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1. Introduction

Scattering amplitudes are key quantities in quantum field theory since on the one
hand they are in principle accessible from theoretical calculations and on the other
hand closely linked to physical quantities like the cross section and can be measured
by high energy physics experiments, the most prominent of the current time being the
LHC. The evaluation of scattering amplitudes, however, is in general very complex
and for most theories only possible in a perturbative expansion of Feynman integrals.

In the past decade there has been a lot of progress in the development of new
methods for the calculation of Feynman integrals [1, 2] and some of them strongly
rely on special analytic properties of Feynman integrals. One such property is the
uniform transcendental weight [3], which we will introduce in the second chapter.
Feynman integrals having the uniform transcendentality property turn out to fulfill
simple systems of differential equations, which can often easily be solved as a Laurent
series in ε, the parameter of dimensional regularization [3].

Other quantities that are closely related to Feynman integrals are the leading sin-
gularities of a given Feynman integrand. Leading singularities can be obtained by
replacing the integral paths along the real axis by contour integrals around the poles
of the integrand. Being relatively easy to compute, leading singularities turn out to
be a very useful tool to analyze analytic properties of Feynman integrals. For exam-
ple, they are very effective for searching integrals with uniform transcendental weight.
One conjecture is that Feynman integrals where all leading singularities are numerical
constants are also functions of uniform transcendental weight [3] and in this thesis we
are going to test this conjecture for several two- and three-loop integrals.

To test this conjecture we make a systematic analysis of integrands for different di-
agram topologies. Furthermore we want to follow the idea of [4], where the integrands
of several amplitudes for planar N = 4 Super Yang-Mills theory have been written
in a basis of integrands with constant leading singularities. We try to extend this
approach by searching integrand bases for diagrams of non-supersymmetric theories
such as QCD and without restricting to planar diagrams. Integrands with constant
leading singularities can be written as sums of so called dlog forms with constant
coefficients and deriving these dlog forms was also one part of this thesis.

The main effort we had make to achieve these goals was to find methods for the
computation of leading singularities and dlog forms. We therefore used two different
approaches. The first is an algorithm that we used as a basis to write a MATHE-
MATICA program, which is able to compute the leading singularities for several two-
and three loop diagrams by repeatedly taking the residues of rational functions. The
second approach is to use generalized one-loop integrands with known leading singu-
larities to take them as building blocks for multi-loop diagrams. This method enables
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1. Introduction

in a simple manner to verify diagrams that were analyzed with the algorithm.
For the application of the analysis we chose different diagrams of increasing com-

plexity. We restricted ourselves on diagrams with four massless external momenta and
massless propagators and performed the calculation in four dimensions. The relevant
integrand families in two loops for this kinetmatics are the planar and the non-planar
double box. In three loops there are 9 relevant integrand families, from which we
analyzed the two planar cases, denoted as diagram A and diagram E. One key step
before applying the algorithm on the integrands was to find a good parametrization
of the integration variables. In our case the spinor-helicity variables turned out to be
particularly well suited.

The thesis is organized as follows. In the second chapter we will explain some ba-
sic methods of loop integral computations and also introduce the concepts of uniform
transcendental weight functions, leading singularities, and dlog-forms. The third chap-
ter will describe the two different methods for the computation of leading singularities
and dlog forms. In chapter four we will present the results of a systematic analysis of
the two- and three-loop four-point diagrams. We will compare the integrands that we
found to have constant leading singularities to the corresponding integrals and test if
they fulfill the uniform transcendental weight property. In chapter five we present a
brief summary and a conclusion for our results.
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2. Loop-Integral Methods

2.1. D-Dimensional Integrals

The calculation of scattering amplitudes at loop level is associated with several diffi-
culties, one of them is that many loop integrals diverge. The standard way to make
sense of loop integrals nevertheless is to use renormalization, which means that we
allow some physical parameters like the coupling constant and the masses of particles
to be infinite in such a way that they compensate the divergences of the integrals
so that the physical results of the calculations are finite. In order to make sense of
calculations containing divergent integrals we have to choose a regularization scheme.
So we introduce a parameter, let us call it Λ, such that taking the limit Λ→ a, where
a is a potentially infinite constant, we recover the definition of the original divergent
integrals and for values Λ 6= a the integrals remain finite in general, with possible ex-
ceptions. A very popular regularization scheme is dimensional regularization, where
we generalize four-dimensional integrals to any integer dimension D and finally define
our integrals also for real or even complex values of D by analytic continuation.

Taking an example from [1] we show how to generalize a four-dimensional integral
to a D-dimensional integral and consider the one-propagator integral∫

dDk

iπD/2
1

(−k2 +m2 − i0)a
, (2.1)

where a is an arbitrary power of the propagator and i0 an infinitesimal small imaginary
constant, which defines the correct integration contour around the poles at k2 =
m2 − i0 for Feynman propagators. By Wick rotation, which we won’t explain here
(see for example [5]), we can relate this integral, which is defined for Lorentz vectors
k, to Euclidean vectors kE ∫

dDkE
πD/2

1

(k2E +m2)a
, (2.2)

where we can drop the i0-term, since we do not have a pole anymore as long as m2 > 0.
Now using the relation, which is known as Schwinger parametrization

1

xa
=

1

Γ(a)

∫ ∞
0

dααa−1e−αx, (2.3)

3



2. Loop-Integral Methods

we can evaluate the integral for arbitrary integer D as∫
dDkE
πD/2

1

(k2E +m2)a
=

1

Γ(a)

∫ ∞
0

dααa−1
∫
dDkE
πD/2

e−α(k
2
E+m2) (2.4)

=
1

Γ(a)

∫ ∞
0

dααa−1
(∫ ∞
−∞

dkE√
π
e−α(k

2
E+m2)

)D
(2.5)

=
1

Γ(a)

∫ ∞
0

dα

α
αa−D/2e−αm

2
(2.6)

=
Γ(a−D/2)

Γ(a)

1

(m2)a−D/2
. (2.7)

The decisive step in this derivation is the one from (2.4) to (2.5) where we rewrote
the integral in D dimensions into a D-fold product of one dimensional integrals. This
step, however, is only possible for integer D, so the derivation is also only valid for
integer values of D. However, what we can do now is to take the result in equation
(2.7) and take it as the definition of equation (2.1) for arbitrary complex values of
D. This specific analytic continuation to complex values of D is not unique but the
physical quantities we obtain by the calculations do not depend on the choice of the
analytic continuation just as they do not depend on the choice of the regularization
scheme.

In this way we can define arbitrary loop integrals in D-dimensions. We will state
the result for a one-loop integral using Feynman parametrization (see also [1]):

Fn =

∫
dDx0

iπD/2

n∏
j=1

1

(−(x0 − xj)2 +m2
j )
aj

(2.8)

=
Γ(a−D/2)∏n

i=1 Γ(ai)

∫ ∞
0

(
n∏
i=1

dαiα
ai−1
i

)
δ(
∑n

i=1 ciαi − 1)Ua−D

(V + U
∑n

i=1m
2
iαi)

a−D/2 , (2.9)

where x0 is the loop momentum, x1, x2, ..., xn are sums of external momenta, a =∑n
i ai, U =

∑n
i=1 αi, and V =

∑
i<j αiαj(−(xi − xj)2). The parameters ci can be

freely chosen with the only restriction that at least one is nonzero. The result will not
depend on the particular choice of the ci. It is possible to generalize this formula to
more than one loop, with almost the same formula but with generalized definitions of
U and V .

Using the formula (2.9) we can for example calculate the bubble integral with mass-
less internal lines (see figure 2.1)

I2 =

∫
dDk1

iπD/2
1

k21(k1 − p1 − p2)2
. (2.10)

Here the external lines p1, p2, p3, and p4 are all massless which is equivalent to one
massive external line on each side, since any massive four-momentum can be written
as a sum of two massless four-momenta.
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2. Loop-Integral Methods

k1

p2

p1

p3

p4

Figure 2.1.: Bubble integral

We will rewrite this with the variables of equation (2.9) and make a generalization
by allowing arbitrary powers a1 and a2 of the propagators:

I2 =

∫
dDx0

iπD/2
1

(−(x0 − x1)2)a1(−(x0 − x2)2)a2
, (2.11)

where x0 = k1, x1 = 0 and x2 = p1 + p2. The only Lorentz invariant quantity the
result can depend on is s := (p1 + p2)

2 and on dimensional grounds it is already clear
that the result will be sD/2−a times a function that does not depend on s. After a
short calculation we get the useful formula [6]

I2 = (−s)D/2−aΓ(a−D/2)Γ(D/2− a1)Γ(D/2− a2)
Γ(a1)Γ(a2)Γ(D − a)

. (2.12)

2.2. Integration by Parts Identities

It turns out that there are many algebraic relations between different Feynman inte-
grals and since the evaluation of most Feynman integrals is rather difficult, it is very
efficient to use these relations to obtain further Feynman integrals from the ones we
already know. A very rich set of such relations can be obtained via the integration
by parts identities (IBP), which relate different integrals of a given integral family [7].
An integral family is the set of all integrals with a given propagator structure, but
allowing arbitrary integer powers of the propagators.

As an example we consider the integral family containing the massless box using
the labeling defined in figure 2.2 (a similar example can be found in [6]),

Ia1,a2,a3,a4 =

∫
dDk

iπD/2
1

(−k2)a1(−(k − p1)2)a2(−(k − p1 − p2)2)a3(−(k + p4)2)a4
.

(2.13)
Now we use the fact that if we differentiate the integral with respect to the loop
momentum k before integration the integral vanishes. So

0 =

∫
dDk

iπD/2
∂

∂kµ

(
vµ

1

(−k2)a1(−(k − p1)2)a2(−(k − p1 − p2)2)a3(−(k + p4)2)a4

)
,

(2.14)

where vµ is an arbitrary vector built from the loop momentum or the external mo-
menta. It is always possible to express the integrals obtained by taking the derivative
as a linear combination of integrals of the integral family. Different values of vµ will
create different integration by parts identities and one could for example try to find

5
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p1

p2 p3

p4k1

Figure 2.2.: Family of one-loop box diagrams

vectors vµ that relate only integrals with powers of the propagators not bigger than
one (examples for this can be found e. g. in [8]). In this case, however, we simply
choose v = k which generates the following IBP identity

(D − 2a1 − a2 − a3 − a4 − sa3Y +
3 − a2Y

+
2 Y

−
1 − a3Y

+
3 Y

−
1 − a4Y

+
4 Y

−
1 ) (2.15)

×Ia1,a2,a3,a4 = 0,

where Y ±i Ia1,a2,a3,a4 = Ia1±δ1i,a2±δ2i,a3±δ3i,a4±δ4i . By choosing different vectors v or
using the diagram symmetry we obtain further IBP-relations, so that we can express
any integral of that family in terms of I1,1,1,1, I1,0,1,0, and I0,1,0,1. The choice of
these three integrals as basis integrals is of course not unique and we could also
have taken three different integrals. Normally one would choose integrals that are
particularly easy to calculate or have some preferred properties such as UV-finiteness.
Any integrals that form a basis for a given integral family are called master integrals.
Smirnov [9] showed that the number of master integrals for any integral family is
always finite.

A few examples of such reductions for our example are

I1,1,1,0 =
2(D − 3)

(D − 4)s
I1,0,1,0, (2.16)

I1,1,1,2 =
(D − 5)

t
I1,1,1,1 −

4(D − 5)(D − 3)

(D − 6)s2t
I1,0,1,0, (2.17)

I1,0,0,0 = 0. (2.18)

The first shows that the triangle with two massless external legs is directly related to
the bubble integral. The second relation is an example for the reduction of an integral
with propagator powers bigger than one. The last one might be a bit surprising if
we compare it to the original definition of the integral but this is a special property
of dimensional regularization, where all integrals that do not depend on any scale
are zero. For more details on such subtleties of dimensional regularization see for
example [10].

