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Abstract

One of the most important achievements in theoretical physics in the last decades
has been the development of the holographic principle. The important achievement
of this principle is to illustrate that physical models have the potential to describe
both quantum physics and gravity at the same time. In particular, the holographic
principle states that a gravitational theory defined in a region of spacetime is equiva-
lently described by a quantum field theory on the boundary of this region. Since the
quantum theory is defined on the boundary of the gravitational theory, we study the
correspondence of these theories by examining the boundary behavior of gravitational
fields. We interpret gravity as an effect emergent of the geometry of spacetime. This
geometry is usually characterized solely by curvature, and holography is routinely ap-
plied in this case to examine the boundary field theory. The essential new aspect of
this thesis is that I consider holography based on geometries which feature non-trivial
torsion and non-metricity. These field strengths characterize geometry similar to cur-
vature. Motivated by holography, I focus in particular on the gravitational boundary
behavior of geometries described by curvature, torsion and non-metricity.

If spacetime has a boundary, we generically need to introduce a Gibbons-Hawking-
York (GHY) boundary term to render the variational principle well-defined. The first
main result of this thesis is a universal GHY term that makes the Dirichlet problem
well-defined in spacetimes which are allowed to have non-trivial curvature, torsion and
non-metricity. I derive this universal GHY term for space-, time- and lightlike bound-
aries. As an important corollary, I observe that no GHY term is needed for actions
which only depend on torsion and non-metricity. The method I develop allows to
calculate GHY terms very efficiently compared to traditional approaches, even when
considering theories with vanishing torsion and non-metricity. This enables us to calcu-
late GHY terms for theories for which it was previously highly involved. Furthermore,
the universality of my method allows to generalize existing results to spacetimes with
non-vanishing torsion and non-metricity as well as to arbitrary dimensions. I illustrate
this calculation for general relativity (GR), four-dimensional Chern-Simons modified
gravity and Lovelock gravity. All of these examples correctly reproduce existing re-
sults for GHY terms in spacetimes with space- or timelike boundaries if torsion and
non-metricity are constrained to vanish. I generalize these results to include torsion
and non-metricity as well as lightlike boundaries. In the latter case only little is known
about GHY terms. My method provides the first consistent approach that allows to
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technically handle the involved derivation of lightlike GHY terms.
By means of the methods I have introduced for deriving the universal GHY term,

I examine the boundary behavior of the geometrical trinity of general relativity. This
trinity consists of three theories that equivalently describe the dynamics of GR by
either curvature, torsion or non-metricity. The bulk actions of these theories differ
by a boundary term SD̊A. I generalize the geometrical trinity of general relativity to
spacetimes with boundaries by including appropriate GHY terms. Careful analytic
manipulation reveals that SD̊A is a difference of GHY terms. I show that its role is
to render the variational principle correct for each way of expressing the bulk action.
Since GHY terms are needed only for actions which depend on curvature, we conclude
that the GHY term reminiscent of SD̊A must be eliminated in the curvature-free theo-
ries involved in the geometrical trinity. This provides the full equivalence of the actions
in the geometrical trinity of general relativity in spacetimes with boundary and shows
that the torsionful and non-metric sides do not require additional boundary terms.

I develop a new perspective on the geometrical trinity of general relativity by prov-
ing that all of its theories may be described by the Einstein action. I supplement the
Einstein action by a boundary term which makes it covariant. The Einstein action is
constructed using the Levi-Civita connection ω̊µ

ν which is the connection of a theory
with vanishing torsion and non-metricity. I show that ω̊µ

ν may equally well be in-
terpreted as a connection which has non-trivial torsion and non-metricity. From this
point of view, the equivalence of the theories contained in the geometrical trinity of
gravity becomes tautological as all of them are described by the exact same action. I
show that the trinity of GR may be generalized to a geometrical trinity of gravity by
realizing that every torsion-free, metric-compatible theory of gravity may be described
equivalently in terms of torsion and non-metricity. I render the variational problem of
these equivalent actions well-defined by discussing their GHY terms.

I obtain essential new results by applying the method of holographic renormalization
to the torsionful equivalent of GR. This involves the construction of a Fefferman-
Graham expansion for coframes in the vicinity of the boundary of spacetimes with
negative cosmological constant. This coframe expansion reproduces the expansion
of the metric tensor underlying the Fefferman-Graham theorem. It allows to apply
holographic renormalization to the torsionful equivalent of the Schwarzschild black
hole. I explicitly construct the counterterms which are needed to make its on-shell
action finite. Furthermore, I prove that torsion holds thermodynamical information by
calculating the free energy of the boundary field theory. This is the foundation of an
encompassing understanding of holographic renormalization of gravitational theories
defined on geometries with curvature, torsion and non-metricity.
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The results presented in this thesis are based on the following publications.
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Section 3.13.1 contains an extended description of my normal vector field approach to
space- and timelike hypersurfaces underlying both [11] and [22]. The derivation of the
universal GHY term for space- and timelike boundaries contained in [11] is presented in
section 4.14.1 of this thesis. I applied the results of [11] to the geometrical trinity of general
relativity in [22] which I review in section 5.15.1. Section 5.35.3 contains the generalization
of the geometrical trinity discussed in [22]. All results obtained in chapters 33 to 66
beyond the ones discussed above constitute my original results which are unpublished
so far. This includes the generalization of all calculations to lightlike hypersurfaces in
sections 3.23.2, 4.24.2 and chapter 55. Moreover, the unification of the geometrical trinity
in the Einstein action in section 5.25.2 as well as the frame perspective on holographic
renormalization in chapter 66 are my original results which I first present in this thesis.
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Zusammenfassung

Das holographische Prinzip stellt eine der wichtigsten Errungenschaften der Physik
in den vergangenen Jahrzehnten dar. Die Relevanz dieses Prinzips ist darin begründet,
dass es zeigt, wie physikalische Modelle gleichzeitig zur Beschreibung von Quanten-
und Gravitationsphysik verwendet werden können. Das holographische Prinzip besagt,
dass eine Gravitationstheorie, die in einer Region der Raumzeit definiert ist, zu einer
Quantenfeldtheorie auf dem Rand dieser Region äquivalent ist. Weil die Quantentheo-
rie dabei auf dem Rand der Gravitationstheorie definiert ist, gründet die Erforschung
ihrer Korrespondenz auf der Untersuchung der Randwerte der Gravitationsfelder. Gra-
vitation interpretieren wir dabei als einen Effekt, der aus der Geometrie der Raumzeit
erwächst. Diese Geometrie wird üblicherweise lediglich durch ihre Krümmung charak-
terisiert. Holographie wird in diesem Fall routiniert angewandt, um die auf dem Rand
definierte Feldtheorie zu untersuchen. Der maßgebliche neue Aspekt dieser Disserta-
tion ist, dass ich Holographie in Raumzeiten mit nicht-trivialer Torsion und Nicht-
Metrizität diskutiere. Diese Feldstärken charakterisieren die Geometrie einer Raum-
zeit analog zu ihrer Krümmung. Motiviert durch das holographische Prinzip fokussiere
ich mich auf das Randverhalten von Geometrien, die durch Krümmung, Torsion und
Nicht-Metrizität beschrieben werden.

In Raumzeiten mit Rand muss im Allgemeinen ein Gibbons-Hawking-York-Rand-
term (GHY) eingeführt werden, um ein wohldefiniertes Variationsprinzip zu gewähr-
leisten. Das erste wichtige Ergebnis dieser Arbeit ist ein universeller GHY-Term, der
die Wohldefiniertheit des Dirichlet-Problems sicherstellt, wenn wir Raumzeiten mit
nicht-trivialer Krümmung, Torsion und Nicht-Metrizität betrachten. Ich leite diesen
universellen GHY-Term für raum-, zeit- und lichtartige Ränder her. Eine wichtige
Konsequenz dieses Ergebnisses ist, dass kein GHY-Term zu Wirkungen hinzugefügt
werden muss, wenn diese lediglich von Torsion und Nicht-Metrizität abhängen.

Die von mir entwickelte Methode erlaubt es, GHY-Terme im Vergleich zu traditionel-
len Herleitungen äußerst effizient zu berechnen. Dies gilt insbesondere auch dann, wenn
Theorien mit verschwindender Torsion und Nicht-Metrizität betrachtet werden. Diese
Effizienz ermöglicht es, GHY-Terme für Theorien herzuleiten, für welche die Berech-
nung zuvor hochgradig komplex war. Darüber hinaus erlaubt es die Universalität mei-
ner Methode, bereits bekannte Ergebnisse auf Raumzeiten mit nicht-verschwindender
Torsion und Nicht-Metrizität sowie auf beliebige Dimensionen zu verallgemeinern. Ich
demonstriere diese Effizienz und Universalität am Beispiel der allgemeinen Relativi-
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tätstheorie (ART), vier-dimensionaler Chern-Simons-modifizierter Gravitation sowie
Lovelock-Gravitation. Für alle betrachteten Gravitationstheorien reproduzieren meine
GHY-Terme bekannte Ergebnisse korrekt, wenn wir Raumzeiten mit verschwindender
Torsion und Nicht-Metrizität betrachten und uns auf raum- oder zeitartige Ränder
beschränken. Ich verallgemeinere diese Ergebnisse, sodass sie Raumzeiten mit Torsion
und Nicht-Metrizität sowie lichtartige Ränder mit einschließen. Im letzteren Fall ist
bisher nur wenig über GHY-Terme bekannt. Meine Methode stellt den ersten konsis-
tenten Zugang dar, der es erlaubt, die komplexe Herleitung lichtartiger GHY-Terme
technisch handzuhaben.

Mit Hilfe der Methoden, die ich zur Herleitung des universellen GHY-Terms ein-
geführt habe, untersuche ich das Randverhalten der geometrischen Trinität der allge-
meinen Relativitätstheorie. Diese Trinität besteht aus drei Theorien, die zueinander
äquivalent die Dynamik der ART entweder durch Krümmung oder durch Torsion oder
durch Nicht-Metrizität beschreiben. Die Wirkungen dieser Theorien unterscheiden sich
durch einen Randterm SD̊A. Ich verallgemeinere die geometrische Trinität auf beran-
dete Raumzeiten, indem ich die geeigneten GHY-Terme einführe. Eine analytische
Rechnung zeigt, dass SD̊A eine Differenz von GHY-Termen ist. Auf Grundlage dieses
Ergebnisses argumentiere ich, dass SD̊A die Funktion hat, ein wohldefiniertes Variati-
onsprinzip für jede Formulierung der Wirkung sicherzustellen. Weil GHY-Terme nur
für Wirkungen benötigt werden, die von der Krümmung abhängen, folgern wir, dass
der aus SD̊A stammende GHY-Term in den krümmungsfreien Theorien der geometri-
schen Trinität eliminiert werden muss. Dadurch erhalten wir die volle Äquivalenz der
Wirkungen der geometrischen Trinität der allgemeinen Relativitätstheorie in Raumzei-
ten mit Rand. Darüber hinaus zeigen wir, dass keine Notwendigkeit für das Hinzufügen
weiterer Randterme zu den Seiten der geometrischen Trinität besteht, die Gravitation
durch Torsion und Nicht-Metrizität modellieren.

Ich entwickle eine neue Perspektive auf die geometrische Trinität der allgemeinen
Relativitätstheorie indem ich zeige, dass alle in dieser Trinität enthaltenen Theorien
durch die Einstein-Wirkung beschrieben werden können. Durch das Hinzufügen eines
Randterms stelle ich die Kovarianz dieser Wirkung her. Die Einstein-Wirkung wird auf
Grundlage des Levi-Civita-Zusammenhangs ω̊µ

ν konstruiert, welcher der Zusammen-
hang einer Theorie ist, in der Torsion und Nicht-Metrizität verschwinden. Ich zeige,
dass ω̊µ

ν mit gleichem Recht als ein Zusammenhang interpretiert werden kann, der ei-
ne Theorie mit nicht-trivialer Torsion und Nicht-Metrizität beschreibt. Die Äquivalenz
der Theorien, die in der geometrischen Trinität der Gravitation enthalten sind, wird
aus diesem Blickwinkel tautologisch, weil all diese Theorien durch ein und dieselbe
Wirkung beschrieben werden. Ich zeige, dass die ART-Trinität zu einer geometrischen
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Trinität der Gravitation verallgemeinert werden kann, indem ich feststelle, dass je-
de torsionsfreie, metrik-kompatible Gravitationstheorie eine äquivalente Beschreibung
durch Torsion und Nicht-Metrizität zulässt. Die Wohldefiniertheit des Variationsprin-
zips in diesen äquivalenten Wirkungen stelle ich durch eine Diskussion der jeweiligen
GHY-Terme sicher.

Ich leite essentielle neue Ergebnisse her, indem ich die Methode der holographischen
Renormierung auf das torsionsbehaftete Äquivalent der ART anwende. Insbesondere
konstruiere ich die Fefferman-Graham-Entwicklung der Ko-Repern in Nähe des Randes
von Raumzeiten mit negativer kosmologischer Konstante, wobei Ko-Repern die geord-
neten Basen der Kotangetialräume bilden. Diese Entwicklung von Ko-Repern repro-
duziert die Entwicklung des metrischen Tensors, die dem Fefferman-Graham-Theorem
zugrundeliegt. Sie erlaubt es, holographische Renormierung auf das torsionsbehafte-
te Äquivalent des Schwarzschildschen schwarzen Lochs anzuwenden. Ich konstruiere
die Gegenterme, die benötigt werden, um einen endlichen Wert der Wirkung sicher-
zustellen, wenn diese auf der Schwarzschildschen Lösung ausgewertet wird. Darüber
hinaus zeige ich durch Berechnung der freien Energie der korrespondierenden Feld-
theorie, dass Torsion Informationen über die thermodynamischen Eigenschaften eines
physikalischen Systems enthält. Diese Berechnungen bilden die Grundlage für ein um-
fassendes Verständnis der holographischen Renormierung von Graviationstheorien, die
in Geometrien definiert sind, welche neben ihrer Krümmung durch Torsion und Nicht-
Metrizität charakterisiert werden.

Die Ergebnisse, die ich in dieser Dissertation präsentiere, basieren auf den folgenden
Veröffentlichungen.

[11] J. Erdmenger, B. Heß, I. Matthaiakakis und R. Meyer. „Universal
Gibbons-Hawking-York term for theories with curvature, torsion and non-metricity“.
In: SciPost Phys. 14 (2023). doi: 10.21468/SciPostPhys.14.5.09910.21468/SciPostPhys.14.5.099. arXiv:
2211.02064 [hep-th]2211.02064 [hep-th]

[22] J. Erdmenger, B. Heß, I. Matthaiakakis und R. Meyer. „Gibbons-
Hawking-York boundary terms and the generalized geometrical trinity of gravity“.
In: Phys. Rev. D 110.6 (2024). doi: 10.1103/PhysRevD.110.06600210.1103/PhysRevD.110.066002. arXiv:
2304.06752 [hep-th]2304.06752 [hep-th]

Abschnitt 3.13.1 enthält eine erweiterte Beschreibung meines Zugangs zu raum- und
zeitartigen Hyperflächen basierend auf einem Normalvektorfeld, der sowohl [11] als
auch [22] zugrundeliegt. Die Herleitung des universellen GHY-Terms für raum- und
zeitartige Ränder, die in [11] enthalten ist, präsentiere ich in Abschnitt 4.14.1 dieser Ar-
beit. Die Ergebnisse von [11] habe ich in [22] auf die geometrische Trinität der allgemeinen

https://doi.org/10.21468/SciPostPhys.14.5.099
https://arxiv.org/abs/2211.02064
https://doi.org/10.1103/PhysRevD.110.066002
https://arxiv.org/abs/2304.06752
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Relativitätstheorie angewandt, was ich in Abschnitt 5.15.1 bespreche. Abschnitt 5.35.3 ent-
hält die Verallgemeinerung der geometrischen Trinität, die ich in [22] besprochen habe.
Alle übrigen Resultate, die ich zusätzlich zu den bereits erwähnten in den Kapiteln 33
bis 66 bespreche, stellen meine eigenen Ergebnisse dar, die ich bisher nicht veröffentlicht
habe. Dies umfasst die Verallgemeinerung all meiner Berechnungen auf lichtartige Hy-
perflächen in den Abschnitten 3.23.2 und 4.24.2 sowie in Kapitel 55. Darüber hinaus sind die
Vereinheitlichung der geometrischen Trinität in der Einstein-Wirkung in Abschnitt 5.25.2
sowie die Reper-Perspektive auf holographische Renormierung in Kapitel 66 Ergebnisse,
die ich erstmalig in dieser Dissertation bespreche.
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Introduction 1
The development of the theory of gravity more than three hundred years ago founded

the modern way of research in physics [33]. In the 17th century, Isaac Newton derived
the universal law of gravity which gave a mathematical description of gravitation, first
published in the Philosophiæ Naturalis Principia Mathematica [44, 55]. While the precise
mathematical form of Newton’s gravitational force was mainly deduced from observa-
tions of celestial motions, it took more than two hundred years until Albert Einstein
provided a fundamental explanation of Newton’s theory [33, 66]. Einstein’s theory of
relativity is based on only a few fundamental observations. First, the theory of special
relativity incorporates that the speed of light is constant according to Maxwell’s the-
ory of electrodynamics [77]. Combining this observation with the principle of relativity
which states that each observer moving at constant velocity experiences the same laws
of physics, Einstein concluded that the Newtonian concept of absolute time needs to
be generalized. That is, both space and time intervals are measured differently by
different observers. In other words, space and time are relative. Hermann Minkowski
realized that it is most efficient to combine space and time in a model called spacetime
which is characterized by a metric tensor that measures lengths and angles [88, 99].

A decade after Einstein published his theory of special relativity, he gave space-
time itself a dynamical role by allowing the metric tensor to take different values at
different points in spacetime. The resulting general theory of relativity (GR) adds
an additional assumption to the two observations underlying special relativity. This
fundamental assumption of general relativity is that the principle of relativity extends
to coordinate frames which are accelerated with respect to each other, and that the
physical properties of spacetime experienced in a uniformly accelerated coordinate
frame are indistinguishable from those in a gravitational field [1010, 1111]. In particular,
this equivalence principle implies that the equations of special relativity hold locally
in the physical system of any observer which is accelerated by gravitation [1212, 1313].
This generalizes the concept of uniform motion underlying the principle of relativity:
Observers still follow straight lines in the spacetime underlying general relativity, but
the geometry of spacetime causes their motions to be accelerated [1414]. This generalizes
the concept of straight lines to what is called a geodesic curve.

What remains open from this brief introduction to general relativity is the question
of what causes the general relativistic geodesics to deviate from what we would naively
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call straight lines. Since the gravitation of an object is related to its mass, it is mass
that is responsible for this deviation. That is, mass causes the metric tensor to differ
from the Minkowski metric, and this deformation in turn causes geodesics to deviate
from straight lines [1313]. Hence, mass is accelerated by a non-trivial metric tensor
and at the same time it changes the metric tensor by its motion. The metric tensor
therefore changes in space and time, and is thus said to be dynamical.

The equations of motion of general relativity reduce to the motions described by
Newton’s gravitational force if observers move at small speed compared to the speed
of light at non-cosmological distances [1313]. Therefore, the predictions of GR differ
substantially from Newton’s only if one approaches the speed of light. The success of
Einstein’s theory is based on its explanation of observations in this limit which cannot
be understood from Newton’s theory alone. This includes the deflection of light by
the mass of the Sun [1313, 1515, 1616], which is the basis of the effect of gravitational lensing
exploited in contemporary cosmology [1717, 1818]. Furthermore, general relativity explains
the precession of the perihelion of planet Mercury, that is the movement of the point
at which Mercury is closest to the Sun [1919].

In Einstein’s theory of gravity, the difference of the metric from the Minkowski
metric is usually interpreted to imply a non-trivial curvature of spacetime [2020]. That
is, a spacetime described by the Minkowski metric is interpreted to be flat, while
a spacetime endowed with a different metric tensor is said to be curved. However,
this interpretation relies on assumptions which we elucidate in the following. From a
mathematical point of view, there are two additional dynamical fields which describe
the geometry of spacetime in a similar fashion as the metric tensor. First, this is
the coframe, which is an ordered basis of the vector spaces defined at each point of
spacetime. We call these vector spaces tangent spaces. As we will see, the relevance
of the coframe arises from its property of connecting tangent spaces to the symmetry
group which acts upon spacetime. Second, the connection field provides a prescription
for how to connect the tangent spaces defined at nearby points in spacetime. It
therefore allows us to compare vectors defined at different points which makes the
connection one of the fundamental fields.

The three fundamental fields of a spacetime are thus the connection, the coframe
and the metric tensor. Studying dynamics in spacetimes equipped with these fields
amounts to examining their field strengths. The field strength of the connection is
called curvature, the coframe’s field strength is torsion, and the field strength of the
metric is non-metricity. While curvature is a ubiquitous concept whenever geometry is
studied in physics, torsion and non-metricity are usually less familiar, although being
defined analogous to curvature. Let us therefore develop an intuition about these field
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strengths.
The standard geometric picture of curvature, torsion and non-metricity relies on the

process of parallel transport. Parallel transport is induced by the connection which
we introduced for connecting nearby points in spacetime. Using this connection, we
consider the transport of vectors defined at some point in spacetime along a curve
which contains this point. This curve is considered to be smooth, but may generically
be non-geodesic. In this setup, a vector is said to be parallel transported if it is parallel
to itself at nearby points with respect to the underlying geometry, where the latter is
characterized by the connection. Curvature, torsion and non-metricity all allow for an
interpretation in terms of parallel transport [2020–2222]. We discuss these interpretations
in the following and depict the corresponding transport processes in figure 11.

First, consider a generic vector a defined at some point in spacetime. We parallel
transport this vector along a closed curve such that we eventually end up at the point
at which we started. However, the vector ã obtained by parallel transport of a is only
equal to a if spacetime is considered to be flat. If spacetime is curved, the directions
of ã and a will generically differ, and the angle they include is determined exactly by
the curvature of the underlying spacetime. For obtaining a similar picture of torsion,
we consider two vectors a and b defined at the same point and demand that the two
vectors are not aligned with each other. Each of these vectors generates a curve to
which the vector is tangent. Now consider the new vector ã to be the vector obtained
by parallel transport of a along the curve generated by b, where we transport a for
a distance which equals the length of b. Analogously, we parallel transport b for the
length of a along the curve generated by a to obtain the vector b̃. In spacetimes with
vanishing torsion, this procedure results in the four vectors a, b, ã and b̃ spanning
a parallelogram. If torsion is non-vanishing, however, this parallelogram does not
close. The amount by which the diagram does not close is directly determined by
torsion. The simplest parallel transport perspective is obtained for non-metricity. To
see that, we only need to parallel transport a vector a along any curve in spacetime.
For vanishing non-metricity, this results in a vector ã which is generically defined at
a different point but has the same length as a. This is no longer true if non-metricity
is present. Thus, the change of the length of vectors under parallel transport is the
pictorial interpretation of non-metricity.

Note that if we consider spacetimes which have torsion and non-metricity but no
curvature, vectors stay parallel to themselves when we parallel transport them along
closed curves. Therefore, such theories are called teleparallel [2323–2929]. In recent years,
there has been an enormous interest in studying teleparallel theories of gravity [3030–3535].
But due to the success of Einstein’s theory of general relativity, it is reasonable to ask
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Fig. 1.: Parallel transport interpretation of geometrical field strengths. Left: The change
in direction obtained by parallel transport of a along a closed non-geodesic curve
is measured by curvature. Middle: Parallel transport of a along b and vice versa
yields a non-closing diagram in presence of torsion. Right: Non-metricity causes
vectors to change length under parallel transport. Figure inspired by [3636].

why teleparallel theories are needed at all. There are many answers to this question.
First, there are yet quite a lot of open problems in cosmology. These arise from

observations which cannot be explained by general relativity, hinting at the need for
a theory beyond GR. Just as in the transition from Newton’s to Einstein’s theory
of gravity, this modified theory of gravity is expected to differ from GR in extreme
cases. For example, the rapid expansion of the universe in its early stage cannot
be explained by GR without introducing the concept of inflation [3737–4646]. Likewise,
the accelerated expansion of the universe at late times requires us to postulate the
existence of dark energy [4747, 4848]. Moreover, if we leave GR unmodified, we are required
to postulate the existence of dark matter to explain the observed motions of stars in
the rotation of galaxies [4949–5555]. The need for all these concepts is widely accepted in
cosmology, where they are part of the Standard Model [4646, 5656–5858]. They are motivated
by observations but cannot be explained by first principles from the underlying theory
of general relativity. There is a clear need for a theory which provides a fundamental
explanation of these phenomena, and we consider teleparallel extensions of GR to be
a candidate for this fundamental theory [2929, 5959].

But even without going beyond GR, there is a second important argument for
why we should study theories with torsion and non-metricity. In particular, the de-
velopment of the geometrical trinity of general relativity [3636, 6060] as well as general
teleparallel quadratic gravity [6161] emphasized that teleparallel theories provide a new
point of view on general relativity itself. We will refer to these teleparallel theories
collectively as (S)TEGR. The central statement of the geometrical trinity of general
relativity is that the dynamics of general relativity possess equivalent formulations in
terms of either curvature or torsion or non-metricity. That is, general relativity may
be described by means of curvature as developed by Einstein, but it may as well be
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described by (S)TEGR for which curvature is vanishing. Both descriptions are dy-
namically equivalent. Therefore, it is important to study theories with non-vanishing
torsion and non-metricity in order to obtain new perspectives on general relativity.

Within general relativity, different maximally symmetric spacetimes are typically
classified by the value of their cosmological constant. In Einstein’s GR, this value
immediately implies the value of scalar curvature by means of the equations of motion,
such that the value of the cosmological constant and that of the scalar curvature are
often used interchangeably. Depending on the sign of this constant, we call a spacetime
de Sitter (dS), Minkowski or Anti-de Sitter (AdS) if it has positive, vanishing or
negative cosmological constant, respectively. In two dimensions, we may imagine dS
spaces as a sphere, Minkowski spaces as flat planes and AdS spaces as a saddle. While
it is interesting to study gravity in these spacetimes in its own right, one of the most
fascinating developments in theoretical physics in the last century is that gravitational
dynamics in AdS spacetimes posses an a priori unexpected description in terms of field
theory. Concretely, this is a quantum field theory which is invariant under conformal
transformations (CFT), and its equivalence to gravity in AdS spacetimes was first
conjectured by Juan Maldacena in 1997 [6262].

In the AdS/CFT correspondence, the conformal field theory is defined on the bound-
ary of the AdS spacetime [6363, 6464]. Therefore, the AdS/CFT correspondence is an
example of the holographic principle which proposes that all information contained
in a volume of spacetime is encoded on its boundary [6565–6868]. This correspondence
does not only provide a duality between gravity and field theory. It furthermore maps
strongly interacting field theories to weakly interacting theories of gravity which are
mathematically tractable by means of perturbation theory. From this perspective, the
AdS/CFT correspondence provides a powerful tool for studying strongly interacting
field theories [6969, 7070].

The AdS/CFT correspondence is particularly relevant in the context of relativistic
hydrodynamics. Hydrodynamics is an effective field theory which is used to describe
fluctuations around the thermal equilibrium of a system at low energy and long wave-
length. AdS/CFT provides a systematic approach to the calculation of transport
properties of strongly coupled fluids on the conformal boundary [6363, 6464, 6969–7171]. In
particular, the transport of energy, momentum and charge in hydrodynamics have
been studied intensively in recent years [7272–7575] by means of gravity correlators deter-
mined by Kubo formulae as well as the fluid/gravity correspondence [7676–7878]. However,
this research mostly involves gravitational theories which are described solely by cur-
vature, while torsion and non-metricity are vanishing. For describing spin transport
in strongly coupled fluids, it is essential to lift these constraints since the hydrody-
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namic spin current is determined by a torsionful connection within AdS/CFT. In a
similar way, we expect the introduction of non-metricity into a theory of gravity to
yield new transport phenomena in the corresponding strongly coupled fluid, related
to a conserved current known as hypermomentum [7979].

Studying strongly coupled fluids has become widely important for different branches
of physics [8080–8787]. On the one hand, hydrodynamics has been found to be the most
adequate transport theory to describe the properties of the quark gluon plasma in
collider physics. On the other hand, relativistic hydrodynamics finds applications in
condensed matter physics. The latter studies the dynamics of charges in solids which
are determined by an electronic band structure. The properties of solids depend sig-
nificantly on the form of this band structure. If at least two bands intersect in a
distinct point, called a node, and all energy states underneath this node are occupied
by electrons, the material is called semimetal. For semimetals, the appropriate the-
ory for describing transport phenomena at nodes is again relativistic hydrodynamics.
Studying relativistic hydrodynamics in semimetals is a subject of current research [8888].
Since the fluids in semimetals are strongly coupled, we cannot use perturbation theory
to study their transport behavior. Therefore, the AdS/CFT correspondence provides
a groundbreaking tool for deriving the physical properties of semimetals through its
connection to relativistic hydrodynamics.

If we consider an electron current in semimetals, not only the charge of the electron is
transported, but so is its spin. Hence, in addition to charge, energy and momentum, we
need to describe spin transport in hydrodynamics. As we argued above, this amounts
to introducing torsion and non-metricity in the gravitational bulk of the AdS/CFT
correspondence. This is the main motivation for me to study gravity with torsion and
non-metricity in this thesis.

There are, however, questions of fundamental importance in gravity that need to be
addressed before the AdS/CFT correspondence may be applied to the description of
spin hydrodynamics. Since the CFT is defined on the boundary of the AdS space in
which gravity propagates, it is essential to study the boundary terms of gravitational
theories in order to establish AdS/CFT in this context. Giving a proper understanding
of these boundary terms in generic theories of gravity which include curvature, torsion
and non-metricity is the main achievement of my work which I present in this thesis.
The presentation of this work is organized as follows.

We begin by explaining geometry with curvature, torsion and non-metricity in detail
in chapter 22. This presentation will appear very mathematical to some physicists
and very physical to some mathematicians. The spirit in which this introduction to
differential geometry is written is the following. We provide all the mathematical
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background which is needed for understanding precisely what curvature, torsion and
non-metricity are. We do not present proofs of the theorems we examine, since these
are all contained in the canonical literature on mathematical physics. At the same
time, we develop mathematical tools guided by physical observations. The realm of
differential geometry is much broader than the presentation in chapter 22, but for the
application of differential geometry to physics it is important to avoid over-constraining
our description of nature by making too many assumptions. For this reason, we
introduce precisely those levels of mathematical structure which we need in order to
understand physical observations, but do not assume anything beyond that. In this
spirit, we add layers of structure upon bare sets until the mathematical formalism is
powerful enough to provide a language for describing physical reality.

The latter conceptual explanation needs an example to elucidate what we identify as
the right amount of mathematical structure from a physics perspective. A prominent
example is that classical physics is defined in three spatial and one time direction,
which as a set can be thought of as R4. However, we can never observe the whole
universe, we are only able to conduct physical experiments in the region of space
and time in our immediate vicinity. Hence, we only assume that the mathematical
description of our observable world is locally described by an R4, while globally the
structure may be different. This line of thought results in what is called a manifold,
and we will study manifolds and further structures constructed upon them in detail.
This culminates in the definition of the frame bundle as a principal GL(m,R)-bundle,
and we examine the bundles associated with it. This level of structure will finally
allow us to consistently define curvature, torsion and non-metricity, and we therefore
need to understand it.

We use the precise intuition gained for geometries with curvature, torsion and non-
metricity to study submanifolds in chapter 33. In particular, we introduce a new way
of studying hypersurfaces which are manifolds that have one dimension less than the
manifold in which they are embedded. This new perspective consists of defining hy-
persurfaces by means of a normal vector field. We compare this perspective to existing
approaches for describing hypersurfaces and derive all the standard equations, such as
the Gauß-Weingarten equations and the Ricci identities. However, we derive all these
equations from one and only one decomposition, that of frames and coframes. This
frame perspective on hypersurfaces is the main achievement of chapter 33. It consti-
tutes the mathematical foundation of my publications [11, 22] in the case of space- and
timelike hypersurfaces. Furthermore, we generalize the normal vector field approach to
lightlike hypersurfaces and derive a frame decomposition perspective on these, which
constitutes new, unpublished research.
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The methods for studying hypersurfaces developed in chapter 33 are the foundation
for the subsequent chapters in which we examine boundaries of manifolds. In partic-
ular, we interpret these boundaries as hypersurfaces and decompose every tensor into
hypersurface tangent and normal contributions. In chapter 44, we derive this decompo-
sition for curvature, torsion and non-metricity. By means of these decompositions, we
derive the Gibbons-Hawking-York (GHY) terms in generic geometries. GHY terms are
well known in general relativity, where they are introduced to render the variational
problem well-defined. Generically, we introduce an action S for describing a physical
system by considering variations of it. That is, enforcing the variation δS to vanish by
means of Hamilton’s principle allows to derive the equations of motion of a physical
system. This principle only holds on manifolds with boundary if we supplement the
action by a GHY term. Thus, the GHY term is a boundary term and it becomes
manifest if we express the action solely in terms of boundary tangent fields.

Using this method, we derive GHY terms in chapter 44 for a wide realm of actions by
decomposing curvature, torsion and non-metricity into boundary tangent and normal
contributions. For space- and timelike boundaries, I published these results in [11],
while the GHY terms of lightlike boundaries constitute original results first presented
in this thesis. The main results of chapter 44 are the following. We find that actions
which do not contain curvature never require us to introduce a GHY term. In other
words, the variational principle is well-defined for any action constructed solely from
torsion and non-metricity without the necessity of additional boundary terms. If,
instead, the action depends on curvature, a GHY term is generically needed. The
explicit form of this GHY term depends on the particular curvature dependence of the
Lagrangian.

We present a universal method which allows to calculate the GHY term for a broad
range of actions. This new approach represents an extraordinarily efficient method for
calculating GHY terms. This efficiency allows us to calculate the GHY terms for vari-
ous theories in a straightforward way, even if the derivation of GHY terms by standard
calculations is highly involved or unknown altogether. We demonstrate the power of
our method in several examples, ranging from efficient reproductions of literature re-
sults to theories for which the GHY term was previously unknown. In particular, we
study Einstein-Hilbert gravity, four-dimensional Chern-Simons modified gravity and
Lovelock gravity for both lightlike and non-lightlike boundaries. All calculations and
derivations are extraordinarily compact compared to the literature approaches. This
is due on the one hand to the efficiency of our method, and on the other hand to the
usage of a differential form notation which is rarely used in the literature.

As a particular example for which a rigorous treatment of boundary terms was pre-



9

viously unknown, we examine the geometrical trinity of general relativity in chapter 55.
As explained above, the geometrical trinity allows to express general relativity equiva-
lently by means of either curvature or torsion or non-metricity. We re-derive this trinity
in differential form language by transforming the Einstein-Hilbert action underlying
general relativity to its teleparallel equivalent. The latter includes both torsion and
non-metricity at the same time, so that we effectively reduce the geometrical trinity to
an equivalence of general relativity and its general teleparallel equivalent (S)TEGR.
The transformation from GR to (S)TEGR involves a boundary term SD̊A which is
well-known but has not been examined sufficiently. I gave the first thorough interpre-
tation of this term for space- and timelike boundaries in [22]. As a main result, the
decomposition of SD̊A into boundary tangent and normal contributions reveals that
it is a difference of GHY terms. Its role is therefore to render the variational prin-
ciple correct, no matter if the action is written in terms of a curvature tensor which
is constructed from a generic connection or the one which has vanishing torsion and
non-metricity. We conclude that the GHY term needs to be removed when imposing
the teleparallel constraint of vanishing curvature, since only curvature-related terms
in the Lagrangian require us to introduce GHY terms. This discussion generalizes to
lightlike boundaries as well, which is my original result first published in this thesis.

In section 5.25.2 I derive a new perspective on the geometrical trinity of general relativ-
ity. This is entirely new and, at the moment of writing, unpublished research. Using
an ambiguity introduced by the (S)TEGR choice of connection, we encounter that all
theories involved in the geometrical trinity are fully captured by one and only one
action. This action is the Einstein action which Einstein originally used to derive the
field equations of general relativity in 1915 [1212]. While this action is not manifestly
covariant, I derive the boundary term which restores its covariance for space-, time-
and lightlike boundaries. The bulk Einstein action is quadratic in the Levi-Civita con-
nection ω̊µ

ν . This connection is torsion-free and metric compatible. The interpretation
of the Einstein action as a theory of general relativity is therefore immediate, while it
is not obvious that it also describes teleparallel theories. Nevertheless, we derive the
same action as a rewriting of the (S)TEGR action. I resolve this surprising equiva-
lence by giving the Levi-Civita connection ω̊µ

ν a teleparallel interpretation. That is,
we rewrite

ω̊µ
ν = ωµ

ν − Aµ
ν , (1.1)

where ωµ
ν is a generic connection one-form and the deformation one-form Aµ

ν is
entirely determined by torsion and non-metricity. Hence, the right hand side of (1.11.1)
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generically captures effects of curvature, torsion and non-metricity. In particular, we
may choose the connection ωµ

ν to be the curvature-free connection of (S)TEGR, such
that the right hand side of (1.11.1) describes only effects of torsion and non-metricity.
That is, we have found an interpretation of the torsion-free, metric-compatible Levi-
Civita connection in terms of torsion and non-metricity. This is the fundamental
reason why the Einstein action describes both GR and its teleparallel equivalent at
the same time.

This reinterpretation of the Levi-Civita connection and the Einstein action creates
an entirely new perspective on the geometrical trinity of general relativity. It unifies all
approaches to describing the dynamics of general relativity by GR, TEGR, STEGR,
(S)TEGR, coincident general relativity (CGR) and theories beyond those. Further-
more, the reinterpretation of the Levi-Civita connection in torsionful and non-metric
theories allows to assign teleparallel equivalents to any theory which is constructed
upon the Levi-Civita connection. This generalizes the geometrical trinity of general
relativity to constitute a geometrical trinity of gravity. I discuss this generalization
and the role of boundary terms therein in detail in section 5.35.3. My discussion formal-
izes previous attempts to generalize the geometrical trinity of general relativity and
adds a discussion of boundary terms.

In chapter 66, I develop the first systematic formalism for applying the method of
holographic renormalization to teleparallel theories of gravity. We introduced torsion
as the field strength of the coframe. In order to apply holographic renormalization to
torsionful theories, it is therefore crucial to develop a frame perspective on the under-
lying formalism. I first develop this perspective for the Fefferman-Graham theorem
which underlies holographic renormalization. I motivate that the Fefferman-Graham
expansion may be understood as an expansion of the coframe at the boundary of AdS
spacetimes. This reproduces the well-known near-boundary expansion of the met-
ric in Fefferman-Graham coordinates, serving as a consistency check of my method.
Building upon this frame perspective on the Fefferman-Graham expansion, we apply
holographic renormalization to the five-dimensional Schwarzschild black hole in AdS
space. In particular, we evaluate the on-shell TEGR action for this black hole and find
that it is divergent as we approach the AdS boundary. Hence, we regularize by cutting
off the radial integral and construct the counterterms needed to renormalize the action.
Finally, we evaluate the free energy of the five-dimensional AdS Schwarzschild black
hole in TEGR. The latter result demonstrates that torsion is able to hold information
on the thermodynamic properties of a theory. This is the first time that a systematic
approach to the application of holographic renormalization in teleparallel theories has
been developed. The frame perspective on the Fefferman-Graham expansion as well
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as the holographic renormalization in teleparallel gravity are my original results first
published in this thesis. These results serve as a guideline for the construction of the
full frame perspective on holographic renormalization of teleparallel theories in future
work.





Geometry with curvature, torsion and
non-metricity 2

The core subject of the following chapters will be geometry with curvature, torsion
and non-metricity. Therefore, we first develop the mathematical language for describ-
ing geometry in this chapter. As such, we consider mathematics to be the precise
language which allows us to express physical observations in an unambiguous way.
Just as any language has more words than you need to discuss about a certain topic,
mathematics as a subject is more powerful and has way more branches than we need
to describe our physically observable world. Our task as theoretical physicists is to
pick these tools from the mathematical toolbox which are suitable to describe our
physical observations. Doing so, we certainly need to provide enough mathematical
structure to cover the features of our physical system. But we need to be careful which
mathematical structures we assume on top of that, since an abundance of structure
assumed yields prejudices about the physical nature which the latter might simply not
obey. For example, school physics takes place in flat space. As we know since Einstein,
gravity is modeled more accurately by considering spacetime to be curved. Hence, the
assumption of a space being flat is simply too strong, it is too much mathematical
structure. In this chapter, I therefore provide the minimal mathematical background
sufficient to describe geometry, which is the foundation of much of modern physics.
This foundational character is most immediately obvious for gravity, which in our mod-
ern way of describing gravitation is a direct interpretation of geometry. Nevertheless,
since mathematics is only meant to provide the language for describing the physical
systems which we want to consider in the following chapters, the introduction here is
not meant as a language course. In particular, this means that we are going to provide
an intuition about the mathematical backgrounds instead of presenting proofs. All of
the contents of this chapter are common knowledge in mathematics, and we encour-
age the interested reader to study the topics of interest in greater detail by consulting
some of the standard literature on set theory, topology and geometry [2222, 8989–9292]. The
presentation in this chapter is mainly based on a series of lectures given by Frederic
Schuller [9393], enriched with details from the lecture notes [9494, 9595] and the books [8989,
9090].
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2.1. From logic to bundles

One of the most basic fields of mathematics is set theory. However, set theory is
formulated axiomatically and needs a language on which it is founded. This language
is the logic of propositions and predicates. For example, in set theory we want to make
statements of the type “A is an element of B”. But to understand this statement, we
need to know what “being an element” means. This is defined in predicate logic, in
which “being an element” is a predicate of two variables A and B called a relation.
We do not aim at explaining set theory in more detail here, for sake of completeness
we only point out that the remainder of this chapter is based on Zermelo-Fraenkel set
theory including the axiom of choice (ZFC set theory).

The reason for starting this section with set theory is that this is the coarsest
structure one could imagine to describe any physical system. Of course, sets themselves
are not yet enough to describe any physics, e.g. the path of a classical particle, so we
need to add more structure. But since sets are the weakest structure on which we built
our mathematical formalism by adding more and more layers of structure, we point out
a recurring theme that will be important on each layer in the following. In particular,
each time we add a new layer of structure, we need to study the maps which preserve
this structure. These maps are always called isomorphisms but often obtain special
names. Let us apply this to set theory: Sets themselves have very little structure. In
particular, the elements of a set are not ordered or grouped a priori. Thus, the only
structure we have is the number of elements that are contained in a set. So maps
which preserve the number of elements are the isomorphisms of set theory. Intuitively,
these isomorphisms pair the elements of two different sets in a one-to-one fashion such
that no elements remain unpaired. More abstractly, such a one-to-one pairing is given
by a bijective map. Hence, we found bijections to be the isomorphisms of set theory.
We often consider isomorphic structures being “the same”, although strictly speaking
they are not identical. For example, the sets {A,B,C} and {Jack, Queen, King} are
considered the same since they are isomorphic to each other. This principle will be
more obvious when we add further structure on top of plain sets like a topology for
instance. In fact, this is what we consider next.

Classical physics needs to be recovered by any physical theory which allows to take
the appropriate limits. Hence, any mathematical formalism we set up in order to de-
scribe a physical system is supposed to be powerful enough to model classical physics.
For that reason we need to have a notion of continuity at hand since the trajectories of
particles in classical physics are always continuous. The weakest mathematical struc-
ture we can add on top of sets which is powerful enough to yield a notion of continuity
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is a topology. A topology is a choice of subsets of a set which are called open. This
choice is not arbitrary, it needs to obey the following rules. For a set M, the set O is
a topology if and only if

1. M ∈ O ,

2. ∅ ∈ O ,

3. with two sets U, V ∈ O, their intersection U ∩ V ∈ O and union U ∪ V ∈ O are
contained11 in O .

Subsets of M are called open if they are contained in the chosen topology O. The
tupel (M,O) is called a topological space, where a space in mathematics is just a set
with some additional structure.

Motivated by classical physics, we introduced a topology in order to be able to
define a notion of continuity. Indeed such a definition is possible; a map ϕ : M −→ N
is called continuous if the preimages of open sets in ON are open sets in OM. This
notion of continuity drastically depends on the choice of topology made for both
sets. For physics, we usually choose what is called the standard topology for given
sets. For example, if (M,OM) and (N ,ON ) are topological spaces, we can construct
the so-called product topology on the Cartesian product of the sets M × N in the
following way: A set U ⊂ M × N is contained in the product topology OM×N if
for its elements (m,n) ∈ M × N there exist S ∈ OM containing m and T ∈ ON

containing n such that S × T is a subset of U . The product topology OM×N is thus
inherited from the topologies OM and ON in a straightforward manner. In a similar
way, we define an induced topology on subsets. One of the most fundamental spaces in
physics is Rd = R× · · · ×R on which the standard topology is the set of all open balls
in Rd. Choosing this standard topology on Rd, we recover the familiar ε-δ-criterion for
continuity. The usual understanding is that one always chooses the standard topology
if nothing else is said.

Now that we added structure on top of sets, we need to study the isomorphisms of
this structure again. These need to preserve all the structure which we have. Thus,
the isomorphisms are bijective, continuous maps in order to preserve the structure of
sets and their topologies. These isomorphisms of topological spaces are called homeo-
morphisms. Like in set theory, one often considers homeomorphic spaces as being the
same. For example, a coffee cup is usually considered to be the same as a doughnut if
they are only considered as topological spaces, since both are homeomorphic to each
other. Beyond that, topology is a rich field of mathematics. From the point of view

1For two sets A and B, A being “contained” in B means that A ∈ B.
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of physics it is particularly interesting to study properties of topological spaces which
are invariant under homeomorphisms, called topological invariants. However, adding a
little more structure to topological spaces will allow us to study topological invariants
from the point of view of geometry by means of de Rham cohomology groups. This is
the usual method for examining topological invariants in physics. For physics, there
are some special topological spaces which are of immediate interest. These are the
topological manifolds which we discuss next.

As we discussed when introducing topologies, every new physical theory needs to
contain well-understood former theories in the appropriate limits. We will invoke
this principle again to select these topological spaces which contain classical physics.
In particular, classical physics22 is defined in some Rd, which is implicitly considered
to be a topological space (Rd,OSt.Rd) using its standard topology OSt.Rd . Hence, we
could demand that physically relevant topological spaces need to be homeomorphic
to (Rd,OSt.Rd), that is, structurally equivalent to (Rd,OSt.Rd). However, this would
imply that we are unable to describe anything beyond physics in (Rd,OSt.Rd). Thus,
we weaken the above condition and only demand that around every point p ∈ M
physically relevant spaces look like an Rd. This means that the physically relevant
topological spaces are those which are locally homeomorphic to (Rd,OSt.Rd). Wrap-
ping these thoughts up, we arrive at the following definition:
A d-dimensional (topological) manifold (M,O) is a topological space in which for
every p ∈ M there exist a U ∈ O containing p and a homeomorphism x : U −→
x(U) ⊆ Rd.

For completeness we mention that topological manifolds are also required to be para-
compact and Hausdorff (T2). Both of these conditions are topological invariants which
are, however, only implicitly relevant for the following discussion. Note that this defi-
nition of topological manifolds introduces a notion of dimension for the first time. This
dimension dim M ..= d is fixed by the space Rd which the manifold is locally home-
omorphic to. Obviously, this does not include boundaries ∂M. Including boundary
effects will be the task of the following chapter, while we focus on introducing the
relevant notions on manifolds without boundaries here.

Since topological manifolds are topological spaces, we can construct new manifolds
from given ones in the same way as we did for topological spaces. Nevertheless,
we need to verify that the result of these constructions still is a topological mani-
fold. For example, the product topology OM×N we constructed above guarantees that

2We did not yet equip the set Rd with a metric. Hence, in this context Rd is not Euclidean flat
space but the mere set. We will subsequently equip this set with more mathematical structure
such that it is powerful enough to serve as a model for Euclidean flat space.
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(M × N ,OM×N ) is indeed a topological manifold if (M,OM) and (N ,ON ) are topo-
logical manifolds. There exists an important generalization of such a product manifold
which combines two topological manifolds as well. This generalization is called a man-
ifold bundle.
The triple (E, π,M) is called a bundle (of topological manifolds) if E and M are
(topological) manifolds and π : E −→ M is a surjective, continuous map.

We will denote this bundle as E π−→ M and call E the total space, M the base space
and π : E −→ M the projection map. Note that we may turn any surjective map into
a continuous projection map by equipping the total space with a suitable topology,
for instance the induced topology from M. The preimage Fp

..= preimπ({p}) of a
point p ∈ M in the base space is called the fibre Fp at this point. If this fibre is iden-
tical for every point p ∈ M, that is ∀p ∈ M : preimπ({p}) = F , the bundle is called
fibre bundle with (typical) fibre F . An important special case arises when we consider
product bundles E π−→ M, where E = M × F and π = proj1 is the projection to the
first factor. This is trivially a fibre bundle with typical fibre F . We may thus imagine
a product bundle as attaching the same fibre at every single point of the base space.
For constructing further bundles, we may of course define subbundles and restricted
bundles as a straightforward generalization of the notions for topological spaces and
manifolds.

It is important to notice that the map π : E −→ M is a projection, and as such
it is not invertible due to the lack of injectivity. Nevertheless, we will later see that
there is an important physical interpretation of maps from the base to the total space
σ : M −→ E. Such maps are called sections if π ◦ σ = idM.

A bundle is of course a new layer of mathematical structure, and hence we need to
study the isomorphisms which preserve this structure. This is a little more involved
than before, since we now have more structure to preserve. As a prerequisite for
defining the isomorphisms, we thus define bundle morphisms for two bundles E π−→ M
and E ′ π′

−→ M′. The pair (f, g) of the two maps f : E −→ E ′ and g : M −→ M′

is called a bundle morphism if π′ ◦ f = g ◦ π. The use of this definition is understood
best considering the commutative diagram:

E E ′

M M′ .

f

π π′

g

From this diagram it is immediately obvious that a bundle isomorphism needs to be
a bundle morphism in both directions. Hence, a bundle isomorphism is a pair (f, g)
of invertible maps for which (f, g) and (f−1, g−1) are both bundle morphisms. Since
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the trivial way of constructing a bundle is the product bundle, we call bundles trivial
if they are isomorphic to product bundles.

Just as for manifolds which we demanded to be homeomorphic to Rd only locally, it
will be important later to consider bundles which are only locally bundle isomorphic to
another bundle. The definition is analogous to that of topological manifolds. Specifi-
cally, a bundle E π−→ M is called locally isomorphic to E ′ π′

−→ M′ if for every p ∈ M
there exists a U ∈ OM containing p such that the restricted bundle preimπ(U) πres−→ U

with πres
..= π|preimπ(U) is bundle isomorphic to E ′ π′

−→ M′. Following these lines, we
weaken the triviality condition and call a bundle locally trivial if it is locally isomorphic
to some product bundle. We will only consider locally trivial bundles in the following.

There is yet another important construction on bundles which is the pull-back. For
its construction, we consider a bundle E π−→ M and a map g : M′ −→ M. From
only this construction we may construct a bundle E ′ π′

−→ M′ with base space M′

called the pull-back bundle. The new information the pull-back bundle has are the
total space E ′ and the projection π′. The total space is defined as E ′ ..= {(m′, e) ∈
M′ × E|π(e) = g(m′)} for which π′ ..= proj1 obviously is a projection map. On top,
the definition of E ′ immediately suggests to define a map f : E ′ −→ E by means of
f ..= proj2. This way, we constructed a bundle morphism (f, g). Moreover, sections
σ : M −→ E pull back to the pull-back bundle as

σ′ : M′ −→ E ′

m′ 7−→ (m′, σ(g(m′))) .

