figure 7.11: For small 6 (§ = 0,0 = 0.01-277): The more summands are taken
into account (for larger x) the more are R(Zrunc) and I(Zrunc)
approaching the final physical value at x = 1.
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Figure 7.12: For large & = 0.5-27: There is no hierarchy visible between
different truncation values x. Truncating the sum leads to highly
irregular behavior of the link correlation with results which can
be far away from the final value.
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We suspect that the combined method failed to overcome the sign-
problem because we did not sample sufficiently many relevant sam-
pling points. Depending on which permutation sets & we have cho-
sen, the results of the individual sets can fluctuate strongly, leading
to large errors, which we observed. Thus, although the combined
method is a possible method to compute the expectation value of
an observable, it does not seem to solve the sign-problem of MCMC

methods.
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SUMMARY

This thesis presents methods to reduce error estimates of the numer-
ical evaluation of the path integral to get in the end significant re-
sults for QCD observables, comparable with the real world. The QCD
path integral is an integration over fermionic and bosonic degrees
of freedom, which are very different objects. The thesis deals with
both types separately, the evaluation of quark connected and discon-
nected diagrams, which result from integrating out the fermions of
the fermionic path integral, and the integration over the bosonic de-
grees of freedom.

The error estimates from the numerical evaluations, on the one
hand of quark diagrams an on the other hand of the bosonic path
integral with integrated out fermions, depend both on the error scal-
ing of the used evaluation method and the number of evaluation
points. These evaluation points are stochastic sources for the quark di-
agrams and sampling points for the bosonic path integral. We tested
a method that reduces the error estimate of the evaluation of quark
disconnected diagrams in QCD. For the approximation of the bosonic
path integral we developed methods to improve the error estimates
for low-dimensional benchmark models.

COMPUTING DISCONNECTED DIAGRAMS Lattice QCD observa-
bles get contributions from quark connected and disconnected dia-
grams. Evaluating these diagrams means to compute the one-to-all
and all-to-all propagator, respectively by inverting the large Dirac ma-
trix. The signal-to-noise ratio of the disconnected diagrams is usually
low because, in contrast to the one-to-all propagator that can be evalu-
ated via point sources, the all-to-all propagator can only be efficiently
computed using stochastic sources. Therefore methods have been de-
veloped to improve this ratio.

We applied the exact eigenmode reconstruction with deflation me-
thod to lattice QCD to improve the computation of quark discon-
nected diagrams. This method uses eigenmodes of the Dirac matrix
with low-lying eigenvalues to compute one part of the all-to-all prop-
agator, corresponding to these eigenmodes, exactly. For the other part
of the propagator, the method deflates the Dirac matrix with the
eigenmodes and inverts this deflated matrix stochastically by solving
linear equations, each including one stochastic source. We applied
this method to a 16> x 32 twisted mass fermion lattice with a lattice
spacing of a2 = 0.085 fm and a pion mass of m,; = 370 MeV.
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We found that the exact eigenmode reconstruction with deflation
method can result in approximately 5.5 times less runtime on the Piz
Daint supercomputer [33], compared to a standard computation. The
method has a relatively long initialization time to compute the eigen-
modes, but results in faster numerical computations of solutions to
the linear equations due to a deflation of the Dirac matrix. Addition-
ally, the method results in fewer stochastic sources that are needed to
reach a specific error estimate, due to computing one part of the prop-
agator exactly. On the other hand another very efficient method was
recently applied to twisted mass fermion lattices: We estimated that
the Multigrid algorithm needs around 220 times less runtime than
standard methods.

All in all the exact eigenmode reconstruction with deflation method,
as developed and tested in this thesis, turned out to need less run-
time than the standard methods used so far and its saved runtime
can be used to reduce the error estimate of disconnected diagrams by
including more stochastic sources in the computation. The resulting
propagator can be used to compute many different observables, such
that the large initialization time of the method becomes negligible.
The method was eventually outperformed by the Multigrid algorithm.
As a consequence, the exact eigenmode reconstruction with deflation
method was, unfortunately, not used for final production runs.

It would be interesting and important to compare different meth-
ods of evaluating disconnected diagrams in the future when, e.g.
smaller values of the lattice spacing of larger volumes are simulated.
This would allow to employ the best available algorithm for a given
simulation setup which would lead to a large reduction of the error of
these quark diagrams. This in turn will provide a precise computation
of many hadronic quantities which can be compared to experimental
or phenomenological determinations.

EVALUATING THE BOSONIC PATH INTEGRAL MCMC methods
are usually used to evaluate the bosonic path integral. We tested two
alternative methods to overcome some problems of the MCMC meth-
ods: Its slow error scaling, critical slowing-down when approaching
the continuum limit and the sign-problem for highly oscillatory inte-
grands.

