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Abstract We investigate the motion of particles in the
spacetime of a Kerr black hole immersed in swirling uni-
verses. Using the Poincaré section, fast Lyapunov exponent
indicator, bifurcation diagram, and basins of attraction, we
present the effects of the swirling parameter and the spin
parameter on the dynamical behaviors of the motion of parti-
cles, and confirm the presence of chaos in the motion of par-
ticles in this background spacetime. We find that the swirling
parameter can change the range of the spin parameter where
the chaos occurs, and vice versa. Moreover, we observe
clearly that, regardless of the spin parameter, there exist some
self-similar fractal fine structures in the basins boundaries
of attractors for the spacetime of a black hole immersed in
swirling universes. The combination of the swirling param-
eter and the spin parameter provides richer physics in the
motion of particles.

1 Introduction

As an important nonlinear phenomenon, the chaos is a kind
of non-periodic motion with high sensitivity to initial condi-
tions. In the chaotic motion, the tiny differences in initial con-
ditions can grow rapidly at exponential rates and so a long-
term prediction to the motion is very difficult [1–4]. But the
chaos is ubiquitous in nature and chaotic systems possess a
lot of novel properties not shared by the linear dynamical sys-
tems. Thus, there have been accumulated interest to study the
chaotic dynamics in various physical fields, including black
hole physics [5–12]. In general relativity, we can investigate
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the chaotic motion of particles by considering some space-
times with complicated geometrical structures or introducing
some extra interactions to ensure that the dynamical system
of particles is non-integrable. Along this line, Dettmann et al.
analyzed the phase space for trajectories in multi-black-hole
spacetimes, and obtained the fractal basins and chaotic tra-
jectories of the corresponding dynamical system [13]. Karas
et al. studied the chaotic motion of test particles in the space-
time of a black hole immersed in magnetic field [14] and Li et
al. extended the investigation to the chaotic motion of neutral
and charged particles in a magnetized Ernst–Schwarzschild
spacetime [15]. Moreover, the chaotic phenomena have been
investigated in the perturbed Schwarzschild spacetime [16–
18], the non-standard Kerr black hole spacetime described
by Manko–Novikov metric [19–23], the accelerating and
rotating black hole spacetime [24], and the disformal rotat-
ing black-hole spacetime [25]. On the other hand, Varvoglis
et al. observed the chaotic behavior for the charged parti-
cles moving in a magnetic field interacting with gravita-
tional waves [26]. Frolov et al. introduced ring strings instead
of point particles and found that the ring string dynamics
is chaotic even in the Schwarzschild black hole spacetime
[27]. The chaotic behaviors in the ring string dynamics also
appear in the Schwarzschild AdS black hole [28] and Gauss–
Bonnet AdS black hole spacetimes [29]. Recently, Wang et
al. introduced an extra interaction with the Einstein tensor
and studied the chaotic dynamics of a scalar test particle in
the Schwarzschild–Melvin black hole spacetime [30]. Addi-
tionally, the researchers investigated the chaotic motion of
scalar particles coupled to the Chern–Simons invariant in the
Kerr spacetime [31] and stationary axisymmetric Einstein–
Maxwell dilaton black hole spacetime [32]. Other general-
ized investigations based on the thermal chaos in the extended
phase space can be found, for example, in Refs. [33–36].
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Fig. 1 The Poincaré section (θ = π
2 ) with the swirling parameter j for the motion of a particle in the Schwarzschild black hole (a = 0) immersed

in swirling universes for the fixed values of r(0) = 7.2, M = 1, E = 0.95 and L = 2.4M

Inspired by the aforementioned works, we will focus on
the chaotic motion of particles around a Kerr black hole
immersed in swirling universes in this work. Generally,
the swirling universe refers to a rotating spacetime that is
not asymptotically flat [37,38]. From the Ernst formalism
[39,40], Astorino et al. constructed a new solution in Ein-
stein’s general relativity representing a Schwarzschild black
hole immersed in swirling universes [41]. This black hole
spacetime is an algebraically general, stationary, axially sym-
metric and non-asymptotically flat black hole solution of
the vacuum Einstein equations, with the special property
that north and south hemispheres spin in opposite direc-
tions. As a further step, by using the Kerr metric in Boyer–
Lindquist coordinates as a seed, they obtained a Kerr black
hole immersed in swirling universes, which simultaneously
possesses the swirling parameter and the spin parameter [41].
In Ref. [42], Capobianco et al. studied the geodesics of par-
ticles in a spacetime describing a swirling universe, and
found that the geodesic equations can no longer be decoupled
and rather small values of the swirling parameter will pro-
duce substantial changes with respect to the Schwarzschild
orbits in general relativity. Moreira et al. investigated the
null geodesic flow and the existence of light rings of the
black holes in swirling universes, and pointed out that the

