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Abstract The classical and quantum theory of the Maxwell
free field (or perturbation) minimally coupled to the gravity
of local-Minkowskian spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) space-times is constructed in
conformal local charts (herein called frames) where the
Maxwell equations have the same form as in special relativ-
ity. Taking into account that the conformal coordinates cannot
be measured directly, all the obtained results are transformed
in physical frames, with cosmic time and space coordinates
of Painlevé type, where these may take on a physical mean-
ing. In these frames, the Maxwell theory is equivalent to
the electrodynamics in flat macroscopic media whose con-
stitutive equations predict magnetoelectric type effects inter-
preted here as a geometric induction. The given example is of
a system of static charges giving rise simultaneously to time-
dependent electric and magnetic fields that can be measured
in physical frames. The quantization of the Maxwell free field
in these manifolds is performed in a canonical manner using
the momentum-helicity basis. The propagators in conformal
and physical frames and the principal one-particle operators
are written down. It is shown that this approach reveals a new
behaviour of the one-particle wave packets during propaga-
tion and specific effects produced by the apparent horizons of
the observers staying at rest in their proper physical frames.

1 Introduction

The Maxwell field holds a special position in physics as the
only field having both classical and quantum behaviours. In
general relativity, this field is involved in many models in
astrophysics and cosmology, but it is less studied separately
as a perturbation on semi-Riemannian manifolds. The gen-
eral theory of the electromagnetic field on these manifolds is
equivalent to the electrodynamics in flat macroscopic media
where the permittivity and permeability are given by the com-
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ponents of the metric tensor [1,2]. In this framework, the
propagation of the electromagnetic field coupled to gravity
was successfully studied using perturbations [2]. Moreover,
exploiting this formalism and the conformal invariance of
the Maxwell equations, analytical solutions of these equa-
tions were derived in co-moving frames with conformal time
and spherical space coordinates of Friedmann–Lemaître–
Robertson–Walker (FLRW) space-times [3]. These solutions
are spherical waves forming the total angular momentum
basis in which the first canonical quantization of the Maxwell
field on FLRW manifolds was performed deriving the one-
particle operators [3].

Other solutions of the Maxwell equations were studied in
the de Sitter manifolds, either in local frames with static coor-
dinates [4–8] or in co-moving frames of the expanding por-
tions of arbitrary dimensions [9]. In the (1 + 3)-dimensional
de Sitter expanding portion, known as the de Sitter expanding
universe, we performed some time ago the canonical quanti-
zation of the Maxwell free field in the Coulomb gauge [10],
which was the starting point in studying the de Sitter QED
in the first order of perturbations [11], the quantum theory
of redshift [12] and the propagation of the Maxwell wave
packets in this manifold [13].

In these investigations, we exploited the conformal invari-
ance of the Maxwell equations, allowing us to take over
the results of the special relativistic QED in the conformal
frames of the de Sitter expanding universe whose metrics
are conformal transformations of the Minkowski one. How-
ever, such conformal frames can be introduced in any local
Minkowskian spatially flat FLRW space-time, where we may
generalize the results obtained in the de Sitter case as we
intend to do in the present paper, proposing the classical and
quantum theory of the Maxwell field in these FLRW mani-
folds.

The conformal coordinates of the co-moving frames,
which help us to take over the results from the flat case are a
very effective tool, but these are different from the measured
physical ones which are formed by the proper (or cosmic)
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time and space coordinates of Painlevé type [14]. To avoid
any ambiguity, we consider that the physical measurements
can be done exclusively in the frames with physical coordi-
nates. Therefore, our strategy is to use the conformal coordi-
nates for taking over the known results from the flat case and
then to transform them in the physical frames where these can
be interpreted. Thus we may construct the classical theory of
the Maxwell field in the spatially flat FLRW space-times.

With regard to the quantum approach, we must specify
from the beginning that we adopt the standard interpretation
of quantum mechanics [15]. We assume that the quantum
states are prepared or measured by a global classical appa-
ratus represented by the algebra of the vector fields, glob-
ally defined, which have to play the role of quantum observ-
ables. Of special interest are the Killing vector fields which
are conserved observables commuting with the operators of
the field equations. In this framework we may perform the
canonical quantization of the Maxwell free field in confor-
mal frames adopting the Coulomb gauge for eliminating the
non-physical components as in special relativity [16,17]. The
problem here is that the transformation to the physical frame
depends on time changing, thus the time evolution picture
[18–20]. To avoid this difficulty, we chose the initial time t0
when the scale factor a(t0) = 1 and the physical and con-
formal space coordinates coincide. We show that this choice
does not restrict the generality, since the conformal coordi-
nates and the scale factor can be rescaled at any time with-
out affecting the coordinates and geometry of the physical
frames.

Technically speaking, we pay attention to a pair of sen-
sitive problems which are crucial in our approach. The first
one is related to the form of the plane-wave solutions of the
Maxwell equations which must depend on the initial condi-
tions, as the physical space coordinates are no longer homo-
geneous as the conformal ones. This dependence allows us to
ensure the correct flat limits of these solutions, but only if we
chose the initial time such that a(t0) = 1, which is just the
mandatory condition for performing the canonical quantiza-
tion. The second problem is related to the detector measuring
propagating wave packets which must select only the radia-
tion emitted by a remote source. To do so, we assume that
the detector filters the photon momenta on a desired direction
with the help of a suitable projection operator determining
the amplitude of the detected one-dimensional wave packet
and the expectation values and dispersions of the measured
observables.

We start in the second section presenting the spatially flat
FLRW geometry and the specific isometries, introducing the
conformal and physical frames and showing how the confor-
mal coordinates and the scale factor can be rescaled without
affecting the physical ones. Moreover, we derive the null
geodesics in terms of the conserved momentum and initial
conditions [21], outlining possible effects due to the apparent

horizon of an observer staying at rest in the origin of its proper
frame with physical coordinates. To avoid further confusion,
we consider the problem of two observers which emit and
respectively detect a light beam measuring the kinetic param-
eters, including the peculiar momentum we defined recently
[21]. This will be the general layout in which we study the
classical or quantum effects during propagation.

The next section is devoted to the classical Maxwell field,
whose solutions may be written in conformal frames, while
the field strength and the energy-momentum tensor has to be
measured in the associated physical frame. To achieve this,
we first derive the transformation between these two frames,
writing then the concrete expressions of the mentioned quan-
tities in the physical frame. Here, we see in the equivalent
electrodynamics in flat media that the constitutive equations
have terms generating magnetoelectric type effects but which
in fact are produced by the dynamics of the backgrounds. For
this reason, here we use the term of geometric induction in
physical frames, which must not be confused with the gravi-
tational induction which addresses only the gravitational field
(see, for instance, [22]). The example we give is a system of
static charges giving rise simultaneously to a time-dependent
Coulomb field associated with an induced magnetic one that
can be observed in the physical frame.

The canonical quantization of the Maxwell field is pre-
sented in section 4. Following the method of Ref. [10],
we start with the fundamental plane-wave solutions in the
Coulomb gauge and conformal coordinates which are simi-
lar to those of special relativity but depending, in addition, on
the initial conditions. These solutions form the momentum-
helicity basis in which we perform the canonical quantization
as in the de Sitter [10,12] or the flat [16,17] cases, deriv-
ing the commutator functions and propagators in conformal
frames. These are two-point functions very similar to those
of the flat case, depending only on the differences in the
coordinates of these points. However, by transforming these
functions in the physical frames, we obtain more compli-
cated expressions, depending separately on the sets of coor-
dinates of the two points. This indicates that the propagation
in physical frames is quite different from that we encoun-
tered in the usual QED. This section ends by presenting the
mode expansions in momentum representation of the princi-
pal one-particle operators.

In section 5 we study the propagation of the one-particle
wave packets following the same steps as in the case of
the de Sitter space-time [13]. Revisiting our problem of
two observers, we assume that the first one prepares a 3-
dimensional wave packet which has to be detected by the
second observer in its proper physical frame. We define the
prepared wave packet in the conformal frame of the first
observer and the projection operator which filters the one-
dimensional wave packet which has to be detected by the
second observer. Then, transforming the observation data in
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the physical frame, we conclude that the detected wave packet
propagates, accelerating from the initial velocity (less than
the speed of light) up to the speed of light recorded by the
detector. During propagation, this has an important decay and
a moderate dispersion which are specific for the expanding
backgrounds but absent in the flat case. We thus generalize
the similar results we obtained in the de Sitter expanding
universe [13].

Most interesting are the horizon effects we analyse in sec-
tion 6 for the first time. We consider isotropic wave pack-
ets of the Cauchy–Lorentz type propagating in spatially flat
FLRW expanding space-times with scale factors of the form
a(t) ∝ t s with s > 0. In these geometries, the observers
have, in their proper physical frames, dynamical apparent
horizons expanding with constant velocities. We show how
the space expansion drags back the wave packet which is
starting slower. Moreover, if the packet is prepared at the
initial moment outside the apparent horizon, where the drag-
ging effect is stronger, then it starts in the backward direc-
tion decelerating and stopping when the horizon reaches it.
Then this restarts in the forward direction accelerating up
to the speed of light detected by the second observer. This
new spectacular horizon effect cannot be observed directly
but may be pointed out indirectly by measuring the redshift.
Some comments on this matter and other concluding remarks
are presented in the last section.

As we develop here both the classical and quantum
approaches, we use natural Planck units with c = h̄ = G =
1.

2 Light in spatially flat FLRW space-times

In local Minkowskian semi-Reiemannian space-times, (M, g),
the geodesic motion may be studied in frames {x} with local
coordinates xμ (labelled by natural indices α, .., μ, ν, . . . =
0, 1, 2, 3) and line elements

ds2 = gμν(x)dx
μdxν . (1)

Integrating the geodesic equations, we introduce integration
constants whose physical meaning may be better understood
by relating them to the conserved quantities associated to the
isometries of M that preserve the metric. These transforma-
tions form the isometry group I (M) whose elements g(ξ)

depend on the group parameters ξa (a,b,…=1,2,..n). Each
isometry,

xμ → x ′μ = φ
μ

g(ξ)(x) = xμ + ξa∂ξaφ
μ

g(ξ)(x)|ξ=0 + · · · ,

(2)

defines the associated Killing vector ka having the compo-
nents

kμ
a (x) = ∂ξaφ

μ

g(ξ)(x)
∣
∣
∣
ξ=0

, (3)

which satisfy the Killing equation ka μ;ν + ka ν;μ = 0. The
Killing vectors generate the quantities

ξa → ka → Ka = ka μ(x)pμ, pμ = dxμ

dλ
, (4)

which are conserved along geodesics. For a particle of mass
m ≥ 0, the affine parameter λ is defined as ds = mdλ such
that the components pμ of the four-momentum p satisfy the
condition gμν(x)pμ pν = m2 resulting from Eq. (1).

