

HIGH PRECISION QCD PHYSICS AT FCC-EE

Francesco Giuli [On behalf of the FCC collaboration]
*CERN – European Organization for Nuclear Research,
Espl. des Particules 1, 1211 Meyrin, Switzerland*

Abstract

The Future Circular Collider (FCC) is a post-LHC project aiming at direct and indirect searches for physics beyond the SM in a new 100 km tunnel at CERN. In addition, the FCC-ee offers unique possibilities for high-precision studies of the strong interaction in the clean environment provided by e^+e^- collisions, thanks to its broad span of center-of-mass energies ranging from the Z pole to the top-pair threshold, and its huge integrated luminosities yielding 10^{12} and 10^8 jets from Z and W^\pm bosons decays, respectively, as well as 10^5 pure gluon jets from Higgs boson decays. In this contribution, we will summarize studies on the impact the FCC-ee will have on our knowledge of the strong force including: (i) Quantum Chromodynamics (QCD) coupling extractions with per-mille uncertainties, (ii) parton radiation and parton-to-hadron fragmentation functions, (iii) jet properties (light-quark-gluon discrimination, e^+e^- event shapes and multijet rates, jet substructure, etc.), (iv) heavy-quark jets (dead cone effect, charm-bottom separation, gluon $\rightarrow c\bar{c}$, $b\bar{b}$ splitting, etc.); and (v) non-perturbative QCD phenomena (color reconnection, baryon and strangeness production, Bose-Einstein and Fermi-Dirac final-state correlations, etc.).

1 Introduction

A crucial aspect for many physics measurements is a precise understanding of QCD. An accurate determination of the strong coupling constant α_S is mandatory to improve the precision of the production cross sections and decays calculation. The computation of higher-order corrections up to next-to-next-to-leading order ($N^3\text{LO}$) and next-to-next-to-leading logarithm ($N^2\text{LL}$) is also central because it can increase the precision in observables predictivity. Another pivotal ingredient is a precise picture of jet substructure, parton showering, hadronization and colour reconnection, whose understanding benefits any hadronic final state.

The FCC-*ee* program ¹⁾, with its large integrated luminosities and clean environment, offers a rich QCD program. QCD studies with an unprecedented precision can be performed due to the large expected number of events at the FCC-*ee* of roughly $\sim 10^{11}$ Z at $\sqrt{s} = 91$ GeV, $\sim 10^7$ W^+W^- at $\sqrt{s} = 160$ GeV and $\sim 10^6$ ZH at $\sqrt{s} = 240$ GeV.

2 The strong coupling constant

The least precisely known of all interaction coupling constant is α_S , with an overall uncertainty at per-mille level, $\delta\alpha_S \sim 10^{-3}$. Currently, α_S is determined by comparing 7 experimental observables to perturbative QCD (pQCD) predictions, plus a global average at the Z pole scale. The relevant observable for e^+e^- collisions are e^+e^- jet shapes and hadronic τ leptons and W/Z bosons decays.

2.1 α_S from e^+e^- event shapes and jet rates

As already done at LEP ²⁾, the thrust (τ) and the C -parameter defined in Eq. 1 can be used to extract α_S :

$$\tau = 1 - T = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|} \quad C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{i,j}}{(\sum_i |\vec{p}_i|)^2}, \quad (1)$$

with $\theta_{i,j}$ the angle between particle i and j and $\vec{p}_{i,j}$ the momentum respectively. Other quantities which are sensitive to α_S are the n -jet rates, $R_n = \frac{\sigma_{n\text{-jet}}}{\sigma_{\text{tot}}}$, and therefore were used to extract the strong coupling constant. The comparison between the experimental measurements and N³LO+N²LL predictions yields $\alpha_S(m_Z) = 0.1171 \pm 0.0027$ ($\pm 2.6\%$).

At lower \sqrt{s} , the n -jet rates up to 7 jets could be studied ³⁾, while runs at higher \sqrt{s} could be used to study jet rates in regimes where the probability of hard gluon emission increases. Moreover, a better understanding of hadronization mechanism and improvements in logarithmic resummation to N³LL for jet rates would allow the extraction of α_S at $\delta\alpha_S/\alpha_S < 1\%$ at the FCC-*ee*.

