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The E single-particle potential obtained in nuclear matter with next-to-leading-order baryon—
baryon interactions in chiral effective field theory is applied to finite nuclei by an improved
local-density approximation method. As a premise, phase shifts of EN elastic scattering and
the results of Faddeev calculations for the ENN bound state problem are presented to show the
properties of the EN interactions in the present parametrization. First, the E states in '*N are
revisited because of recent experimental progress, including discussion on the EN spin—orbit
interaction that is relevant to the location of the p-state. Then the E levels in *Fe are calculated.
In particular, the level shift which is expected to be measured experimentally in the near future
is predicted. The smallness of the imaginary part of the E single-particle potential is explicitly
demonstrated.

Subject Index D14

1. Introduction

New experimental information on the E—nucleus interaction is increasing from analyses of exper-
iments at J-PARC. The first observation of twin single-A hypernuclei in an experiment at J-PARC
identified a £~—!*N bound state with the binding energy Bz = 1.27 + 0.21 MeV [1]. This energy
is close to the candidate of the E~—!4N state observed in the previous KEK E373 experiment [2]
with Bg = 1.03 = 0.18 MeV. In the near future, further observations of E bound states in nuclei are
expected. Inclusive spectra of (K, K ™) reactions on nuclei [3] should provide the properties of the
E-nucleus potential in a wide energy range. Another ongoing experiment to detect E atomic level
shifts by measuring electromagnetic transition spectra [4] is also valuable for information on the
E—nucleus potential in the surface region.

On the theoretical side, construction of baryon—baryon interactions in the strangeness § = —2
sector has been developed in the framework of chiral effective field theory (ChEFT) [5-7]. The
S = —2 sector of octet baryon—baryon interactions is the middle of the possible strangeness contents
from § = 0 to —4 and therefore all the combinations of the flavor SU(3) bases participate in the
interaction features. The lattice quantumchromodynamics (QCD) method by the HAL-QCD group
has also provided the parametrization of the S = —2 interactions [8,9]. Both descriptions are based
on QCD, namely the underlying theory of hadrons and their interactions, either in a direct way or
by way of low-energy chiral effective field theory. The EN interactions of these two methods are,
interestingly, similar even at the quantitative level, as shown in the following section. An attempt
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[10] has also been made to determine some low-energy constants in the relativistic ChEFT at leading
order by fitting them to the HAL-QCD data in the S = —2 sector.

Because it is not feasible in the near future to directly measure E—nucleon scattering, information
on the E bound states is the chief source for the EN interactions. It is hard, however, to find the
detailed spin and isospin structure of the EN interaction from analysis of the bound state data in
itself. It is necessary to compare the experimental data with the results of microscopic calculations
using theoretical interactions that are as reliable as possible.

In Ref. [11], one of the present authors reported the properties of the E-nucleus single-particle
potential which are obtained on the basis of G-matrix calculations in symmetric nuclear matter with
next-to-leading order (NLO) ChEFT potentials with a cutoff scale of A, = 550 MeV constructed
by the Jiilich—-Bonn—Miinchen group [6,7]. There, E potentials in light nuclei such as °Be, '>C, and
14N are predicted through the translation of the potential in infinite matter to that in a finite nucleus
by an improved local-density approximation (ILDA) method. In view of the current experimental
efforts, it is meaningful to revisit the case of '*N and extend the calculation of the chiral  potential
to heavy nuclei such as *Fe.

In Sect. 2, the basic properties of chiral NLO EN interactions are elucidated by presenting EN
phase shifts, and the results of the Faddeev calculations for searching a ENN bound state. The E~
single-particle potentials in heavier nuclei are studied in Sect. 3. First, the £ states predicted on 4N
are revisited. The probable Op E~ state observed experimentally [1] is conducive to the discussion
of the E spin—orbit single-particle potential. Next, the potential for >°Fe is presented, for which the
measurement of the level shift of a certain atomic level is aimed in the J-PARC experiment. The
very small imaginary part of the E single-particle potential is demonstrated. A summary follows in
Sect. 4.

