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Modern linear high-energy accelerators are complex and 
expensive devices. The problem of how to reduce their cost for 
given characteristics of the accelerated beam is of paramount 
importance. In the present paper starting with the criterion of 
minimum outlays for the construction and operation of the 
accelerator we determine its optimum parameters taking into account 
the beam load. We assume here that the cost of construction and 
operation of accelerators may be written down in the form [1, 2] 

S = A1L + A2N (Ai = ai + bitP), (1) 

where L is the length of the accelerating system; N is the number 
of sections; ai and bi are constant coefficients determined by the 
economic analysis; tP is the total operation time of the 
accelerator (from the start of its operation to the end of its 
use). Equation (1) neglects the fixed costs which cannot influence 
the position of the minimum S and may, consequently, be omitted. 

Let us formulate our basic problem. Let us assume that we are 
given the coefficients Ai energy W, and average current Iφ of the 
beam of accelerated electrons, and the characteristics of the hf 
supply; we also know the power of the source during the pulse P, 
the frequency of the accelerating field ω, the pulse length τP, 
and the frequency of the pulse repetition, n. We want to determine 
the values of the basic accelerator parameters, corresponding 
to the minimum cost, S, of the accelerator: the strength of the 
accelerating field Eφ (averaged over the sectional length), the 
length of a single section , the accelerator efficiency Η, the 
geometrical dimensions of the cells, etc. 

The solution of this problem will be given for two 
accelerating systems: 

1) with a field strength which is constant for the entire 
length E = E a v = const; 

*This report was not presented. 
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2) with constant geometry of wave guide units (over the 
length). 

1. THE CONSTANT FIELD ACCELERATOR 

It is easy to show that the constant field accelerator 
satisfies the relations 

u = P(1) = 1 - 2(1+m) E
2l (2) u = P(0) = 1 - Pr 

(2) 

υ = τf - 1 1n u, (3) υ = τρ 
- γ(1+m) 1n u, (3) 

where P(O) and P ( ) are the values of the hf power at the start 
and the end of the section, respectively; τf. is the time for 
charging the section with electromagnetic energy; m = Ir/E; I is 
the electron beam current during the pulse; γ = ωτp/Q. 

During the derivation of equations (2) and (3) we assumed 
that the Q factor of the accelerating section and the shunt 
impedance per unit length, r, do not depend on the size of the 
coupling opening, a/λ. Using equations (2) and (3) and the well-known 
relationship 

I = Iav , (4) I = nτρ(1—υ) 
, (4) 

L = w , (5) L = E , (5) 

N = w (6) N = El 
(6) 

the expression (1) for S may be expressed in the form 

s = WA2 
. Iav σ = WA2 

. Iav {Cm(1 — υ)÷ s = P 
. 
nτρ σ = P 

. 
nτρ {Cm(1 — υ)÷ 

+ 1+m } ,(7) + m(1-υ)[1-e-γυ(1+m)] } ,(7) 

where 

C = A1 
. P (nτρ)2 (8) C = A2 
. 
Iav2r 

(nτρ)2 (8) 

is a constant coefficient which is assumed to be given in the 
formulation of the problem. The optimum values for the two independent 
variables, m and v, are determined by the system of 
equations: 

∂σ = 0; (9) ∂m = 0; (9) 
∂σ = 0. (10) ∂υ = 0. (10) 
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The simultaneous validity of equations (9) and (10) leads to a 
quadratic equation in m for fixed values of the quantity, u (see 
equation (2)): 

m2 + m ( 2 — 1—u ) ÷ 1 + 
1nu =0. (11) m2 + m ( 2 — γu ) ÷ 1 + γ =0. (11) 

By specifying u one can find m and then the value of v is found from 
equation (3). The value of C, corresponding to the m and v obtained, 
can be found, e.g., from equation (8) which in explicit 
form can be written as 

c = 1+[γυ(1+m)m-1]e
-γυ(1+m) 

. (12) c = m2(1-υ)2[1-e-γυ(1+m)]2 . (12) 

One can easily verify that equations (3), (11), and (12) 
establish a mutually unique correspondence between the pairs of 
values (m, v) and (C, γ). It is most convenient to use graphical 
solutions since because of the transcendental character of the 
equations the m and v cannot be represented in explicit form as 
functions of C and γ. The solid lines on Figures 1--3 show the 

Figure 1 Figure 2 

dependence of the optimum values of u, v, and σ on √C for various 
parameter values of γ. Other important characteristics of the 
accelerating system such as E, l , and η can be obtained from the 
equations 

E-nτρ = 1 , (13) E-Iavr = m(1-υ) , (13) 
l Iav2r = m

2(1-υ)2 [1—e-γυ1+m)], (14) l P(nτρ)2 
= 
1+m [1—e-γυ1+m)], (14) 

η= IW1 = m [1-e-γυ(1+m)], (15) η= p 
= 

m+1 [1-e
-γυ(1+m)], (15) 
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where W1 = El is the electron energy increment per section of the 
accelerator. Curves illustrating the dependence of the indicated 
characteristics on √C and γ are shown on Figures 4--6 (solid 
lines). 