2.2 α_S from hadronic τ decays

The very precise LEP and B-factories $e^+e^- \rightarrow \tau^+\tau^-$ data, together with higher-order pQCD corrections to the hadronic τ width, allow a remarkably accurate α_S extraction from hadronic τ decays. The quantity of interest is the ratio of the hadronic τ width and the electron τ width, defined as follows:

$$R_\tau = \frac{\Gamma(\tau^- \rightarrow \nu_\tau + \text{hadrons})}{\Gamma(\tau^- \rightarrow \nu_\tau e^- \bar{\nu}_e)} = S_{\text{EW}} N_C \left(1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_S}{\pi} \right)^n + \mathcal{O}(\alpha_S^5) + \delta_{\text{np}} \right), \quad (2)$$

where S_{EW} represents the pure electroweak (EW) contribution to the ratio, N_C the number of colours, c_n the coefficients of the perturbative expansion, and δ_{np} power-suppressed non-perturbative (NP) corrections. Experimentally, this ratio has determined with a $\pm 0.23\%$ precision, and this leads to a determination of $\alpha_S(m_Z) = 0.1187 \pm 0.0018$ ($\pm 1.5\%$).

The dominant source of theoretical uncertainty in the extraction of α_S comes from the discrepancy between the Fixed Order Perturbation Theory (FOPT) and the Contour-Improved Perturbation Theory (CIPT), two different approaches for evaluating the perturbative expansion. Currently, this uncertainty is at the level of $\pm 1.5\%$. NP correction are also relevant in the determination of α_S from hadronic τ decays. These can be sizeable for $\mathcal{O}(\Lambda_{\text{QCD}}^2/m_\tau^2)$ and they can be controlled by new high-precision measurements of the hadronic τ spectral function.

Statistical uncertainty will be negligible at the FCC-*ee*, considering the $\sim 10^{11}$ τ produced at the Z -pole, and parametric and systematic uncertainties will dominate. To fully exploit this huge statistics,

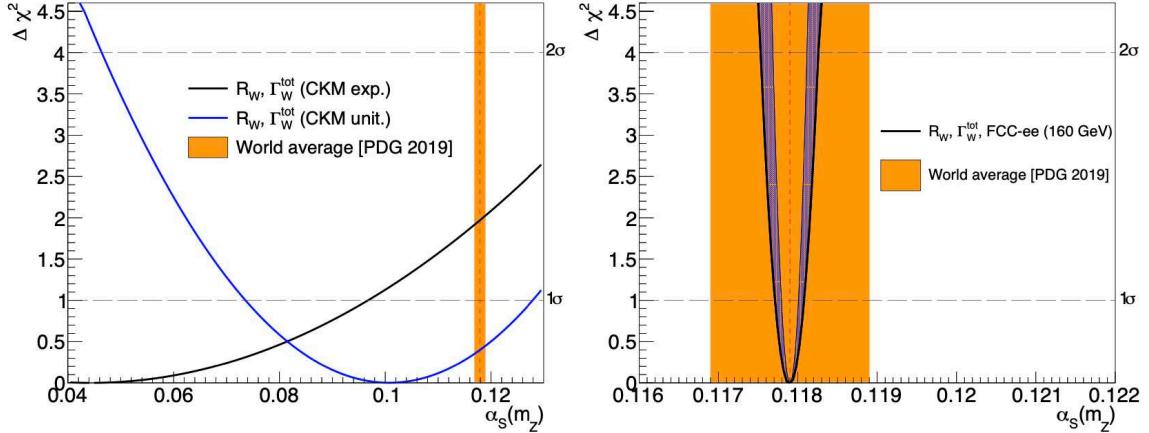


Figure 1: $\Delta\chi^2$ fit profiles of the $\alpha_s(m_Z)$ extracted from the combined N³LO analysis of the total W width ($\Gamma_W^{\text{tot.}}$) and hadronic-to-leptonic W^\pm decay ratio (R_W), compared to the current $\alpha_s(m_Z)$ world average (vertical orange band). Left: Extraction with the present W^\pm data assuming (blue curve) or not (black curve) CKM unitarity. Right: Extraction expected at the FCC-ee, with the total (experimental, parametric, and theoretical in quadrature) uncertainties (outer parabola) and with the experimental uncertainties alone (inner parabola). These plots are taken from Ref. ⁴⁾.

a reduction in the spread of theoretical determinations of R_τ is mandatory. This necessarily implies a better understanding of the discrepancies arising from the CIPT and FOPT comparison. Furthermore, a better determination of the spectral functions entering the R_τ calculation is compulsory, and this can be achieved exploiting new data coming from Belle II or the FCC-ee itself. In this way, the uncertainty on α_S can be reduced well below the current $\delta\alpha_S/\alpha_S \sim 1\%$ level.