2.1 Frames and conserved quantities

In what follows, we focus on the spatially flat FLRW space-
times, denoted by (M, a), where we consider two types
of frames, namely the conformal pseudo-Euclidean frames
{tc, xc} with conformal coordinates, xμ

c , and the physical
frames {t, x} with physical coordinates, xμ, of the Painlevé
type [14].

The conformal coordinates are the conformal time tc and
the conformal Cartesian spaces coordinates xic (i, j, k, . . . =
1, 2, 3), known as the co-moving space coordinates [23]. The
line element

ds2 = gcμν(xc) dxμ
c dxν

c = a(tc)
2
(

dtc
2 − dxc · dxc

)

, (5)

depends on the conformal scale factor a(tc). The correspond-
ing metric tensors can be represented as

gcμν = a(tc)
2ημν, gcμν = 1

a(tc)2 ημν, (6)

where η = diag(1,−1,−1,−1) is the Minkowski metric.
Then we may write
√
g ≡ √−det(gμν) → √

gc = a(tc)
4 . (7)

Note that the conformal coordinates were introduced for the
first time by Lemaître [24] in de Sitter’s universe.

The physical coordinates are the proper, or cosmic, time
t and the Cartesian space coordinates xi defined as

t =
∫

a(tc)dtc, x = xca(tc), (8)

such that the inverse transformation reads

tc =
∫

dt

a(t)
, xc = x

a(t)
, a(t) ≡ a[tc(t)], (9)

where a(t) is the usual FLRW scale factor [23]. The physi-
cal frame is the proper frame of an observer which stays at
rest in origin measuring the physical coordinates whose line
element reads

ds2 = gμν(x) dxμdxν

=
[

1 − ȧ(t)2

a(t)2 x
2

]

dt2 + 2
ȧ(t)

a(t)
x · dx dt − dx · dx ,

(10)
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where

ȧ(t)

a(t)
= 1

a(t)

da(t)

dt
= 1

a(tc)2

da(tc)

dtc
(11)

is the Hubble function for which we do not use a special
notation. The metric defined by the line element (10) has
covariant

(

gμν

) =

⎛

⎜
⎜
⎜
⎝

1 − ȧ2

a2 x · x ȧ
a x

1 ȧ
a x

2 ȧ
a x

3

ȧ
a x

1 −1 0 0
ȧ
a x

2 0 −1 0
ȧ
a x

3 0 0 −1

⎞

⎟
⎟
⎟
⎠

(12)

and contravariant

(

gμν
) =

⎛

⎜
⎜
⎜
⎝

1 ȧ
a x

1 ȧ
a x

2 ȧ
a x

3

ȧ
a x

1 ȧ2

a2 (x1)2 − 1 ȧ2

a2 x
1x2 ȧ2

a2 x
1x3

ȧ
a x

2 ȧ2

a2 x
1x2 ȧ2

a2 (x2)2 − 1 ȧ2

a2 x
2x3

ȧ
a x

3 ȧ2

a2 x
1x3 ȧ2

a2 x
2x3 ȧ2

a2 (x3)2 − 1

⎞

⎟
⎟
⎟
⎠

(13)

components such that
√
g = 1. In this frame the observer has

an apparent horizon which is a sphere of the time-dependent
radius

ra(t) = a(t)

ȧ(t)
, (14)

which restricts the space measurement at the time t to the
domain |x| < ra(t). In general, this apparent horizon is not
an event horizon, as this does not separate disjoint domains
of causality.

Assuming that the physical measurement can be per-
formed exclusively in the physical frames, we observe that
the scaling

tc → σ tc, xc → σxc, a → a

σ
(15)

does not affect the physical coordinates and the Hubble func-
tion. This scaling will be useful when we discuss the role of
the initial condition in determining some significant geomet-
ric quantities and applying the quantization procedure.

The spatially flat FLRW space-times have the isometry
group I (M) = E(3) formed by the space translations

t ′c = tc,
x ′ i
c = xic + ξ i ,

→ t ′ = t,
x ′ i = xi + ξ i a(t)

(16)

and the global rotations

t ′c = tc,

x ′ i
c = Ri

j (ω)x j
c ,

→ t ′ = t,
x ′ i = Ri

j (ω)x j (17)

where Ri
j (ω) = δij − ωi

j + · · · . In the conformal frame,
where the translations do not depend on time, we may derive
the associated Killing vectors having the simpler components
[21]

ξ i → k(i) : k0
(i) = 0, k j

(i) = δ
j
i , (18)

ωi j → k(i j) : k0
(i j) = 0, kk(i j) = δkj x

i
c − δki x

j
c . (19)

These give rise to the conserved quantities

Pi = −k(i) j
dx j

c

dλ
= a(tc)

2 dxic
dλ

, (20)

Lk = −1

2
εki j k(i j) l

dxlc
dλ

= a(tc)
2εki j x

i
c

dx j
c

dλ
= εki j x

i
c P

j ,

(21)

representing the components of the conserved momentum
P = nP P (P = |P |) and respectively the angular momen-
tum L = xc ∧ P. Note that the indices (i) and (i j) are not
natural ones, being in fact Euclidean indices, labelling the
parameters of the E(3) group whose upper or lower posi-
tions are equivalent.

In conformal frames, the geodesics of the particles of mass
m are determined by the initial condition xc0 = x(tc0) and the
conserved momentum P, which gives rise to the components
of the covariant four-momentum as [21]

p0
c (tc) = dtc

dλ
= 1

a(tc)2

√

m2 + P2

a(tc)2 , (22)

pic(tc) = dxic
dλ

= Pi

a(tc)2 , (23)

so that

a(tc)
2
(

p0
c

2 − pc · pc
)

= m2 . (24)

The angular momentum is not explicitly involved in the
geodesic equation, but can be related to the initial condition
as L = xc0 ∧ P.

2.2 Null geodesics

The classical trajectories of light are the null geodesics (with
m = 0) whose kinetic quantities may be measured by an
observer staying at rest in the origin O of its proper frame
with physical coordinates {t, x}O . These can be derived start-
ing with the components

k0
c (tc) = P

a(tc)2 , kic(tc) = Pi

a(tc)2 , (25)

of the four-momentum in the conformal frame {tc, xc}O of
our observer, where the prime integral (24) becomes

k0
c (tc)

2 − kc(tc)2 = 0 . (26)

In this frame, the null geodesics result simply by integrating
the equation

dxic
dtc

= kic(tc)

k0
c (tc)

= niP (27)

that yields the closed form

xc(tc) = xc0 + nP (tc − tc0) (28)
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which holds in any spatially flat FLRW space-time [21,25].
The corresponding physical quantities measured by the

observer O in its proper frame, {t, x}O , may be obtained by
substituting the physical coordinates according to Eq. (9).
Thus we find the covariant components [21],

k0(t) = dt

dλ
= P

a(t)
, (29)

ki (t) = dxi

dλ
= Pi

a(t)
+ xi (t)

ȧ(t)

a(t)
k0(t), (30)

which represent the measured energy and covariant momen-
tum in the point [t, x(t)] of the null geodesic,

x(t) = x0
a(t)

a(t0)
+ nP a(t) [tc(t) − tc(t0)] , (31)

which is passing through the space point x(t0) = x0 at the
initial time t0.

We recently showed that the covariant momentum defined
by Eq. (30) can be split as k(t) = k̂(t) + k̄(t), where

k̂(t) = P
a(t)

, (32)

k̄ = x(t)
ȧ(t)

a(t)
k0(t), (33)

are the peculiar and recessional momenta, respectively [21].
We must stress that this splitting can be done only in the
physical frames where the prime integral derived from the
line element (10) gives the familiar identity

k0(t)2 − k̂(t) · k̂(t) = 0, (34)

which is just the mass-shell condition of special relativity
satisfied by the energy and peculiar momentum. Therefore,
we may conclude that the peculiar momentum produces the
entire energy of the geodesic motion as in special relativity.

In the physical frame, the conserved angular momentum
is related on the initial condition as

L = x(t) ∧ k(t) = x(t) ∧ k̂(t)

= x(t) ∧ P
a(t)

= x0 ∧ P
a(t0)

. (35)

Obviously, this vanishes when the observer O stays at rest in
a space point of the measured geodesic.

2.3 Two observers problem

The recessional momentum (33) depends explicitly on coor-
dinates such that the experimental results will depend on the
relative position between the detector and source of the mea-
sured particle. This is not an impediment, as the peculiar and
recessional contributions can be separated at any time with-
out ambiguities. Nevertheless, to avoid confusion, we take
care on this dependence, looking for suitable positions of the
observer’s proper frames in order to obtain intuitive results.

For this purpose, we take over the common layout of Refs.
[12,13,21], in which two observers measure the motion of
a photon on a null geodesic which is passing through the
origins O and O ′ of their proper frames, {t, x}O and {t, x′}O ′ ,
respectively. We assume that at the initial time t0, the origin
O ′ is translated with respect to O as

x ′(t0) = x(t0) + d(t0), (36)

where d(t) = d a(t) depends on the translation parameters
of Eq. (16) denoted now by ξ i = di . Then it is convenient
to introduce the unit vector n of the direction O ′O such that
d = n d. Now we find that the velocity of O ′ with respect to
O , v(t) = −ḋ(t) = − ȧ(t)

a(t)d(t), complies with the velocity
law, v = a(t)d, that is sometimes confused with the Hubble
one [29].