The IBP-procedure is implemented with the Laporta algorithm in free available
computer programs such as AIR [11], FIRE [12], LITERED [13] and REDUZE [14].
For this master thesis a combination of FIRE and LITERED was used.
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2. Loop-Integral Methods

2.3. Differential Equations

It turns out that we can obtain further relations between Feynman integrals if we
also consider derivatives with respect to external variables. We will show how these
derivatives can be used together with the IBP identities to setup a linear system of
differential equations for the master integrals.

Since the massless box integral of the last section is a Lorentz scalar, its value
can only depend on scalar products of the external momenta. There are only two
independent scalar products, which are also known as Mandelstam variables and we
define them as s = (p1 + p2)

2 and t = (p1 + p4)
2. So it is useful to consider derivatives

with respect to s or t. Since the integrand in (2.13) is written in terms of p1, p2,
and p4 rather than s and t we have to use the chain rule. Here some care has to be
taken, since the components of p1, p2, and p4 are not independent and must fulfill the
conditions p21 = p22 = p24 = (−p1 + p2 + p4)

2 = 0 to ensure that all external particles
are massless. What we have to do to get a consistent calculation is to ensure that
the derivatives ∂s and ∂t commute with the boundary conditions (see also [6]). So we
start making the ansatz

∂s = (α1p1 + α2p2 + α4p4) · ∂p2 (2.19)

and make sure that ∂sp
2
1 = ∂s(p1 + p2 + p4)

2 = 0 and also ∂s(p1 + p2)
2 = ∂ss = 1.

These equations can be solved by choosing the parameters in (2.19) to be

α1 =
1

2s
, (2.20)

α2 =
−2s− t
2s(s+ t)

, (2.21)

α4 =
1

2(s+ t)
. (2.22)

Now we can do the same for ∂t but now we must be careful that if we use ∂s and ∂t
simultaneously that also ∂s(p1 + p4)

2 = 0 and ∂t(p1 + p2)
2 = 0. The first is already

fulfilled by having chosen to make the ansatz (2.19) containing ∂p2 rather than to ∂p1 .
So consequently the correct ansatz for ∂t is

∂t = (β1p1 + β2p2 + β4p4) · ∂p4 (2.23)

and imposing the corresponding boundary conditions we find

β1 =
1

2t
, (2.24)

β2 =
1

2(s+ t)
, (2.25)

β4 =
−s− 2t

2t(s+ t)
. (2.26)

7



2. Loop-Integral Methods

With these formulas at hand we can calculate the derivatives of the three master
integrals with respect to s and t. The result can again be expressed in terms of
integrals of the same family which can then be reexpressed in terms of the three
master integrals using the IBP-relations. Thus the derivatives of the master integrals
with respect to external variables are again linear combinations of the master integrals.
By introducing the vector

~f =

 I0,1,0,1I1,0,1,0
I1,1,1,1

 (2.27)

we can set up the following system of differential equations,

∂s ~f = As ~f (2.28)

∂t ~f = At ~f (2.29)

with

As =

 0 0 0
0 − ε

s 0
4ε−2
st(s+t)

2−4ε
s2(s+t)

− s+t+tε
s2+ts

 , (2.30)

At =

 0 0 0
0 − ε

s 0
4ε−2
st(s+t)

2−4ε
s2(s+t)

− s+t+tε
s2+ts

 , (2.31)

where we have set D = 4−2ε. A useful cross check for these matrices can be obtained
by using ∂s∂t ~f = ∂t∂s ~f which is equivalent to As · At − As · At + ∂tAs − ∂sAt = 0.
Another crosscheck is to calculate

sAs + tAt =

 −ε 0 0
0 −ε 0
0 0 −ε− 2

 (2.32)

where the diagonal entries should correspond to the scaling dimension of the basis
integrals, which is true in our case. We can simplify the differential equations by
normalizing the basis integrals appropriately so that they will only depend on the
dimensionless variable x = t

s . Henn [3] showed that for a more sophisticated choice
of basis the differential equations can simplify in a way that they can be solved easily
order by order in an ε-power expansion. For the current integral family such a basis
is [6]

g1 = cε(−s)εtI0,1,0,2, (2.33)

g2 = cε(−s)εsI1,0,2,0, (2.34)

g3 = cε2(−s)εstI1,1,1,1, (2.35)

where c = eεγE and γE is the Euler-Mascheroni constant. The factors of ε have been
included to make all integrals finite in the limit ε → 0 and the powers of s make the

8



2. Loop-Integral Methods

integral dimensionless so that they depend only on x = t/s. The factors like s t for g4
is connected with the leading singularity of the integrand, which will be introduced
in section 2.7. Using this basis the differential equation gets the following convenient
form,

∂x~g(x, ε) = ε

(
a

x
+

b

1 + x

)
~g(x, ε), (2.36)

where

a =

 −1 0 0
0 0 0
−2 0 −1

 , b =

 0 0 0
0 0 0
2 2 1

 . (2.37)

With this equation we can now solve the integrals ~g order by order in ε using the
ansatz

~g(x) =
∞∑
k=0

εk~g(k)(x). (2.38)

The differential equation (2.36) relates the coefficient functions g(k) of different orders
by

g(0) = const., (2.39)

∂x~g(x)(k) =

(
a

x
+

b

1 + x

)
g(k−1)(x), for k ≥ 1. (2.40)

So we can find the solution for ~g by integrating order by order in ε and the only
open question now is how we can determine the integration constants for each inte-
gration. Here we must include additional knowledge about the integrals, for instance
the integrals g1 and g2 can directly be solved using equation (2.12). We also use
the fact that the integrals cannot have a pole at x → −1, which corresponds to
u = −s− t = (p1 +p3)

2 → 0, since a planar diagram can only have poles if neighbored
legs are collinear. These informations suffice to fix all integration constants.

The solution can be written in terms of polylogarithms, which are defined as

Li1 = − log(1− x), Lin+1(x) =

∫ x

0

Lin(t)

t
dt, (2.41)

and also have the power series representation

Lin(x) =
∞∑
k=1

xk

kn
= x+

x2

2n
+
x3

3n
+ . . . (2.42)

So the first few orders in the ε-expansion of g3 are

g3(x) = 4 + ε(−2 log x) + ε2
(
−4π2

3

)
+ ε3

(
7π2

6
log x+

1

3
log3 x− π2 log(1 + x)

(2.43)

− log2(x) log(1 + x)− 2 log(x)Li2(−x) + 2Li3(−x)− 34

3
ζ3

)
+O(ε4).

9



2. Loop-Integral Methods

Note that since we chose g3 ∝ ε2I1,1,1,1 the ε-expansion of the box integral will start
with a term 1

ε2
, which is due to an infrared divergency that is caused by contributions

to the integral in the region where kµ → 0 in equation (2.13).

2.4. Uniform Transcendentality and Pure Functions

In the last section we saw that if we choose our basis integral in a clever way the
resulting differential equations simplify a lot and can be solved much easier and the
question is now how we can find such functions. The key property of these functions
can be described with the concept of the degree of transcendentality T (f) of a function
[3]. In the last section we saw that in order to calculate the m-th element of the ε-
expansion of any basis function gi we needed m iterated integrals. Now T (f) is
precisely defined as the number of iterated integrals needed to define the function f ,

which means that e. g. T (g
(m)
i ) = m for g

(m)
i defined in equation (2.38). This also

means that e. g. T (log(x)) = 1 and T (Lik(x)) = k. Besides T (f1f2) = T (f1) + T (f2)
and algebraic factors are assigned 0 degree of transcendentality. Numerical constants
such as π and ζn are assigned the value of the corresponding function from which they
can be derived. So since ζn = Lin(1) we have T (ζn) = n and because of ζ2 = π2

6
we can conclude that T (π) = 1. We are now interested in functions with uniform
transcendentality which is defined as a function that can be written as a sum of terms
having all the same degree of transcendentality. If the function also satisfies

T
(
d

dx
f(x)

)
= T (f(x))− 1, (2.44)

then the function f is called a pure function. So with this definition we can see that
if we would multiply a pure function with an algebraic function of x the resulting
function would still be of uniform transcendentality but not a pure function anymore,

since the derivative is also applied on the algebraic function. The functions g
(k)
i (x) of

the last section are all pure functions and if we define T (ε) = −1 then also the whole
functions gi(x) can be called a pure functions.

So to find out if a given Feynman integral is a pure function it has turned out to
be very useful to calculate the leading singularities of the corresponding integrand.
The leading singularities can be calculated by analytically continuing the integrand to
complex momenta and then take contour integrals around the poles of the integrand.
Since this can be done by simply calculating the residues at these poles this is most
times much easier than taking the integral over the real axis to calculate the original
Feynman integral. A conjecture that will be tested in this thesis is that functions where
all leading singularities are kinematic independent constants correspond to integrals
that are pure functions [3].

10



2. Loop-Integral Methods

2.5. Integral Reduction

For one-loop integrals it is possible to express any n-point Feynman integral as the
sum of four basis integrals and a rational function [15]. The four basis integrals are
tadpole, bubble, triangle, and the box with an arbitrary number of external legs of
the original diagram at each vertex.

Figure 2.3.: Basis of one-loop integrals: tadpole, bubble, triangle, and box

So given a generic n-point one-loop integral with a possible numerator N (k) we
have the decomposition (see also [1]),

In[N (k)] =
∑
j4

c4,j4I
(j4)
4 +

∑
j3

c3,j3I
(j3)
3 +

∑
j2

c2,j2I
(j2)
2 +

∑
j1

c1,j1I
(j1)
1 +R+O(ε), (2.45)

where I4 is a box, I3 a triangle, I2 a bubble, and I1 a tadpole integral and R is a
rational term. The external legs of these four basis integrals are sums of adjacent
external momenta of the original integral In and since there are several possibilities
to distribute the n external legs to the legs of each of the four basis integrals, we
have to take corresponding sums and each summand gets its own coefficient ci,ji . The
decomposition is only valid to order O(ε0). If we wanted a decomposition that is valid
to all orders in ε we would have to include the scalar pentagon integral as well [8].

To realize the reduction we have to perform three different steps for integrals with
n ≥ 5 with a possible numerator.

• Reduce the n-point integral with numerator N (k) and n ≥ 5 to a linear combi-
nation of n-point integrals with a scalar numerator (which means independent
of the loop momentum) and integrals with less propagators.

• Reduce all scalar integrals with n ≥ 5 legs to integrals with less propagators.

• Reduce all integrals with n ≤ 4 having a k-dependent numerator to scalar inte-
grals with n ≤ 4.

We explain the reduction process in more detail for the special case where all internal
propagators are massless, even though the reduction process also works in the case
of arbitrary massive propagators. In addition we restrict our external momenta to be
strictly four-dimensional, as well as all vectors in the numerator that are multiplied
with the loop momentum.

11



2. Loop-Integral Methods

We consider the integral

In[N (k)] =

∫
dDk

(2π)D
N (k)

k2(k − p1)2(k − p1 − p2)2 · · · (k − p1 − · · · − pn)2
, (2.46)

and to show the first step it is enough to show that any product k · v can be written
as a liner combination of inverse propagators and a constant. For n ≥ 5 we have in
general four linear independent external momenta. Note that because of momentum
conservation there are only 3 linear independent external momenta for n = 4. So
for n ≥ 5 we may choose four external momenta as a basis and thus can express
k · v, where v is an arbitrary four-dimensional vector, in terms of scalar products of
k with external momenta. The next observation is that any scalar product k · pi can
be expressed as a linear combination of inverse propagators plus terms independent
of the loop momentum:

k ·pi = −1

2
(k−p1−· · ·−pi)2+

1

2
(k−p1−· · ·−pi−1)2+(p1−· · ·−pi−1)·pi+

1

2
p2i . (2.47)

This means that any integral In[(k · v)j ] with n ≥ 5 can be reduced to inte-
grals In−1[(k · v)j−1] and integrals In[(k · v)j−1]. So repeating this step the integral
In[(k · v)j ] can finally be written as a linear combination of In[1] and integrals with
fewer propagators, where the coefficients are only dependent on external momenta.

