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Study on low-level control of buncher in hard X-ray
free electron laser facility

Zhang Zhigang,  Yang Wenfeng, Jiang Hongru, = Xu Kai,  Huang Xuefang,  Yu Yuechao,
Wu Hailong, WuHong, Chang Qiang, Zheng Xiang, Zhao Yubin
(Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract:  [Background] In the hard X-ray free electron laser (Shanghai high repetition rate XFEL and
extreme light facility, SHINE), the normal-conducting L-band buncher plays a critical role in the compression of
electron bunches, significantly improving beam quality and meeting the stringent injection requirements of low
emittance and low energy spread. [Purpose] Due to its 2-cell structure, a dedicated digital low-level RF control system
was developed. [Methods] This system, based on an architecture comprising FPGA and RF front-end boards, and
adopts I/Q demodulation techniques. It incorporates amplitude and phase feedback, frequency tuning, and multi-motor
coordination for field flatness control. [Results] During 10 kW continuous-wave (CW) operation, the amplitude
stability (peak-to-peak) improved from +0.17% in open-loop mode to within £0.03% under closed-loop mode, while
the phase stability (peak-to-peak) was controlled within +0.05°, and field flatness was maintained within 2%, fully
meeting design specifications. Additionally, a radio-frequency (RF) power calibration method based on ADC
acquisition of LLRF was proposed. [Conclusions] Experimental results showed calibration error was within £2%
when compared with a power meter, demonstrating reliability of this method as an alternative solution for RF power
calibration.

Key words:  X-ray free electron laser, digital low-level radio frequency, buncher, cavity voltage stability, power
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Fig. 1 Block diagram of RF system at SHINE buncher (LLRF: low-level radio frequency; SSA: solid-state amplifier)
€ 1 SHINE % L il BOR A8 R GME K (LLRF: {RH P21 ; SSA: [ 2530 %)
%1 SHINE iR L BB R RBARFILFINEE T
Table1 Equipment function of SHINE buncher

equipment function
buncher compressed electron beam, reduce the beam emittance and energy spread
LLRF control the RF field
SSA amplify the RF power
motor driver tune the resonance and field flatness
circulator isolate the RF power from the buncher

TERE X SF4 A i B 0GR E b, TSR R AR SR A 7ok S 8n 3k 2 s .

% 2 SHINE EANZRRFIEBTERARIER
Table 2 Parameters of LLRF for SHINE buncher

operation mode frequency/MHz quantity of feeding amplitude stability(RMS)/% phase stability(RMS)/(°)

continuous wave 1300 single 0.02 0.02
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Fig. 3 Equivalent circuit of buncher
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Table 3 Analysis of the relationship between the tuning and status of motor in SHINE

area analysis

(al) motor is moving

(a2) motor is moving

(b) motor is stopping

(1) 1. motor is r.noving .when changing .from Th2 towards OIWi.thin cl
2. motor is stopping when changing from 0 to Th2 within c1

) 1. motor is moving when changing from -Th2 towards 0 within c2

2. motor is stopping when changing from 0 to -Th2 within c2

Tune close & Tune open & N
flieldflat_open? flieldflat_close?

) first: drive M1 and M2 in
 drive M1 and M2 drive M1 and M2 in the same direction; stop M1 and M2
in the same direction the opposite directions second: drive M1 and M2

in the opposite directions

A 4

al

Fig. 5 Block diagram of the tuning and field flatness loops
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Fig. 6 Comparison of normalized amplitude stability of voltage
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Table 4 Results of normalized amplitude stability for buncher at SHINE (peak-to-peak)

max min mean amplitude stability/% amplitude (RMS)/%
open-loop 0.6395 0.6384 0.6389 <+0.17 0.019
closed-loop 0.6450 0.6446 0.6448 <4+0.03 0.00517
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Fig. 7 Phase stability in closed-loop mode (peak-to-peak <+0.05°) Fig. 8 Stability of field flatness in closed-loop mode (<+2%)
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Fig.9 Block diagram of calibrating the buncher LLRF
Pl O PR ARG HR P-4 i 25 S0 B A A o2 5 P9 S ADC ) A HEAE ]
T PR 5 R B e M A AT HE T
Ot e, VHHEAE 5 U5 AR 6] TR B, 38 35 TR 11 (power meter) S i Wi D) 32 (K, I [R] B 38 i ADC SR 4E il
A — L iE B AE . & 10 FrR, 0 SRR S ADC H—fb i B2 (E, #E17 i 235, B AR TR B 5 ADC
R R 22 ] ) IR S 5% 25 4 il 2E 2% LAY (L3R 5 T error ratio2, I 5 AN S ELER) o

087
»=0.208 61133+
0.7 R>=0.999 8
E 0.6}
<
>
Q 0.5F
[a)
z 041
8
= 0.3}
g
S
=i
0.1
=25 =20 -15 -10 -5 i) 5 10 15
input power/dBm
Fig. 10 Relationship between input power and ADC signal amplitude
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Table 5 Comparison list of test power
Ppower-meter’ W Pgssa/W error ratiol/% Pxpc/W error ratio2/%
2001 1766 -11.74 2033 1.60
4004 3721 -7.07 3989 —0.40
5995 5722 —4.55 5990 —-0.08
9023 8764 —2.87 9152 1.40
11398 10205 -10.47 11783 3.40

i B IR, A T A —4k ADC i B F 5 2 A B T 2R, T ADC i B2 R AT B Y 2 R SEBR 2R
ML o S5 SRR AR A R 3R (I s ) AR L S A 1 D SR BE 2 ), HE— 2D B RO B SE BRI R o %5
VAT T SR IR o I k- e P DN R0 I 0 55, T A AR s SR 0 A e v 1
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