Our experiment starts in this layout at the time t0 when
the observer O ′ emits a photon of momentum k = n k and
energy k on the null geodesic O ′ → O that can be written
as

x(t) = a(t) [tc(t) − tc(t0) − d] , (37)

where x(t) = n · x(t). We look first for the energy and
momentum of this photon measured in the origin O at the
final time t f , when the photon is detected. For solving this
problem, we start with the conserved momentum observed
in O ′,

P′ = P = nP P = k a(t0), (38)

denoting P = k a(t0) and nP = n. Then, by substituting it
in Eqs. (29) and (30), we obtain the energy and momentum
in O ,

k0(t f ) = k
a(t0)

a(t f )
, (39)

k(t f ) = k̂(t f ) = −n k
a(t0)

a(t f )
, (40)

where t f satisfies the condition x(t f ) = 0 which, according
to Eq. (28), gives the simple algebraic equation

tc(t f ) = tc(t0) + d →
∫ t f

t0

dt

a(t)
= d, (41)

which can be solved obtaining the value of t f . Once we have
this value, we can calculate the propagation time t f − t0 and
the distance d(t f ) between O and O ′ at the time t f ,

d(t f ) = d a(t f ) = d(t0)
a(t f )

a(t0)
, (42)

thus completing the collection of the kinetic quantities related
to this problem.

On the other hand, Eq. (39) shows that in expanding uni-
verses, a part of energy is lost during the propagation. This
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phenomenon gives rise to the redshift for which we recover
the Lemaître equation [26,27] of Hubble’s law [28] as

1 + z = p0(t0)

p0(t f )
= a(t f )

a(t0)
, (43)

where z is the usual redshift defined as the relative dilation
of the wavelength [29].

In the proper physical frame of O , the velocity of the
photon on the geodesic O ′O can be derived from Eq. (37) as

v(t) = ẋ(t) = 1 + ȧ(t)

a(t)
x(t), (44)

finding that the direction of the initial velocity,

v(t0) = 1 − ȧ(t0)

a(t0)
d(t0) =

⎧

⎨

⎩

> 0 if d(t0) < ra(t0)
= 0 if d(t0) = ra(t0)
< 0 if d(t0) > ra(t0)

, (45)

depends on the position of O ′ with respect to the apparent
horizon at the initial time t0. The photon observed by O is
accelerated in the forward direction, such that the velocity
is increasing from the initial value v(t0) up to the speed of
light v(t f ) = 1 detected by O in x(t f ) = 0. When v(t0) <

0, then the photon starts in the backward direction, being
decelerated until it stops and turns back, accelerating and
moving straightforward to O . Note that for the observer O ′,
the velocity of the emitted photon is always the speed of light,
since from its point of view d ′ = 0.

Thus we outlined an important effect due to the dynamical
apparent horizon that may interfere with the effects produced
by the event horizons. As we intend to pay special attention
to these effects, we need to know the ideal event horizon of an
observer O in its proper frame {t, x}O in (M, a). According
to Rindler’s definition [30,31], this is the distance

re(t) =
∫ ∞

t
dt ′ a(t)

a(t ′)
, (46)

for which the photon emitted by O ′ at the time t never arrives
in O as t f → ∞ in Eq. (41). The examples analysed so far
show that, at least in the expanding space-times of interest
in cosmology, the event horizon is larger than the appar-
ent one. The exception is the de Sittter expanding universe
having the scale factor a(t) = exp (ωH t), where ωH is the
de Sitter-Hubble constant in our notation. This gives rise
to time-independent overlapping horizons on the sphere of
radius re = ra = ω−1

H .

3 Classical Maxwell field

The classical theory of the Maxwell field is a Lagrangian
theory in which the electromagnetic potential plays the role
of canonical variable. The advantage of this approach is
deriving the conserved quantities associated to isometries

via Noether’s theorem. Let us start by briefly revisiting this
procedure, which has to be applied to the E(3) isometries of
the space-times (M, a).

3.1 General framework

In any space-time, (M, g), the electromagnetic potential A,
minimally coupled to the gravity of background, has the
action

S[A] =
∫

d4x
√
g
[

L(A) − Aμ J
μ
]

, (47)

where
√
g is defined by Eq. (7), while the Lagrangian of the

free electromagnetic field

L(A) = −1

4
FμνF

μν, (48)

is expressed in terms of the field strength

Fμν = ∂μAν − ∂ν Aμ . (49)

The current density J is conserved, ∂μ(
√
g Jμ) = 0, being

the source of the field equations

∂ν(
√
g gναgμβFαβ) = √

g Jμ (50)

of the classical Maxwell field in (M, g).
For J = 0, the theory of free field is invariant under

gauge transformations, Aμ → Aμ + ∂μα, and the con-
formal ones that transform simultaneously the metric ten-
sor, gμν → g′

μν = Ωgμν , and the potential components,
Aμ → A′

μ = Aμ and Aμ → A′μ = Ω−1Aμ. In addition,
the canonical variables Aμ must comply with the Lorenz
condition

∂μ(
√
g gμν Aν) = 0, (51)

which is no longer conformally invariant since

∂μ(
√

g′ g′μν A′
ν) = Ω ∂μ(

√
g gμν Aν) + √

g Aμ∂μΩ . (52)

In general, we can overcome this inconvenience by fixing a
convenient gauge.

If (M, g) allows isometries, then the vector field A trans-
forms under an isometry (2) as A → A′ = Tξ A, according to
the operator-valued representation ξ → Tξ of the isometry
group I (M) defined by the well-known rule

∂φν
ξ (x)

∂xμ

(

Tξ A
)

ν
[φ(x)] = Aμ(x) (53)

of the vector representation. The corresponding basis gener-
ators, Xa = i ∂ξa Tξ |ξ=0, have the action

ka → (Xa A)μ = −i
[

kν
a Aμ;ν + kν

a ;μAν

]

, (54)

where ka are the Killing vectors (3) associated to the parame-
ters ξa . These generators are differential operators that form
the basis of the vector representation of the Lie algebra i(M)
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of the group I (M). Then, the Noether theorem provides us
with the conserved quantities

ξa → ka → Ca = −
∫

�

dσμ
√
g Tμνka ν, (55)

where

Tμν = FμαF · ν
α · − gμνL (56)

is the stress-energy tensor of the electromagnetic field while
the integral is performed on the space-like section � of M .

The theory of the Maxwell field on (M, g) can be inter-
preted formally in terms of the electrodynamics of macro-
scopic media in flat space-times [1,2] involving the field’s
strength components

Ei = Fi0, Bi = 1

2
εi jk Fjk, (57)

Di = √
gF0i , Hi = √

g
1

2
εi jk F

jk, (58)

related through the constitutive equations [2]

Di = Ei + εi j E j + εi jk g j Hk, (59)

Bi = Hi + εi j H j − εi jk g j Ek, (60)

where

εi j = −δi j − √
g
gi j

g00
, g j = g j0

g00
. (61)

In metrics where gi0 
= 0, the last terms of the constitutive
equations play the role of magnetoelectric susceptibilities,
giving rise to magnetoelectric-type effects but which are pro-
duced by the background structure and dynamics.

In this formalism, the stress-energy tensor may be written
in traditional manner as [2]

√
g T 0 ··0 = 1

2 (E · D + H · B) ,√
g T 0 ·· i = εi jk D j Bk,√
g T i ·· 0 = εi jk E j Hk,√
g T i ·

· j = Di E j + Bi Hj − 1
2δi j (D · E + B · H) ,

(62)

thus completing the analogy with the electrodynamics of flat
macroscopic media.

3.2 Maxwell field in conformal and physical frames

In the space-times (M, a), the Maxwell field can be written
down in conformal frames where the electromagnetic poten-
tial Ac satisfies the Maxwell equations (50) which have the
same form as in Minkowski space-time,

∂μ

(

ημαηνβ
(

∂αA
c
β − ∂β A

c
α

))

= √gc J ν
c , (63)

because of their invariance under conformal transformations.

It is convenient to write down the equations of the free
field (with J = 0) in the familiar form

− Δc A
c
0 + ∂tc

(

∂x Jc
Ac
j

)

= 0, (64)

∂2
tc A

c
i − Δc A

c
i − ∂xic

(

∂tc A
c
0 − ∂

x j
c
Ac
j

)

= 0 , (65)

observing that the Lorenz condition (51), which is no longer
conformally invariant, takes the form

0 = 1

a(tc)2 ∂μ

(

a(tc)
2ημν Ac

ν

)

= ∂tc A
c
0 − ∂xic

Ac
i + 2

ȧ(tc)

a(tc)
Ac

0 . (66)

This lays out the last term that can be removed only in the
Coulomb gauge

Ac
0 = 0, ∂xic

Ac
i = 0, (67)

when the system (64) and (65) reduces to the d’Alambert
equation
(

∂2
tc − Δc

)

A = 0 . (68)

In any other gauge, including the Lorenz one, the contribu-
tion of this new term must be evaluated analysing concrete
examples. The solutions of Eq. (68) give rise to the field
strength which has the components

Fcμν = ∂μA
c
ν − ∂ν A

c
μ, Fμν

c = 1

a(tc)4 ημαηνβFc αβ, (69)

leading to trivial constitutive equations, Dc
i = Ec

i and
Bc
i = Hc

i . These components as well as those of the cor-
responding stress-energy tensor Tc, defined by Eq. (56), are
not measurable quantities, but help us to simply derive the
physical quantities measured in physical frames.

We have seen that the space-times (M, a) have E(3)

isometries generated by operators acting as in Eq. (54). The
basis generators which are interpreted as the momentum and
total angular momentum operators act as

k(i) → P̂i Ac
j = −i

∂

∂xic
Ac
j , (70)

εi jkk( jk) → Ĵi A
c
j = L̂i A

c
j − iεi jk A

c
k, (71)

where L̂ = xc×P̂ is the usual angular momentum operator. In
addition, we define the Pauli–Lubanski (or helicity) operator
Ŵ = P̂ · Ĵ whose action depends only on the spin parts,

Ŵ Ac
i = εi jk

∂

∂x j
c

Ac
k . (72)

This operator will define the polarization in the canonical
basis of the so(3) algebra as in special relativity [10]. Then
we observe that in the conformal frame and Coulomb gauge,
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the conserved quantities (55) can be derived with the help of
the identity

ka → Ca = −
∫

d3xca(tc)
4 T 0ν

c ka ν

= −1

2
ημν

(

Ac
μ, (Xa A

c)ν
)

, (73)

involving the Hermitian form

( f, g) = i
∫

d3xc f ∗(tc, xc)
↔
∂tc g(tc, xc), (74)

written with the notation f
↔
∂ g = f ∂g − g∂ f . Now, by

substituting Xa by the operators defined by Eqs. (70), (71)
and (72), we obtain all the conserved quantities we need.