2.3 α_S from hadronic W^\pm boson decays

Analogously to the case of the hadronic τ decays, the extraction of α_S from hadronic W^\pm boson decays can be performed considering the ratio of the hadronic width to the lepton with, as described in Eq. 3

$$R_W(Q) = \frac{\Gamma_W^{\text{had.}}(Q)}{\Gamma_W^{\text{lep.}}(Q)} = R_W^{\text{EW}} \left(1 + \sum_{i=1}^4 a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\text{mix}} + \delta_{\text{np}} \right) \quad (3)$$

with R_W^{EW} representing the pure EW contribution to the ratio, $a_i(Q)$ the coefficients of the perturbative expansion, δ_{mix} the mixed QCD+EW corrections, and δ_{np} the power-suppressed NP corrections. α_S is then extracted at N³LO from a simultaneous fit of 2 W boson pseudo-observables ⁴⁾: R_W and $\Gamma_W^{\text{tot.}}$. With the assumption of CKM unitarity, a value of $\alpha_S(m_Z) = 0.101 \pm 0.027$ is obtained (with negligible theoretical and parametric uncertainties), as depicted in Fig. 1 (left). The large uncertainty is mostly due to the poor experimental knowledge of R_W and $\Gamma_W^{\text{tot.}}$, which have been measured in $e^+e^- \rightarrow W^+W^-$ LEP events. If CKM unitarity is not assumed, the resulting value of the strong coupling constant is basically unconstrained, as shown in Fig. 1 (left).

At the FCC-ee, the uncertainties on R_W and $\Gamma_W^{\text{tot.}}$ will be largely reduced, thanks to the high statistics at the WW threshold. With a factor of 10 reduction of the theoretical uncertainties due to missing $\alpha_S^5, \alpha^3, \alpha\alpha_S^2$ and $\alpha^2\alpha_S$ corrections, a final QCD coupling extraction of $\alpha_S(m_Z) = 0.11790 \pm 0.00023$ with 2 per-mille total error is possible, as illustrated in Fig. 1 (right).

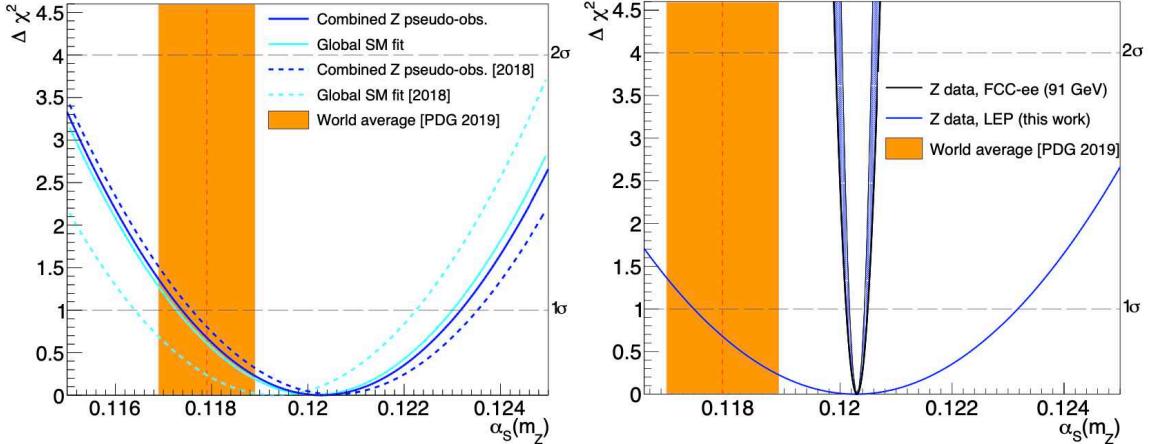


Figure 2: $\Delta\chi^2$ fit profiles of $\alpha_s(m_Z)$ extracted from the combined Z pseudo-observables analysis and/or the global SM fit compared to the current world average (orange band). Left: Current results (solid lines) compared to the previous 2018 fit (dashed lines). Right: Extraction expected at the FCC-ee - with central value (arbitrarily) set to $\alpha_s(m_Z) = 0.12030$ and total (experimental, parametric, and theoretical in quadrature) uncertainties (outer parabola) and experimental uncertainties alone (inner parabola) - compared to the present one from the combined Z data (blue line). These plots are taken from Ref. 4).