2. Properties of chiral NLO EN interaction
2.1. EN phase shift

It is basic to evaluate phase shifts of elastic scattering to elucidate the properties of the EN interaction
in each spin and isospin channel. The s-wave phase shifts calculated with an updated version of
the chiral NLO interactions with A = 550 MeV [7] are shown in Fig. 1 with solid curves. The
calculations are in the isospin base; that is, the average masses are assigned for the N, X, and E
baryons, respectively. The phase shifts with the interactions parametrized on the basis of HAL-QCD
calculations are also included for comparison. There are two sets of parametrization based on the
same HAL-QCD calculations. The dashed curves represent the results of the potential by Inoue et al.
[8] in which the baryon-channel coupling components are explicitly parametrized as a local function.
The dotted curves are the results of the potential of the fit for #/a = 12 by Sasaki et al. [9] in which
the effects of the tensor coupling and the baryon-channel coupling except for A A are simulated by
a local EN potential in coordinate space.

It can be seen that three potentials predict qualitatively similar behavior of the phase shifts in
all spin and isospin states. The interaction in the isospin 7 = 1 and 'Sy state is repulsive, and the
interactions in the remaining three states are attractive. Nevertheless, some quantitative differences
are remarked. The repulsion of the T = 1 'Sy part of the Sasaki potential is very weak. The
attraction in the 7 = 1 3S; state of the HAL-QCD parametrization is smaller than that of ChEFT.
The attraction in the T = 0 3] state, in which no baryon-channel coupling is present, is weak. The
T = 0 'S state is most attractive, although no bound state exists. This attraction originates from the
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Fig.1. EN s-wave phase shifts calculated with NLO ChEFT interactions (A. = 550 MeV) [7] are shown by
solid curves with the notation 27+125+1 [ ; specifying the spin S and isospin T channel. Phase shifts with two
sets of parametrization based on the HAL-QCD calculations are also shown: one is the full parametrization
from Ref. [8] (dashed) and the other is the fit for #/a = 12 from Ref. [9] (dotted).
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Fig.2. EN p-wave phase shifts calculated with NLO ChEFT interactions (A. = 550 MeV) [7]. Those of the
isospin 7' = 0 (T = 1) states are denoted by dashed (solid) curves.

coupling to the A A as well as £ X states, though the effect of the EN—A A coupling is smaller than
that of the EN-X X coupling in the HAL-QCD potentials. The attractive character in the 7 = 1
38 state is not so prominent as in the 7 = 0 'Sy state but plays an important role in generating
an attractive E single-particle potential in a nucleus because of the spin—isospin weight factor of
RS+DERT+1)=9.

The uncertainties in the ChEFT parametrization of p-waves are larger than those in the s-waves
[6]. The antisymmetric spin—orbit interactions, which couple the spin-single and triplet states with
the same total spin J, are absent in the present chiral NLO interactions [6]. Still, it is meaningful
to present p-wave phase shifts for inferring the effects of the p-waves on the E—nucleus potential.
The p-wave phase shifts calculated with the chiral NLO interactions [6] are shown in Fig. 2. The
phase shifts are rather small, except for in the 7 = 1 3P, state, the attraction of which grows with

increasing energy. The corresponding attractive contribution to the E single-particle potential in
symmetric nuclear matter was presented in Fig. 2 of Ref. [11]. It is also seen in that figure that the
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contributions to the E single-particle potential from other p-states are small and tend to cancel each
other.

2.2.  ENN three-body system

It is important to figure out whether the chiral NLO interaction can support a ENN three-body bound
state. The results of the Faddeev calculation for the ENN bound state problem are recapitulated in
this section. In the present calculations, two-body EN T-matrices are first prepared by solving a
baryon-channel coupled Lippmann—Schwinger equation in momentum space. In the isospin 7’ = 0
case, the EN-A A—X X coupling is present in the ' S state, while no baryon-channel coupling exists
in the 3S1—3D tensor correlated state. In the 7 = 1 case, the EN—A X coupling is present in the 'S
state, and the EN-A Y- ¥ coupling takes place in the 3S;—>D; tensor correlated state. Then, the
evaluated 7-matrices are used in the Faddeev equation for the ENN bound-state problem:

W) = GoTyn (1 — Py3) w12, (1)
W12 = GoTay (W@ — pyywi?), 2)

where Gy is a three-particle propagator, W) is the Faddeev component, and Py; is the transposition
operator for the 2-3 pair, assigning the number 1 to E and the remaining 2 and 3 to the nucleons. This
procedure means that while the pairwise correlation is fully solved, the entire three-baryon coupling
is not considered. The interactions are also restricted to the s-wave except for the tensor-coupled
d-wave. The Coulomb force is also not taken into account. Still, the calculation is an important
attempt at a realistic description of the ENN system.