Bundles are the highest level structures which we need in order to understand ge-
ometry on an elementary level. In particular, the frame field as well as the affine
connection are properly defined on the level of bundles. The field strengths of these
fields are torsion and curvature, respectively, which is why bundles play an important
role for understanding geometry with these fields strengths. However, the definition
of these fields requires a deeper understanding of manifolds which we will introduce
next. In particular, we will consider manifolds from the point of view of charts and
atlases. The advantage of this a priori redundant formulation is that atlases allow to
inherit further structure from Rd and thereby introduce a notion of differentiability
on manifolds.
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2.2. Charts, atlases and differentiable structures

In this section we revisit the definition of topological manifolds and exploit that there
exists an open neighborhood of every point which is homeomorphic to a subset of
Rd. This way, we will construct a chart of the open neighborhood. Recall that we
defined a d-dimensional topological manifold (M,O) as a topological space in which
for every p ∈ M there exist a U ∈ O containing p and a homeomorphism x : U −→
x(U) ⊆ Rd. We call any such pair (U, x) a chart of the manifold, where U is the chart
domain and x is the chart map. A chart can therefore be interpreted as a local picture
of the manifold in Rd. Guided by our intuition about Rd, we might want to describe
the position of some object by means of coordinates. Coordinates of points p ∈ M
only exist with respect to a particular chart (U, x), for which they are defined as the
component functions of x. A component function xi, where i ∈ {1, . . . , dim M}, is the
projection of x to its i’th entry, that is xi ..= proji ◦ x or explicitly

xi : U −→ xi(U) ⊆ R

p 7−→ proji(x(p)) .

For describing physics on the entire manifold M, we might wish to cover M by charts
such that every point of M is contained in some chart. This constitutes an atlas A
defined by the union ⋃

(U,x)∈A
U = M

of its chart domains. Of course, some point p ∈ M will generically be contained in the
domains of different charts (U, x) and (V, y). In this case, it is helpful to investigate
how the charts are connected. We shrink to considering the maps in U ∩ V . Then,
the map y ◦ x−1 : x(U ∩ V ) −→ y(U ∩ V ) is called the chart transition map or the
coordinate change map. The commutative diagram for this definition is

U ∩ V

Rd ⊇ x(U ∩ V ) y(U ∩ V ) ⊆ Rd .

x y

y ◦ x−1

The key feature of the chart transition map is that it can be considered as a map
from Rd to Rd so that we can use all of the well-known analysis on Rd. To a certain
extent, we may even “forget” about the underlying manifold M and only consider
physics in charts, studying the chart transition maps as coordinate changes. This is
exactly the connection to classical physics which has been considered on an Rd.
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Two charts containing the same point might be of very different nature. While it is
generically trivial to incorporate different chart domains, the consideration of differing
chart maps can be more involved. Hence, we classify charts by the compatibility of
their chart maps. In particular, two charts (U, x) and (V, y) are called Cn-compatible
if either U ∩V = ∅ or the chart transition map y ◦x−1 is Cn as a map from Rd to Rd.
For the sake of this thesis it suffices to consider n ∈ N, where a map is called C0 if it is
continuous and Cn if it is n times differentiable. In particular, we will make extensive
use of chart transition maps which are differentiable arbitrarily often, in which case
these maps are called smooth or C∞. Note that x and y being homeomorphisms implies
that the chart transition map y ◦ x−1 is continuous and thus any chart transition map
is C0. The compatibility definitions of chart transition maps transfer to atlases: We
call an atlas whose charts are pairwise Cn-compatible a Cn-atlas. A Cn-atlas is called
maximal if all compatible charts are already contained in this atlas.

Having a Cn-atlas A, some of the charts contained in A might actually be even
Cn+1-compatible. Hence, we can add structure to an atlas by removing the charts
which do not satisfy this additional compatibility criterion. In fact, starting with any
maximal Cn-atlas for some n ≥ 1, we may remove charts to conclude that it already
contains a C∞-atlas.

The such defined atlases are additional structure we added to topological manifolds.
Hence, we assert a name to this structure. The triple (M,O,A) is called a Cn-manifold
if (M,O) is a topological manifold and A is a maximal Cn-atlas. We will mostly be
concerned with smooth manifolds in the following, for which A is a C∞-atlas. As
for topological manifolds, one often simply denotes M as being a smooth manifold,
implicitly understanding that M is a set equipped with a topology O and an atlas A.
Since every maximal Cn-atlas contains any atlas of higher degree of differentiability,
we often simply speak of differentiable manifolds instead of Cn-manifolds.

Just as for the previous layers of structure, we wish to study the isomorphisms
which preserve the structure of Cn-manifolds. The new structure of these manifolds
is obviously the Cn-compatibility. Since we observed that any atlas is a C0-atlas, the
relevant new structure which isomorphisms should preserve is differentiability. But
we only know how differentiability works in Rd and have no notion of differentiability
for maps between generic manifolds yet. However, we have connected manifolds to Rd

via charts in atlases, which allow to inherit the differentiable structure from Rd. To
this end, we consider two Cn-manifolds (M,OM,AM), (N ,ON ,AN ) and a map ϕ :
M −→ N . Then ϕ is called n times differentiable at some point p ∈ M if the
corresponding map y ◦ ϕ ◦ x−1 in some charts (U, x) ∈ AM and (V, y) ∈ AN is Cn as
a map from Rd to Rd. This is again understood more easily from the corresponding
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commutative diagram which is

M ⊇ U V ⊆ N

Rd ⊇ x(U) y(V ) ⊆ Rd .

ϕ

x y

y ◦ ϕ ◦ x−1

It is straightforward to show that this definition of differentiability is independent
of the chosen charts and thus well-defined. Now that we constructed differentiable
maps on Cn-manifolds, we may return to the construction of the isomorphisms which
preserve the structure of these manifolds. Since a Cn-manifold is a triple (M,O,A),
the isomorphisms need to preserve all layers of structure in this triple. Therefore, the
isomorphisms are bijective maps ϕ : M −→ N for which both ϕ and its inverse ϕ−1

are Cn. Such isomorphisms are called diffeomorphisms. Note that diffeomorphisms
are continuous by construction of Cn-manifolds and thus also preserve the topological
structure. If there exists a diffeomorphism between two Ck-manifolds, we call them
diffeomorphic. As for the previous layers of structure, we often call two Cn-manifolds
the same if they are diffeomorphic.

Coming back to our physics motivation of this mathematical introduction, we might
want to model not only the position of particles moving through spacetime but to be
able to calculate their velocities as well. Differentiable manifolds provide just enough
structure to define the needed vector fields, since they have tangent spaces at each
point of the manifold. Hence, we construct these spaces next.

2.3. Vectors, tensors and differential forms
Tangent spaces at points p ∈ M in a differentiable manifold are the key notions which
allow us to introduce vectors and tensors on manifolds. They are thus essential for
describing the dynamics of physical systems. Since tangent spaces are vector spaces,
we first recap a few details of linear algebra before we apply them to differentiable
manifolds.

The basic notion underlying a vector field is a group. Groups are tupels (K, ◦) for
which the map ◦ : K ×K −→ K is associative (A), has a neutral element (N) as well
as an inverse (I). If the group operation ◦ is commutative (C) as well, we call the
group abelian. On top of groups, we then construct an (algebraic) field (K,+, ·) by
demanding that both (K,+) and (K\{0}, ·) are abelian groups and we may distribute
(D) over both operations + and · to connect them. We will later comment on structures
for which the multiplication · is always associative A and has a neutral element N, but
lacks the C or the I property which would make (K,+, ·) a field. Such a structure
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is called a ring. We will be particularly concerned with commutative rings for which
only the multiplicative inverse I is missing.

Having a field (K,+, ·), we construct a K-vector space (V,⊕,⊙) where the addition
⊕ : V × V −→ V again satisfies CANI. The multiplication ⊙ : K × V −→ V however
fulfills ADDU, so it is associative (A), distributive (D) in both additions + and ⊕ and
inherits the unity element (U) of K. Note that the domain of ⊙ is a Cartesian product
of the sets underlying the field and the vector space. In this context, we call elements
of the field scalars and the vector space multiplication ⊙ scalar multiplication. Instead
of constructing a vector space over a field, we could have used a ring (K,+, ·). While
the definition of the additional structure remains unchanged, we call the correspond-
ing triples (V,⊕,⊙) K-modules. We will use these objects later when we discover
structures relevant in physics which simply do not constitute a vector space. At this
point, we need to point out that some intuitions we have for vector spaces simply do
not translate to modules. For example, vector spaces may be equipped with a (Hamel)
basis (ultimately due to the axiom of choice), while modules generically do not have
a basis if they have no multiplicative inverse. A (Hamel) basis of a K-vector space
(V,⊕,⊙) is a subset B ⊆ V for which the elements ei of B are linearly independent
and allow to reconstruct vectors via v =

N∑
i=1

viei, where N ∈ N\{0} and the coeffi-
cients vi ∈ K are scalars. The dimension of the vector space is then defined as the
cardinality of the basis, dim V ..= |B|. When we required v =

N∑
i=1

viei, the experienced
reader might have wondered why we did not use Einstein’s convention to sum over the
indices. We will see that invoking Einstein’s convention actually only works for linear
maps, which we did not cover yet. Hence, we discuss linear maps next.

A map ϕ : V −→ W between two K-vector spaces (V,⊕,⊙) and (W,⊞,�) is
called linear if for all λ ∈ K and u, v ∈ V it fulfills ϕ(u ⊕ v) = ϕ(u) ⊞ ϕ(v) and
ϕ(λ⊙ v) = λ� ϕ(v). Note that by means of these properties it is always clear which
addition or multiplication is meant by the context in which these operations appear.
For this reason, we simply denote all additions by + and all multiplications by · in the
following. Moreover, we will be concerned with an abundance of linear maps so that
we introduce the notation ϕ : V ∼−→ W as an abbreviation which says that the map
ϕ : V −→ W is linear. We will use this abbreviation later to indicate multilinearity as
well if the domain V of the map is a Cartesian product. In this case, multiliniearity is
equivalent to linearity in each entry of the domain. Linear maps are clearly the maps
which preserve the new structure of vector spaces. Since isomorphisms need to preserve
all of the structure we have, the vector space isomorphisms are bijective linear maps.
Because the linear maps are so important, there exists a variety of names for different
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kinds of linear maps. The set of homomorphisms Hom(V,W ) ..= {ϕ : V ∼−→ W} of
two K-vector spaces V and W can actually be made into a vector space over the same
field K. This is done by pointwise inheriting the addition and multiplication from W .
That is, we define the addition of two elements ϕ, ψ ∈ Hom(V,W ) as (ϕ + ψ)(v) ..=
ϕ(v) + ψ(v), while the multiplication by a scalar λ ∈ K is given by (λϕ)(v) ..= λϕ(v).
Since both of these operations are defined at a point v ∈ V in the domain of ϕ, we call
them the pointwise addition and scalar multiplication. We will often use this principle
for inheriting new operations from given ones.

From this vector space of homomorphisms, we derive multiple sub-vector spaces. In
particular, End(V ) ..= Hom(V, V ) are the endomorphisms and Aut(V ) ..= {ϕ : V ∼−→
V |ϕ invertible} are the automorphisms on V . The set V ∗ ..= Hom(V,K) equipped
with the pointwise inherited addition and multiplication is called the dual vectorspace,
where a field (K,+, ·) may of course be considered as a K-vector space itself. The
elements of the dual vectorspace are called covectors. Having a basis ea on V , it
simplifies a great number of calculations to choose the so-called dual basis ϵa on the
dual vectorspace V ∗ by imposing ϵa(eb) = δa

b , where the Kronecker delta δa
b is 1 if a = b

and 0 else. We will adapt the convention that the basis vectors of the dual vectorspace
have upper indices.

Now that we defined the dual vectorspace V ∗, let us return to the discussion of
multilinear maps. In particular, we call the multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

∼−→ R

a (p, q)-tensor. The set T p
q V of (p, q)-tensors is again a vector space by pointwise

inheriting addition and multiplication from (K,+, ·). By definition, T 0
1 V is nothing

but the dual vectorspace V ∗. We call elements of T 0
1 V = V ∗ covectors. The tensor

space T 1
1 V is actually isomorphic to End(V ∗) as a vector space, so that we often do

not distinguish between these two spaces. We would expect that T 1
1 V is vector space

isomorphic to End(V ) as well, but this is in fact only true for finite dimensional vector
spaces V since only in this case (V ∗)∗ is isomorphic to V . For this reason, T 1

0 V is
only isomorphic to V for finite dimensional vector spaces. In short, this implies that
covectors always map vectors to scalars, but vectors only map covectors to scalars
in finite dimensional vector spaces. Thus, we will always implicitly confine to finite
dimensional vector spaces if we construct such T 1

0 V maps from vectors in the following.

It is sometimes helpful to express calculations in terms of tensor components instead
of the full tensors. We construct those by considering the action of a tensor T ∈ T p

q V
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on the basis vectors ea and ϵa of V and V ∗ to define

T
a1...ap

b1...bq

..= T (ϵa1 , . . . , ϵap , eb1 , . . . , ebq) . (2.1)

The multiplication · we defined to make (T p
q V,+, ·) a vector space is a scalar mul-

tiplication K × T p
q V −→ T p

q V . We construct yet another product on tensor spaces
denoted by

⊗ : T p
q V × T r

s V −→ T p+r
q+s

(T, S) 7−→ T ⊗ S .

This tensor product is defined by

(T ⊗ S)(ω1, . . . , ωp+r, v1, . . . , vq+s) ..=

T (ω1, . . . , ωp, v1, . . . , vq) · S(ωp+1, . . . , ωp+r, vq+1, . . . , vq+s) .

Using the tensor product, we may reconstruct a tensor T ∈ T p
q V from its compo-

nents T a1...ap

b1...pq
as

T = T
a1...ap

b1...bq
ea1 ⊗ · · · ⊗ eap ⊗ ϵb1 ⊗ · · · ⊗ ϵbq . (2.2)

Here, we used the Einstein summation convention for the first time. In this convention,
we sum over all indices which appear once upstairs and once downstairs if nothing else
is specified. Note that this convention requires maps to be linear, such that sums may
be pulled out of their arguments. We may thus always use the convention in tensor
calculus, since tensors are defined to be multilinear maps. We will adapt Einstein’s
summation convention in the following.

There are some tensors which will become particularly important later. These are
the T 0

nV tensors ω which are totally antisymmetric. We call these tensors differential
forms of rank n or n-forms for short. For n = 0, the differential forms are simply
the linear maps on the field33, and for n = 1 the one-forms are given by the covectors.
For n > 1, total antisymmetry is defined such that for every permutation π in the
permutation group Sn we have

ω(v1, . . . , vn) = sgn(π)ω(vπ(1), . . . , vπ(n)) . (2.3)

3Elements of the field are called zero-forms as well, since they correspond to the n = 0 case for the
identity map.
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The sign sgn(π) of the permutation π is defined to be 1 if π may be constructed by an
even number of pairwise transpositions and −1 otherwise such that differential forms
are totally antisymmetric as required. Due to this antisymmetry, the rank n of a
differential form can at most be dimV , in which case differential forms are also called
top forms. Two different top forms only differ by a scalar. It is thus convenient to
choose one top form and call it the volume form Vol on V . Then, Vol(v1, . . . , vdim V ) is
the volume spanned by the vectors v1, . . . , vdim V . Using the volume form, we may also
define determinants. The determinant is only defined for endomorphisms ϕ ∈ End(V ),
and we recall that these are isomorphic to the (1, 1)-tensors T 1

1 V in finite dimensional
vector spaces. For these objects, we define the determinant as

detϕ ..= Vol(ϕ(e1), . . . , ϕ(edim V ))
Vol(e1, . . . , edim V ) . (2.4)

This definition is independent of the choice of basis e1, . . . , edim V of V and the choice
of volume form. The independence of the choice of basis is the main reason for solely
considering endomorphisms.

This introduction to multilinear algebra will be sufficient for developing the geomet-
rical notions in the following chapters. However, we did not relate multilinear algebra
to the manifolds we considered in the previous sections. Both topics are in fact closely
related through the concept of tangent spaces. Introducing these spaces will be the
main concern of the following section.

2.4. Tangent spaces to manifolds

We may imagine a tangent space as a vector space which is attached to each point
of a manifold. However, “attaching” in this context implies that the manifold needs
to be embedded in some higher-dimensional space like R2 dim M. This may in fact
be done by Whitney’s embedding theorem [9090]. Nevertheless, we do not need to use
this machinery and may instead define tangent vectors directly within a manifold M.
To this end, consider some smooth curve γ : R −→ M in the manifold, which we
arrange such that γ(0) = p without loss of generality. The intuition underlying tangent
vectors is that they are tangent to the curve in p, the length of the vector being
interpreted as the velocity. This intuition of a velocity of course requires some notion
of differentiation again, which is only defined for powers of R. Thus, we need to
consider functions f : M −→ R on M such that the composition f ◦ γ : R −→ R is
differentiable on R. In order to preserve differentiability, we require f to be smooth,
and the set of such smooth functions is denoted by C∞(M) ≡ C∞(M,R). This
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set of smooth functions may be considered as a commutative ring (C∞(M),+, •),
where + : C∞(M) −→ C∞(M) is the pointwise inherited addition from R and
• : C∞(M) × C∞(M) −→ C∞(M) is the multiplication of functions defined by
(f • g)(p) ..= f(p) · g(p), where · is the multiplication on R. We will come back to
this ring property later. At this point, we will instead exploit that C∞(M) can also
be equipped with the pointwise inherited scalar multiplication from R to construct
the (infinite dimensional) R-vector space (C∞(M),+, ·). Using that, we then define a
tangent vector according to the above intuition as the linear map

Xγ,p : C∞(M) ∼−→ R

f 7−→ Xγ,pf ..= (f ◦ γ)′(0) ,

where the prime denotes differentiation in R.

Note that tangent vectors are only defined with respect to a specific curve γ con-
taining p ∈ M. Of course, there are generically many smooth curves which contain
p ∈ M as γ(0) = p. We collect the tangent vectors of all these curves to construct the
tangent vector space

TpM ..= {Xγ,p|γ ∈ C∞(M) with γ(0) = p} .

Again, we inherit addition and multiplication pointwise from R to make TpM an
R-vector space. The vector space dimension of TpM actually equals the manifold
dimension of M which may be concluded in the following way. First, we consider
very specific curves γa for a ∈ {1, . . . , dim M} that represent the coordinate axes in
some chart (U, x), that is (xb ◦ γa)(λ) = δb

a(λ). The tangent vectors to these curves for
arbitrary functions f ∈ C∞(M) are

Xγa,pf = ∂a(f ◦ x−1)(x(p)) , (2.5)

where ∂a : C∞(Rdim M) ∼−→ C∞(Rdim M) is the partial derivative with respect to the
a-th argument. In order to denote these tangent vectors independent of the chosen f ∈
C∞(M), we define the new object

(
∂

∂xa

)
p

f ..= ∂a(f ◦ x−1)(x(p)) . (2.6)
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Using this definition, the tangent vectors to the chart induced curves γa are

Xγa,p =
(
∂

∂xa

)
p

. (2.7)

Note that
(

∂
∂xa

)
p

is an element of TpM, that is, it maps from C∞(M) into R. More-

over, it is chart dependent since the curves needed to construct
(

∂
∂xa

)
p

were induced
by charts. Although this is a very different object than the partial derivative ∂a, we
often abbreviate it by ∂a in physics if and only if the context in which we use this
symbol is clear. Note that by its definition it is obvious that the index in

(
∂

∂xa

)
p

needs

to be understood as a downstairs index. Evaluating
(

∂
∂xa

)
p

for the chart map immedi-

ately yields
(

∂
∂xa

)
p
xb = δb

a, which we may use to conclude that
(

∂
∂x1

)
p
, . . . ,

(
∂

∂xdim M

)
p

is a basis of TpM. So, indeed, the vector space dimension of TpM and the manifold
dimension of M are equal. By considering chart transition maps from a chart (U, x) to
another chart (V, y), we conclude that the components Xa of a vector X = Xa

(
∂

∂xa

)
p

in the chart induced basis transform by means of
(

∂
∂xb

)
p
ya.

Now that we identified (TpM,+, ·) as an R-vector space, we may adopt all of the
machinery of the previous section. In particular, we wish to construct the dual basis
of
(

∂
∂xa

)
p

on the dual vector space T ∗
p M ..= (TpM)∗, called the cotangent space. To

construct this basis, we first introduce the gradient as

dp : C∞(M) ∼−→ T ∗
p M

f 7−→ dpf ,

where we let the covector dpf act on an arbitrary vector X ∈ TpM to define

dpf(X) ..= X(f) . (2.8)

Recalling that the component functions of chart maps x are elements of C∞(M), we
may evaluate the chart-induced covectors dpx

a on the vector basis
(

∂
∂xa

)
p

to conclude
that dpx

1, . . . , dpx
dim M constitute the dual basis on the covector space at the point p ∈

M. The construction of vectors and covectors of course extends to tensor spaces
(T r

s (TpM),+, ·) over the manifold as constructed in section 2.32.3.

If two smooth manifolds M and N are connected by means of a smooth map ϕ :
M −→ N , we may also connect the tangent spaces of these manifolds. To that effect,
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we define the push-forward induced by ϕ as

ϕ∗p : TpM ∼−→ Tϕ(p)N

X 7−→ ϕ∗p(X) ,

given by its action on a C∞(N )-function f as

ϕ∗p(X)(f) ..= X(f ◦ ϕ) . (2.9)

The push-forward ϕ∗p is also called the derivative or differential of ϕ. Note that this
is the first notion of a derivative for maps between arbitrary smooth manifolds we
encounter. The definition of this derivative implicitly depends on the point p ∈ M
since the vector X is an element of TpM for some point p. Using this definition, it is
straightforward to conclude that tangent vectors in M are pushed forward to tangent
vectors in N as ϕ∗p(Xγ,p) = Xϕ◦γ,ϕ(p). So, in short, we found that vectors are pushed
forward between manifolds. We can find a similar rule for covectors. For these, we
define the pull-back

ϕ∗
p : T ∗

ϕ(p)N
∼−→ T ∗

p M

ω 7−→ ϕ∗
p(ω)

by means of its action on vectors X ∈ TpM as

ϕ∗
p(ω)(X) = ω(ϕ∗p(X)) . (2.10)

Note that the smooth map ϕ : M −→ N is the same as before, but the pull-back maps
between the cotangent spaces in the opposite direction. Thus, we say that covectors
are pulled back.

So far, we only considered tangent spaces and their associated structures at one
particular point p ∈ M. If we want to define vector fields on the entire manifold
we need to have a notion which is independent of the chosen point. This notion is
the tangent bundle, the total space of which is simply defined as the unification of all
tangent spaces, that is

TM ..=
⋃̇

p∈M
TpM .

The dot on top of the unification symbol is used to indicate that the union is disjoint.
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We construct a manifold bundle TM π−→ M from this set by defining the projection

π : TM −→ M

X 7−→ p ,

where p is the point for which X ∈ TpM. As indicated when we introduced manifold
bundles, we may make this map continuous by equipping TM with the topology
induced from M, so that TM π−→ M indeed is a manifold bundle, called the tangent
bundle. In similar fashion as for the topology, we may construct a smooth atlas on TM
from a smooth atlas on M to turn it into a smooth manifold and π into a smooth
map.

Now consider a smooth section of the tangent bundle. Recall that we defined sections
as maps σ : M −→ TM which are compatible with the projection map in the sense
π ◦ σ = idM. Analyzing the target and domain of sections on the tangent bundle, we
note that evaluating a section at some point p ∈ M yields a vector σ(p) in the tangent
space at this point. Hence, sections of the tangent bundle associate a tangent vector
to each point of the manifold. We will thus call them vector fields in the following.
The set

Γ(TM) ..= {σ : M −→ TM|π ◦ σ = idM} (2.11)

of all vector fields on M can again be equipped with pointwise inherited addition and
multiplication from TpM, but it is worth considering the scalar multiplication in more
detail here.

For being able to consider vector fields which yield vectors that differ from one point
of the tangent space to another, we need to scale vector fields with smooth functions
instead of bare real numbers. That is, the scalar multiplication is

· : C∞(M) × Γ(TM) −→ Γ(TM)

(f, σ) 7−→ f · σ

defined by

(f · σ)(p) ..= f(p) · σ(p) , (2.12)

the multiplication on the right hand side of the latter equation being the scalar mul-
tiplication on TpM. While all of this looks like a trivial repetition of the vector
space definitions we had before, recall that (C∞(M),+, •) was not a field but only a
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commutative ring. Thus, (Γ(TM),+, ·) is a C∞(M)-module, that is, a vector space
structure over a ring. In other words, vector fields are not vectors. This has important
consequences. For example, we already noted that modules over commutative rings
generically do not have a basis. Hence, (Γ(TM),+, ·) does generically not have a basis
and thus vector fields have no components. Therefore it is unavoidable to develop the
component-free language introduced in this chapter to be able to handle vector fields.
The only consistent way for expressing vector fields in components is to consider them
in the tangent spaces at particular points of the manifold as we studied beforehand.

The best we may do to carry over the idea of a basis to bundles is to collect every
single basis of every tangent space in a new bundle. To that end, we consider the
ordered tupels (e1, . . . , edim M) ∈ TpM × · · · × TpM which are called frames if the
set {e1, . . . , edim M} constitutes a basis of TpM. We denote the set of all frames at a
point p ∈ M by LpM. Then, we define the total space

LM ..=
⋃̇

p∈M
LpM .

This is of course entirely analogous to the just defined tangent bundle, and we may
again inherit a topology and an atlas from M to make LM π−→ M a smooth bundle
which is then called frame bundle. Analogously, the bundle projection is defined as

π : LM −→ M

(e1, . . . , edim M) 7−→ p ,

where p is the point for which (e1, . . . , edim M) ∈ TpM × · · · × TpM. The such defined
frame bundle is of course associated to every tangent bundle. We will make this idea of
associating a bundle to another one much more concrete when we introduce principal
bundles in the following section. But let us return to the vector fields Γ(TM) on M
first to see which of the structural ideas we have gained for vectors carry over to vector
fields. In particular, we may use linearity in C∞(M) to define homomorphisms on
C∞(M)-modules A and B as we did for vector spaces by means of

HomC∞(M)(A,B) ..= {ϕ : A ∼−→ B|ϕ is linear in C∞(M)} .

Equipping this set with addition and multiplication pointwise, the homomorphisms
again constitute a C∞(M)-module.
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As a special case of these homomorphisms we may consider the dual module

Γ(TM)∗ ..= HomC∞(M)(Γ(TM), C∞(M)) ,

where Γ(TM)∗ is isomorphic to Γ(T ∗M) and thus the elements of Γ(TM)∗ are called
covector fields. These definitions of C∞(M)-modules for vector and covector fields
may be extended to (p, q)-tensor fields T on M by demanding that

T : Γ(T ∗M) × · · · × Γ(T ∗M)︸ ︷︷ ︸
p copies

× Γ(TM) × · · · × Γ(TM)︸ ︷︷ ︸
q copies

∼−→ C∞(M)

are multilinear maps with respect to C∞(M). We denote the set of all (p, q)-tensor
fields by T p

q (Γ(TM)) and equip this set with pointwise inherited addition and multi-
plication from C∞(M) to turn it into a C∞(M)-module. On this module, the tensor
product generalizes to tensor fields as

⊗ : T p
q (Γ(TM)) × T r

s (Γ(TM)) −→ T p+r
q+s (Γ(TM))

(T, S) 7−→ T ⊗ S

defined by

(T ⊗ S)(ω1, . . . , ωp+r, v1, . . . , vq+s) ..=

T (ω1, . . . , ωp, v1, . . . , vq) • S(ωp+1, . . . , ωp+r, vq+1, . . . , vq+s) .

The commutativity of the multiplication in C∞(M) immediately implies

(T ⊗ S)(ω1, . . . , ωp+r, v1, . . . , vq+s) =

(S ⊗ T )(ωp+1, . . . , ωp+r, ω1, . . . , ωp, vq+1, . . . , vq+s, v1, . . . , vq)
(2.13)

which is important when considering differential forms. For (p, q)-tensor fields, we
denote the set of n-forms by Ωn(M) ⊆ T 0

n(Γ(TM)), which then obviously is a C∞(M)-
module as well.

The elements of Ωn(M) are totally antisymmetric as defined in section 2.32.3. Carrying
this antisymmetry to the tensor product, it is convenient to define the wedge product

∧ : Ωn(M) × Ωm(M) −→ Ωn+m(M)

(ω, σ) 7−→ ω ∧ σ
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by means of

ω ∧ σ(X1, . . . , Xn+m) ..= 1
n!m!

∑
π∈S(n+m)

sgn(π)(ω ⊗ σ)(Xπ(1), . . . , Xπ(n+m)) . (2.14)

We may write down the wedge product explicitly without applying it to vectors as
well. To that end, we use the commutativity of C∞(M) in the tensor product defining
the wedge product as we did in (2.132.13). For the wedge products of two one-forms ω
and σ for instance, this yields ω ∧ σ = ω ⊗ σ − σ ⊗ ω. Furthermore, the C∞(M)-
commutativity (2.132.13) implies ω ∧ σ = (−1)nmσ ∧ ω for ω ∈ Ωn(M) and σ ∈ Ωm(M).

The such defined wedge product combines with the pull-back in a well-behaved
way, following a distributive law. To see this, we lift the definition of the pull-back
induced by a map ϕ : M −→ N that we only introduced for covectors so far to
differential forms ω ∈ Ωn(N ). To that end, we note that we can consider the tensor
fields T r

s (Γ(TM)) as sections of the bundle T r
s (TM) π−→ M. Here, T r

s (TM) is the
(disjoint) union of the tensor spaces T r

s (TpM) of all points p ∈ M, and π projects
to the point p at which the tensor is defined. For short, we have that T r

s (Γ(TM)) is
isomorphic to Γ(T r

s (TM)). Since n-forms are antisymmetric (0, n)-tensor fields, we
use this isomorphism to define

ϕ∗ : Ωn(N ) −→ Ωn(M)

ω 7−→ ϕ∗ω ,

where we use the interpretation of differential forms as sections of T 0
n(TM) π−→ M to

evaluate

ϕ∗ω : M −→ T 0
n(TM)

p 7−→ ϕ∗ω(p)

defined by

ϕ∗ω(p) : (TpM)n −→ R

(X1, . . . , Xn) 7−→ ϕ∗ω(p)(X1, . . . , Xn) ..= ω(ϕ(p))(ϕ∗p(X1), . . . , ϕ∗p(Xn)) .

Note that the straightforward extension of the pull-back of a covector in some partic-
ular cotangent space T ∗

p M to differential forms would use the push-forward of vector
fields. While this would yield a much simpler result than the pointwise definition
we just gave, the push-forward of vector fields is only well-defined if the map ϕ is a
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diffeomorphism. Thus, we are required to use the push-forward of vectors instead in
order to generalize the pull-back for arbitrary smooth maps ϕ.

The pull-back of differential forms straightforwardly generalizes to (0, n)-tensor
fields, but it has some particularly useful properties if we consider differential forms.
For example, we may combine the pull-back with the definition of the wedge product
to conclude

ϕ∗(ω ∧ σ) ..= ϕ∗(ω) ∧ ϕ∗(σ) , (2.15)

where ω ∈ Ωn(N ) and σ ∈ Ωm(N ) are differential forms of arbitrary rank.

Lastly, we will make extensive use of the extension of the gradient of smooth func-
tions defined in (2.82.8) to covector fields in Γ(T ∗M) = Ω1(M). The resulting object

d : C∞(M) −→ Ω1(M)

f 7−→ df

is called the exterior derivative and simply defined pointwise as

(df)(p) ..= dpf . (2.16)

Noting that Ω0(M) = C∞(M), we may generalize the exterior derivative to differential
forms of arbitrary rank n as

d : Ωn(M) −→ Ωn+1(M)

ω 7−→ dω

by means of

dω(X1, . . . , Xn+1) ..=
n+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , /X i, . . . , Xn+1))

+
n+1∑
i=1

n+1∑
j=i+1

(−1)i+jω([Xi, Xj], X1, . . . , /X i, . . . , /Xj, . . . , Xn+1) ,

(2.17)

where the second term is introduced to guarantee C∞(M)-linearity and the commu-
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tator of two vector fields X, Y ∈ Γ(TM) is defined as44

[X, Y ](f) = X(Y (f)) − Y (X(f)) . (2.18)

Although we only defined the action of vectors on C∞(M) instead of the action of
vector fields, this definition makes sense since we may utilize that X(p) ∈ TpM to
pointwise define

X : C∞(M) ∼−→ C∞(M)

f 7−→ X(f)

by means of

X(f) : M ∼−→ R

p 7−→ (X(f))(p) ..= (X(p))(f) .

Hence, we may interpret vector fields as R-linear maps on C∞(M) as well.

Combining the just defined exterior derivative with the pull-back induced by ϕ :
M −→ N , we observe

ϕ∗(dω) = d(ϕ∗ω) (2.19)

for differential forms ω ∈ Ωn(N ) of arbitrary rank n. By use of the definitions we
furthermore conclude that

d(ω ∧ σ) = dω ∧ σ + (−1)nω ∧ dσ , (2.20)

where n is the rank of ω ∈ Ωn(M) while the rank of σ ∈ Ωm(M) is arbitrary. There
are two further important results on the differentiation and integration of exterior
derivatives which will become important. First, applying the exterior derivative to
some ω ∈ Ωn(M) twice, we obtain d2ω ..= d(dω) = 0. Differential forms which may be
expressed as ω = dσ for some σ ∈ Ωn−1(M) are called exact, and if ω already fulfills
dω = 0 it is called closed. While all exact forms are closed, the two notions are even
equal if the underlying manifold is M = R. Integrating exact forms is particularly

4The commutator of vector fields [X, Y ] is often denoted £XY , called the Lie derivative. We
choose to stick to the commutator notation to make the antisymmetry explicit. This will later
relate [X, Y ] to a Lie bracket.
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straightforward, since we may use Stokes’ theorem
∫

M

dω =
∫

∂M

ω , (2.21)

where ∂M is the boundary of M. Although we did not discuss boundaries so far, they
may be included to our discussion straightforwardly. To that end, we include points p ∈
M of topological spaces (M,O) to manifolds if their open neighborhood U ∈ O is
only homeomorphic to the half space Rd+.

To conclude this short introduction to differential forms, let us consider them in
local coordinates. We again emphasize that the spaces of vector, covector and tensor
fields generically do not have a global basis, being C∞(M)-modules. However, we have
seen that the fields locally yield vectors, covectors and tensors stemming from vector
spaces. Thus, we may express the fields in a basis locally. To find these expressions we
choose a chart (U, x) in which we introduce the local chart-induced vector fields ∂

∂xa

as R-linear maps on C∞(M) by means of

∂

∂xa
: C∞(M) ∼−→ C∞(M)

f 7−→ ∂

∂xa
f ..= ∂a(f ◦ x−1) ◦ x .

Since we defined differential forms ω ∈ Ωn(M) as totally antisymmetric (0, n)-tensor
fields, we denote the local components as ωa1...an ≡ ω

(
∂

∂xa1 , . . . ,
∂

∂xan

)
and reconstruct

the n-form as a tensor field locally by means of ω = ωa1...andxa1 ⊗ · · · ⊗ dxan . Due
to the antisymmetry of differential forms, the component functions ωa1...an ∈ C∞(M)
are antisymmetric. Using this antisymmetry, we may evaluate the tensor product in
ω = ωa1...andxa1 ⊗ · · · ⊗ dxan to conclude

ω = 1
n!ωa1...andxa1 ∧ · · · ∧ dxan . (2.22)

Evaluating the exterior derivative using d(dxa) = 0 yields

dω = 1
n!

∂

∂xb
(ωa1...an)dxb ∧ dxa1 ∧ · · · ∧ dxan . (2.23)

This concludes the introduction to tangent spaces and tangent bundles. In the
following section, we turn to the key structure for defining curvature, torsion and
non-metricity which is the principal G-bundle.
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2.5. Principal G-bundles

In this section, we will introduce the relevant structures on which we subsequently
consistently define the fields underlying curvature, torsion and non-metricity. This
structure is given by principal G-bundles which come with associated bundles. We
will see that the definition of a principal G-bundle relies on Lie groups. While the
study of Lie groups, their algebras and representations is a most relevant topic for
several branches of physics, we only briefly introduce the notions necessary to follow
the discussion of principal G-bundles here.

A Lie group (G, •) is a group for which (G,O,A) is a smooth manifold for some
topology O and some smooth atlas A. Recall that we defined groups by requiring
the group operation • to be associative and to have a neutral element as well as an
inverse. For Lie groups, we furthermore require that the group operation

• : G × G −→ G

(G,H) 7−→ G •H

is a smooth map. Furthermore, the inversion map

−1 : G −→ G

G 7−→ G−1

is required to be smooth as well. Maps ϕ : G −→ G ′ preserving the Lie group
structure must therefore be smooth and be compatible with the group operation, that
is ϕ(G • H) = ϕ(G) •′ ϕ(H) for all G,H ∈ G. Such structure preserving maps are
called Lie group homomorphisms. An important example of a Lie group is the general
linear group (GL(n,R), ◦), where ◦ is just the composition of maps on the set

GL(n,R) ..= {G : Rn ∼−→ Rn| detG ̸= 0} . (2.24)

Note that evaluating the determinant is well-defined since GL(n,R) is a subset of the
endomorphisms End(Rn). Furthermore, recall that we identified the endomorphisms
as an R-vector space which is isomorphic to the (1, 1)-tensors T 1

1 Rn. Hence, we may
examine the elements of the general linear group in terms of their components Gµ

ν
..=

G(Eµ, Eν), where Eν is a basis of Rn with dual basis Eµ. Due to this identification
with the endomorphisms on Rn the group GL(n,R) is called a matrix group. We will
later use this to conclude that we may interpret basis transformations as actions of
GL(n,R) on the frame bundle introduced in the previous section. These actions are
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what we define next.

There are two different ways for defining the action of a Lie group (G, •) on some
smooth manifold M. First, we consider the left G-action on M as the map

▷: G × M −→ M

(G, p) 7−→ G ▷ p

compatible with the group operation, that is, for all p ∈ M and G,H ∈ G the left
G-action fulfills E ▷ p = p and G ▷ (H ▷ p) = (G • H) ▷ p, where E is the unit
element of the Lie group. If M is equipped with such a left G-action, we call it a left
G-space and denote it as M G▷−→ M. Similarly, on right G-spaces M ◁G−→ M we have
a right G-action on M defined by

◁: G × M −→ M

(G, p) 7−→ p ◁ G

compatible with the group operation in the same sense as the left G-action. Since the
group axioms guarantee that the group operation has an inverse, we may inherit a
right G-action from a left G-action on M by means of defining p ◁ G ..= G−1 ▷ p, or
vice versa inherit a left from a given right G-action by means of G ▷ p ..= p ◁ G−1.

The actions of Lie groups (G, •) on manifolds M induce important spaces. First,
we consider the orbit of a point p ∈ M as all those points which can be reached by a
left G-action, that is

Op
..= {q ∈ M|∃G ∈ G : G ▷ p = q} .

Note that since the inverse G−1 of all group elements exist, we could have alternatively
defined the orbit using the right G-action. Moreover, the existence of the inverse
implies that any point q ∈ M which lies in Op has an orbit Oq in which p ∈ M lies,
and hence Op = Oq. This defines an equivalence relation, meaning that we say that
points are in the same equivalence class [p] if they lie on the same orbit Op. We may
thus coarse grain our picture of Lie group actions on manifolds by only considering
the orbits as elements of a space instead of the individual points. This orbit space is
denoted M

/
G, and the idea of coarse graining is mathematically encoded in M

/
G

being a quotient space.

While the orbit contains all points which can be reached by movement by a G-action,
we will also need to consider those group elements which do not move the point p ∈ M.
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These group elements are collected in the stabilizer

Sp
..= {G ∈ G|G ▷ p = p} ,

which is a subset of G. By the definition of group actions, the stabilizer always contains
the identity element. If no other element is contained in the stabilizer of all points
p ∈ M we call the group action free. It is particularly useful to consider free G-actions
on manifolds M since for these each orbit is already diffeomorphic to the group itself,
both considered as smooth manifolds. Hence, for free actions one is tempted to attach
the group G to each point of the orbit space in order to get back the full manifold M.
This is in fact the idea underlying principal G-bundles.

Concretely, we define a principal G-bundle as a smooth bundle P π−→ M for which
P is a right G-space with a free right G-action ◁ and the complete bundle is bundle
isomorphic to P [·]−→ P

/
G. The bundle projection

[·] : P −→ P
/

G
p 7−→ [p]

maps each element of p ∈ P to its equivalence class [p]. Since the orbits Op are
isomorphic to G for all points p ∈ P due to ◁ being a free action, we immediately
observe that P [·]−→ P

/
G is a fibre bundle with typical fibre G. Let us study the

structure preserving maps of these principal G-bundles P π−→ M. Note that in the
definition of principal G-bundles we only required them to be bundle isomorphic to
P

[·]−→ P
/

G. This is sufficient since the total spaces P of both bundles are identical,
but in general we might consider principal G-bundles with different total spaces. Since
the total spaces are right G-spaces, we may have different right actions on them, which
may even stem from different groups. Thus, to relate the principal bundles we need
to first relate the underlying groups by a Lie group homomorphism ρ : G −→ G ′,
where the total space P of one bundle is a right G-space and the total space P ′ of
the other bundle is a right G ′-space. We may understand this configuration using the
commutative diagram

P P ′

P P ′

M M′ .

f

f

◁G

π π′

◁′G′

g

From this diagram it is obvious that we require a bundle morphism (f, g) to not only
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fulfill g ◦ π = π′ ◦ f but in addition impose f(p ◁ G) = f(p) ◁′ ρ(G) in order
to call it a principal bundle morphism (f, g, ρ). Of course we are now working with
smooth manifolds and projections, so we require the maps involved in principal bundle
morphisms to be smooth as well.

Constructing a principal bundle isomorphism is then straightforward by requiring
that (f−1, g−1, ρ−1) exists and is a principal bundle morphism as well. This is in fact
often trivial, since the existence of g−1 and ρ−1 already implies that f is invertible as
well. Hence, if we consider bundles over the same base space M with the same Lie
group G acting on the total spaces, any principal bundle morphism is an isomorphism
already. This allows us to lift the notion of trivial bundles to principal G-bundles in a
straightforward manner. Recall that a trivial way of constructing a fibre bundle was to
attach the fibre F at each point of the base space M by means of a Cartesian product,
making M×F proj1−→ M a product bundle. For principal bundles, we identified the fibres
of P [·]−→ P

/
G with the underlying Lie group G. Hence, we call a principal G-bundle

trivial if it is principal bundle isomorphic to the principal G-bundle M × G proj1−→ M.
Since the Lie group and the base space of M × G proj1−→ M are already identical to
those of P π−→ M, it suffices that there exists a smooth map f : P −→ M × G
constituting a bundle morphism (f, idM) in order for P π−→ M to be trivial. This
may be used to find yet another equivalent condition for a principal G-bundle to be
trivial. Namely, a principal G-bundle P π−→ M is trivial if and only if there exists
a section σ : M −→ P . We will see that it is often convenient to use the triviality
condition in the latter formulation.

The key property of principal G-bundles which makes them useful for physics is that
they allow us to understand the manifold bundles we considered so far in a new way
by associating group actions to them. This is expressed by defining associated fibre
bundles. The latter are associated to principal G-bundles and may be understood as
attaching some new fibre F to the base space and identifying all the points which are
connected by actions of the group G. As before, we identify points using equivalence
classes. We make these ideas concrete by considering a principal G-bundle P π−→ M
of which the total space is a right G-space P ◁G−→ P . The new fibre is introduced as a
smooth manifold F being a left G-space F G▷−→ F . Then, we define a new bundle by
means of the quotient space PF

..= P × F
/

∼G, where ∼G is the equivalence relation
which relates elements of both P and F connected by G-actions. Recalling that left and
right G-actions are related by the inversion of group elements, it is straightforward to
identify (p, f) and (p′, f ′) if they are related as p′ = p ◁ G and f ′ = G−1 ▷ f for some
group element G ∈ G. This construction yields equivalence classes [(p, f)] as elements
of PF just as in the construction of orbit spaces. Inheriting the bundle projection from



40 2. Geometry with curvature, torsion and non-metricity

the underlying principal G-bundle P π−→ M as

πF : PF −→ M

[(p, f)] 7−→ π(p) ,

we finally constructed a fibre bundle PF
πF−→ M with typical fibre F called the asso-

ciated fibre bundle.

Let us consider a few examples to stress the importance of principal G-bundles
P

π−→ M and their associated fibre bundles PF
πF−→ M for physics. These arise from

the frame bundle LM π−→ M we constructed earlier. Recall that we identified the
elements of LM with the frames, being ordered basis tupels (e1, . . . , edim M) at points
p ∈ M. We make this a principal GL(dim M,R)-bundle by introducing the right
action

◁: GL(dim M,R) × LM −→ LM

(G, (e1, . . . , edim M)) 7−→ (e1, . . . , edim M) ◁ G ..= (emG
m

1, . . . , emG
m

dim M) ,

where we use that GL(dim M,R) is a matrix group and we may thus use the com-
ponents Ga

b of the endomorphisms G ∈ GL(dim M,R) as before. Hence, the frame
bundle is a principal GL(dim M,R)-bundle for which we may construct associated
fibre bundles by attaching new fibres. Since the frame bundle consists of all the bases
of the tangent spaces to a smooth manifold M, it is straightforward to associate the
components of vectors, covectors and tensors to this basis. We may do so by choosing
different fibres.

First, in the spirit of investigating the dim M vector components being elements
of R, choose F = Rdim M as the fibre. We define a left GL(dim M,R)-action on this
fibre by means of

▷: GL(dim M,R) × Rdim M −→ Rdim M

(G, f) 7−→ G ▷ f ,

modeling the transformation of vector components under a change of basis by compo-
nentwise requiring (G ▷ f)a ..= Ga

bf
b. Then, clearly LMRd

πRd−→ M is an associated
bundle to the frame bundle. Motivated by the comments on the construction, we
obtain that LMRd

πRd−→ M is bundle isomorphic to the tangent bundle TM πT M−→ M,
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simply by constructing the map

u : LMRd −→ TM

[((e1, . . . , edim M), f)] 7−→ faea .

Hence, what we have achieved is that we gather a new understanding of vectors, that
is, we may think of vectors in terms of their basis representation. But in addition it is
now an immediate consequence of the associated bundle that the basis representation
of vectors is independent of the choice of basis, and the transformation of frames and
vector components is given in terms of group actions of GL(dim M,R).

We generalize this construction for vectors to tensors by considering the new fibre
F = Rdim M × · · · × Rdim M︸ ︷︷ ︸

p times

×Rdim M∗ × · · · × Rdim M∗︸ ︷︷ ︸
q times

. The left GL(dim M,R)-action

is given componentwise as before by

(G ▷ f)i1,...,ip

j1,...,jq

..= f
ĩ1,...,̃ip

j̃1,...,j̃q
Gi1

ĩ1
· · ·Gip

ĩp
(G−1)j̃1

j1 · · · (G−1)j̃q

jq
.

Just as for vectors before, LMF
πF−→ M is now bundle isomorphic to the (p, q)-

tensor bundle. While this reproduces structures we already introduced in the previous
sections, the concept of associated bundles is used to define new structures as well. An
important example is the generalization of the latter bundle to (p, q)-tensor densities
of weight k. While the fibre F is chosen as in the tensor case, we modify the left
GL(dim M,R)-action as

(G ▷ f)i1,...,ip

j1,...,jq

..= (detG−1)kf
ĩ1,...,̃ip

j̃1,...,j̃q
Gi1

ĩ1
· · ·Gip

ĩp
(G−1)j̃1

j1 · · · (G−1)j̃q

jq

for k ∈ Z. Let us once again point out that the determinant is well-defined since
G ∈ GL(dim M,R) is a endomorphism on Rdim M.

This concludes our discussion of associated bundles to principal G-bundles. Summa-
rizing, associated bundles to the frame bundle may be used to recover all the structures
we defined before. We understood this conceptionally by attaching new fibres to the
underlying principal G-bundle. Moreover, we have seen that associated bundles are
used to introduce group actions to the bundles we met before, giving them more
structure.

We will now use the concepts arising from principal G-bundles to define a connection
on them. By means of introducing a covariant exterior derivative, the connection will
provide us with curvature and torsion of principal G-bundles.
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2.6. Equipping principal bundles with further structure

A connection can be thought of as a choice determining how to connect points in
nearby fibres of principal G-bundles. Since we found these fibres to be isomorphic
to G, the definition of a connection requires us to introduce further details on Lie
groups and their algebras first.

Consider a Lie group (G, •). From the representation theory of Lie groups we borrow
the map

AdG : G −→ G

H 7−→ AdG(H) ..= G •H •G−1

for all G ∈ G. Pushing this map forward to the tangent spaces is particularly con-
venient at the identity element E ∈ G since E is invariant under the action of AdG.
Thus, the push-forward AdG∗ : TEG −→ TEG is a general linear map on TEG which
may therefore be used to define the Adjoint representation of (G, •) by means of

Ad : G −→ GL(TEG)

G 7−→ AdG∗ .

Recall that GL(dim M,R) is a matrix group and thus TEGL(dim M,R) is matrix-
valued as well. Therefore, we may write the push-forward of A ∈ TEGL(dim M,R)
induced by the Adjoint representation explicitly as (AdG∗A)µ

ν = Gµ
ρA

ρ
σ(G−1)σ

ν in
this example. This Adjoint representation is particularly interesting since TEG has
further structural meaning in terms of Lie algebras.

The abstract definition of a Lie algebra is based on the set g ⊂ Γ(TG) of so-called left
invariant vector fields on G. However, for practical purposes it is often more convenient
to exploit that g is vector space isomorphic to TEG. For the Adjoint representation
introduced above, this isomorphism implies that Ad represents Lie groups on their Lie
algebras. These Lie algebras (TEG,+, ·, J·, ·K) are built upon g ∼= TEG by equipping
the set with a K-vector space structure (TEG,+, ·) and an (abstract) Lie bracket

J·, ·K : TEG × TEG ∼−→ TEG

(A,B) 7−→ JA,BK .

In order to be called Lie bracket, J·, ·K needs to be antisymmetric as JA,BK = −JB,AK
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and fulfill the Jacobi identity

JA, JB,CKK + JB, JC,AKK + JC, JA,BKK = 0

for all A,B,C ∈ TEG. By means of this definition we are able to construct a Lie
algebra (TEG,+, ·, J·, ·K) for a Lie group (G, •). However, having an element of a Lie
algebra we may actually construct a Lie group element from it as well. To that effect,
note that Lie algebra elements A ∈ TEG are elements of a tangent space. Recall that we
defined such tangent vectors Xγ,E as the unique tangent vectors to curves γ : R −→ G
arranged such that γ(0) = E. Hence, for each Lie algebra element A ∈ TEG there
exists a unique curve γA : R −→ G for which A is the tangent vector at the point
E ∈ G. We use this curve to define the exponential map

exp : TEG −→ G

A 7−→ exp(A) ..= γA(1) .

This provides the required map from Lie algebra elements to Lie group elements. Since
vectors being elements of K-vector spaces may be scaled by λ ∈ K, the exponential
map is immediately extended to exp(λ · A) ≡ γA(λ).

Let us combine these insights on Lie algebras with the principal G-bundles P π−→ M
we discussed before. In particular, the exponential map is used to define a vector field
XA ∈ Γ(TP ) by means of

i : TEG −→ Γ(TP )

A 7−→ XA .