Figure 3 Figure 4 

Figure 5 Figure 6 

2. THE CONSTANT GEOMETRY ACCELERATOR 

This case can be studied basically in the same way as was 
the case with the constant field accelerator. Therefore, we 
present only certain basic formulas: 
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m Ir = (1-υ))(1-e 
γυ γυ 

2 ; (16) m Ir = (1-υ))(1-e 2 
γυ 
2 ; (16) m Eav = 

γ2(1-υ)e 
γ 
-(1+υ)(1-e 

γυ 
)-(1 

; (16) m Eav = 
γ2(1-υ)e 

2 
-(1+υ)(1-e 2 )-(1 3υ)(1-e2)2 

; (16) m Eav = 
γ2(1-υ)e 

2 
-(1+υ)(1-e 2 )-(1 γυ 

; (16) m Eav = 
γ2(1-υ)e 

2 
-(1+υ)(1-e 2 )-(1 

2 

; (16) 

E10_ ξ=(1+m) 
γυ 

—m; (17) E10_ ξ=(1+m) 2 —m; (17) Eav ξ=(1+m) γυ —m; (17) Eav ξ=(1+m) 
1-2 

—m; (17) 

C = ξ 
( 

1 .6. ); (18) C = m2(1-υ)2 
( 

γυ 
2 

γυ 
); (18) C = m2(1-υ)2 

( 1-e 
γυ 

); (18) 

u = P(l) [(1+ 
m 
)e 

γυ - m ]2; (19) u = P(l) [(1+ 
m 
)e 2 - m ]2; (19) u = P(0) [(1+ ξ )e 

-
ξ 
]2; (19) 

σ=Cm(1-υ)+ ξ2 ; (20) σ=Cm(1-υ)+ γυm(1-υ) 
; (20) 

Eav nτρ . 1 ; (21) Eav Iavr 
. 

m (1-υ ; (21) 

l Iav2r m2(1-υ)2 γυ ; (22) l P(nτρ)2 m2(1-υ)2 ξ2 ; (22) 
η=-m γυ . (23) η=-m ξ2 . (23) 

Curves corresponding to a constant geometry accelerator are 
shown on Figures 1--6 by dashed lines. Figure 7 presents the relationship 
ξ(√C, γ), which permits one to check that the maximum 
value of the field strength at the beginning of each section of the 
optimum accelerator does not exceed the breakdown field strength. 

Figure 7 

3. THE EVALUATION OF RESULTS 

Let us study Figures 3--5. The curves shown can be 
approximated with sufficient accuracy by a linear function for 
almost all values of √C. The only exception are the regions near 
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zero corresponding to a large loading of the accelerator by the 
beam (see Figure 6 ) . Such a linear approximation and equation (8) 
allow us to write the following expressions for the optimum values 
of S, Eav, and l: 

S = S 0 + S i = W ( h √ A1A2 A2 
. Iav ); (24) S = S 0 + S i = W ( h √ Pr P 
. 
nτρ ); (24) 

E a v = 2 √ 
A1 Pr; (25) E a v = h √ A2 Pr; (25) 

l= 
A2 

, (26) l= A1 , (26) l= 
1+ 2 √ A1 r . Iav 

, (26) l= 
1+ h √ A2. P 

. 
nτρ 

, (26) 

where h is a constant coefficient whose values are given in the 
table. 

Values for the Coefficient h 

γ 
Constant 
field 

Constant 
geometry 

4 2.20 2.33 
10 2.08 2.25 

20 2.03 2.23 

In this way, the cost, S, of the accelerator (omitting the 
fixed costs) is equal to the sum of two terms, the first of which, 
SO, determines the cost of the nonloaded accelerator, while the 
second, S i, takes into account the load of the beam. In extremely 
high-energy accelerators the role of the second term is usually not 
very large; for instance, in the Stanford accelerator for 22--45 
GeV, Si represents approximately 15 percent of S O. On the contrary, 
in a high current accelerator, Si may be of the same order of 
magnitude as SO or be even larger. 