In the literature, possible ENN bound states have been reported [12,13] using the s-wave single-
channel EN potential simulating the Nijmegen ESC08c model [14] for the EN interaction and the
central s-wave Malfliet-Tjon NN potential [16] for the NN interaction. The Faddeev calculations in
Ref. [13] without the Coulomb force show that the bound state exists at a binding energy of B =
17.2 MeV in the spin—isospin (S, T) = (3/2,1/2) stateand B = 2.9 MeV in the (S, T) = (1/2,3/2)
state. These results are reproduced in our momentum-space Faddeev calculations.

The situation is different when the chiral NLO § = —2 interactions are used together with the
N3LO NN interactions [17]. The results of our Faddeev calculations show that no hypernuclear
bound ENN system is expected in every possible spin—isospin channel. It is also ascertained that
even if the repulsive T = 1 ISy EN interaction is omitted, the ENN system is not bound. The details
are reported in Ref. [18]. Qualitative differences exist between the ESCO8c and the NLO ChEFT
EN s-wave interactions. The attraction in the 7 = 1 3S; channel of ESC08c is attractive enough to
provide a EN bound state, and the 7 = 0 'Sy interaction of ESCO8c is repulsive, contrary to that of
NLO ChEFT. It is noted, however, that a substantial revision was made for ESC08c to construct the
new version as ESC16 [15].

3. E bound states in finite nuclei

Although the ENN system is not bound with the present NLO chiral interactions, the E hyperon can
be bound in heavier nuclei due to the attraction in the 7 = 13S; channel with the statistical factor of
(2S 4+ 1)(2T + 1). As shown in Ref. [11], the £ single-particle potentials predicted for °Be, 12C,
and "*N by the ILDA method using the G-matrices in symmetric nuclear matter with the NLO chiral
interactions are rather shallow, but attractive enough to support hypernuclear bound states. In this
section, the calculated 2~ —'*N bound states are first revisited concerning the recent experimental
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Fig.3. Energy-dependent E-'“N single-particle potential by the ILDA method, using EN G-matrices in
symmetric nuclear matter with the NLO ChEFT interactions [7]. The potentials enhanced by a factor of 1.15
are also shown. Ucoulomb 1S the potential of a uniform charge distribution with a radius of Rc = 1.154'/ fm.

data and the possible effect of the E spin—orbit potential for the p-state. Next, E~ bound states in
6Fe are presented. In particular, the atomic level shift of 2~ in °Fe is focused on, for which the
X-ray spectroscopy experiment to detect it is ongoing at J-PARC [4]. The very small imaginary part
of the E potential is shown, which was not included in Ref. [11].

3.1. E-'“N bound states and B spin—orbit potential

After the prediction for £~ bound states in 4N was reported in Ref. [11] based on the NLO ChEFT
S = —2 interactions, new experimental information [1] was obtained through the first observation
of twin single-A hypernuclei: = +4# N — }\0 Be +f\ He. The state is probably a Op level at
1.27 4 0.21 MeV. Further observation of &~ states in '*N was also reported [19] from the analyses
ofthe data of KEK and J-PARC experiments. That is, three candidates for the Os state are at 8.0040.77,
496 £0.77,and 6.27 4+ 0.27 MeV, respectively, and a possible Op state is at 0.90 & 0.62 MeV. These
energies are shown on the left side of Fig. 4.

Observing that the calculated energies in Ref. [11] correspond reasonably well to these experi-
mental data, additional calculations are given in this subsection. First, if the experimental energy
of 6.27 £ 0.27 MeV is taken seriously, the calculated E~ Os energy of —5.40 MeV in Table II of
Ref. [11] is slightly short. To reproduce the range of the empirical energy, —6.00——6.54 MeV, it is
necessary to multiply by a factor of 1.10—1.19 the calculated E—!4N potential. This factor appears
within the uncertainties of the G-matrix calculations and the ILDA method. The calculated E—'4N
single-particle potential is shown in Fig. 3. The potential by the ILDA method is energy dependent.
Uz (r; E = —5MeV) is employed for the Os state, and Uz (r; E = 0 MeV) for the Op and 0d states.
The evaluated single-particle energies are presented in Fig. 4 for both Ug and 1.15 x Ug. The position
of the Op level is reasonable. It is noted that the Coulomb 0d state is hardly affected by the addition
of the hypernuclear potential Ug (r; E = 0 MeV).

Another subject to discuss here is the effect of a E-nucleus spin—orbit potential. If the E spin—orbit
interaction is not negligible, the location of the Op state does not simply imply the strength of the
E central single-particle potential. Although the ground state of '*N is not simply shell-closed, it is
instructive to estimate how the E Op level in '#N is affected by the possible spin—orbit potential in a
mean-field consideration; that is, without considering the detailed structure of the '*N ground state.