swirling parameter drives the light rings outside the equa-
torial plane and the contour of the shadow becomes a tilted
oblate shape [43]. More recently, the authors of Refs. [44,45]
analyzed the geometrically thick equilibrium tori orbiting a
Schwarzschild black hole in swirling universes and a Kerr
black hole in swirling universes respectively, and obtained
new effects from background swirling on the equilibrium
tori. Thus, it would be of great interest to investigate the
motion of particles in the spacetime of a Kerr black hole
immersed in swirling universes. On the one hand, it is worth-
while to examine the influence of the swirling parameter on
the motion of particles and identify whether the motion of
particles are chaotic or not, due to the non-separability of
the geodesic equations in a swirling universe [42]. On the
other hand, it would be important to see some general fea-
tures for the motion of particles in a swirling universe and to
check whether it is possible to distinguish between black
holes with and without swirling parameters based on the
(chaotic) behavior of dynamical systems.

This work is organized as follows. In Sect. 2, we briefly
review the Kerr black hole immersed in swirling universes
and give the geodesic equations of particles. In Sect. 3, we
investigate the chaotic motion of particles by using tech-
niques including the Poincaré section, fast Lyapunov indica-
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Fig. 2 The Poincaré section (θ = π
2 ) with the swirling parameter j for the motion of a particle in the Kerr black hole (a = 0.54) immersed in

swirling universes for the fixed values of r(0) = 7.2, M = 1, E = 0.95 and L = 2.4M

tor, bifurcation diagram and basins of attraction, and probe
the effects of swirling parameter and spin parameter on the
chaotic behavior of particles in the spacetime of a Kerr black
hole immersed in swirling universes. We will conclude in the
last section with our main results.

2 Geodesics of the particle in the spacetime of a Kerr
black hole immersed in swirling universes

The line element for the Kerr black hole solution in swirling
universes, which is a stationary and axisymmetric spacetime
by immersing the Kerr black hole into a rotating universe,
can be expressed in Boyer–Lindquist coordinates as [41]

ds2 = F(dϕ − ωdt)2 + F−1
[
−ρ2dt2

+ � sin2 θ

(
dr2

�
+ dθ2

)]
, (1)

where the functions F and ω are given by a finite power
series of the swirling parameter j

F−1 = X(0)+ j X(1)+ j2X(2), ω = ω(0)+ jω(1)+ j2ω(2),

(2)

with the expansion coefficients

X(0) = R2

� sin2 θ
, (3a)

X(1) = 4aM 	 cos θ

� sin2 θ
, (3b)

X(2) = 4a2M2	2 cos2 θ + �2 sin4 θ

R2� sin2 θ
, (3c)

and
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Fig. 3 The Poincaré section (θ = π
2 ) with the swirling parameter j for the motion of a particle in the Schwarzschild black hole (a = 0) immersed

in swirling universes for the fixed values of M = 1, E = 0.95, and L = 2.4M

ω(0) = −2aMr

�
, (4a)

ω(1) = −4 cos θ [−a
(r − M) + Ma4 − r4(r − 2M) − �a2r ]
�

, (4b)

ω(2) = −2M{3ar5 − a5(r + 2M) + 2a3r2(r + 3M) − r3(cos2 θ − 6)
 + a2[cos2 θ(3r − 2M) − 6(r − M)]
}
�

. (4c)

Here we have defined
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Fig. 4 The Poincaré section (θ = π
2 ) with the swirling parameter j for the motion of a particle in the Kerr black hole (a = 0.54) immersed in

swirling universes for the fixed values of M = 1, E = 0.95, and L = 2.4M

� = r2 − 2Mr + a2 , ρ2 = � sin2 θ , (5a)

� = (r2 + a2)2 − �a2 sin2 θ , 
 = �a cos2 θ ,

(5b)

	 = r2(cos2 θ − 3) − a2(1 + cos2 θ) ,

R2 = r2 + a2 cos2 θ . (5c)

with the mass parameter of the black hole M and Kerr angu-
lar momentum per unit mass a. This metric reduces to the

pure Kerr black hole when j = 0 and to the Schwarzschild
black hole in swirling universes when a = 0. As described
in [41], the spin-spin interaction between the Kerr black hole
and the background dragging creates a conical singularity
along the symmetry axes and deforms the horizon geometry,
and enhances the symmetry breaking regarding the space-
time properties, as shown for the horizons and ergosurfaces
[45]. This transformed Kerr solution is non-asymptotically
flat, and its north and south hemispheres spin in opposite
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Fig. 5 The Poincaré section (θ = π
2 ) with the spin parameter a for the motion of a particle in the Kerr black hole immersed in swirling universes

for the fixed values of j = 1 × 10−5, M = 1, E = 0.95, and L = 2.4M

directions. It should be noted that even small variations of j
alter the typically oblate structure of the Kerr horizon.