This induces a vector XA(p) ≡ XA
p ∈ TpP at every point p ∈ P defined by

XA
p : C∞(P ) −→ R

f 7−→ XA
p f

..= [f(p ◁ exp(λA))]′(0) ,

where the prime denotes differentiation with respect to λ ∈ R. To give these vector
fields a structural interpretation, let us introduce the vertical subspace VpP ⊂ TpP of
the tangent space by means of

VpP ..= ker(π∗p) = {X ∈ TpP |π∗p(X) = 0} .

The vertical subspace VpP at a point p ∈ P in the principal G-bundle P π−→ M may
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be imagined as all the tangent vectors to the fibre Fπ(p) ≡ preimπ(π(p)). By definition,
all vectors XA

p for all A ∈ TEG and p ∈ P lie in the vertical subspace at that point,
XA

p ∈ VpP . In other words, the push-forward π∗p(XA
p ) = 0 vanishes identically.

These prerequisites finally enable us to define the connection one-form ω on a prin-
cipal G-bundle P π−→ M. This smooth one-form is Lie-algebra valued, meaning that
the target space is the Lie algebra TEG so that we have

ω : Γ(TP ) ∼−→ TEG

X 7−→ ω(X) .

For such a smooth Lie algebra-valued one-form ω to be called a connection one-form
it needs to fulfill two conditions. First, we require ω to be compatible with the group
structure of the principal G-bundle. Since ω is a one-form, it needs to be pulled
back by the group action. Hence, we require for all G ∈ G that [(◁ G)∗ω](X) =
AdG−1∗(ω(X)), where the Adjoint representation makes its appearance since we noted
that it represents a group on its algebra. The second condition on connection one-forms
relates to the elements of Γ(TP ) we already discussed before, namely XA. Recall that
their corresponding Lie algebra element was A, so that it is straightforward to require
ω(XA) = A. This condition may equivalently expressed as ω◦ i = idTEG using the map
i : TEG −→ Γ(TP ) we considered before for defining XA. Since this second condition
relates the connection one-form to the vertical subspace VpP , it is useful to define the
vertical component ver ..= i◦ω of a vector field X ∈ Γ(TP ) as ver(X) = i(ω(X)). The
remaining part hor(X) ..= X − ver(X) of X is called its horizontal component. From
the condition ω ◦ i = idTEG fulfilled by connection one-forms it is straightforward to
conclude that ω(hor(X)) = 0. Thus, we define the horizontal subspace HpP ⊂ TpP

at each point p ∈ P as HpP ..= ker(ωp) ≡ {Xp ∈ TpP |ωp(Xp) = 0}. The existence of
the unique decomposition Xp = verp(Xp) + horp(Xp) is often denoted as the (inner)
direct sum VpP ⊕HpP = TpP . A choice of such behaved horizontal subspaces HpP is
called a connection, being fully equivalent to the choice of a connection 1-form on a
principal bundle.

For applications of connections in physics it is instructive to consider some special
cases. First, we note that the connection one-form is Lie algebra-valued. If this Lie
algebra is the algebra of a matrix group, we may again explicit the Lie algebra indices
and denote the connection one-form by ωµ

ν . This is the case for example on the frame
bundle LM π−→ M with Lie group GL(dim M,R) we considered before. Being a one-
form, the connection one-form can furthermore be expressed in a basis in the tangent
space at some point p ∈ P . Hence, it is always possible to denote the coefficients
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by Γa
..= ωp a. On a matrix-valued Lie algebra we may therefore use both types of

indices and write Γµ
aν . In GL(dim M,R) both types of indices take their values in

{1, . . . , dim M}, and we will later examine when it makes sense to denote both indices
by the same type of symbol. However, it is important to keep in mind that only the
one-form index is a tensor index which is therefore often said to transform as a tensor.
The indices µ, ν are obviously not of this type since we introduced them as indices in
the Lie algebra.

This behavior of a connection one-form taking its values in a Lie algebra yields a
special transformation behavior. For example, the globally defined connection on the
principal bundle P π−→ M induces a one-form on the base manifold M which de-
pending on context comes under the name Yang Mills field, gauge field or by abuse of
nomenclature is called connection one-form as well. As we have seen in the discussion
of manifolds, we should restrict this induction to some chart domain U ∈ OM and
hence denote the resulting one-form by ωU . Since ω is a one-form on P , the straight-
forward operation which is used to induce a one-form on M is a pull-back. Hence, we
need a map σ : U −→ P , that is, a local section on the principal bundle55. Using this
section, we define ωU ..= σ∗ω. Since this is only a local connection one-form, it is in-
structive to study how the connection one-forms in the overlap of two charts U and V
are related to each other. To do so, we introduce a unique gauge map Λ : U ∩V −→ G
which relates the sections as σV (m) = σU(m) ◁ Λ(m). Using this Lie group element
Λ(m) ∈ GL(dim M,R) on the frame bundle, a lengthy calculation reveals that

ωV µ
ν = Λ−1µ

ρω
U ρ

σΛσ
ν + Λ−1µ

ρdΛρ
ν . (2.25)

If the principal bundle nature of the connection is disregarded, the latter equation
is often introduced under the name vielbein postulate. But in the full approach we
sketched here, we obtain the vielbein postulate as a consequence of representing the
connection one-form ω on the base manifold.

Having a principal G-bundle P
π−→ M equipped with a connection one-form ω

immediately induces further structure on the principal bundle. The most immediate
implication is the covariant exterior derivative D. Since we understood the connection
as a choice of horizontal subspace HpP , we define the covariant exterior derivative

D : Γ(T 0
nTP ) ∼−→ Γ(T 0

n+1TP )

ϕ 7−→ Dϕ

5Note that the existence of a local section means that the principal bundle is locally trivial. Hence,
all of the constructions considered hereafter require us to work with locally trivial bundles.
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by its action

Dϕ(X1, . . . , Xn+1) ..= dϕ(hor(X1), . . . , hor(Xn+1)) . (2.26)

Note that we leave it entirely open which target space the (0, n)-tensor field ϕ has.

The covariant exterior derivative may act on the Lie algebra-valued one-form ω for
instance, which yields the Lie algebra-valued two-form Ω : Γ(TP ) × Γ(TP ) ∼−→ TEG
defined by

Ω ..= Dω , (2.27)

called the curvature two-form. Expliciting the definition of the horizontal component of
a vector field in the definition of the covariant exterior derivative, we may equivalently
write

Ω = dω + ω ω , (2.28)

where the wedge product of Lie algebra-valued one-forms ω is simply given by their
Lie bracket as (ω ω)(X, Y ) ..= Jω(X), ω(Y )K. If the Lie group G is a matrix group,
the Lie bracket is given by the ordinary commutator [a, b] ..= a◦b−b◦a of matrices a, b
so that we recover the standard wedge product as

Ωµ
ν = dωµ

ν + ωµ
ρ ∧ ωρ

ν . (2.29)

Applying the covariant exterior derivative to the curvature two-form again we obtain

DΩ = 0 (2.30)

which is known as the Bianchi identity for curvature.

Just as we induced a Yang-Mills field ωU on U ⊆ M by pulling back the connection
one-form ω by means of a local section σ : U −→ P , we may pull back the curvature
two-form to the base manifold as well. The resulting two-form ΩU ..= σ∗Ω is called
the Yang-Mills field strength, the gauge field strength, the Riemann tensor or by abuse
of nomenclature denoted curvature two-form as well, depending on context. For con-
structing the explicit expression of the curvature two-form on the base manifold, recall
that we already noted in (2.152.15) that the pull-back distributes over wedge products and
commutes with exterior differentiation, see (2.192.19). Using the definition ωU = σ∗ω of
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the Yang-Mills field, we conclude

ΩU ≡ σ∗Ω = dωU + ωU ωU . (2.31)

For matrix groups G this again simplifies to

ΩU µ
ν = dωU µ

ν + ωU µ
ρ ∧ ωU ρ

ν (2.32)

utilizing the ordinary wedge product.

Having a connection on a principal G-bundle, we may equip this bundle with yet
another structure. Recall that we introduced the connection as a Lie algebra-valued
one-form. Lie algebras g may be represented on vector spaces similarly as we briefly
discussed it for Lie groups G. In particular, this representation on a finite-dimensional
vector space V is given by the linear map ρ : g

∼−→ End(V ) to the endomorphisms
on V . Of course, this map is supposed to preserve the Lie bracket structure of the
Lie algebra so that we require ρ(Ja, bK) = [ρ(a), ρ(b)] ≡ ρ(a) ◦ ρ(b) − ρ(b) ◦ ρ(a) for
a, b ∈ g. Since such a linear representation space V is a vector space in particular,
we might want to identify it with the tangent spaces of the base manifold M. On
the level of bundles, the tangent spaces correspond to the tangent bundle TM while
the representation space may be used as the fibre of an associated bundle to create
its total space PV . Hence, we require that these two bundles are isomorphic to each
other and introduce the V -valued one-form

θ : Γ(TP ) ∼−→ V

X 7−→ θ(X)

to make this isomorphism explicit. θ is called the soldering or solder form if it is
compatible with the structure we have on the principal G-bundle already. For com-
patibility with the connection one-form we require θ ◦ ver = 0, and for compatibility
with the Lie group structure we invoke [(◁ G)∗θ](X) = G−1 ▷ θ(X) for all G ∈ G and
X ∈ Γ(TP ).

Having a soldering form, we may again take its covariant exterior derivative to define
the V -valued torsion two-form

T ..= Dθ . (2.33)

Just as for curvature we use the definition of the covariant exterior derivative to
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explicitly write

T = dθ + ω θ , (2.34)

where now the wedge product is defined as the action of the Lie algebra-valued
one-form ω on the soldering form θ taking values in a representation space of this Lie
algebra. We use that the target space of θ is a vector space given by this representation
space to see that the soldering form has one Lie-algebra index if we consider matrix
groups. Thus, we may utilize the ordinary wedge product again to write

T µ = dθµ + ωµ
ν ∧ θν (2.35)

if G is a matrix group. By means of the explicit expression (2.342.34) of torsion on the
principal bundle it is straightforward to conclude

DT = Ω θ . (2.36)

This is called the Bianchi identity for torsion and takes the form

DT µ = Ωµ
ν ∧ θν (2.37)

for matrix groups.
In analogy to the connection one-form and the curvature two-form, we may induce

a soldering form and a torsion two-form on the base manifold M by means of a local
section σ : U −→ P . Defining θU ..= σ∗θ and TU ..= σ∗T , we use that the pull-back
distributes over wedge products and commutes with the exterior derivative to find

TU = dθU + ωU θU . (2.38)

For matrix groups, this simplifies as

TU µ = dθU µ + ωU µ
ν ∧ θU ν . (2.39)

We introduced the soldering form as an additional structure which can be added
to principal bundles equipped with a connection. Thus, having a connection and
curvature may be considered more fundamental than having a soldering form and
torsion on principal bundles. However, a soldering form is not always a major new
structure one needs to introduce to a bundle. For example, if we consider the frame
bundle LM π−→ M, being a principal GL(dim M,R)-bundle, we find that it carries a
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soldering form already which is canonically defined. To see this, consider V = Rdim M

as the representation space of the Lie algebra. On this vector space, we have local
coordinates of vector fields at a point p ∈ M by using the coframe ϵ = (ϵ1, . . . , ϵdim M)
to define

uϵ : TpM −→ Rdim M

X 7−→ uϵ(X) ..= (ϵ1(X), . . . , ϵdim M(X)) .

This immediately induces the soldering form

θϵ
..= uϵ ◦ π∗ (2.40)

on the frame bundle LM π−→ M. While this soldering form on the frame bundle is
given essentially by the coframe, we may use π ◦ σ = idM for sections σ : U −→ LM
to conclude that we may simply use the coframe ϵ as soldering form θU ≡ σ∗θ on the
base manifold M. It is therefore common to denote the coframe by θ instead of ϵ on
frame bundles.

To conclude the discussion of soldering forms, let us note that we introduced them
as a way to connect a vector space being the representation space of a Lie algebra
with a tangent space of the base space of a principal bundle. This isomorphism
between the tangent bundle and the associated bundle PV

πV−→ M allows to identify
the two different indices we used so far if the Lie group was a matrix group, since the
soldering form always allows us to map the indices to each other. This is often done
for simplicity, but coming from the full principal bundle derivation it is important to
keep in mind that we straightforwardly derived that the two types of indices behave
differently under coordinate transformations for instance. This is the origin of some
subtleties on which we will comment in the following chapters.

Now that we have equipped a principal bundle with a connection and a soldering
form, we may introduce even more structure. Especially for applications in physics,
we might want to measure lengths and angles for which we need a notion of a metric.
Note that we do not need a metric for everything discussed so far; and if we only
want to measure lengths, introducing a norm might be sufficient. In particular, we
may discuss curvature and torsion no matter if the principal bundle is equipped with
a metric or not.

For defining a metric on the total space P of a principal G-bundle P π−→ M, we
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consider (0, 2)-tensor fields g ∈ Γ(T 0
2 TP ) which are explicitly given by

g : Γ(TP ) × Γ(TP ) ∼−→ C∞(P )

(X, Y ) 7−→ g(X, Y ) .

We call such a g ∈ Γ(T 0
2 TP ) a metric tensor field or a pseudo inner product if it

is symmetric as g(X, Y ) = g(Y,X) and non-degenerate, that is g(X,Y ) = 0 for all
Y ∈ Γ(TP ) only if X = 0. This non-degeneracy condition takes a more convenient
form if we define the musical map ♭(X) ≡ g(X, ·). This map

♭ : Γ(TP ) ∼−→ Γ(T ∗P )

X 7−→ ♭(X)

is defined by its action on vector fields as

♭(X) : Γ(TP ) ∼−→ C∞(P )

Y 7−→ g(X,Y ) .

Then, g ∈ Γ(T 0
2 TP ) is non-degenerate if and only if the musical map is an isomorphism.

Hence, the inverse ♯ ≡ ♭−1 : Γ(T ∗P ) ∼−→ Γ(TP ) of the musical isomorphism always
exists. We use this inverse to define

g−1 : Γ(T ∗P ) × Γ(T ∗P ) ∼−→ C∞(P )

(ω, σ) 7−→ g−1(ω, σ) ..= ω(♯(σ)) .

g−1 is often called the inverse metric tensor field although it is not a proper inverse in
the sense g−1◦g = idP . The nomenclature is rather understood from local components,
in which we have (g−1)acgcb = δa

b . Since in local components the metric tensor field
has lower case indices while the inverse metric tensor field has upper case indices,
it is common to denote the coefficients of the inverse unambiguously by means of
gab ..= (g−1)ab. Similar conventions are in place for the components of the musical
isomorphism. We say that we lower the index of a vector X ∈ TP by abbreviating
Xa

..= (♭(X))a = gabX
b and raise the index of a covector ω ∈ T ∗P by denoting

ωa ..= (♯(ω))a = gabωb.

Just as for the connection and the soldering, the metric on P immediately induces
a metric on the base space M of the principal bundle P π−→ M by pulling it back
via a local section σ : U −→ P as gU ..= σ∗g. In analogy to the connection and
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the soldering, we may consider the covariant exterior derivative Dg of the metric.
But unlike curvature and torsion, Dg is a (0, 3)-tensor field instead of a differential
form. Since it will turn out to be extraordinarily useful to solely work with differential
forms, we use a trick to circumvent this issue. For this purpose, we consider the
components gab = g(ea, eb) of the metric tensor in a local frame. Recall that we
identified these components as scalars, being zero-forms. Hence, taking the covariant
exterior derivative Qab

..= −Dgab yields a one-form called the non-metricity one-form,
where we introduce the minus sign to match historical conventions. For a matrix
group G underlying the principal bundle, we obtain

QU
µν

..= σ∗Qµν = −dgU
µν + ωU σ

µg
U

σν + ωU σ
νg

U
µσ . (2.41)

The Bianchi identity for non-metricity is obtained by evaluating DQµν which straight-
forwardly yields

DQµν = gµρΩρ
ν + gνρΩρ

µ . (2.42)

The connection, soldering and metric introduced in this section constitute the most
general kinematics necessary to describe a theory of gravity. It is, however, worth
noticing that the dynamics of a theory of gravity may set their covariant exterior
derivatives to zero by default. This is commonly done by choosing only one of the
three covariant exterior derivatives to be non-vanishing, in which case the associated
field is called dynamical. For example, the condition Qµν = −Dgµν = 0 is called
metric compatibility or metricity and is assumed to hold in a broad range of theories
like general relativity or Einstein-Cartan gravity. If we additionally impose torsion
freedom as T = Dθ = 0, the connection is uniquely determined by these two conditions.
This connection is called the Levi-Civita connection ω̊, while its components are called
the Christoffel symbols. We will use a circle to denote all tensors and maps which are
derived from the Levi-Civita connection, such as the covariant exterior derivative D̊
and the curvature Ω̊. We will neither impose metric compatibility nor torsion freedom
in this thesis unless we explicitly specify it by using the circle notation.

This concludes the introduction to the geometrical nature of the physics we will
develop in the following chapters. For making the connections to physics, we will
introduce some commonly used conventions in the following section.
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2.7. Conventions for using differential geometry in
physics

Physics is usually considered in local charts (U, x) of a smooth manifold M. The
maps, tensors and transformations in these charts are inherited from the frame bun-
dle LM π−→ M, which we identified as a principal GL(dim M,R)-bundle. We follow
this approach. Recall that we denoted inherited properties in charts by a superscript U
in the latter subsection. Since the domain in which we work in the following is the
chart domain U , we will suppress this superscript. Furthermore, we noted that we
may only choose a basis locally at some point p ∈ M, or at most in a chart domain by
using the chart induced basis at every point p ∈ U . The reason for this restriction was
that tensor fields were C∞(M)-modules and as such did not have a basis generically.
Hence, we may unambiguously drop the subscript p on tensors, since choosing a basis
always clarifies that we work with the tensor components of tensor fields. Further-
more, it is common in physics to consider the range of indices being 0, . . . , dim M − 1
instead of 1, . . . , dim M. This applies to tensor indices as well as matrix group indices
of GL(dim M,R). We will only use Greek indices to denote both of these index types,
since the frame bundle is always equipped with a soldering form canonically defined
by the coframe.
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The main achievement of this thesis is to provide a proper understanding of bound-

ary terms in gravitational theories featuring curvature, torsion and non-metricity. We
will model these boundaries as hypersurfaces, which are manifolds of lower dimen-
sion that live inside the entire manifold. Making these ideas precise and gaining a
thorough understanding of hypersurfaces is the aim of this chapter. We are going to
subsequently use the results of this chapter to describe boundaries of manifolds in
the following chapters. Space-, time- and lightlike hypersurfaces have been studied
to different extent in literature before, and we mainly use [9090, 9696–9898] here. However,
this chapter will present a new approach to hypersurfaces. In particular, my approach
defines hypersurfaces entirely through a vector field on M which we call the normal
vector field. This approach is used to construct hypersurfaces in the differential form
language developed in chapter 22. In particular, I will examine frames and coframes
of manifolds and hypersurfaces in detail, which goes beyond the literature mentioned
above. This is needed in order to discuss manifolds with torsion since torsion is de-
fined as the covariant exterior derivative of the soldering form given by a coframe
when we consider frame bundles. Obviously, my new approach to the description of
hypersurfaces needs to reproduce the notions known in literature in the appropriate
limits. Hence, I will discuss the relations to the literature definitions as well. This
discussion will additionally contribute to a deeper understanding of hypersurfaces.

In general, hypersurfaces may be considered as (m − p)-dimensional manifolds Σ
immersed or simply embedded in an m-dimensional smooth manifold M which we
assume to be equipped with a metric g. The positive integer p < m is called the
codimension of the hypersurface, and we will consider hypersurfaces of codimension
one unless we explicitly emphasize something else. We are going to study these hy-
persurfaces in terms of their normal vector field ζ. In particular, we identify vectors v
to be tangent to Σ if g(ζ, v) = 0. Conversely, any vector field ξ fulfilling g(ξ, v) = 0
for all vectors v tangent to Σ is a normal vector to that hypersurface. That is, every
non-zero multiple of ζ creates the same hypersurface as ζ. We use this normal vector
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field to characterize hypersurfaces as

timelike if

spacelike if

lightlike or null if

g(ζ, ζ) > 0 ,

g(ζ, ζ) < 0 ,

g(ζ, ζ) = 0 ,

(3.1)

where we only consider hypersurfaces with constant sign sgn(g(ζ, ζ)) in the following.
These three cases may not be treated at once; we will see that lightlike hypersurfaces
in fact have a proper description in terms of (m−2)-dimensional hypersurfaces. Hence,
we begin by examining the space- and timelike cases in section 3.13.1 before we return
to lightlike hypersurfaces in section 3.23.2.

3.1. Space- and timelike hypersurfaces
We examine space- and timelike hypersurfaces in the normal vector field approach
in this section. While we already used this as the foundation of [11] and [22], the
following presentation elaborates on space- and timelike hypersurfaces in much more
detail in order to gain a better understanding of the equations defining hypersurfaces.
In particular, we will elucidate the connection of the normal vector field approach
to the constant function definition greatly reviewed in [9696] as well as the embedding
approach elaborated in [9797].

3.1.1. The normal vector field approach

For space- and timelike hypersurfaces Σ, the normal vector field ζ has in particular
a non-vanishing pseudo inner product g(ζ, ζ). Rescaling ζ by any nowhere vanishing
C∞(M)-function yields another normal vector field of Σ, such that it is useful to define
the unit normal vector field n as a reference. To do so, we introduce the normalization
N ..= 1/

√
|g(ζ, ζ)| called the lapse function and define

n ..= εNζ . (3.2)

The prefactor ε ..= sgn(g(ζ, ζ)) is +1 for timelike and −1 for spacelike hypersurfaces.
ε is introduced in the definition of n as prefactor in order to give n the same direction
as ζ, that is g(n, ζ) = N−1 > 0. As required, the normal vector field n has the same
likeness as ζ since g(n, n) = ε = sgn(g(ζ, ζ)).

Note that in literature it is common to define a normal one-form instead of a normal
vector field. To see why this is the case, we introduce the constant function approach
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to hypersurfaces. In this approach, hypersurfaces are considered as the collection of
points p ∈ M for which some smooth function f ∈ C∞(M) is constant, that is

Σλ
..= {p ∈ M|f(p) = λ} , (3.3)

where λ ∈ R is a constant. By definition, f only changes in directions normal to Σλ

and thus the gradient one-form df is normal to the hypersurface. We may then nor-
malize the gradient df just as we did with the normal vector field to create a unit
normal. However, note that we defined the notions of being normal and tangent to
a hypersurface using vector fields instead of one-forms. Hence, we usually need to
consider the normal to a hypersurface to be a vector field. Some authors therefore
first define the metric dual to the normal one-form by means of the inverse musical
isomorphism ♯ to create a vector field which subsequently is normalized by means of
the metric. While it is possible to follow the latter approach, we choose to straight-
forwardly define hypersurfaces by means of a normal vector field which we need for
defining tangent and normal vectors anyway. Conversely, this implies that we need
to define the unit normal one-form ñ ..= ♭(n) if we want to utilize the normal covec-
tor. This additional definition is not explicitly needed, but it is going to be useful for
relating our results to those obtained in the constant function approach.

As we mentioned in the introduction to this section, hypersurfaces of codimension
one may as well be defined by embedding an (m − 1)-dimensional manifold Σ̂ into
the m-dimensional manifold M. An embedding is a map Φ : Σ̂ −→ Σ ⊂ M which
is a homeomorphism. Being a homeomorphism, Φ induces a pull-back Φ∗ as well as
a push-forward Φ∗. Vector fields v̂ ∈ Γ(T Σ̂) on Σ̂ push forward to tangent vector
fields v ∈ Γ(TΣ) on Σ ⊂ M and p-forms ω ∈ Ωp(Σ) on M are pulled back to p-
forms ω̂ ∈ Ωp(Σ̂). This becomes particularly straightforward if we consider tensors
in local components. There, it is common to denote the push-forward by Ea

µ and the
pull-back by eµ

a , where Greek indices are related to the basis ϑµ ∈ TΦ(p)M on M
and Latin indices are those of the (m − 1)-dimensional hypersurface basis φa ∈ TpΣ̂.
Hence, in a local basis, all tensor components may be pushed forward and pulled back
by contraction with eµ

a and Ea
µ.

Let us consider some important examples. First, one would intuitively expect that
the pull-back of the normal vector field to the hypersurface vanishes. However, we are
only able to pull back differential forms. Thus, the appropriate statement is Φ∗(ñ) = 0,
which in local components takes the form

eµ
anµ = 0 . (3.4)
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The pull-back of the metric tensor field g induces a metric tensor field γ ..= Φ∗(g) on
the hypersurface, which in local components reads

γab = eµ
ae

ν
bgµν . (3.5)

As a last example, we may utilize Ea
µ to extend vectors defined on Σ̂ to vectors on M.

For example, the hypersurface basis φa ∈ TpΣ̂ induces the vector Ea
µφa ∈ TΦ(p)M.

This summarizes the different possibilities of how to define hypersurfaces. Since
all these definitions need to coincide, we need to reconstruct the above notions from
our normal vector field approach. We formulated the embedding approach in local
tensor components, so that for means of comparison we consider components in the
normal vector field approach as well. To that end, we examine frames ϑµ ∈ TpM in
the tangent spaces of the m-dimensional manifold M. We decompose this frame such
that one of the vectors, say ϑm−1 for instance, is aligned with the normal direction
while the remaining basis vectors (ϑ0, . . . , ϑm−2) form a frame of the hypersurface Σ
embedded in M. From chapter 22 we know that this frame alignment may formally
be achieved at every point in M by applying a GL(m,R) transformation to the frame
bundle LM π−→ M. Writing this transformation in components as before, we may
decompose

ϑµ = Ea
µφa + ε

N
nµφ̃ , (3.6)

where we choose the prefactor ε
N
nµ of the normal direction to match the standard

convention and introduce the new, a priori undetermined coefficient Ea
µ.

Note that from the embedding perspective, we would like to interpret Ea
µφa to be

the extension of the hypersurface frame φa to M. At the same time, we want to
interpret φ̃ to be aligned with the normal direction. In the following calculation we
adapt the frame to the hypersurface in this manner. In particular, we locally express
the normal vector field in the decomposed basis (3.63.6) to find

n = nµϑµ = − 1
N
Naφa + 1

N
φ̃ , (3.7)

where we introduce the components Na ..= −NnµEa
µ of the shift vector. That is, φ̃ is

not aligned with the normal direction. In order to obtain an improved decomposition
of the frame, it is useful to decompose the dual coframe θµ as well. To that end, we
write

θµ = eµ
a ϕ̃

a + tµϕ . (3.8)
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To connect the covectors involved in the latter decomposition with the vectors in the
frame decomposition (3.63.6), we require them to be dual to the frame (φa, φ̃) such that

ϕ̃a(φb) = δa
b , ϕ(φ̃) = 1 , ϕ̃a(φ̃) = 0 = ϕ(φa) . (3.9)

This is equivalent to expressing the coefficients in (3.83.8) as

eµ
a = θµ(φa) , tµ = θµ(φ̃) . (3.10)

Using this duality of frame and coframe, we exploit the linearity of covectors in the
duality defining equation θµ(ϑν) = δµ

ν to conclude

δµ
ν = eµ

aE
a
ν + ε

N
tµnν . (3.11)

Since we defined the unit normal vector such that nµnµ = ε, it is useful to contract
the latter equation with the components of the normal vector to obtain

nµ = δµ
νn

ν = 1
N

(tµ − eµ
aN

a) . (3.12)

The latter relation may be used to express nµ in terms of tµ, eµ
a and Na. But since the

shift vector Na = −NnµEa
µ explicitly depends on the normal vector, it is more useful

to solve for tµ as

tµ = Nnµ +Naeµ
a , (3.13)

which allows to eliminate tµ entirely.

Likewise, we may exploit that γab = eµ
ae

ν
bgµν is the induced metric on the hypersur-

face. Note that this is a new definition in the normal vector approach to hypersurfaces,
and we will justify only later that γab may indeed be interpreted as the hypersurface
metric. To gain this object from contractions of (3.113.11), we multiply with eρ

bgρµ and
use (3.133.13) to obtain

eρ
bgρν = eρ

bgρµδ
µ
ν = γab(Ea

ν + ε

N
Nanν) + εnνe

µ
bnµ . (3.14)

We define γab by γacγcb = δa
b , which we will later interpret as the inverse hypersurface

metric. This inverse exists since we assume the hypersurface to be space- or timelike,
so that γab = eµ

ae
ν
bgµν is non-degenerate. We will elaborate on cases in which γab is
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degenerate in section 3.23.2. Using the inverse of γab, we solve (3.143.14) for Ea
ν as

Ea
ν = ea

ν − ε

N
Nanν − εnνe

a
µn

µ , (3.15)

where we abbreviate ea
ν

..= eρ
bgρνγ

ab. This result may be simplified even further. To
see this, we use (3.133.13) and (3.153.15) to eliminate Ea

µ and tµ from the unity decomposi-
tion (3.113.11) to obtain

δµ
ν = eµ

ae
a
ν + εnµnν − εnρea

ρe
µ
anν . (3.16)

Taking the trace of the latter equation on an m-dimensional manifold yields

m = δµ
µ = (m− 1) + 1 − εnρea

ρe
µ
anµ , (3.17)

from which we conclude εnρea
ρe

µ
anµ = 0. But this is in turn used in

nµe
µ
a = nµδ

µ
ν e

ν
a = nµe

µ
a(εnρea

ρe
µ
anµ) (3.18)

to obtain

nµe
µ
a = 0 . (3.19)

Although the above calculation might appear lengthy, this result is important since
it reproduces the expectation (3.43.4) we gained from the embedding approach to hyper-
surfaces. Thus, we may indeed interpret eµ

a as the components of a pull-back to the
hypersurface and using γab = eµ

ae
ν
bgµν as the hypersurface metric is justified. However,

we have derived (3.193.19) only from the entirely arbitrary decompositions of frame (3.63.6)
and coframe (3.83.8) by taking nµ as one of the coefficients and examining the duality
conditions of frame and coframe. Hence, the introduction of the coefficient nµ in an
arbitrary frame decomposition already implies that the coefficient eµ

a in the coframe
decomposition (3.83.8) induces a pull-back to the hypersurface. Furthermore, the vectors
ea

..= eµ
aϑµ are tangent to the hypersurface, as g(ea, n) = 0 by means of (3.193.19). It is

therefore common to use ea as a frame on the hypersurface. This is reasonable since
γab = g(ea, eb).

The relation nµe
µ
a = 0 considerably simplifies the previously derived results. We

collect these simplified results and conclude

tµ = Nnµ +Naeµ
a , (3.20a)
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Ea
µ = ea

µ − ε

N
Nanµ , (3.20b)

δµ
ν = eµ

ae
a
ν + εnµnν . (3.20c)

These expressions may be inserted into the frame and coframe decompositions (3.63.6),
(3.83.8) to obtain

ϑµ = ea
µφa + ε

N
nµφ , (3.21a)

θµ = eµ
aϕ

a +Nnµϕ , (3.21b)

where we introduce

ϕa ..= ϕ̃a +Naϕ , φ ..= φ̃−Naφa . (3.22)

This is the adapted frame we aimed for. To see this, we verify that now

n = nµϑµ = 1
N
φ (3.23)

proves that φ is indeed aligned with the normal vector11, while its metric dual ñ = ♭(n)
is aligned with ϕ as

ñ = nµθ
µ = εNϕ . (3.24)

For the remaining directions in the frame decomposition, we recall that we identified

ea = eµ
aϑµ = φa (3.25)

to be tangent to the hypersurface. The normality condition (3.193.19) may thus be written
as g(ea, n) = 1

N
g(φa, φ) = 0. Furthermore, the frame transformation (3.223.22) keeps the

duality (3.93.9) of frame and coframe invariant, that is

ϕa(φb) = δa
b , ϕ(φ) = 1 , ϕa(φ) = 0 = ϕ(φa) . (3.26)

Again, this is expected from the geometrical introduction in chapter 22 since adapting

1At this point, it seems to be straightforward to replace φ = Nn in the frame decomposition. While
this would immediately give the frame the intuition of an alignment with hypersurface and normal
direction, we adhere to the prefactors as given in the previous calculation to match conventions
in literature. These conventions are chosen such that φ = Nn is the normal evolution vector
if one considers foliations of manifolds [9797]. Note, however, that the re-definition absorbing the
prefactor N corresponds to a frame choice which entirely eliminates the lapse function N from all
equations.
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the frame is just a GL(dim M,R) transformation on the frame bundle which we will
examine in more detail shortly.

Before we do so, let us conclude the discussion of the frame and coframe decompo-
sitions by noting that all of the above alignments allow us to rewrite these decompo-
sitions as

ϑµ = ea
µea + εnµn , (3.27a)

θµ = eµ
aϵ

a + εnµñ , (3.27b)

where we use that ϵa ..= ea
µθ

µ = ϕa is the dual basis to ea. In this form, the geometric
interpretation of the frame and coframe as being adapted to the hypersurface becomes
immediately manifest. Furthermore, frame and coframe decomposition have a very
similar structure. Nevertheless, the form (3.273.27) of the decomposition does not preserve
the duality conditions (3.263.26) of frame and coframe, and we will therefore refrain from
using it in the following.

Let us now return to the discussion of the frame decomposition as a GL(m,R)
transformation. Since the frame bundle LM π−→ M is a principal GL(m,R)-bundle,
it is equipped with a right action ◁. For any frame ϑ̄µ, we defined the action of a
group element Λµ

ν by ϑµ
..= ϑ̄µ ◁ Λ = ϑ̄νΛν

µ. Thus, the adapted frame (3.213.21) may be
generated from an arbitrary frame by applying the gauge transformation

Λµ
ν = ea

νδ
µ
a + ε

N
nνδ

µ
m−1 ,

Λ−1µ
ν = eµ

aδ
a
ν +Nnµδm−1

ν .
(3.28)

We use this transformation for transforming an arbitrary connection one-form ω̄µ
ν by

means of (2.252.25), yielding

ω̄µ
ν ◁ Λ = eµ

ae
b
νω

a
b + eµ

adea
ν + terms linear in nµ or nν . (3.29)

We denote the such generated connection one-form as ωµ
ν

..= ω̄µ
ν ◁ Λ for consistency

with the frame notation (3.213.21). For eliminating the terms linear in nµ or nν , we
contract (3.293.29) with ea

µe
ν
b and use the normality condition (3.193.19). This yields ea

µe
ν
bω

µ
ν =

ωa
b + eµ

b dea
µ which we solve for the hypersurface connection ωa

b to finally obtain

ωa
b = ea

µe
ν
bω

µ
ν + ea

µdeµ
b . (3.30)

This is the transformation of the connection to the hypersurface. For calculational
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purposes, it is useful to rewrite this as22

ea
µDe

µ
b = 0 . (3.31)

We may repeat this calculation for the metric in order to transform it to the hy-
persurface. Recall that the metric is a (0, 2)-tensor field and the tensor bundle is an
associated bundle to the frame bundle. This yields the by now familiar expression
γab = eµ

ae
ν
bgµν for the hypersurface metric. However, it is useful to furthermore de-

compose the manifold metric g into hypersurface tangent and normal components. To
that effect, we simply evaluate gµν

..= g(ϑµ, ϑν) using the frame decomposition (3.213.21)
to obtain

gµν = ea
µe

b
νγab + εnµnν . (3.32)

Reconstructing the metric from its components as g = gµνθ
µ ⊗ θν by means of the

frame decomposition (3.213.21), the components (3.323.32) imply33

g = γabϕ
a ⊗ ϕb + εN2ϕ⊗ ϕ . (3.33)

The alignment of the adapted frame (3.213.21) with the hypersurface normal and tan-
gent directions may be used to project all tensors to these directions. Expressing an
arbitrary vector A = Aµϑµ and an arbitrary one-form B = Bµθ

µ in the decomposed
frame (3.213.21) yields

A = Aµea
µφa + ε

N
Aµnµφ = tang(A) + norm(A) , (3.34a)

B = Bµe
µ
aϕ

a +NBµn
µϕ = tang(B) + norm(B) , (3.34b)

which generalizes to tensors of higher rank by means of reconstructing them in terms
of their components and the corresponding frames. Note that the decomposition
of vectors and covectors into tangent and normal contributions is analogous to the
decomposition of vector fields in vertical and horizontal parts which we interpreted
as the introduction of a connection on a manifold in chapter 22. Here, we define the

2Since (φ0, . . . , φm−2, φ) is a frame on M, the covariant exterior derivative acts on hypersurfaces
indices by contracting them with the hypersurface connection ωa

b . Hence, we have Deµ
a = deµ

a +
ωµ

ν eν
a − ωb

aeµ
b .

3By means of (3.223.22), the metric decomposition (3.333.33) becomes g = γab(ϕ̃a + Naϕ) ⊗ (ϕ̃b + N bϕ) +
εN2ϕ ⊗ ϕ in the unadapted frame. While this is not relevant for the remainder of this thesis, the
latter expression in the unadapted frame is particularly interesting for the Hamiltonian formulation
of general relativity, where the shift vector Na is used as a Lagrange multiplier for momentum
conservation [9797, 9999–101101].
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tangent contribution to be tang(A) ..= Aµea
µφa while the normal component of A is

norm(A) ..= ε
N
Aµnµφ. Calling these components of A tangent and normal is reasonable

since
g(tang(A), n) = 0

g(tang(A), ea) = g(A, ea)

while

while

g(norm(A), n) = g(A, n) ,

g(norm(A), ea) = 0 .
(3.35)

This is what we intuitively expect: Contracting vector components with ea
µ projects

them to the hypersurface, while contraction with nµ yields their normal contribution.
This generalizes straightforwardly to the covectors in (3.34b3.34b) and, hence, to tensors
of arbitrary rank. Note that this is also consistent with the interpretation of eµ

a as a
pull-back to the hypersurface.

Before we proceed by investigating the normal vector and the hypersurface basis
by considering their field strengths, let us collect the results of this introduction to
space- and timelike hypersurfaces in the normal vector field approach. We defined
such hypersurfaces Σ by giving a smooth unit normal vector field n and called vector
fields v ∈ Γ(TM) tangent to Σ if g(n, v) = 0. We decomposed frames and coframes
to single out the normal direction. Aligning one of the frame vectors with the unit
normal lead us to the decomposition of the form

ϑµ = ea
µφa + ε

N
nµφ , (3.36a)

θµ = eµ
aϕ

a +Nnµϕ , (3.36b)

where φa = ea = eµ
aϑµ was interpreted as a hypersurface basis. We saw that ea is

indeed tangent to the hypersurface by deriving the normality condition

g(ea, n) = eµ
anµ = 0 . (3.37)

This in particular simplified the decomposition of unity as

δµ
ν = eµ

ae
a
ν + εnµnν , (3.38)

where we used the inverse of the hypersurface metric γab = g(φa, φb) = eµ
ae

ν
bgµν to raise

Latin indices. This may as well be used to derive the decomposition of the metric,

gµν = ea
µe

b
νγab + εnµnν . (3.39)

By analyzing the frame decomposition as a GL(m,R) transformation on the frame
bundle, we concluded that the hypersurface connection ωa

b may be obtained from the
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manifold connection ωµ
ν by means of

ωa
b = ea

µe
ν
bω

µ
ν + ea

µdeµ
b ⇔ ea

µDe
µ
b = 0 . (3.40)

Finally, we noted that we may decompose any tensor into hypersurface normal and
tangent contributions. In particular, we may project an index to the hypersurface by
contracting it with eµ

a such that eµ
a acts as a pull-back to the hypersurface. We obtain

the remaining pieces of the tensors from contracting indices with the unit normal nµ.
These results are the key foundations we need for the following sections and chapters.

Recall that we studied frames, connection one-forms and metric tensors by introduc-
ing their field strengths as covariant exterior derivatives in chapter 22. The new field
defining space- and timelike hypersurfaces is the unit normal vector field n, which
induces the hypersurface frame ea via the frame decomposition. Thus, we will proceed
to examine hypersurfaces by calculating the field strengths of these vector fields.

3.1.2. Field strengths

We introduced hypersurfaces by defining their unit normal vector field n. Since vec-
tor fields are identified with (1, 0)-tensor fields on finite dimensional manifolds, their
covariant exterior derivatives are (1, 1)-tensor fields. Recall that we aimed to have a
formalism based solely on differential forms, to which effect we need to utilize the same
trick as in defining the non-metricity one-form in section 2.62.6. That is, we consider the
covariant exterior derivative of the components nµ of the normal vector field in a local
frame. Hence, we define the one-form

Kµ ..= Dnµ (3.41)

as the field strength of the normal vector. Using the decomposition of unity (3.383.38),
we obtain the tangent and normal contributions of this one-form as

Kµ = δµ
νDn

ν = eµ
ae

a
νDn

ν + εnµnνDn
ν . (3.42)

Comparing to (3.34b3.34b), we observe that the latter result decomposes the covector Kµ

into hypersurface tangent and normal contributions.
To further simplify this decomposition of Kµ, note that its normal component is

fully determined by non-metricity. In particular, ε = g(n, n) being constant implies

Qnn
..= nµnνQµν = 2nµDn

µ . (3.43)
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For analyzing the hypersurface tangent component of Kµ, note that Ka ..= ea
µDn

µ is
the pull-back of Kµ to the hypersurface. For giving an interpretation of this one-form,
it is useful to explicitly consider its component expression in a coframe. That is,

Ka = Ka
µθ

µ = Ka
bϕ

b +Nea
µa

µϕ , (3.44)

where we introduce Ka
b

..= ea
µe

ν
b ∇νn

µ and aµ ..= nν∇νn
µ. It seems to put formalism to

an extreme to assign a name to these components of the components of Kµ, while all
the relevant information is already contained in Kµ. However, the new quantities Ka

b

and aµ are relevant in terms of understanding the field strength of the normal vector.
In particular, Ka

b is known as the extrinsic curvature in standard general relativity.
The extrinsic curvature gives information about how a hypersurface is embedded into
a manifold. If for example the (intrinsic) curvature Ωa

b of a hypersurface vanishes, it
may nevertheless be embedded such that it has non-trivial extrinsic curvature. In the
simplest case, a straight line embedded in R2 is not extrinsically curved, while a circle
is. Note that both cases embed the intrinsically flat manifold R1, but the embedding
function and thus the normal vectors differ. In this sense, the extrinsic curvature
contributes to the characterization of the shape of a hypersurface. Further interesting
interpretations may be assigned to Ka

b which are summarized in [9797]. This review
also clarifies that aµ is the acceleration of the Eulerian observer, that is an observer
moving with velocity n.

We already noted that most literature uses the normal one-form instead of our
vector field approach to hypersurfaces. For comparison, it is therefore useful to define
its covariant exterior derivative

K̃µ
..= Dnµ (3.45)

in addition to Kµ. Both definitions differ only due to non-metricity as K̃µ = Kµ −
nνQµν . Hence, the conceptual interpretation of K̃a

..= eµ
aDnµ as well as its com-

ponents K̃ab
..= eµ

ae
ν
b ∇νnµ and ãµ

..= nν∇νnµ remain the same as for Kµ. Due to
this interpretation, we call both Ka and K̃a the extrinsic curvature one-forms of the
hypersurface.

This concludes the discussion of the normal vector field strength, but it remains to
calculate the field strength of the hypersurface frame ea = eµ

aϑµ. Just as for the metric
tensor and the normal vector, we consider the one-form Deµ

a instead of the covariant
exterior derivative of ea. Contracting with the decomposition of unity (3.383.38) as before,
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we obtain

Deµ
a = δµ

νDe
ν
a = eµ

b e
b
νDe

ν
a + εnµnνDe

ν
a . (3.46)

We observe that the hypersurface tangent component of Deµ
a vanishes due to the trans-

formation of the connection to the hypersurface (3.403.40). For the normal contribution,
we use the normality condition (3.373.37) to conclude

Deµ
a = −εnµK̃a . (3.47)

An analogous calculation for the hypersurface coframe ϵa = ea
µθ

µ yields

Dea
µ = −εnµK

a . (3.48)

These expressions for the field strengths of the hypersurface frame and coframe are the
differential form versions of the Gauß-Weingarten equation. Note that (3.483.48) implies
that the field strength of the tangent coframe is completely fixed by the extrinsic
curvature, that is, the field strength of the normal vector.

In summary, the field strengths of the unit normal n and its metric dual ñ are

Kµ = Dnµ = eµ
aK

a + ε

2n
µQnn and (3.49a)

K̃µ = Dnµ = ea
µK̃a − ε

2nµQnn = Kµ − nνQµν , (3.49b)

respectively. These expressions also fix the field strength of the hypersurface frame ea

and its coframe ϵa as

Deµ
a = −εnµK̃a , (3.50a)

Dea
µ = −εnµK

a . (3.50b)

Beyond these equations, we will need the second covariant exterior derivatives of
the hypersurface frame as well as its unit normal. We note that the hypersurface
curvature is given by Ωa

b = dωa
b + ωa

c ∧ ωc
b to obtain

D2eµ
a = Ωµ

νe
ν
a − Ωb

ae
µ
b , (3.51a)

D2ea
µ = −Ων

µe
a
ν + Ωa

be
b
µ , (3.51b)

DKµ = D2nµ = Ωµ
νn

ν , (3.51c)

DK̃µ = D2nµ = −Ων
µnν . (3.51d)



66 3. Hypersurfaces

The latter equations are the differential form version of the Ricci identity.
This discussion of the field strengths concludes the short introduction to space- and

timelike hypersurfaces. Using a normal vector field approach to these hypersurfaces,
we have been able to reproduce the expressions from the constant function and the
embedding approaches. The particular new aspect of my approach is that I examine
hypersurfaces based on a generic decomposition of frames and coframes which cor-
responds to a GL(m,R) transformation. This is advantageous because on the frame
bundle, the transformation of every tensor is determined by this GL(m,R) transfor-
mation. Moreover, this perspective is important for studying manifolds with torsion
which is the coframes’ field strength.

In principle, the ideas developed in this section apply to lightlike hypersurfaces as
well. However, the normal vector being lightlike yields some subtleties which make
the treatment of lightlike hypersurfaces more involved. We are going to discuss this
case next.

3.2. Lightlike hypersurfaces

Our method for defining lightlike hypersurfaces Σ is the same as for space- and timelike
ones. That is, we consider a normal vector field ζ which now is lightlike. However, we
will quickly encounter that this likeness of ζ has important consequences that make
lightlike hypersurfaces substantially different from non-lightlike ones. In particular,
we will see that there is no metric44 on the (m− 1)-dimensional hypersurface. We will
develop the normal vector field approach to lightlike hypersurfaces in the following
subsection before we turn to the discussion of the field strengths. Lightlike hypersur-
faces have been discussed to a lesser extent than non-lightlike ones in the literature.
I will in particular relate my normal vector field approach to the definitions in [9696]
and [9898]. However, the results presented in this section reach substantially beyond
the realm of [9696, 9898]. The normal vector field approach allows me to formulate a fully
self-consistent definition of lightlike hypersurfaces. In this formulation, I will derive
the decomposition of frames and coframes for lightlike hypersurfaces and adapt them
to the tangent and non-tangent directions. This will induce the decompositions of the
connection, the metric and the field strengths of the tangent and normal directions
in geometries with curvature, torsion and non-metricity. These results are new and
have not been published before. Moreover, we will gain detailed insights on the light-
like (m − 1)-hypersurface as well as an immersed hypersurface of one dimension less

4In physics, it is often said that the metric is degenerate in this case. However, we defined a metric
to be non-degenerate, so a degenerate metric is technically not a metric.
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and consider the decompositions of frames, connections and metric tensors in both
formalisms.

3.2.1. The normal vector field approach

For a lightlike hypersurface, the normal vector is lightlike and thus fulfills g(ζ, ζ) = 0.
Unlike for non-lightlike hypersurfaces, g(ζ, ζ) cannot be used to normalize the normal
vector field. Instead, every multiple αζ for nowhere vanishing α ∈ C∞(M) is a normal
vector field of Σ. Hence, it is more appropriate to consider an equivalence class [ζ]
of normal vectors, and we will work with a nowhere vanishing representative of this
equivalence class denoted by k.

This representative may be explicitly constructed in the literature approach which
interprets hypersurfaces as those points of a manifold for which some function f is
constant, that is

Σλ
..= {p ∈ M|f(p) = λ} . (3.52)

Defining a hypersurface like that, the function f : M −→ R may only change in
directions which are non-tangent to the hypersurface, such that df is a non-tangent
one-form. Compared to the normal vector field approach, df could thus be interpreted
as the normal one-form k̃ obtained from the normal vector field k by means of the
musical isomorphism as k̃ ..= ♭(k). Calling vectors and covectors non-tangent or normal
to lightlike hypersurfaces is, however, not equivalent to each other. It is therefore
necessary to examine these notions in more detail.

Note that by our definition a vector field v ∈ Γ(TM) is said to be tangent to a
hypersurface if it fulfills g(v, k) = 0. Hence, in particular the normal vector field k

itself is tangent to the hypersurface in addition to being normal to it. Nevertheless,
we want to interpret the hypersurface Σ as an (m−1)-dimensional submanifold of M.
The normal vector being one of the vectors spanning this (m− 1)-dimensional space,
we need an additional vector l in order to create a frame decomposition on M. In
particular, l needs to be non-tangent to Σ, that is g(k, l) ̸= 0. We fix the length of l
such that g(k, l) = 1

ε
is constant. Keeping the latter relation invariant if we choose a

different representative k 7→ αk of [k] implies that we impose l 7→ 1
α
l and, hence, l may

be considered as an element of an equivalence class as well. It is therefore common
to choose l to be lightlike such that g(l, l) = 0. Note that l is not aligned with k

since g(k, l) ̸= 0, so in particular it does not fulfill g(v, l) = 0 for all vectors tangent
to the hypersurface. Hence, it is by construction neither normal nor tangent to the
hypersurface, while the lightlike normal vector k is both.
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This special behavior of the normal vector field k may also be seen from the frame
decomposition. In analogy to the non-lightlike case, we decompose frames as

ϑµ = Ea
µφa + εkµφ̃ . (3.53)

Naively, we would like to align the basis vector φ̃ with the normal vector k as before.
However, g(k, k) = 0 immediately implies

k = kµϑµ = kµEa
µφa + εkµkµφ̃ = kµEa

µφa , (3.54)

so that an alignment is not possible. This is intuitively clear from the consideration
above: If we want to interpret φa as the hypersurface basis vectors and k is tangent
to the hypersurface, it needs to be expandable in the hypersurface basis. Thus, φ̃ is a
vector which does not interfere with the hypersurface. Since this was the interpretation
of the non-normal, non-tangent vector l, it is straightforward to align φ̃ with l. For
this purpose, we calculate

l = lµϑµ = lµEa
µφa + εlµkµφ̃ = lµEa

µφa + φ̃ . (3.55)

Hence, the most straightforward way to align l with φ̃ is by defining φ ..= φ̃+ lµEa
µφa.

This may be reinstated into the frame decomposition, yielding

ϑµ = (Ea
µ − εkµl

νEa
ν )φa + εkµφ . (3.56)

In analogy to the non-lightlike case, we would like to simplify the new coefficient of φ
by means of the hypersurface metric and its inverse. However, this metric does not
exist for lightlike hypersurfaces. This is most easily seen in the embedding picture.