The interesting feature of the E spin—orbit single-particle potential in nuclei is that the potential
may be repulsive in contrast to the attractive nucleon spin—orbit potential. Various theoretical studies
have predicted a repulsive & spin—orbit mean field, though the strength is considerably smaller than
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Fig.4. 2 single-particle states in '*N. Experimental data on the left side are taken from the compilation in
Ref. [19]. The Coulomb attraction is treated by the potential of uniform charge distribution with a radius of
Rc = 1.154' fm. The ILDA potential is energy dependent. Uz (r; E = —5 MeV) is employed for the Os state
and Ug(r; E = 0MeV) for the Op and 0d states. It is demonstrated that an enhancement factor of 1.15 is
needed to fit the Os energy at 6.27 MeV. The shifts of the Ops,, and Op,,, energies due to the addition of the
EN spin—orbit potential is shown on the right side, as a function of the strength W, from Eq. (5).

that of the nucleon. When the spin—orbit potential is repulsive, the downward shift of the single-
particle level withj_. = £ — % is twice as large as that of the level with j. = ¢ + % for the attractive
one.

In a relativistic mean-field description [20-22], the repulsive spin—orbit mean field is brought
about by an w-meson exchange with the tensor coupling. The repulsive character is also predicted
in a microscopic description based on two-body EN interactions constructed in a non-relativistic
SU(6) quark model [23], in which the contribution from the ordinary spin—orbit component of the
EN interaction is attractive, while the antisymmetric spin—orbit component has an opposite contri-
bution and the net spin—orbit single-particle potential becomes repulsive. In all these estimations, the
repulsive strength is one-fifth of the attractive strength of the nucleon spin—orbit potential or less.

The effective spin—orbit strength generated by the bare baryon—baryon interaction is properly
measured by the Scheerbaum factor [24] calculated in nuclear matter. The expression for the nucleon
case was extended to the hyperon cases in Ref. [23]. The Scheerbaum factor for E in symmetric
nuclear matter with the Fermi momentum kr reads

(14 0)?

_ dmax _
Se(q) = = > (2] + DQT + 1)/ dq W(q,9)
8kp % 0

XA +2)G{T 111 @ + Gl (@) — T = DG 1 _1(@) (3)

Here, { = my/mz, gmax = %(k]: + g), and the weight factor W (g, q) is defined by

Ok —q) for0<q <4,
W@q) =1 12207 - i 4
9.9 { kg gi_]qzw for |kF2 ql <g< kF;'q’ )

where 0 (kp — g) is a step function. In Eq. (3), G‘{ET, 1¢ 18 the abbreviation of the momentum-space
diagonal G-matrix element in the spin-triplet channel with the total spin J and total isospin 7.
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The above definition of Sz is different from the original constant in Ref. [24] by a factor of —ZT”.
Then, Sg can be identified with the strength W of the §-type effective two-body spin—orbit interaction

customarily used in Skyrme—Hartree—Fock calculations [25]:
iWo(o1 +02) - [V, X )V, ]. (5)

In the present NLO ChEFT interaction, the antisymmetric spin—orbit term is not included by
putting the pertinent low-energy constant to zero. Therefore, the spin—orbit interaction in the nuclear
medium is expected to be attractive. The actual G-matrix calculation in symmetric nuclear matter
gives Sg ~ 21.5MeV-fm’ at g ~ 0.7 fm ™!, the value prescribed by Scheerbaum on the basis of the
wavelength of the density distribution. This value is about one-fifth of Sy = 102 MeV-fm> with the
same sign [26,27]. It is noted that Sy = 102 MeV-fm? is somewhat smaller than the typical value of
Sy = 120 MeV-fm> used in Skyrme—Hartree—Fock calculations in the literature.

Changes of the E~ Op level in '*N of the potential 1.15 x Ug(E = 0MeV) depending on the
spin—orbit parameter W, from —25 to 25 MeV-fm° are depicted in Fig. 4. The negative sign of
means a repulsive spin—orbit potential. If the spin—orbit potential strength is about one-fifth that of
the nucleon, the energy splitting of the shallow Op; > and Op3; states in 14N is about 0.4 MeV.