To reduce scalar integrals with n ≥ 5 we follow [8] and make use of Gram determi-
nants, which are defined as

G

(
p1, . . . , pl
q1, . . . , ql

)
= det

(i,j)∈l×l
(2pi · qj) (2.48)

Now one can make use of the fact that the Gram determinant vanishes if either the
pi-vectors or the qi-vectors are linear dependent. So in four dimensions any Gram
determinant with l ≥ 5 will vanish. So by expanding

G

(
k, p1, p2, p3, p4
p5, p1, p2, p3, p4

)
= 0 (2.49)

we get a relation between a scalar numerator for n ≥ 6 and numerators that cancel
propagators and thus lead to integrals with less propagators. To reduce the scalar
pentagon we consider

G

(
k, p1, p2, p3, p4
k, p1, p2, p3, p4

)
= O(ε), (2.50)

which is only zero for D = 4. Thus the scalar pentagon can only be reduced up order
O(ε).

Finally, we need to discuss the reduction of integrals with n ≤ 4 and k-dependent
numerators to scalar integrals with n ≤ 4. The argument here is similar to the one we
used for the reduction of k-dependent numerators with n ≥ 5 with the difference that
in this case there are not enough external momenta to construct a four-dimensional

12



2. Loop-Integral Methods

basis. However, in these cases it can be argued that scalar products of k with vec-
tors that are perpendicular to the external momenta lead to numerators that vanish
after integration [1]. Note that the reduction process to integrals with n ≤ 4 and
k-dependent numerators was purely on the integrand level, whereas the reduction to
scalar integrals with n ≤ 4 is only true after integration. So which ansatz we choose
for our Feynman integral depends whether we want an equality on the integrand level
or the integral level.

Integral reduction can also be applied for more than one loop, even though the
number of irreducible integrals is in this case much larger than in the one-loop case.
One example are the planar two-loop diagrams with massless internal propagators.
Here each diagram with eleven or less propagators can be reduced. In contrast to the
one-loop case, there are also diagrams with loop variable dependent numerators, since
in the two-loop case not all possible scalar products can be written as linear combina-
tions of inverse propagators plus a constant as in the one-loop case. A more detailed
description of the reduction of the planar double box with massless propagators can
be found e. g. in [8].

2.6. Unitarity Cuts

2.6.1. Optical Theorem

Unitarity cuts are a useful tool that can be helpful in different ways to calculate
Feynman loop integrals. Cutting a propagator of an integral means replacing this
propagator by a delta function with the corresponding inverse propagator as its argu-
ment.

One application of unitarity cuts is a variation of the optical theorem, which gives
a relation between the imaginary part of the loop amplitude and the integral over tree
amplitudes [1],

2ImA(1-loop) =

∫
d4kδ(+)(k2)δ(+)((k − PL)2)A

(tree)
L A

(tree)
R , (2.51)

where we had to use δ(+)(k2) := δ(k2)Θ(k0), because of a subtlety that is related to
causality [1].

The shaded gray regions in figure 2.4 define arbitrary tree-level diagrams for a given
number of external legs. The imaginary part of the amplitude is proportional to the
discontinuity of the amplitude across the branch cut of interest.

This relation can be very useful if we use it along with the ansatz of equation (2.45)
to determine the coefficients cn,j . So in order to calculate any one-loop amplitude
A(1-loop) we know that we can write it as

A(1-loop) =
∑
j4

c4,j4I
(j4)
4 +

∑
j3

c3,j3I
(j3)
3 +

∑
j2

c2,j2I
(j2)
2 +

∑
j1

c1,j1I
(j1)
1 +R+O(ε). (2.52)

Now we cut the amplitude into two pieces in all relevant ways. This corresponds
for the left-hand side of equation (2.52) to integrate over the corresponding tree-level

13



2. Loop-Integral Methods

amplitudes and for the right hand side to calculate the branch cut discontinuities of the

I
(ji)
i by replacing the two propagators, where the diagram is cut, by delta functions.

Integrals I
(ji)
i where the corresponding propagator is not present will vanish on that

cut, so that for every cut we get linear relations between some of the coefficients ci,ji
and integrals over tree amplitudes from the left hand side. The only part we cannot
obtain with this method is the rational part R of the amplitude.

PL PR

k

k − PR

Figure 2.4.: Cutting a one-loop amplitude into two tree amplitudes and using the
optical theorem

The non-rational part of the amplitude is thus also called ’cut-constructable’.

2.6.2. Generalized Cuts

Using the optical theorem for a one-loop amplitude we would always cut two propa-
gators. However, sometimes it is helpful to cut more than two propagators. Because
of the expansion in equation (2.45) the maximal number of propagators we can cut
in a one-loop amplitude is four, since otherwise the right hand side of the expansion
always vanishes. One method to determine the coefficients for a general one-loop am-
plitude using generalized cuts is to match the amplitude and the expansion in boxes,
triangles, bubbles, tadpoles on the integrand level. Since the integral reduction with
n ≤ 4 with a numerator to scalar integrals is only possible on the level of the integral
and not of the integrand we have to make the more general ansatz (see also [1])

A(1-loop integrand)
n (k) =

∑
1≤i1<i2<i3<i4≤n

di1i2i3i4(k)

di1di2di3di4
+

∑
1≤i1<i2<i3≤n

ci1i2i3(k)

di1di2di3

+
∑

1≤i1<i2≤n

bi1i2(k)

di1di2
+

∑
1≤i1≤n

ai1(k)

di1
, (2.53)

where the numerators also depend on the scalar products of the loop momentum with
vectors that are perpendicular to the external momenta of the corresponding box,
triangle, bubble, or tadpole. Even though after integration only the part independent
of the loop momenta will survive we need them in the ansatz to determine the coef-
ficients. The strategy is now to start with the maximal number of four cuts, where
all but one of the box integrands vanish to determine the numerators di1i2i3i4(k) of
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2. Loop-Integral Methods

the boxes. We continue to cut one propagator less, so that we get contributions of
boxes and triangles. By also using the already known box numerators di1i2i3i4(k) this
allows us to determine the numerators ci1i2i3(k) of the triangle. We proceed in the
same way to get also the bubble numerators and the tadpole numerators. Note that in
this procedure all we needed to know are the tree-level amplitudes and the four basic
scalar integrals to determine the whole amplitude without the rational part. Espe-
cially no further integration was needed in comparison to the previous method, where
only two propagators were cut, even though also there the integration can sometimes
be avoided.

Another difference to the method where we cut only two propagators is that we
also have to allow complex momenta since the solution of setting four propagators
to zero is in general complex. Using complex momenta makes also a difference for
the tree amplitudes in the left hand side of equation (2.53) since amplitudes like the
three-point tree amplitude for gluons vanishes for real momenta but not for general
complex momenta.

2.7. Leading Singularities

Unitarity cuts are not only useful to calculate the coefficients of the amplitude in
the ways described in the previous section, but can be also used to analyze analytic
properties of Feynman integrals in general. We introduced unitarity cuts by replacing
propagators with delta functions. Another possible interpretation is to understand
them as taking contour integrals around the poles of the propagators (see also [4]).
Taking the four cuts of the propagators Pi can be written as taking four contour
integrals around the poles of the propagators Pi,

1

(2πi)4

4∏
i=1

∮
Pi=0

dPi
Pi

1

J(k∗)
×R(k∗). (2.54)

Here R is the rest of the integrand, which has to be evaluated at k∗, the solution to
P1 = P2 = P3 = P4 = 0. J is the Jacobian of the variable transformation from kµ to
Pi defined as

J = det

(
∂(P1, P2, P3, P4)

∂(k0, k1, k2, k3)

)
, (2.55)

which also has to be evaluated at k = k∗. Different orderings can lead to a different
sign, which is related to the orientation of the contour. Signs of residues, however,
will not be important for the analysis we are going to do.

The only difference between calculating unitarity cuts and calculating the integral
along the real axis is the path on which we integrate. So it is reasonable to assume
that the quantities we get from the unitarity cuts and the Feynman integrals have
similar properties and since calculating unitarity cuts is most times much easier than
determining the integral over the real axis it can be useful to calculate unitarity cuts
in order to learn something about the properties of the Feynman integral. If we take
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2. Loop-Integral Methods

the residues for each integration variable we obtain the quantity that is referred to
as a leading singularity of the integrand, which we already mentioned in section 2.4.
Sometimes the number of propagators is smaller than the number of integration vari-
ables as for example in the case of the triangle and also in most multi-loop diagrams,
so one might wonder if there are enough poles where we can take residues. In fact
since the propagators are quadratic in the momenta taking the residue at the pole of
one propagator creates new factors in the denominator so that we can take also the
residues of these new factors. Leading singularities of this type are called composite
leading singularities. We will see detailed examples for leading singularities in the
next chapters.

2.8. Dlog Forms

A particularly nice way to expose the leading singularities of a rational integrand is
to write it as a sum of dlog form. As an example from [16] the integrand

f(x, y) =
dx ∧ dy

xy(x+ y + 1)
(2.56)

can also be rewritten as

f(x, y) = dlog
x

1 + x+ y
∧ dlog

y

1 + x+ y
, (2.57)

where

dlogf(x, y) ≡ ∂f(x, y)

∂x

dx

f(x, y)
+
∂f(x, y)

∂y

dy

f(x, y)
. (2.58)

Using this definition it is easy to verify that equation (2.57) is equivalent to equation
(2.56). Finding a dlog form like in (2.57) for a given form on the other hand is not
always simple and we will discuss methods to derive dlog forms for a given integrands
in the next chapter. However, for some integrands there exists no dlog form at all
since for example no algebraic transformation of Ω(x) = dx or Ω(x) = dx/x2 can bring
these two cases to a form like c dlog(f(x)), where c is a numeric constant. One can
show that any function having a double pole or pole of higher order in any variable
cannot be written in a dlog form. Also Ω(x) = dx has a double pole which is not
so obvious, because the double pole in this case is at infinity which can be seen by
transforming x→ 1/y resulting in Ω(x) = dx→ −dy/y2.

Leading singularities are directly related to dlog forms. If we can write a function
as

Ω =
∑
i

cidloggi1 ∧ dloggi2 ∧ · · · ∧ dloggij , (2.59)

then the leading singularities of Ω are precisely ci, provided that all dlog forms in the
sum of (2.59) are linearly independent.

Another nice feature of dlog forms is that taking generalized cuts is trivial, since
we do not have to calculate any Jacobian factors.
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2. Loop-Integral Methods

Dlog-forms also play an important role in N = 4 Super Yang-Mills theory, where
all planar amplitudes could be reformulated with a dual formulation using on-shell
diagrams and the positive Grassmannian, which implies that all integrands can be
written as dlog forms. This reformulation is connected to the geometric concept of
the amplituhedron, which, however, is defined in momentum twistor variables, which
can only be used for planar diagrams. Since we do not need momentum twistor
variables to express diagrams as dlog forms, they turn out to be a useful tool for the
analysis of non-planar diagrams in N = 4 Super Yang-Mills theory and also for the
investigation of the question if the concept of the amplituhedron is also valid in the
non-planar case [17].
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3. Computing Dlog Forms and Leading
Singularities

3.1. Example for Deriving a Dlog Form

As a simple example for demonstrating how we can actually rewrite a given integrand
as a dlog form we again consider the example of [16]:

f(x, y) =
dx ∧ dy

xy(x+ y + 1)
. (3.1)

One way to proceed is to make a partial fraction decomposition of f(x, y) with respect
to one of the integration variables.