2.4 α_s from hadronic Z boson decays

Following the same procedure described in Sec. 2.3, α_s can be extracted at $N^3\text{LO}$ from a simultaneous fit of 3 Z boson pseudo-observables 4): R_Z , $\Gamma_Z^{\text{tot.}}$ and $\sigma_Z^{\text{had.}}$, yielding $\alpha_s = 0.1203 \pm 0.0029$ ($\pm 2.3\%$), as depicted in Fig. 2 (left).

Having 10^5 times more Z bosons than at LEP, together with an exquisite systematic and parametric precision would allow a remarkable improvement in the theoretical predictions of the Z boson pseudo observables, and therefore a reduction in the strong coupling uncertainty by almost 2 orders of magnitude. This experimental precision has to be matched by a reduction in the theoretical uncertainties by almost a factor of 5 by computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$ and $\alpha^2\alpha_s$ corrections. In this way, α_s can be extracted with a 2 per-mille accuracy, namely $\alpha_s(m_Z) = 0.11790 \pm 0.00023$, as reported in Fig. 2 (right).

3 Jet substructure

Jet substructure studies play a crucial role in improving our knowledge of parton shower (PS) and hadronization mechanism 5, 6, 7). In particular, jet angularities 8), defined as $\lambda_\beta^\kappa = \sum_{i \in \text{jet}} z_i^\kappa \theta_i^\beta$ (with z_i and θ_i representing the energy fraction and angular distance to jet axis of constituent i), constitute an intriguing starting point. The parameters $\kappa \geq 0$ and $\beta \geq 0$ regulate the energy and angular weighting respectively. Multiplicity ($\kappa = 0$, $\beta = 0$), width ($\kappa = 1$, $\beta = 1$), mass ($\kappa = 1$, $\beta = 2$), p_T^D ($\kappa = 0$, $\beta = 2$) and Les Houches Angularity ($\kappa = 1$, $\beta = 0.5$) are the most common examples. Specifically, this last quantity offers an incredible opportunity to study different PS algorithms between generators.

The FCC-ee would be crucial in addressing such differences in PS and hadronization modelling. For example, the gluon radiation patterns could be studied exploiting the expected $10^6 e^+e^- \rightarrow ZH(\rightarrow gg)$ events, together with the $e^+e^- \rightarrow Z \rightarrow b\bar{b}g$ events (assuming that b -jets are tagged with high efficiency). Therefore, these studies conducted at the FCC-ee would lead directly to improved MC tuning, together

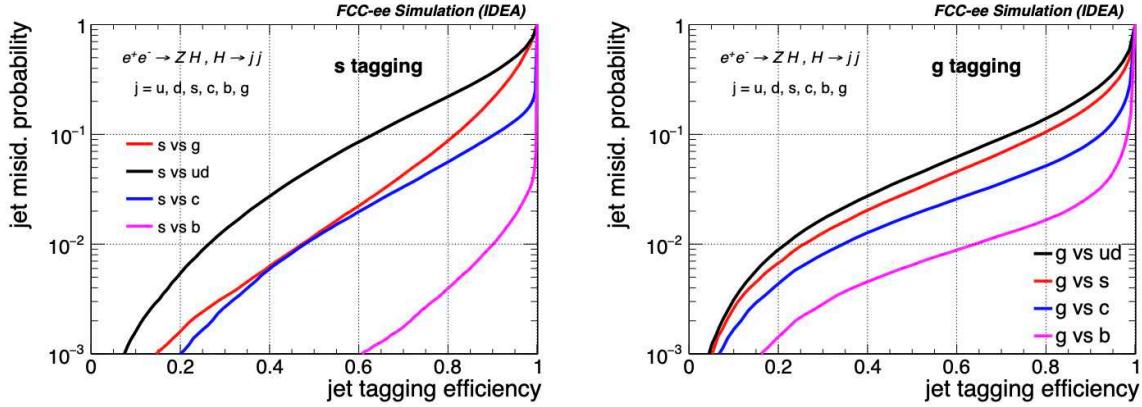


Figure 3: Evaluation of **ParticleNetIdea** performance in terms of a receiver operating characteristic (ROC) curve for the identification of different jet flavours i.e., s (left), and g (right). The different jet flavours considered background are indicated on the labels. The IDEA detector configuration is used. These plots are taken from Ref. ¹⁴⁾.

with a better understanding of NP QCD.