From the Lagrangian of a timelike particle moving along
the geodesic

L = 1

2
gμν ẋ

μ ẋν, (6)

for the metric (1) we obtain the geodesic equations of a par-
ticle

ṫ = gϕϕE + gtϕL

g2
tϕ − gtt gϕϕ

, ϕ̇ = − gtϕE + gtt L

g2
tϕ − gtt gϕϕ

, (7)

and

r̈ = 1

2
grr

(
gtt,r ṫ

2 − grr,r ṙ
2 + gθθ,r θ̇

2 + gϕϕ,r ϕ̇
2

+2gtϕ,r ṫ ϕ̇ − 2grr,θ ṙ θ̇

)
, (8)

θ̈ = 1

2
gθθ

(
gtt,θ ṫ

2 + grr,θ ṙ
2 − gθθ,θ θ̇

2 + gϕϕ,θ ϕ̇
2
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Fig. 6 The fast Lyapunov indicator (FLI) with the swirling parameter j for the signals shown in Fig. 1

+2gtϕ,θ ṫ ϕ̇ − 2gθθ,r ṙ θ̇

)
, (9)

where E and L correspond to the energy and the angular
momentum of a particle, respectively. Moreover, the motion
of a particle also satisfies a constraint condition

h = gtt ṫ
2 + grr ṙ

2 + gθθ θ̇
2 + gϕϕϕ̇2 + 2gtϕ ṫ ϕ̇ + 1 = 0. (10)

Obviously, the swirling parameter j makes the differen-
tial Eq. (10) nonseparable, possibly resulting in the chaotic
motion of particles, just as suggested in Ref. [42]. Thus, in
the next section we will scan the parameter space of the sys-
tem for given values of M , a, j , E and L , and search for the
chaotic motion of particles in the spacetime of a Kerr black
hole immersed in swirling universes.

3 Chaotic motion of particles in the spacetime of a Kerr
black hole immersed in swirling universes

It is well known that the motion of particles in chaotic regions
is highly sensitive to initial values, and the numerical method
with high-precision is essential for solving the differential
equations (7)–(9) to avoid the pseudo-chaos produced by
large numerical errors. Therefore, in this work we will use

the corrected fifth-order Runge–Kutta method suggested in
Refs. [46,47], where the velocities (ṙ , θ̇) are corrected in
integration and the numerical deviation is pulled back in a
least-squares shortest path.

Note that the motion of the particle is fully determined
by its initial conditions and parameters in the system, but the
choice for the parameters and initial conditions of the particle
should be arbitrary in principle. Meanwhile, we find that it is
nearly impossible to obtain the stable orbit of the particle with
the high numerical value of j in the numerical calculation in
the natural unit (G = c = h̄ = 1). Thus, for convenience,
we choose the periodic orbit of the particle without swirling
parameters as the initial motion orbit and investigate how
the degree of disorder in the orbits changes with respect to
the swirling parameter j and the spin parameter a. Here we
set the parameters {M = 1, E = 0.95, L = 2.4M} and
initial conditions {r(0) = 7.2, ṙ(0) = 0, θ(0) = π

2 } to
obtain the desired regular orbit for the Schwarzschild black
hole (a = 0) and Kerr black hole (a = 0.54) immersed in
swirling universes.