Choosing y in this example we get

f(x, y) =
dx ∧ dy
xy(1 + x)

− dx ∧ dy
x(1 + x)(1 + x+ y)

. (3.2)

In this case the partial fraction decomposition brings it into a convenient form, because
for both summands the denominators are linear in y and the numerators do not depend
on y. Later we will see an example where this is not the case. Here we can write all
y-dependencies in the dlog factors with prefactors being functions of the remaining
variables, in this case only x. So

f(x, y) =
1

x(1 + x)
dx ∧ dlog(y)− 1

x(1 + x)
dx ∧ dlog(1 + x+ y), (3.3)

and now we can repeat this procedure for the other variables, in this case x, which
gives us the full decomposition in dlog forms as

f(x, y) = dlog(x) ∧ dlog(y)− dlog(1 + x) ∧ dlog(y) (3.4)

− dlog(x) ∧ dlog(1 + x+ y) + dlog(1 + x) ∧ dlog(1 + x+ y).

This can also be written in a more compact form by summarizing the terms like

f(x, y) = (dlog(x)− dlog(1 + x)) ∧ (dlog(y)− dlog(1 + x+ y)) (3.5)

= dlog
x

1 + x
∧ dlog

y

1 + x+ y
. (3.6)

So we can see that the dlog form is not unique. While the equivalence of the dlog
forms (3.4) and (3.6) can be easily seen by summarizing and expanding, there are dlog
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3. Computing Dlog Forms and Leading Singularities

forms where the equivalence is less obvious like for example the equivalence of (3.6)
and (2.57).

Next, we look at an example where the partial fraction decomposition leads to
square root terms. If we start with the integrand

h(x, y) =
dx ∧ dy
y(y2 − x)

(3.7)

and try to make a partial fraction decomposition for y we leave the space of rational
functions getting

h(x, y) = −dx ∧ dy
xy

+
dx ∧ dy

2x(−
√
x+ y)

+
dx ∧ dy

2x(
√
x+ y)

. (3.8)

In this case we can still get to a solution, because after stripping off the dlog terms
the remaining functions are pure rational again, so we get

h(x, y) = dlog(x) ∧ [−dlog(y) +
1

2
dlog(−

√
x+ y) +

1

2
dlog(

√
x+ y)] (3.9)

= −dlog(x) ∧ dlog(y) +
1

2
dlog(x) ∧ dlog(−x+ y2). (3.10)

So in this case we could actually derive a dlog form despite the square roots and at the
end we could even summarize the terms in such a way that the square roots vanished.
But in more complicated examples with more variables this may not be the case,
since we can only make partial fraction decomposition of functions that are rational
in the according variable. But clearly we could have gotten a dlog form of (3.7) much
easier if we just would have chosen to do the first partial fraction decomposition with
respect to x instead of y. So sometimes it is possible to avoid these square roots
by just taking the right order of choosing the integration variables. In section 3.3.3
we will consider examples that cannot be solved like (3.7) and present methods that
enable the calculation of leading singularities also in some of the more involved cases.

3.2. One-loop Dlog Forms

Next, we want to apply our method to integrands that are also relevant in physics by
starting with the one-loop diagrams. We restrict ourselves to four-point integrands
with massless external momenta and massless propagators and want to discuss the
bubble, triangle, and box diagram. The corresponding integrands for these three loops
are

dI2 =d4k1
1

k21(k1 − p1 − p2)2
, (3.11)

dI3 =d4k1
s

k21(k1 − p1)2(k1 − p1 − p2)2
, (3.12)

dI4 =d4k1
st

k21(k1 − p1)2(k1 − p1 − p2)2(k1 + p4)2
, (3.13)
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k1

p2

p1

p3

p4

p1

p2

p3

p4
k1 p1

p2 p3

p4k1

Figure 3.1.: The bubble, triangle and box one-loop diagrams

where the numerators are chosen such that the integrands are dimensionless. The
variables s = (p1 + p2)

2, t = (p2 + p3)
2 and u = (p1 + p3)

2 are the usual Mandelstam
variables and they are related by momentum conservation as s+ t+u = 0, so that we
actually need only two of them.

If we now want to derive dlog forms for these integrands, working with the four
components of k1 as free variables would immediately lead to square root terms, so
it is crucial to switch variables and it turns out that spinor-helicity variables work
well in our case. An introduction to the spinor helicity formalism can be found e. g.
in [18]. So following [16] we rewrite k1 as a linear combination of four basis vectors
constructed from p1 = λ1λ̃1 and p2 = λ2λ̃2 as

k1 = α1λ1λ̃1 + α2λ2λ̃2 + α3λ1λ̃2 + α4λ2λ̃1. (3.14)

The Jacobian arising due to the variable transformation is the determinant of the four
by four matrix with components

J µ
i =

∂kµ1
∂αi

, µ = 0, ..., 3, i = 1, ..., 4. (3.15)

It turns out to be easier to calculate the determinant of JgJT with g being the metric
tensor g =diag(1,−1,−1,−1):

(JgJT )ij = J µ
i gµνJ

ν
j = J µ

i Jjµ = Ji · Jj (3.16)

The only products not being zero are J1 · J2 = k1 · k2 = s
2 , J3 · J4 = 1

2〈12〉[12] = − s
2 ,

and the two components from the symmetric exchange of i and j. This leads to

det(JgJT ) =
1

16s4
= det(J)det(g)det(JT ) = −det(J)2 (3.17)

and finally

det(J) = ±i
s2

4
. (3.18)

Since we are only interested in leading singularities up to a numerical factor, in the
following we will ignore the factor i/4 from the Jacobian.

Even though the parametrization in (3.14) simplifies the integrands a lot, we will
have dependencies on terms like 〈ij〉, which can be avoided by using a slightly modified
representation

k1 = α1λ1λ̃1 + α2λ2λ̃2 +
〈23〉
〈13〉

α3λ1λ̃2 +
〈13〉
〈23〉

α4λ2λ̃1, (3.19)
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leaving the Jacobian the same as before. With this parametrization our integrands
will only depend on αi and the two Mandelstam variables s and t.

3.2.1. Bubble

First we try to apply the dlog decomposition procedure to the bubble diagram, where
using (3.19) the integrand reads

I2 =
dα1 ∧ dα2 ∧ dα3 ∧ dα4

(α1α2 − α3α4)(1− α1 + α1α2 − α2 − α3α4)
. (3.20)

If we now put α2, α3 and α4 into dlog-factors, we get

I2 =dα1 ∧ dlog(−1 + α1 + α2) ∧ dlog(α3)∧ (3.21)

[dlog(α1α2 − α3α4)− dlog(1− α1 − α2 + α1α2 − α3α4)]. (3.22)

The remaining variable α1 cannot be transformed into a dlog factor since the remaining
function is a constant not dependent on α1 any more and thus leading to a double
pole at infinity. So the bubble integrand is an example where no dlog form exists.

3.2.2. Triangle

Unlike the bubble, the triangle can actually be brought into a dlog form. Writing k1
as in equation (3.19) the integrand reads

I3 =
dα1 ∧ dα2 ∧ dα3 ∧ dα4

(α1α2 − α3α4)(−α2 + α1α2 − α3α4)(1− α1 − α2 + α1α2 − α3α4)
. (3.23)

Already in this simple case, the order in which we put the variables into the dlog
forms matters. After putting α1 into dlog factors we have

I3 =− 1

α2α3α4
dlog (α1α2 − α2 − α3α4) (3.24)

+
1

α2

(
α2
2 − α2 + α3α4

)dlog (α1α2 − α3α4) (3.25)

+
α2 − 1

α3α4

(
α2
2 − α2 + α3α4

)dlog (α2α1 − α1 − α2 − α3α4 + 1) , (3.26)

so we can see, that we cannot simply put α2 into dlog factors, since this would lead
to square root terms.

If we choose α3 or α4 next, however, we won’t get any problems for the rest of the
procedure.

The full dlog form for the triangle is

I3 =dlog (α4) ∧ dlog (α2) ∧ dlog (α3) ∧ dlog (−α2 + α1α2 − α3α4)

+ dlog (α4) ∧ dlog (α2) ∧ dlog
(
−α2 + α2

2 + α3α4

)
∧ dlog (1− α1 − α2 + α1α2 − α3α4)

− dlog (α4) ∧ dlog (α2) ∧ dlog (α3) ∧ dlog (1− α1 − α2 + α1α2 − α3α4)

− dlog (α4) ∧ dlog (α2) ∧ dlog
(
−α2 + α2

2 + α3α4

)
∧ dlog (α1α2 − α3α4) . (3.27)
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Bern et al. [16] found also a dlog form consisting of only a single term,

dI3 = dlog(α1α2−α3α4)∧dlog(α1α2−α3α4−α2)∧dlog(α1α2−α3α4−α1−α2+1)∧dlogα3,
(3.28)

or written in the original variables

dI3 = dlogk21 ∧ dlog(k1− p1)2 ∧ dlog(k1− p1− p2)2 ∧ dlog[(k1− p1) · (k∗1 − p1)], (3.29)

where k∗1 = βλ2λ̃1+λ1λ̃1 is one of the solutions to k21 = (k1−p1)2 = (k1−p1−p2)2 = 0.

3.2.3. Box

The box can also be written as a dlog form using the repeated partial fraction de-
composition procedure which leads to a sum of 48 dlog forms. In this case it becomes
obvious that our procedure does not lead to the most compact ways of writing inte-
grands as dlog forms, since it is also possible to write the box with just a single dlog
form as [16]

dI4 = dlog
k21

(k1 − k∗1)2
∧ dlog

(k1 − p1)2

(k1 − k∗1)2
∧ dlog

(k1 − p1 − p2)2

(k1 − k∗1)2
∧ (k1 + p4)

2

(k1 − k∗1)2
, (3.30)

where k∗1 = − 〈14〉〈24〉λ2λ̃1 + λ1λ̃1 is one of the two solutions for k1 to k21 = (k1 − p1)2 =

(k1 − p1 − p2)2 = (k1 + p4)
2 = 0.

3.3. Algorithm for Automated Computation

From the method we applied in the last section an algorithm can be extracted, so that
a computer program can be written that automatically derives the dlog forms for a
given diagram or calculates the leading singularities. To derive the results that are
presented in this thesis MATHEMATICA [19] was used to implement an algorithm
for the calculation of leading singularities and dlog forms.

The algorithm, however, is not always successful and there are two reasons why the
algorithm can fail. The first is the appearance of square roots in intermediate steps
and the second is when a term in an intermediate step gets so large that a specific
MATHEMATICA function is not able to handle this term in a reasonable time. In
both cases, however, it was possible to improve the algorithm in such a way that these
problems could be avoided in some special cases so that diagrams where the algorithm
in its original form failed was eventually successful. Some of these improvements will
be discussed in this section.

3.3.1. Choosing the Right Parametrization

One critical step that decides if the algorithm is successful or not in many cases is a
good choice for the parametrization of the loop momenta. Since the standard Lorentz
vectors almost immediately lead to expressions that are quadratic in all integration
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3. Computing Dlog Forms and Leading Singularities

variables the algorithm will fail in most cases if we do not perform a variable trans-
formation. For this thesis we concentrated on four-dimensional massless four-point
diagrams. For these diagrams the spinor helicity variables turned out to be a partic-
ularly good choice. So for a loop momentum ki we would use the parametrization,
which we already used in previous examples,

ki = αi,1λmλ̃m + αi,2λnλ̃n +
〈nj〉
〈mj〉

αi,3λmλ̃n +
〈mj〉
〈nj〉

αi,4λnλ̃m, (3.31)

where m,n, j ∈ {1, 2, 3, 4} and m 6= n 6= j. Note that we can make a different choice of
m and n for each loop momentum ki giving us many different possible parametrizations
in a multi-loop diagram which can be quite helpful, because if the algorithm fails
with one parametrization it might be successful with another parametrization. For a
two-loop diagram such as the non-planar double box there are 36 different possible
parametrizations of (3.31) and in this case the algorithm was successful in 21 of the
36 cases and failed in the other cases. In the successful cases the calculation time
was roughly the same in all but two cases, where the program was more than an
order of magnitude slower, so that for higher loop calculations choosing the wrong
parametrization can make solving the diagram in a reasonable time impossible.