4 Quark-gluon tagging

One of the most exciting (but challenging) prospects in pp collisions is light-quark gluon discrimination. Being able to efficiently identify the flavour of the parton which initiates the jet is critical for the success of the physics program of future EW factories ⁹⁾. An accurate light quark-gluon discrimination would allow precise Beyond the Standard Model (BSM) searches for signals without leptons, b - or top-quarks, as well as would produce an enhancement of light quark-rich signals i.e. $t\bar{t}H$ or pure EW $W/Z + \text{jets}$. Recently, a new generation of advanced machine learning based jet tagging algorithms has been developed ^{10, 11, 12, 13)}, bringing almost 2 orders of magnitude improvement in background rejection when comparing to the traditional approaches in Heavy Flavour and gluon tagging. In particular, within the context of the FCC-ee, the **ParticleNetIdea** ¹⁴⁾ has been developed, and Figure 3 shows its high performances in discriminating light quark jets from s -quark (left) and gluons (right).

5 Conclusion

To fully exploit present and future collider programs, a precise understanding of both perturbative and NP QCD is highly needed. At the FCC-ee, a plethora of unique QCD studies would be possible. Among them, the most relevant are the extraction of the strong coupling constant α_S from jet event shapes and hadronic $\tau/W^\pm/Z$ decays with a per mille level accuracy and jet substructure studies, which could greatly improve our current knowledge of parton shower and hadronization. Thanks to the large pure quark/gluon samples in the extremely clean environment of a lepton collider, precise quark-gluon discrimination studies would be carried out with a much better discriminating power than the one in $p\bar{p}/pp$ collisions. Finally, due to the large number of expected $e^+e^- \rightarrow W^+W^-$, the huge statistics ($\times 10^4$ LEP) could be exploited to measure the W boson mass, m_W , both (semi-)leptonically and hadronically to constrain colour reconnection at the 1% level or below.

References

1. FCC Collaboration, [arXiv:2203.08310 [physics.acc-ph]].
2. G. Dissertori *et al.*, JHEP **08** (2009), 036 doi:10.1088/1126-6708/2009/08/036 [arXiv:0906.3436 [hep-ph]].
3. D. d'Enterria *et al.*, [arXiv:1512.05194 [hep-ph]].
4. D. d'Enterria and V. Jacobsen, [arXiv:2005.04545 [hep-ph]].
5. D. Krohn *et al.*, JHEP **02** (2010), 084 doi:10.1007/JHEP02(2010)084 [arXiv:0912.1342 [hep-ph]].
6. S. D. Ellis *et al.*, Phys. Rev. D **80** (2009), 051501 doi:10.1103/PhysRevD.80.051501 [arXiv:0903.5081 [hep-ph]].
7. J. M. Butterworth *et al.*, Phys. Rev. Lett. **100** (2008), 242001 doi:10.1103/PhysRevLett.100.242001 [arXiv:0802.2470 [hep-ph]].
8. A. J. Larkoski *et al.*, JHEP **11** (2014), 129 doi:10.1007/JHEP11(2014)129 [arXiv:1408.3122 [hep-ph]].
9. P. Azzi *et al.*, Eur. Phys. J. Plus **137** (2022) no.1, 39 doi:10.1140/epjp/s13360-021-02223-z [arXiv:2107.05003 [hep-ex]].
10. ATLAS Collaboration, JINST **11** (2016) no.04, P04008 doi:10.1088/1748-0221/11/04/P04008 [arXiv:1512.01094 [hep-ex]].
11. CMS Collaboration, JINST **15** (2020) no.06, P06005 doi:10.1088/1748-0221/15/06/P06005 [arXiv:2004.08262 [hep-ex]].
12. ATLAS Collaboration, ATL-PHYS-PUB-2017-003.
13. E. Bols *et al.*, JINST **15** (2020) no.12, P12012 doi:10.1088/1748-0221/15/12/P12012 [arXiv:2008.10519 [hep-ex]].
14. F. Bedeschi *et al.*, Eur. Phys. J. C **82** (2022) no.7, 646 doi:10.1140/epjc/s10052-022-10609-1 [arXiv:2202.03285 [hep-ex]].