It is easy to show by studying the behavior of the function 
a (see equation (7)) for m → O that optimum accelerators with 
negligibly small currents I do satisfy the known condition [3]: the 
cost of the "lengths" of the accelerator must follow the cost of 
the "sections." This follows also from equation (26). From 
equation (25) it follows that the optimum field strength and, 
consequently, the cost of the "length" of the accelerator does not 
depend on the beam load. At the same time, the cost of the 
"sections" increases linearly with the increase in Iav, as can be 
seen from equation (24). 

Let us elucidate the influence of the power of the hf power 
supply on the cost of the accelerator. Let us assume that 

A 2=d√P. (27) 
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where d is a certain constant. Then the expression for S takes the 
form 

S=W(h√ A1d P-¼+d Iav P-½), (28) S=W(h√ r P
-¼+d nτρ P

-½), (28) 

from which can be seen that the desired decrease in S can occur 
only during a sharp increase in P. For instance, the substitution 
of the twenty megawatt klystron by a hundred megawatt device reduces 

SO by approximately one and a half times. At the same time, 
in high current accelerators the increase in power of the power 
supply becomes a very important factor. If we assume that SO = SI 
then an increase in P by a factor of five reduces S by approximately 
1.8 times. 

Let us investigate the connection between S and the useful 
operating time of the accelerator, n τ p . It is clear from equation 
(24) and the table of h values that SO does not depend on n and is only 
slightly dependent on τp so that an increase in γ above the value 
γ = 20 does not change the value of SO appreciably. At the same 
time, Si decreases inversely proportionally to nτp, i.e., sufficiently 
rapidly. This yields the solution of the following 
problem. 

Suppose there exist two power supply sources of equal average 
power but with different powers per pulse and we wish to choose the 
one which is more suitable. Depending on the relationship between 
So and Si we come to different conclusions: 
a) if SO » Si, then it it better to use the source with the 
larger pulse power P; 
b) if SO « Si, it is better to use the source with the 
smaller value of P but with a larger useful time nτp; 

c) if So ≈ Si, both sources are approximately equally good. 
We conclude by showing which of the accelerating systems 
studied should be utilized within a linear accelerator. We can 
actually distinguish two cases for which the fixed field system 
shows definite advantages as compared with the fixed geometry 
systems. 
1. If the optimum value Eav is within the limits Ebr /ξ < 
< Eav < Ebr, where Ebr is the breakdown field, then the field 
strength at the start of the section with a constant geometry 

Eo = ξEav would exceed Ebr. It is obvious that in this case the 
only possible solution for the optimum system would be one with the 

constant field. 
2. If the accelerator carries a large current, then the 

system with a constant field prevents the reduction in the electron 
momentum in a very efficient manner [4]. 

An additional argument in favor of the constant field systems 
originates from the fact that their cost for moderate values of C 
is 5--6 percent smaller than the cost of the fixed geometry systems. 
However, for small values of P (of the order of a few milliwatts) 
the large damping of the hf power in the optimum section 
(see Figure 1) leads to a sudden narrowing of the coupling openings 
within the last units of the constant field section. This may lead 
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to difficulties in channeling of the beam through the accelerator, 
narrow the band characteristic, and increase the dispersion of the 
system which is, of course, undesirable. Under these conditions 
the use of constant geometry systems may turn out to be expedient. 

* * 
* 

We formulated and solved the problem concerning the minimum 
cost of a linear accelerator taking into account the load of the 
beam. The results are presented in the form of graphs. We gave 
also approximate formulas for S, Eav, and l, which simplify the 
analysis of the properties of an optimum accelerator during 
moderate beam loads. 

We showed that the optimum accelerator exhibits a large 
damping of hf power. The power at the exit of the accelerating 
section does not exceed 7--10 percent of the power at the input. 

The cost of the construction and operation of an accelerator 
increases with the increase of the power of the hf power supply. 
The increase in P (for a given nτp) is particularly convenient in 
high current accelerators. 

The optimum value of Eav depends very little on the current 
I for moderate beam loads (up to η ≈ 0.6--0.7). 

A comparison of the accelerating structures having constant 
field and constant geometry shows that for large values of P and I 
it is expedient to utilize a constant field accelerator system. 
On the other hand, the system with constant geometry may prove more 
convenient in the case of small hf powers (of the order of a few 
milliwatts). 
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