Analyzing diagrams with more external legs than the number of spacetime dimen-
sions D one can also simply use the parametrization

k =

D∑
i=1

αipi. (3.32)

Possible applications are e. g. four-point diagrams in two dimensions or five-point
diagrams in four dimensions.

Another very promising parametrization are momentum twistor variables (see e.
g. [4]), which can, however, only be used for planar diagrams.

3.3.2. Basic Algorithm

Assuming we have a Feynman integrand in an appropriate parametrization, we now
want to list the explicit steps the algorithm performs to either calculate all leading
singularities or derive a dlog form, which implies the knowledge of all the leading
singularities. In both cases a successful calculation also implies that the integrand
has only logarithmic singularities, which means that there are no poles of order two
or higher in any parametrization that is related to the original loop variables by an
algebraic variable transformation. So we start with the integrand

f(α1, ..., αk) =
dα1 ∧ ... ∧ dαknumerator

denominator
, (3.33)

where α1, ..., αk are integration variables and both numerator and denominator are
multivariate polynomials in the variables α1, ..., αk. f may also depend on external
variables like the Mandelstam variables s and t, which will be treated as constants.
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3. Computing Dlog Forms and Leading Singularities

The basic algorithm to calculate a dlog form for f is the following:

Algorithm 1 : Calculate dlog forms

1: Write both the numerator and the denominator of f(α1, ..., αk) as products of
irreducible polynomials1 in the variables α1, ..., αk and cancel common factors.

2: If any factor in the denominator of f containing any variable αi has power bigger
than one the algorithm stops and f has no dlog form.
For example f = dα1∧dα2

α1(α1−α2)2

has no dlog form.
3: If for any variable αi the polynomial degree in the numerator is as big or bigger

than in the denominator, the algorithm stops and f has no dlog form because of
poles at infinity.
For example f = dα1∧dα2α2

α1(α1−α2)
has a pole at infinity for α2 →∞.

4: Choose a variable αi that is linear in all denominator factors. If this is not possible,
the algorithm stops without a result.
For example for f = dα1∧dα2

α1(1+α2
1+α

2
2)

the algorithm fails.

5: Perform a partial fraction decomposition with respect to αi:

f(α1, ..., αk) =
∑
j

dαi ∧ gj(α1, ..., α̂i, ..., αk)

ajαi − bj
,

where α̂i means that αi is omitted and (ajαi − bj) is an irreducible polynomial in
α1, ..., αk. The terms aj and bj are polynomials in α1, ..., αk but independent of
αi.

6: Put the denominators in dlog terms by writing

f(α1, ..., αk) =
∑
j

dlog(ajαi − bj) ∧ gj(α1, ..., α̂i, ..., αk)
1

aj
.

So gj/aj are the residues of f at the poles in αi.
7: Repeat from step 1 for all gj(α1, ..., α̂i, ..., αk)/aj if k ≥ 2.

If we do not need a dlog form and only want to know the leading singularities, we
can omit all dlog factors in the algorithm.

3.3.3. Handling Terms with Quadratic Factors

Since the algorithm fails if there is no integration variable αi that is linear in all de-
nominator factors many integrands cannot be treated by this algorithm. We already
discussed the possibility of choosing another parametrization of the loop variables.
With this strategy, however, we observed cases where the calculation was successful

1Irreducible polynomials are polynomials that cannot be written as a product of two non-constant
polynomials. For example α2

1 − α2
2 is not irreducible because it can be written as the product of

the two irreducible polynomials α1 + α2 and α1 − α2
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3. Computing Dlog Forms and Leading Singularities

for all but the last two or four integration variables and then the algorithm stopped
because of one specific term having a denominator factor being a polynomial that is
quadratic in all remaining integration variables. Now changing the parametrization
and completely restart the whole calculation seems not to be the most efficient way
to handle this situation. The idea to improve the algorithm is to perform the variable
transformation directly on the problematic terms. So suppose T (k1, y) is such a prob-
lematic term that depends on k1 and other integration variables indicated by y. Now
let us assume we have parametrized the loop momentum as

k1 = α1λ1λ̃1 + α2λ2λ̃2 +
〈23〉
〈13〉

α3λ1λ̃2 +
〈13〉
〈23〉

α4λ2λ̃1, (3.34)

so that T (k1, y) becomes a function of α1, ..., α4 and y, which we denote as
T1(α1, α2, α3, α4, y). Imagine now that T1 is a function that cannot be handled by
the algorithm, but on the other hand the parametrization

k1 = β1λ1λ̃1 + β2λ3λ̃3 +
〈32〉
〈12〉

β3λ1λ̃3 +
〈12〉
〈32〉

β4λ3λ̃1, (3.35)

inserted in T (k1, y) would lead to a function T2(β1, β2, β3, β4, y) that can be handled by
the algorithm. The question is how we can directly change from T1(α1, α2, α3, α4, y) to
T2(β1, β2, β3, β4, y) without using the term T (k1, y). The reason for not using T (k1, y)
is that this function is not available for the algorithm in intermediate steps of the
calculation. The solution is to use the transformation:

α1 = β1 +
tβ2
s

+
tβ3
s

+ β4, (3.36)

α2 = −β2 −
tβ2
s
, (3.37)

α3 = β2 +
tβ2
s

+ β3 +
tβ3
s
, (3.38)

α4 = − tβ2
s
− β4, (3.39)

and also change d4α to Jd4β with J being the Jacobian determinant of the variable
transformation. The transformation rules can be obtained by taking the scalar product
of k1 with an appropriate vector in both parametrizations (3.34) and (3.35) leading to
e. g. α1 = s

2k1 · (λ2λ̃2) = β1 + tβ2
s + tβ3

s +β4 and similar for the other transformations.
So for a term T1(α1, α2, α3, α4) with the property that all variables αi are quadratic in
at least one of the denominator factors, we then would try to make all possible variable
transformations of the type we just explained and hope that after at least one of these
transformations we get an expression with an integration variable that is linear in all
denominator factors. This type of transformation was a very useful improvement for
the algorithm and rendered possible many diagrams that failed before.

Even though the type of transformation we just discussed is useful in many cases
there are still many cases where no such transformation leads to a term where the
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3. Computing Dlog Forms and Leading Singularities

algorithm can proceed. However, if we have calculated residues of all integration
variables but two and we have to deal with a term where both integration variables
are quadratic in exactly one denominator factor the problem can actually always be
solved. One example where such a transformations can be successfully applied is the
triangle with three massive external legs. So suppose we have the term

R =
N(x, y)dx ∧ dy

(Ax2 +By2 + Cxy +Dx+ Ey + F )G(x, y)
, (3.40)

where A,B,C,D, and E are constants independent of x and y, G(x, y) is a polynomial
in x and y, which can be written as product of factors that are all linear in x and y,
and N(x, y) is an arbitrary numerator. We now have to find a variable transformation
that removes either x2 or y2. This can be achieved using the transformation

x = x̃+
−C −

√
−4AB + C2

2A
y, (3.41)

which does not lead to a Jacobian factor, and so we get

R =
2AN(x(x̃), y)dx̃ ∧ dy
H(x̃, y)G(x(x̃), y)

, (3.42)

with

H(x̃, y) = 2AF+2ADx̃+2A2x̃2−CDy+2AEy+
√
−4AB + C2(−Dy−2Ax̃y), (3.43)

so that we can now easily take residues of the poles in y.

3.3.4. Systematic Analysis of Numerators

One important application of the algorithm is to determine possible numerators for
a given denominator structure that have constant leading singularities. To do this
we need a slight extension of the algorithm that is described in section 3.3.2. So the
integrand will have the following structure

f(y1, y2, ...) =
n1t1 + n2t2 + ...+ nN tN

denominator
, (3.44)

where y1, y2, ... are again the integration variables, n1, ..., nN are free parameters which
may depend on external variables but not on integration variables, and t1, ..., tN as
well as the denominator are polynomial functions of the integration variables. To
calculate the leading singularities we use our basic algorithm with the only difference
that whenever we find a higher order pole or a pole at infinity, instead of stopping
the algorithm we fix a minimal set of the free parameters n so that the undesired pole
vanishes. The integrand

(n1 + n2x)dx

x(x− 1)2
(3.45)
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for example has a double pole at x = 1. However, if we fix n2 by n2 = −n1 the
integrand becomes

(n1 − n1x)dx

x(x− 1)2
=

n1dx

x(x− 1)
(3.46)

and thus the double pole vanishes. The leading singularities are n1 and −n1. So in
this trivial example we have found that with the numerator N = 1− x the integrand

Ndx

x(x− 1)2
(3.47)

has constant leading singularities. In chapter 4 we will use this kind of analysis to
find numerators with constant leading singularities for several different diagrams.

3.4. Deriving Dlog Forms Using Building Blocks

The method we described so far is also suited to derive dlog forms in multi-loop
diagrams. In some cases it is also possible to use another method, where we combine
results from lower loop orders and thus get much more compact results. To use this
method we first need some building blocks from lower loops, which we can use for
higher loops.

3.4.1. Generalized Box

One very important building block is the generalized box [16]

d4kJ

F1F2F3F4
= dlog

F1

F ∗
∧ dlog

F2

F ∗
∧ dlog

F3

F ∗
∧ dlog

F4

F ∗
, (3.48)

where J is the Jacobian determinant of the variable transformation (l0, l1, l2, l3) →
(F1, F2, F3, F4) evaluated at Fi = 0 with i = 1, 2, 3, 4, which can most conveniently
calculated using equation (3.16). Similar to equation (3.30), F ∗ = (k−k∗), where k∗ is
again one of the solutions for k at Fi = 0 with i = 1, 2, 3, 4. Note that equation (3.48)
is only correct if the left-hand side has only logarithmic singularities. One special case
of this generalized box that can be quite useful is the box with massive external lines.

d4k1
st

k21(k1 − P1)2(k1 − P1 − P2)2(k1 + P4)2
, (3.49)

The case where one has four massive external lines the Jacobian can only be expressed
with a square root which make further calculations quite complicated. If one external
particle is massless, the Jacobian J of (3.48) is J = (p1 + P2)

2(P4 + P1)
2 − P 2

2P
2
4 ,

where p1 is massless and P2, P3, P4 are massive [16]. If one more external particle
is massless the Jacobian simplifies even more, but we have to distinguish the two
cases: In the first case where the two massless lines are neighbors the Jacobian is just
J = (p1+p2)

2(P4+p1)
2 and in the second case, where the massless lines are diagonally

opposite the Jacobian is J = (P2 + p1)
2(P4 + p1)

2 − P 2
2P

2
4 = (2P2 · q)(2P2 · q̄), with

q = λ1λ̃3 and q̄ = λ3λ̃1.
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k1 k2
p1

p2 p3

p4 p1

p2 p3

p4k1

k2

Figure 3.2.: Planar and non-planar double box

3.4.2. Planar Double Box

As a simple example we will calculate the dlog form of the scalar double box (see also
figure 3.2)

dI(p) =
d4k1d

4k2
k21(k1 + p1)2(k1 − p2)2(k1 + k2 − p2 − p3)2k22(k2 − p3)2(k2 + p4)2

(3.50)

Since the diagram is composed of two boxes with two neighbored massless external
lines we can start by using the building block described in the last section. The
(outgoing) external lines for the k1 loop are p1, p2,−k2 + p3 and k2 + p4. Thus the
Jacobian is J = (p1 + p2)

2(p2 − k2 + p3)
2 and we can write equation (3.50) as

dI(p) =dlog
k21

(k1 − k∗1)2
∧ dlog

(k1 + p2)
2

(k1 − k∗5)2
∧ dlog

(k1 − p2)2

(k1 − k∗1)2
∧ dlog

(k1 + k2 − p2 − p3)2

(k1 − k∗1)2

(3.51)

∧ 1

(p1 + p2)2(p2 − k2 + p3)2
d4k2

k22(k2 − p3)2(k2 + p4)2
(3.52)

In this case the Jacobian gives us a rest term, which we can immediately solve, since
it nothing else than the integrand of the massless box. Thus the full dlog form reads

dI(p) =dlog
(p2 − k2 + p3)

2

(k1 − k∗1)2
∧ dlog

(k1 + p2)
2

(k1 − k∗1)2
∧ dlog

(k1 − p2)2

(k1 − k∗1)2
∧ dlog

(k1 + k2 − p2 − p3)2

(k1 − k∗1)2

(3.53)

∧ dlog
(p2 − k2 + p3)

2

(k2 − k∗2)2
∧ dlog

k22
(k2 − k∗2)2

∧ dlog
(k2 − p3)2

(k2 − k∗2)2
∧ dlog

(k2 + p4)
2

(k2 − k∗2)2
.