Let us hence proceed by considering the embedding perspective on lightlike hy-
persurfaces. That is, we consider an (m − 1)-dimensional manifold Σ̂ and a smooth
map Φ : Σ̂ −→ Σ ⊆ M from this manifold into M. We already explored embed-
dings in the previous section, in which case Φ is a homeomorphism. While it is often
said that lightlike hypersurfaces are embedded in M as well, we generically need to
consider a more general structure. For example, we have tangent vectors in all light-
like directions at the center of the light cone. Hence, it is impossible to construct an
invertible push-forward from the (m−1)-dimensional manifold Σ̂ to Σ, and Φ is there-
fore not an embedding. Instead, we will only require the push-forward Φ∗p induced
by Φ at any point p ∈ M to be injective in order to preserve the vector structure
of the (m − 1)-dimensional manifold. Such a structure is called immersion. Note
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that every embedding is an immersion, and thus an immersion may be interpreted
as a generalized notion. Since immersions are smooth maps, we may still push for-
ward vectors by means of Φ∗p : TpΣ̂ −→ TΦ(p)M and pull back (0, n)-tensors using
Φ∗

p : T 0
n(T ∗

Φ(p)M) −→ T 0
n(T ∗

p Σ̂), but these maps are not necessarily invertible. One
particularly important example is the pull-back of the metric, which we define as

γ ..= Φ∗g (3.57)

in analogy to the non-lightlike case. There, we interpreted γ as the hypersurface metric.
In the immersion perspective, lightlike hypersurfaces are in fact defined exactly by γ
not being a metric. To see that this definition coincides with the one we gave in the
normal vector field approach, we revisit the definitions of metrics and pull-backs. A
metric was defined to be a symmetric, non-degenerate (0, 2)-tensor. Since the pull-
back yields a symmetric (0, 2)-tensor, we must break non-degeneracy to obtain a non-
metric tensor γ. By definition this implies that there is some non-vanishing vector
field v ∈ Γ(T Σ̂) such that γ(v, w) = 0 for all w ∈ Γ(T Σ̂). Since v ∈ Γ(T Σ̂) itself is a
particular such vector field w, we may use the definition of the pull-back to conclude

0 = γ(v, v) = Φ∗g(v, v) = g(Φ∗v,Φ∗v) , (3.58)

that is, Φ∗v is a lightlike vector field. Thus, we have found that a lightlike vector
field is tangent to the hypersurface, and we denote this vector field by k = Φ∗v for
consistency with the normal vector field approach. But γ(v, w) = 0 does not only
hold for w = v, it holds for all w ∈ Γ(T Σ̂). That is, g(k,Φ∗w) = 0 for all tangent
vectors Φ∗w, and thus k is a normal vector as well. Therefore, the condition that
γ = Φ∗g is degenerate is equivalent to defining lightlike hypersurfaces by demanding
the normal vector field to be lightlike.

There is a way to circumvent the subtleties involving lightlike hypersurfaces which
became obvious in the immersion approach. In particular, it is often convenient to
have a metric on a hypersurface. Recall that the non-degeneracy of the metric on Σ̂ is
only spoiled by the tangent lightlike vector v fulfilling γ(v, w) = 0 for all w. Hence, the
basic idea is to mod out this lightlike vector from the hypersurface. Technically, this
implies that we are considering yet another hypersurface Σ̌ of dimension (m−2). This
hypersurface is immersed in Σ̂ by the smooth map Φ̂ : Σ̌ −→ Σ̂ such that σ ..= Φ̂∗γ is
a non-degenerate metric. Note that Φ ◦ Φ̂ is a composition of smooth maps and thus
immerses the (m− 2)-dimensional hypersurface Σ̌ directly in M.

In the normal vector field approach, this double immersion appears much less tech-
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nical. In particular, we decomposed frames as

ϑµ = Ea
µφa + εkµφ̃ (3.59)

and concluded that the normal vector takes the form k = kµEa
µφa in this frame

decomposition. Modding out the lightlike vector from the hypersurface tangent vectors
is now straightforward. To that effect, we choose the frame such that the k direction
is separated from the remaining φa vectors. That is, we align φm−2 with k. Since
g(k, l) = 1

ε
is the only non-vanishing pseudo inner product involving k, the prefactor

of the singled out direction needs to be εlµ. Putting these things together, we set
Em−2

µ φm−2 = εlµψ̃ such that the frame decomposition takes the form

ϑµ = EA
µ φA + εlµψ̃ + εkµφ̃ , (3.60)

where capital Latin indices take their values on the (m− 2)-dimensional manifold Σ̌.
Note that from a mathematical point of view, l and k are entirely equivalent in this
(m − 2)-dimensional perspective. For this point of view on lightlike hypersurfaces
it is thus completely irrelevant if we started with k or l as the vector field which is
both normal and tangent. This will reflect in all equations derived from the (m − 2)
perspective which need to be symmetric under exchange of k and l.

Now we arrived at the point where we may proceed like in the non-lightlike case
since we have a metric σAB

..= eµ
Ae

ν
Bgµν on the hypersurface. Hence, we consider the

coframe decomposition as

θµ = eµ
Aϕ̃

A + uµΨ + vµϕ , (3.61)

where the duality of frames and coframes is used as

ϕ̃A(φB) = δA
B , ϕ(φ̃) = 1 = Ψ(ψ) , (3.62)

while all the remaining pairings are vanishing, that is ϕ̃A(φ̃) = ϕ̃A(ψ̃) = ϕ(φA) =
ϕ(ψ̃) = Ψ(φA) = Ψ(φ̃) = 0.

Just as in the non-lightlike case, there are constraints which relate the coefficients
in the frame and coframe decompositions. To see that, we first evaluate the duality
condition of frame and coframe to obtain

δµ
ν = θµ(ϑν) = eµ

AE
A
ν + εuµlν + εvµkν . (3.63)
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For relating the coefficients in this expression, we need to use the relations g(k, k) =
0 = g(l, l), g(k, l) = 1

ε
and σAB

..= eµ
Ae

ν
Bgµν we already discussed. To that end, we

contract the decomposition of unity with kν , lν and eρ
Agρµ, yielding

kµ = kνδµ
ν = kνEA

ν e
µ
A + uµ ,

lµ = lνδµ
ν = lνEA

ν e
µ
A + vµ ,

eρ
Agρν = eρ

Agρµδ
µ
ν = σABE

B
ν + εeµ

Auµlν + εeµ
Avµkν .

(3.64)

Since σ is a non-degenerate metric, we may invert it and define eA
µ

..= σABeν
Bgµν in

order to further simplify the above contractions. In particular, we solve them for uµ,
vµ and EA

µ to obtain

uµ = kµ − kνEA
ν e

µ
A ,

vµ = lµ − lνEA
ν e

µ
A ,

EA
µ = eA

µ − εeA
ν u

νlµ − εeA
ν v

νkµ .

(3.65)

These relations suffice to eliminate uµ, vµ and EA
µ from the decomposition of unity.

That is, inserting (3.653.65) into (3.633.63) yields

δµ
ν = eµ

Ae
A
ν − εeµ

Ae
A
ρ k

ρlν − εeµ
Ae

A
ρ l

ρkν + εkµlν + εlµkν . (3.66)

However, this may be simplified even further using the trace δµ
µ = dim(M). Evalu-

ating this trace by means of (3.663.66), we conclude 0 = σABeµ
Ae

ρ
Bkµlρ, which in turn may

be used in the contraction kν = kµδ
µ
ν to obtain 0 = kµe

µ
Ae

A
ρ (δρ

ν − εkρlν). This is solved
by 0 = δρ

ν − εkρlν , but the trace of the latter expression yields dim(M) = 1 which
is incompatible with the hypersurface formalism. Hence, we conclude 0 = kµe

µ
Ae

A
ν .

Contracting the latter equation with eν
B finally yields

0 = kµe
µ
A . (3.67)

This is the normality condition we would have expected between the normal vector k
and the m− 2 remaining hypersurface vectors eA

..= eµ
Aϑµ. In index-free notation, the

normality condition reads g(k, eA) = 0, so eA is indeed tangent to the hypersurface.
Furthermore, this justifies to consider eµ

A as a pull-back to the hypersurface, connecting
the normal vector field approach to the immersion approach again.

We could now repeat the same calculation for l, but from the symmetry under
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exchange of k and l it is immediately obvious that this calculation yields

0 = lµe
µ
A , (3.68)

which in index-free notation is g(l, eA) = 0. Hence, the vector field l is normal to the
(m − 2)-dimensional hypersurface just like k. We use these two normality conditions
to finally simplify the decomposition of unity (3.663.66) as

δµ
ν = eµ

Ae
A
ν + εkµlν + εlµkν . (3.69)

Furthermore, we are now in the position to simplify the frame and coframe decompo-
sitions as

ϑµ = eA
µφA + εlµψ + εkµφ , (3.70a)

θµ = eµ
Aϕ

A + kµΨ + lµϕ , (3.70b)

where we introduce

ψ ..= ψ̃ + kµEA
µ φA ,

φ ..= φ̃+ lµEA
µ φA ,

ϕA ..= ϕ̃A − kµEA
µ Ψ − lµEA

µ ϕ .

(3.71)

This redefinition leaves the duality conditions (3.623.62) of frames and coframes invariant,
as we have

ϕA(φB) = δA
B , ϕ(φ) = 1 = Ψ(ψ) (3.72)

with all other pairings ϕA(φ) = ϕA(ψ) = ϕ(φA) = ϕ(ψ) = Ψ(φA) = Ψ(φ) = 0 vanish-
ing. Note that the definition φ ..= φ̃+ lµEA

µ φA is consistent with our previous (m−1)-
dimensional hypersurface version φ ..= φ̃+ lµEa

µϕa since we aligned Em−2
µ φm−2 = εlµψ̃

and g(l, l) = 0.
The decomposition (3.703.70) of frames and coframes is the adapted decomposition we

were aiming for. This adapted decomposition is an original result first presented in
this thesis. To see that this is indeed correctly adapted to the tangent and non-tangent
directions, we derive

k = ψ ,

k̃ = 1
ε
ϕ ,

l = φ ,

l̃ = 1
ε

Ψ ,

eA = φA ,

ϵA = ϕA
(3.73)

by a straightforward calculation, where ϵA ..= eA
µ θ

µ is the dual basis of eA. Hence, we
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could give the decomposition of frames and coframes in the form

ϑµ = eA
µ eA + εlµk + εkµl , (3.74a)

θµ = eµ
Aϵ

A + εlµk̃ + εkµl̃ . (3.74b)

The latter expressions allow to immediately see the structure of the decompositions
that we discussed before. However, they do not preserve the duality conditions (3.723.72)
so that we will adhere to the form (3.703.70).

The alignment of frame and coframe with the tangent and normal directions may
nevertheless be used to discuss the decomposition of vectors A = Aµϑµ ∈ TM and
covectors B = Bµθ

µ ∈ T ∗M into hypersurface tangent and normal contributions. For
the (m − 1)-dimensional perspective on lightlike hypersurfaces we already discussed
that these categories are not sufficient for a classification, since being normal or non-
tangent does not coincide with each other. In terms of the geometrical introduction in
chapter 22, this means that the tangent spaces TM may not be uniquely decomposed
into a direct sum of tangent and normal subspaces. Instead, one may only decompose
vectors and covectors into tangent and non-tangent contributions. That is,

A = Aµϑµ = AµeA
µφA + εAµlµψ + εAµkµφ = tang(A) + nontang(A) , (3.75a)

B = Bµθ
µ = Bµe

µ
Aϕ

A +Bµk
µΨ +Bµl

µϕ = tang(B) + nontang(B) , (3.75b)

where the tangent contribution of vectors includes the k = ψ direction, such that
we obtain tang(A) = AµeA

µφA + εAµlµψ and nontang(A) = εAµkµφ. This is what
we intuitively expect from the non-tangent part of a vector, it is aligned with φ = l

since l was explicitly constructed as a non-tangent vector. For covectors, we use that
k̃ equals 1

ε
ϕ and thus the tangent contribution is tang(B) = Bµe

µ
Aϕ

A +Bµl
µϕ, leaving

us with the non-tangent part nontang(B) = Bµk
µΨ aligned with l̃ = 1

ε
Ψ.

Note that we obtain the non-tangent contributions of both vectors and covectors
by contracting their components with the normal vector k. We thus obtain the frame
independent formulation of the non-tangent parts as

nontang(A) ..= εg(A, k) l , nontang(B) ..= εg−1(B, k̃) l̃ , (3.76)

making the alignment with the non-tangent vector field l and its metric dual l̃ ex-
plicit. For the tangent contributions, an analogous consideration yields the index-free
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expressions

tang(A) = σABg(A, eB) eA + εg(A, l) k ,

tang(B) = σABg
−1(B, ϵB) ϵA + εg−1(B, l̃) k̃

(3.77)

which extend to vector and covector fields.

These decompositions become less complex in the (m− 2)-dimensional perspective
on hypersurfaces. Recall that both k and l fulfill g(eA, l) = 0 and g(eA, k) = 0 and
may thus be considered as normal vectors. For this reason, it is useful to extend our
definition of normal and tangent vectors to hypersurfaces of dimension (m − p) for
any p with 1 ≤ p ≤ m − 1. For such hypersurfaces, we generically have p normal
vector fields ζ1, . . . , ζp. We already discussed that normal vector fields are considered
as representatives of equivalence classes, and thus the set of normal vector fields is
only non-trivial if we require that g(ζi, ζj) ̸= 0 if i ̸= j. Then, we call a vector
field v ∈ Γ(TM) tangent to the (m − p)-dimensional hypersurface if g(v, ζi) = 0 for
all p normal vector fields ζi. Conversely, any vector field ξ which obeys g(v, ξ) = 0 for
all tangent vector fields v is called normal. Applying this to our (m− 2)-dimensional
perspective on lightlike hypersurfaces, we obtain a unique decomposition of vectors
and covectors into hypersurface tangent and normal contributions. That is,

A = Aµϑµ = AµeA
µφA + εAµlµψ + εAµkµφ = tang(A) + norm(A) , (3.78a)

B = Bµθ
µ = Bµe

µ
Aϕ

A +Bµk
µΨ +Bµl

µϕ = tang(B) + norm(B) , (3.78b)

but now the normal contributions contain both the k and the l directions. Hence, we
have

tang(A) ..= σABg(A, eB) eA = AµeA
µφA ,

tang(B) ..= σABg
−1(B, ϵB) ϵA = Bµe

µ
Aϕ

A
(3.79)

for the tangent contribution while the normal directions are

norm(A) ..= εg(A, l) k + εg(A, k) l = εAµlµψ + εAµkµφ ,

norm(B) ..= εg−1(B, l̃) k̃ + εg−1(B, k̃) l̃ = Bµk
µΨ +Bµl

µϕ .
(3.80)

Thus, we always obtain the tangent contributions in the (m−2) formalism by contract-
ing tensor components with eµ

A, while contractions with both normal vectors k and l

yield normal contributions. Hence, we now discussed how any tensor may be projected
to a lightlike hypersurface in the (m− 1) and (m− 2) formalisms and thereby obtain
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yet another justification for interpreting σAB
..= eµ

Ae
ν
Bgµν as the (m − 2)-dimensional

hypersurface metric.
We may use this hypersurface metric and decompose the full metric on M into

its contributions tangent and normal to the (m − 2)-dimensional hypersurface. Note
that in components, this is equivalent to its (m − 1) decomposition into tangent and
non-tangent contributions. Hence, we use the adapted frame decomposition (3.703.70) to
evaluate gµν = g(ϑµ, ϑν) which yields

gµν = eA
µ e

B
ν σAB + εlµkν + εkµlν . (3.81)

In order to derive the hypersurface connection, we need to examine the frame decom-
position (3.703.70) as a GL(m,R) transformation. In analogy to the non-lightlike case, we
interpret ϑµ = ϑ̄µ ◁ Λ = ϑ̄νΛν

µ as the right action of Λ ∈ GL(m,R) on any frame ϑ̄µ

in the frame bundle. Comparing this right action with the frame decomposition (3.703.70)
we read off

Λµ
ν = eA

ν δ
µ
A + εlνδ

µ
m−2 + εkνδ

µ
m−1 ,

Λ−1µ
ν = eµ

Aδ
A
ν + kµδm−2

ν + lµδm−1
ν .

(3.82)

We use this GL(m,R) transformation in the transformation law (2.252.25) of connections
to obtain

ωµ
ν = eµ

Ae
B
ν ω

A
B + eµ

AdeA
ν + terms linear in k or l . (3.83)

Finally, we eliminate the terms linear in k or l by contracting with eA
µ e

ν
B and solve the

resulting expression for the hypersurface connection to obtain

ωA
B = eA

µ e
ν
Bω

µ
ν + eA

µ deµ
B . (3.84)

Just as in the non-lightlike case, it is useful for calculations to rewrite (3.843.84) as

eA
µDe

µ
B = 0 . (3.85)

Let us comprehend the results of this derivation before we utilize them to examine
field strengths.

We defined lightlike hypersurfaces Σ ⊂ M by a normal vector k which fulfills
g(k, k) = 0. From this condition we already concluded that k is normal and tangent
to Σ at the same time. Hence, there was a need for a non-tangent vector l which we
saw to be non-normal as well, and we demanded g(l, k) = 1

ε
and g(l, l) = 0. Aligning
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the decompositions of frames and coframes with the directions given by l, k and the
hypersurface led us to

ϑµ = eA
µφA + εlµψ + εkµφ , (3.86a)

θµ = eµ
Aϕ

A + kµΨ + lµϕ . (3.86b)

From this adapted decomposition of frames and coframes, we immediately see that
the unity δµ

ν = θµ(ϑν) decomposes as

δµ
ν = eµ

Ae
A
ν + εkµlν + εlµkν . (3.87)

Additionally, we used the frame decomposition to conclude that the metric decomposes
as

gµν = eA
µ e

B
ν σAB + εkµlν + εlµkν , (3.88)

and we identified

ωA
B = eA

µ e
ν
Bω

µ
ν + eA

µ deµ
B ⇔ eA

µDe
µ
B = 0 (3.89)

as the connection one-form on the lightlike hypersurface.
Having defined all fundamental vector fields which characterize a hypersurface as

being lightlike, let us proceed by analyzing their field strengths.

3.2.2. Field strengths

Just as for non-lightlike hypersurfaces, we analyze the vectors eA, k and l defining
lightlike hypersurfaces by calculating their covariant exterior derivatives. Since the
(m−2)-dimensional hypersurface Σ̌ is completely analogous to the space- and timelike
case, we will keep this discussion short. Recall that both k and l fulfill g(eA, k) = 0 and
g(eA, l) = 0, and thus both are normal vectors to the (m−2)-dimensional hypersurface.
In the previous section we saw that all equations are symmetric under the exchange
of k and l in the (m− 2)-dimensional formalism. We will use this property to shorten
the analysis of the field strengths and only explain how calculations are performed for
the (m− 1)-hypersurface normal vector k. The results for l follow from the symmetry
argument, while they may of course be obtained by analogous calculations likewise.

We begin by asserting names to the field strengths of k, l and their dual covectors.
Since k is the normal vector in the (m− 1) formalism, we denote its covariant exterior
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derivatives by the same symbols

Kµ ..= Dkµ , K̃µ
..= Dkµ (3.90)

as in the space- and timelike case. We note that K̃µ = Kµ−kνQµν only differs from Kµ

due to non-metricity. Analogously, we denote the covariant exterior derivatives of l by

Lµ ..= Dlµ , L̃µ
..= Dlµ , (3.91)

for which we have L̃µ = Lµ−lνQµν . For decomposing these field strengths, we contract
them with the decomposition of unity (3.873.87) to obtain

Kµ = δµ
νK

ν = eµ
AK

A + εkµK + ε

2 l
µQkk , (3.92a)

K̃µ = δν
µK̃ν = eA

µ K̃A − εkµL − ε

2 lµQkk . (3.92b)

In the latter equations we introduced some new differential forms which require a
brief explanation. First, note that KA ..= eA

µDk
µ and K̃A

..= eµ
ADkµ are just the one-

form extrinsic curvatures of the (m− 2)-dimensional hypersurface. Hence, the tensor
components of KA and K̃A yield the extrinsic curvature as well as the acceleration of
the Eulerian observer in the (m − 2) formalism. Second, the one-forms K ..= lµDk

µ

and L ..= kµDl
µ = −K appear in (3.923.92) only due to the (m− 2) form of this equation.

That is, they may be considered the lightlike contribution to the (m− 1)-dimensional
extrinsic curvature and thus deserve a separate name. Since the latter contributions
constitute the entire intrinsic (m − 1) piece of Kµ, we expect non-metricity to be
responsible for the remaining part from analogy to (3.493.49). Indeed, we find that the
remaining contribution is determined by Qkk

..= kµkνQµν = 2kµDk
µ.

There is, however, an interpretation of Kµ beyond these properties. This interpreta-
tion arises if we consider the event horizon of a black hole, which is naturally a lightlike
hypersurface. In this case, the normal vector k is called the Killing generator of the
black hole horizon. In particular, the expression Kµ(k) = kν∇νk

µ has a geometric
meaning for Killing generators. Using the decomposition (3.923.92), we obtain

Kµ(k) = eµ
AK

A(k) + εkµK(k) + ε

2 l
µQkk(k) , (3.93)

where usually one demands KA to be a completely intrinsic hypersurface object by en-
forcing KA(k) = 0. Despite this condition, the coefficient κ ..= εK(k) = εlµk

ν∇νk
µ of

the kµ proportional contribution of (3.933.93) is called the surface gravity of the black hole.
As [9696] explains, the surface gravity is the force needed to hold an object stationary
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at the black hole horizon, counteracting the black hole’s attraction. Precisely, it is the
force applied by an observer placed at infinite distance. In standard Einstein-Hilbert
gravity which we will discuss later, the surface gravity of any black hole may directly
be calculated from its blackening factor and it already determines Kµ(k) = kν∇νk

µ

completely. However, (3.933.93) implies that this is no longer true in the presence of
non-metricity since Qkk contributes to Kµ(k) as well. This concludes the physical in-
terpretation of the field strength Kµ of k and we turn to Lµ next. Using the symmetry
of k and l, we obtain

Lµ = δµ
νL

ν = eµ
AL

A + εlµL + ε

2k
µQll , (3.94a)

L̃µ = δν
µL̃ν = eA

µ L̃A − εlµK − ε

2kµQll , (3.94b)

where we introduce the one-form extrinsic curvatures LA ..= eA
µDl

µ and L̃A
..= eµ

ADlµ

additional to the abbreviation Qll
..= lµlνQµν = 2lµDlµ. The interpretation of all

of these objects is analogous to those of the k derivatives in the (m − 2) formalism,
corresponding to the symmetry of k and l. Hence, let us proceed by considering the
covariant exterior derivative Deµ

A of the hypersurface frame eA next.

Decomposing this expression by means of the unity decomposition (3.873.87) yields

Deµ
A = δµ

νDe
ν
A = −εkµL̃A − εlµK̃A . (3.95)

That is, Deµ
A is entirely determined by the extrinsic curvature one-forms. Note that

this is analogous to the space- and timelike case, where we identified the corresponding
result with the Gauß-Weingarten equation. Hence, we may interpret (3.953.95) as the
lightlike version of the Gauß-Weingarten equation. For the metric inverse of eµ

A, we
obtain

DeA
µ = −εkµL

A − εlµK
A . (3.96)

To conclude this discussion of the field strengths of eA, k and l, we derive the light-
like versions of the Ricci identity. Straightforwardly calculating the second covariant
exterior derivatives yields

DKµ = D2kµ = Ωµ
νk

ν , (3.97a)

DK̃µ = D2kµ = −Ων
µkν , (3.97b)

DLµ = D2lµ = Ωµ
νl

ν , (3.97c)

DL̃µ = D2lµ = −Ων
µlν , (3.97d)
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D2eµ
A = Ωµ

νe
ν
A − ΩB

Ae
µ
B , (3.97e)

D2eA
µ = −Ων

µe
A
ν + ΩA

Be
B
µ , (3.97f)

where we introduce the (m − 2) hypersurface curvature ΩA
B

..= dωA
B + ωA

C ∧ ωC
B .

All of the decompositions derived in this section are my original results which have
not been published before. They generalize the results of [9696, 9898] to geometries which
allow for non-trivial torsion and non-metricity.

This concludes the brief introduction to lightlike hypersurfaces. Let us point out
some conventions we have chosen in this chapter to see where generalizations of the
discussed material are possible. For lightlike hypersurfaces, we chose the non-tangent
and non-normal vector field l to be lightlike as well as k. This is the choice usually
made without mentioning it, and it ultimately leads to the symmetry of k and l in the
(m− 2)-dimensional formalism. Moreover, we chose the (m− 2)-dimensional lightlike
hypersurface to have a non-degenerate metric tensor. We saw that this is equivalent
to not having another lightlike vector that is tangent to the (m − 2)-dimensional
hypersurface. We may lift this assumption of course, in which case one might want to
go further down the ladder and increase the codimension p of the immersed (m− p)-
dimensional submanifold. The discussion in this section provides everything necessary
to generalize the formalism in this way, if needed. Furthermore, we made a similar
assumption for space- and timelike hypersurfaces. In this case, we assumed the (m−1)-
dimensional hypersurface metric to be non-degenerate. This may be generalized as
well, leading to a similar treatment as in the lightlike case. Lastly, we could consider
hypersurfaces in the context of foliations, and even lift the assumption of g(ζ, ζ) having
constant sign. But since most of these generalizations are straightforward, we will
proceed with space-, time- and lightlike hypersurfaces as we discussed them in this
chapter. In particular, we will use the results we obtained to model the boundary
of manifolds as a hypersurface in the following chapter. This will provide us with a
formalism in which we are able to calculate Gibbons-Hawking-York boundary terms
universally for theories featuring curvature, torsion and non-metricity.





Universal Gibbons-Hawking-York
terms 4

The Gibbons-Hawking-York (GHY) term is well known in general relativity [102102,
103103]. This boundary term needs to be introduced to an action in order to make the
variational principle well-defined on a manifold with boundary. Usually, an action S

is defined such that its variation δS yields the equations of motion of a theory by
means of Hamilton’s principle. We would like to preserve this principle if we consider
the same action S on a manifold with boundary, where variations δS generically in-
clude boundary contributions δSbdy. In particular, we obtain δS = δSeom + δSbdy on
manifolds with boundary, where the equations of motion would be obtained by en-
forcing δSeom = 0. However, Hamilton’s principle requires the variation δS of the full
action to vanish, while both δSeom and δSbdy do not vanish individually. We therefore
need to refine an action if we consider it on a manifold with boundary in order to
obtain the equations of motion from Hamilton’s principle.

This is where the Gibbons-Hawking-York (GHY) term SGHY enters the equations.
Since the bulk dynamics of the theory is entirely described by S already, we re-
quire SGHY to be a pure boundary term. We construct this boundary term such that it
makes the variational principle well-defined if we add it to an action. That is, we con-
sider a description of our physical system in terms of the action Sfull

..= S+SGHY which
coincides with S in the bulk. Then, the variational problem of Sfull is well-defined if
we construct the GHY term such that δSGHY = −δSbdy. In this case, we obtain
δSfull = δ(S + SGHY) = δSeom, so that we obtain the equations of motion by enforcing
Hamilton’s principle δSfull = 0 as required. Note that we only need to include a GHY
term to a theory for those variations of S which include boundary terms. Otherwise,
the problem of an ill-defined variational problem is not there in first place. The first
aim of this chapter is thus to understand which fields included in actions require us
to include a Gibbons-Hawking-York term if variations with respect to these fields are
considered. Subsequently, we derive the generalized Gibbons-Hawking-York term for
actions including curvature, torsion and non-metricity. This term is essential when
considering actions on manifolds with boundary and has not been known in generic
torsionful and non-metric geometries before I first derived it in [11].

In order to understand my method for deriving GHY terms, note that I introduced
the boundary term SGHY such that it fulfills δSGHY = −δSbdy if the variation of the



82 4. Universal Gibbons-Hawking-York terms

bulk action yields boundary contributions. The construction of a GHY term is thus
particularly straightforward if δSbdy is already the variation of a boundary term Sbdy.
That is, the calculation of the GHY terms gets trivial if we may pull out the variation
of the term δSbdy and write it as a total variation of a boundary term. In this case, we
simply obtain the GHY term as SGHY = −Sbdy. Writing δSbdy as the total variation
of a boundary term may be involved, however. In particular, we need to express Sbdy

solely in terms of boundary quantities. We obtain this expression by modeling the
boundary as a hypersurface immersed in M and decomposing all tensors included in S
into boundary tangent and non-tangent contributions. This will make the boundary
contributions in S explicit and provide us with the straightforwardly constructed GHY
term SGHY = −Sbdy.

In principle, this calculation needs to be performed for each action S of interest
individually, since the dependence on the theory’s dynamical fields and thus the vari-
ation is not universal. I unify these calculations by constructing a universal Gibbons-
Hawking-York term which renders the variational principle well-defined for a broad
realm of actions. These original results of mine which I review in section 4.14.1 have
been published in [11], where I first derived the universal Gibbons-Hawking-York term
for space- and timelike hypersurfaces. Moreover, I discuss GHY terms on lightlike hy-
persurfaces in section 4.24.2. These results are unpublished so far. Let us first focus on
the universal Gibbons-Hawking-York term on manifolds which have space- or timelike
boundaries before we generalize the methods to include lightlike boundaries as well.

4.1. Universal Gibbons-Hawking-York terms for space-
and timelike boundaries

In this section, we consider a manifold M on which a physical system is supposed to
be described by an action S. Introducing a boundary ∂M to the manifold M, we
generically need to supplement the action with a GHY term as we have argued in
the introduction to this chapter. In order to derive this GHY term, we consider the
boundary ∂M to be a space- or timelike hypersurface. Then, the method for deriving
a GHY term outlined in this chapter’s introduction consist of writing the action S in
terms of hypersurface tangent and normal tensors. Recall that we concluded that any
tensor admits such a decomposition in section 3.13.1. In a local basis, this decomposition
amounts to contracting the tensor indices with the components eµ

a and nµ of the
hypersurface frame ea = eµ

aϑµ and normal vector n = nµϑµ, respectively. In particular,
we need to decompose the geometrical field strengths introduced on smooth manifolds
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in section 2.62.6 in this way. These field strengths are

curvature

torsion

non-metricity

Ωµ
ν = Dωµ

ν = dωµ
ν + ωµ

ρ ∧ ωρ
ν ,

T µ = Dθµ = dθµ + ωµ
ν ∧ θν and

Qµν = −Dgµν = −dgµν + ωρ
µgρν + ωρ

νgµρ ,

(4.1)

where the connection one-form ωµ
ν , the coframe θµ providing a soldering form and the

components gµν of the metric tensor g are the dynamical fields of the theories which we
consider. We have already investigated the decomposition of these dynamical fields
into hypersurface tangent and normal contributions in section 3.13.1. Thus, we will
proceed by decomposing curvature, torsion and non-metricity in hypersurface tangent
and normal contributions next.

4.1.1. Decomposition of curvature, torsion and non-metricity

The most straightforward of the decompositions of curvature, torsion and non-metricity
into hypersurface tangent and normal contributions is that of non-metricity. That is
the case since we already encountered almost all of its contributions in the discussion
of the field strengths of the hypersurface frame ea and normal vector field n. All of
these contributions are summarized in the decomposition of non-metricity which we
obtain by contracting both of its indices with the decomposition (3.383.38) of unity. This
yields

Qµν = δα
µδ

β
νQαβ

= ea
µe

b
ν(eα

ae
β
bQαβ) + εea

µnν(eα
an

βQαβ) + εnµe
a
ν(nαeβ

aQαβ) + nµnν(nαnβQαβ) .
(4.2)

We thus determine the decomposition of non-metricity by calculating the terms which
are denoted in parentheses in (4.24.2). From section 3.1.23.1.2 we immediately obtain

nµnνQµν ≡ Qnn = 2nµDn
µ ,

eµ
an

νQµν = nµeν
aQµν = Ka − K̃a .

(4.3)

Thus, the only contribution of the non-metricity decomposition (4.24.2) which is left
to determine is eµ

ae
ν
bQµν . We obtain this projection by straightforward use of the

definition Qµν = −Dgµν of non-metricity while recalling that γab = eµ
ae

ν
bgµν is the

hypersurface metric. By means of the transformation (3.403.40) of the connection to the
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hypersurface we immediately conclude

eµ
ae

ν
bQµν = Qab , (4.4)

where we define the hypersurface non-metricity Qab
..= −Dγab. Hence, we found

that the projection of non-metricity to the hypersurface yields the hypersurface non-
metricity. This is what we expect since the indices of non-metricity are tensor indices
in contrast to the indices of torsion and curvature that take their values in a Lie
algebra.

Indeed, the decompositions of these differential forms are slightly more involved.
To obtain all contributions of its decomposition, we contract the torsion two-form T µ

with the decomposition (3.383.38) of unity. This yields

T µ = δµ
νT

ν = eµ
a(ea

νT
ν) + εnµ(nνT

ν) , (4.5)

such that the calculation of the decomposition amounts to the evaluation of the projec-
tions in the parentheses in (4.54.5). By means of the definition T µ = Dθµ we immediately
obtain

ea
µT

µ = D(ea
µθ

µ) −Dea
µ ∧ θµ . (4.6)

Note that we identified ϕa = ea
µθ

µ with the coframe of the hypersurface and thus denote
T a ..= Dϕa = D(ea

µθ
µ) as the hypersurface torsion. Furthermore, we related Dea

µ to
the extrinsic curvature one-form Ka = ea

µDn
µ by means of the Gauß-Weingarten

equation (3.483.48) as Dea
µ = −εnµK

a. Hence, the hypersurface tangent contribution of
torsion is

ea
µT

µ = T a +NKa ∧ ϕ , (4.7)

where ϕ = 1
εN
ñ is the coframe aligned with the normal covector ñ = ♭(n).

For deriving the normal projection of torsion, we use its definition T µ = Dθµ again
to see

nµT
µ = D(nµθ

µ) −Dnµ ∧ θµ . (4.8)

Hence, the normal contribution is determined by the normal covector ñ = nµθ
µ = εNϕ

and the decomposition (3.493.49) of K̃µ = Dnµ. Inserting this decomposition into (4.84.8),
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we conclude

nµT
µ = −K̃a ∧ ϕa + εD(Nϕ) + N

2 Qnn ∧ ϕ . (4.9)

With this normal projection we determined the decomposition (4.54.5) of the torsion
two-form completely as

ea
µT

µ = T a +NKa ∧ ϕ ,

nµT
µ = −K̃a ∧ ϕa + εD(Nϕ) + N

2 Qnn ∧ ϕ .
(4.10)

Hence, the only field strength which we did not yet decompose into hypersurface
tangent and normal contributions is the curvature two-form Ωµ

ν .

Contraction of Ωµ
ν with the unity decomposition (3.383.38) yields

Ωµ
ν = δµ

αδ
β
ν Ωα

β

= eµ
ae

b
ν(ea

αe
β
b Ωα

β) + εeµ
anν(ea

αn
βΩα

β) + εnµea
ν(nαe

β
aΩα

β) + nµnν(nαn
βΩα

β) ,
(4.11)

and we need to calculate the terms in parentheses analogous to the decompositions
of torsion and non-metricity. These terms are partially contained in the Ricci identi-
ties (3.513.51). For instance,

D2eµ
a = Ωµ

νe
ν
a − Ωb

ae
µ
b (4.12)

contains both ea
µe

ν
b Ωµ

ν and nµe
ν
aΩµ

ν if we contract it with ea
µ and nµ, respectively.

Hence, the calculation of the latter projections reduces to the decomposition of

ea
µD

2eµ
b = D(ea

µDe
µ
b ) −Dea

µ ∧Deµ
b ,

nµD
2eµ

a = D(nµDe
µ
a) −Dnµ ∧Deµ

a .
(4.13)

But these are exactly the covariant exterior derivatives which we evaluated in sec-
tion 3.1.23.1.2. Hence, we may use all of the results obtained in this section and analyze
the remaining projections analogously to conclude that the curvature projections are

ea
µe

ν
b Ωµ

ν = Ωa
b − εKa ∧ K̃b ,

nµe
ν
aΩµ

ν = −DK̃a + ε

2K̃a ∧Qnn ,

ea
µn

νΩµ
ν = DKa + ε

2K
a ∧Qnn ,

nµn
νΩµ

ν = 1
2DQnn +Ka ∧ K̃a ,

(4.14)

where we recall that Ωa
b = Dωa

b = dωa
b + ωa

c ∧ ωc
b is the hypersurface curvature
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two-form.
We have now decomposed all field strengths into hypersurface tangent and nor-

mal contributions by means of the description of space- and timelike hypersurfaces
we developed in section 3.13.1. This is already sufficient for calculating the Gibbons-
Hawking-York term of a given action in an effective way as we saw in the introduction
to this chapter. However, we will go one step further and use these results for cal-
culating the Gibbons-Hawking-York terms for a broad range of actions at once. To
that end, we linearize the action by introducing Lagrange multipliers in the following
section, providing us with a universal Gibbons-Hawking-York term.

4.1.2. Universal Gibbons-Hawking-York term from Lagrange
multipliers

In this section, we derive the universal Gibbons-Hawking-York (GHY) term for a
family of actions on manifolds M with boundary ∂M. We consider these manifolds
to be equipped with a connection one-form ωµ

ν , a soldering form θµ locally defined by
the coframes and a metric tensor field g. Hence, we work with a Lagrangian L which
depends on these dynamical fields and their respective field strengths11. Recall that
these field strengths are the curvature two-form Ωµ

ν , the torsion two-form T µ and the
non-metricity one-form Qµν given in (4.14.1). Therefore, we consider actions of the form

S[ωµ
ν , θ

µ, gµν ] =
∫

M
L(Ωµ

ν , T
µ, Qµν) . (4.15)

In order to gain insights from this general form of the action and nevertheless be
able to use the hypersurface formalism for describing the boundary, we use a trick first
employed by [104104]. In this paper, the authors introduced auxiliary fields linearizing
the Lagrangian in the field strengths. These auxiliary fields are used as Lagrange
multipliers. In our differential form notation, we adapt the idea of [104104] to define the
action

SLagr[ωµ
ν , θ

µ, gµν , φ
ν

µ , ϱµ
ν , tµ, τ

µ, qµν , σµν ]

=
∫

M
[L(ϱµ

ν , τ
µ, σµν) + ∗φ ν

µ ∧ (Ωµ
ν − ϱµ

ν) + ∗tµ ∧ (T µ − τµ) + ∗qµν ∧ (Qµν − σµν)] ,

(4.16)

where derivatives of Ωµ
ν , T µ and Qµν are linearized by the Bianchi identities (2.302.30),

1In order to obtain manifestly covariant actions, we only consider Lagrangians which depend on the
connection one-form implicitly via the field strengths. For compactness of notation, we suppress
the dependence of the Lagrangian on coframe and metric components in the following.
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(2.372.37), (2.422.42) and thus included in this linearization. Since the integrand needs to be a
m-form on an m-dimensional manifold, we require φ ν

µ , ϱµ
ν , tµ and τµ to be two-forms,

while qµν and σµν are one-forms. For the same reason, the Hodge duality denoted by ∗
is introduced in the integral. The Hodge duality is defined as

∗ : Ωp(M) ∼−→ Ωm−p(M)

ω 7−→ ∗ω ,

and we call ∗ω the Hodge dual of ω. The target space of the Hodge duality be-
ing Ωm−p(M) ensures that the integrand of (4.164.16) is a differential form of rank m such
that its integral is well-defined. Since ∗ is a linear map, it is entirely determined by
its action on coframes that is given by

ηµ1...µp ≡ ∗(θµ1 ∧ · · · ∧ θµp)

..=

√
| det g|

(m− p)!εσ1...σpν1...νm−pg
µ1σ1 · · · gµpσpθν1 ∧ · · · ∧ θνm−p .

(4.17)

The totally antisymmetric ε-symbol is defined such that ε0,1,...,m−1 = 1. Furthermore,
we introduce the determinant of the metric as22

det g ..= (−1)ind gεµ0...µm−1g0µ0 . . . g(m−1)µm−1 , (4.18)

in which ind g is the number of minus signs in the signature of g.
The variation of the action (4.164.16) with respect to the tensors denoted as Hodge

duals yields the equations of motion

Ωµ
ν = ϱµ

ν , T µ = τµ , Qµν = σµν (4.19)

by enforcing Hamilton’s principle δSLagr = 0. Hence, ∗φ ν
µ , ∗tµ and ∗qµν function as

Lagrange multipliers, and considering the on-shell action by reinstating their equations
of motion (4.194.19) into (4.164.16), the two actions SLagr and S are equivalent. This is why
it is useful in first place to consider (4.164.16) to learn about the original action (4.154.15).
The advantage of the Lagrange multiplier action (4.164.16) is that it is linear in curvature,
torsion and non-metricity. In order to find the boundary contributions of SLagr, we

2Note that εµ1...µm = (−1)ind gεµ1...µm , from which the prefactor in the definition of det g originates.
We furthermore emphasize that g is not an endomorphism, which is why we need to define its
determinant explicitly at this point. Unlike the determinant of an endomorphism, det g is not
invariant with respect to GL(m,R) transformations, it transforms as a scalar density instead.
Recall that we studied this case in the framework of tensor density bundles in chapter 22.
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thus straightforwardly insert the decompositions (4.24.2), (4.54.5) and (4.114.11) of these field
strengths which we derived in the previous subsection. This yields

∗φ ν
µ ∧ Ωµ

ν =[eµ
ae

b
ν ∗ φ ν

µ ] ∧ (ea
αe

β
b Ωα

β) + ε[eµ
anν ∗ φ ν

µ ] ∧ (ea
αn

βΩα
β)

+ ε[nµea
ν ∗ φ ν

µ ] ∧ (nαe
β
aΩα

β) + [nµnν ∗ φ ν
µ ] ∧ (nαn

βΩα
β) ,

∗tµ ∧ T µ =[eµ
a ∗ tµ] ∧ (ea

νT
ν) + ε[nµ ∗ tµ] ∧ (nνT

ν) ,

∗qµν ∧Qµν =[ea
µe

b
ν ∗ qµν ] ∧ (eα

ae
β
bQαβ) + ε[ea

µnν ∗ qµν ] ∧ (eα
an

βQαβ)

+ ε[nµe
a
ν ∗ qµν ] ∧ (nαeβ

aQαβ) + [nµnν ∗ qµν ] ∧ (nαnβQαβ) ,

(4.20)

in which we re-express the projected components of curvature, torsion and non-me-
tricity by the decompositions we obtained in the previous subsection. However, we
do not need to write this out in total at this point. To see this, recall that our
motivation was to explicitly find the boundary contribution of the action (4.164.16). Hence,
it suffices for our purposes to keep those terms of the decompositions which yield
boundary contributions. By means of Stokes’ theorem (2.212.21), the relevant terms are
those containing derivatives of boundary fields. Hence, we collect these terms to
conclude that the boundary relevant contributions of (4.204.20) are

∗φ ν
µ ∧ Ωµ

ν =[eµ
ae

b
ν ∗ φ ν

µ ] ∧Dωa
b + ε[eµ

anν ∗ φ ν
µ ] ∧DKa

− ε[nµea
ν ∗ φ ν

µ ] ∧DK̃a + 1
2[nµnν ∗ φ ν

µ ] ∧DQnn

+ terms irrelevant on ∂M ,

∗tµ ∧ T µ =[eµ
a ∗ tµ] ∧Dϕa + [nµ ∗ tµ] ∧D(Nϕ) + terms irrelevant on ∂M ,

∗qµν ∧Qµν = − [ea
µe

b
ν ∗ qµν ] ∧Dγab + terms irrelevant on ∂M .

(4.21)

After an integration by parts, we may integrate these terms using Stokes’ theo-
rem (2.212.21). Note that the hypersurface on which we invoke Stokes’ theorem is the
boundary ∂M of the manifold, so that only the boundary tangent contributions are
relevant in this integration. We denote this pull-back to the boundary as

∣∣∣
∂M

and thus
obtain ∫

M

(
∗φ ν

µ ∧ Ωµ
ν + ∗tµ ∧ T µ + ∗qµν ∧Qµν

)
=
∫

∂M

(
ωa

b ∧ ∗φ b
a + εKa ∧ ∗φan − εK̃a ∧ ∗φna + 1

2Qnn ∧ ∗φnn

+ ϕa ∧ eµ
a ∗ tµ + (−1)mγabe

a
µe

b
ν ∗ qµν

)∣∣∣∣
∂M

+ terms irrelevant on ∂M ,

(4.22)
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where we introduce the abbreviations

∗φ b
a

..= eµ
ae

b
ν ∗ φ ν

µ , ∗φan
..= eµ

anν ∗ φ ν
µ , ∗φna ..= nµea

ν ∗ φ ν
µ , ∗φnn

..= nµnν ∗ φ ν
µ

(4.23)

for the projected Lagrange multipliers of curvature. As described in this chapter’s
introduction, we are now able to construct a generic boundary term which makes the
variational principle of SLagr well-defined by means of the boundary action (4.224.22).
However, the classical GHY term in general relativity is constructed as the special
choice of this generic boundary term which solves the Dirichlet problem. For the
manifolds M equipped with connection, coframe and metric we consider here, the
Dirichlet boundary conditions are

δωµ
ν

∣∣∣
∂M

= 0 , δθµ
∣∣∣
∂M

= 0 , δgµν

∣∣∣
∂M

= 0 . (4.24)

It is intuitively clear that these conditions are fulfilled if we impose

δωa
b = 0 , δϕa = 0 , δγab = 0 (4.25)

for the boundary connection, coframe and metric. A proof of the equivalence of these
statements may be found in [2020]. Hence, the GHY term only needs to cancel those
contributions in (4.224.22) which do not vanish if we impose the Dirichlet boundary con-
ditions (4.254.25) for the variational principle. Note that at this point it is straightforward
to impose different boundary conditions if needed. The Gibbons-Hawking-York term
of SLagr is therefore

SGHY = −
∫

∂M

(
εKa ∧ ∗φan − εK̃a ∧ ∗φna + 1

2Qnn ∧ ∗φnn

)∣∣∣∣
∂M

. (4.26)

The latter result is, however, not yet the GHY term of the original action (4.154.15)
which we wanted to calculate. In particular, we need to determine the Lagrange
multipliers in order to calculate the GHY term for a given Lagrangian. We obtain
these expressions from considering variations of the Lagrange multiplier action (4.164.16)
with respect to the auxiliary field ϱµ

ν . A direct calculation using Hamilton’s principle
δSLagr = 0 yields ∗φ ν

µ ∧ δϱµ
ν = δϱµ

ν
L(ϱµ

ν , τ
µ, σµν) which determines the on-shell value

of ∗φ ν
µ . Since we only need the projections, it is, however, more useful to consider

the Lagrangian as being dependent on the projections ϱan ..= ea
µn

νϱµ
ν , ϱna

..= nµe
ν
aϱ

µ
ν

and ϱnn
..= nµn

νϱµ
ν , which is completely equivalent to a dependence on ϱµ

ν . Using
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this notation, the Lagrange multipliers are determined by

∗φan ∧ δϱan = εδϱanL(ϱna, ϱ
an, ϱnn, . . . ) ,

∗φna ∧ δϱna = εδϱnaL(ϱna, ϱ
an, ϱnn, . . . ) ,

∗φnn ∧ δϱnn = δϱnnL(ϱna, ϱ
an, ϱnn, . . . ) .

(4.27)

Hence, if we know the Lagrangian L of a theory, we may immediately calculate the
Lagrange multipliers ∗φan, ∗φna and ∗φnn by means of the straightforward variations
derived in (4.274.27). Subsequently, we may reinstate these expressions into our result for
the GHY term (4.264.26) to obtain the GHY term of any action S of the form (4.154.15). For
this reason, we call (4.264.26) the universal Gibbons-Hawking-York term which solves the
Dirichlet problem for any action constructed from curvature, torsion and non-metricity
as (4.154.15).

Since it is one of the main results of this thesis, let me further elaborate on the
universal GHY term (4.264.26). First, we already saw that the form of this term depends
on the chosen Dirichlet boundary conditions, but my formalism allows to include
different choices of boundary conditions likewise as I emphasized before. Second, the
universal result (4.264.26) makes the calculation of GHY terms extraordinarily efficient.
For a given Lagrangian, one only needs to evaluate the three variations (4.274.27) and
insert the results into the universal GHY term. This becomes even more efficient if we
consider manifolds which have vanishing non-metricity. In this case, we use K̃a = Ka

as well as the Bianchi identity (2.422.42) to conclude that

SQ=0
GHY = 2ε

∫
∂M

Ka ∧ ∗φna

∣∣∣
∂M

(4.28)

is already the entire GHY term. This holds in particular for theories built solely
upon curvature, for which my formalism provides a very efficient way of calculating
GHY terms as well. But even in the presence of non-metricity, we observe that the
result (4.264.26) for the universal GHY term only includes the Lagrange multipliers for
curvature, while those of torsion and non-metricity do not contribute to the GHY
term at all. That is, a GHY term is only needed for actions which involve curvature.
Actions constructed solely from torsion or non-metricity do not require us to introduce
a Gibbons-Hawking-York term. Connecting this to the discussion in this chapter’s
introduction, we found that the variational problem is well-defined for bulk actions
involving only torsion and non-metricity even if we consider this action on a manifold
with boundary.

It is important to notice that the range of Lagrangians for which we may use the
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universal result (4.264.26) for calculating the GHY term is limited by the equivalence
of the Lagrange multiplier action (4.164.16) and the original one. While we noted that
these are equivalent if we instate the equations of motions (4.194.19) of the Lagrange
multipliers, there are cases in which this equivalence does not imply that (4.264.26) is the
correct GHY term of S. To see this, we recall that the Lagrange multiplier formalism
assumes that the variations of all fields are independent of each other. In particular,
the variations of the Lagrange multiplies themselves are assumed to be independent
of the variations of the auxiliary fields and curvature. But we determine the Lagrange
multipliers ∗φ ν

µ for a given Lagrangian L from ∗φ ν
µ ∧ δϱµ

ν = δϱµ
ν
L(ϱµ

ν , ...) or the
corresponding projected equations (4.274.27). Going on-shell thus expresses φ ν

µ in terms of
a variation of the Lagrangian, which generically might depend on the remaining fields.
This is important for the calculation of the GHY term since we constructed GHY
terms such that they make the variational principle well-defined. Hence, we conclude
that (4.264.26) is always the full GHY term for the Lagrange multiplier action (4.164.16), but
it only provides the GHY term of the original action (4.154.15) if the relevant Lagrange
multipliers ∗φan, ∗φna and ∗φnn calculated by means of (4.274.27) are independent of all
other fields. For short, this discussion implies that the processes of going on-shell in
the Lagrange multiplier action and taking the variations which determine the GHY
term do not commute.

In most cases, this will constrain the actions for which we calculate the GHY term by
means of (4.264.26) to Lagrangians which are linear in the curvature two-form. In all other
cases, we need to follow the calculation of this section and perform the decomposition
of the fields explicitly without introducing Lagrange multipliers in order to derive the
correct GHY term. We are going to consider examples which illustrate both methods in
section 4.1.34.1.3. Note, however, that Lagrangians constructed only from torsion and non-
metricity are not constrained by this argument since their Lagrange multipliers do not
appear in the universal GHY term (4.264.26). Hence, an action built solely upon torsion
and non-metricity never needs a GHY term in order for its variational principle to be
well-defined. Furthermore, explicit calculations reveal that the Lagrange multiplier
method yields the correct tensor structure of the GHY term for all examples which
we consider in the remainder of this chapter. The results obtained from the Lagrange
multiplier method differ from the explicit calculation at most by constant prefactors
in each term. Hence, the Lagrange multiplier method provides an efficient way to
estimate the tensor structure of the GHY term even in these cases, while the overall
coefficients need to be calculated by an explicit calculation in general.