As a powerful tool for discerning the chaotic motions of
particles, the Poincaré section is defined as the intersection
of the trajectory within a continuous dynamical system with
a given hypersurface which is transverse to the trajectory
in the phase space. Based on the distribution of intersec-
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Fig. 7 The fast Lyapunov indicator (FLI) with the swirling parameter j for the signals shown in Fig. 2

tion points in the Poincaré section, the motions of the par-
ticle in the dynamical system can be classified into three
types: the periodic motion, corresponding to a finite num-
ber of points; the quasi-periodic motion, corresponding to
a series of close curves; the chaotic motion, corresponding
to strange patterns of dispersed points with complex bound-
aries. For the Schwarzschild black hole immersed in swirling
universes, i.e., a = 0, we present the Poincaré sections
(r, ṙ ) with different swirling parameters j for the motion
of the particle in Fig. 1. When j < 9.5 × 10−6, the phase
trajectories are quasi-periodic Kolmogorov–Arnold–Moser
(KAM) tori and the behavior of the dynamical system is non-
chaotic. Specifically, as the swirling parameter j = 4×10−6,
there is an island chain consisting of two secondary KAM
toris, which belong to the same trajectory. However, when
j ≥ 9.5 × 10−6, the KAM tori is destroyed and the corre-
sponding trajectory becomes non-integrable, indicating the
chaotic behavior of the system. As j → 1.1 × 10−5, there
exist a few discrete points in the Poincaré section because
the particle eventually falls into the event horizon or escapes
to the spatial infinity. So the swirling parameter j makes the
motion of particles more complex.

For the Kerr black hole immersed in swirling universes,
i.e., a = 0.54, Fig. 2 shows the Poincaré sections with dif-
ferent swirling parameters j for the motion of the particle.

Similar to the Schwarzschild case in Fig. 1, we observe that
the non-integrability of the motion of the particle increases
as the swirling parameter j increases for the Kerr black hole
immersed in swirling universes. Interestingly, we find that
there is an island chain consisting of three secondary KAM
toris belonging to the same trajectory when j = 1.5 × 10−5,
which is different from that of the Schwarzschild black hole
immersed in swirling universes when j = 4 × 10−6, where
there is an island chain consisting of two secondary KAM
toris. Moreover, as the swirling parameter j → 3 × 10−5,
the chains of islands are joined together and become a big
KAM tori, which indicates that the trajectory of this case is
regular and integrable. Thus, the combination of the swirling
parameter j and the spin parameter a provides richer physics
in the motion of particles.

In Figs. 3, 4 and 5, we exhibit the Poincaré sections with
more motion orbits of the particle in the spacetimes of
Schwarzschild black hole and Kerr black hole immersed in
swirling universes. It is found that the chaotic motion of the
particle mainly occurs in regions where the swirling parame-
ter j takes relatively small values in the swirling background.
In Figs. 3 and 4, the Poincaré sections consist of a series of
closed curves for j = 0, meaning that all orbits are regular
because the motion equations of the particle reduce to the
usual variable-separable geodesic equation. As the swirling
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Fig. 8 The bifurcation changes with the spin parameter a for different values of the swirling parameter j

Fig. 9 The bifurcation changes with the swirling parameter j for different values of the spin parameter a
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Fig. 10 The fractal basins of attraction for the particle in the Schwarzschild black hole (a = 0) immersed in swirling universes with the fixed
parameters j = 1 × 10−5, M = 1, E = 0.95, and L = 2.4M

parameter j increases, the main island of stability shrinks and
the chaotic region increases. However, the chaotic intensity
of chaotic orbits for a = 0 is stronger than that for a = 0.54,
as verified by Fig. 5, which shows that both the chaotic region
and intensity decrease with the increase of the spin parame-
ter a for the fixed swirling parameter j = 10−5. Therefore,
the spin parameter a and the swirling parameter j have com-
pletely different effects on the motion of particles, i.e., the
non-integrability of the motion of particles decreases as a
increases but increases as j increases.

The fast Lyapunov indicator (FLI) is another efficient tool
to identify the chaotic orbits of particles by measuring two
adjacent orbits over time with the average separation index.
In the curved spacetime, we can express the FLI with two-
particle method as [48–51]

FL I (τ ) = −(k + 1) ∗ log10 d(0) + log10 d(τ ), (11)

where d(τ ) = √|gμν�xμ�xν | is the distance between the
two particles with the deviation vector �xμ between two
nearby trajectories, and k is the sequential number of renor-
malization used to avoid numerical saturation arising from
the rapid separation of these two trajectories. The FLI(τ )

grows algebraically with time for the regular or periodic
orbit, but grows exponentially for the chaotic orbit. In Figs. 6
and 7, we give the FLI(τ ) with the swirling parameter j
for the selected initial orbit presented in Figs. 1 and 2. It is
shown that, with the increase of time τ , the FLI(τ ) grows
with exponential rate for the signals when j ≥ 9.5 × 10−6

in Fig. 6 and j ≥ 5 × 10−5 in Fig. 7, and the corresponding
motions are chaotic. But when j < 9.5 × 10−6 in Fig. 6 and
j < 5 × 10−5 in Fig. 7, the FLI(τ ) increases linearly with τ ,
and so the motions of the particle are regular. These findings
are in good agreement with those obtained from the Poincaré
sections shown in Figs. 1 and 2.