(3.54)

3.4.3. Non-planar Double Box

The non-planar double box is an example, where no dlog form exists for a scalar
numerator. Using a suitable numerator, we need another one-loop building block to
construct the whole dlog form for the diagram. First, we show how a scalar numerator
leads to a double pole, then we will motivate a well-suited numerator and finally we
will present the dlog form for the non-planar double box with this numerator. The
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integrand of the non-planar double box is

dI(np) =
Nd4k1d

4k2
k21(k1 + p1)2(k1 − p3 − p4)2k22(k1 + k2)2(k1 + k2 − p4)2(k2 + p3)2

(3.55)

and we immediately see that we can again start using the building block of the box
of the k2-loop. The resultant Jacobian in this case is

J = (k1 − p3)2(k1 − p4)2 − (k1 − p3 − p4)2(k1)2 = (2k1 · q)(2k1 · q̄), (3.56)

where q = λ3λ̃4 and q = λ4λ̃3. The remaining integrand is thus

dĨ(np) =
Nd4k1d

4k2
k21(k1 + p1)2(k1 − p3 − p4)2(2k1 · q)(2k1 · q̄)

, (3.57)

and in this case we do not end up with another generalized box. To reveal the double
pole for the case that N does not depend on the loop momenta let’s switch to spinor
helicity variables:

k1 = α1λ3λ̃3 + α2λ4λ̃4 +
〈41〉
〈31〉

α3λ3λ̃4 +
〈31〉
〈41〉

α4λ4λ̃3. (3.58)

The integrand in these variables reads

− Ndα1 ∧ dα2 ∧ dα3 ∧ dα4

α3α4 (α3α4 − α1α2) (−α2α1 + α1 + α2 + α3α4 − 1) s2
(3.59)

× 1

((−α2α1 + α1 + α3α4 + α4) s+ (α1 − α2 − α3 + α4) t)
. (3.60)

We start by taking the residues on α3 = 0 and α4 = 0 giving us:

Ndα1 ∧ dα2

α1α2 (α2α1 − α1 − α2 + 1) s2 (α1(−s) + α2α1s− α1t+ α2t)
(3.61)

Now we take another residue at α1 = 0 and we finally see the double pole in the
α2-variable:

− Ndα2

(α2 − 1)α2
2s

2t
. (3.62)

So we have shown that for a scalar Numerator N no dlog exists for the non-planar
double box. If we allow N to depend on k1 we can remove the double pole and
in this case N must be proportional to α2 or expressed with the original variables
proportional to k1 · p3 = s

2α2. This numerator, however, only removes this special
double pole and with different cuts we would expose another double pole. This leads
to the question how we can find numerators having only logarithmic singularities
with a given denominator. In section 4.2 we present a systematic analysis of possible
numerators for the non-planar double box. At this point, however, we want to take
a simpler approach to get an educated guess for a well suited numerator. For this
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purpose we go back to the integrand after we removed the first loop and this time we
write the integrand in a non-factored way:

Ĩ(np) =
N

k21(k1 + p1)2(k1 − p3 − p4)2[(k1 − p3)2(k1 − p4)2 − (k1 − p3 − p4)2(k1)2]
(3.63)

The integrand in this form is quite complicated, but significantly simplifies if we
consider only leading singularities around at k21 = 0 or (k1 − p3 − p4)2 = 0. This is
equivalent of computing the leading singularities of the integrand

Ĩ(np) =
N

k21(k1 + p1)2(k1 − p3 − p4)2(k1 − p3)2(k1 − p4)2
, (3.64)

where it is now easy to determine a numerator that allows us to write this integrand in
a dlog form, since in both cases where we take either N = (k1−p3)2 or N = (k1−p4)2
we are left with four propagators that form a scalar box. Even though this does not
prove that these numerators are also well suited for the more complicated integrand
in equation (3.63) they serve well as a first guess and in this case they turn out to be
correct even in the more complicated case.

To get the full dlog form for the non-planar double box we can use the algorithm
in section 3.3.2 leading to a very long expression. However, Bern et al. [16] found a
very compact expression for the term in equation (3.57) and N = su(k1 − p4)2:

Ĩ(np) = dlog
k21
k1 · q̄

∧ dlog
(k1 + p1)

2

k1 · q̄
∧ dlog

(k1 + p1 + p2)
2

k1 · q
∧ dlog

(k1 − k∗1)2

k1 · q
, (3.65)

with k∗1 = − 〈34〉〈31〉λ1λ̃4, which is the solution to k21 = (k1 + p1)2 = (k1 − p3 − p4)2 =
2k1 · q = 0. Combining this result with the dlog-form of the k2-loop we have the full
dlog form of the non-planar double box for this specific numerator.

3.5. Leading Singularities in Multi-loop Diagrams

In this section we want to use the building-block method for the derivation of the last
section but this time to calculate the leading singularities only. So the only difference
in this case is that we do not need to know explicitly the dlog forms of the building
blocks we use, but just the leading singularities of that building block and a proof that
it only has logarithmic singularities which is equivalent of proofing that this building
block can be written in a dlog form.

3.5.1. The n-loop Ladder

We begin with the n-point ladder which is a generalization of the planar double box
to n loops.
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p1

p2 p3

p4k1 k2 k3 kn

The only building block we need for this example here is the box with two adjacent
massive and two adjacent massless external legs. The internal momenta are massless
as in all other examples. So the leading singularity of the k1 box is 1

(p1+p2)2(p1+k2)2

and using (p1 + p2)
2 = s we are left with the diagram

1

s(p1 + k2)2

p1

p2 p3

p4k2 k3 kn .

Since 1
(p1+k1)2

is exactly the missing propagator between p1 and p2 in the diagram

we can complete the diagram.

1

s

p1

p2 p3

p4k2 k3 kn .

Repeating this process n−1 times we will get another factor 1
s each time until only

the kn-box with four massless external lines and leading singularity 1
st is left. So the

leading singularity of the n-loop ladder is 1
snt .

3.5.2. Three Loop Ladder with Numerator

The next example is the three loop ladder with a numerator, which does not cancel a
propagator.

(k3 + p1)
2

p1

p2 p3

p4k1 k2 k3

Since the k1- and the k2-loop are both unaffected by the numerator we can again use
the box-building-blocks for the two left boxes leaving us the k3-box with the numerator
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(k3 + p1)
2. This numerator, however, cancels a propagator, leaving us with a triangle

with leading singularity 1
s :

(k3 + p1)
2

s2

p1

p2 p3

p4k3

=
1

s2 p1

p2

p3

p4
k3

So the leading singularity of the whole diagram is 1
s3

.

3.5.3. Triangle Building Blocks

So far we only considered the triangle with two massless external legs and one massive
external leg. Many subtopologies of the planar double box or the three loop ladder,
which we discuss in more detail in the next chapter, however, consist of triangles with
two or three massive external legs.

P1

P2

P3

P1

P2

p3

Figure 3.3.: Triangle with two and three massive external momenta. Massive external
legs are indicated by a pair of two massless external lines.

The leading singularities of the triangle with two massive external masses T2m and
the triangle with three external masses T3m with the external momenta defined as in
figure 3.3 are

LS(T2m) =
1

2(p3 · P2)
= − 1

2(p3 · P1)
, (3.66)

LS(T3m) =
1

2
√

(P1 · P2)2 − P 2
1P

2
2

. (3.67)

The leading singularity of T3m has a square root, which makes calculating the
remaining leading singularities difficult if we use it as building block, so if possible it
is better to use other building blocks for a given diagram. Even though the leading
singularity of T2m is simpler, we can see that unlike in the case of the box with two
adjacent massless legs the leading singularity in this case is not like a propagator. So
using it as a building block, the rest of the diagram will contain building blocks with
a numerator structure we have not discussed so far. One such new building block has
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the following propagator structure,

Tgeneric =
d4k

2[p1 · (k + P2)]k2(k − P3)2
, (3.68)

where p1 is a massless external leg while P2 and P3 may have masses. There may be
further external legs with arbitrary masses not contributing to the propagators. The
leading singularity in this case is

LS(Tgeneric) =
1

2(p1 · P2)
. (3.69)

Sometimes we also need the leading singularity of the same integrand with an addi-
tional propagator

Bgeneric =
d4k

2[p1 · (k + P2)](k + P2)2k2(k − P3)2
, (3.70)

in which case the leading singularity is

LS(Bgeneric) =
1

(p1 + P2)2(P2 + P3)2 − P 2
2 (p1 + P2 + P3)2

. (3.71)

The leading singularities of Tgeneric and Bgeneric are the same as for the triangle and
the box with one massless external leg p1.

3.5.4. Iterative Triangles

Here we want to discuss two examples where we use the building blocks we defined in
the last subsection. The first example is an aggregation of triangles:

p1

p2 p3

p4k1 k2 k3 kn

As a first step we need the building block of a triangle with two massive external
legs leaving us with the following diagram:

1

2(p1 · k2)
p1

p2 p3

p4k2 k3 kn
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3. Computing Dlog Forms and Leading Singularities

The k2-loop now has the structure of Tgen with the propagators

d4k2
2(p1 · k2)k22(k2 − k3)2

. (3.72)

Since the leading singularity of this building block is 1
2(p1·k3) we observe a self-repeating

pattern so by repeating the pattern until kn we end up with

d4kn
2(p1 · kn)k2n(kn − p4)2

, (3.73)

which has leading singularity 1
2(p1·p4) = 1

t , which is thus also the leading singularity of
the whole diagram.

Another interesting diagram is the planar double box where two opposite propaga-
tors are canceled.

p1

p2 p3

p4

k1

k2

The leading singularity of the k1-loop is 1
2p1·(k2+p2) . So again we have the propagator

structure of Tgen for the k2-loop:

d4k2
2[p1 · (k2 + p2)]k22(k − p3)2

(3.74)

and thus the leading singularity of the whole diagram is 1
2(p1·p3) = 1

−s−t = 1
u , which

is remarkable since we will later show that this is the only subtopology of the planar
double box not having a leading singularity that is a just a product of s and t.