In this subsection, I derived the first systematic method which allows to calculate
GHY terms of actions which depend on curvature, torsion and non-metricity if we
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consider manifolds with curvature, torsion and non-metricity with space- or timelike
boundary. I concluded that the universal GHY term (4.264.26) may be used to further
simplify this method unless the Lagrange multipliers ∗φan, ∗φna and ∗φnn depend on
the remaining fields. In the latter case, we may evaluate GHY terms using the methods
of this section as well, following the calculation explicitly without introducing Lagrange
multipliers. Let us consider examples for all these cases next in order to understand
how my method is applied to concrete theories of interest and to prove consistency of
my results with the GHY terms known in literature.

4.1.3. Examples for Gibbons-Hawking-York terms

The GHY term is best understood in general relativity [102102, 103103], so we will reproduce
this example first by means of the method derived in section 4.1.24.1.2. Furthermore, we
are going to generalize the GHY term of general relativity to include actions which
admit torsion and non-metricity. We will do the same for four-dimensional Chern-
Simons modified gravity, for which the GHY term has been derived in [105105] first.
For this theory of gravity, we will need to perform the derivation of the GHY term
explicitly without introducing Lagrange multipliers, so that four-dimensional Chern-
Simons modified gravity serves as an example for the explicit calculation. Lastly, we
will derive the GHY term for Lovelock gravity in arbitrary dimensions. While this has
been derived in literature for special cases [106106, 107107], the full GHY term of Lovelock
gravity in differential form notation on manifolds with curvature and torsion is derived
in this section for the very first time. This generalizes my previously derived results
for five-dimensional Lovelock-Chern-Simons gravity in [11] as well.

Einstein-Hilbert gravity

On an m-dimensional manifold M without boundary, general relativity is fully de-
scribed by the Einstein-Hilbert action

SEH = 1
2κ

∫
M

dmx
√

| det g|R , (4.29)

where κ = 8πG and R is the Ricci scalar. We utilize the formalism developed in
section 4.1.24.1.2 for calculating the GHY term which needs to be added to the Einstein-
Hilbert action (4.294.29) if we consider general relativity on a manifold with boundary ∂M.
To that end, we first need to rewrite the Einstein-Hilbert action in terms of differential
forms. Recall that the Ricci scalar is obtained from the components of the Riemann
tensor Rµ

νσρ by contracting R ..= gνρRµ
νµρ. The components of the Riemann tensor
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are the tensor components of the curvature two-form in a frame ϑµ, that is Rµ
νσρ =

Ωµ
ν(ϑσ, ϑρ), such that Ωµ

ν = 1
2R

µ
νσρθ

σ ∧ θρ. Note that the integral measure dmx ..=
dx0 ∧· · ·∧dxm−1 is the volume form dVol = θ0 ∧· · ·∧θm−1 in the chart-induced frame
θµ = dxµ. For writing the Einstein-Hilbert action in differential form notation, we
furthermore use the relations33

θµ0 ∧ · · · ∧ θµm−1 = (−1)ind gεµ0...µm−1θ0 ∧ · · · ∧ θm−1 , (4.30a)

εµ1...µpµp+1...µmε
µ1...µpνp+1...νm = (−1)ind gp!(m− p)!δνp+1

[µp+1
· · · δνm

µm] (4.30b)

proven in [108108]. Combining these relations with the Hodge duality (4.174.17), we conclude
that

η ..= ∗1 =
√

| det g|θ0 ∧ · · · ∧ θm−1 (4.31)

is a top form that is related to the choice dVol = θ0 ∧ · · · ∧ θm−1 of volume form
by η =

√
| det g|dVol. By means of the same relations we use the Hodge dual ηµν ..=

∗(θµ ∧ θν) to verify that ηR = η ν
µ ∧ Ωµ

ν . Hence, we may rewrite the Einstein-Hilbert
action (4.294.29) in terms of differential forms as

SEH = 1
2κ

∫
M
η ν

µ ∧ Ωµ
ν . (4.32)

This differential form notation of the Einstein-Hilbert action is well-known, see [109109]
for instance.

Introducing a boundary ∂M to our manifold, the action (4.324.32) needs to be supple-
mented by a GHY term. For calculating this GHY term, we compare the Einstein-
Hilbert action (4.324.32) to the generic form (4.154.15) of an action to read of the Lagrangian

LEH(Ωµ
ν) = 1

2κη
ν

µ ∧ Ωµ
ν (4.33)

of Einstein-Hilbert gravity. Following section 4.1.24.1.2, we introduce Lagrange multipli-
ers φ ν

µ and auxiliary fields ϱµ
ν resulting in the Lagrange multiplier action

SEH
Lagr =

∫
M

( 1
2κη

ν
µ ∧ ϱµ

ν − ∗φ ν
µ ∧ (Ωµ

ν − ϱµ
ν)
)
. (4.34)

We need to calculate the Lagrange multipliers by means of (4.274.27) next. To that end,
we decompose the Einstein-Hilbert Lagrangian (4.334.33) by means of the decomposition

3We antisymmetrize the indices of tensor components Aµ1...µp
according to A[µ1...µp]

..=
1
p!
∑

σ∈Sp

sgn(σ)Aσ(µ1)...σ(µp), where Sp is the group of permutations of p integers.
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of unity (3.383.38) which yields

LEH(ϱµ
ν) = 1

2κ
(
(eµ

ae
b
νη

ν
µ ) ∧ (ea

αe
β
b ϱ

α
β) + εηan ∧ ϱan + εηna ∧ ϱna

)
, (4.35)

where we use the antisymmetry of ηµν to simplify nµnνη
µν = 0 and introduce the

abbreviations ηan
..= eµ

anνη
ν

µ and ηna ..= nµea
νη

ν
µ . Using this decomposed form of the

Lagrangian, we obtain the Lagrange multipliers

∗φan = 1
2κηan , ∗φna = 1

2κη
na , ∗φnn = 0 (4.36)

by evaluating the variations in (4.274.27). We finally insert these Lagrange multipliers
into the universal GHY term (4.264.26) to conclude

SEH
GHY = ε

2κ

∫
∂M

(Ka + K̃a) ∧ ηna

∣∣∣
∂M

, (4.37)

where we use the antisymmetry of ηµν for simplifying the GHY term. Thus, we have
found (4.374.37) to be the GHY term for the Einstein-Hilbert action (4.324.32) in the presence
of curvature, torsion and non-metricity. This simplifies if non-metricity vanishes, since
we have K̃a = Ka in this case such that we are left with

SEH,Q=0
GHY = ε

κ

∫
∂M

Ka ∧ ηna

∣∣∣
∂M

. (4.38)

For comparison with the traditional result for the GHY term in general relativity, we
evaluate (4.384.38) in tensor components. To that end, we use the definition of the Hodge
dual (4.174.17) as well as the relations (4.304.30) to obtain

Ka ∧ ηna

∣∣∣
∂M

=

√
| det g|

(m− 2)!K
a
bn

µeν
aεµνρ1...ρm−2e

ρ1
b1 . . . e

ρm−2
bm−2ϕ

b ∧ ϕb1 ∧ · · · ∧ ϕbm−2

=
√

| det γ|Ka
adVol∂M ,

(4.39)

where the volume element dVol∂M = ϕ0 ∧· · ·∧ϕm−2 is usually written as dm−1x in the
chart-induced basis. Hence, the GHY term (4.384.38) of Einstein-Hilbert gravity reads

SEH,Q=0
GHY = ε

κ

∫
∂M

dm−1x
√

| det γ|Ka
a (4.40)

in components. This is the well-known result of York [102102] which later was refined
by Gibbons and Hawking [103103]. However, note that we only assumed non-metricity
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to vanish in order to reproduce this result, while curvature and torsion may be non-
vanishing. Hence, (4.404.40) already generalizes the results of [102102, 103103] to manifolds
with non-trivial torsion. If additionally non-metricity is present, we instead need to
consider (4.374.37) as the appropriate GHY term which we derived in full generality before.

We have been able to use the Lagrange multiplier formalism for deriving the GHY
term of Einstein-Hilbert gravity in particular since the Lagrange multipliers (4.364.36) did
not depend on curvature, torsion, non-metricity or the auxiliary fields ϱ ν

µ . We will
consider four-dimensional Chern-Simons modified gravity as a second example next,
for which the Lagrange multipliers explicitly depend on these fields.

Four-dimensional Chern-Simons modified gravity

The action of four-dimensional Chern-Simons modified gravity [110110] is a modification
of the Einstein-Hilbert action we discussed in the previous example. In particular, the
full action of this theory is SCSMG = SEH + SCS, being a sum of the four-dimensional
Einstein-Hilbert action (4.324.32) and the Chern-Simons term

SCS = 1
8κ

∫
M

d4x
√

| det g|χ ∗RR . (4.41)

Here, χ is a background scalar field. The so-called Chern-Pontryagin scalar ∗RR is
given by

∗RR ..= 1
2ϵ

µνσρRα
βσρR

β
αµν , (4.42)

where the Levi-Civita tensor ϵµνσρ differs from the totally antisymmetric symbol εµνσρ

by a factor 1/
√

| det g|, that is ϵµνσρ =
√

| det g|εµνσρ. The most straightforward way for
expressing the four-dimensional Chern-Pontryagin scalar in differential form language
is to realize that η ∗ RR = 2(−1)ind gΩµ

ν ∧ Ων
µ. This may be seen by combining the

tensor components Rµ
νσρ = Ωµ

ν(ϑσ, ϑρ) of the curvature two-form Ωµ
ν = 1

2R
µ

νσρθ
σ ∧θρ

with the relations (4.304.30). Hence, the Chern-Simons contribution (4.414.41) of the action
may be written as

SCS = 1
4κ(−1)ind g

∫
M
χΩµ

ν ∧ Ων
µ . (4.43)

Comparing the latter expression to the general form (4.154.15) of the action, we read off
the Lagrangian

LCS(Ωµ
ν) = 1

4κ(−1)ind gχΩµ
ν ∧ Ων

µ . (4.44)
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Let us now calculate the Lagrange multipliers φan, φna and φnn by means of (4.274.27)
to see if they are independent of the remaining fields. To that end, we decompose the
Lagrangian using the unity decomposition (3.383.38) to obtain

LCS(ϱµ
ν) = 1

4κ(−1)ind gχ
(
(ea

µe
ν
bϱ

µ
ν) ∧ (eb

αe
β
aϱ

α
β) + 2εϱan ∧ ϱna + ϱnn ∧ ϱnn

)
. (4.45)

Using this decomposition, (4.274.27) yields the Lagrange multipliers

∗φan = 1
2κ(−1)ind gχϱna , ∗φna = 1

2κ(−1)ind gχϱan , ∗φnn = 1
4κ(−1)ind gχϱnn .

(4.46)

These Lagrange multipliers are in particular not independent of ϱµ
ν , and thus we

may not use the Lagrange multiplier formalism of section 4.1.24.1.2. That is, we need to
calculate the GHY term of (4.434.43) explicitly by means of decomposing the Lagrangian.

Inserting the curvature decomposition (4.144.14) on space- and timelike hypersurfaces
into the Chern-Simons contribution (4.444.44) of the Lagrangian, we obtain

LCS(Ωµ
ν) = 1

4κ(−1)ind gχ
(
(ea

µe
ν
b Ωµ

ν) ∧ (eb
αe

β
aΩα

β) + 2ε(ea
µn

νΩµ
ν) ∧ (nαe

β
aΩα

β)

+(nµn
νΩµ

ν) ∧ (nαn
βΩα

β)
)

= 1
4κ(−1)ind gχ

(
Ωa

b ∧ Ωb
a − εD(Ka ∧DK̃a) − εD(K̃a ∧DKa)

+ 1
4DQnn ∧DQnn +D(Ka ∧ K̃a ∧Qnn)

)
.

(4.47)

We evaluate the integral of this Lagrangian by means of Stokes’ theorem (2.212.21) to
obtain

SCS = 1
4κ(−1)ind g

∫
∂M

χ
(

−εKa ∧DK̃a − εK̃a ∧DKa + 1
4Qnn ∧DQnn

+Ka ∧ K̃a ∧Qnn

)∣∣∣∣
∂M

+ 1
4κ(−1)ind g

∫
M
χΩa

b ∧ Ωb
a .

(4.48)

From this form of the action we directly read off

SCS
GHY = 1

4κ(−1)ind g
∫

∂M
χ
(
εKa ∧DK̃a + εK̃a ∧DKa − 1

4Qnn ∧DQnn

−Ka ∧ K̃a ∧Qnn

)∣∣∣∣
∂M

(4.49)

as the full GHY term for the Chern-Simons contribution (4.434.43) of the action. The
GHY term of four-dimensional Chern-Simons modified gravity described by the entire
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action SCSMG = SEH + SCS is thus

SCSMG
GHY = SEH

GHY + SCS
GHY

= ε

2κ(−1)ind g
∫

∂M

(
(−1)ind g(Ka + K̃a) ∧ ηna + 1

2K
a ∧DK̃a + 1

2K̃a ∧DKa

− ε

8Qnn ∧DQnn − ε

2K
a ∧ K̃a ∧Qnn

)∣∣∣∣
∂M

.

(4.50)

This is the full GHY term of four-dimensional Chern-Simons modified gravity in the
presence of curvature, torsion and non-metricity written in terms of differential forms.
For manifolds on which both torsion and non-metricity are vanishing, the GHY term of
this theory has already been calculated in [105105] in tensor component notation. For com-
parison, we adopt the conventions of [105105] and evaluate the Chern-Simons part (4.494.49)
of the GHY term in components. Apart from vanishing torsion and non-metricity,
[105105] chooses (−1)ind g = −1 and (−1)ind γ = +1, such that ε = (−1)ind g+ind γ = −1.
We evaluate the pull-back of the Lagrangian to the boundary as

Ka ∧DK̃a

∣∣∣
∂M

= Ka
b∇cK̃ad ϕ

b ∧ ϕc ∧ ϕd , (4.51)

where we use the boundary covariant derivative ∇cK̃ad = ∂cK̃ad − Γb
caK̃bd − Γb

cdK̃ab

with Γa
cb

..= ωa
b(φc). Since the boundary is considered as a three-dimensional manifold

embedded in M, ϕb ∧ ϕc ∧ ϕd is related to its volume form dVol∂M = ϕ0 ∧ ϕ1 ∧ ϕ2 as
ϕb ∧ ϕc ∧ ϕd = (−1)ind γεbcddVol∂M. Therefore, the GHY term (4.494.49) reduces to

SCS
GHY = 1

2κ

∫
∂M

d3x
√

| det γ|χ ϵbcdKa
b∇cKad (4.52)

for the conventions of [105105]. This exactly reproduces the result of [105105]44.

As a last example for how to use the formalism developed in section 4.14.1, let us
consider Lovelock gravity on a manifold with boundary and derive its GHY term.

Lovelock gravity

Lovelock gravity originated as a generalization of the Einstein-Hilbert action including
higher powers of curvature [111111]. Following [112112, 113113], its action on an m-dimensional

4The global prefactors of both calculations match if we replace κ 7→ 1
2κ in our derivation.
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manifold M may be written as

SL =
⌊m−1

2 ⌋∑
p=0

αp

m− 2pSp , (4.53)

where the floor function ⌊x⌋ yields the greatest integer less than or equal to x. The
coefficients αp ∈ R may be chosen at will, and the p-th partial action Sp is given in
differential form notation by

Sp =
∫

M
ϵµ1...µmΩµ1µ2 ∧ · · · ∧ Ωµ2p−1µ2p ∧ θµ2p+1 ∧ · · · ∧ θµm . (4.54)

Here, we introduce the abbreviation Ωµν ..= gνρΩµ
ρ. Note that this is nothing more

but an abbreviation since the indices of Ωµ
ν are Lie group indices which technically

cannot be raised or lowered using the metric. We may rewrite the partial action (4.544.54)
in a more compact form using the Hodge duals defined in (4.174.17). This definition
immediately implies that Sp = (m− 2p)!Sp with

Sp =
∫

M
ηµ1...µ2p ∧ Ωµ1µ2 ∧ · · · ∧ Ωµ2p−1µ2p , (4.55)

such that the Lovelock action (4.534.53) becomes

SL =
⌊m−1

2 ⌋∑
p=0

αp(m− 2p− 1)!Sp . (4.56)

Note that S0 =
∫

M η does not depend on curvature and hence does not require a
GHY term for its variational principle to be well-defined. Hence, we have S0

GHY = 0.
We consider p = 1 next, in which case the Lagrangian is linear in the curvature
two-form. Since the Einstein-Hilbert action (4.324.32) is linear in curvature as well, it
is useful to compare S1 to SEH. This is straightforward using the differential form
expressions (4.324.32) and (4.554.55), from which we conclude S1 = 2κSEH. Therefore, the
full Lovelock action may indeed be interpreted as a higher-curvature generalization
of the Einstein-Hilbert action as we claimed before. From the correspondence of S1

with SEH, we obtain its GHY term as S1
GHY = 2κSEH

GHY, where we calculated the
Einstein-Hilbert GHY term in the presence of curvature, torsion and non-metricity
in (4.374.37).

Hence, the first non-trivial extension of Einstein-Hilbert gravity contained in the
Lovelock action (4.564.56) is S2 =

∫
M ηµνρσ ∧ Ωµν ∧ Ωρσ. Evaluating the Lagrangian in
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components by means of Ωµ
ν = 1

2R
µ

νρσθ
ρ ∧ θσ, we obtain

S2 =
∫

M
dVol

√
| det g|

(
R2 +Rµν

ρσR
ρσ

µν + 2Rµ
νR

νσ
σµ −Rµ

νR
ν

µ −Rµσ
σνR

νρ
ρµ

)
,

(4.57)

where we introduce the components of Ricci tensor Rµν
..= Rρ

µρν inducing the Ricci
scalar R ..= gµνRµν . While (4.574.57) still does not look very familiar, it simplifies consid-
erably if non-metricity vanishes. From the Bianchi identity (2.422.42) we conclude that
Ωµν = −Ωνµ for metric-compatible theories, and thus the component version of the
action S2 becomes

S2 =
∫

M
dVol

√
| det g|

(
R2 +Rµν

ρσR
ρσ

µν − 4Rµ
νR

ν
µ

)
. (4.58)

This is the Gauß-Bonnet action. Hence, S2 is the straightforward extension of the
Gauß-Bonnet action to manifolds with curvature, torsion and non-metricity. In four
dimensions, S2 is a topological term which yields the Euler number of a manifold.
In arbitrary dimensions, the Lagrangians in Sp are called Euler densities [106106]. We
could now calculate the GHY term for Gauß-Bonnet gravity analogous to the calcula-
tion for four-dimensional Chern-Simons modified gravity we did before. However, we
readily generalize this calculation and derive the GHY term of Sp for all p. To that
end, we decompose the p-th partial action (4.554.55) into boundary tangent and normal
contributions as

Sp =∫
M

(eµ1
a1 . . . e

µ2p
a2p
ηµ1...µ2p) ∧ (ea1

ν1e
a2
ν2 Ων1ν2) ∧ · · · ∧ (ea2p−1

ν2p−1e
a2p
ν2p

Ων2p−1ν2p)

+ pεηna1...a2p−1 ∧ (nµe
a1
ν1 (Ωµν1 − Ων1µ)) ∧ (ea2

ν2e
a3
ν3 Ων2ν3) ∧ · · · ∧ (ea2p−2

ν2p−2e
a2p−1
ν2p−1 Ων2p−2ν2p−1) ,

(4.59)

where we use that any contraction of ηµ1...µ2p with more than one unit normal nµ

vanishes due to the antisymmetry of ηµ1...µ2p . Moreover, this antisymmetry allowed
to summarize all terms proportional to ηna1...a2p−1

..= nµeµ1
a1 . . . e

µ2p−1
a2p−1ηµµ1...µ2p−1 in the

compact form (4.594.59). The antisymmetry of ηµ1...µ2p may be used to simplify (4.594.59)
even further. In particular, we have

eµ1
a1 . . . e

µ2p
a2p
ηµ1...µ2p

∣∣∣
∂M

= 0 (4.60)

on the boundary due to the definition (4.174.17) of the Hodge dual. That is, writing out
eµ1

a1 . . . e
µ2p
a2pηµ1...µ2p

∣∣∣
∂M

in components yields a totally antisymmetric ε-symbol with m
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indices which all are supposed to take their values on the (m−1)-dimensional boundary.
Hence, the antisymmetry of the ε-symbol ultimately implies that eµ1

a1 . . . e
µ2p
a2pηµ1...µ2p

∣∣∣
∂M

vanishes as we claimed in (4.604.60). We insert this relation into (4.594.59) and use the
decomposition of curvature (4.144.14) to conclude that

Sp = −pε
∫

M
ηna1...a2p−1 ∧D(Ka1 + K̃a1) ∧ (Ωa2a3 − εKa2 ∧ K̃a3) ∧ . . .

· · · ∧ (Ωa2p−2a2p−1 − εKa2p−2 ∧ K̃a2p−1) + terms irrelevant on ∂M .

(4.61)

While it is extraordinarily involved to write this action as a boundary term if Qµν ̸= 0,
the calculation simplifies in the metric-compatible case. There, we have Ka = K̃a and

εa1...aqD(Ka1 ∧ · · · ∧Kaq) = qεa1...aqDK
a1 ∧ · · · ∧Kaq (4.62)

for arbitrary integers q. Note that we must include the prefactor 1
q

which originates
from (4.624.62) when writing (4.614.61) as a total derivative. Finally, we use the Bianchi
identity (2.302.30) of curvature on ∂M to conclude that

Sp = −2pε
∫

M
d
([
Ka1 ∧ Ωa2a3 ∧ . . .Ωa2p−2a2p−1

− ε(p− 1)1
3K

a1 ∧Ka2 ∧Ka3 ∧ Ωa4a5 ∧ · · · ∧ Ωa2p−2a2p−1 + . . .

+ (−ε)p−1 1
2p− 1K

a1 ∧ · · · ∧Ka2p−1

]
∧ ηna1...a2p−1

)
+ terms irrelevant on ∂M .

(4.63)

For abbreviating the term in square brackets, we use the binomial theorem and intro-
duce the binomial coefficient (

p

q

)
= p!
q!(p− q)! (4.64)

to obtain

Sp = −2pε
∫

M
d
 p∑

q=1

(
p− 1
q − 1

)
(−ε)q−1

2q − 1 Ka1 ∧ · · · ∧Ka2q−1

∧ Ωa2qa2q+1 ∧ · · · ∧ Ωa2p−2a2p−1 ∧ ηna1...a2p−1

 .

(4.65)

Hence, the Gibbons-Hawking-York term which makes the variational principle of the



4.1. Universal Gibbons-Hawking-York terms for space- and timelike boundaries 101

action Sp on manifolds with boundaries well-defined is

Sp
GHY = −2p

∫
∂M

p∑
q=1

(
p− 1
q − 1

)
(−ε)q

2q − 1K
a1 ∧ · · · ∧Ka2q−1

∧ Ωa2qa2q+1 ∧ · · · ∧ Ωa2p−2a2p−1 ∧ ηna1...a2p−1

∣∣∣∣
∂M

.

(4.66)

For understanding this result, it is important to notice that an explicit calculation of
the Hodge dual (4.174.17) reveals that ηna1...a2p−1

∣∣∣
∂M

is in fact the corresponding Hodge
dual on the boundary. That is, we have

ηna1...a2p−1

∣∣∣
∂M

= γa1b1 . . . γa2p−1b2p−1 ∗∂M (ϕb1 ∧ · · · ∧ ϕb2p−1)

=

√
| det γ|

((m− 1) − (2p− 1))!εa1...a2p−1b1...bm−2pϕ
b1 ∧ · · · ∧ ϕbm−2p .

(4.67)

We may write the result (4.664.66) for the GHY term of the p-th partial action more
compact as

Sp
GHY = −2p

∫
∂M

p∑
q=1

(
p− 1
q − 1

)
(−ε)q

2q − 1

2q−1∧
m=1

Kam

p−1∧
n=q

Ωa2na2n+1 ∧ ηna1...a2p−1

∣∣∣∣
∂M

, (4.68)

which in components takes the form

Sp
GHY = −(2p)!

∫
∂M

dVol∂M

√
| det γ|

p∑
q=1

(
p− 1
q − 1

)
(−ε)q

2q − 1
1

2p−q

2q−1∏
m=1

Kam

[am

p−1∏
n=q

R
a2na2n+1

a2na2n+1] .

(4.69)

The GHY term given in different notations in (4.664.66), (4.684.68) and (4.694.69) is the full GHY
term for the partial actions Sp we defined in (4.554.55) in the presence of curvature and
torsion. By means of (4.564.56), this implies that the GHY term of the full m-dimensional
Lovelock action SL is

SL
GHY =

⌊m−1
2 ⌋∑

p=0
αp(m− 2p− 1)!Sp

GHY . (4.70)

This is, to my knowledge, the first time that the GHY term for the full Lovelock
theory including torsion and curvature is given. It is my original result which has not
been published before. However, there exist results for special cases of the theories
considered here. First and foremost, the GHY term for all terms involved in Lovelock
gravity has been proposed in [106106] and revised in [107107] using a dimensional continua-
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tion method. However, both only consider manifolds with curvature and the authors
of [107107] explicitly emphasize that their method does not extend to torsionful theories.
Hence, our result is a generalization of these boundary terms which are sometimes
called Gibbons-Hawking-Myers terms.

The authors of [107107] gave the GHY terms explicitly for S0, S1 and S2. In order
to confirm that my results reproduce theirs in the limit of vanishing torsion, we thus
calculate Sp

GHY for the first few p. Using the differential form version (4.684.68) of our
result, these GHY terms are found to be

S0
GHY = 0 , (4.71a)

S1
GHY = 2

∫
∂M

εKa ∧ ηna

∣∣∣∣
∂M

, (4.71b)

S2
GHY = 4

∫
∂M

Ka ∧
(
εΩbc − 1

3K
b ∧Kc

)
∧ ηnabc

∣∣∣∣
∂M

, (4.71c)

S3
GHY = 6

∫
∂M

Ka1 ∧
(
εΩa2a3 ∧ Ωa4a5 − 2

3K
a2 ∧Ka3 ∧ Ωa4a5

+ 1
5εK

a2 ∧Ka3 ∧Ka4 ∧Ka5

)
∧ ηna1a2a3a4a5

∣∣∣∣
∂M

(4.71d)

in perfect agreement with the results of [107107]. However, the advantage of my result
is not only that it includes torsion, it furthermore does not require the introduc-
tion of background fields, parametric integrals or dimensional continuation in contrast
to [107107]. Note that S2

GHY given in (4.71c4.71c) is the GHY term of Gauß-Bonnet grav-
ity (4.574.57) in the presence of curvature and torsion since we identified S2 with the
Gauß-Bonnet action. For S0 and S1 = 2κSEH, we confirm the expectation S0

GHY = 0
and S1

GHY = 2κSEH
GHY for which we argued in the beginning of this section.

Beyond the very general results of [106106, 107107], special cases of Lovelock gravity are
routinely studied. Since the sum (4.564.56) which constitutes the Lovelock action only
contains terms beyond Einstein-Hilbert gravity if m ≥ 5, five-dimensional Lovelock
gravity is often considered as the simplest non-trivial case. If the prefactors in this
theory are chosen as α0 = κ, α1 = 2κ and α2 = κ, the Lagrangian is that of a Chern-
Simons theory and the theory is thus called five-dimensional Lovelock-Chern-Simons
gravity. The latter theory was studied even in the presence of torsion in [114114, 115115]
for instance, where an on-shell GHY term was calculated in [115115]. Hence, the GHY
term (4.704.70) derived in this section generalizes the results of [114114, 115115] for on-shell
five-dimensional Lovelock-Chern-Simons gravity as well.

The general methods developed in section 4.14.1 may be applied to any action de-
pending on curvature, torsion and non-metricity. The examples we considered in this
subsection illustrate how the GHY term is calculated for such theories. This con-
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cludes the discussion of GHY terms for space- and timelike boundaries. We apply the
methods used in section 4.14.1 to lightlike boundaries next.

4.2. Universal Gibbons-Hawking-York terms for
lightlike boundaries

The method for deriving the GHY term for lightlike boundaries is the same as for space-
and timelike boundaries which we discussed in section 4.14.1. That is, we first decompose
curvature, torsion and non-metricity on lightlike hypersurfaces and subsequently inter-
pret the boundary ∂M as a lightlike hypersurface. We study the Lagrange multiplier
method on lightlike boundaries in section 4.2.24.2.2 and derive a universal lightlike GHY
term from it. However, we already discussed in section 3.23.2 that the description of light-
like hypersurfaces is more involved than the space- and timelike cases, which is mainly
due to the fact that the lightlike normal vector field k is both normal and tangent to
lightlike hypersurfaces. Consequently, the derivation of lightlike GHY terms is more
involved than the calculation of space- and timelike ones. Lightlike GHY terms have
been studied in literature only very rarely, even if manifolds with vanishing torsion and
non-metricity are considered. Hence, my results presented in this section yield entirely
new insights on lightlike GHY terms. In particular, it is an entirely novel approach
to apply my method for calculating GHY terms which we developed in the previous
section to lightlike boundaries. My results for the such obtained universal lightlike
GHY term are original and I have not published them so far. We start deriving this
term by decomposing the field strengths of connection, coframe and metric in analogy
to the space- and timelike case.

4.2.1. Decomposition of curvature, torsion and non-metricity

In section 3.23.2 we discussed lightlike hypersurfaces immersed in m-dimensional mani-
folds. One of the advantages of our normal vector approach to lightlike hypersurfaces
was that the decompositions of tensors into boundary tangent and non-tangent con-
tributions in m− 1 dimensions was already contained in the (m− 2)-dimensional de-
composition. The latter, however, turned out to be more convenient for calculational
purposes since we are able to define a non-degenerate metric only on the immersed
(m−2)-dimensional hypersurface. On the latter hypersurface, we identified eA = eµ

Aϑµ

with the hypersurface frame, while both k and l are vectors normal and non-tangent to
this hypersurface. We will work in this framework in the following, but it is important
to keep in mind that we need to describe the (m − 1)-dimensional hypersurface in
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the end, since only this hypersurface may be used to model the manifold’s boundary.
Recall that k was both normal and tangent to the (m− 1)-dimensional hypersurface,
while l was non-normal and non-tangent. We will return to this special behavior of
lightlike hypersurfaces later.

At this point, we use that both perspectives on lightlike hypersurfaces yield the same
decomposition of tensors. Hence, we use the decompositions of the field strengths Deµ

A,
Kµ = Dkµ and Lµ = Dlµ we already discussed in section 3.2.23.2.2 and derive the de-
compositions of curvature, torsion and non-metricity from them. Among the latter
decompositions, the evaluation of non-metricity is particularly straightforward since
most of its projections are contained in the terms discussed in section 3.2.23.2.2. From the
results of this section we immediately read off

kµkνQµν ≡ Qkk = 2kµDk
µ ,

lµlνQµν ≡ Qll = 2lµDlµ ,

kµlνQµν = lµkνQµν = K + L .

eµ
Ak

νQµν = kµeν
AQµν = KA − K̃A ,

eµ
Al

νQµν = lµeν
AQµν = LA − L̃A , (4.72)

These projections determine most of the terms in the decomposition of non-metricity,
which we obtain by contracting Qµν with the lightlike unity decomposition (3.873.87). In
particular, simplifying Qµν = δα

µδ
β
νQαβ by means of non-metricity’s symmetry yields

Qµν =eA
µ e

B
ν (eα

Ae
β
BQαβ) + 2εeA

µkν(eα
Al

βQαβ) + 2εeA
µ lν(eα

Ak
βQαβ)

+ ε2kµkν(lαlβQαβ) + ε2lµlν(kαkβQαβ) + 2ε2lµkν(kαlβQαβ) ,
(4.73)

so that the only projection left to determine is eµ
Ae

ν
BQµν . To that effect, we exploit the

definitions Qµν = −Dgµν and σAB = eµ
Ae

ν
Bgµν of the non-metricity one-form and the

hypersurface metric. Using the connection transformation law (3.893.89), we conclude

eµ
Ae

ν
BQµν = −D(eµ

Ae
ν
Bgµν) + gµνe

µ
ADe

ν
B + gµνe

ν
BDe

µ
A = QAB . (4.74)

Hence, the projection of non-metricity to the (m − 2)-dimensional hypersurface in
all indices yields the hypersurface non-metricity QAB

..= −DσAB. This is what we
expect, since the indices of the non-metricity one-form are tensor indices unlike those
of curvature and torsion.

For determining the decomposition of the torsion two-form, we use its definition
T µ = Dθµ and begin by projecting T µ to the normal direction by contracting it
with k. This yields

kµT
µ = D(kµθ

µ) −Dkµ ∧ θµ . (4.75)
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We already discussed the terms involved in this decomposition. On the one hand,
we decomposed K̃µ = Dkµ in (3.923.92), on the other hand k̃ = kµθ

µ is just the normal
covector which we identified with 1

ε
ϕ in (3.733.73). Collecting these results, we obtain

kµT
µ = 1

ε
Dϕ− K̃A ∧ ϕA + L ∧ ϕ+ 1

2Qkk ∧ ψ . (4.76)

We may perform the same calculation for lµT µ, but this calculation is simplified if we
recall that all equations are symmetric with respect to the exchange of k and l. Hence,
we immediately obtain

lµT
µ = 1

ε
Dψ − L̃A ∧ ϕA + K ∧ ψ + 1

2Qll ∧ ϕ , (4.77)

where we use that ψ = εl̃ and ϕ = εk̃ are aligned with l̃ and k̃, respectively, see (3.733.73).
We calculate the hypersurface tangent projection eA

µT
µ of the torsion two-form anal-

ogous to the normal projections by using the definition of T µ to obtain

eA
µT

µ = D(eA
µ θ

µ) −DeA
µ ∧ θµ , (4.78)

where we know the decomposition of all the terms included in this projection from
section 3.23.2. In particular, we found eA

µ θ
µ = ϕA in (3.733.73) and derived the decomposition

of Dea
µ in (3.963.96) to be DeA

µ = −εkµL
A − εlµK

A. Thus, the hypersurface tangent
projection of the torsion two-form is

eA
µT

µ = TA + LA ∧ ϕ+KA ∧ ψ , (4.79)

where we introduce the torsion two-form TA ..= DϕA of the (m − 2)-dimensional
hypersurface. Hence, we have collected all the projections needed to determine the
decomposition of the torsion two-form

T µ = δµ
νT

ν = eµ
A(eA

ν T
ν) + εkµ(lνT ν) + εlµ(kνT

ν) (4.80)

which we obtain by means of the lightlike unity decomposition (3.873.87).

Using the unity decomposition (3.873.87) once more, we evaluate Ωµ
ν = δµ

αδ
β
ν Ωα

β to
obtain the curvature decomposition

Ωµ
ν =eµ

Ae
B
ν (eA

αe
β
BΩα

β) + εeµ
Akν(eA

α l
βΩα

β) + εeµ
Alν(eA

αk
βΩα

β)

+ εkµeA
ν (lαeβ

AΩα
β) + εlµeA

ν (kαe
β
AΩα

β) + ε2kµkν(lαlβΩα
β)

+ ε2lµlν(kαk
βΩα

β) + ε2kµlν(lαkβΩα
β) + ε2lµkν(kαl

βΩα
β) ,

(4.81)
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and we need to determine the projections in the parentheses of the latter equation
analogous to the decompositions of torsion and non-metricity. These projections are
contained in the generalized Ricci identity (3.973.97) of lightlike hypersurfaces. We will
only discuss one example for this calculation explicitly, while all remaining projections
implicitly contained in (3.973.97) are evaluated analogously. For this example, we obtain
the three projections eB

µ e
ν
AΩµ

ν , kµe
ν
AΩµ

ν and lµe
ν
AΩµ

ν from contracting

D2eµ
A = Ωµ

νe
ν
A − ΩB

Ae
µ
B (4.82)

with eB
µ , kµ and lµ, respectively. We first consider the projection to the (m − 2)-

dimensional hypersurface in both indices for which we obtain

eA
µ e

ν
BΩµ

ν = eA
µD

2eµ
B + eA

µ ΩC
Be

µ
C = D(eA

µDe
µ
B) −DeA

µ ∧Deµ
B + ΩA

B . (4.83)

Using the transformation law (3.893.89) of the connection one-form to hypersurfaces, we
have eA

µDe
µ
B = 0 and the first term on the right hand side of the latter projection

vanishes. Hence, it remains to insert the decompositions of Deµ
B and DeA

µ which we
constructed in (3.953.95) and (3.963.96), respectively. Collecting these results, the projection
of curvature to the (m− 2)-dimensional hypersurface is

eA
µ e

ν
BΩµ

ν = ΩA
B − εKA ∧ L̃B − εLA ∧ K̃B . (4.84)

We proceed analogously to derive the normal projected component of the Ricci iden-
tity (4.824.82). By means of the normality condition g(k, eA) = kµe

µ
A = 0 we have

kµe
ν
AΩµ

ν = kµD
2eµ

A + kµΩB
Ae

µ
B = D(kµDe

µ
A) −Dkµ ∧Deµ

A . (4.85)

We derived the lightlike decomposition of K̃µ = Dkµ in (3.923.92), involving the extrin-
sic curvature one-form K̃A = −kµDe

µ
A as the tangent component. Furthermore, we

use (3.953.95) for decomposing Deµ
A once more, yielding

kµe
ν
AΩµ

ν = −DK̃A + εK̃A ∧ L + ε

2 L̃A ∧Qkk (4.86)

as the decomposition of kµe
ν
AΩµ

ν . Finally, the Ricci identity (4.824.82) induces the decom-
position of lµeν

AΩµ
ν . We may obtain this projection immediately from the kµe

ν
AΩµ

ν

decomposition by using the symmetry of k and l in the (m−2)-dimensional formalism.
This yields

lµe
ν
AΩµ

ν = −DL̃A + εL̃A ∧ K + ε

2K̃A ∧Qll (4.87)
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with which we derived all the decompositions implied by the Ricci identity (4.824.82).

We use the remaining Ricci identities for lightlike hypersurfaces that are summarized
in (3.973.97) analogously to calculate all projections of the curvature two-form. This yields,
in summary,

eA
µ e

ν
BΩµ

ν = ΩA
B − εKA ∧ L̃B − εLA ∧ K̃B ,

kµe
ν
AΩµ

ν = −DK̃A + εK̃A ∧ L + ε

2 L̃A ∧Qkk ,

eA
µk

νΩµ
ν = DKA + εKA ∧ K + ε

2L
A ∧Qkk ,

lµe
ν
AΩµ

ν = −DL̃A + εL̃A ∧ K + ε

2K̃A ∧Qll ,

eA
µ l

νΩµ
ν = DLA + εLA ∧ L + ε

2K
A ∧Qll ,

kµl
νΩµ

ν = DL + LA ∧ K̃A − ε

4Qll ∧Qkk ,

lµk
νΩµ

ν = DK +KA ∧ L̃A − ε

4Qkk ∧Qll ,

kµk
νΩµ

ν = 1
2DQkk +KA ∧ K̃A − ε

2(K − L) ∧Qkk ,

lµl
νΩµ

ν = 1
2DQll + LA ∧ L̃A − ε

2(L − K) ∧Qll .

(4.88)

With these projections, we have finally collected all the decompositions needed for
calculating the GHY term of an action constructed from curvature, torsion and non-
metricity on manifolds with a lightlike boundary. We thus proceed by deriving the
universal GHY term for these actions, which serves as a guideline as well for those
cases in which the Lagrange multiplier formalism is not applicable.

4.2.2. Universal Gibbons-Hawking-York term from Lagrange
multipliers

In order to examine general properties of the GHY term on manifolds with light-
like boundaries, we consider generic theories built from curvature, torsion and non-
metricity. That is, we investigate actions of the form

S[ωµ
ν , θ

µ, gµν ] =
∫

M
L(Ωµ

ν , T
µ, Qµν) (4.89)

and do not specify the explicit form of the Lagrangian L(Ωµ
ν , T

µ, Qµν). In equivalence
to the space- and timelike case discussed in section 4.1.24.1.2, we introduce the Lagrange
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multiplier two-forms φ ν
µ and tµ as well as the one-form qµν to define the action

SLagr[ωµ
ν , θ

µ, gµν , φ
ν

µ , ϱµ
ν , tµ, τ

µ, qµν , σµν ]

=
∫

M
[L(ϱµ

ν , τ
µ, σµν) + ∗φ ν

µ ∧ (Ωµ
ν − ϱµ

ν) + ∗tµ ∧ (T µ − τµ) + ∗qµν ∧ (Qµν − σµν)] .

(4.90)

The two-forms ϱµ
ν , τµ and the one-form σµν are auxiliary fields introduced such that

the equations of motion of the Lagrange multipliers are

Ωµ
ν = ϱµ

ν , T µ = τµ , Qµν = σµν . (4.91)

While everything in the Lagrange multiplier formalism for lightlike GHY terms is
equivalent to the space- and timelike cases so far, the decomposition of the Lagrange
multiplier action must be evaluated with respect to the unity decomposition (3.873.87)
on lightlike hypersurfaces. That is, we interpret the boundary ∂M as a lightlike
hypersurface and insert the lightlike decompositions (4.734.73), (4.804.80) and (4.814.81) of non-
metricity, torsion and curvature into the action (4.904.90). In particular, the contraction
of these field strengths with their Lagrange multipliers decomposes as

∗φ ν
µ ∧ Ωµ

ν =(eµ
Ae

B
ν ∗ φ ν

µ ) ∧ (eA
αe

β
BΩα

β) + ε(eµ
Akν ∗ φ ν

µ ) ∧ (eA
α l

βΩα
β)

+ ε(eµ
Alν ∗ φ ν

µ ) ∧ (eA
αk

βΩα
β) + ε(kµeA

ν ∗ φ ν
µ ) ∧ (lαeβ

AΩα
β)

+ ε(lµeA
ν ∗ φ ν

µ ) ∧ (kαe
β
AΩα

β) + ε2(kµkν ∗ φ ν
µ ) ∧ (lαlβΩα

β)

+ ε2(lµlν ∗ φ ν
µ ) ∧ (kαk

βΩα
β) + ε2(kµlν ∗ φ ν

µ ) ∧ (lαkβΩα
β)

+ ε2(lµkν ∗ φ ν
µ ) ∧ (kαl

βΩα
β) ,

∗tµ ∧ T µ =(eµ
A ∗ tµ) ∧ (eA

ν T
ν) + ε(kµ ∗ tµ) ∧ (lνT ν) + ε(lµ ∗ tµ) ∧ (kνT

ν) ,

∗qµν ∧Qµν =(eA
µ e

B
ν ∗ qµν) ∧ (eα

Ae
β
BQαβ) + 2ε(eA

µkν ∗ qµν) ∧ (eα
Al

βQαβ)

+ 2ε(eA
µ lν ∗ qµν) ∧ (eα

Ak
βQαβ) + ε2(kµkν ∗ qµν) ∧ (lαlβQαβ)

+ ε2(lµlν ∗ qµν) ∧ (kαkβQαβ) + 2ε2(lµkν ∗ qµν) ∧ (kαlβQαβ)

(4.92)

on lightlike hypersurfaces. Recall that we decompose these contractions since we
need to single out the boundary terms contained in the Lagrangian. We obtain these
boundary contributions by means of Stokes’ theorem (2.212.21). Hence, only those terms in
the lightlike projections of curvature, torsion and non-metricity containing derivatives
yield non-trivial boundary terms. Using the decompositions we derived in section 4.2.14.2.1,
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the relevant terms are thus

∗φ ν
µ ∧ Ωµ

ν = ∗ φ B
A ∧ ΩA

B + ε ∗ φAk ∧DLA + ε ∗ φAl ∧DKA

− ε ∗ φkA ∧DL̃A − ε ∗ φlA ∧DK̃A + ε2

2 ∗ φkk ∧DQll

+ ε2

2 ∗ φll ∧DQkk + ε2 ∗ φkl ∧DK + ε2 ∗ φlk ∧DL

+ terms irrelevant on ∂M ,

(4.93a)

∗tµ ∧ T µ =(eµ
A ∗ tµ) ∧ TA + ε(kµ ∗ tµ) ∧DΨ + ε(lµ ∗ tµ) ∧Dϕ

+ terms irrelevant on ∂M ,
(4.93b)

∗qµν ∧Qµν =(eA
µ e

B
ν ∗ qµν) ∧QAB + terms irrelevant on ∂M , (4.93c)

where we introduce the abbreviations

∗φ B
A

..= eµ
Ae

B
ν ∗ φ ν

µ ,

∗φkA ..= kµeA
ν ∗ φ ν

µ ,

∗φll
..= lµlν ∗ φ ν

µ ,

∗φAk
..= eµ

Akν ∗ φ ν
µ ,

∗φlA ..= lµeA
ν ∗ φ ν

µ ,

∗φkl
..= kµlν ∗ φ ν

µ ,

∗φAl
..= eµ

Alν ∗ φ ν
µ ,

∗φkk
..= kµkν ∗ φ ν

µ ,

∗φlk
..= lµkν ∗ φ ν

µ

(4.94)

for the Lagrange multipliers of curvature.

We reinstate the decompositions (4.934.93) into the Lagrange multiplier action (4.904.90)
to obtain the boundary relevant contribution of SLagr as

SLagr =
∫

∂M

(
ωA

B ∧ ∗φ B
A + εLA ∧ ∗φAk + εKA ∧ ∗φAl − εL̃A ∧ ∗φkA − εK̃A ∧ ∗φlA

+ ε2

2 Qll ∧ ∗φkk + ε2

2 Qkk ∧ ∗φll + ε2K ∧ ∗φkl + ε2L ∧ ∗φlk + ϕA ∧ (eµ
A ∗ tµ)

+ Ψ ∧ (kµ ∗ tµ) + ϕ ∧ (lµ ∗ tµ) + (−1)mσAB ∧ (eA
µ e

B
ν ∗ qµν)

)∣∣∣∣
∂M

+ terms irrelevant on ∂M ,

(4.95)

where we have used Stokes’ theorem (2.212.21). For obtaining the GHY term induced by
this boundary integral, we impose the Dirichlet boundary conditions

δωµ
ν

∣∣∣
∂M

= 0 , δθµ
∣∣∣
∂M

= 0 , δgµν

∣∣∣
∂M

= 0 . (4.96)

We may express these boundary conditions in terms of the boundary fields as proven
in [2020], but for this purpose we need to recall that the lightlike normal vector field k

is tangent to the (m − 1)-dimensional boundary as well. Hence, we need to impose
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boundary conditions on ϕ = εk̃ as well, and the Dirichlet boundary conditions become

δωA
B = 0 , δϕA = 0 , δϕ = 0 , δσAB = 0 . (4.97)

Furthermore, we recall that Ψ = εl̃ is non-tangent to the (m−1)-dimensional boundary
and thus we have Ψ

∣∣∣
∂M

= 0. Collecting these results, we finally read off the GHY
term from (4.954.95) and conclude

SGHY = −ε
∫

∂M

(
LA ∧ ∗φAk +KA ∧ ∗φAl − L̃A ∧ ∗φkA − K̃A ∧ ∗φlA

+ ε

2Qll ∧ ∗φkk + ε

2Qkk ∧ ∗φll + εK ∧ ∗φkl + εL ∧ ∗φlk

)∣∣∣∣
∂M

.
(4.98)

This is the universal GHY term for the Lagrange multiplier action (4.904.90) considered
on manifolds with lightlike boundaries.

We obtain the GHY term of the generic action (4.264.26) from the Lagrange multiplier
result (4.984.98) by calculating the on-shell values of the Lagrange multipliers φ ν

µ . These
are obtained from variations of the action (4.904.90) with respect to the auxiliary fields ϱµ

ν .
To see this, we enforce Hamilton’s principle in the variation δϱµ

ν
SLagr = 0 which yields

the constraint ∗φ ν
µ ∧ δϱµ

ν = δϱµ
ν
L(ϱµ

ν). Analogous to the non-lightlike case, it will
be useful for calculational purposes to decompose the Lagrangian into boundary tan-
gent and non-tangent contributions. We therefore need the projected version of the
latter constraint as well. Therefore, we use the unity decomposition (3.873.87) on light-
like hypersurfaces to decompose the Lagrange multiplier action (4.904.90). Subsequently
invoking Hamilton’s principle yields

∗φ B
A ∧ δϱA

B = δϱA
B
L ,

∗φkA ∧ δϱlA = 1
ε
δϱlA

L ,

∗φll ∧ δϱkk = 1
ε2 δϱkk

L ,

∗φAk ∧ δϱAl = 1
ε
δϱAlL ,

∗φlA ∧ δϱkA = 1
ε
δϱkA

L ,

∗φlk ∧ δϱkl = 1
ε2 δϱkl

L ,

∗φAl ∧ δϱAk = 1
ε
δϱAkL ,

∗φkk ∧ δϱll = 1
ε2 δϱll

L ,

∗φkl ∧ δϱlk = 1
ε2 δϱlk

L .

(4.99)
We define the abbreviations of the projections of ϱµ

ν analogous to those of φµ
ν in (4.944.94).

Using the constraints (4.994.99), we are able to calculate the on-shell values of the La-
grange multipliers for a given action of the form (4.894.89). Provided that these Lagrange
multipliers do not depend on the remaining fields as we discussed in the space- and
timelike case, we insert their on-shell values into the GHY term (4.984.98). Hence, we
have found (4.984.98) to be the universal GHY term of the generic action (4.894.89) describ-
ing theories which depend on curvature, torsion and non-metricity on manifolds with
lightlike boundaries. This is the first time ever that this result is found.
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The universal GHY term (4.984.98) of manifolds with lightlike boundaries may be seen as
a straightforward generalization of the result (4.264.26) for space- and timelike boundaries.
Indeed, all the extrinsic curvatures appear in (4.984.98) in addition to the twice normal
projected components of non-metricity. This is exactly what we found in the space-
and timelike case. From this analogy to the non-lightlike case, we expect that only
Lagrangians containing curvature require us to introduce a GHY term. This is indeed
what we find for lightlike boundaries in (4.984.98) as well. Note that the calculation of the
lightlike universal GHY term (4.984.98) by means of evaluating the Lagrange multiplier
constraints (4.994.99) requires us to calculate more variations of a given Lagrangian but is
no more complicated than the non-lightlike case otherwise. The efficiency of deriving
GHY terms thus transfers from the space- and timelike to the lightlike case. This
is remarkable due to the asymmetry which exists in the research on lightlike and
non-lightlike GHY terms. Therefore, the methods developed in this chapter advance
the knowledge about lightlike GHY terms even further than for space- and timelike
boundaries.

There is, however, a subtle conceptional difference of the lightlike and the non-
lightlike GHY terms. This difference concerns the role of ε. For non-lightlike bound-
aries, ε allowed us to fix the likeness of the boundary to be space- or timelike and
thereby introduced relative signs to the GHY term (4.264.26). In contrast to that, ε is
the relative orientation of the normal vectors k and l in the lightlike case, defined by
g(k, l) = 1

ε
. That is, if we change either the sign of k or l, we simultaneously map ε

to −ε. Therefore, we find the power of ε in the universal lightlike GHY term (4.984.98)
to match the power of kµlν such that a change of sign in either k or l leaves the GHY
term unaffected.

Let us illustrate how the universal result (4.984.98) provides an effective method for the
calculation of lightlike GHY terms by considering specific theories of gravity in the
following subsection.

4.2.3. Examples for lightlike Gibbons-Hawking-York terms

In this subsection, we derive the lightlike GHY term for the same examples which
we discussed for space- and timelike boundaries in section 4.1.34.1.3. This enables us to
compare the lightlike GHY terms calculated in this section with their non-lightlike
counterparts. We need to study this analogy in order to verify that the lightlike
results are reasonable, since lightlike GHY terms have only been studied for very few
theories in literature so far, see [116116, 117117] for examples. The lightlike GHY terms
I derive in this section are thus entirely new. Moreover, I have not published these
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results so far, they are original results presented in this thesis for the first time. Let
us begin by deriving the lightlike GHY term for the simplest non-trivial case which is
Einstein-Hilbert gravity.