Now we move to the bifurcation diagram, which can show
us how the dynamical behaviors of system depend on the
black hole parameters. In Figs. 8 and 9, we plot the bifurca-
tion diagrams of the radial coordinate of the particle with the
swirling parameter j and the spin parameter a in the space-
time of a Kerr black hole immersed in swirling universes, and

investigate the effects of j and a on the motion of particles.
When the swirling parameter j = 0, the radial coordinate
r(τ ) is a periodic function and there is no bifurcation for the
dynamical system, just as shown in the first panel in Fig. 8,
which suggests that the motions of particles are regular in
this case. From Fig. 8, we see that as the swirling parame-
ter j increases, both the lower bound of a for chaotic orbits
and the range of r in the chaotic solutions increase, which
shows that the presence of j changes the range of a where the
chaotic motion appears for particles. Similarly, from Fig. 9,
both the lower bound of j for chaotic orbits and the range
of r in the chaotic solutions increase with the increase of a.
These results indicate that the swirling parameter j and the
spin parameter a yield much richer effects on the motion of
particles.

Finally, we consider the basin boundaries of attractors,
which can provide a signature of chaos [13,27,28,52]. Actu-
ally, the smooth basin boundaries indicate the regular dynam-
ics, while the fractal boundaries suggest the chaotic motions
of orbits. In Figs. 10, 11 and 12, we show the basins of
attraction in a large subset of phase space for particles in
the spacetimes of Schwarzschild black hole and Kerr black
hole immersed in swirling universes with the fixed param-
eters M = 1, E = 0.95 and L = 2.4M , where the initial
conditions correspond to the points in these figures are set
to ṙ = 0 with θ̇ given by the constraint (10), i.e., h = 0.
The red points denote the case of geodesics crossing into the
event horizon rH , where the particle falls into the black hole
along geodesics, the blue points correspond to the particle
escaping to infinity and the green points represent the parti-
cle oscillating around the black hole. In our investigation, the
condition for capture is r ≤ rH and the condition for escape
is r ≥ 100rH . For green points, we consider trajectories that
neither got captured nor escaped to infinity after 100,000
iterations. From these figures, we can observe clearly that,
regardless of the spin parameter a, there exist some self-
similar fractal fine structures in the basins boundaries of
attractors, which implies that there exists the chaotic motion
for a particle in the spacetime of a black hole immersed in
swirling universes.
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Fig. 11 The fractal basins of attraction for the particle in the Kerr black hole (a = 0.54) immersed in swirling universes with the fixed parameters
j = 1 × 10−5, M = 1, E = 0.95, and L = 2.4M

Fig. 12 The fractal basins of attraction for the particle in the Kerr black hole (a = 0.54) immersed in swirling universes with the fixed parameters
j = 1.1 × 10−5, M = 1, E = 0.95, and L = 2.4M

4 Summary

We have investigated the motion of particles in the spacetime
of a Kerr black hole immersed in swirling universes by using
the techniques including the Poincaré section, fast Lyapunov
exponent indicator, bifurcation diagram and basins of attrac-
tion. Comparing with the case of a Kerr black hole in Ein-
stein’s general relativity, we found that the swirling parameter
j makes the motion of particles more complex. We obtained
the effects of the swirling parameter j and the spin parameter
a on the dynamical behaviors of the motion of particles, and
confirmed that there exists the chaotic motion for particles
in the spacetimes of the Schwarzschild black hole and Kerr
black hole immersed in swirling universes. We found that the
chaotic region in Poincaré sections increases as the swirling
parameter j increases but decreases as the spin parameter
a increases, which shows that the parameters j and a have
different effects on the motion of particles. Meanwhile, for
the chaotic motions of orbits, we noted that as the swirling
parameter j (the spin parameter a) increases, both the lower
bound of a ( j) and the range of the radial coordinate r in the
bifurcation diagram increase, which means that the presence
of j changes the range of a where the chaotic motion appears
for particles. Moreover, we observed clearly that, regardless
of the spin parameter a, there exist some self-similar fractal
fine structures in the basins boundaries of attractors, which
indicates that there exists the chaotic motion for particles in
the spacetime of a black hole immersed in swirling universes.
Thus, the swirling parameter j and the spin parameter a yield

the richer dynamical behavior of particles in the spacetime
of a Kerr black hole immersed in swirling universes.
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