3.5.5. Diagrams with Mixed Leading Singularities

So far we only considered examples where all leading singularities were the same
up to numerical constants. In general, however, diagrams can have different leading
singularities so that we cannot normalize the diagram in such a way that the diagram
has constant leading singularities. In these cases is is always possible to find a linear
combination of diagrams that have again constant leading singularities. One example
for this case is the planar double box where we removed one propagator in the k1-loop
and have a numerator in the k2 loop.

(k2 + p1)
2

p1

p2 p3

p4k1 k2

34



3. Computing Dlog Forms and Leading Singularities

The leading singularity of the k1-triangle is 1
2p1·k2 and the remaining k2-integrand

d4k2(k
2
2 + 2p1 · k2)

2(p1 · k2)k22(k2 − p4)2(k2 + p1 + p2)2
(3.75)

=
d4k2

2(p1 · k2)(k2 − p4)2(k2 + p1 + p2)2
+

d4k2
k22(k2 − p4)2(k2 + p1 + p2)2

,

where we expanded the numerator so that we could write it as a sum of two diagrams
where the numerators canceled. These two remaining terms, however, have different
leading singularities. The first has leading singularity 1

u and the second 1
s . So we can

conclude that for a numerator (k2 + p1)
2 we get mixed leading singularities. If we

only want numerators with constant leading singularities, which means that we have
to consider linear combinations of different numerators Ni and for the present case we
would find

N1 = u[(k2 + p1)
2 − k22] and (3.76)

N2 = s k22 (3.77)

to be such numerators.
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In this chapter we will present a systematic analysis of the leading singularities of
planar and non-planar four-point two-loop diagrams and planar four-point three-loop
diagrams, each with massless external momenta and massless propagators. The strat-
egy is to start with a parent diagram that has the maximal number of propagators of
the corresponding loop order. In the two-loop case there are two independent parent
diagrams, the planar and the non-planar double box, whereas in three loops there are
9 diagrams (see e. g. [16]) from which we will only consider the two planar diagrams,
which we call diagram A and E, following the notation of [16] and [20].

We do not have to consider diagrams with propagators that are independent of the
loop momentum separately, since such a diagram is always the same as the corre-
sponding diagram without this propagator up to a constant. We also do not consider
diagrams consisting of a triangle with one massless external leg and the other two legs
being propagator lines that connect to the rest of the diagram as indicated by figure
4.1, where p1 is the external leg and k1 and k1 − p1 the momenta of the propagator
that are connected to the rest of the diagram.

p1

k1

k1 − p1

Figure 4.1.: Diagrams containing this subdiagram will not be considered

The reason for not considering such diagrams is that they are always trivially related
by IBP-relations to integrals where the propagator k21 or (k1 − p1)2 is removed.

So starting with a parent diagram we make an ansatz for the numerator containing
all possible products of inverse propagators and irreducible numerators up to a given
power of the loop momenta.

Since in four point kinematics, we have only three linearly independent external mo-
menta p1, p2, p3, we cannot express scalar products of loop momenta with an arbitrary
constant vector only as a linear combination of scalar products of the loop momentum
with external momenta. An additional vector that forms a basis together with the
external momenta is ωµ = εµνρσp

ν
1p
ρ
2p
σ
3 . However, since integrals proportional to ωµ

vanish after integration, we will not consider numerators containing the term ki · ω.
We also do not have to consider numerators containing higher powers of ki ·ω because
(ki · ω)2 can be expressed in terms of k2i and ki · pj , with j ∈ {1, 2, 3}.
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k1 k2p1

p2 p3

p4

Figure 4.2.: Planar double box

4.1. Planar Double Box

We will now present a systematic analysis of possible numerators for the planar double
box having constant leading singularities. We will show that all integrands correspond
to uniform transcendental weight functions after integration. Furthermore, we will
analyze additional properties of these integrals such as infrared finiteness and use
these integrals as a start to construct a new basis.

We have four massless outgoing external momenta p1, p2, p3, p4, but due to mo-
mentum conservation only three are independent, so we choose p1, p2, p3 and we have
p4 = −p1 − p2 − p3. The only independent Lorentz-invariant variables that can be
formed from these momenta are s = (p1 + p2)

2 and t = (p2 + p3)
2.

Using the labeling indicated in figure 4.2 we have the integrand

dI(p) =
dDk1d

Dk2N(k1, k2)

k21(k1 + p1)2(k1 + p1 + p2)2k22(k2 + p1 + p2)2(k2 + p1 + p2 + p3)2(k1 − k2)2
,

(4.1)
with an arbitrary numerator N(k1, k2). Building all scalar products between the in-
ternal momenta and the external momenta and between the internal momenta among
each other we get k21, k1 · p1, k1 · p2, k1 · p3, k22, k2 · p1, k1 · p2, k1 · p3, and k1 · k2. Seven
of these scalar products can be written as linear combinations of inverse propagators,
while two are irreducible. We could use these scalar products as basis terms for a
general numerator ansatz, however, to simplify the calculation we instead choose the
seven inverse propagators and change the two irreducible scalar products with two
further propagator like terms. So we define the following integrand family,

Ja1,...,a9 =
dDk1d

Dk2
[−k21]a1 [−(k1 + p1)2]a2 [−(k1 + p1 + p2)2]a3 [−k22]a5

(4.2)

× [−(k1 + p1 + p2 + p3)
2]−a4 [−(k2 + p1)

2]−a6

[−(k2 + p1 + p2)2]a7 [−(k1 + p1 + p2 + p3)2]a8 [−(k1 − k2)2]a9
,

which allows us to write for example the scalar double box integrand as J1,1,1,0,1,0,1,1,1.
Lowering indices of this integrand is equivalent to canceling propagators or introducing
numerators.

Since we will also consider the integrals of the planar double box family, we define

Ia1,...,a9 :=
e2εγE

(iπD/2)2

∫
Ja1,...,a9 , (4.3)

similar to the notation in [3].
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4.1.1. Integrand Basis

Our first goal is to find all possible numerators for the planar double box, where the
integrand has only constant leading singularities or equivalently can be written in a
dlog form. For this purpose we make the following general ansatz for the numerator
in equation (4.1)

N =n1 + k21n2 + (p1 + k1)
2n3 + (p1 + p2 + k1)

2n4 (4.4)

+ (p1 + p2 + p3 + k1)
2n5 + k22n6 + (p1 + k2)

2n7

+ (p1 + p2 + k2)
2n8 + (p1 + p2 + p3 + k2)

2n9 + (k1 − k2)2n10
+ k21k

2
2n11 + k21(p1 + k2)

2n12 + k21(p1 + p2 + k2)
2n13

+ k21(p1 + p2 + p3 + k2)
2n14 + (p1 + k1)

2k22n15

+ (p1 + k1)
2(p1 + k2)

2n16 + (p1 + k1)
2(p1 + p2 + k2)

2n17

+ (p1 + k1)
2(p1 + p2 + p3 + k2)

2n18 + (p1 + p2 + k1)
2k22n19

+ (p1 + p2 + k1)
2(p1 + k2)

2n20 + (p1 + p2 + k1)
2(p1 + p2 + k2)

2n21

+ (p1 + p2 + k1)
2(p1 + p2 + p3 + k2)

2n22

+ (p1 + p2 + p3 + k1)
2k22n23

+ (p1 + p2 + p3 + k1)
2(p1 + k2)

2n24

+ (p1 + p2 + p3 + k1)
2(p1 + p2 + k2)

2n25

+ (p1 + p2 + p3 + k1)
2(p1 + p2 + p3 + k2)

2n26.

Having in mind that for one-loop diagrams the bubble integrand has no dlog form
we restrict our ansatz to integrands where each loop momentum scales not less than
1/(k2i )

3 for ki → ∞. Since in the denominator both loop momenta scale as (k2i )
4 for

ki → ∞ we build the numerator as a linear combination of products PiPj that do
not scale more than k2i for both loop momenta. This ansatz can be extended by also
including terms like (ki · pj)2 without violating our power constraint, however, in the
case of the planar double box we found that such factors will always lead to double
poles and thus do not contribute to the integrand basis we are going to construct.

We can also write this ansatz with the notation defined in equation (4.2) as

J (p) =
∑
i

niJa1,i,...,a15,i (4.5)

where aj ≤ 1 for j ∈ {1, 2, 3, 5, 7, 8, 9}, aj ≤ 0 for j ∈ {4, 6}, a1 +a2 +a3 +a4 +a9 ≥ 3,
and a5 + a6 + a7 + a8 + a9 ≥ 3.

To obtain the leading singularities we calculate in D = 4 dimensions and use the
algorithm of section 3.3.2 and also use the methods we described in section 3.3.4.

Requiring only logarithmic singularities will lead to the following constraints on the
parameters ni:
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n26 = 0, n16 = 0, n24 = −n18

After imposing these constraints we find a set of leading singularities from which we
can choose maximal 23 that are linear independent:

− n5t+ n9t− n1
s2t

,
n5t− n1
s2t

,
n5 − n18s

s2
,
n7t− n1
s2t

, (4.6)

− n8s− n1
s2t

,−n3 − n17s
s2

,−n18t
2 + n5t+ n7t+ n10t− n1

s2t
,

n1
s2t

,−n15s− n3
s2

,
−n3t− n7t+ n1

s2t
,
−n21s2 + n4s+ n8s− n1

s2t
,

−n22st+ n4s+ n9t− n1
s2t

,−n4
st
,−n20t− n4

st
,

n19s
2t+ n20s

2t+ n18st
2 − n23st2 − n4s(s+ t) + n5t(s+ t)

s2t(s+ t)
,

n2s− n1
s2t

,−n12s
2(−t)− n13s2t− n18st2 + n25st

2 + n2s(s+ t)− n5t(s+ t)

s2t(s+ t)
,

n25st− n8s− n5t+ n1
s2t

,
−n12st+ n2s+ n7t− n1

s2t
,

− −n14st+ n2s+ n9t− n1
s2t

,
−n11s2 + n2s+ n6s− n1

s2t
,
n23s− n5

s2
,−n6s− n1

s2t
.

Note that the number of linear independent logarithmic singularities is the same as
the number of free parameters ni which are left after imposing the constraint. So we
can easily find values in terms of s and t for the parameters ni to get a set of 23 linear
independent numerators all having constant leading singularities not depending on s
or t.

The full list of integrands using the notation of equation (4.2) is given in table
4.1.2. In figure 4.3 we present the diagrams in a graphical form, where irreducible
numerators are indicated by wavy lines in the corresponding loop.

The correctness of the leading singularities can also be verified for all but the last
integrand using the graphical methods of section 3.5.

4.1.2. Testing Uniform Transcendental Weight

In this section we want to check if all integrands with constant logarithmic singularities
are uniform transcendental weight (UT) functions after integration in the case of the
planar double box.

