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Modern linear high-energy accelerators are complex and
expensive devices. The problem of how to reduce their cost for
glven characterlistlics of the accelerated beam 1s of paramount
importance. In the present paper starting with the criterion of
minimum outlays for the construction and operatlon of the
accelerator we determine its optimum parameters taking into account
the beam load. We assume here that the cost of construction and
operation of accelerators may be written down in the form [1, 2]

S=AL - AN (Ar=a; +bilp), (1)

where L 1s the length of the accelerating system; N 1s the number
of sections; a; and by are constant coefflcients determined by the

economlc analysis; tp is the total operation time of the

accelerator (from the start of its operation to the end of its
use). Equation (1) neglects the fixed costs which cannot influence
the position of the minimum S and may, consequently, be omitted.
Let us formulate our basic problem. Let us assume thatweare
given the coefficients Ai’ energy W, and average current I, of the

beam of accelerated electrons, and the characteristics of the hf
supply; we also know the power of the source during the pulse P,
the frequency of the accelerating fleld «, the pulse length Tp,

and the frequency of the pulse repetition, n. We want to deter-
mine the values of the basic accelerator parameters, corresponding
to the minimum cost, S, of the accelerator: the strength of the
accelerating field E, (averaged over the sectional length), the
length of a single section !, the accelerator efficiency 7, the
geometrical dimensions of the cells, etc.

The solution of thils problem wilill be given for two
accelerating systems:

1) with a field strength which 1s constant for the entire
length E = Eyy = const;

*This report was not presented.
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2) with constant geometry of wave gulde units (over the
length).

1. THE CONSTANT FIELD ACCELERATOR

It is easy to show that the constant flield accelerator
satisfies the relations

po PO 20tmE (2)
P (0) P,

v=Tt o1 1y, (3)
Ty y (1+m)

where P(0) and P(!) are the values of the hf power at the start
and the end of the section, respectively; T, 1s the time for

charging the section with electromagnetic energy; m = Ir/E; I is
the electron beam current during the pulse; v = o1 _/Q.

During the derivation of equations (2) and (3) we assumed
that the Q factor of the accelerating sectlion and the shunt
lmpedance per unit length, r, do not depend on the size of the
coupling opening, a/.. Using equations (2) and (3) and the well-
known relationship
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the expression (1) for S may be expressed in the form

WA, Ja  wa, e .
S= P -nTFO'— P ‘nTP {Cm(l U)f

o 1-m (7)
rm(pqnu~f—w“+mn}’
where
A P 9
C= A; Ty (nTp)? (8)

is a constant coefficient which 1s assumed to be given in the
formulation of the problem. The optimum values for the two lnde-
pendent variables, m and v, are determined by the system of
equations:

=0 (9)
5 =0 (10)



The simultaneous validity of equations (9) and (10) leads to a
quadratic equation in m for fixed values of the quantity, u (see
equation (2)):

2 . 1—u , lnu_ l
mﬁ‘ln<2—7‘7_>71+ v =0 (11)

By specifying u one can find m and then the value of v 1s found from
equation (3). The value of C, corresponding to the m and v ob-
tained, can be found, e.g., from equation (8) which in explicit
form can be written as

C::l:;UvaLm)mAAUe—VDU+M>. (12)

m2 (1—0)2[1 _eTY? (1+m)]2

One can easily verify that equations (3), (11), and (12)
establish a mutually unique correspondence between the pairs of
values (m, v) and (C, ¥). It 1s most convenlent to use graphical
solutlons since because of the transcendental character of the
equations the m and v cannot be represented in explicit form as
functions of C and Y. The so0lid lines on Figures 1--3 show the
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dependence of the optlmum values of u, v, and ¢ on -/5 for various
parameter values of 7. Other Ilmportant characteristics of the
accelerating system such as E, [, and m can be obtained from the
equatlions

nt, 1

Er=waz > )
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=pt =g 1 —emw iy, (15)
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where wl = E{ i1s the electron energy increment per section of the

accelerator. Curves i1llustrating the dependence of the indicated

characteristics on /C and 7 are shown on Flgures 4--6 (solid
lines).
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2. THE CONSTANT GEOMETRY ACCELERATOR
This case can be studied basically in the same way as was

the case with the constant field accelerator. Therefore, we
present only certain basic formulas:
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(16)

(17)

(18)

(19)
(20)
(21)
(22)
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Curves corresponding to a constant geometry accelerator are

shown on Figures 1--6 by dashed lines.

Figure 7 presents the re-

lationship ¢(/C, v ), which permits one to check that the maximum
value of the field strength at the beginning of each section of the
optimum accelerator does not exceed the breakdown field strength.
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3. THE EVALUATION OF RESULTS

Let us study Figures 3--5. The curves shown can be
approximated with sufficient accuracy by a linear function for

almost all values of x/ﬁ. The only exceptlon are the reglons near
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zero corresponding to a large loading of the accelerator by the
beam (see Figure 6). Such a linear approximation and equation (8)
allow us to write the following expressions for the optimum values

of S, Eav’ and [:

. . A, Ao uv
s=Svesi=w () G g (24)
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As
[ o= — At (26)
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where h 1s a constant coefficlent whose values are given 1in the
table.