Einstein-Hilbert gravity

The action of Einstein-Hilbert gravity on an m-dimensional manifold M with no
boundary is

SEH = 1
2κ

∫
M

dmx
√

| det g|R = 1
2κ

∫
M
η ν

µ ∧ Ωµ
ν , (4.100)

where we derived the differential form version of the action by rewriting (4.294.29) as (4.324.32)
in section 4.1.34.1.3. We may re-construct the component version of the Einstein-Hilbert
action from its differential form expression by writing the curvature two-form in terms
of its local tensor components Rµ

νσρ
..= Ωµ

ν(ϑσ, ϑρ) as Ωµ
ν = 1

2R
µ

νσρθ
σ ∧ θρ. From

these tensor components we obtain the Ricci scalar by contracting R = gνρRµ
νµρ.

Reading off the Einstein-Hilbert Lagrangian LEH(Ωµ
ν) from the action (4.1004.100), we use

the decomposition of curvature (4.814.81) on lightlike hypersurfaces to obtain

LEH(Ωµ
ν) = 1

2κη
ν

µ ∧ Ωµ
ν

= 1
2κ
(
η B

A ∧ (eA
αe

β
BΩα

β) + εηAk ∧ (eA
α l

βΩα
β) + εηAl ∧ (eA

αk
βΩα

β)

+ εηkA ∧ (lαeβ
AΩα

β) + εηlA ∧ (kαe
β
AΩα

β) + ε2ηkk ∧ (lαlβΩα
β)

+ ε2ηll ∧ (kαk
βΩα

β) + ε2ηkl ∧ (lαkβΩα
β) + ε2ηlk ∧ (kαl

βΩα
β)
)
,

(4.101)

where we introduce the abbreviations

η B
A

..= eµ
Ae

B
ν η

ν
µ ,

ηkk
..= kµkνη

ν
µ ,

ηll
..= lµlνη

ν
µ ,

ηAk
..= eµ

Akνη
ν

µ ,

ηAl
..= eµ

Alνη
ν

µ ,

ηkA ..= kµeA
ν η

ν
µ ,

ηlA ..= lµeA
ν η

ν
µ ,

ηkl
..= kµlνη

ν
µ ,

ηlk
..= lµkνη

ν
µ .

(4.102)

For calculating the Lagrange multipliers φ ν
µ , we consider the auxiliary field Lagrangian

LEH(ϱµ
ν) in the decomposition (4.1014.101) and invoke the constraints (4.994.99) to conclude

∗φ B
A = 1

2κη
B

A ,

∗φkA = 1
2κη

kA ,

∗φll = 1
2κηll ,

∗φAk = 1
2κηAk ,

∗φlA = 1
2κη

lA ,

∗φlk = 1
2κηlk ,

∗φAl = 1
2κηAl ,

∗φkk = 1
2κηkk ,

∗φkl = 1
2κηkl .

(4.103)
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We obtain the lightlike GHY term from the latter Lagrange multipliers by inserting
their on-shell values (4.1034.103) into the universal expression (4.984.98) of the lightlike GHY
term. This yields

SEH
GHY = − ε

2κ

∫
∂M

(
(LA + L̃A) ∧ ηAk + (KA + K̃A) ∧ ηAl + ε(K − L) ∧ ηkl

)∣∣∣
∂M

,

(4.104)

where we have used the antisymmetry of ηµν = ∗(θµ ∧ θν) to simplify the integral. We
may simplify this even further by analyzing the Hodge dual (4.174.17) in ηµν = ∗(θµ ∧ θν).
For the projection ηAk we have

ηAk

∣∣∣
∂M

=

√
| det g|

(m− 2)!e
µ
Ak

νεµνσ1...σm−2e
σ1
A1 . . . e

σm−2
Am−2ϕ

A1 ∧ · · · ∧ ϕAm−2 . (4.105)

Due to the contraction with eµ
A, we observe that in total (m− 1) indices of the totally

antisymmetric ε-symbol take their values on the (m− 2)-dimensional manifold. Thus,
we have ηAk

∣∣∣
∂M

= 0. For the second contraction of ηµν appearing in (4.1044.104), we obtain

ηAl

∣∣∣
∂M

=

√
| det g|

(m− 3)!e
µ
Al

νεµνσ1...σm−2εl
σ1eσ2

A2 . . . e
σm−2
Am−2ϕ ∧ ϕA2 ∧ · · · ∧ ϕAm−2 , (4.106)

where we use that ϕ = εk̃ is tangent to Σ. But two of the indices of εµνσ1...σm−2

in (4.1064.106) are contracted with the components of the same vector l. Using the total
antisymmetry of the ε-symbol, this implies that ηAl

∣∣∣
∂M

= 0 vanishes as well. Hence,
(4.1044.104) simplifies considerably and yields

SEH
GHY = ε2

2κ

∫
∂M

(K − L) ∧ ηlk

∣∣∣
∂M

(4.107)

as our final result for the lightlike GHY term of Einstein-Hilbert gravity on manifolds
with curvature, torsion and non-metricity in differential form notation. To my knowl-
edge, this is the first time that the lightlike GHY term of Einstein-Hilbert gravity has
been derived in such generality.

For understanding this result, it is instructive to further analyze ηlk

∣∣∣
∂M

. By means
of the Hodge duality (4.174.17) we have

ηlk

∣∣∣
∂M

=

√
| det g|

(m− 2)! l
µkνεµνσ1...σm−2e

σ1
A1 . . . e

σm−2
Am−2ϕ

A1 ∧ · · · ∧ ϕAm−2

=

√
| detσ|

(m− 2)!εA1...Am−2ϕ
A1 ∧ · · · ∧ ϕAm−2 .

(4.108)
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But this is just the Hodge dual of 1 on the (m − 2)-dimensional hypersurface, which
is related to its volume element dVolm−2 = ϕ0 ∧ · · · ∧ ϕm−3 as ηlk

∣∣∣
∂M

= ∗(m−2)1 =√
| detσ|dVolm−2. Using this identity, it is straightforward to evaluate the lightlike

GHY term of Einstein-Hilbert gravity (4.1074.107) in components, for which we obtain

SEH
GHY = ε2

2κ

∫
∂M

dVol∂M

√
| detσ| (K(l) − L(l))

= ε2

2κ

∫
∂M

dVol∂M

√
| detσ| lµ(Kµ − Lµ) ,

(4.109)

where dVol∂M = ϕ∧ϕ0 ∧· · ·∧ϕm−3 = ϕ∧dVolm−2 is the boundary volume form. From
section 3.2.23.2.2 we recall that K = −L in the metric-compatible case Qµν = 0. Thus, the
GHY terms simplifies to

SEH,Q=0
GHY = −ε2

κ

∫
∂M

dVol∂M

√
| detσ|L(l) (4.110)

if we consider a metric-compatible theory.

For interpreting the result (4.1104.110), recall that we identified κ = εK(k) as the surface
gravity of a black hole in section 3.2.23.2.2. Likewise, one might call λ ..= εL(l) = εkµl

ν∇νl
µ

the l-surface gravity of the black hole. In the few publications which derived the
lightlike GHY term of Einstein-Hilbert gravity, the standard surface gravity κ of black
holes appears in the result instead of the l-surface gravity λ, see [116116, 117117]. To see
that our lightlike GHY term (4.1104.110) reproduces the results of [116116, 117117], one needs to
carefully compare the respective attempts to lightlike hypersurfaces. In particular, we
defined hypersurfaces by means of a normal vector field in section 33, while [116116, 117117]
both use the constant function approach for describing hypersurfaces. The constant
function approach yields a normal covector which defines the hypersurface, although
this is not explicitly analyzed in [116116] and [117117] since both papers only use tensor
components. Recall that we discussed this in detail in section 3.23.2.

There is, however, a subtlety involved in going from the vector field to the covector
field approach which is special for lightlike hypersurfaces. One could define l̃ = ♭(l) to
be the covector tangent to the hypersurface if k is its normal vector, which is reasonable
since l̃ is the covector dual of k. Indeed, we found εl̃(k) = 1 using the identifications
in (3.733.73). However, we used the metric to define the notions of being tangent or
normal to a hypersurface for vector fields. In this respect, it is appropriate to use the
metric dual k̃ = ♭(k) instead of the covector dual for defining the direction which is
both normal and tangent to the hypersurface. This is the choice we made here. If
we instead chose l̃ to define the normal covector direction of hypersurfaces, we would



4.2. Universal Gibbons-Hawking-York terms for lightlike boundaries 115

have obtained the surface gravity term −εK(k) instead of the l-surface gravity εL(l) in
the component version (4.1104.110) of the lightlike GHY term. This choice has no physical
consequences due to the symmetry of k and l in the (m − 2)-dimensional formalism.
However, our treatment of hypersurfaces in differential form notation in chapter 33
allows to define all of these notions entirely self-consistently, and in particular to
distinguish the terms normal and non-tangent for lightlike hypersurfaces. This clarity
partially gets lost in component notation, where the difference of metric dual and
covector dual is often disregarded. Hence, our result (4.1104.110) is the entirely analogous
expression of the GHY term found in [116116, 117117] which is consistent with the definitions
of lightlike hypersurfaces we gave in section 3.23.2.

Note that all of this discussion is only necessary since we needed to derive the
component expression (4.1104.110) of the lightlike Einstein-Hilbert GHY term (4.1074.107) in
order to compare to [116116, 117117]. The differential form result (4.1074.107) is entirely valid no
matter if we choose the covector dual l̃ or the metric dual k̃ = ♭(k) of the normal vector
field k to be tangent to hypersurfaces55. We find this universality of the differential form
GHY term since the integral in (4.1074.107) still contains the pull-back to the boundary,
and this pull-back makes the choice of k̃ or l̃ as a tangent one-form explicit. Hence,
the result (4.1074.107) is the lightlike GHY term of Einstein-Hilbert gravity independently
of this choice. This is the first time that the lightlike Einstein-Hilbert GHY term
has been calculated in the general differential form notation which is independent
of the choice of a tangent one-form. Furthermore, (4.1074.107) does not only generalize
the results of [116116, 117117] to differential forms, it additionally is the full lightlike GHY
term on manifolds which are allowed to have torsion and non-metricity in addition to
curvature. It is a major advantage of the formalism developed in the previous sections
that we obtained this general lightlike GHY term of Einstein-Hilbert gravity by a
comparably simple calculation.

Four-dimensional Chern-Simons modified gravity

The action SCSMG = SEH + SCS of four-dimensional Chern-Simons modified gravity
is the sum of the four-dimensional Einstein-Hilbert action (4.1004.100) discussed in the
previous example and the Chern-Simons modification

SCS = 1
8κ

∫
M
d4xχ ∗RR = 1

4κ(−1)ind g
∫

M
χΩµ

ν ∧ Ων
µ . (4.111)

5Note that ηAk
∣∣
∂M = 0 and ηAl

∣∣
∂M = 0 still hold in this case, but the arguments in the proofs of

these equations need to be interchanged if the opposite choice is made.
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The Lagrange multipliers φ ν
µ of curvature are calculated by ∗φ ν

µ ∧ δϱµ
ν = δϱµ

ν
L(ϱµ

ν),
which by means of the Lagrangian LCS(Ωµ

ν) = 1
4κ

(−1)ind gχΩµ
ν ∧ Ων

µ yields

∗φ ν
µ = 1

2κ(−1)ind gχϱν
µ . (4.112)

We observe that ∗φ ν
µ clearly depends on the auxiliary field ϱµ

ν , and thus we need to
calculate the lightlike GHY term of four-dimensional Chern-Simons modified gravity
explicitly without using the Lagrange multiplier method. This explicit calculation
is performed by first decomposing the Lagrangian into boundary tangent and non-
tangent contributions and subsequently integrating the decomposed Lagrangian by
means of Stokes’ theorem.

The decomposition of the Lagrangian is obtained by inserting the lightlike curvature
decomposition (4.814.81) into (4.1114.111) which yields

SCS = 1
4κ(−1)ind g

∫
M
χ
(
(eA

αe
β
BΩα

β) ∧ (eµ
Ae

B
ν Ων

µ) + 2ε(eA
α l

βΩα
β) ∧ (eµ

AkνΩν
µ)

+ 2ε(eA
αk

βΩα
β) ∧ (eµ

AlνΩν
µ) + 2ε2(kαk

βΩα
β) ∧ (lµlνΩν

µ)

+ ε2(lαkβΩα
β) ∧ (kµlνΩν

µ) + ε2(kαl
βΩα

β) ∧ (lµkνΩν
µ)
)
,

(4.113)

where we used the symmetry Ωµ
ν ∧ Ων

µ = Ων
µ ∧ Ωµ

ν of the Lagrangian to sim-
plify (4.1134.113). Recall that in (4.884.88) we summarized all of the projections of curvature
which are contained in (4.1134.113). Inserting these projections into (4.1134.113) and re-grouping
the terms containing derivatives yields

SCS = 1
4κ(−1)ind g

∫
M
χ
(

−2εDKA ∧DL̃A − 2εDLA ∧DK̃A

+ ε2DK ∧DK + ε2DL ∧DL

+ ε2

2 DQkk ∧DQll − ε3

2 D [(K − L) ∧Qkk ∧Qll]

+ ε2D
[
KA ∧ K̃A ∧Qll + LA ∧ L̃A ∧Qkk

]
+ 2ε2D

[
KA ∧ L̃A ∧ K + LA ∧ K̃A ∧ L

])
+ terms irrelevant on ∂M .

(4.114)

Finally, we apply Stokes’ theorem (2.212.21) to obtain the lightlike GHY term of four-
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dimensional Chern-Simons modified gravity

SCS
GHY = ε

4κ(−1)ind g
∫

∂M
χ
(
KA ∧DL̃A + L̃A ∧DKA + LA ∧DK̃A + K̃A ∧DLA

− εK ∧DK − εL ∧DL − ε

4Qkk ∧DQll − ε

4Qll ∧DQkk

+ ε2

2 (K − L) ∧Qkk ∧Qll − εKA ∧ K̃A ∧Qll

− εLA ∧ L̃A ∧Qkk − 2εKA ∧ L̃A ∧ K

− 2εLA ∧ K̃A ∧ L
)∣∣∣∣

∂M
.

(4.115)

The lightlike GHY term (4.1154.115) is my original result presented in this thesis for
the first time. While (4.1154.115) appears rather non-compact, this GHY term simplifies
considerably if non-metricity is vanishing. Additional to Qµν = 0 we have L = −K,
K̃A = KA and L̃A = LA in the metric-compatible case. Inserting these identifications
into the GHY term (4.1154.115) yields

SCS,Q=0
GHY = ε

2κ(−1)ind g
∫

∂M
χ
(
KA ∧DLA + LA ∧DKA − εK ∧DK

− 2εKA ∧ LA ∧ K
)∣∣∣

∂M
.

(4.116)

Even this simple form of the lightlike GHY term of four-dimensional Chern-Simons
modified gravity has not been found before. We note that it is a direct generalization
of the result (4.494.49) we obtained on manifolds with space- and timelike boundaries.
Hence, the discussion of (4.494.49) applies to the lightlike case as well.

As a last example for applying our method for calculating GHY terms on manifolds
with lightlike boundaries, let us investigate Lovelock gravity in arbitrary dimensions.

Lovelock gravity

We describe Lovelock gravity by the action

SL =
⌊m−1

2 ⌋∑
p=0

αp(m− 2p− 1)!Sp (4.117)

on an m-dimensional manifold, being a sum of the partial actions

Sp =
∫

M
ηµ1...µ2p ∧ Ωµ1µ2 ∧ · · · ∧ Ωµ2p−1µ2p . (4.118)
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As we discussed in section 4.1.34.1.3, these partial actions are related to the standard
differential form notation (4.544.54) by Sp = (m − 2p)!Sp. Since the Lovelock action
is constituted by the sum (4.1174.117) of the partial actions (4.1184.118), the calculation of
its lightlike GHY terms amounts to the derivation of the lightlike GHY term of Sp.
The first step for obtaining this GHY term is to decompose the partial action (4.1184.118)
using the lightlike decomposition of curvature (4.814.81). However, let us derive some
simplifying equations which will make this decomposition more compact beforehand.

First, we note that

eµ1
A1 . . . e

µ2p

A2p
ηµ1...µ2p

∣∣∣
∂M

= 0 . (4.119)

We see this by a similar argument as we used in the discussion of (4.1054.105) for the light-
like Einstein-Hilbert GHY term. That is, the Hodge duality in the definition (4.174.17)
of ηµ1...µ2p involves a totally antisymmetric ε-symbol with m indices which all take val-
ues on the (m− 1)-dimensional boundary. For the explicit discussion of this argument
we also refer to the space- and timelike case discussed in section 4.1.34.1.3 which applies
here mutatis mutandis. Likewise, the relations ηkA|∂M = 0 and ηlA|∂M = 0 found in
the calculation of the lightlike GHY term of Einstein-Hilbert gravity straightforwardly
generalize to

ηkA1...A2p−1

∣∣∣
∂M

= 0 , ηlA1...A2p−1

∣∣∣
∂M

= 0 . (4.120)

Furthermore, we have ηkkA1...A2p−2 = 0 = ηllA1...A2p−2 because two of the antisymmetric
indices of ηµ1...µ2p are contracted with the components of the same vector. Thus, the
only relevant boundary contributions of (4.1184.118) originate from

ηlkA1...A2p−2
..= lµkνeσ1

A1 . . . e
σ2p−2
A2p−2ηµνσ1...σ2p−2 . (4.121)

Using this simplification, we finally insert the lightlike decomposition (4.814.81) of curva-
ture into the partial action (4.1184.118) to obtain

Sp = pε2
∫

M
ηlkA1...A2p−2 ∧

(
kµlν(Ωµν − Ωνµ) ∧ (eA1

σ1 e
A2
σ2 Ωσ1σ2) ∧ . . .

∧ (eA2p−3
σ2p−3 e

A2p−2
σ2p−2 Ωσ2p−3σ2p−2) + (p− 1)(kµe

A1
σ1 (Ωµσ1 − Ωσ1µ))

∧ (lνeA2
σ2 (Ωνσ2 − Ωσ2ν)) ∧ (eA3

σ3 e
A4
σ4 Ωσ3σ4) ∧ · · · ∧ (eA2p−3

σ2p−3 e
A2p−2
σ2p−2 Ωσ2p−3σ2p−2)

)
+ terms irrelevant on ∂M .

(4.122)
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This decomposed Lagrangian contains the projections of curvature we derived in (4.884.88).
We may thus straightforwardly insert (4.884.88) into the decomposed Lagrangian. It is,
however, highly involved to write the resulting boundary relevant term as a total
derivative, which is needed in order to apply Stokes’ theorem (2.212.21). Therefore, we
readily simplify this calculation by considering vanishing non-metricity, such that K =
−L, K̃A = KA and L̃A = LA. By means of these identifications the decomposed
action (4.1224.122) takes the form

Sp = −2pε2
∫

M
ηlkA1...A2p−2 ∧

(
DK ∧ (ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

+ 2(p− 1)(DKA1 + εKA1 ∧ K) ∧ (DLA2 − εLA2 ∧ K)

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)
)

+ terms irrelevant on ∂M ,

(4.123)

where we used that ϵAB(KA ∧LB +LA ∧KB) = 2ϵABK
A ∧LB due to the contraction

with an antisymmetric tensor.

It is technically highly involved but in principle straightforward to prove that the
terms given in (4.1234.123) may be rewritten as total exterior derivatives. We explicitly
construct this proof in appendix AA and insert its results into (4.1234.123) to obtain

Sp = −2pε2
∫

M
ηlkA1...A2p−2 ∧D

[
K ∧ (ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

+ (p− 1)(KA1 ∧DLA2 − LA1 ∧DKA2)
p∑

q=2

(
p− 2
q − 2

)
(−2ε)p−q

p− q + 2
p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2

]
+ terms irrelevant on ∂M .

(4.124)

For coherence of notation, we rewrite

(ΩA1A2 − 2εKA1 ∧ LA2) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

=
p∑

q=1

(
p− 1
q − 1

)
(−2ε)p−q

p−q∧
m=1

KA2m−1 ∧ LA2m

p−1∧
n=p−q+1

ΩA2n−1A2n
(4.125)
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in (4.1244.124). Using that, we finally read off the lightlike GHY term of the p-th partial
action (4.1184.118) of Lovelock gravity as

Sp
GHY = 2pε2

∫
M

[
K

p∑
q=1

(
p− 1
q − 1

)
(−2ε)p−q

p−q∧
m=1

KA2m−1 ∧ LA2m

p−1∧
n=p−q+1

ΩA2n−1A2n

+ (p− 1)(KA1 ∧DLA2 − LA1 ∧DKA2)
p∑

q=2

(
p− 2
q − 2

)
(−2ε)p−q

p− q + 2
p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2

]
∧ ηlkA1...A2p−2

∣∣∣
∂M

.

(4.126)

We obtained the full Lovelock action as a sum of the partial actions in (4.1174.117).
Hence, the full lightlike GHY term of Lovelock gravity is obtained from (4.1264.126) as

SL
GHY =

⌊m−1
2 ⌋∑

p=0
αp(m− 2p− 1)!Sp

GHY . (4.127)

This is the first time ever that the full lightlike GHY term of Lovelock gravity has
been calculated. This result is unpublished so far. Note that the GHY term (4.1274.127)
even contains contributions of torsion in addition to those of curvature if one needs
to consider manifolds with torsion. Although the result reads rather complex on first
glance, it is straightforward to evaluate (4.1264.126) for given p. For the first few cases, we
obtain

S0
GHY = 0 , (4.128a)

S1
GHY = 2ε2

∫
∂M

K ∧ ηlk

∣∣∣
∂M

, (4.128b)

S2
GHY =

2ε2
∫

∂M

(
(KA ∧DLB − LA ∧DKB) + 2K ∧ (ΩAB − 2εKA ∧ LB)

)
∧ ηlkAB

∣∣∣
∂M

,

(4.128c)

S3
GHY = 2ε2

∫
∂M

(
(KA ∧DLB − LA ∧DKB) ∧ (3ΩCD − 4εKC ∧ LD) + 3K∧

(4ε2KA ∧ LB ∧KC ∧ LD − 4εKA ∧ LB ∧ ΩCD + ΩAB ∧ ΩCD)
)

∧ ηlkABCD

∣∣∣
∂M

.

(4.128d)

To see that these results are reasonable, let us explicitly give the according partial
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actions as well. From (4.1184.118) we immediately obtain

S0 =
∫

M
η , (4.129a)

S1 =
∫

M
ηµν ∧ Ωµν , (4.129b)

S2 =
∫

M
ηµνρσ ∧ Ωµν ∧ Ωρσ , (4.129c)

S3 =
∫

M
ηµ1µ2µ3µ4µ5µ6 ∧ Ωµ1µ2 ∧ Ωµ3µ4 ∧ Ωµ5µ6 . (4.129d)

Let us briefly interpret these actions and their corresponding GHY terms (4.1284.128).
First, we note that S0 does not depend on curvature. In section 4.2.24.2.2 we found

that only actions containing curvature need to be supplemented with a GHY term,
and thus we obtain S0

GHY = 0 in (4.128a4.128a). For p = 1, we compare the action S1

to Einstein-Hilbert gravity (4.1004.100) which yields S1 = 2κSEH. We therefore need to
recover S1

GHY = 2κSEH
GHY. Indeed, comparison of S1

GHY in (4.128b4.128b) with the lightlike
Einstein-Hilbert GHY term (4.1074.107) in the metric-compatible case confirms S1

GHY =
2κSEH

GHY. Concerning S2, recall that we identified the action (4.129c4.129c) with the Gauß-
Bonnet action if non-metricity is vanishing. Hence, (4.128c4.128c) is the lightlike GHY term
for Gauß-Bonnet gravity even if torsion is non-vanishing in addition to curvature.
Note that S2

GHY may be understood as a generalization of the space- and timelike
Gauß-Bonnet GHY term (4.71c4.71c). Hence, the first Euler density action beyond these
cases is S3, for which the lightlike GHY term is given by (4.128d4.128d). The actions S0,
S1, S2 and S3 we discussed explicitly here are sufficient to determine the lightlike
GHY term (4.1274.127) of the full Lovelock gravity on manifolds which have up to seven
dimensions. For higher-dimensional manifolds, the lightlike GHY terms are straight-
forwardly evaluated using the general result (4.1264.126).

The examples discussed in this section illustrate how lightlike GHY terms may be
calculated for any action considered on manifolds with curvature, torsion and non-
metricity. We emphasize again that lightlike GHY terms are known for very few
theories, even if curvature is the only relevant field strength. Furthermore, the calcu-
lation of GHY terms for theories beyond Einstein-Hilbert gravity was a highly involved
problem so far. This becomes obvious from reading the original papers to which we
compared the results of this chapter. The new methods for calculating GHY terms I
developed in this chapter are extraordinarily simple in comparison, having a greater
realm of applicability at the same time. This does not only hold for the lightlike case,
but for space- and timelike GHY terms likewise. The efficiency of the methods devel-
oped in this chapter allows to investigate the boundary behavior of theories for which
a thorough boundary discussion was not possible before. As an example of that, we
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use the GHY terms discussed in this chapter for studying the boundary terms in the
geometrical trinity of gravity in the following chapter.



The geometrical trinity of gravity 5
Albert Einstein’s theory of general relativity is the most successful model for de-

scribing the observations in gravity we have [66, 2020, 118118]. From a differential geometric
point of view, general relativity is based on the Levi-Civita connection which has van-
ishing torsion and non-metricity. The success of general relativity raises the question
of how useful it is to consider more general connections for describing the measur-
able reality. Among many other answers to this question, the development of the
geometrical trinity of general relativity shed light on that field. This theory was first
introduced in [3636, 6060], and its main statement is that there are three dynamically
equivalent descriptions of general relativity (GR). While Einstein modeled gravity in
GR by Riemannian curvature, the teleparallel equivalent of general relativity (TEGR)
uses torsion to describe gravity. Furthermore, there exists a dynamically equivalent
description of GR in terms of non-metricity called the symmetric teleparallel equiva-
lent of general relativity (STEGR) [2121]. Hence, the trinity of GR, TEGR and STEGR
describes general relativity by means of three different theories. The correspondence
of these theories is called the geometrical trinity of general relativity [2929].

We re-derive the three equivalent descriptions of general relativity in section 5.15.1
using differential form notation. I published this derivation in [22] which was the first
time that the geometrical trinity was discussed in differential form notation11. The
main achievement I published in [22] is a thorough discussion of the boundary terms
which arise in the geometrical trinity if we consider GR, TEGR and STEGR on a
manifold with boundary. I review this discussion of boundary terms in section 5.15.1
using the methods for describing hypersurfaces developed in chapter 33. This discussion
in particular includes the GHY terms that we derived in chapter 44, which have not
been discussed explicitly in the context of the geometrical trinity before. In section 5.35.3,
we study possible generalizations of the correspondence which constitute a geometrical
trinity of gravity.

As an important generalization, I derive the analogs of all results published in [22] for
manifolds which have lightlike boundaries. This generalization to lightlike boundaries
is unpublished research so far. In addition to these results, I develop a new perspective

1This unifies discussions of the individual theories involved in the geometrical trinity which have been
developed before in differential form notation. See [119119] for an early work, [120120] for a discussion
of TEGR for particular choices of frame and connection and [6161] which briefly comments on the
differential form approach to the full trinity.
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on the geometrical trinity of general relativity based on an ambiguity of the connection
one-form that exists in both TEGR and STEGR. This new perspective allows to
introduce a unified approach to the geometrical trinity of general relativity originating
from different interpretations of the Einstein action. I discuss this point of view in
section 5.25.2 for the first time, and this unified approach is yet unpublished.

5.1. The geometrical trinity of general relativity

The connection of general relativity (GR) is the unique22 connection which is torsion-
free and metric-compatible. We call this connection the Levi-Civita connection and
denote it by ω̊µ

ν . Analogously, we denote all tensors constructed by the Levi-Civita
connection using a circle. Recall that we defined the field strengths

curvature

torsion

non-metricity

Ωµ
ν = Dωµ

ν = dωµ
ν + ωµ

ρ ∧ ωρ
ν ,

T µ = Dθµ = dθµ + ωµ
ν ∧ θν and

Qµν = −Dgµν = −dgµν + ωρ
µgρν + ωρ

νgµρ

(5.1)

in chapter 22. Hence, the Levi-Civita connection is the connection which fulfills

0 = T̊ µ = dθµ + ω̊µ
ν ∧ θν and 0 = Q̊µν = −dgµν + ω̊ρ

µgρν + ω̊ρ
νgµρ . (5.2)

These defining equations of the Levi-Civita connection enable us to re-express the
exterior derivatives of the coframe and the metric components as

dθµ = −ω̊µ
ν ∧ θν and dgµν = ω̊ρ

µgρν + ω̊ρ
νgµρ (5.3)

which will be useful for simplifying equations in the following.
Since GR is our reference theory of gravity, it is useful to quantify how much another

theory of gravity differs from GR. This difference is encoded in the connection since
we introduced torsion-freedom as well as the metricity condition as constraints on the
connection one-form in (5.25.2). Therefore, the difference in geometries is measured by
the deformation one-form [119119]

Aµ
ν

..= ωµ
ν − ω̊µ

ν (5.4)

which subtracts the Levi-Civita contributions from the full connection one-form ωµ
ν .

2In this context, the term unique means that the Levi-Civita connection is unambiguously fixed if
we choose a coframe and a metric tensor.
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Note that ωµ
ν may be used to describe manifolds which have non-vanishing curva-

ture, torsion and non-metricity, while ω̊µ
ν is the connection of geometries which are

modeled solely by curvature. Hence, the deformation one-form Aµ
ν subtracts the pure

curvature-related contributions from the full connection and is thus entirely described
by torsion and non-metricity. To see that, we insert the simplifications (5.35.3) derived
for the Levi-Civita connection into the definitions (5.15.1) of torsion and non-metricity
to conclude that

Qµν = Aµν + Aνµ and T µ = Aµ
ν ∧ θν , (5.5)

where we abbreviate Aµν
..= gµρA

ρ
ν . Although the symmetric contribution of the

deformation one-form is nothing but non-metricity, its antisymmetric part (Aµν −
Aνµ)∧θν = 2Tµ−Qµν ∧θν depends on non-metricity as well. The torsional contribution
to the deformation one-form is called contortion, such that Aµ

ν is the contortion one-
form in metric-compatible theories. Analogously, Aµ

ν is called disformation one-form
if torsion-free theories are considered [6060]. This decomposition of the deformation
one-form into torsional and non-metric contributions was implicitly described in [121121]
using the interior product.

While (5.55.5) enables us to construct torsion and non-metricity from a given deforma-
tion one-form, we may construct the full curvature two-form Ωµ

ν = dωµ
ν + ωµ

ρ ∧ ωρ
ν

from the so-called Riemannian curvature two-form Ω̊µ
ν = dω̊µ

ν + ω̊µ
ρ ∧ ω̊ρ

ν and the de-
formation one-form as well. To see this, we insert ωµ

ν = Aµ
ν + ω̊µ

ν obtained from (5.45.4)
into the definition (5.15.1) of the curvature two-form to conclude

Ωµ
ν = Ω̊µ

ν + D̊Aµ
ν + Aµ

ρ ∧ Aρ
ν . (5.6)

Note that this decomposes the full curvature Ωµ
ν into its Riemannian part Ω̊µ

ν and
the deformation contribution Aµ

ρ ∧ Aρ
ν which is solely determined by torsion and

non-metricity. In addition to these contributions, we obtain the exterior covariant
derivative D̊Aµ

ν of the deformation one-form with respect to the Levi-Civita con-
nection. Recall that the Einstein-Hilbert action is the integral of (5.65.6) contracted
with η ν

µ , so that D̊Aµ
ν is a boundary term in GR by means of Stokes’ theorem (2.212.21).

Let us concretize this argument by inserting the curvature decomposition (5.65.6) into
the Einstein-Hilbert action. This yields

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY (5.7a)

= 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) − 1

2κ

∫
M
η ν

µ ∧ D̊Aµ
ν + SEH,Ω̊

GHY , (5.7b)
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where we defined the Hodge dual ηµν = ∗(θµ ∧θν) in (4.174.17). Note that we introduced a
GHY term to the Einstein-Hilbert action (5.75.7) to describe the dynamics on manifolds
with boundaries. We calculated this GHY term for space- and timelike boundaries
in (4.384.38) as well as for lightlike boundaries in (4.1104.110).

For deriving the geometrical trinity of general relativity on manifolds with boundary,
we need to recall some of the results for GHY terms we obtained in chapter 44. In
particular, we found that Lagrangians do not require us to introduce a GHY term in
order for their variational problem to be well-defined if they are solely constructed
from torsion and non-metricity. Since the deformation one-form is independent of
curvature, the contribution − 1

2κ

∫
M η ν

µ ∧ Aµ
ρ ∧ Aρ

ν of the action (5.7b5.7b) has a well-
defined variational problem without adding a GHY term. In contrast to that, the
curvature contribution of (5.7b5.7b) needs to be supplemented by a GHY term. Since
this contribution is the Einstein-Hilbert action of the full curvature two-form Ωµ

ν , its
GHY term is SEH,Ω

GHY . In sections 4.1.34.1.3 and 4.2.34.2.3, we found that the GHY term SEH,Ω
GHY

of the full curvature Einstein-Hilbert action explicitly differs from its Riemannian
counterpart SEH,Ω̊

GHY . Hence, the Riemannian GHY term SEH,Ω̊
GHY that is contained in (5.7b5.7b)

is not the correct GHY term for the bulk action

Sbulk = 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) (5.8)

which is constructed upon the full curvature two-form Ωµ
ν . This mismatch of GHY

terms is resolved by the term

SD̊A ..= − 1
2κ

∫
M
η ν

µ ∧ D̊Aµ
ν (5.9)

contained in (5.7b5.7b) in addition to the bulk action (5.85.8) and the GHY term SEH,Ω̊
GHY . To

see how SD̊A accounts for the apparent mismatch, we examine (5.95.9) in detail next.

As a first step, we note that GHY terms are boundary terms and we should thus
write SD̊A as a boundary term as well. Since we defined the Levi-Civita connection
in (5.25.2) by D̊θµ = 0 and D̊gµν = 0, we immediately conclude that the covariant exterior
derivative of the Hodge dual ηµ1...µp with respect to the Levi-Civita connection vanishes
for all integers p. That is, by means of the definition (4.174.17) of the Hodge duality, we
obtain

D̊ηµ1...µp = 0 . (5.10)

For the action SD̊A defined in (5.95.9), D̊η ν
µ = 0 allows us to use Stokes’ theorem (2.212.21)
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to conclude

SD̊A = − 1
2κ

∫
∂M

Aµ
ν ∧ η ν

µ

∣∣∣
∂M

. (5.11)

Hence, SD̊A is indeed a boundary term. In order to compare this boundary term to the
Einstein-Hilbert GHY term, recall that we derived GHY terms from a decomposition
into boundary tangent and non-tangent contributions in chapter 44. Hence, we need an
analogous decomposition of SD̊A as well. This decomposition differs for lightlike and
non-lightlike boundaries as it did for GHY terms. Hence, we investigate these cases
separately, starting with space- and timelike boundaries.

5.1.1. Decomposition of SD̊A on space- and timelike boundaries

We obtain all terms contained in the decomposition of Aµ
ν into normal and tangent

contributions on space- or timelike hypersurfaces by evaluating Aµ
ν = δµ

αδ
β
νA

α
β using

the unity decomposition (3.383.38). This yields

Aµ
ν = eµ

ae
b
ν(ea

αe
β
bA

α
β) + εeµ

anν(ea
αn

βAα
β) + εnµea

ν(nαe
β
aA

α
β) + nµnν(nαn

βAα
β) ,
(5.12)

such that we determine the entire decomposition of Aµ
ν by calculating the projections

which are denoted in parentheses in (5.125.12). We derive these projections in the fol-
lowing calculation by means of the definition (5.45.4) of the deformation one-form. In
particular, it suffices to derive the decomposition of the connection because this de-
composition immediately induces the decomposition of the deformation one-form by
means of Aµ

ν ≡ ωµ
ν − ω̊µ

ν . Hence, we proceed by calculating the projections of the full
and the Levi-Civita connections which we subsequently use to obtain the deformation
decomposition.

We already derived the tangent projection ea
µe

ν
bω

µ
ν of the connection one-form im-

plicitly in (3.403.40) by examining its transformation to hypersurfaces. In particular, the
tangent projections of the full and the Levi-Civita connections are contained in (3.403.40)
as

ωa
b = ea

µdeµ
b + ea

µe
ν
bω

µ
ν and ω̊a

b = ea
µdeµ

b + ea
µe

ν
b ω̊

µ
ν . (5.13)

For obtaining the projections ea
µn

νωµ
ν and ea

µn
νω̊µ

ν , we exploit the definition Ka =
ea

µDn
µ of the extrinsic curvature one-form. Evaluated for the full and the Levi-Civita
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connection, this definition is

Ka = ea
µdnµ + ea

µn
νωµ

ν and K̊a = ea
µdnµ + ea

µn
νω̊µ

ν (5.14)

which contains the desired projections. Analogously, the definition K̃a = eµ
aDnµ im-

plies

K̃a = eµ
adnµ − eµ

anνω
ν
µ and K̊a = eµ

adnµ − eµ
anνω̊

ν
µ , (5.15)

where we used that the metric compatibility of the Levi-Civita connection implies ˚̃Ka =
K̊a. The extrinsic curvatures (5.155.15) hence include the projections nµe

ν
aω

µ
ν and nµe

ν
aω̊

µ
ν

of the connection one-forms. Finally, we obtain the normal projected connection com-
ponents nµn

νωµ
ν and nµn

νω̊µ
ν from the non-metricity projections

Qnn = 2nµdnµ + 2nµn
νωµ

ν and 0 = Q̊nn = 2nµdnµ + 2nµn
νω̊µ

ν . (5.16)

Note that Q̊nn vanishes as a direct consequence of the metric compatibility of the Levi-
Civita connection. Hence, we have found that all the projections of the connection
one-form are contained in the definitions of the hypersurface connection, the extrinsic
curvature one-forms and non-metricity.

The projections of the connection one-form induce the deformation projections by
means of Aµ

ν ≡ ωµ
ν − ω̊µ

ν . Hence, by inserting the connection projections, we obtain

ea
µe

ν
bA

µ
ν = Aa

b ,

nµe
ν
aA

µ
ν = −K̃a + K̊a ,

ea
µn

νAµ
ν = Ka − K̊a ,

nµn
νAµ

ν = 1
2Qnn .

(5.17)

We use these projections in the decomposition (5.125.12) of the deformation one-form to
conclude that the boundary action (5.115.11) decomposes as

SD̊A =

− 1
2κ

∫
∂M

(
Aa

b ∧ η b
a + ε(Ka − K̊a) ∧ ηan + ε(−K̃a + K̊a) ∧ ηna + 1

2Qnn ∧ ηnn

)∣∣∣∣
∂M

.

(5.18)

This result simplifies considerably if we use the antisymmetry of ηµν = ∗(θµ ∧ θν).
In particular, we found that this antisymmetry implies ηab

∣∣∣
∂M

= ea
µe

b
νη

µν
∣∣∣
∂M

= 0 in
section 4.1.34.1.3 since m ..= dim M indices of the totally antisymmetric symbol take their
values on the (m − 1)-dimensional boundary. Furthermore, the antisymmetry of ηµν

immediately implies ηnn ≡ nµnνη
µν = 0 and ηan = −ηna = −nµeν

aηµν , such that (5.185.18)
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becomes

SD̊A = − ε

κ

∫
∂M

K̊a ∧ ηna

∣∣∣
∂M

+ ε

2κ

∫
∂M

(Ka + K̃a) ∧ ηna

∣∣∣
∂M

. (5.19)

In this form, we are finally able to compare SD̊A to the GHY term of Einstein-
Hilbert gravity. We adapt this GHY term from (4.374.37) and (4.384.38) for the full and the
Levi-Civita connection, respectively, and compare the boundary action (5.195.19) to these
results. This calculation reveals that SD̊A is nothing but a difference of GHY terms,
that is,

SD̊A = −SEH,Ω̊
GHY + SEH,Ω

GHY . (5.20)

This solves the mismatch of GHY terms we encountered in (5.75.7). To see this, we
insert (5.205.20) into (5.7b5.7b) to obtain

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY

= 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) + SEH,Ω

GHY ,
(5.21)

in which both expressions of the Einstein-Hilbert action on a manifold with boundary
are supplemented by the correct GHY term to make the variational problem well-
defined.

The actions (5.205.20) and (5.215.21) are the main results of this subsection. They render
the GHY term of the Einstein-Hilbert action SEH,Ω̊ correct regardless if it is expressed
by means of the Riemannian or the full curvature two-form. The interpretation of
the boundary term SD̊A as a difference of GHY terms we found in (5.205.20) was not
known before I first published it in [22]. In fact, GHY terms have not been properly
discussed in the context of the geometrical trinity at all, whereas my results stress
the importance of including the appropriate GHY terms when the geometrical trinity
is considered on a manifold with boundary. The action (5.215.21) is the starting point
for transitioning form GR to its teleparallel and symmetric teleparallel equivalents.
Before we explicitly discuss this transition, let us first give an interpretation of SD̊A

in terms of GHY terms if manifolds with lightlike boundaries are considered.

5.1.2. Decomposition of SD̊A on lightlike boundaries

In order to understand the relation of SD̊A to the GHY term of the Einstein-Hilbert
action on m-dimensional manifolds with lightlike boundary, we need to derive the de-
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composition of Aµ
ν into boundary tangent and non-tangent contributions analogously

to the non-lightlike case. For this purpose, we insert the lightlike unity decomposi-
tion (3.873.87) into Aµ

ν = δµ
αδ

β
νA

α
β to obtain

Aµ
ν =eµ

Ae
B
ν (eA

αe
β
BA

α
β) + εeµ

Akν(eA
α l

βAα
β) + εeµ

Alν(eA
αk

βAα
β)

+ εkµeA
ν (lαeβ

AA
α

β) + εlµeA
ν (kαe

β
AA

α
β) + ε2kµkν(lαlβAα

β)

+ ε2lµlν(kαk
βAα

β) + ε2kµlν(lαkβAα
β) + ε2lµkν(kαl

βAα
β) .

(5.22)

The projections in parentheses in the latter equation determine the lightlike decompo-
sition of Aµ

ν . Analogous to the non-lightlike case, we use Aµ
ν ≡ ωµ

ν − ω̊µ
ν for deriving

the projections in (5.225.22) by evaluating the corresponding projections of the full and
the Levi-Civita connection.

In order to obtain the contribution of the connection in the direction tangent to the
(m − 2)-dimensional hypersurface, we use the connection transformation law (3.893.89)
which is

ωA
B = eA

µ deµ
B + eA

µ e
ν
Bω

µ
ν , ω̊A

B = eA
µ deµ

B + eA
µ e

ν
Bω̊

µ
ν (5.23)

for the full and the Levi-Civita connection, respectively. Thus, the tangent projection
eA

µ e
ν
BA

µ
ν of the deformation one-form is the hypersurface deformation

eA
µ e

ν
BA

µ
ν = AA

B
..= ωA

B − ω̊A
B . (5.24)

We obtain the projections in which only one of the indices of Aµ
ν is contracted with eµ

A

from the extrinsic curvature one-forms. For the full connection ωµ
ν , their definitions

evaluate as
KA = eA

µ dkµ + eA
µk

νωµ
ν ,

LA = eA
µ dlµ + eA

µ l
νωµ

ν ,

K̃A = eµ
Adkµ − eµ

Akνω
ν
µ ,

L̃A = eµ
Adlµ − eµ

Alνω
ν
µ .

(5.25)

Note that the evaluation of these extrinsic curvature one-forms for the Levi-Civita
connection simplifies as we have ˚̃KA = K̊A and ˚̃LA = L̊A due to metric compatibility.
Hence, it suffices to consider

K̊A = eA
µ dkµ + eA

µk
νω̊µ

ν and L̊A = eA
µ dlµ + eA

µ l
νω̊µ

ν , (5.26)

from which we read off the corresponding projections of the deformation one-form as

eA
µk

νAµ
ν = KA − K̊A ,

eA
µ l

νAµ
ν = LA − L̊A ,

kµe
ν
AA

µ
ν = −K̃A + K̊A ,

lµe
ν
AA

µ
ν = −L̃A + L̊A .

(5.27)
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In order to determine the entire lightlike decomposition (5.225.22) of the deformation
one-form it only remains to calculate those projections in which both indices of Aµ

ν

are contracted with the normal directions of the (m − 2)-dimensional hypersurface.
We obtain these projections from

K = lµdkµ + lµk
νωµ

ν ,

L = kµdlµ + kµl
νωµ

ν ,

Qkk = 2kµdkµ + 2kµk
νωµ

ν ,

Qll = 2lµdlµ + 2lµlνωµ
ν .

(5.28)

For the Levi-Civita connection, Q̊µν = 0 implies L̊ = −K̊ such that the expres-
sions (5.285.28) are captured simply by

K̊ = lµdkµ + lµk
νω̊µ

ν ,

0 = kµdkµ + kµk
νω̊µ

ν and 0 = lµdlµ + lµl
νω̊µ

ν .
(5.29)

Hence, the normal projections of the deformation one-form are

kµl
νAµ

ν = L + K̊ ,

lµk
νAµ

ν = K − K̊ ,

kµk
νAµ

ν = 1
2Qkk ,

lµl
νAµ

ν = 1
2Qll .

(5.30)

We have thus completed the calculation of all projections of Aµ
ν involved in its de-

composition (5.225.22).

Before we insert the decomposition (5.225.22) into the boundary action (5.115.11), we
note that most of the thereby obtained terms are vanishing due to the antisymmetry
of ηµν = ∗(θµ ∧ θν). As we derived in section 4.2.34.2.3, the projections

ηAB
∣∣∣
∂M

= eA
µ e

B
ν η

µν
∣∣∣
∂M

= 0 , ηAk
∣∣∣
∂M

= eA
µkνη

µν
∣∣∣
∂M

= 0 ,

ηAl
∣∣∣
∂M

= eA
µ lνη

µν
∣∣∣
∂M

= 0
(5.31)

all vanish on the boundary. The reason for that are either m ≡ dim M antisymmetric
indices taking values on the (m − 1)-dimensional hypersurface or two antisymmetric
indices which are contracted with the components of the same vector. Moreover, the
antisymmetry of ηµν implies that ηkk = 0 = ηll. Hence, the only relevant projection
of ηµν which is not vanishing on the boundary is ηlk = lµkνη

µν = −ηkl. Using these
simplifications, we finally insert the decomposition (5.225.22) of the deformation one-
form Aµ

ν into the boundary action (5.115.11) and use the projections (5.305.30) to obtain

SD̊A = −ε2

κ

∫
∂M

K̊ ∧ ηlk

∣∣∣
∂M

+ ε2

2κ

∫
∂M

(K − L) ∧ ηlk

∣∣∣
∂M

. (5.32)
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Comparing this boundary action to the lightlike GHY term (4.1074.107) of Einstein-Hilbert
gravity, we conclude that SD̊A is the difference

SD̊A = −SEH,Ω̊
GHY + SEH,Ω

GHY (5.33)

of GHY terms. This is the exact same result which we obtained in (5.205.20) for space-
and timelike boundaries. Hence, the discussion of SD̊A for space- and timelike bound-
aries generalizes to the lightlike case as well. In particular, (5.335.33) guarantees that
the Einstein-Hilbert action (5.75.7) has a well-defined variational problem, no matter if
we express it using the Riemannian or the full curvature. Inserting (5.335.33) into the
Einstein-Hilbert action (5.7b5.7b), we obtain

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY

= 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) + SEH,Ω

GHY ,
(5.34)

from which we explicitly see that both expressions are supplemented by the correct
GHY term.

This concludes the separate discussion of the boundary term SD̊A for lightlike and
non-lightlike boundaries. Both cases yield the same formal expressions (5.335.33), (5.345.34)
for the boundary term SD̊A and the full Einstein-Hilbert action. Therefore, we proceed
by deriving the geometrical trinity of general relativity on manifolds with boundaries
of any desired likeness based on (5.345.34).

5.1.3. Boundary refined geometrical trinity of general relativity

In general relativity, we consider the Einstein-Hilbert action

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) + SEH,Ω

GHY (5.35)

for the special choice of connection ωµ
ν = ω̊µ

ν . Choosing the Levi-Civita connection,
the only non-vanishing field strength of GR is Riemannian curvature. That is, the GR
choice of connection implies

Ωµ
ν = Ω̊µ

ν , T µ = T̊ µ = 0 , Qµν = Q̊µν = 0 , (5.36)

which we used to define the Levi-Civita connection in (5.25.2). Note that for ωµ
ν =

ω̊µ
ν the deformation one-form Aµ

ν = ωµ
ν − ω̊µ

ν vanishes by definition, so that the
action (5.355.35) trivially reproduces the standard expression (5.7a5.7a) of the Einstein-Hilbert
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action in differential form notation.
The choice ωµ

ν = ω̊µ
ν is, however, only one particular choice of connection we could

make. If we want to describe the dynamics of GR by only one field strength, we could
instead choose a connection for which either torsion or non-metricity are non-vanishing
while the curvature two-form vanishes identically. In these cases, the Einstein-Hilbert
action (5.355.35) still describes a theory equivalent to GR in which gravity is, however,
modeled by torsion or non-metricity. Such theories with vanishing curvature are called
teleparallel since vectors are still aligned to themselves after parallel transport33 along
a closed curve in M. Therefore, the GR equivalent theory in which gravity is inter-
preted as the manifold’s torsion is called the teleparallel equivalent of general relativity
(TEGR). Taking into account the symmetry of Qµν with respect to exchange of its
indices, the GR equivalent theory of gravity which describes gravity by means of non-
metricity is called the symmetric teleparallel equivalent of general relativity (STEGR).

In summary, the geometrical trinity of general relativity is thus described by the
Einstein-Hilbert action (5.355.35) for which we choose the connection one-form such that
the field strengths are

Ωµ
ν ̸= 0 ,

Ωµ
ν = 0 ,

Ωµ
ν = 0 ,

T µ = 0 ,

T µ ̸= 0 ,

T µ = 0 ,

Qµν = 0

Qµν = 0

Qµν ̸= 0

for GR,

for TEGR,

for STEGR.

(5.37)

This summarizes the traditional form [3636, 6060] of the geometrical trinity of general
relativity. We generalize this form of the geometrical trinity in two ways. First, we
discuss the boundary terms involved in the action for the three choices (5.375.37). Second,
we effectively interpret the geometrical trinity as a duality. The latter is straightfor-
ward, since we described all the effects of torsion and non-metricity solely by means
of the deformation one-form Aµ

ν . Hence, instead of discussing TEGR and STEGR
separately, we discuss both theories at the same time by demanding that the curvature
two-form vanishes while Aµ

ν ̸= 0. We call this summarized case (S)TEGR, such that
the geometrical trinity of general relativity (5.355.35) is the statement of equivalence of
the two theories obtained by imposing

Ωµ
ν ̸= 0 ,

Ωµ
ν = 0 ,

Aµ
ν = 0 ,

Aµ
ν ̸= 0 ,

for GR,

for (S)TEGR.
(5.38)

3Formally, parallel transport is defined using a horizontal lift of the curve γ : R −→ M to the frame
bundle. This lift connects the horizontal subspaces introduced in the definition of the connection.
Intuitively, one may understand parallel transport as transporting a vector on a manifold while
keeping it parallel to itself with respect to the underlying geometry.
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Just as we denote all objects constructed from the Levi-Civita connection ω̊µ
ν by

circles, we use a bullet for denoting objects constructed from the gauge choice •
ωµ

ν of
(S)TEGR which is defined by

•
Ωµ

ν = 0.