The physical field strength and stress energy tensor cannot
be derived directly in the physical frames where the Maxwell
equations are complicated because of the non-diagonal met-
ric tensor (12). Therefore, we are forced to solve the Maxwell
equation in conformal frames, transforming then the final
results into the physical ones. This can be done by transform-
ing the potential Ac derived in the conformal frame {tc, xc}O
into the potential A of the physical frame {t, x}O , of the same
observer, performing the substitution (9) as

A0(t, x) = Ac
μ

∂xcμ

∂t
= 1

a(t)
Ac

0

(

tc(t),
x

a(t)

)

− ȧ(t)

a(t)2 xi Ac
i

(

tc(t),
x

a(t)

)

, (75)

A j (t, x) = Ac
μ

∂xμ
c

∂x j
= 1

a(t)
Ac
j

(

tc(t),
x

a(t)

)

. (76)

These new potentials satisfy the Maxwell equation in the
physical frame, giving covariant field strength components
of the form (49), while the corresponding contravariant com-
ponents take the form

F0i = −F0i + ȧ

a
Fi j x

j , (77)

Fi j = Fi j

[

1 − ȧ2

a2

(

(xi )2 + (x j )2
)]

+ ȧ2

a2

(

xi Fjk − x j Fik
)

xk + ȧ

a

(

F0i x
j − F0 j x

i
)

.

(78)

These equations are equivalent to the constitutive equations
(59) and (60), where now

εi j = − ȧ2

a2

xi x j

1 − ȧ2

a2 x · x
, gi = ȧ

a

xi

1 − ȧ2

a2 x · x
, (79)

resulted from the metric tensor (12) (with
√
g = 1). The

stress-energy tensor can be written in compact form (62) or
in terms of covariant (Ei , Bi ) or contravariant components
(Di , Hi ) by using Eqs. (59), (60) and (79). Thus we obtain

all the quantities with physical meaning without solving the
Maxwell equations in physical frames.

3.3 Geometric induction

We observe that Eq. (78) suggests a possible geometric induc-
tion of the electromagnetic field that may not be confused
with the gravitational induction that addresses only the grav-
itational field [22]. In terms of the equivalent electrody-
namics in flat media, this is a magnetoelectric effect pro-
duced by the electric field of components Ei = Fi0 when
Fi j = 0 → Bi = 0. Then, from Eq. (78) we deduce that the
background expansion induces the magnetic field

H = ȧ(t)

a(t)
x ∧ E, (80)

proportional to the Hubble function. Conversely, if F0 j = 0,
then the components Fi j generate both the electric and mag-
netic fields according to Eqs. (77) and (78). We conclude that
in the space-times (M, a), the electric and magnetic fields
cannot be separated as in the electrostatic and magnetostatic
of the special relativistic electrodynamics.

The simplest example is the magnetic field of a static sys-
tem of electric charges that is induced gravitationally by
the evolution of the space-time (M, a). Let us consider an
observer O which measures at the time t0, when a(t0) = 1, a
system of static charges of density ρ(x) in its proper physical
frame, {t, x}O . Then, bearing in mind that at the time t0 the
coordinates of the conformal and physical spaces coincide,
we may write the current density in the conformal frame of
the same observer as

J 0
c = 1√

gc
ρ(xc), J ic = 0 . (81)

Introducing this current density in Eq. (63), we obtain the
equation of the Coulomb potential

− Δc A
c
0(xc) = ρ(xc), (82)

which is the same as in the flat case. Thus, we may write the
well-known solution

Ac
0(xc) = 1

4π

∫

d3x ′
c

ρ(x′
c)

∣
∣xc − x′

c

∣
∣
, (83)

that holds in the conformal frame. Furthermore, we derive
the scalar potential in the physical frame of O , resorting to
the transformation (75) that yields

A0(t, x) = 1

4π

∫

d3x ′ ρ(x′)
|x − a(t)x′| , (84)

where x′ = x′
c is the original variable of integration at the

time t0.
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The field strength derived from Eqs. (77) and (78) is then
formed by the electric field

E(t, x) = −∇A0(t, x) = 1

4π

∫

d3x ′ρ(x′) x − a(t)x′

|x − a(t)x′|3 ,

(85)

and the induced magnetic field (80) that now reads

H(t, x) = − ȧ(t)

4π

∫

d3x ′ρ(x′) x ∧ x′

|x − a(t)x′|3 . (86)

The conclusion is that a static system of electric charges in
a space-time (M, a) produces time-dependent electric and
magnetic fields simultaneously. In terms of the equivalent
electrodynamics in flat media, this is a magnetoelectric effect
due to the non-diagonal metric of the physical frames giving
rise to a magnetoelectric susceptibility.

4 Quantum Maxwell field

The specific feature of the second quantization in general
relativity is that for the massive fields on some backgrounds,
such as the de Sitter expanding universe, one can define many
vacua that may be involved in the mechanisms of the cosmo-
logical particle creation [23]. Fortunately, in the conformal
frames of the FLRW space-times, one can take over from
special relativity the method of canonical quantization of the
Maxwell field, ensuring the uniqueness of the vacuum state.
Thus, the first canonical quantization of this field was per-
formed in the co-moving frames with spherical coordinates
of the FLRW space-times by using the total angular momen-
tum basis [3]. However, in spatially flat space-times (M, a)

we have the opportunity to use the momentum-helicity basis
of the Maxwell field in Coulomb gauge [16,17], where the
non-physical components of the electromagnetic potential
are eliminated naturally without resorting to special artifices
such as the Gupta–Blauler one [32,33]. In this gauge we per-
formed the canonical quantization of the Maxwell field in
the de Sitter expanding universe [10], postulating the com-
mutation relations in the momentum-helicity basis. Here we
would like to generalize this procedure to the space-times
(M, a), outlining the new specific features.

4.1 Momentum-helicity basis

In the conformal frame {tc, xc}O of the observer O , the poten-
tial Ac in the Coulomb gauge (67) is a solutions of Eq. (68).
Bearing in mind that in the associated physical frame {t, x}O
the space coordinates are no longer homogeneous as in the
flat case, we need to specify where and when the solution is
created. Therefore, we explicitly introduce the initial condi-

tions xc0 = (tc0, xc0) in the form of these solutions,

Ac
i (xc − xc0) = Ac (+)

i (xc − xc0) + Ac (−)
i (xc − xc0)

=
∫

d3k
∑

λ

[

ei (nk, λ) f̂k(xc − xc0)â(k, λ)

+[ei (nk, λ) f̂k(xc − xc0)]∗â∗(k, λ)
]

, (87)

expressed in terms of wave functions in momentum repre-
sentation, â(k, λ), polarization vectors, ei (nk, λ), and funda-
mental solutions,

f̂k(xc − xc0) = 1

(2π)3/2

1√
2k

e−ik(tc−tc0)+ik·(xc−xc0), (88)

where k = knk is the momentum vector, with k = |k|. What
is new here is the phase

δ(k) = ktc0 − k · xc0, (89)

encapsulating the initial condition, which is neglected in the
Minkowski space-time because of its homogeneity, i.e. the
invariance under time and space translations. We must spec-
ify that in the space-times (M, a), the initial condition has
physical consequences, as we have shown recently in the case
of the de Sitter expanding universe [12].

Another advantage of explicitly introducing the initial
condition is that we can study how the flat limit can be reached
correctly. Indeed, by writing the phase of the function (88),

−k(tc − tc0) + k · (xc − xc0)

= −k
∫ t

t0

dt

a(t)
+ k ·

[
x

a(t)
− x0

a(t0)

]

= 1

a(t0)
[−k(t − t0) + k · (x − x0)] + O(ȧ(t0)), (90)

in a neighbourhood of the physical initial condition x0 =
(t0, x0), we understand that we may reach the correct flat
limit when a → 1, ȧ → 0, · · · only if the initial time t0 is
chosen such that a(t0) = 1. This condition does not restrict
the generality, as the scale factor is defined up to the scaling
(15) for which we can at any time take σ = a(t0).

To avoid some difficulties related to the presence of the
phase (89), it is convenient to redefine

fk(xc) = e−iδ(k) f̂k(xc − xc0)

= 1

(2π)3/2

1√
2k

e−iktc+ik·xc , (91)

a(k, λ) = eiδ(k)â(k, λ), (92)

by substituting f̂k(xc)â(k, λ) = fk(xc)a(k, λ) in Eq. (87)
and denoting simply Ac(xc − xc0) = Ac(xc).

The functions fk(x) are assumed to be of positive frequen-
cies, while those of negative frequencies are fk(x)∗. These
solutions satisfy the orthonormalization relations [10]

( fk, fk′) = − ( f ∗
k , f ∗

k′
) = δ3(k − k′), ) (93)
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(

fk, f ∗
k′
) = 0, (94)

and the completeness condition

i
∫

d3k f ∗
k (tc, xc)

↔
∂tc fk(tc, x′) = δ3(xc − x′

c) (95)

with respect to the Hermitian form (74).
The polarization vectors e(nk, λ) in the Coulomb gauge

must be orthogonal to the momentum direction,

k · e(nk, λ) = 0, (96)

for any polarization λ = ±1. We remind the reader that the
polarization can be defined in different manners independent
of the form of the scalar solutions fk. In general, the polariza-
tion vectors have c-number components which must satisfy
[17]

e(nk, λ) · e(nk, λ′)∗ = δλλ′ , (97)
∑

λ

ei (nk, λ) e j (nk, λ)∗ = δi j − ki k j

k2 . (98)

In general, we consider the circular polarization for which
the supplementary conditions e(nk, λ)∗ ∧ e(nk, λ) = iλnk
and ink ∧ e(nk, λ) = λe(nk, λ) are fulfilled.

We thus obtained the mode expansion of the electromag-
netic potential in terms of transverse plane waves of given
momentum and helicity that form the momentum-helicity
basis. The functions

wi(k,λ) = ei (nk, λ) fk (99)

are of positive frequencies, while those of negative frequen-
cies are their complex conjugated, w∗

i(k,λ).