The recursive numerical integration uses the local coupling struc-
ture of integrands. The next-neighbor coupling in pure gauge lattice
simulations allows to factorize the integrand in the path integral. Re-
cursive numerical integration restructures the integral according to
this factorization such that one-variable quadrature rules can be ap-
plied efficiently to each of the factors separately to approximate the
full integral. We applied this method to the topological oscillator, us-
ing the efficient Gaussian quadrature rule. We found accurate results
when approaching the continuum limit with no critical slowing-down
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by construction and were able to compute error estimates which scale
exponentially and therefore much faster than the MCMC error esti-
mates. The method needs orders of magnitude less runtime than an
optimal MCMC algorithm, here the Cluster algorithm [83], to reach a
specified error estimate.

Therefore the recursive numerical integration is a promising alter-
native to the MCMC methods, can be applied at least to one-dimen-
sional problems and is then much more efficient than MCMC meth-
ods. The next step is to generalize the method to larger dimensions.
A naive generalization results in time-intensive tensor multiplications.
But perhaps it is possible to use nested integrations to generalize the
method at least to 1 + 1 dimensions.

We developed the symmetrized quadrature rules to approximate
the bosonic path integral, especially in case of a possible sign-problem.
These are polynomially exact quadrature rules for integrals over com-
pact groups U(N) and SU(N) with N < 3 and one integration vari-
able. For gauge-theories the bosonic path integral with one integra-
tion variable is such an integral. These symmetrized quadrature rules
are based on transforming efficient quadrature rules over spheres. We
applied the method to the one-dimensional QCD model that depends
on only one variable and shows a severe sign-problem in certain re-
gions of the parameter space. We found error estimates which are
orders of magnitude smaller than MC errors, especially in the sign-
problem regions where MC simulations do not give any significant
result. Also in these regions the error estimates of the symmetrized
quadrature rules are only limited by the machine precision used.
Therefore this method is another promising alternative to MCMC
methods, especially for models with a possible sign-problem, which
it avoids completely.

We also investigated two different cubature rules that are based
on the one-variable symmetrized /(1) quadrature rule but appli-
cable to models with more than one integration variable. The first
cubature rule, the CSCR, applies the symmetrized quadrature rule
to each integration variable and is therefore a polynomially exact
method. We developed a second cubature rule, which combines the
sampling points of the symmetrized quadrature rule with an MCMC
simulation. We applied both methods to the topological osciallator
with an additional complex phase factor that gives rise to a possi-
ble sign-problem. Applying the CSCR resulted in practice in error
estimates which decreased exponentially. But this application is inef-
ficient when using many more integration variables. Unfortunately,
combining the method with MCMC to overcome this inefficiency re-
sulted in very large error estimates. We showed that it is almost im-
possible to get small error estimates if not all sampling points of the
CSCR are taken into account. This is the main reason why the com-
bined method gives worse error estimates than the CSCR. Therefore
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another method is needed to generalize the symmetrized quadrature
rules to more integration variables.

A very promising idea for this generalization, at least to one di-
mensional models, is to combine the symmetrized quadrature rules
and the recursive numerical integration. The recursive numerical in-
tegration is directly applicable to a one-dimensional model. If this
model includes gauge links, the one-variable quadrature rule needed
for the recursive numerical integration can be a symmetrized quadra-
ture rule, instead of the Gaussian rule used before. Only if this avoids
the sign problem, this would provide a very interesting alternative
to MCMC methods. Of course, the generalization of the recursive
numerical integration method to higher dimensions is still an open
problem and a lot of developments, including new ideas, also on how
to include fermions which induce non-local couplings, will presum-
ably be needed to evaluate the QCD path integral with polynomial
exactness.

THE END The methods presented here promise more precise com-
putations of QCD observables in the future. The exact eigenmode
reconstruction with deflation makes more precise disconnected dia-
gram computations possible, the polynomially exact quadrature rules
give a better error scaling, leading to smaller error estimates of observ-
ables in benchmark models and make simulations in sign-problem
regions possible. A generalization to larger space-time dimensions is
still an open question which can hopefully be answered in the future.
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CONVENTIONS

PAULI MATRICES

71:<0 1>,T2:<0 _i),Tg,:(l 0). (A.1)
10 i 0 0 —1

GAMMA MATRICES To use the gamma matrices in LQCD, they
have to be Wick-rotated to satisfy

{77} =204 (A.2)

In the chiral presentation they are given by

0 1 0 —iT
Vi = ) vas = | 123, (A.3)
]12 0 12,3 0
1, O
Y5 = Y172Y3Y4 = . (A.g)
( 0 —]12>

CHARGE CONJUGATION

C =1iv2s. (A.5)

129






MORE DISCONNECTED DIAGRAM RESULTS
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Figure B.1: Comparison of loop result computed with the standard method
without deflation and with the exact eigenmode reconstruction
with deflation method using 100 eigenvectors.
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Figure B.2: Comparison of loop result computed with the standard method

without deflation and with the exact eigenmode reconstruction
with deflation method using 100 eigenvectors.
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