3.2. & bound states in *°Fe and atomic level shifts

In applying the ILDA method [11] to generate the E single-particle potential in *°Fe using G-matrices
evaluated in symmetric nuclear matter, one has to beware that the 36Fe nucleus is asymmetric in the
proton and neutron density distributions. At present, however, it is very demanding to perform
Brueckner self-consistent calculations of the E potential at various asymmetric nuclear matter,
because all single-particle potentials of the eight octet baryons (n, p, A, ¥, »0 =+, 27, and EO)
have to be determined self-consistently. Fortunately, the asymmetric effect can be expected to be
small, as explained in the following. If the neutron and proton contributions are individually written,
the E potential is obtained by the sum of the proton and neutron contributions, which is written in
an abbreviated notation as

Ug- = G3+l G'+G? 6
E- = Pn 21017( + )5 ()

where p, and p,, are the neutron and proton density distributions, respectively, and G?T+1 represents
the contribution of the EN G-matrix in the isospin 7' channel. Introducing the asymmetry parameter
aas o = (op — pp)/(Pn + Pp) = (Pn — pp)/p, the potential Uz- is written as
3 1
Ug- = %p(Gl +3G3){1+a%}. (7)
The profile of the neutron and proton density distributions of the density-dependent Hartree—Fock
calculation with the G-0 force of Ref. [28], which is used in the present ILDA calculations of the
E potential in *°Fe, is shown in Fig. 5. The asymmetry of >°Fe is seen to be about o & % = %
The additional factor (G° — G1) / (3G? + G1) is smaller than %, as inferred from the properties of
the EN interaction presented in Sect. 2. Therefore, the contribution of the second term in Eq. (7) is
estimated to be at most 2% of the first term. This indicates that the estimation of the E~ potential
based on G-matrices in symmetric nuclear matter is reliable.
The E—°Fe single-particle potential calculated by the ILDA method with the Gaussian smearing

range of B = 1.0 fm is shown in Fig. 6. The solid and dashed curves represent the real and imaginary
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Fig. 5. Point proton and neutron density distributions p (r) of **Fe obtained by density-dependent Hartree—Fock
calculations with the GO force of Ref. [28].
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Fig. 6. E single-particle potential obtained in the ILDA method, based on the E potential in symmetric nuclear
matter calculated with the NLO ChEFT interactions [6]. The imaginary part shown by the dashed curve is
scaled up by a factor of 10. The dotted curves are the potential fitted in a Woods—Saxon form; the depth and
the geometry parameters are given in the text. Ucqylomb depicts the Coulomb potential of the uniform charge
distribution with radius Rc = 1.154'/3 fm.

parts, respectively. The potential in symmetric nuclear matter is energy dependent. The energy is set
to be 0 MeV because the shallow E level is mainly concerned to discuss the Coulomb energy level
shift. The potential shape is well simulated by a standard Woods—Saxon form in both the real and
imaginary parts. The fitted strength and geometry parameters are V' = —8.39 MeV, Ryr = 5.01 fm,
and ar = 0.499 fm for the real part, and V1 = —0.247MeV, Ro; = 5.32 fm, and a; = 0.303 fm for
the imaginary part. These Woods—Saxon potentials are shown by the dotted curves in Fig. 6.

The depth of the real part of about 8 MeV corresponds to that in nuclear matter. The imaginary
potential, which mainly originates from the energy-conserving EN — A A process, turns out to be
very small. Note that the imaginary part is scaled up by a factor of 10 in Fig. 6. In this transition
process, the kaon exchange has to be involved and therefore the interaction is short-ranged. The
smallness of the EN—A A coupling potential is also pointed out in the HAL-QCD calculations [9].

To see more details of the features of the EN—A A—X X coupling, it is instructive to calculate EN
phase shifts in the 7 = 0 'Sy channel switching off the baryon-channel coupling. Figure 7 represents
these phase shifts of NLO ChEFT in the left panel and of HAL-QCD in the right panel. The coupling
effect appears rather small in both the A A and ¥ ¥ channels in NLO ChEFT, but these two channels
contribute constructively. In the HAL-QCD parametrization of Ref. [§], the contribution of the A A
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Fig. 8. E single-particle levels in *Fe obtained by the potential Ugoyiomp + Uz (E = 0). The width I" is indicated
by the error bar when the error bar is larger than the symbol. Energy levels of the pure Coulomb potential
Ucoulomb ©f the uniform charge distribution with a radius of Rc = 1.154'/ fm are also shown with dashed
connecting lines.

coupling is smaller. Note that in the parametrization of Ref. [9], the coupling potential to the £ ¥
channel is not explicitly parametrized and its effect is effectively included in the EN potential.