4.2 Quantization and propagators

The Coulomb gauge in the conformal frame considered
above is just the framework we need for performing the quan-
tization in a canonical manner as in special relativity [10].
We assume that the potential (87) and the wave functions a
become field operators, Ac → Ac = (Ac)†, a → a and
a∗ → a†. As in the flat case, we postulate the commutation
relations in the momentum representation from which the
non-vanishing ones are [10]

[a(k, λ), a†(k ′, λ′)] = δλλ′δ3(k − k ′) . (100)

Then we verify that the field Ac is quantized according to
the canonical rule
[

Ac
i (tc, xc), π

j
c (tc, x′

c)
]

=
[

Ac
i (tc, xc), ∂tcAc

j (tc, x
′
c)
]

= i δtri j (xc − x′
c), (101)

where the operator

π
j
c = √

g
δL(Ac)

δ(∂tcAc
j )

= ∂tcAc
j (102)

is the momentum density in the Coulomb gauge, while

δtri j (xc) = 1

(2π)3

∫

d3q

(

δi j − qiq j

q2

)

eiq·xc (103)

is the well-known transverse δ-function [17] arising from Eq.
(98). Under such circumstances, we may assume that there
exists a unique vacuum state |0〉 of the Fock space such that

a(k, λ) |0〉 = 0, 〈0| a†(k, λ) = 0 . (104)

The sectors with a given number of particles have to be con-
structed using the standard methods, thereby obtaining the
generalized momentum-helicity basis.

In conformal frames, we may look for the Green functions
related to the partial commutator functions (of positive or
negative frequencies) defined as

Dc (±)
i j (xc − x ′

c) = −i[Ac (±)
i (x),Ac (±) †

j (x ′)] (105)

while the total one reads Dc
i j = Dc (+)

i j + Dc (−)
i j . These func-

tions are solutions of the field equation in both sets of vari-
ables and obey [Dc (±)

i j ]∗ = Dc (∓)
i j such that Dc

i j results in a
real function. Thus it is enough to focus only on the functions
of positive frequencies [10],

i Dc (+)
i j (xc − x ′

c) =
∫

d3k fk(xc) fk(x
′
c)

∗
(

δi j − ki k j

k2

)

= 1

(2π)3

∫
d3k

2k

(

δi j − ki k j

k2

)

eik·(xc−x′
c)−ik(tc−t ′c),

(106)

which have the same form and properties as in the flat case.
For example, at equal time we have

∂tc D
c (+)
i j (tc − t ′c, xc − x′

c)

∣
∣
∣
t ′c=tc

= −1

2
δtri j (xc − x′

c) . (107)

Using the above functions defined in conformal frames,
we can construct different transverse Green functions,
Gc

i j (x) = Gc
ji (x), which are solutions of the Green equa-

tion,
(

∂2
tc − Δc

)

Gc
i j (xc − x ′

c) = −δ(tc − t ′c)δtri j (xc − x′
c) , (108)

and satisfy ∂xic
Gc i ·

· j (xc) = 0. Of special interest are the
retarded (R), advanced (A) and Feynman (F) propagators
defined as [10]

Dc R
i j (xc − x ′

c) = θ(tc − t ′c)Dc
i j (xc − x ′

c) , (109)

Dc A
i j (xc − x ′

c) = −θ(t ′c − tc)D
c
i j (xc − x ′

c) , (110)

Dc F
i j (xc − x ′

c) = −i〈0|T [Ac
i (xc)Ac

j (x
′
c)] |0〉

= θ(tc − t ′c)D
c (+)
i j (xc−x ′

c)−θ(t ′c−tc)D
c (−)
i j (xc−x ′

c) .

(111)

It is not difficult to verify that all these functions satisfy Eq.
(108) if we use the identity ∂2

t [θ(t) f (t)] = δ(t)∂t f (t) and
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Eq. (107). We conclude that the quantization procedure in
conformal frames is similar to that applied in special rela-
tivity. The resulting Green functions depend only on four
variables, for which we may use the Fourier integral repre-
sentation in the complex k0-plane as in the usual QED in the
Minkowski space-time.

However, these properties do not hold in the physical
frames where the commutator and Green functions are no
longer functions of the differences between the coordinates
of the two points, depending on these coordinates separately.
For example, according to Eqs. (75) and (76), the commutator
functions

D(±)
i j (x, x ′) = −i[A(±)

i (x),A(±) †
j (x ′)] (112)

take the form

D00(x, x
′) = ȧ(t)ȧ(t ′)

a(t)2a(t ′)2 x
i x j Dc

i j (x, x
′), (113)

D0 j (x, x
′) = − ȧ(t)

a(t)2a(t ′)
xi Dc

i j (x, x
′), (114)

Dj0(x, x
′) = − ȧ(t ′)

a(t)a(t ′)2 x
i Dc

ji (x, x
′), (115)

Di j (x, x
′) = 1

a(t)2a(t ′)2 D
c
i j (x, x

′), (116)

which hold for any function Dc (±)
i j or Dc

i j defined above, in
which we substitute the physical coordinates as

Dc
i j (x, x

′) = Dc
i j

(

tc(t) − tc(t
′), x

a(t)
− x ′

a(t ′)

)

. (117)

These functions give rise to Green functions which do not
have Fourier integral representations. Therefore, for calcu-
lating Feynman diagrams, we have to use the simpler formal-
ism in conformal frames, resorting to the physical ones only
for interpreting the final results.

4.3 One-particle operators

After quantization, we can define the one-particle operators
corresponding to the Killing vectors generating the conserved
quantities (55). The constants Ca become the one-particle
operators,

Xa = 1

2
δi j :

(

Ac
i , (XaAc

j )
)

: ∀Xa ∈ e(3), (118)

calculated respecting the normal ordering of the operator
products [16,17]. These operators have the usual algebraic
properties
[

Xa,Ac
i (xc)

] = −(XaAc)i (xc), (119)

[Xa,Xa′ ] = 1

2
δi j : (Ac

i , ([Xa, Xa′ ]Ac) j
)

, (120)

resulting from their definitions under the canonical quanti-
zation adopted here.

The principal conserved one-particle operators are the
components of momentum operator,

Pl=1

2
δi j :

(

Ac
i , (P̂

lAc) j

)

: =
∫

d3k kl
∑

λ

a†(k, λ)a(k, λ),

(121)

and the Pauli–Lubanski operator,

W=1

2
δi j :

(

Ac
i , (ŴAc) j

)

: =
∫

d3k k
∑

λ

λ a†(k, λ)a(k, λ),

(122)

which form the complete system of commuting operators
{P i ,W} determining the momentum-helicity basis of the
Fock space. The components of the total angular momentum,
Ji , have more complicated mode expansions that we do not
present here, since these are not involved in the applications
we discuss below.

Other conserved one-particle operators can be defined giv-
ing their mode expansion directly as in the simplest case of
the operator of number of particles,

N =
∫

d3k
∑

λ

a†(k, λ)a(k, λ), (123)

or the conserved scalar momentum

P =
∫

d3k k
∑

λ

a†(k, λ)a(k, λ), (124)

which commute with P i , Ji and W .
The conserved one-particle operators derived above are

independent on the frame we use such that we have the
opportunity to derive them in the conformal frame where
the calculations are simpler. However, other observables that
may depend on time and space coordinates must be consid-
ered only in the associated physical frame. For example, Eqs.
(75) and (76) help us to derive the field operators Aμ giving
the field strength operators

Fαβ = Fαβ† = gαμgβν
(

∂μAν − ∂νAμ

)

, (125)

and of the conserved stress-energy operator

T μν =: Fμ ··α Fαν + 1

4
gμνFαβFαβ, (126)

which must be calculated respecting the normal ordering of
operator products [16]. All these operators are now physical
observables for which we can derive the expectation values
and dispersions in concrete applications.

We now have the field and one-particle operators we need
for building our quantum theory, but some important oper-
ators are missing, such as for example the energy operator.
This is because the energy is not conserved in the manifolds
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(M, a) apart from the particular case of the de Sitter expand-
ing universe [12]. Under such circumstances, the solution is
to introduce an ad hoc energy operator based only on the cor-
respondence principle applied to the energy (29) and peculiar
momentum (32). We thus define the time-dependent energy,
H(t), and peculiar momentum, Ki (t), operators as

H(t) = 1

a(t)
P, (127)

Ki (t) = 1

a(t)
P i , (128)

where P and P i are the conserved one-particle operators
defined by Eqs. (124) and (121), respectively. A difficult task
could be to relate this energy operator to the components of
the stress-energy operator (126) and a suitable vector field V
such that

H(t) = −
∫

d3xT (x)0νVν(x) . (129)

Note that in the case of the de Sitter space-time, the operator
H(t) is different from that of conserved energy, HdS , which
does not commute withP andP i . These two energy operators
coincide, H(t0) = HdS , only in the observer’s origin at the
time t0 when a(t0) = 1 [12].

5 Propagation

We now have all the elements we need to study the propa-
gation of the photons in the space-times (M, a), where we
revisit the problem of two observers, presented in Sec. (2.3),
to analyse how a quantum beam can be prepared by the
observer O ′ and then detected by O . As we proceeded in
the de Sitter case [13], we start our study in the conformal
frames of these observers, {t ′c, x′

c}O ′ and {tc, xc}O , respec-
tively, where the calculations are simpler, but finally we anal-
yse how the detected photon is measured by O in its physi-
cal frame {t, x}O . We simplify the geometry by choosing the
space axes of these frames parallel to the orthonormal frame
{e1, e2, e3} such that n = e3 gives the direction O ′O .

5.1 Prepared wave packet

Following the method of Ref. [12], we consider the simple
model of the one-particle wave packet produced by the one-
particle states,

|α〉 =
∫

d3k
∑

λ

αλ(k) a†(k, λ)|0〉 (130)

defined by the square integrable functions in momentum rep-
resentation αλ(k) which must satisfy the normalization con-

dition

〈α|α〉 =
∫

d3k
∑

λ

|αλ(k)|2 = 1 . (131)

Bearing in mind the dependence of the plane waves on the
initial conditions, we chose functions of the form

αλ(k) = eiδ(k)α̂λ(k), (132)

where δ(k) is the phase (89) while α̂λ = α̂∗
λ are real-valued

functions. The corresponding ‘wave functions’ in Coulomb
gauge

Ac
i (xc) = 〈0|Ac

i (xc)|α〉 =
∫

d3k
∑

λ

ei (nk, λ) fk(xc)αλ(k)

(133)

define the normalized wave packets whose norm,

||Ac||2 = δi j

(

Ac
i , A

c
j

)

=
∫

d3k
∑

λ

|αλ(k)|2 = 1, (134)

results from Eqs. (93) and (94). Note that the components Ac
i

are now complex-valued functions which have to be manip-
ulated carefully in order to lead to real-valued physical quan-
tities.