While (5.385.38) is effectively a reduction of the geometrical trinity to a duality, it
may be interpreted as an extension at the same time. This may be understood from
Aµ

ν containing contributions of both torsion and non-metricity in general instead
of assuming that only one of the two is non-vanishing. Hence, we are able to de-
scribe mixtures of torsion and non-metricity by studying (S)TEGR. This property
was independently found in a tensor component description in [6161]. Realizing that the
Einstein-Hilbert action (5.355.35) only contains a quadratic contribution of the deforma-
tion one-form, [6161] introduced the name general teleparallel quadratic gravity for the
effective duality (5.385.38). Let us return to the Einstein-Hilbert action (5.355.35) and analyze
the boundary terms needed in GR and (S)TEGR. Naively inserting the choices (5.385.38)
for the connection one-form into (5.355.35) yields the actions

SGR = SEH,Ω̊
∣∣∣
Aµ

ν=0
= 1

2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY ,

S(S)TEGR = SEH,Ω̊
∣∣∣
Ωµ

ν=0
= − 1

2κ

∫
M
η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν + SEH,
•
Ω

GHY

(5.39)

which are supposed to describe GR and (S)TEGR on manifolds with boundary. In
order to see that this naive substitution is incorrect, we recall some of the results for
GHY terms we derived in chapter 44.

We introduced GHY terms to make the variational principle well-defined. That is,
we considered bulk actions S for which the variation δS = δSeom + δSbdy includes a
non-vanishing boundary term δSbdy. For these actions, we defined the GHY term SGHY

such that δSGHY = −δSbdy and thus Hamilton’s principle 0 = δ(S + SGHY) = δSeom

yields the equations of motion. In contrast to that, consider an action S for which the
variation δS = δSeom does not include a boundary contribution. Adding a GHY term
to S makes the variational principle ill-defined. To see this, we note that applying
Hamilton’s principle to δ(S + SGHY) = δSeom − δSbdy does not yield the equations
of motion. Now, recall that only actions including curvature require us to add a
GHY term if the theory is considered on a manifold with boundary. We derived this
important result in chapter 44. But the bulk action of (S)TEGR in (5.395.39) depends
solely on the deformation one-form which is in particular independent of curvature.
Hence, the bulk (S)TEGR action is an action of type S and the addition of a GHY
term to such an action makes the variational principle ill-defined. Imposing the gauge
choice ωµ

ν = •
ωµ

ν which transforms GR to (S)TEGR, we therefore need to eliminate
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the GHY term SEH,Ω
GHY as well. In short, the GHY term SEH,Ω

GHY belongs to the curvature
contribution of the action (5.355.35) and thus needs to be eliminated when we cancel the
curvature dependent term. Hence, we need to refine the (S)TEGR action obtained
in (5.395.39) for manifolds with boundary. We conclude that

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν (5.40)

is the well-defined action of the (symmetric) teleparallel equivalent of general relativity,
no matter if the underlying manifold does or does not have a boundary.

The (S)TEGR action (5.405.40) coincides with the differential form action found in [119119]
for manifolds with no boundary. For comparison with the actions of TEGR and
STEGR given in [2626, 6060], we need to derive the component version of (5.405.40). For
this purpose, we introduce the tensor components Aµ

νρ = Aµ
ν(ϑρ) of the deformation

one-form to obtain the component expression of (5.405.40) as

S(S)TEGR = − 1
2κ

∫
M

dVolM
√

| det g|gσν(
•
Aµ

ρµ

•
Aρ

σν −
•
Aµ

ρν

•
Aρ

σµ) . (5.41)

This reproduces the well-known bulk expressions of TEGR and STEGR in 3 + 1
dimensions described in [2626, 6060] if we recall that Aµ

ν is contortion in the metric-
compatible case and disformation in the torsion-free case.

Furthermore, the integrand

η ν
µ ∧

•
Aµ

ρ ∧
•
Aρ

ν = dVolM
√

| det g|gσν(
•
Aµ

ρµ

•
Aρ

σν −
•
Aµ

ρν

•
Aρ

σµ) (5.42)

of the boundary refined (S)TEGR action (5.405.40) is equivalent to the components of

Tµ ∧ ⋆T µ (5.43)

in (3+1)-dimensional TEGR, see [122122] and [2626]. That is, in 3+1 dimensions we found
that the TEGR action (5.405.40) is reminiscent of a gauge theory. One might thus inter-
pret (5.405.40) as a gauge theory of general relativity. The reason why the latter argument
only holds in 3 + 1 dimensions is that the map ⋆ defining the gauge Lagrangian (5.435.43)
does not denote the Hodge duality defined in (4.174.17). Instead, it is a generalized Hodge
dual we need to introduce for torsion on bundles having a soldering form. While the
component expression of this generalized Hodge dual was derived for 3 + 1 dimensions
in [122122], such an expression is not known in arbitrary dimensions so far [123123]. In
contrast to that, our result (5.405.40) is formulated in differential form notation in arbi-
trary dimensions, while we do not need to introduce the generalized Hodge dual ⋆.



136 5. The geometrical trinity of gravity

The differential form (S)TEGR action (5.405.40) may therefore be used for deriving an
expression of the torsional gauge Lagrangian (5.435.43) in arbitrary dimensions.

We conclude this section by summarizing the results in order to obtain a boundary
refined version of the geometrical trinity of general relativity which has a well-defined
variational principle. The action of general relativity may be described in two equiv-
alent ways. The first way is to choose the connection to be the Levi-Civita connec-
tion ω̊µ

ν . This is the connection which is torsion-free and metric-compatible, such that
the Einstein-Hilbert action is solely constituted by Riemannian curvature. Denoting
this gauge choice by means of the deformation one-form as Åµ

ν = 0, GR is defined by

Ωµ
ν = Ω̊µ

ν , Aµ
ν = 0 . (5.44)

We insert this choice into the Einstein-Hilbert action (5.355.35) to conclude that GR is
entirely described by the action

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY . (5.45)

The second choice of connection we considered in this section is constructed such
that the curvature two-form vanishes. Note that this (S)TEGR connection •

ωµ
ν is

not unique. In fact, we need the remaining gauge freedom in order to obtain TEGR
and STEGR by further constraining •

ωµ
ν . The deformation one-form of the (S)TEGR

connection is
•
Aµ

ν = •
ωµ

ν − ω̊µ
ν , such that the gauge choice of (S)TEGR is equivalent

to constraining

Ωµ
ν = 0 , Aµ

ν =
•
Aµ

ν . (5.46)

The careful treatment of boundary terms in this section revealed that the action

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν (5.47)

entirely describes (S)TEGR on a manifold with boundary, ensuring that the variational
principle is well-defined.

The results of this section reproduce the bulk actions which are usually interpreted
as the equivalent descriptions of general relativity through curvature, torsion and
non-metricity. However, the interpretation of these results is ambiguous due to the
(S)TEGR gauge choice ωµ

ν = •
ωµ

ν . We discuss this ambiguity in detail in the following
section.
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5.2. A unifying perspective on the geometrical trinity
of general relativity

Let us take one step back and consider the (S)TEGR action (5.395.39) in the form

S(S)TEGR = SEH,Ω̊
∣∣∣
Ωµ

ν=0
= − 1

2κ

∫
M
η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν + SEH,
•
Ω

GHY (5.48)

again. We found this action by choosing the (S)TEGR connection •
ωµ

ν such that Ωµ
ν =

•
Ωµ

ν = 0, see (5.465.46). Recalling the definition Ωµ
ν = dωµ

ν + ωµ
ρ ∧ ωρ

ν of the curvature
two-form, the (S)TEGR gauge choice implies

•
ωµ

ρ ∧ •
ωρ

ν = −d •
ωµ

ν . (5.49)

This defining equation of the (S)TEGR connection induces an ambiguity to actions
using the gauge choice ωµ

ν = •
ωµ

ν . To see this, we notice that
•
Aµ

ρ ∧
•
Aρ

ν constituting
the (S)TEGR bulk action in (5.485.48) contains the combination •

ωµ
ρ ∧ •
ωρ

ν of the (S)TEGR
connection. Concretely, the definition

•
Aµ

ν = •
ωµ

ν − ω̊µ
ν of the (S)TEGR deformation

implies

•
Aµ

ρ ∧
•
Aρ

ν = •
ωµ

ρ ∧ •
ωρ

ν − •
ωµ

ρ ∧ ω̊ρ
ν − ω̊µ

ρ ∧ •
ωρ

ν + ω̊µ
ρ ∧ ω̊ρ

ν . (5.50)

Inserting this decomposition into the action (5.485.48), we find that the (S)TEGR action
includes the term

S
•
ω = − 1

2κ

∫
M
η ν

µ ∧ •
ωµ

ρ ∧ •
ωρ

ν = 1
2κ

∫
M

d •
ωµ

ν ∧ η ν
µ , (5.51)

where we used (5.495.49) for rewriting the connection. Due to D̊ηµν = 0 we have

dη ν
µ = ω̊ρ

µ ∧ η ν
ρ − ω̊ν

ρ ∧ η ρ
µ , (5.52)

by means of which we write the action (5.515.51) as

S
•
ω = 1

2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

+ 1
2κ

∫
M

•
ωµ

ν ∧ (ω̊ρ
µ ∧ η ν

ρ − ω̊ν
ρ ∧ η ρ

µ ) , (5.53)

where we used Stokes’ theorem (2.212.21). Using the decomposition (5.505.50) in the original
(S)TEGR action and reinstating the result (5.535.53) for S

•
ω we obtain

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + 1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

+ SEH,
•
Ω

GHY . (5.54)
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Expressing (S)TEGR as (5.545.54), we find that its action contains an additional bound-
ary term beyond SEH,

•
Ω

GHY . For understanding how the new boundary term 1
2κ

∫
∂M

•
ωµ

ν ∧

η ν
µ

∣∣∣
∂M

combines with the GHY term SEH,
•
Ω

GHY , we need to decompose it into boundary
tangent and non-tangent contributions. Let us consider this decomposition for space-
and timelike hypersurfaces first. By means of the decomposition of unity (3.383.38) we
have

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

= 1
2κ

∫
∂M

(
ε(ea

µn
ν •
ωµ

ν ) ∧ ηan + ε(nµe
ν
a

•
ωµ

ν ) ∧ ηna
)∣∣∣

∂M
, (5.55)

where we used the simplifications ηnn = 0 = ηab
∣∣∣
∂M

derived in section 5.1.15.1.1. The re-
maining projections ea

µn
ν •
ωµ

ν and nµe
ν
a

•
ωµ

ν of the (S)TEGR connection are determined
by extrinsic curvature. Applying the corresponding calculation in (5.145.14) and (5.155.15) to
the (S)TEGR connection, we rewrite (5.555.55) as

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

= − ε

2κ

∫
∂M

(
•
Ka +

•

K̃a − ea
µ(dnµ + gµνdnν)

)
∧ ηna

∣∣∣
∂M

. (5.56)

For interpreting this term, we recall from (4.374.37) that the GHY term SEH,
•
Ω

GHY is given by

SEH,
•
Ω

GHY = ε

2κ

∫
∂M

(
•
Ka +

•

K̃a) ∧ ηna

∣∣∣∣
∂M

(5.57)

for the (S)TEGR connection. Hence, we conclude that

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

= −SEH,
•
Ω

GHY + ε

2κ

∫
∂M

ea
µ(dnµ + gµνdnν) ∧ ηna

∣∣∣
∂M

, (5.58)

which we finally insert into the (S)TEGR action (5.545.54) to obtain

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + ε

2κ

∫
∂M

ea
µ(dnµ + gµνdnν) ∧ ηna

∣∣∣
∂M

. (5.59)

We postpone both the discussion of the covariance of this action as well as the thorough
interpretation of its boundary term to subsection 5.2.15.2.1 in order to readily include
lightlike boundaries.

The action (5.595.59) is equivalent to the full (S)TEGR action (5.485.48) including the GHY
term SEH,

•
Ω

GHY . Therefore, we have found that (S)TEGR may be described solely by the
Levi-Civita connection which is torsion-free and metric-compatible. This is remarkable
because the bulk contribution of (S)TEGR in the form (5.485.48) was fully described by
torsion and non-metricity. Note that this ambiguity originates from the choice (5.495.49)
of the connection which we used to replace •

ωµ
ρ ∧ •

ωρ
ν by −d •

ωµ
ν . This ambiguity of the
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(S)TEGR connection was already found in [124124] in a different context. The derivation
above may as well be read in the inverse direction. That is, we may re-express the
GHY term in the (S)TEGR gauge as a bulk term by combining (5.585.58) with (5.545.54).
Let us emphasize again that the comparison of the two equivalent expressions (5.485.48)
and (5.595.59) of the (S)TEGR action implies that gravity in (S)TEGR is modeled either
by torsion and non-metricity or by the torsion-free, metric-compatible Levi-Civita
connection. Since this is counterintuitive, let us explore the action (5.595.59) in more
detail.

To begin with, we mention that it was already noticed by Einstein [1212] that (5.595.59)
yields the correct equations of motion of general relativity. In fact, we may re-express
the Einstein-Hilbert action in the form

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY (5.60)

by a calculation along the same lines from which we obtained (5.595.59) as an expression
of the (S)TEGR action. That is, we use the definition Ωµ

ν = dωµ
ν + ωµ

ρ ∧ ωρ
ν of

the curvature two-form in the Einstein-Hilbert action (5.605.60) and insert D̊ηµν = 0 to
conclude

SEH,Ω̊ = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + ε

2κ

∫
∂M

ea
µ(dnµ + gµνdnν) ∧ ηna

∣∣∣
∂M

. (5.61)

In the latter form, the Einstein-Hilbert action is called Einstein action. Hence, the
result (5.595.59) for the (S)TEGR action exactly reproduces the Einstein-Hilbert action
with which we have started, S(S)TEGR = SEH,Ω̊.

Naively, one might conclude that there is no new information in the (S)TEGR
action. However, recall that the theories described by S(S)TEGR and SEH,Ω̊ describe
gravitational dynamics by means of a very different field content. In GR, gravity is
modeled by curvature while torsion and non-metricity vanish. In contrast to that,
(S)TEGR is a theory with non-trivial torsion and non-metricity, while curvature is
vanishing. The fact that these seemingly utterly different theories may be described
by the exact same action implies that the field content modeled by this action is
not unambiguous. Since this field content is constituted solely by the Levi-Civita
connection ω̊µ

ν , we need to study ω̊µ
ν in more detail. For this purpose, we solve the

definition of the deformation one-form (5.45.4) for the Levi-Civita connection to obtain

ω̊µ
ν = ωµ

ν − Aµ
ν . (5.62)

While the latter equation is trivial mathematically, it has important physical conse-



140 5. The geometrical trinity of gravity

quences. In the (S)TEGR gauge choice, (5.625.62) implies that the Levi-Civita connection
may be expressed through the (S)TEGR connection and the deformation one-form,
where the latter encodes contributions of torsion and non-metricity. This is the inter-
pretation of ω̊µ

ν which allows us to find the Einstein action (5.595.59) as the action which
describes dynamics either on curved or on flat manifolds with non-trivial torsion and
non-metricity.

This provides a new perspective on the geometrical trinity of general relativity,
because we found all of its equivalent theories to be described by the Einstein action,
while the seemingly different dynamics rely on the ambiguous interpretation of the
Levi-Civita connection ω̊µ

ν . This new perspective on the (S)TEGR action, its GHY
term and the geometrical trinity of general relativity is the main result of this section.
I did not publish this result before. The importance of the Einstein action for the
individual theories contained in the geometrical trinity was studied to different extent
in the literature. Einstein already discussed this action in GR, and its importance as
a GR action in view of the geometrical trinity was recently stressed in [125125] again.
In the realm of STEGR, the Einstein action was found in a subgroup of theories
called coincident GR, see [2121]. Finally, [126126] recently hinted at the importance of the
Einstein action in TEGR. My results derived in this section unify all these approaches
and explain why the Einstein action possesses these different interpretations.

This discussion qualitatively generalizes to the (S)TEGR action on manifolds with
lightlike boundaries, although we note that the boundary term in the (S)TEGR ac-
tion (5.595.59) explicitly depends on the likeness of the boundary and therefore needs to be
altered. Just as for space- and timelike boundaries, we note that the original (S)TEGR
action (5.485.48) may be interpreted as containing a boundary term in η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν .
This is due to the (S)TEGR gauge choice •

ωµ
ρ ∧ •

ωρ
ν = −d •

ωµ
ν . The derivation of the

boundary term contained in η ν
µ ∧

•
Aµ

ρ ∧
•
Aρ

ν proceeds analogous to the space- and
timelike case and we rewrite the (S)TEGR action as

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + 1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

+ SEH,
•
Ω

GHY (5.63)

analogous to (5.545.54). In order to compare the boundary term 1
2κ

∫
∂M

•
ωµ

ν ∧η ν
µ

∣∣∣
∂M

with

the GHY term SEH,
•
Ω

GHY on lightlike boundaries, we decompose it into boundary tangent
and non-tangent contributions. For this purpose, we insert the lightlike decomposition
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of unity (3.873.87) into this boundary term to obtain

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

=
1

2κ

∫
∂M

(
(eA

µ e
ν
B

•
ωµ

ν ) ∧ η B
A + ε(eA

µk
ν •
ωµ

ν ) ∧ ηAl + ε(eA
µ l

ν •
ωµ

ν ) ∧ ηAk

+ ε(kµe
ν
A

•
ωµ

ν ) ∧ ηlA + ε(lµeν
A

•
ωµ

ν ) ∧ ηkA + ε2(kµl
ν •
ωµ

ν ) ∧ ηlk

+ ε2(lµkν •
ωµ

ν ) ∧ ηkl + ε2(lµlν •
ωµ

ν ) ∧ ηkk + ε2(kµk
ν •
ωµ

ν ) ∧ ηll
)∣∣∣

∂M
.

(5.64)

In section 5.1.25.1.2, we concluded that the only non-vanishing projection of ηµν in the
lightlike boundary term (5.645.64) is ηlk

∣∣∣
∂M

= −ηkl

∣∣∣
∂M

. The corresponding projections of
the (S)TEGR connection are contained in the definitions of K and L which we exam-
ined in (5.285.28). By means of these projections, we evaluate the boundary term (5.645.64)
to obtain

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

= − ε2

2κ

∫
∂M

( •
K −

•
L − lµdkµ + kµdlµ

)
∧ ηlk

∣∣∣
∂M

. (5.65)

This includes the GHY term (4.1074.107) of Einstein-Hilbert gravity for lightlike boundaries
in the (S)TEGR gauge. Comparison to (4.1074.107) reveals that the boundary term (5.655.65)
may be rewritten as

1
2κ

∫
∂M

•
ωµ

ν ∧ η ν
µ

∣∣∣
∂M

= −SEH,
•
Ω

GHY + ε2

2κ

∫
∂M

(lµdkµ − kµdlµ) ∧ ηlk

∣∣∣
∂M

. (5.66)

In analogy to the space- and timelike case, we reinstate the latter result into (5.635.63) to
rewrite the (S)TEGR action (5.485.48) on manifolds with lightlike boundary as

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + ε2

2κ

∫
∂M

(lµdkµ − kµdlµ) ∧ ηlk

∣∣∣
∂M

. (5.67)

Note that due to kµdlµ = −lµdkµ, (5.675.67) is completely analogous to the result (5.595.59)
we obtained for space- and timelike boundaries. The discussion of (5.595.59) therefore
applies for the lightlike case (5.675.67) as well. In particular, (5.675.67) is the Einstein action
which we may obtain from rewriting the Einstein-Hilbert action on manifolds with
lightlike boundaries. The bulk term contained in (5.675.67) is consistently the same as in
the non-lightlike case. Thus, the interpretation of this bulk term as a model for either
GR or (S)TEGR is identical to the discussion of the non-lightlike case. There are two
aspects which remain to be discussed in order to obtain a complete interpretation of the
Einstein action in the context of the geometrical trinity of general relativity. First, this
is the invariance of the Einstein action with respect to GL(m,R) transformations and
second, this is an interpretation of the boundary term. We proceed by investigating
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both of these aspects.

5.2.1. Covariance of the Einstein action and its boundary term

In this section, we examine the role of the boundary term SE
cov of the Einstein action.

For later reference, we decompose the Einstein action into its contribution SE
bulk in

the bulk and its boundary term SE
cov such that SE = SE

bulk + SE
cov. The main result of

this subsection is that SE is covariant44 because SE
cov accounts for the boundary terms

which make SE
bulk non-covariant. We examine the transformation behavior of each

term separately in the following in order to proof this statement.
The bulk contribution SE

bulk of the Einstein action is given by

SE
bulk

..= − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν , (5.68)

while the boundary contribution differs for lightlike and non-lightlike boundaries. On
space- and timelike hypersurfaces, (5.595.59) implies

SE
cov = ε

2κ

∫
∂M

ea
µ(dnµ + gµνdnν) ∧ ηna

∣∣∣
∂M

, (5.69)

while we obtain

SE
cov = ε2

2κ

∫
∂M

(lµdkµ − kµdlµ) ∧ ηlk

∣∣∣
∂M

(5.70)

on lightlike hypersurfaces from (5.675.67). We denote both boundary terms by the same
symbol SE

cov by abuse of notation since the considered boundary geometry makes it
unambiguous which of the boundary terms we need to choose.

For interpreting (5.695.69) and (5.705.70), we first notice that SE
cov does not depend on the

connection and is thus irrelevant for the variational principle. Therefore, it may not be
understood as a GHY term, while at the same time it does not require us to introduce
another GHY term which would cancel its variation. Instead, this term makes the
Einstein action SE = SE

bulk +SE
cov invariant with respect to GL(m,R) transformations.

The most straightforward argument proving this covariance is that we have found SE

as a rewriting of the manifestly covariant Einstein-Hilbert action including its GHY
term. The proof of covariance may be given explicitly as well, and we proceed by
constructing it in differential form notation. A lengthy derivation in [125125] showed that
the bulk Einstein action is covariant up to a boundary term, which was recently argued

4We call terms covariant if they are invariant with respect to GL(m,R) transformations. For
manifestly covariant terms, this invariance is obvious.
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in [126126] as well. We obtain this result very efficiently in the differential form formalism
which we developed in this thesis. To see that, we consider an arbitrary GL(m,R)
transformation Λµ

ν . In accordance to the transformation properties we derived for
connection one-forms and associated bundles in sections 2.52.5 and 2.62.6, we denote the
transformed tensors by

ω̄µ
ν = Λ−1µ

ρω
ρ
σΛσ

ν + Λ−1µ
ρdΛρ

ν ,

η̄ ν
µ = Λρ

µΛ−1ν
ση

σ
ρ .

(5.71)

For evaluating the transformed Einstein action S̄E
bulk, we need to recall that D̊η ν

µ =
0 for the Levi-Civita covariant exterior derivative. Furthermore, we use 0 = dδµ

ν

with δµ
ν = Λ−1µ

ρΛρ
ν to derive that

dΛ−1µ
ν = −Λ−1µ

ρΛ−1σ
νdΛρ

σ . (5.72)

By means of these simplifications, we insert (5.715.71) into the transformed bulk Einstein
action S̄E

bulk to obtain

S̄E
bulk = SE

bulk − 1
2κ

∫
∂M

Λ−1ρ
νdΛµ

ρ ∧ η ν
µ

∣∣∣
∂M

. (5.73)

Hence, we verified that the bulk Einstein action (5.685.68) is invariant with respect to
GL(m,R) transformations up to the boundary term

SΛ ..= − 1
2κ

∫
∂M

Λ−1ρ
νdΛµ

ρ ∧ η ν
µ

∣∣∣
∂M

. (5.74)

In order to compare this result to the boundary term SE
cov of the Einstein action, we

need to decompose (5.745.74) on lightlike and non-lightlike boundaries separately. For the
space- and timelike case, we found in section 5.1.15.1.1 that only the projection ηna

∣∣∣
∂M

=
−ηan

∣∣∣
∂M

of ηµν = ∗(θµ ∧ θν) contributes on hypersurfaces. By means of the unity
decomposition (3.383.38), we thus obtain

SΛ = − ε

2κ

∫
∂M

(nµg
νσea

σ − ea
µn

ν)Λ−1ρ
νdΛµ

ρ ∧ ηna

∣∣∣
∂M

(5.75)

on space- and timelike boundaries. For the lightlike case, section 5.1.25.1.2 revealed that
ηlk

∣∣∣
∂M

= −ηkl

∣∣∣
∂M

is the only non-vanishing projection of ηµν . Inserting the lightlike
decomposition of unity (3.873.87) into (5.745.74), we thus obtain

SΛ = − ε2

2κ

∫
∂M

(kµl
ν − lµk

ν)Λ−1ρ
νdΛµ

ρ ∧ ηlk

∣∣∣
∂M

. (5.76)
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This boundary term appears in the transformation of the boundary action SE
cov as well.

Concretely, applying the GL(m,R) transformation Λµ
ν to (5.695.69) and (5.705.70), we obtain

S̄E
cov = SE

cov − SΛ (5.77)

for both lightlike and non-lightlike boundaries. Combining (5.775.77) with (5.745.74), we
conclude that

S̄E = SE . (5.78)

This result clarifies two aspects. First, we explicitly see that the Einstein action in-
cluding the boundary term SE

cov is invariant under GL(m,R) transformations. Second,
(5.775.77) reveals that the role of the boundary terms (5.695.69) and (5.705.70) is exactly to
make SE fully covariant. This covariance is essential for the interpretation of the Ein-
stein action as a model for physical systems. While it was found for instance in [125125,
126126] that the bulk action is invariant under diffeomorphisms up to boundary terms,
my results discussed in this subsection show how to restore GL(m,R) invariance com-
pletely. This is my original result which I did not publish before. Combined with the
remaining results I derived in section 5.25.2 so far, this sheds new light on the geomet-
rical trinity of general relativity. That is, from the Einstein action and its boundary
term we may entirely understand the geometrical trinity of general relativity as well
as general teleparallel quadratic gravity. We have seen that this action resembles GR
if we interpret ω̊µ

ν as the Levi-Civita connection, while we rewrite ω̊µ
ν = •

ωµ
ν −

•
Aµ

ν

to obtain a theory of (S)TEGR. Finally, we concluded the discussion of the Einstein
action perspective on the geometrical trinity of general relativity by proving that its
boundary term makes the Einstein action fully invariant under GL(m,R) transforma-
tions. Therefore, the Einstein action provides a unified approach to the geometrical
trinity of general relativity. This unifying perspective is one of the main results of this
chapter.

5.2.2. Component expression of the Einstein action

For calculational purposes, we will need the expression of the Einstein action (5.685.68) in
tensor components. For obtaining this expression, we introduce the tensor components
of the relevant tensors as

Γµ
ρν

..= ωµ
ν (ϑρ) , cµ

νρ
..= dθµ(ϑν , ϑρ) , T µ

νρ
..= T µ(ϑν , ϑρ) , Qµνρ

..= Qµν(ϑρ) .
(5.79)
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By means of the definitions T µ = dθµ + ωµ
ν ∧ θν and Qµν = −dgµν + ωρ

µgρν + ωρ
νgµρ

of torsion and non-metricity, we re-express their tensor components (5.795.79) as

T µ
νρ = cµ

νρ + Γµ
νρ − Γµ

ρν , Qµνρ = −∂ρgµν + Γσ
ρµgσν + Γσ

ρνgσµ (5.80)

and we furthermore introduce the abbreviations Tµνρ
..= gµσT

σ
νρ and cµνρ

..= gµσc
σ

νρ.
It is now useful to evaluate the combination

−Tµνρ + Tνρµ + Tρµν −Qµνρ +Qνρµ +Qρµν (5.81)

of torsion and non-metricity by means of (5.805.80). Reordering the terms in this combi-
nation, we obtain the expression

Γσ
µν =1

2g
σρ(cµνρ − cνρµ − cρµν) + 1

2g
σρ(−∂ρgµν + ∂µgνρ + ∂νgρµ)

+ 1
2g

σρ(−Tµνρ + Tνρµ + Tρµν) + 1
2g

σρ(−Qµνρ +Qνρµ +Qρµν) .
(5.82)

These are the components Γσ
µν = ωσ

ν (ϑµ) of any connection one-form ωµ
ν . Thus,

from evaluating (5.825.82) we obtain the coefficients of every connection we previously
discussed in this section. For example, we defined the Levi-Civita connection ω̊µ

ν as the
connection which has vanishing torsion and non-metricity. Inserting Tµνρ = 0 = Qµνρ

into (5.825.82), we thus obtain the components of the Levi-Civita connection as

Γ̊σ
µν =1

2g
σρ(cµνρ − cνρµ − cρµν) + 1

2g
σρ(−∂ρgµν + ∂µgνρ + ∂νgρµ) . (5.83)

This is the standard expression of the Levi-Civita connection components in frames
which do not obey dθµ = 0, see [127127, 128128] for instance. Combining (5.835.83) with (5.825.82),
we explicitly verify that the components Aµ

νρ
..= Aµ

ν(ϑρ) of the deformation one-form
are independent of curvature,

Aσ
νµ = Γσ

µν − Γ̊σ
µν = 1

2g
σρ(−Tµνρ + Tνρµ + Tρµν) + 1

2g
σρ(−Qµνρ +Qνρµ +Qρµν) .

(5.84)

These tensor component results will be useful for the calculation of (S)TEGR on-shell
actions in chapter 66.

We conclude the discussion of the geometrical trinity of general relativity by com-
paring the Einstein action approach to the perspective developed in section 5.15.1. There
are two main advantages of the formulation of the (S)TEGR action by means of the
deformation one-form. First, due to the relation (5.845.84) of Aµ

ν to torsion and non-
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metricity, it is unambiguous that the action − 1
2κ

∫
M η ν

µ ∧Aµ
ρ ∧Aρ

ν describes a theory
in which gravity is understood as torsion and non-metricity of the underlying manifold.
Second, this action is manifestly covariant. Formally, it induces the bulk contribution
of the Einstein action if we fix the gauge •

ωµ
ν = 0. Nevertheless, we found that the

Einstein action describes geometries with •
ωµ

ν ̸= 0 as well since we may rewrite ω̊µ
ν

as •
ωµ

ν −
•
Aµ

ν , giving the action a (symmetric) teleparallel interpretation. In sec-
tion 5.2.15.2.1 we concluded that the Einstein action is invariant with respect to GL(m,R)
transformations as well. The main advantage of the new Einstein action perspective
on the geometrical trinity of general relativity is that all of its equivalent theories are
described by the very same action. From this perspective, the equivalence of GR and
(S)TEGR becomes tautological.

5.3. The geometrical trinity of gravity

As a last facet of the geometrical trinity of general relativity we discuss how it may be
generalized to generic theories of gravity based on Riemannian curvature. For space-
and timelike hypersurfaces, I first discussed this in [22]. I generalize these results to
lightlike hypersurfaces in this section which is unpublished so far. My results generalize
those of [129129] which found that every metric theory of gravity has a teleparallel equiv-
alent. Also see [130130] for a recent discussion of Gauß-Bonnet terms in the geometrical
trinity of gravity.

The basic idea underlying this generalization is that the decomposition (5.65.6) of
curvature into its Riemannian contributions and terms originating from torsion and
non-metricity may be used to re-interpret the Riemannian curvature in any theory.
To see that, we consider a generic action of the form

SΩ̊ =
∫

M
L(Ω̊µ

ν) + SΩ̊
GHY , (5.85)

where the GHY term may be obtained from (4.264.26) for space- and timelike boundaries,
whereas (4.984.98) yields SΩ̊

GHY for lightlike boundaries. In order to study this action sys-
tematically in its generic form (5.855.85), we introduce Lagrange multipliers and auxiliary
fields as in sections 4.1.24.1.2 and 4.2.24.2.2. This yields

SΩ̊
Lagr =

∫
M

(
L(ϱ̊µ

ν) + ∗φ ν
µ ∧ (Ω̊µ

ν − ϱ̊µ
ν)
)

+ SΩ̊
GHY

=
∫

M

(
L(ϱ̊µ

ν) + ∗φ ν
µ ∧ (Ωµ

ν − D̊Aµ
ν − Aµ

ρ ∧ Aρ
ν − ϱ̊µ

ν)
)

+ SΩ̊
GHY

(5.86)

by means of the curvature decomposition (5.65.6). The contribution D̊Aµ
ν of this La-
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grangian will generically yield boundary terms due to

−
∫

M
∗φ ν

µ ∧ D̊Aµ
ν = −

∫
∂M

Aµ
ν ∧ ∗φ ν

µ

∣∣∣
∂M

−
∫

M
Aµ

ν ∧ D̊ ∗ φ ν
µ (5.87)

which we need to compare to SΩ̊
GHY for understanding the boundary contributions

of (5.865.86). For this comparison, we decompose

SA∗φ
Lagr

..= −
∫

∂M
Aµ

ν ∧ ∗φ ν
µ

∣∣∣
∂M

(5.88)

into hypersurface tangent and normal contributions. This decomposition differs for
lightlike and non-lightlike boundaries, and we examine the space- and timelike case
first.

Inserting the projections (5.175.17) associated to the decomposition (5.125.12) of the defor-
mation one-form into (5.885.88), we obtain

SA∗φ
Lagr = −

∫
∂M

(
Aa

b ∧ ∗φ b
a + ε(Ka − K̊a) ∧ ∗φna

+ ε(−K̃a + K̊a) ∧ ∗φna + 1
2Qnn ∧ ∗φnn

)∣∣∣
∂M

,
(5.89)

which we compare to the universal GHY term (4.264.26) to conclude

SA∗φ
Lagr = −

∫
∂M

Aa
b ∧ ∗φ b

a

∣∣∣
∂M

− SΩ̊
GHY + SΩ

GHY . (5.90)

For lightlike boundaries, we analogously use the decomposition of the deformation
one-form (5.225.22) and the according projections of Aµ

ν to obtain

SA∗φ
Lagr = −

∫
∂M

(
AA

B ∧ ∗φ B
A + ε(KA − K̊A) ∧ ∗φAl + ε(−K̃A + K̊A) ∧ ∗φlA

+ ε(LA − L̊A) ∧ ∗φAk + ε(−L̃A + L̊A) ∧ ∗φkA + ε2(L + K̊) ∧ ∗φlk

+ ε2(K − K̊) ∧ ∗φkl + ε2

2 Qkk ∧ ∗φll + ε2

2 Qll ∧ ∗φkk
)∣∣∣

∂M
.

(5.91)

Comparing this decomposition to the universal lightlike GHY term (4.984.98) yields

SA∗φ
Lagr = −

∫
∂M

AA
B ∧ ∗φ B

A

∣∣∣
∂M

− SΩ̊
GHY + SΩ

GHY . (5.92)

This decomposition is analogous to the result (5.905.90) on space- and timelike boundaries.
We thus proceed by using (5.905.90) for all cases, keeping in mind that the range of the
boundary indices is only 0, . . . ,m− 3 if the boundary of the m-dimensional manifold
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is considered to be lightlike. Inserting the decomposed boundary term (5.905.90) into the
Lagrange multiplier action (5.865.86), we obtain

SΩ̊
Lagr =

∫
M

(
L(ϱ̊µ

ν) + ∗φ ν
µ ∧ (Ωµ

ν − Aµ
ρ ∧ Aρ

ν − ϱ̊µ
ν)
)

+ SΩ
GHY

−
∫

M
Aµ

ν ∧ D̊ ∗ φ ν
µ −

∫
∂M

Aa
b ∧ ∗φ b

a

∣∣∣
∂M

.
(5.93)

Hence, we conclude that the contribution D̊Aµ
ν renders the GHY term correct for

the expression of the Lagrange multiplier action by means of the full curvature two-
form Ωµ

ν .
Before generalizing to generic actions, let us first discuss the case in which the

contribution stemming from D̊Aµ
ν is only a difference of GHY terms. This is the

case in which 0 = −
∫

M Aµ
ν ∧ D̊ ∗ φ ν

µ −
∫

∂M Aa
b ∧ ∗φ b

a

∣∣∣
∂M

so that only the first line
of (5.935.93) is non-vanishing. In this case, we evaluate the action on the field equations
of the Lagrange multipliers to obtain

SΩ̊ =
∫

M
L(Ωµ

ν − Aµ
ρ ∧ Aρ

ν) + SΩ
GHY . (5.94)

From this action, it is straightforward to impose the teleparallel gauge Ωµ
ν = 0 for the

connection. Analogous to the GR case discussed in section 5.1.35.1.3, we need to eliminate
the GHY term when imposing this gauge in order to render the variational principle
well-defined. Hence, the (symmetric) teleparallel equivalent of SΩ̊ is

S(S)TE Ω̊ =
∫

M
L(−

•
Aµ

ρ ∧
•
Aρ

ν) . (5.95)

We thus formally obtain the teleparallel equivalent of the Riemannian action (5.855.85)
by replacing Ω̊µ

ν 7→ −
•
Aµ

ρ ∧
•
Aρ

ν and subtracting SΩ̊
GHY from the action.

These ideas generalize to the case in which the second line of (5.935.93) is not vanish-
ing. Generically it is involved to obtain the (symmetric) teleparallel equivalent of the
Riemannian action (5.855.85) by going on-shell in the Lagrange multipliers. However, the
boundary decomposition (5.905.90) clarifies that the terms proportional to D̊Aµ

ν always
render the GHY term correct. Therefore, the following procedure yields the (symmet-
ric) teleparallel equivalent of any action constructed only by Riemannian curvature on
a manifold with boundary:

1. Ensure that an appropriate GHY term SΩ̊
GHY is added to the action to make the

variational principle well-defined. This GHY term may be constructed following
the method of chapter 44.
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2. Use the decomposition Ω̊µ
ν = Ωµ

ν − D̊Aµ
ν − Aµ

ρ ∧ Aρ
ν we obtained in (5.65.6) to

rewrite Riemannian curvature by the full curvature two-form and contributions
of torsion and non-metricity.

3. Constrain the full curvature two-form Ωµ
ν to vanish by choice of the (symmetric)

teleparallel connection fulfilling •
ωµ

ρ ∧ •
ωρ

ν = −d •
ωµ

ν .

4. Render the variational principle of the resulting action well-defined by subtract-
ing SΩ

GHY from the (symmetric) teleparallel action.

By means of this procedure, we obtain a (symmetric) teleparallel equivalent for every
metric-compatible theory with vanishing torsion. This agrees with the results of [129129],
generalizing the latter to manifolds with boundary. Our results furthermore generalize
the geometrical trinity of general relativity which we discussed in the previous sections.
In particular, we derived a correspondence with broader applicability which we call
the geometrical trinity of gravity. Note that the actions of the (symmetric) teleparallel
equivalents in this trinity always include powers of

•
Aµ

ρ ∧
•
Aρ

ν . This originates from
the defining equation Ω̊µ

ν = Ωµ
ν − D̊Aµ

ν − Aµ
ρ ∧ Aρ

ν which allows to transition
from a Riemannian theory to its (symmetric) teleparallel equivalent. Hence, these
(symmetric) teleparallel theories always admit an equivalent description in terms of
the Levi-Civita connection analogous to the discussion in section 5.25.2 because of the
ambiguity introduced by the gauge choice •

ωµ
ρ ∧ •

ωρ
ν = −d •

ωµ
ν .

Let me briefly summarize the results found in this chapter to conclude the discus-
sion of the geometrical trinity of gravity. The fundamental tensor upon which the
geometrical trinity is built is the deformation one-form Aµ

ν = ωµ
ν − ω̊µ

ν . This one-
form measures how much the geometry described by the connection one-form ωµ

ν is
deformed from a geometry described by the Levi-Civita connection ω̊µ

ν which has van-
ishing torsion and non-metricity. In turn, the deformation one-form is independent of
the manifold’s curvature. By a straightforward calculation we decomposed the curva-
ture two-form Ωµ

ν into a Riemannian contribution as well as additional contributions
of the deformation one-form which implement torsion and non-metricity. We inserted
this decomposition into the Einstein-Hilbert action as Ωµ

ν = Ω̊µ
ν + D̊Aµ

ν +Aµ
ρ ∧Aρ

ν

and subsequently rewrote the contribution stemming from D̊Aµ
ν as the boundary term

SD̊A = − 1
2κ

∫
∂M

Aµ
ν ∧ η ν

µ

∣∣∣
∂M

= −SEH,Ω̊
GHY + SEH,Ω

GHY , (5.96)

where an algebraic manipulation revealed that we may interpret SD̊A as a difference
of GHY terms. Hence, the boundary action SD̊A renders the variational principle
well-defined, no matter if we express the Einstein-Hilbert action by means of the
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Riemannian curvature Ω̊µ
ν or the full curvature two-form Ωµ

ν . General relativity may
therefore be equivalently described by either expression of the action

SEH,Ω̊ = 1
2κ

∫
M
η ν

µ ∧ Ω̊µ
ν + SEH,Ω̊

GHY

= 1
2κ

∫
M
η ν

µ ∧ (Ωµ
ν − Aµ

ρ ∧ Aρ
ν) + SEH,Ω

GHY .
(5.97)

The (symmetric) teleparallel equivalent of general relativity is obtained by imposing
the (S)TEGR gauge •

ωµ
ρ ∧ •

ωρ
ν = −d •

ωµ
ν defined such that the curvature two-form

vanishes. We argued that the GHY term needs to be eliminated in this gauge in order
to obtain a well-defined variational principle. This yields the (S)TEGR action

S(S)TEGR = − 1
2κ

∫
M
η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν , (5.98)

and its equivalence with the Einstein-Hilbert action is called the geometrical trinity of
general relativity. While it was already known that the boundary action SD̊A appears
in the transition from GR to (S)TEGR, the interpretation of SD̊A as a difference of
GHY terms is my original result. This yields the boundary refined version of the
geometrical trinity of general relativity which we discussed here.

Reaching beyond the boundary refinement of the geometrical trinity of general rel-
ativity, I developed a new perspective on the trinity in section 5.25.2. This perspective is
based on the ambiguity of bulk and boundary terms introduced by the (S)TEGR gauge
choice •

ωµ
ρ ∧ •

ωρ
ν = −d •

ωµ
ν which allowed to rewrite the (S)TEGR action including its

GHY term as

SE = − 1
2κ

∫
M
η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν + SE
cov . (5.99)

We proved that the boundary term SE
cov depending on the boundary geometry is needed

to make the action (5.995.99) invariant with respect to GL(m,R) transformations. In this
form, the (S)TEGR action (5.995.99) is the Einstein action which may as well be obtained
by rewriting the Einstein-Hilbert action describing GR. Hence, the Einstein action
allows for a unifying perspective on all theories included in the geometrical trinity of
general relativity. For understanding this new perspective, we noted that the Levi-
Civita connection ω̊µ

ν which describes the dynamics in (5.995.99) admits two different
interpretations. On the one hand, ω̊µ

ν is the connection of a theory with vanishing
torsion and non-metricity, such that its dynamics is constituted solely by Riemannian
curvature. On the other hand, ω̊µ

ν may be rewritten by means of the definition of
the deformation one-form as ω̊µ

ν = ωµ
ν − Aµ

ν . Hence, if we choose a (S)TEGR
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connection ωµ
ν = •

ωµ
ν , the Levi-Civita connection is determined solely by torsionful

and non-metric contributions while the curvature two-form vanishes.
Lastly, we found that all of these results generalize to more complicated actions con-

structed from the Levi-Civita connection. That is, any such action may equivalently
be interpreted as a theory whose dynamics is described by torsion and non-metricity.
In different terms, any action constructed from the Levi-Civita connection possesses
a (symmetric) teleparallel equivalent. We developed a method for constructing this
equivalent and found that the contributions originating from D̊Aµ

ν always render the
variational principle of the corresponding theories well-defined by including the ap-
propriate GHY terms.





A frame perspective on
holographic renormalization 6

In this chapter, we apply the formalism for describing hypersurfaces developed in
chapter 33 to the timelike boundary of Anti-de Sitter (AdS) spaces. AdS spaces are
spaces which have a constant, negative cosmological constant. In general relativity,
this implies that the scalar curvature of an AdS space is negative11. For us, AdS
spaces are of unparalleled importance due to their role in explicit realizations of the
holographic principle [6565–6868]. Being inspired by the Bekenstein-Hawking result [131131–
133133] for the entropy of black holes, the conjecture of the holographic principle is that
the information contained within a region of a manifold M is entirely encoded on its
boundary. Here, a region of a manifold is a submanifold N ⊆ M which is often called
a volume since it is required to have the same dimension as M. The holographic
principle may be understood as a dictionary which relates the physical quantities in
a region N ⊆ M to physical quantities on its boundary ∂N . The importance of
AdS manifolds in the context of the holographic principle arises from their duality to
conformal field theories (CFT) in one dimension less.

Concretely, the AdS/CFT correspondence predicts that gravitational theories on
an AdS manifold permit an equivalent description in terms of a CFT defined on the
boundary of this manifold [6262–6464]. The AdS/CFT correspondence provides the best
understood implementation of the holographic principle. Since this correspondence
is conjectured and does not allow for a full proof at this time, we need to perform
explicit tests to support its viability. Typical tests involve the calculation of correla-
tion functions of boundary fields by means of bulk dynamics [6969]. Subsequently, one
compares the resulting correlation functions to the corresponding value obtained from
a direct field theory derivation in cases in which the latter is known. However, physical
quantities in the bulk are typically divergent upon restriction to the boundary in cor-
respondence to the divergences one encounters in CFT computations. Soon after the
AdS/CFT correspondence has been first proposed, the authors of [134134–136136] therefore
developed a systematic method for dealing with these divergences. This method is
known as holographic renormalization.

1As we have seen in chapter 55, scalar curvature is only one of three ways to encode geometric
information of a manifold. Alternatively, we could encode the negative cosmological constant in
the so-called torsion or non-metricity scalars, both of which are obtained from the η ν

µ ∧Aµ
ρ ∧Aρ

ν

term of the (S)TEGR action.
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In this chapter, I develop a new perspective on holographic renormalization based
on the frame decomposition on hypersurfaces. This perspective is my unpublished
original research. In particular, I apply the method of holographic renormalization to
the AdS Schwarzschild black hole in TEGR to illustrate how teleparallel theories of
gravity may be renormalized in the context of the AdS/CFT correspondence. This
serves as a proof of concept demonstrating that torsion can hold information about
the boundary thermodynamics. My results serve as a starting point for developing a
comprehensive understanding of holographic renormalization in (symmetric) telepar-
allel gravity entirely in the future. Since holographic renormalization is based on
the Fefferman-Graham theorem, I begin by developing the frame perspective on this
theorem.

6.1. The Fefferman-Graham frame and its expansion

The methodology of holographic renormalization relies on the Fefferman-Graham the-
orem. One of the implications of this theorem is that the metric of a negatively curved
manifold may be expanded at the boundary of this manifold in a certain way [137137,
138138]. For obtaining this expansion it is crucial to choose the correct coordinates which
are called the Fefferman-Graham coordinates. From the differential geometric setup in
chapter 22 we know that such coordinates may only be chosen in a chart in which they
appear as the components of the chart projection map. These coordinates xα induce
the frame ∂

∂xα and its associated coframe dxα. In the context of the Fefferman-Graham
theorem, the choice of Fefferman-Graham coordinates may therefore be considered as
a choice of frame. Since we need to expand this frame in the vicinity of the AdS
boundary, it is useful to align one of its vectors with the normal direction. Hence,
the decomposition of frames and coframes on hypersurfaces we developed in chapter 33
is useful in the context of holographic renormalization as well. We thus proceed by
applying this formalism to the Fefferman-Graham coordinates in order to construct
Fefferman-Graham frames and coframes.

The Fefferman-Graham coordinates xα are constructed to describe the negatively
curved manifold called Anti-de Sitter (AdS) space. This manifold has an asymp-
totic timelike boundary. The Fefferman-Graham coordinates xα are decomposed into
boundary coordinates xa and the coordinate z ..= xm−1 parametrizing the normal di-
rection such that the boundary of the m-dimensional manifold is located at z → 0.
The chart-induced frame and coframe tangent to the boundary are thus given by ∂

∂xa

and dxa, while ∂
∂z

and dz are normal to the AdS boundary. Adapting the decompo-
sition of frame and coframe (3.363.36) into boundary tangent and normal contributions
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as

ϑµ = ea
µφa + ε

N
nµφ ,

θµ = eµ
aϕ

a +Nnµϕ ,
(6.1)

we identify

φa = ∂

∂xa
, ϕa = dxa , φ = ∂

∂z
, ϕ = dz (6.2)

for the chart-induced frame. This choice respects the conditions (3.263.26) which relate
frame and coframe, and we choose ε = 1 in the following in order to implement that
the AdS boundary is timelike. Starting from (6.16.1) and (6.26.2), we may transform from
the chart-induced to any frame which is appropriate for describing the considered
physical system by choosing eµ

a and Nnµ. We discuss this choice for the chart-induced
frame first before we generalize to generic frames.

The chart-induced frame. We decompose the frame ∂
∂xα and its coframe dxα in-

duced by the Fefferman-Graham coordinates xα into boundary tangent and normal
contributions as

∂

∂xα
= δa

α

∂

∂xa
+ δz

α

∂

∂z
,

dxα = δα
a dxa + δα

z dz ,
(6.3)

where we abbreviate δα
z

..= δα
dim M−1 and δz

α
..= δdim M−1

α throughout this chapter.
Comparing (6.36.3) to the generic frame decomposition (6.16.1) with (6.26.2), we decompose
the chart-induced frame by choosing eα

a = δα
a and Nnα = δα

z . For representing the
metric in the chart-induced frame, we recall that g( ∂

∂xa ,
∂
∂z

) = 0 due to the definition
of tangent and normal directions. Therefore, we obtain

g = γabdxa ⊗ dxb +N2dz ⊗ dz , (6.4)

where we used γab = g( ∂
∂xa ,

∂
∂xb ) and N =

√
g( ∂

∂z
, ∂

∂z
).

The Fefferman-Graham theorem [137137, 138138] implies that the metric (6.46.4) may be
written in the form

g = L2

z2 (Gabdxa ⊗ dxb + dz ⊗ dz) , (6.5)
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where in m-dimensional AdS spaces Gab admits the expansion

Gab =
∞∑

i=0
G

(2i)
ab (x)z2i + G̃ab(x) ln(z)zm−1 (6.6)

as we approach the AdS boundary at z → 0. Here, G̃ab(x) = 0 for odd dimensional
manifolds M and a dependence on x is meant to be a dependence on the boundary
coordinates xa only. Comparing the metric in the Fefferman-Graham form to the
chart-induced expression (6.46.4), we obtain

Gab = z2

L2γab and N = L

z
. (6.7)

From (6.76.7) we immediately see that Gab is not a well-defined metric on the bound-
ary, while rescaling Gab by L2

z2 yields a well-defined boundary metric. The boundary
metric is therefore only well-defined up to an overall positive function which appears
multiplicatively. This function may be removed by a conformal rescaling which im-
plies that our boundary is well-defined up to conformal transformations. This defines
an equivalence class at the boundary, called a conformal structure [134134–136136]. We ob-
tain a boundary metric from a conformal structure by evaluating L2

z2 Gab

∣∣∣
z→0

, which
by means of the Fefferman-Graham expansion (6.66.6) yields L2

z2 G
(0)
ab (x) as the compo-

nents of a boundary metric. We conclude the discussion of the chart-induced frame
by reinstating the result (6.76.7) for the lapse function N into the frame defining equa-
tion Nnα = δα

z . This yields the components nα = z
L
δα

z of the normal vector in the
chart-induced frame. These components will be useful for later calculations.