Another factor of the smallness is the spin—isospin structure. The EN <> A A conversion is possible
only in the isospin 7 = 0 ISy channel. The statistical factor (2S + 1)(2T + 1) suggests that the
contribution from the 7 = 1 'Sy channel is comparably suppressed, namely 1/16 in all spin—isospin
combinations of the EN pair.

&~ single-particle energies evaluated by the ILDA potential of Fig. 6 are shown in Fig. 8. The
state is specified by its orbital angular momentum £ and the nodal quantum number 7. The energies
of the pure Coulomb potential of a uniform charge distribution with a radius of Rc = 1.154'/3 fm
are also included for comparison. The level position ey and the width I" of the E state correspond
to the complex eigenvalue of the Schrodinger equation:
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Table 1. E~ energies and the root-mean-square radius 1/ (r?) of the £ = 4 and adjacent levels evaluated with
Ucoutomb and Ucouoms + Uz in °Fe. The level shift given at the right end is Ae = ec — e,ey. Entries for the
energies ec, €, I, and Ae are in keV. The unit for the root-mean-square-radius / (r2) is fm.

Node £ ec (r?) €real r (r?) Ae
0 3 —1448.94 15.3 —1727.81 83.18 10.6 278.87
0 4 -927.87 23.2 —929.66 0.20 23.1 1.78
0 5 —644.36 32.7 —644.37 0.00 32.7 0.01
1 3 -927.16 27.1 —1114.29 38.52 21.2 187.12
1 4 —644.36 37.7 —646.28 0.24 37.5 1.93
1 5 —473.41 49.9 —473.43 0.00 49.9 0.02
2 3 —643.85 41.3 —755.01 18.26 34.2 111.15
2 4 —473.40 54.5 —475.04 0.20 54.2 1.63
2 5 —362.45 69.4 —-362.47 0.00 69.4 0.02
3 2 —633.61 445 —747.87 5.30 37.6 114.27
3 3 —473.05 57.9 —542.76 10.16 49.7 69.71
3 4 —362.45 73.7 —363.75 0.16 73.4 1.30
r

®)

€E = €real 1 €imag = €real — iE-

The inclusion of Ug appreciably lowers the Coulomb levels with the angular momentum ¢ < 3.
Reflecting the small imaginary part, the width of the level is at most 0.5 MeV. The level with £ = 4 is
the main target to experimentally detect the atomic level shift by the E—>%Fe hypernuclear potential
[4]. Table 1 tabulates energies and predicted shifts of the £ = 4 and adjacent levels. These energies
are not affected by the inclusion of the E spin—orbit potential discussed in the preceding subsection.
The smallness of the width of the £ = 4 level is remarkable, though the uncertainties are kept in
mind in the various stages of the present calculation.

4. Summary

E hypernuclear single-particle states predicted by the E—nucleus potential derived from the chiral
NLO EN interactions with a cutoff scale of A¢ = 550 MeV by the Jiillich-Bonn—Miinchen group
[6,7] are presented and compared with those of the two sets of parametrizations based on the HAL-
QCD calculations [8,9]. To learn the basic spin—isospin structure of the present EN interactions,
EN phase shifts are discussed. It is also pointed out by Faddeev calculations that no ENN bound
state is expected in every spin—isospin state. First, the Z states in !#N are revisited. Considering the
experimental observation of a probable E~ p-state in '*N, discussion is included about the N spin—
orbit interactions which are relevant to the location of the p-state. Then, the E single-particle states
in *%Fe are calculated. In particular, the atomic level shift expected to be measured experimentally
in the near future is predicted. The smallness of the imaginary part of the E single-particle potential
is demonstrated. The smallness is due to the small transition interaction between EN and A A, in
addition to the fact that the transition to the AA state is possible only in the isospin 7 = 0 'S
channel.

The parametrization of the baryon—baryon interactions in the S = —2 sector seems to still be in
an exploratory stage due to the scarce and less-accurate experimental scattering data. Although E
hypernuclear data is valuable, it is difficult to deduce spin—isospin properties of the EN interactions
by phenomenological analyses of the experimental data of E states in nuclei because there are four
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spin—isospin channels and various baryon-channel couplings are involved. Therefore, studies based
on microscopic baryon—baryon interactions that are as reliable as possible are important. Besides the
J-PARC experiments addressed in this article, studies of the p—E~ interaction through the correlation
function based on the ALICE femtoscopy measurements have progressed [29]. Experimental data
in the near future and theoretical microscopic studies should improve our understanding of baryon—
baryon interactions in strangeness sectors.
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