Another advantage of this model is that the expectation
values in the state |α〉 of the operators having the form (118)
can be calculated simply by using the identity

〈α|X |α〉 = δi j

(

Ac
i , X Ac

j

)

. (135)

For the other operators which do not have this form, such
as for example N and P , we have to use the algebra of the
field operators. Thus we obtain the following expectation
values for the operators which are diagonal in the momentum-
helicity basis,

〈α|(P i )n|α〉 = δi j

(

Ac
i , (P̂

i )n Ac
j

)

=
∫

d3k(ki )n
∑

λ

α̂λ(k)2, (136)

〈α|Wn|α〉 = δi j

(

Ac
i , Ŵ

n Ac
j

)

=
∫

d3k
∑

λ

λnα̂λ(k)2, (137)

while for the energy operator we directly calculate

〈α|H(t)n|α〉 = 1

a(t)n

∫

d3k kn
∑

λ

α̂λ(k)2 . (138)

All these expressions will help us to derive the expectation
values (135) and the dispersions of the principal observables,
X , according to the well-known rule [15]

dispX = ΔX2 = 〈α|X 2|α〉 − 〈α|X |α〉2, (139)

123



Eur. Phys. J. C           (2021) 81:908 Page 13 of 20   908 

that will be used in evaluating the accuracy of the measure-
ments.

We now assume that the observer O ′ prepares the state |α〉
in its proper co-moving frame {tc, x′

c}O ′ at the initial time

t0 → tc0 = tc(t0), (140)

when a(t0) = 1, and consequently the conformal and physi-
cal space coordinates coincide. Then the principal parameters
measured by O ′ are the expectation values of energy, E ′,
momentum components, P ′ i , and polarization, W ′. These
quantities can be calculated by using the above identities,
taking into account that now the packet is defined in O ′ by
the functions (132) with the phase

x′
c0 = 0 → δ′(k) = ktc0 . (141)

Therefore, we may write the prepared wave packet as

Ac ′
i (xc) = 1

(2π)3/2

∫
d3k√

2k
e−ik(tc−tc0)+ik·xc ∑

λ

ei (nk , λ)α̂λ(k) .

(142)

The expectation value of the energy is E ′ = P ′, since a(t0) =
1, while the expectation values of the other observables have
to be calculated by using Eqs. (136), (137) and (138) for
n = 1. The dispersions can be derived by using the same
identities (with n=2) and the definition (139). We observe
that in the conformal frame of O ′, all these expectation values
and dispersions have the same forms as in Minkowski space-
time.

In applications, it is convenient to introduce the polariza-
tion angle σ(k) substituting

α̂λ=1(k) = α̂(k) cos σ(nk), (143)

α̂λ=−1(k) = α̂(k) sin σ(nk), (144)

since then we can use identities as
∑

λ

α̂λ(k)2 = α̂(k)2,

∑

λ

λ α̂λ(k)2 = α̂(k)2 cos 2σ(nk),

. . . (145)

taking into account that the new real-valued function α̂(k) is
normalized,
∫

d3k α̂(k)2 = 1 . (146)

Thus we can say that any wave packet is determined by two
scalar functions α̂(k) and σ(nk).

In general, when α̂(k) is an arbitrary function of k, we say
that the packet is anisotropic. In the special case when this
function has spherical symmetry, α̂(k) = α̂(k), we have an
isotropic packet for which it is convenient to use the spherical
coordinates in momentum space, (k, θ, φ), corresponding to

the Cartesian ones, (k1, k2, k3). The principal property of
the isotropic packets is that the expectation values of the
momentum components vanish such that the only relevant
quantity remains the radial momentum, whose expectation
value reads

P ′ = E ′ = 4π

∫ ∞

0
dk k3α̂(k)2 . (147)

Note that P ′ may not be confused with the norm of the
vector formed by the expectation values of the momentum
components, (P ′ 1, P ′ 2, P ′ 3), as in the isotropic case these
vanish. In this approach, the polarization remains arbitrary,
σ(nk) = σ(θ, φ), such that

W ′ = 1

4π

∫

S2
dΩ cos 2σ(θ, φ), (148)

where dΩ = d(cos θ)dφ is the measure on the sphere S2.

5.2 Detected wave packet

Once the wave packet is prepared, this evolves causally
until an ideal apparatus measures some of its parameters.
In what follows we consider a similar experiment as in Ref.
[12], assuming that the apparatus selects only the momenta
included in a desired domain Δ ⊂ R

3
k . For this setting, we

must use a suitable projection operator ΛΔ = Λ
†
Δ (satisfying

Λ2
Δ = ΛΔ) that can be represented as

ΛΔ = |0〉〈0| +
∫

Δ

d3k
∑

λ

a†(k, λ) |0〉〈0| a(k, λ) + · · · ,

(149)

where the integral is restricted to the domain Δ. During the
experiment, this operator filters only the momenta k ∈ Δ,
transforming the state of the system as |α〉 → ΛΔ|α〉 and
giving the new wave packet

〈0|ΛΔAc
i (xc)|α〉 =

∫

Δ

d3k
∑

λ

ei (nk, λ) fk(xc)αλ(k) . (150)

In general, the new state ΛΔ|α〉 is no longer normalized,
such that we must redefine the expectation value 〈X 〉 of a
one-particle operator X as [15]

〈X 〉 = 〈α|ΛΔX |α〉
〈α|ΛΔ|α〉 , (151)

taking into account that our one-particle operators commute
with ΛΔ. The quantity

〈α|ΛΔ|α〉 =
∫

Δ

d3k
∑

λ

|αλ(k)|2 ≤ 1, (152)

gives the probability PΔ = |〈α|ΛΔ|α〉|2 of measuring any
momentum k ∈ Δ. Obviously, when we can measure the
whole continuous spectrum, Δ = R

3
k , then ΛΔ → 1, PΔ = 1

and 〈X 〉 = 〈α|X |α〉.
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The detector of O must select only the photons coming
from the source O ′ whose momenta are parallel to e3. This
means that the domain of momenta measured by O is [12]

Δ=
{

k

∣
∣
∣
∣
−Δk

2
≤ k1 ≤ Δk

2
, − Δk

2
≤k2≤Δk

2
, k3 > 0

}

(153)

where Δk is a small quantity. Then we may evaluate the
integrals over Δ as

∫

Δ

d3kF(k) =
∫ Δk

2

− Δk
2

dk1
∫ Δk

2

− Δk
2

dk2
∫ 0

−∞
dk3F(k1, k2, k3)

� (Δk)2
∫ ∞

0
dkF(0, 0, k), (154)

according to the mean value theorem. Thus we can calculate
the quantity

〈α|ΛΔ|α〉 =
∫

Δ

d3k
∑

λ

α̂λ(k)2 = (Δk)2κ, (155)

where

κ =
∫ ∞

0
dk
∑

λ

α̂λ(0, 0, k)2 . (156)

Furthermore, we observe that the new wave packet (150)
behaves as an one-dimensional packet that can be redefined
as [12]

Ac
i (xc) = 1√

κ

∫ ∞

0
dk
∑

λ

ei (λ) f̃k(x
3
c )e

iδ(k)α̂λ(0, 0, k)

(157)

where the new functions

f̃k(x
3
c ) = 1√

2π

1√
2k

e−iktc+ikx3
c , (158)

are orthonormal with respect to the new Hermitian form

(

f̃ ; g̃
)

= i
∫

dx3
c f̃ ∗(tc, x3

c )
↔
∂tc g̃(tc, x

3
c ) . (159)

In our experiment, we select only the momenta oriented along
e3 such that the polarizations vectors e (±1) = 1√

2
(e1 ± ie2)

are in the plane {e1, e2}. As the functions here α̂λ are those
of Eq. (142), we may use the substitutions (143) and (144)
that now read

α̂λ=1(0, 0, k) = α̂(0, 0, k) cos σ, (160)

α̂λ=−1(0, 0, k) = α̂(0, 0, k) sin σ, (161)

where the function α̂ satisfies
∫ ∞

0
dk α̂(0, 0, k)2 = κ (162)

as results from Eq. (156). Now, σ = σ(e3) denotes the con-
stant polarization angle of the direction e3 giving the polar-
ization unit vector

e(σ ) = e(1) cos σ + e(−1) sin σ . (163)

On the other hand, for the states measured in O , we must
consider the translated phase

δ(k) = k tc0 + k · d, (164)

arriving at the final form of the potential of the one-
dimensional packet

Ac
i (tc, x

3
c ) = ei (σ )A(X), X = tc − tc0 − x3

c − d, (165)

having the fixed direction along the unit vector e(σ ) and
depending on the amplitude [12]

A(X) = 1√
2πκ

∫ ∞

0

dk√
2k

e−ikX α̂(0, 0, k) ∈ C, (166)

which encapsulates the principal integral we have to solve to
study the propagation.

5.3 Measurements in physical frames

First of all, the observer O records the expectation values and
dispersions of the principal conserved observables which are
the components of momentum, angular momentum and the
Pauli–Lubanski operator. For both the observers situated on
the null geodesic, the angular momentum vanishes such that
O remains with the expectation values and dispersions of the
momentum components,

P3 = P = 1

κ

∫ ∞

0
dk k α̂(0, 0, k)2, P1 = P2 = 0, (167)

disp P = 1

κ

∫ ∞

0
dk k2 α̂(0, 0, k)2 − P2, (168)

and the similar quantities of the Pauli–Lubanski operator,

W = cos 2σ, disp W = sin2 2σ . (169)

For the energy operators we have to use the identity (138)
that depends explicitly on time. Thus the expectation value
of the emitted photon is Ei = P since a(t0) = 1. To find
the final energy of the detected photon, E f = a(t f )−1P , we
need to know the time t f when the photon is detected in O .
We showed in Sec. (2.3) that t f can be derived by solving
Eq. (41). Moreover, this is related to the redshift,

a(t f ) = 1 + z, (170)

resulted from Eq (43) for a(t0) = 1.
Apart from the conserved quantities, O can measure the

parameters of the electromagnetic field in its proper physical
frame, {t, x}O . As the potentials cannot be measured directly,
we must look for relevant quantities such as the wave inten-
sity or the density of energy which must now be derived in
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this frame. For simplicity, we consider the plane polarization
fixing the polarization angle [13]

σ(e3) = π

4
→ e(σ ) = e1, (171)

so that we remain only with the component Ac
1 of the potential

(165). In the physical frame, this generates the components
(75) and (76) that now read