Values for the Coefficient h

Constant Constant
v field geometry
4 2.20 2.33
10 2.08 2.25
20 2.03 2.23

In this way, the cost, S, of the accelerator (omitting the
fixed costs) is equal to the sum of two terms, the first of which,
SO, determines the cost of the nonloaded accelerator, while the

second, Si’ takes into account the load of the beam. In extremely

high-energy accelerators the role of the second term is usually not
very large; for lnstance, in the Stanford accelerator for 22--45
GeV, S; represents approximately 15 percent of Sg - On the contrary,

in a high current accelerator, 35; may be of the same order of
magnitude as S, or be even larger.

It 1s easy to show by studylng the behavlior of the function
o (see equation (7)) for m — O that optimum accelerators with
negligibly small currents I do satisfy the known condition [3]: the
cost of the "lengths" of the accelerator must follow the cost of
the "sections." This follows also from equation (26). From
equation (25) it follows that the optimum field strength and,
consequently, the cost of the "length” of the accelerator does not
depend on the beam load. At the same time, the cost of the
"sections" increases linearly with the increase in I as can be

seen from equation (24).
Let us elucldate the influence of the power of the hf power
supply on the cost of the accelerator. Let us assume that

av’?

A=d|' P (27)
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where d is a certain constant. Then the expression for S takes the
form

- i ) / 1l
s ow(ny/ Mdpiaep Y. (28)

ntp

from which can be seen that the desired decrease 1n S can occur
only during a sharp increase in P. For instance, the substitutlon
of the twenty megawatt klystron by a hundred megawatt devlce re-
duces SO by approximately one and a half times. At the same time,

in high current accelerators the increase in power of the power
supply becomes a very important factor. If we assume that 55 = 54

then an increase in P by a factor of five reduces 5 by approximately
1.8 times.

Let us investigate the connection between S and the useful
operating time of the accelerator, nxp. It is clear from equation

(24) and the table of h values that SO does not depend on n and is only
slightly devendent on Tp s0 that an increase in ¢ above the value
¥ = 20 does not chahge the value of S5y appreclably. At the same

time, Si decreases inversely proportionally to nTp, i.e., suf-

ficiently rapidly. This yields the solution of the following
problen.

Suppose there exlist two power supply sources of equal average
power but with different powers per pulse and we wish to choose the
one which is more suitable. Depending on the relationship between
5. and Si we come to different conclusions:

0
a) ir SO > Si’ then it 1s better to use the source with the

larger pulse power P;

b) if S« By, it 1s Dbetter to use the source with the

smaller value of P but with a larger useful time Nty
c) if SO Q:Si, both sources are approxlimately equally good.

We conclude by showing which of the accelerating systems
studled should be utilized within a linear accelerator. We can
actually distingulish two cases for which the fixed fileld system
shows definite advantages as compared with the fixed geometry
systems.

1. If the optimum value E, 1s within the limits E_ /¢ <

< Eav < Ebr’ where Ebr i1s the breakdown fleld, then the fileld

strength at the start of the section with a constant geometry
EO = iEaV would exceed Ebr‘ It is obvious that in this case the

only possible solution for the optimum system would be one with the
constant fleld.

2. If the accelerator carries a large current, then the
system with a constant fleld prevents the reduction in the electron
momentum in a very efficient manner [4].

An additional argument in favor of the constant field systems
originates from the fact that thelr cost for moderate values of C
is 5--6 percent smaller than the cost of the fixed geometry systems.

However, for small values of P (of the order of a few milli-
watts) the large damping of the hf power in the optimum section
(see Figure 1) leads to a sudden narrowing of the coupling openings
withlin the last unlts of the constant field section. This may lead
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to difficulties in channeling of the beam through the accelerator,
narrow the band characteristic, and increase the dispersion of the
system which is, of course, undesirable. Under these conditions

the use of constant geometry systems may turn out to be expedlent.

3 3¢
¥

We formulated and solved the problem concerning the minlmum
cost of a linear accelerator taking into account the load of the
beam. The results are presented in the form of graphs. We gave
also approximate formulas for S, Egy, and [, which simplify the

analysis of the propertles of an optimum accelerator during
moderate beam loads.

We showed that the optimum accelerator exhibits a large
damping of hf power. The power at the exlit of the accelerating
sectlon does not exceed 7-~~10 percent of the power at the input.

The cost of the construction and operation of an accelerator
increases with the increase of the power of the hf power supply.
The increase in P (for a glven ntp) is particularly convenient in

high current accelerators.
The optimum value of E__ depends very little on the current

I for moderate beam loads (up tom = 0.6--0.7).

A comparison of the accelerating structures having constant
field and constant geometry shows that for large values of P and I
1t 1s expedient to utilize a constant field accelerator system.
On the other hand, the system wlth constant geometry may prove more
convenient in the case of small hf powers (of the order of a few
milliwatts).
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