The chart-induced frame discussed here is a useful choice for various theories. In
GR, this choice simplifies the Levi-Civita connection (5.835.83) since the tensor compo-
nents cα

βγ of d(dxα) vanish. Furthermore, this frame choice is useful for (S)TEGR. To
see that, note that in the simple gauge choice •

ωµ
ν = 0 for the (S)TEGR connection

the torsion two-form becomes T µ = dθµ. Working with the chart-induced frame thus
yields a theory of STEGR which describes gravity solely by non-metricity. However,
the chart-induced frame is not the most fundamental choice for describing a theory
of TEGR in which torsion is the only non-vanishing field strength. Working in the
(S)TEGR gauge •

ωµ
ν = 0, we obtain a theory of TEGR if we choose the metric compo-

nents to be constant as dgµν = 0 such that the non-metricity one-form Qµν = −dgµν

in this gauge vanishes. We will therefore elaborate on generic frames next before we
impose •

ωµ
ν = 0 and dgµν = 0 to study the most fundamental theory of TEGR.
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Generic frames and the vielbein frame. Generic frames ϑµ may be obtained from
the chart-induced frame by means of GL(m,R) transformations since the frame bundle
is a principal GL(m,R)-bundle. By means of combining (6.16.1) with (6.26.2), we obtain
the expressions

ϑµ = ea
µ

∂

∂xa
+ 1
N
nµ

∂

∂z
,

θµ = eµ
adxa +Nnµdz

(6.8)

for generic frames ϑµ and their coframes θµ. Expanding the metric in the decomposed
coframe, we obtain

g = gµνθ
µ ⊗ θν = γabdxa ⊗ dxb +N2dz ⊗ dz , (6.9)

where γab = eµ
ae

ν
bgµν and N =

√
g( ∂

∂z
, ∂

∂z
) = L

z
. The identifications (6.76.7) for the

Fefferman-Graham metric imply

Gab = z2

L2γab = ( z
L
eµ

a)( z
L
eν

b )gµν . (6.10)

The Fefferman-Graham expansion (6.66.6) ofGab may thus be understood as an expansion
of z

L
eµ

a and the metric components gµν = g(ϑµ, ϑν) in generic frames.
Note that we obtained the chart-induced frame by choosing eµ

a = δµ
a , in which case

the only non-trivial expansion is that of the metric components. However, this is
just a special property of the chart-induced frame. If we instead consider a frame
with constant metric components gµν like the vielbein frame for instance, there is
no other possibility but to interpret the Fefferman-Graham expansion as an expansion
of z

L
eµ

a . For simplicity of notation, we introduce hµ
a

..= z
L
eµ

a , such that the coframe (6.86.8)
becomes

θµ = L

z
(hµ

adxa + nµdz) (6.11)

analogous to the expression (6.56.5) of the Fefferman-Graham metric. We call (6.116.11) the
Fefferman-Graham coframe and conjecture that its coefficients hµ

a behave as

hµ
a =

∞∑
i=0

h(i)µ
a(x)z2i + h̃µ

a(x)
√

ln(z)zm−1 (6.12)

in the vicinity of the AdS boundary located at z → 0. For reconstructing the ex-
pansion (6.66.6) of the Fefferman-Graham metric from the coframe expansion (6.126.12) by
means of (6.106.10), we impose h̃µ

a(x)h(i)ν
bgµν = 0 as well as h̃µ

a(x) = 0 for manifolds of
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odd dimension m. This yields

Gab = hµ
ah

ν
bgµν =

∞∑
i=0

( i∑
j=0

h(j)µ
a(x)h(i−j)ν

b (x)gµν

)
z2i + h̃µ

a(x)h̃ν
b (x)gµν ln(z)zm−1 (6.13)

after re-organizing the double sum. Hence, we recover the Fefferman-Graham expan-
sion (6.66.6) of the metric by identifying

G
(2i)
ab (x) =

i∑
j=0

h(j)µ
a(x)h(i−j)ν

b (x)gµν and G̃ab(x) = h̃µ
a(x)h̃ν

b (x)gµν . (6.14)

Assuming that the conjectured coframe expansion (6.126.12) holds is therefore reasonable,
while an explicit proof along the lines of [137137] will need to be constructed in future
work. In analogy to obtaining L2

z2 Gab

∣∣∣
z→0

= L2

z2 G
(0)
ab as a boundary metric, we obtain a

well-defined boundary coframe as L
z
hb

a

∣∣∣
z→0

= L
z
h(0)b

a.

We conclude the frame perspective on the Fefferman-Graham theorem by calculating
the contribution dθµ of the torsion two-form by means of the GL(m,R) transformation
implicitly included in (6.116.11). This is frequently needed since the tensor components
cµ

νρ = dθµ(ϑν , ϑρ) contribute to the Levi-Civita connection derived in (5.835.83). To
that end, we interpret (6.116.11) as a coframe transformation θµ = Λµ

αdxα with Λµ
α =

L
z
(hµ

aδ
a
α + nµδz

α). Using d(dxα) = 0, we obtain

dθµ = dΛµ
α ∧ dxα (6.15)

which implies cµ
νρ = (Λ−1)α

ρ∂νΛµ
α − (Λ−1)α

ν∂ρΛµ
α for the tensor components, where

the inverse GL(m,R) transformation is given by (Λ−1)α
µ = z

L
(ha

µδ
α
a + nµδ

α
z ).

As we emphasized in the introduction to this section, an important application of
the Fefferman-Graham theorem arises in the context of the AdS/CFT correspondence.
There, the Fefferman-Graham theorem is used for constructing counterterms for on-
shell actions which are divergent at the AdS boundary [134134–136136]. This systematic
construction called holographic renormalization is usually performed for chart-induced
frames on curved manifolds. We will use the frame perspective on the Fefferman-
Graham theorem constructed in this section to apply the method of holographic renor-
malization to the AdS Schwarzschild black hole in the teleparallel equivalent of general
relativity next. This serves as an example of how holographic renormalization may
be used in theories in the presence of non-vanishing torsion. The case of TEGR is a
special example in the realm of these theories since its equivalence to GR allows us to
directly compare our results to the textbook examples of holographic renormalization
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in GR [6969].

6.2. Holographic renormalization of the TEGR
Schwarzschild black hole

Black holes take a crucial role in the context of the AdS/CFT correspondence because
they allow to study boundary field theories at finite temperature. This is due to
their emitted Hawking radiation which assigns thermodynamic properties to black
holes and thus introduces thermodynamics in holography as well. We are therefore
examining a black hole solution in the context of TEGR in this section in order to
see how torsion provides thermodynamic information in holography. In particular, we
utilize metric solutions in general relativity to derive torsionful solutions from them by
means of the equivalence of TEGR and GR. The first solution to the field equations
of general relativity was found by Karl Schwarzschild in 1916 [139139, 140140]. Extending
Scharzschild’s result to manifolds of arbitrary dimensions m, the metric

g = −f(r)dt⊗ dt+ 1
f(r)dr ⊗ dr + r2

m−2∑
i=1

i−1∏
j=1

sin(φj)2dφi ⊗ dφi (6.16)

solves the field equations of general relativity in the coordinates (t, φi, r). Here, φi

summarizes angular contributions for i ∈ {1, . . . ,m−2}, and these angular coordinates
take values in φ1 ∈ [0, 2π[ and φi ∈ [0, π[ for all other i. The chart-induced frame is
thus

dxα = δα
0 dt+

m−2∑
i=1

δα
i dφi + δα

m−1dr . (6.17)

The prefactor f(r) in the Schwarzschild metric (6.166.16) is called the blackening factor.
For an m-dimensional asymptotical AdS space, the blackening factor takes the form

f(r) = k − 2µ
rm−3 + r2

L2 , (6.18)

where k = 1 for spherical, k = 0 for flat and k = −1 for hyperbolic boundary
geometries [6969].

The asymptotic boundary is located at r → ∞ in Schwarzschild coordinates. For ob-
taining Fefferman-Graham coordinates xα, we thus need to invert the radial coordinate
when defining z. Comparing the Schwarzschild metric (6.166.16) to the Fefferman-Graham
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metric (6.56.5), we therefore define z by

−L

z
dz = dr√

f(r)
(6.19)

such that the asymptotic boundary is located at z → 0. Integrating (6.196.19), we obtain
the Fefferman-Graham coordinate z as

z = exp
−

∫ dr
L
√
f(r)

 (6.20)

which is solved in m = 5 dimensions by22

z(r) = c√
2 r2

L2 + k + 2 r
L

√
f(r)

(6.21)

with c ≥ 0. This coordinate transformation is inverted as

r(z) = z

c

√√√√2µ+ L2

4

(
c2

z2 − k

)2

. (6.22)

By means of these relations, we may compare the remaining coefficients of the Schwarz-
schild metric (6.166.16) to the Fefferman-Graham metric (6.56.5) to obtain

L2

z2 Gab = −δ0
aδ

0
bf(r(z)) + r(z)2

m−2∑
i=1

δi
aδ

i
b

i−1∏
j=1

sin(φj)2 . (6.23)

The Schwarzschild black hole may as well be understood from a frame perspec-
tive. Since we aim at describing the Schwarzschild black hole in TEGR, we choose
•
ωµ

ν = 0 for simplicity. In this gauge, the simplest choice for the metric components
gµν = g(ϑµ, ϑν) which yields a theory of TEGR is the Minkowski metric whose com-
ponents are gµν = −δ0

µδ
0
ν +

m−1∑
i=1

δi
µδ

i
ν . The frame ϑµ in which gµν are the components of

the Minkowski metric is the vielbein frame, and we will work in this frame for the re-
mainder of this section. For explicitly constructing the vielbein frame which describes
the Schwarzschild black hole, we need to fix the coefficients hµ

a and nµ in (6.116.11) such

2The technical reason for choosing m = 5 is that computer algebra systems have problems processing
1√
f(r)

for the AdS blackening factor (6.186.18). Evaluating the integral (6.206.20) by computer algebra
yields results which do not actually solve the differential equation (6.196.19). The algebraic evaluation
of (6.206.20) is involved, however. It yields the result (6.216.21) in m = 5 dimensions.
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that

g = gµνθ
µ ⊗ θµ = L2

z2 (hµ
ah

ν
bgµνdxa ⊗ dxb + dz ⊗ dz) (6.24)

reproduces the Schwarzschild metric (6.166.16) in Fefferman-Graham coordinates. A con-
venient choice is

hµ
a = z

L

(
δµ

0 δ
0
a

√
f(r(z)) + r(z)

m−2∑
i=1

δµ
i δ

i
a

i−1∏
j=1

sin(φj)
)
,

nµ = −δµ
z ,

(6.25)

for which the vielbein coframe (6.116.11) becomes

θµ = δµ
0

√
f(r(z))dt+ r(z)

m−2∑
i=1

δµ
i

i−1∏
j=1

sin(φj)dφi − δµ
z

L

z
dz . (6.26)

By means of the coordinate transformation (6.196.19) this reproduces the vielbein which is
routinely used to study the Schwarzschild black hole in four-dimensional TEGR [124124,
141141, 142142]. In particular, the Schwarzschild coframe (6.266.26) constructed from convenient
choices of hµ

a and nµ solves the equations of motion of TEGR which have been shown
to be equivalent to those of GR, see [2626] for a comprehensive proof33. Evaluating the
vielbein (6.256.25) in the vicinity of the boundary, we obtain

hµ
a =δµ

0 δ
0
a

c

L

[
1
2 + k

2
z2

c2 − 6µ
L2
z4

c4 − 10kµ
L2

z6

c6 + O
(
z8

c8

)]

+
m−2∑
i=1

δµ
i δ

i
a

i−1∏
j=1

sin(φj)
1
c

[
1
2 − k

2
z2

c2 + 2µ
L2
z4

c4 + 2kµ
L2

z6

c6 + O
(
z8

c8

)] (6.27)

for m = 5 dimensional AdS manifolds. The vielbein expansion (6.276.27) is an explicit
example for the Fefferman-Graham expansion of coframes (6.126.12). This concludes the
frame perspective on the Fefferman-Graham theorem for the AdS Schwarzschild black
hole in TEGR. We use these results to apply the method of holographic renormaliza-

3Following the derivation in [2626, 143143], the TEGR equations of motion are

∂β(det(θ)S αβ
µ ) − κ det(θ)j α

µ = κ det(θ)Θ α
µ ,

where S αβ
µ = − κ

det(θ)
∂L

∂(∂βθµ
α) = Aαβ

µ − θ β
µ T γα

γ + θ α
µ T γβ

γ is called the superpotential,
j α

µ = − 1
det(θ)

∂L
∂θµ

α
= 1

κ θ β
µ S γα

ν T ν
γβ − 1

det(θ) θ α
µ L + 1

κ Γν
βµS αβ

ν is the gauge current and

Θ α
µ = − 1

det(θ)
δLmatter

δθµ
α

= − 1
det(θ)

(
∂Lmatter

∂θµ
α

− ∂β
∂Lmatter
∂(∂βθµ

α)

)
is the matter energy-momentum tensor.

In the latter expressions, θµ
α are the components of the vielbein coframe θµ in a chart-induced

coframe dxα and det(θ) is their determinant. All quantities mentioned in this footnote are con-
sidered in (S)TEGR gauge using the Weitzenböck connection with vanishing non-metricity [2323].
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tion [134134–136136] to the AdS Schwarzschild black hole coframe next.

In the AdS/CFT correspondence, the gravitational action evaluated on solutions of
the equations of motion is equivalent to the generating functional of correlation func-
tions in the boundary CFT. To make this equivalence precise, one has to deal with
the divergences that appear upon substituting the solution of the equations of motion
into the action. These divergences are reminiscent of the UV singularities that are ex-
pected to appear in a generic CFT functional and must be renormalized. The method
for removing the singularities on the gravity side is called holographic renormalization
and we adapt it to the frame formulation of TEGR and the AdS Schwarzschild solu-
tion in this section. In order to describe a theory in an m-dimensional AdS space, we
introduce the cosmological constant

Λ = −(m− 1)(m− 2)
2L2 , (6.28)

where L > 0 is defined by the latter equation as the AdS radius. In the presence of a
cosmological constant, the (S)TEGR action (5.595.59) becomes

S(S)TEGR = − 1
2κ

∫
M

(η ν
µ ∧ ω̊µ

ρ ∧ ω̊ρ
ν + 2Λη) + ε

2κ

∫
∂M

ea
µ(dnµ + gµνdnν) ∧ ηna

∣∣∣
∂M

.

(6.29)

Note that the boundary term of the latter action vanishes in the vielbein frame
choice (6.256.25).

We have several possibilities for calculating the on-shell TEGR Lagrangian of the
AdS Schwarzschild black hole at this point. Transferring the standard calculation in
the context of holographic renormalization to the frame perspective, we obtain the on-
shell action by inserting the Fefferman-Graham expansion (6.276.27) of the coframe into
the action (6.296.29). We may, however, evaluate the action for the exact expression (6.266.26)
of the Fefferman-Graham coframe instead, where the coordinate transformation r(z) is
given in (6.226.22). The advantage of this method is that it gives an exact result which does
not utilize series expansions. As a third possibility, we may as well evaluate the on-
shell action in Schwarzschild coordinates first and transform the result to Fefferman-
Graham coordinates by means of (6.216.21) and (6.226.22). We follow the latter approach
to stress the simplicity of the on-shell Lagrangian in Schwarzschild coordinates. An
explicit calculation shows that all three approaches yield the same result as expected
due to the covariance of the action.

For obtaining the on-shell Lagrangian in Schwarzschild coordinates, we insert the
AdS Schwarzschild coframe (6.266.26) alongside the differential coordinate transforma-
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tion (6.196.19) into (6.156.15) to obtain the coefficients cµ
νρ = dθµ(ϑν , ϑρ). Since the metric

in the vielbein frame fulfills dgµν = 0 by construction, the coefficients cµ
νρ entirely de-

termine the Levi-Civita connection ω̊µ
ν by means of (5.835.83). This suffices to evaluate

the action (6.296.29) which becomes

STEGR
Schwarz = 1

κ

∫
M

d4x ∧ dr sin(φ1)2 sin(φ2)
(

12 r
2

L2 + 3k + cot(φ1)2
)
, (6.30)

where we abbreviate d4x ..= dt∧dφ1 ∧dφ2 ∧dφ3. For transforming this on-shell action
to Fefferman-Graham coordinates, we straightforwardly replace dr by means of (6.196.19)
and introduce r(z) obtained in (6.226.22). This yields

STEGR
Schwarz = − 1

4κ

∫
M

d4x ∧ dz
c

sin(φ1)2 sin(φ2)
(

3L2 c
5

z5 − L2(3k − cot(φ1)2) c
3

z3

+ (k2L2 + 8µ)(3k − cot(φ1)2)z
c

− 3
L2 (k2L2 + 8µ)2 z

3

c3

)
.

(6.31)

We emphasize again that this on-shell action in Fefferman-Graham coordinates may
be obtained from all the possible calculations discussed above.

The Lagrangian in (6.316.31) is clearly divergent as we approach the AdS boundary
at z → 0, analogous to (6.306.30) being divergent at r → ∞. Hence, we need to renormal-
ize the action. To that end, we first regularize by cutting off the z-integral in (6.316.31)
at z = ϵ, which yields

STEGR
Schwarz,reg = 1

16κ

∫
z=ϵ

d4x sin(φ1)2 sin(φ2)
(

3L2 c
4

ϵ4 − 2L2(3k − cot(φ1)2)c
2

ϵ2

)
+ finite contributions ,

(6.32)

where we integrate over the hypersurface at z = ϵ. We cancel the divergences in
the regularized action (6.326.32) by adding terms to the original action (6.316.31) which are
constructed to have the exact opposite boundary divergence. These terms are called
counterterms and we construct them solely from boundary tensors in order to preserve
diffeomorphism invariance of the bulk action.

For constructing the counterterms we recall that

L

z
ha

b

∣∣∣
z=ϵ

= L

ϵ
h(0)a

b =
(
δa

0δ
0
b

1
2 +

3∑
i=1

δa
i δ

i
b

i−1∏
j=1

sin(φj)
L

2

)
c

ϵ
(6.33)

is a vielbein on the cutoff hypersurface which we evaluated by means of the coframe
expansion (6.276.27). For simplicity of notation, we introduce Ha

b
..= L

ϵ
h(0)a

b such that
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Ha = Ha
b dxb constitutes a coframe on the cutoff hypersurface. The determinant

det(Ha
b ) = L3

16 sin(φ1)2 sin(φ2)
c4

ϵ4 (6.34)

of Ha
b contributes to the volume form on the cutoff hypersurface as ζ ..= ∗z=ϵ1 =

det(Ha
b )d4x. It is thus crucial for the construction of counterterms. The analog of the

bulk Lagrangian on the cutoff hypersurface is

ζ b
a ∧ ω̊a

c ∧ ω̊c
b = −ζ 8

L2 cot(φ1)2 ϵ
2

c2 (6.35)

for the five-dimensional AdS Schwarzschild black hole. Here, ζab ..= ∗z=ϵ

(
Ha ∧Hb

)
is the Hodge dual on the cutoff hypersurface and ω̊a

b is the Levi-Civita connection
determined by the coframe Ha via (5.835.83). By means of this coframe, we evaluate the
GHY-like term

K̊a ∧ ηna

∣∣∣
z=ϵ

= −ζ 4
L

(
1 + k

ϵ2

c2 + O
(ϵ4

c4

))
(6.36)

on the cutoff hypersurface. Collecting these results, the divergence (6.326.32) of the regu-
larized action is canceled by adding the counterterm

STEGR
Schwarz,ct = − 1

2κ

∫
z=ϵ

(18
L
ζ − L

2 ζ
b

a ∧ ω̊a
c ∧ ω̊c

b + 3K̊a ∧ ηna

∣∣∣
z=ϵ

)
, (6.37)

such that

STEGR
Schwarz,ren = lim

ϵ→0
(STEGR

Schwarz,reg + STEGR
Schwarz,ct) (6.38)

is the renormalized action of the TEGR Schwarzschild black hole.

The counterterm (6.376.37) is the main result of this section. It is what we conception-
ally expect from holographic renormalization in general relativity [6969, 134134]. There,
the volume divergence is canceled by the volume element of the cutoff hypersurface
which we find as 18

L
ζ in (6.376.37). Furthermore, the bulk Lagrangian in general rela-

tivity consists of the Ricci scalar, and the boundary term needed for renormalizing
the five-dimensional action involves the Ricci scalar of the cutoff hypersurface. In our
formalism, this corresponds to the term −L

2 ζ
b

a ∧ ω̊a
c ∧ ω̊c

b which is the analog of the
bulk Lagrangian on the cutoff hypersurface. Lastly, we find that the GHY-like term
3K̊a ∧ ηna

∣∣∣
z=ϵ

on the cutoff hypersurface is needed for consistently renormalizing the
action. Again, it is well-known for holographic renormalization in general relativity
that the GHY term must be included in the action to obtain the correct renormalized
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result.
Motivated by the results of general relativity, one might however wonder why we do

not find an anomalous term in the renormalized action. In particular, the conformal
anomaly is typically found in odd bulk dimensions in the form of terms which are
proportional to ln(ϵ) in the regularized action, see [134134]. This is analogous to terms
of order 1

z
appearing in the original action for which the radial integral has not been

performed. This argument suffices to understand why we do not observe an anomaly
here. In particular, evaluating the TEGR action on the AdS Schwarzschild solution
in five dimensions we obtained the Lagrangian in (6.316.31) as a series of odd powers
of z. However, there are no terms of order 1

z
in (6.316.31) and thus we do not obtain

anomalous contributions to the regularized action. Hence, we found that the absence
of an anomaly is clearly a feature of the AdS Schwarzschild solution, while applying
holographic renormalization to a different solution is generically expected to yield
anomalous terms on odd-dimensional manifolds.

My results presented in this section may be used as a guideline for considering
generic solutions and arbitrary dimensions in future work. Constructing the coun-
terterms for renormalizing these cases may in general involve additional boundary
terms. Note, for instance, that the boundary coframe Ha is proportional to L

ϵ
and

thus its determinant det(Ha
b ) is always proportional to

(
L
ϵ

)m−1
on an m-dimensional

manifold. From the analogy to holographic renormalization in GR, we expect terms
of higher power in ω̊a

b to account for these additional divergent contributions. For
example, it is straightforward to implement ζ b d

a c ∧ ω̊a
e ∧ ω̊e

b ∧ ω̊c
f ∧ ω̊f

d as the next
non-trivial counterterm. We conclude the discussion of the frame perspective on holo-
graphic renormalization by using the renormalized action to derive the holographic
thermodynamics of the five-dimensional AdS Schwarzschild black hole in the following
section.

6.3. Black hole thermodynamics in TEGR
One of the main applications of holographic renormalization arises in the context of
black hole thermodynamics. In particular, black holes emit Hawking radiation, and
we use this radiation to assign a temperature to black holes. This temperature makes
its appearance in the action of a theory if we evaluate it on the black hole solution. We
call this the gravitational on-shell action hereafter, and we have already seen that the
on-shell action needs to be renormalized in order to obtain a finite value. In AdS/CFT,
the gravitational on-shell action corresponds to the thermal partition function on the
conformal boundary. Hence, black holes and holographic renormalization are essential
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for describing the boundary thermodynamics in the AdS/CFT correspondence. We
will make these qualitative statements concrete in this section based on derivations
in [6969, 7070].

The temperature of a black hole is obtained from its blackening factor f(r) [131131–
133133]. To see this, we examine the blackening factor as well as its derivative at the
black hole horizon. In Schwarzschild coordinates, the radius rh of the black hole is the
largest solution of f(r) = 0. We immediately see that at rh the radial contributions
of the metric (6.166.16) and the coframe (6.266.26) diverge, so that Schwarzschild coordinates
may only be used for r > rh. For simplicity we assume that the first derivative f ′(r)
of the blackening factor is non-vanishing at the black hole horizon, such that f(r) may
be non-trivially expanded at rh as

f(r) = f ′(rh)(r − rh) + O((r − rh)2) . (6.39)

The following calculation extends to black holes for which the blackening factor ful-
fills f ′(rh) = 0 if we consider the latter expansion to the first non-vanishing order.

In the vicinity of the black hole horizon, the metric (6.166.16) behaves as

g = −f ′(rh)(r − rh)dt2 + dr2

f ′(rh)(r − rh) + r2
hdΩ2 + O((r − rh)2) (6.40)

which we obtain by inserting (6.396.39) into (6.166.16). It is useful to apply the coordinate
transformation

r = rh + f ′(rh)
4 ρ2 , t = 2i

|f ′(rh)|ϕ (6.41)

to the expanded metric (6.406.40) to see that it has the form

g = ρ2dϕ2 + dρ2 + r2
hdΩ2 + O((r − rh)2) . (6.42)

Thus, the contribution of the metric in the direction of t and r takes the form of a
two-dimensional Minkowski metric in spherical coordinates at the black hole bound-
ary. This implies that ϕ is periodic as ϕ ∼ ϕ+ 2π to avoid a conical singularity, which
implies a periodicity t ∼ t+ 4πi

|f ′(rh)| via the coordinate transformation (6.416.41). However,
Euclidean time it in field theories is already periodic with the period given by the in-
verse of the temperature T of the field theory. Thus, the near-horizon expansion (6.406.40)
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of the black hole metric ultimately implies

T = |f ′(rh)|
4π (6.43)

which is the Hawking temperature of the black hole [133133].

Hence, we obtain the Hawking temperature of any black hole by determining f ′(rh).
We apply this to the AdS Schwarzschild black hole described by the blackening fac-
tor (6.186.18), where we do not fix a dimension m yet in order for our results to have a
broad applicability. We recast the derivative

f ′(r) = 2(m− 3)
rm−4 µ+ 2r

L2 (6.44)

of the AdS Schwarzschild blackening factor (6.186.18) in terms of f(r) by solving (6.186.18)
for µ. This yields

µ = 1
2r

m−3
(

−f(r) + k + r2

L2

)
, (6.45)

which we insert into (6.446.44) to obtain

f ′(rh) = L2k(m− 3) + (m− 1)r2
h

L2rh
(6.46)

at the black hole horizon. This result is straightforwardly solved for rh to yield

rh = L2f ′(rh)
2(m− 1) +

√√√√( L2f ′(rh)
2(m− 1)

)2

− m− 3
m− 1L

2k (6.47)

which relates the radius rh of the AdS Schwarzschild black hole to its Hawking tem-
perature by inserting (6.436.43).

This relation of the black hole radius and its Hawking temperature is fundamental for
describing thermodynamics in AdS/CFT. In particular, the GKPW prescription [6363,
6464] which is basic for AdS/CFT implies that the free energy F of the field theory is
related to the gravitational on-shell action as

F = SrenT . (6.48)

Hence, we only need the renormalized gravitational on-shell action for determining the
free energy of the dual field theory.

For the five-dimensional AdS Schwarzschild black hole, we already constructed the
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counterterms needed for renormalization in the previous section. Hence, it only re-
mains to evaluate the integrals contained in (6.386.38). This yields the renormalized
on-shell action44

STEGR
Schwarz,ren = 2π2

TL2 r
2
h

(
(1 + 3k)L2 + 6r2

h

)
. (6.49)

Using the relation (6.476.47) to re-express rh by means of the Hawking temperature, the
AdS/CFT relation (6.486.48) of free energy and gravitational action implies

F = L2π2

2
(
LπT +

√
−2k + L2π2T 2

)2 (
1 + 3LπT

(
LπT +

√
−2k + L2π2T 2

))
.

(6.50)

This is the desired result which determines the free energy by means of temperature.
While the latter calculation is mostly a textbook calculation in AdS/CFT, the im-

portant new ingredient is that we derive the CFT free energy from torsion in TEGR.
Therefore, (6.506.50) proves that torsion can and does hold information about thermo-
dynamics. This is already remarkable in pure gravity without applying the results
to AdS/CFT. In gravity it was previously unclear how to obtain the black hole tem-
perature in TEGR, since the GHY term is essential to black hole thermodynamics in
GR while it is absent in TEGR55. The results of this chapter thus prove that torsion
holds information about the thermodynamics of black holes in gravity and holography.
These are my original results presented in this thesis for the first time.

The results of this chapter may be used as a starting point for constructing the
full method of holographic renormalization in TEGR as well as in more general (sym-
metric) teleparallel theories of gravity. For this purpose, we need to solve the TEGR
equations of motion order by order for the expansion (6.126.12) of the coframe. This is
an involved calculation since the TEGR equations of motion are considerably more
complex than Einstein’s field equations, although being equivalent to the latter [2626,
143143]. The method outlined here is sufficient, however, to construct the counterterms
which renormalize the on-shell action for specific solutions of these equations of mo-
tion. This broad applicability of my method generalizes the results of a first paper
which studied holographic renormalization in a torsionful theory [115115] which is only

4This is the first point at which we need to choose Euclidean time for evaluating the time integral
and comparing it to the free energy obtained by the AdS/CFT calculation in (6.486.48). All other
results presented in this chapter are written in a form in which they are invariant under the
transition from Lorentzian to Riemannian metric signature.

5See [144144] for a first discussion of this problem without a rigorous treatment of boundary terms.
Also note that [145145] recently evaluated Euclidean on-shell actions in teleparallel gravity for black
holes without discussing renormalization.
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applicable in the case of finite Fefferman-Graham expansions [114114]. In contrast to
that, the methodology I developed in this chapter applies to general actions which
describe theories of teleparallel gravity.





Conclusion and outlook 7
My research presented in this thesis is based on a simple mathematical observa-

tion. That is, we interpret the observable universe as a differentiable manifold M and
model gravity on the frame bundle of this manifold. The frame bundle is a principal
GL(dim M,R)-bundle which we equip with the necessary structure to describe phys-
ical observations. In particular, we consider a soldering form canonically provided by
a coframe θµ, a connection one-form ωµ

ν and a metric tensor field g as the dynami-
cal fields of a theory of gravity. The covariant exterior derivative D induced by the
connection allows to define the field strengths of the fundamental fields which are tor-
sion T µ = Dθµ, curvature Ωµ

ν = Dωµ
ν and non-metricity Qµν = −Dgµν . These fields

constitute the differential geometric foundation of gravity as discussed in chapter 22.
In chapter 33 I examined hypersurfaces in this geometry from a vector field approach.

This perspective corresponds to alternative approaches existing in literature, including
definitions which utilize constant functions or immersions. The particular new aspect
I introduced in chapter 33 is the implementation of hypersurfaces in gravity via a de-
composition of frames and coframes. This reaches beyond the hypersurface formalisms
discussed in literature. We need these decompositions to study torsion on hypersur-
faces, because torsion is the field strength of the coframe. It turned out useful to
adapt the frame and coframe decompositions to the hypersurface to reduce the num-
ber of free parameters. For this purpose, we aligned one of the basis vectors with the
normal direction to obtain the adapted frame decomposition. For space- and timelike
hypersurfaces, adapting the decompositions of frames and coframes resulted in (3.363.36),
while the corresponding lightlike result is (3.863.86). We found that these decompositions
are immensely important because they correspond to a GL(dim M,R)-transformation.
This transformation allows to decompose every structure we have on the frame bundle
and its associated bundles. In particular, the decompositions of frame and coframe
allowed to decompose unity, the metric tensor and the connection one-form.

The decompositions of the fundamental dynamical fields induce the decomposition
of each tensor into hypersurface tangent and normal contributions. We first introduced
this decomposition in sections 3.1.23.1.2 and 3.2.23.2.2 for the extrinsic curvatures which par-
tially characterize the shape of the boundary. In sections 4.1.14.1.1 and 4.2.14.2.1, we applied
this formalism to the field strengths of the fundamental dynamical fields to obtain the
decompositions of curvature, torsion and non-metricity. The latter decompositions are
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fundamental for studying actions which are constructed in terms of curvature, torsion
and non-metricity if we consider them on manifolds with boundary. In particular,
we identified boundaries with hypersurfaces, such that the decomposition of the field
strengths made the boundary terms of an action manifest by means of Stokes’ theo-
rem. These boundary terms immediately induced the GHY terms which are needed
to make the variational problem well-defined on a manifold with boundary.

We examined general properties of GHY terms in chapter 44 by deriving a universal
equation that allows to calculate the GHY terms for a broad range of actions in an
extraordinarily efficient manner. In particular, it suffices to evaluate a few variations
of a given Lagrangian in order to determine its corresponding GHY term by means
of my universal GHY result, given in (4.264.26) and (4.984.98) for non-lightlike and lightlike
boundaries, respectively. These universal GHY terms are constructed from the ex-
trinsic curvature components as well as projections of non-metricity into the normal
directions. Their explicit form implies that actions constructed solely from torsion and
non-metricity have a well-defined variational principle and do not require additional
boundary terms.

My new method for constructing GHY terms on manifolds with curvature, torsion
and non-metricity is particularly efficient, which we have seen in various examples
in sections 4.1.34.1.3 and 4.2.34.2.3. Specifically, for Einstein-Hilbert, four-dimensional Chern-
Simons modified and Lovelock gravity, we have derived the GHY terms which are
needed to make the variational problem well-defined. These results reproduce the
expressions known in literature upon imposing the appropriate constraints on dimen-
sionality, field content and boundary likeness. My results generalize the corresponding
GHY terms known in literature in precisely these aspects by lifting constraints on di-
mension, field content and boundary likeness. In particular, all GHY terms derived in
chapter 44 account for a well-defined variational problem on manifolds which have non-
trivial torsion in addition to curvature. Furthermore, we derived the lightlike analogs
of all of these GHY terms, which were previously only known for four-dimensional
Einstein-Hilbert gravity on manifolds with vanishing torsion and non-metricity. The
efficiency as well as the generality of the derivation of GHY terms as compared to
literature approaches in all of these cases is the strength of my method.

In chapter 55 we applied the tools of boundary analysis developed in view of GHY
terms to the geometrical trinity of general relativity. We re-derived this trinity in
differential form notation, demonstrating that it may be reduced to a duality of theories
which are constructed either solely upon curvature or upon torsion and non-metricity.
The resulting theories are general relativity (GR) and the (symmetric) teleparallel
equivalent of general relativity ((S)TEGR), respectively. These theories are known
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to be dynamically equivalent, and (S)TEGR encompasses all dynamically equivalent
subcases of teleparallel theories such as TEGR, STEGR or GTEGR. The deformation
one-form Aµ

ν = ωµ
ν −ω̊µ

ν serves as the fundamental tensor underlying the geometrical
trinity. This tensor subtracts the Levi-Civita contributions from the full connection,
thereby ensuring that it only depends on torsion and non-metricity.

Introducing the deformation one-form immediately enabled us to rewrite the Ein-
stein-Hilbert action SEH,Ω̊ including its GHY term SEH,Ω̊

GHY in terms of the full curvature
two-form Ωµ

ν , see (5.75.7). This rewriting introduced a new boundary term SD̊A which
is known as the (S)TEGR boundary term. One of the main results of chapter 55 is
that we gained a comprehensive understanding of this boundary term. In particular,
by means of decomposing SD̊A into boundary tangent and non-tangent contributions
we obtained SD̊A = −SEH,Ω̊

GHY +SEH,Ω
GHY for non-lightlike as well as for lightlike boundaries

in (5.205.20) and (5.335.33), respectively. That is, the (S)TEGR boundary term is just a
difference of the GHY terms of Einstein-Hilbert gravity, once expressed using the full
curvature two-form and once its torsion-free, metric-compatible analog. We concluded
that SD̊A renders the variational problem of the Einstein-Hilbert action well-defined,
regardless of which of the latter curvature two-forms we use for expressing it.

Starting from the decomposed form (5.75.7) of the Einstein-Hilbert action, we exam-
ined how the teleparallel limit Ωµ

ν = 0 needs to be taken in order to preserve the
variational principle on manifolds with boundaries. In a first argument, we considered
the case in which the bulk teleparallel Lagrangian is proportional to η ν

µ ∧
•
Aµ

ρ ∧
•
Aρ

ν ,
see action (5.475.47). This is the standard case studied in literature. I have contributed to
this approach by including the boundary terms to the teleparallel limit. In particular,
I argued that the GHY term SEH,Ω

GHY needs to be eliminated when imposing Ωµ
ν = 0

since a GHY term would make the variational problem ill-defined when added to
the curvature-free bulk action (5.475.47). This argument extends the geometrical trinity
of general relativity to manifolds with boundary, which is the second main result of
chapter 55.

The third main result of chapter 55 is my new perspective on the geometrical trinity
of general relativity, which reduces the duality even further to a tautology. I achieved
this by unifying all of the trinity’s theories in the Einstein action. In particular, we
found that every action describing one of the trinity’s theories may be rewritten as the
Einstein action − 1

2κ

∫
M η ν

µ ∧ ω̊µ
ρ ∧ ω̊ρ

ν supplemented by a boundary term SE
cov which

depends on the boundary likeness. I proved that this boundary term renders the
action covariant while preserving the well-definedness of the variational principle. The
Einstein action is capable of describing all the theories contained in the geometrical
trinity due to different interpretations of the Levi-Civita connection. This may be seen
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from the definition of the deformation one-form which implies that ω̊µ
ν = •

ωµ
ν −

•
Aµ

ν

may be utilized to re-express the Levi-Civita connection ω̊µ
ν in terms of the (S)TEGR

connection •
ωµ

ν . The Levi-Civita connection being defined as the connection of a theory
with vanishing torsion and non-metricity, we may on the one hand straightforwardly
interpret the Einstein action as a theory in which gravity is modeled by curvature.
On the other hand, because the right hand side of ω̊µ

ν = •
ωµ

ν −
•
Aµ

ν only contains
torsion and non-metricity while curvature is vanishing, we may as well use the Levi-
Civita connection and thus the Einstein action for describing teleparallel theories of
gravity. This approach provides a unified perspective on the geometrical trinity of
general relativity, which is my original result that I first presented in this thesis. From
this perspective, the equivalence of GR and its teleparallel equivalents becomes trivial
since all of these theories are described by the exact same action. Furthermore, it
implies that any modified theory of gravity with vanishing torsion and non-metricity
may be equivalently described in terms of teleparallel theories. This results in the
generalized geometrical trinity of gravity, which I discussed in section 5.35.3 including a
thorough examination of the boundary terms.

Finally, I established a connection between teleparallel gravity and the AdS/CFT
correspondence in chapter 66. In particular, I developed a frame perspective on holo-
graphic renormalization, providing the foundation for the systematic investigation of
the AdS/CFT correspondence with torsion. Holographic renormalization is based on
the Fefferman-Graham theorem, so the first step for developing holographic renormal-
ization of torsionful theories is to include frames in the Fefferman-Graham expansion.
For this purpose, we conjecture that the coframes (6.116.11) posses an expansion (6.126.12) in
the vicinity of the AdS boundary if we choose Fefferman-Graham coordinates. This
coframe expansion correctly reproduces the well-known Fefferman-Graham expansion
of the metric tensor.

As an example, we verified that the coframe which corresponds to the five-dimen-
sional AdS Schwarzschild solution obeys an expansion of the conjectured form (6.126.12).
Using this solution, we explicitly constructed the counterterms needed to apply holo-
graphic renormalization to TEGR in the appearance of the Einstein action. We ar-
gued that the explicit form of these counterterms given in (6.376.37) is expected from
holographic renormalization in standard AdS/CFT. We used the renormalized action
to derive the free energy of the five-dimensional TEGR Schwarzschild black hole in
asymptotically AdS spacetimes in (6.506.50). These results of chapter 66 prove that tor-
sion holds information about the thermodynamics of black holes. Furthermore, they
provide the first systematic approach for generalizing the AdS/CFT correspondence
such that it includes torsion and non-metricity. These original results of mine may
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be generalized to apply the method of holographic renormalization to any teleparallel
theory of gravity.

The generalization of the AdS/CFT correspondence to geometries which include
torsion and non-metricity is an important project for future work. In particular, the
generalized correspondence will allow to describe spin and hypermomentum currents
in the boundary field theory [7676–7878, 8080–8787]. Considering the hydrodynamic limit of
this strongly coupled field theory, the results of this thesis allow to describe spin and
hypermomentum transport in semimetals [146146–148148] as we discussed in chapter 11. This
is particularly interesting not only because this project connects different branches of
physics, but also because the calculation of transport coefficients in semimetals pro-
vides in principle experimentally accessible quantities originating from the AdS/CFT
approach to hydrodynamics.

There are further immediate implications in holography originating from the results
of this thesis. These implications arise from the derivation of the lightlike GHY terms
in section 4.24.2. In the AdS/CFT correspondence, the quantum complexity of field
theory states is calculated on the gravity side using a Wheeler-DeWitt patch which
has a lightlike boundary [149149]. Lightlike hypersurfaces typically play an important
role in alternative approaches to the holographic calculation of quantum complexity as
well [150150, 151151]. Therefore, I expect the lightlike GHY terms derived in section 4.24.2 to be
important for holographic calculations of complexity in the presence of torsion or non-
metricity. Furthermore, these GHY terms are important for complexity calculations
based on more complicated Lagrangians like the ones discussed in subsection 4.2.34.2.3.
These lightlike GHY terms are my original results first published in this thesis.

In addition, lightlike hypersurfaces are equally relevant in gravity. Consider, for
example, black holes which have an event horizon that we describe as a lightlike
hypersurface [9696]. It is therefore essential to include the correct lightlike boundary
terms for studying black holes in modified theories of gravity. The lightlike GHY
term derived in section 4.24.2 is hence an essential result in view of modified gravity.
Including the appropriate GHY term to gravitational actions is particularly important
for studying black hole thermodynamics as I outlined in section 6.36.3 [131131–133133]. In
particular, it is well-known that the on-shell Einstein-Hilbert action vanishes in the
bulk if we consider Schwarzschild black holes in spacetimes with vanishing cosmological
constant [152152]. Thus, black hole thermodynamics in this case is attributed solely to
the GHY term. Although the on-shell bulk action is generically non-vanishing if we
consider more complicated solutions, the GHY terms are equally important in these
cases. Only if we consider spacetimes with vanishing curvature must the bulk action
contain all thermodynamical information. We have explicitly verified that it does
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contain this thermodynamical information as a main result of section 6.36.3. We need to
extend this work in the future to study black hole thermodynamics in modified gravity
and holography.

Concerning the geometrical trinity of general relativity, we need to clearly distin-
guish what the dynamical equivalence of the three theories implies and what it does
not imply. The descriptions in terms of curvature, torsion and non-metricity being
equivalent provides a new perspective on general relativity itself. It is the common
interpretation of general relativity that this theory introduces gravity as an effect of
curvature. But it is equally valid to introduce gravity in GR as an effect of torsion
or non-metricity, and there are special choices of the action which make the dynamics
of these theories mere rewritings of one another. The geometrical trinity of general
relativity thus implies that we may think of gravity in GR in terms of either cur-
vature, torsion or non-metricity [3636, 6060]. Besides shedding new light on GR itself,
this also implies that torsion and non-metricity may have physical effects of the same
strength as curvature. This was not clear before TEGR and STEGR had been in-
troduced, see [109109] for instance. Stressing the strength and importance of torsion
and non-metricity is thus the main achievement of the geometrical trinity of general
relativity.

What we must not expect from the geometrical trinity of general relativity is new
physics. This trinity is specifically constructed to not yield physics beyond GR, since
all its constituents are equivalent to each other. For resolving open problems in cos-
mology, we therefore need to study theories which go beyond the models that have
been examined before. More than the inclusion of theories of higher order in the field
strengths, this involves a mixture of them. Since the geometrical trinity of gravity im-
plies that we may attribute equal strength of gravitational effects to curvature, torsion
and non-metricity, it is straightforward to construct theories in which two or all three
of them are non-vanishing. These are the models in which new physical phenomena
are to be expected.

As an important example, this involves the understanding of dark matter. There
are several candidates for dark matter being discussed, all of which go back to the
observation of rotation curves of spiral galaxies [4949–5555]. For explaining these rotation
curves, we need an additional source of gravity besides the curvature of spacetime that
we attribute to the visible matter through Einstein’s theory of general relativity. This
additional source of gravity is usually thought of as some matter that we cannot see,
therefore called dark matter [4646, 5656–5858]. However, we have found that torsion and
non-metricity may be used as sources of gravity as well. It is therefore important to
study theories that include more than just one field strength as alternatives to the dark
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matter hypothesis [2929, 5959]. As a first step, this involves developing a comprehensive
understanding of the matter couplings of torsion and non-metricity.

It contributes to the success of general relativity that we have an intuitive picture of
how curvature implies a gravitational attraction of massive objects. That is, the mass
of these objects curves spacetime in a similar way as a person standing on a trampo-
line curves the latter. I am convinced that we need to develop similar intuitions for
torsion and non-metricity in order for them to be widely accepted as sources of gravity.
As a first attempt, we may return to the parallel transport arguments discussed in
chapter 11. We noticed that non-metricity is changing the lengths of vectors when we
parallel transport them. In chapter 22 we then saw that the velocities of curves are
the most fundamental vectors which exist on manifolds. Therefore, we may interpret
non-metricity as changing velocities under parallel transport and thus consider non-
metricity as an effective acceleration due to the geometry of a manifold. This is my
own argument for how non-metricity may be interpreted as a source of gravity, but we
clearly need to further develop such interpretations and provide an analog for torsion
as well. After all, this is how we connect the mathematical formalism of differential
geometry to physical observations in our universe.

In recent years, a wide variety of higher curvature [153153–156156] or teleparallel theories
of gravity [3030–3535] have been studied, only a few of which I have discussed in this thesis.
It will be a task of fundamental importance in the next years to test these theories
by experiments in order to find out which of them are appropriate for describing the
observations in our universe. From a theoretical point of view, it is useful to avoid
over-constraining theories in first place in order to derive universal results that allow us
to examine the observable universe regardless of which constraints experimental data
will imply. Note that in this respect we have studied hypersurfaces and GHY terms
without fixing a dimension, an action or any of the fundamental fields in chapters 33
and 44. This makes the results of this thesis universal and widely applicable. We need
to revisit existing results in various branches of modified gravity from this unifying
point of view to distinguish those properties which are specific to certain theories from
those which are universal features of manifolds with non-trivial curvature, torsion and
non-metricity. This distinction is needed in order to construct physical experiments
which test specific properties of spacetime that help to identify those theories which
most accurately describe our universe.
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Derivation of the lightlike Lovelock
GHY term A

In this appendix we prove that the decomposed action (4.1234.123) may be rewritten
as a boundary term. The most straightforward way to see this is to write the first
summand of (4.1234.123) as a total derivative. Since K is a one-form, we obtain

ηlkA1...A2p−2 ∧DK ∧ (ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

= ηlkA1...A2p−2 ∧D
(
K ∧ (ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)
)

+ (p− 1)ηlkA1...A2p−2 ∧ K ∧D(ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2) ,

(A.1)

where we used the antisymmetry of ηlkA1...A2p−2 to observe that we obtain the last term
on the right hand side (p − 1) times. This term is simplified by the Bianchi identity
of curvature (2.302.30), due to which we have DΩA1A2 = 0. Hence, we obtain

(p− 1)ηlkA1...A2p−2 ∧ K ∧D(ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

= (p− 1)ηlkA1...A2p−2 ∧ K ∧ (−2εDKA1 ∧ LA2 + 2εKA1 ∧DLA2) ∧ . . .

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2) .
(A.2)

This result combines nicely with the second term in the action decomposition (4.1234.123).
To see this, we rewrite this second summand using

2(p− 1)ηlkA1...A2p−2 ∧ (DKA1 + εKA1 ∧ K) ∧ (DLA2 − εLA2 ∧ K)

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

= (p− 1)ηlkA1...A2p−2 ∧
(
DKA1 ∧DLA2 −DLA1 ∧DKA2

+ 2εK ∧DKA1 ∧ LA2 − 2εK ∧KA1 ∧DLA2
)

∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2) .
(A.3)
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We observe that the addition of (A.2A.2) to the latter terms cancels the contribution
which is proportional to 2εK ∧ DKA1 ∧ LA2 − 2εK ∧ KA1 ∧ DLA2 . The remaining
contributions of (A.3A.3) may be rewritten as total derivatives since we have

ηlkA1...A2p−2 ∧D(KA1 ∧DLA2 ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2)

= (p− 1)ηlkA1...A2p−2 ∧DKA1 ∧DLA2 ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2

− ηlkA1...A2p−2 ∧KA1 ∧ ΩA2
B ∧ LB ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2 .

(A.4)

Here we used D2LA = ΩA
B ∧LB which yields a term that is irrelevant at the boundary.

Analogously, we obtain

ηlkA1...A2p−2 ∧D(LA1 ∧DKA2 ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2)

= (p− 1)ηlkA1...A2p−2 ∧DLA1 ∧DKA2 ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2

− ηlkA1...A2p−2 ∧ LA1 ∧ ΩA2
B ∧KB ∧KA3 ∧ LA4 ∧ · · · ∧KA2p−3 ∧ LA2p−2 .

(A.5)

It renders this proof a little more involved that we cannot straightforwardly apply
the latter results to

(p− 1)ηlkA1...A2p−2 ∧
(
DKA1 ∧DLA2 −DLA1 ∧DLA2

)
∧ (ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2) ,

(A.6)

which we recall to be the only term left in the decomposed action (4.1234.123) that we did
not yet write as a total derivative. This is non-trivial since the second line of (A.6A.6) is
a polynomial in KA ∧ LB. In particular, we obtain different prefactors when writing
the terms of this polynomial as a total derivative by means of (A.4A.4) and (A.5A.5). This
is most easily solved by adapting the wedge product notation we introduced for the
GHY term of Lovelock gravity on manifolds with space- and timelike boundaries in
section 4.1.34.1.3. Using this notation and the binomial theorem, we have

(ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

=
p∑

q=2

(
p− 2
q − 2

)
(−2ε)p−q

p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2 .

(A.7)

In this form, it is straightforward to apply (A.4A.4) and (A.5A.5) in order to write (A.6A.6) as
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a total derivative. Carfully evaluating the prefactors yields

ηlkA1...A2p−2 ∧DKA1 ∧DLA2∧

(ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

= ηlkA1...A2p−2 ∧D
(
KA1 ∧DLA2

p∑
q=2

(
p− 2
q − 2

)
(−2ε)p−q

p− q + 2
p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2

)
(A.8)

and

ηlkA1...A2p−2 ∧DLA1 ∧DKA2∧

(ΩA3A4 − 2εKA3 ∧ LA4) ∧ · · · ∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

= ηlkA1...A2p−2 ∧D
(
LA1 ∧DKA2

p∑
q=2

(
p− 2
q − 2

)
(−2ε)p−q

p− q + 2
p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2

)
.

(A.9)

Hence, we now rewrote all boundary relevant terms contained in the action decompo-
sition (4.1234.123) in terms of total derivatives. Collecting these results and inserting them
into (4.1234.123) yields

Sp = −2pε2
∫

M
ηlkA1...A2p−2 ∧D

[
K ∧ (ΩA1A2 − 2εKA1 ∧ LA2) ∧ . . .

∧ (ΩA2p−3A2p−2 − 2εKA2p−3 ∧ LA2p−2)

+ (p− 1)(KA1 ∧DLA2 − LA1 ∧DKA2)
p∑

q=2

(
p− 2
q − 2

)
(−2ε)p−q

p− q + 2
p−q∧
m=1

KA2m+1 ∧ LA2m+2
p−2∧

n=p−q+1
ΩA2n+1A2n+2

]
+ terms irrelevant on ∂M .

(A.10)

The latter result recasts the decomposed action (4.1234.123) as a total covariant exterior
derivative as desired. We therefore use this result in (4.1244.124) for deriving the lightlike
GHY term of Lovelock gravity.
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