A0(t, x) = ∂xic
∂t

Ac
i (tc, x

3
c ) = − ȧ(t)

a(t)2 x
1A(X) ,

A1(t, x) = ∂xic
∂x1 A

c
i (tc, x

3
c ) = 1

a(t)
A(X) ,

A2(t, x) = A3(t, x) = 0 , (172)

where A is the amplitude (166) depending on the new variable

X = tc(t) − tc(t0) − x3

a(t)
− d , (173)

obtained from Eq. (165) after the substitution (9). These
potentials satisfy the Maxwell equation and the Lorenz con-
dition in the frame {t, x}O where the field strength, Fμν , has
the components

F = 1

a(t)2 ∂X A(X)

⎛

⎜
⎜
⎜
⎝

0 −1 0 0
1 0 ȧ(t)

a(t) x
2 p

0 − ȧ(t)
a(t) x

2 0 0
0 −p 0 0

⎞

⎟
⎟
⎟
⎠

, (174)

written with the notation p = 1 + ȧ(t)
a(t) x

3. The stress-energy
tensor must be redefined as

Tμν = Fμ·α
∗Fαν − 1

4
gμνFβ·α

∗
Fα·β , (175)

as now we work with the complex-valued amplitude A(X).
We find that this has the components

T = 1

a(t)4 |∂X A(X)|2

×

⎛

⎜
⎜
⎜
⎜
⎝

1 ȧ(t)
a(t) x

1 ȧ(t)
a(t) x

2 p
ȧ(t)
a(t) x

1 ȧ(t)2

a(t)2 (x1)2 ȧ(t)2

a(t)2 x
1x2 ȧ(t)

a(t) x
1 p

ȧ(t)
a(t) x

2 ȧ(t)2

a(t)2 x
1x2 ȧ(t)2

a(t)2 (x2)2 ȧ(t)
a(t) x

2 p

p ȧ(t)
a(t) x

1 p ȧ(t)
a(t) x

2 p p2

⎞

⎟
⎟
⎟
⎟
⎠

. (176)

It is not difficult to verify that this satisfies the conservation
rule ∇μTμν = 0.

To study the propagation of our wave packet, we follow
the method of Ref. [13], focusing on the intensity which
coincides with the density of energy,

I (t, x) = δi j F
0i ∗F0 j ≡ T 00 , (177)

introducing the factorization

I (t, x) = 1

a(t)4 I0(X) , I0(X) = |∂X A(X)|2 , (178)

and re-denoting more simply, x3 → x . Thus we separate
the factor a(t)−4 from the function I0(X) depending only on
the amplitude (166). In Ref. [13] we showed that if we con-
struct this amplitude by using only positive definite test func-
tions α(k), then we have |∂X A(X)| ≤ |∂X A(X)|X=0. Con-
sequently, the function I0(t, x) has an absolute (or global)
maximum Im(t) in the point

xm(t) = a(t) [tc(t) − tc(t0) − d] , (179)

where X = 0. Remarkably, this is just the null geodesic (37)
passing through O ′ and O . Once the wave packet is prepared
at the time t0 in the point xm(t0) = −d, its maximum prop-
agates on this geodesic, with the velocity (44), arriving with
the velocity v(t f ) = 1 in O (where xm(t f ) = 0) at the time
t f .

In expanding space-times (M, a), the factor a(t)−4 pro-
duces the decay of the maximum intensity from Im(0) =
I0(0) up to

Im(t f ) = I0(0)

a(t f )4 = I0(0)

(1 + z)4 , (180)

as results from Eq. (170). Thus we may estimate the emitted
maximum intensity, Im(0), in terms of the measured max-
imum intensity, Im(t f ), and redshift. Similarly, we deduce
the distance O ′O at the moment t f ,

d(t f ) = da(t f ) = (1 + z) d , (181)

as predicted by Lemaître’s equation [29].
The space dispersion of the wave packet, δx(t), measures

the width of the function I (t, X) at a given time. This depends
on the width δX of the function I0(X) that is a constant quan-
tity depending on the profile of this function. Then, according
to Eq. (173), we deduce that the physical dispersion,

δx(t) = δXa(t) , (182)

increases from δx(t0) = δX up to δx(t f ) = (1 + z)δX .
Thus we have completely described the propagation of

the detected wave packets in the proper physical frame of
O , pointing out their principal features, acceleration, decay
and dispersion that cannot be observed in the Minkowski flat
space-time. As was expected, these results are similar to those
derived for the de Sitter expanding universe [13], which is a
particular case of space-time (M, a)

6 Horizon effect

In Ref. [13] we studied the horizon effects as recorded by the
observer O in its proper physical frame where the event and
apparent horizons of this geometry are static and coincide.
We have seen that only the packets prepared inside this com-
mon horizon may be detected by the observer O , while those
prepared on or beyond it never arrive in O , as was expected
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according to the general theory of the event horizons [30,31].
In other respects, we outlined in section (2.3) the effect pro-
duced by the dynamical apparent horizon which seems to be
more interesting. Now we have the opportunity to analyse
the horizon effects in concrete spatially flat FLRW space-
times where the dynamical apparent and event horizons do
not overlap each other as in the de Sitter case.

6.1 Isotropic wave packet

To test the horizon effects, we consider a simple isotropic
wave packet for which it is convenient to use spherical coor-
dinates in momentum space, k = (k, θ, φ). We assume that
at the initial moment t0 when a(t0) = 1, the observer O ′ pre-
pares the wave packet in x0 = −d, defining the real-valued
wave function in momentum representation (132) as

α̂(k) = (2γ )γ k̄

2
√

π�(2γ k̄)
kγ k̄− 3

2 e−γ k , γ, k̄ > 0 , (183)

and keeping the plane polarization (171). This function is
normalized,
∫

d3kα̂(k)2 = 4π

∫ ∞

0
dk k2 α̂(k)2 = 1 , (184)

depending on the free parameter γ and the expectation value
of the radial momentum

P ′ = 4π

∫ ∞

0
dk k3 α̂(k)2 = k̄ , (185)

whose dispersion can be derived simply as

dispP ′ = 4π

∫ ∞

0
dk k4 α̂(k)2 − k̄2 = k̄

2γ
. (186)

The observer O measures the one-dimensional packet
which must be re-normalized by using the constant

κ =
∫ ∞

0
dk α̂(k)2 = γ 2

2π(γ k̄ − 1)(2γ k̄ − 1)
. (187)

This helps us to derive the expectation value of the momen-
tum along the third axis

P3 = P = 1

κ

∫ ∞

0
dk k α̂(k)2 = k̄ − 1

γ
= P ′ − 1

γ
, (188)

and its dispersion

dispP = 1

κ

∫ ∞

0
dk k2 α̂(k)2 − k̄2 = k̄

2γ
− 1

2γ 2

= dispP ′ − 1

2γ 2 , (189)

as observed by O .

Fig. 1 Propagation of the wave packet with γ = 0.1 and k̄ = 1000 in
the space-time with s = 0.3 and ra(t0) = 1

3 . The packet is prepared in
O ′ at the time t0 = 0.1 and d = 0.3 < ra(t0) and measured in O at the
time t f = 0.5034. We plot eight consecutive profiles of the maximum
intensity I (t, x) between t0 and t f at equal time intervals, Δt = 0.0576

The amplitude in the physical frame of the observer O is
given by Eq. (166) as

AL(X) = 2γ k̄−2

√

(2γ k̄ − 2)(2γ k̄ − 1)

π�(2γ k̄)

×�(γ k̄ − 1)

(
γ

γ + i X

)γ k̄−1

. (190)

With this amplitude we construct the intensity (178),

I0(X) = |∂X AL(X)|2 = I0

(
γ 2

γ 2 + X2

)γ k̄

(191)

where we denote

I0 = I0(0) = 22γ k̄−4 (2γ k̄ − 2)(2γ k̄ − 1)

πγ 2�(2γ k̄)
�(γ k̄)2 . (192)

The intensity (191) is the power of a genuine Cauchy–Lorentz
distribution whose width,

δX = 2γ

√

2γ k̄ − 1 , (193)

determines the dispersion (182).

6.2 Expanding space-times

In what follows we consider, as examples, the expanding
space-times (M, a) with dynamical apparent horizons having
scale factors of the form a(t) ∝ t s with any s > 0 [30]. It
is known that these space-times are generated by the density
and pressure

σ = 3

8π

s2

t2 , p = − 1

8π

s (3s − 2)

t2 , (194)

that are singular in t = 0 such that we must restrict the time
domain to t > 0. The important particular cases studied in

123



Eur. Phys. J. C           (2021) 81:908 Page 17 of 20   908 

Fig. 2 Profile of the null geodesic xm(t) of the maximum intensity
of the wave packet with γ = 0.1 and k̄ = 1000 in the space-time
with s = 0.3, and ra(t0) = 1

3 . The packet is prepared in O ′ at the
time t0 = 0.1 and d = 1 > re(t0) and measured in O at the time
t f = 1.9504. The maximum intensity stops in xstop = −1.164 at the
time tstop = 0.3492

cosmology are the radiation-dominant (s = 1
2 ) or matter-

dominant (s = 2
3 ) universes. Nevertheless, here we consider

all the space-times with s > 0 to point out the effect of the
apparent horizons when an event horizon may or may not be
present.

The scale factors of these space-times can be rescaled
according to Eq. (15) as

a(t) =
(
t

t0

)s

,
ȧ(t)

a(t)
= s

t
, ra(t) = t

s
, va = 1

s
, (195)

obtaining the Hubble function and the apparent horizon of
the observer O in its proper physical frame. This horizon is
a sphere of radius ra(t) expanding with the constant velocity
va . Looking then for event horizons, we observe that the
integral (46) diverges for s ≤ 1 such that there are no event
horizons. However, for s > 1, there exist event horizons at
any time t > 0 on the spheres of radius [30]

re(t) =
∫ ∞

t
dt ′ t

s

t ′ s
= t

s − 1
, ve = 1

s − 1
, (196)

resulted from from Eq. (46). Therefore, in this case the
observer O has at the time t the apparent horizon (195) and, in
addition, a dynamical event horizon at re(t) > ra(t) expand-
ing with constant velocity ve > va .

To study the principal kinetic quantities, it is convenient
to introduce the notation d = δ t0. Then we consider the
space-times with s 
= 1 for which we solve Eq. (41), finding
the final time and redshift,

t f = t0 [1 + δ(1 − s)]
1

1−s , (197)

1 + z = a(t f ) = [1 + δ(1 − s)]
s

1−s . (198)

The wave packet depends on geometry only through the vari-
able (179) that now can be written for all the models with

Fig. 3 Propagation of the wave packet with γ = 0.1 and k̄ = 1000
in the space-time with s = 0.3 and ra(t0) = 1

3 . The packet is prepared
in O ′ at the time t0 = 0.1 and d = 1 > ra(t0) and measured in
O at the time t f = 1.9504. We plot eight consecutive profiles of the
maximum intensity I (t, x) (in logarithmic scale) between t0 and t f at
equal time intervals, Δt = 0.2643. The maximum intensity stops in
xstop = −1.1642 at the time tstop = 0.3492

s 
= 1 as

X (t, x) =
∫ t

t0

dt

a(t)
− x

a(t)
− d

=
(
t0
t

)s ( t

1 − s
− x

)

− t0
1 − s

− d , (199)

bearing in mind that −d ≤ x ≤ 0 is the space coordinate
of the geodesic O ′O and a(t0) = 1 → d(t0) = d. For
X (t, x) = 0, we obtain the null geodesic of the maximum
intensity

xm(t) = t

1 − s
−
(
t

t0

)s (

d + t0
1 − s

)

, (200)

which is singular in s = 1.
The space-time with s = 1 is called the Milne-type uni-

verse [34], since this is spatially flat, having sources as in Eq.
(194), in contrast to the genuine Milne one which is flat, with-
out sources, but with curved space sections [23]. In this case
Eqs. (199) and (200) are undefined so that we must replay
the procedure, finding

t f = t0e
δ , 1 + z = a(t f ) = eδ , (201)

and

X (t, x) = t0

(

ln
t

t0
− x

t
− δ

)

, (202)

xm(t) = t

(

ln
t

t0
− δ

)

. (203)

We can verify that the functions of s defined by Eqs. (197)
and (198) are continuous in s = 1, where their limits are
just the values given by Eq. (201). Therefore, these functions
are increasing monotonously with s such that t f > t0 and
z > 0 for any s > 0. The space-time with s = 0 is just the
Minkowski one for, which t f − t0 = d and z = 0. Note that
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Fig. 4 Profile of the null geodesic xm(t) of the maximum intensity of
the wave packet with γ = 0.001 and k̄ = 10000 in the space-time
with s = 3, ra(t0) = 0.0333 and re(t0) = 0.05. The packet is prepared
in O ′ at the time t0 = 0.1 and ra(t0) < d = 0.045 < re(t0) and
measured in O at the time t f = 0.3162. The maximum intensity stops
in xstop = −0.0608 at the time tstop = 0.1825

our parameters must comply with the condition 0 < t0 < t f
which determines the domain of the parameter δ as

s < 1 : 1 + δ(1 − s) > 1 → δ > 0 ,

s = 1 : eδ > 1 → δ > 0 ,

s > 1 : 0 ≤ 1 + δ(1 − s) < 1 → 0 < δ ≤ 1
s−1 ,

(204)

observing that the only restriction is given by the event hori-
zons arising for s > 1.

6.3 Graphical analysis

Now we may graphically analyse the time evolution of the
intensity (178) that now reads

I (t, x) =
(
t0
t

)4s

I0[X (t, x)] , (205)

where I0[X (t, x)] is the intensity (191) depending on the
variable (199). We chose the parameters of the wave packet in
order to obtain intuitive plottings in the whole space domain
−d ≤ x ≤ 0 even though these parameters then remain far
from their physical domains. For this reason we use arbitrary
units, avoiding the quantitative analysis.

We focus first on the space-times with s ≤ 1 in which
the observer O has only the apparent horizon (195). The
observer O ′ may prepare the wave packet at the initial time
t0 either inside or outside this horizon. When this is inside,
d < ra(t0), then the one-dimensional wave packet that has
to be measured by O starts in O ′ with the initial velocity 0 <

vm(t0) < 1 resulting from Eq. (45). The maximum intensity
propagates accelerating straightforward to O as in Fig. 1,
having a severe decay ( ∝ t−4s) and a moderate dispersion
(∝ t−s). The initial velocity is less than the speed of light
because of the background expansion dragging back the wave

Fig. 5 Propagation of the wave packet with γ = 0.001 and k̄ = 10000
in the space-time with s = 3, ra(t0) = 0.0333 and re(t0) = 0.05. The
packet is prepared in O ′ at the time t0 = 0.1 and ra(t0) < d = 0.045 <

re(t0) and measured in O at the time t f = 0.3162. We plot eight con-
secutive profiles of the maximum intensity I (t, x) (in logarithmic scale)
between t0 and t f at equal time intervals, Δt = 0.0308. The maximum
intensity stops in xstop = −0.0608 at the time tstop = 0.1825

packet. When the wave packet is prepared just on the apparent
horizon, d = ra(t0), then vm(t0) = 0, the maximum intensity
accelerating up to the speed of light detected by O .

More interesting is the case when O ′ prepares the packet
outside the apparent horizon of O , in the initial point x0 =
−d with d > ra(t0). Then from Eq. (45) we see that the initial
velocity, vm(t0) < 0, is oriented in the backward direction
because of a stronger dragging-back effect arising beyond
the apparent horizon. To illustrate how the maximum inten-
sity is propagating, we plot in Fig. 2 the function xm(t) of
its null geodesic. The maximum intensity moves in the back-
ward direction, being decelerated until this stops in the point
xstop at the time tstop when the apparent horizon reaches the
packet, |xm(tstop)| = ra(tstop). This is a turning point, since
for t > tstop, the packet remains inside the apparent horizon,
propagating accelerated in the forward direction, with decay
and dispersion as in Fig. 3, such that it is detected in O as
having the speed of light.

In the space-times with s > 1, the observer O has an
event horizon behind the apparent one such that we can test
the above effect assuming that the observer O ′ prepares the
packet outside the apparent horizon but inside the event one,
ra(t0) < d < re(t0). The function xm(t) plotted in Fig. 4 lays
out a turning point as in the previous case, determining a sim-
ilar motion of the maximum intensity, as shown in Fig. 5. In
other respects, we see that the presence of the event horizon
does not affect the behaviour of the wave packet inside it.
However, it would be interesting to see what happens when
the packet is prepared on or beyond the event horizon, as
we did in the case of the de Sitter space-time [13]. Unfor-
tunately, this is impossible to achieve here because of some
quantities that become complex-valued on and beyond the
event horizon.
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We thus remain with only the effect of the apparent horizon
in which the light seems to go back until it stops, turning then
to the forward direction. This horizon effect, due to the space-
time expansion dragging back the wave packet, depends on
the constant velocity va = 1

s of the apparent horizon. For
s < 1 this exceeds the speed of light, but for s > 1 it is less
than 1. This explains why the deceleration period, tstop − t0,
is much longer in the last case, as we can see comparing
Figs. 3 and 5, where this interval represents 0.13 and 0.38,
respectively, from the total propagation time.

We must specify that this horizon effect cannot be
observed by O during the causal propagation of the pho-
ton whose parameters may be measured only in x = 0 when
this is detected. Nevertheless, the observer can deduce indi-
rectly whether the packet is prepared inside or outside the
apparent horizon measuring the redshift. If at the initial time
the source was just on the apparent horizon, then Eq. (198)
yields the measured redshift

za = s
s

s−1 − 1 , (206)

depending only on the geometry. Therefore, if O measures
a redshift z < za , then the source was inside the apparent
horizon, while for z > za it was outside.

The conclusion is that, measuring the redshift, the observer
O may deduce the decay of the maximum intensity ∝
(1 + z)−4, the dispersion ∝ (1 + z) and the above hori-
zon effect. Obviously, in the flat case when z = 0, all these
effects disappear.

7 Concluding remarks

We presented the complete classical and quantum theory of
the Maxwell free field minimally coupled to the gravity of
the spatially flat FLRW space-times. The results derived here
are either generalizations of our previous ones we obtained
for the de Sitter expanding universe [10,12,13] or original
results we present here for the first time. These are the role of
the scaling (15) in the flat limit and canonical quantization,
the electrodynamics in physical frames, the electromagnetic
field generated by a system of static charges, the propagators
in physical frames and the horizon effect.

According to our general method, we performed the cal-
culations in conformal frames, transforming the results in the
physical ones where these obtain a physical meaning. Thus
we are faced with two different approaches, the familiar one
in conformal frames where we take over the results of special
relativity, and the new classical or quantum electrodynamics
in physical frames, which seems to be a new and different
world which deserves to be studied carefully.

Under such circumstances, a justified question is how we
can reveal this new phenomenology in further experiments
and observations. As mentioned, for studying the propaga-

tion, it is enough to know the geometry and redshift for
deducing the decay, dispersion and the relative position of
the source with respect to the apparent horizon. The acceler-
ation can be estimated theoretically but is never measurable,
as the observer measures only the final velocity, which is just
the speed of light.

The difficulties in acquiring empirical data arise when
we look for other effects as, for example, that which we
called here the geometric induction. Obviously, in our actual
expanding universe, all the local experiments confirm the
special relativistic classical or quantum electrodynamics
which is independent of gravity. This suggests that the above-
mentioned effect or other similar ones may be of interest
only in very strong gravitational fields such as those of the
inflationary epoch. For this reason, we believe that this new
electrodynamics must be developed in various cosmologi-
cal scenarios, analysing different processes for finding relic
effects that could be identified in the present astrophysical
observations.
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34. I.I. Cotăescu, D. Popescu, Chin. Phys. C 44, 055104 (2020)

123


	Maxwell field in spatially flat FLRW space-times
	Abstract 
	1 Introduction
	2 Light in spatially flat FLRW space-times
	2.1 Frames and conserved quantities
	2.2 Null geodesics
	2.3 Two observers problem

	3 Classical Maxwell field
	3.1 General framework
	3.2 Maxwell field in conformal and physical frames
	3.3 Geometric induction

	4 Quantum Maxwell field
	4.1 Momentum-helicity basis
	4.2 Quantization and propagators
	4.3 One-particle operators

	5 Propagation
	5.1 Prepared wave packet
	5.2 Detected wave packet
	5.3 Measurements in physical frames

	6 Horizon effect
	6.1 Isotropic wave packet
	6.2 Expanding space-times
	6.3 Graphical analysis

	7 Concluding remarks
	References