To do so we use integration by parts (IBP) relations to express them in terms of a
basis where the UT-property is already proven [3].
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f1 = −ε2t(−s)2εtI0,2,0,0,0,0,0,1,2 (4.7)

f2 = ε2t(−s)2εsI0,0,2,0,1,0,0,0,2 (4.8)

f3 = ε3t(−s)2εsI0,1,0,0,1,0,1,0,2 (4.9)

f4 = −ε2t(−s)2εs2I2,0,1,0,2,0,1,0,0 (4.10)

f5 = ε3t(−s)2εstI1,1,1,0,0,0,0,1,2 (4.11)

f6 = −ε4t(−s)2ε(s+ t)I0,1,1,0,1,0,0,1,1 (4.12)

f7 = −ε4t(−s)2εs2tI1,1,1,0,1,0,1,1,1 (4.13)

f8 = −ε4t(−s)2εs2I1,1,1,0,1,−1,1,1,1 (4.14)

A way to proof the uniform transcendental weight property of these integrals is to
show that they satisfy the relation

∂x ~f = ε

(
a

x
+

b

1 + x

)
~f (4.15)

where x = t/s, ~f = (f1, f2, ..., f8)
T , and a, b are matrices, which do not depend on x

or ε. Using IBP-relations the matrices can be determined as

a =



−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3
2 0 0 0 −2 0 0 0
−1

2
1
2 0 0 0 −2 0 0

−3 −3 0 0 4 12 −2 0
9
2 3 −3 −1 −4 −18 1 1


, (4.16)

and

b =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−3

2 0 3 0 1 0 0 0
0 0 0 0 0 2 0 0
3 6 6 2 −4 −12 2 2
−9

2 −3 3 −1 4 18 −1 −1


. (4.17)

With this differential equation, the requirement that the integrals are finite for x = −1
and the knowledge of the trivial propagator-type integrals f2 and f4, the other integrals
can be solved order by order in ε and the special form of the differential equation (4.15)
guarantees the uniform transcendental weight property of the integrals to all orders
in ε.
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Using IBP-relations we now relate the integrals

gi :=
e2εγEε−4(−s)2ε

(iπD/2)2

∫
ji (4.18)

to the basis fi and we find
gi = Mijfj (4.19)

with

M =



0 0 0 0 0 0 −1 0
−3

4 −3
4 0 0 1 3 0 0

−3
4 −3

4 0 0 1 3 0 0
−1

4 0 0 0 0 0 0 0
−3

4 −3
4 0 0 1 3 0 0

−3
4 −3

4 0 0 1 3 0 0
0 1

4 1 0 0 0 0 0
0 1

4 1 0 0 0 0 0
0 −3

2 −3 −1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1
0 −3

2 −3 −1 0 0 0 0
0 1

4 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0
−1

4 0 0 0 0 0 0 0
0 1

4 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 1

2 1 0 −1
3 −1 0 0

0 1
2 1 0 −1

3 −1 0 0
0 1

2 1 0 −1
3 −1 0 0

0 1
2 1 0 −1

3 −1 0 0
9
4 −1

2 −9
2 −3

2 −4
3 −7 1

2
3
2



(4.20)

Since the transformations matrix M does not depend on x or ε the integrals gi are
UT-functions. M is a rank 8 matrix and thus we can select 8 integrals gi to form
another UT-basis, which we will do in the following subsections by choosing integrals
having additional useful properties.

4.1.3. Finite Integrals

Because of the massless propagators all integrals of the form ε−4(−s)−2εgi are poten-
tially infrared divergent. Since the integrals gi without the prefactor are all finite, the
order of divergence is at most four. If the first terms of the ε-expansion of any linear
combination of gi vanishes, the order of divergence reduces.

The question is now, whether there are linear combinations of integrals of the form
ε−4(−s)−2εgi that are of order ε0 and thus correspond to a finite integral .
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s2t

(1)

st

(2)

st

(3)

t

(4)

st

(5)

st

(6)

s

(7)

s

(8)

s2

(9)

s2

(10)

s2

(11)

s2

(12)

s

(13)

s+ t

(14)

s+ t

(15)

t

(16)

s

(17)

s2

(18)

s − t

(19)

s − t

(20)

s − t

(21)

s − t

(22)

−s +s −st −t −t

(23)

Figure 4.3.: Planar double box integrands with constant leading singularities. A wavy
line in a loop indicates a numerator depending on the corresponding loop
variable.
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j1 = s2tJ1,1,1,0,1,0,1,1,1 j2 = stJ0,1,1,0,1,0,1,1,1 j3 = stJ1,1,1,0,0,0,1,1,1
j4 = tJ0,1,1,0,0,0,1,1,1 j5 = stJ1,1,0,0,1,0,1,1,1 j6 = stJ1,1,1,0,1,0,0,1,1
j7 = sJ1,0,1,0,0,0,1,1,1 j8 = sJ0,1,1,0,1,0,1,0,1 j9 = s2J1,0,1,0,1,0,1,1,1
j10 = s2J1,1,1,0,1,−1,1,1,1 j11 = s2J1,1,1,−1,1,0,1,1,1 j12 = s2J1,1,1,0,1,0,1,0,1
j13 = sJ1,0,1,0,1,0,0,1,1 j14 = (s+ t)J1,1,0,0,0,0,1,1,1 j15 = (s+ t)J0,1,1,0,1,0,0,1,1
j16 = tJ1,1,0,0,1,0,0,1,1 j17 = sJ1,1,0,0,1,0,1,0,1 j18 = s2J1,1,1,0,1,0,1,1,0
j19 = sJ0,1,1,0,1,−1,1,1,1 + tJ0,1,1,0,1,0,0,1,1 j20 = tJ1,1,0,0,0,0,1,1,1 + sJ1,1,1,−1,0,0,1,1,1
j21 = tJ1,1,0,0,0,0,1,1,1 + sJ1,1,0,0,1,−1,1,1,1 j22 = tJ0,1,1,0,1,0,0,1,1 + sJ1,1,1,−1,1,0,0,1,1
j23 = −tJ0,1,1,0,1,0,0,1,1 + sJ1,0,1,0,1,0,1,0,1 − tJ1,1,0,0,0,0,1,1,1
−sJ1,1,1,−1,1,−1,1,1,1 − stJ1,1,1,0,1,0,1,1,0

Table 4.1.: Planar double box integrands with constant leading singularities

The divergent pole occurs when an external momentum is collinear to the momenta
of the adjacent propagators. This pole, however, vanishes if the corresponding corner
cut vanishes.

Taking a corner cut means setting the two propagators next to an external momen-
tum zero which is equivalent to demanding the loop momenta of these propagators
to be proportional to the external momentum. So in practice we make the following
replacement if the loop momentum is k and the external momentum in that corner is
p:

d4kf(k)

k2(k + p)2
→ dxf(xp). (4.21)

To find finite integrals as linear combinations of gi we make a general ansatz ñigi with
some rational numbers ñi and determine these, so that the four corner-cuts vanish.

As a result we get two linear independent solutions

b1 = g1 + g2 + g3 + g4 + g5 + g6 + g10 + g11 − g14 (4.22)

− g15 + g16 − g18 + g19 + g20 + g21 + g22, (4.23)

b2 = g23.

These two integrals will form the first two basis vectors of the new basis we are going
to describe.

As a next step we will discuss the cases where we take less than four corner cuts at
the same time and see if it will reduce the power of the infrared pole.

It turns out that taking just one corner cut will not reduce the degree of divergence
in any sense. When taking two corner cuts at the same time, the first two terms
in the ε-expansion vanish in two cases, so that the resulting integrals have quadratic
divergences. We get these two cases when we take the corner cuts at p1 and p3 or
p2 and p4. If we take corner cuts of pairs of corners with the same loop momentum
the term 1/ε3 will vanish but not the term 1/ε4. Also for adjacent corners with
different loop momenta we still have a 1/ε4 divergence. So only cutting diagonal
corners successfully reduces the order of divergence and we get for both combinations
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five linear independent solutions each and when we combine them, we still have five
solutions.

So we can add three more integrals to the basis we are going to construct. We
choose

b3 = g2 + g4 + g19 (4.24)

b4 = g13

b5 = g15

4.1.4. New Basis

To complete our basis we finally choose three more integrals that have the property
to only depend on s or t. From the seven integrals that depend only on s and the two
that depend only on t we can choose g4, g9 and g18, since they are linearly independent
to the rest of the basis. So our final basis is the following:

b1 = g1 + g2 + g3 + g4 + g5 + g6 + g10 + g11 − g14 (4.25)

− g15 + g16 − g18 + g19 + g20 + g21 + g22,

b2 = g23.

b3 = g2 + g4 + g19

b4 = g13

b5 = g15

b6 = g9

b7 = g18

b8 = g4

4.2. Non-planar Double Box

In this section we present the results for the systematic analysis of numerators with
constant leading singularities for the non-planar double box. Using the labeling of
figure 4.4 the integrand in four dimensions is

Jnp
a1,...,a9 =

d4k1d
4k2

[k21]a1 [(k1 + p2)2]a2 [(k1 − p3 − p4)2]a3
(4.26)

× [(k1 − p3)2]−a8 [(k2 + p2)
2]−a9

[(k1 − k2)2]a4 [k22]a5 [(k2 − p3)2]a6 [(k1 − k2 − p4)2]a7
, (4.27)

where the first seven indices ai are associated to the propagators of the non-planar
double box if they are positive and to numerators if they are negative. The last two
indices must always be zero or negative and thus can only be associated to numerators.

Different from the planar double box there are five instead of four propagators
dependent on k1, so we also have to consider numerators scaling like (k21)2 for k1 →∞.
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p1

p2 p3

p4

k1 k2

Figure 4.4.: Non-planar double box

We make the ansatz
Jnp =

∑
i

niJ
np
a1,i,...,a9,i , (4.28)

where aj ≤ 1 for j ∈ {1, ..., 7}, aj ≤ 0 for j ∈ {8, 9}, a1 + a2 + a3 + a4 + a7 + a8 ≥ 3,
and a4 + a5 + a6 + a7 + a9 ≥ 3 for each integrand in the sum. This defines an
ansatz with 70 free parameters ni and using the algorithm of section 3.3.2 we have to
fix 34 parameters to remove double poles. Eventually we get 36 linear independent
leading singularities and the same number of free parameters. So we can find 36 linear
independent integrands with constant leading singularities listed in tables 4.2 and 4.3.
22 of the integrands are purely planar and are thus already known by the analysis of
the planar double box. The other 14 integrands containing non-planar diagrams are

represented graphically in figure 4.5. From section 3.4.3 we already know j
(np)
26 , which

is the non-planar double box with numerator su(k1 − p3)2 (note, that the labeling
of the propagators is different in section 3.4.3). From the symmetry of the diagram
we can directly conclude that also st(k1 − p4)2 must be a numerator of an integrand
with constant leading singularities. However, (k1 − p4)2 is not part of the expression
in (4.26), so we have to write it as a linear combination of the propagator terms in
(4.26) as

st(k1 − p4)2 = [(k1 − p3 − p− 4)2 − (k1 − p3)2 + k21 − s]st. (4.29)

Thus we can identify j
(np)
31 as the integrand with the numerator st(k1 − p4)2. Using

equation (4.29) one can find further integrands that are related by symmetry.
Since unlike in the case of the planar double box we do not have a list of master

integrals where the uniform transcendental weight property is already proven, we show
it for our solution by directly deriving the differential equations. Using IBP-relations
we find 12 master integrals and we can choose

~f (np) =
(
f
(np)
1 , f

(np)
2 , f

(np)
3 , f

(np)
4 , f

(np)
5 , f

(np)
7 , f

(np)
15 , f

(np)
16 , f

(np)
23 , f

(np)
24 , f

(np)
26 , f

(np)
31

)T
(4.30)

to be the set of our master integrals, where we used the definition

f
(np)
i :=

e2εγE

(iπD/2)2

∫
j
(np)
i . (4.31)
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Deriving the differential equation

∂x ~f
(np)(x, ε) = ε

(
a

x
+

b

1 + x

)
~f (np)(x, ε), (4.32)

where x = t/s we find

a =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
2 0 −2 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −3 0 3 0 3 1 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0
0 2 2 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
4 −6 12 0 −6 0 0 −2 6 2 1 1
−6 −6 0 0 6 0 0 2 6 0 0 −2



(4.33)

and

b =



0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 0 −2 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0
0 0 −3 0 3 −3 0 1 0 0 0 0
0 −2 −2 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 0 −6 6 0 0 2 0 −6 0 −2 0
−4 12 −6 −6 0 0 −2 0 −6 −2 1 1



(4.34)

we see that all entries are numerical constants and thus our master integrals are all
uniform transcendental weight functions.
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The other integrals can just be related to these master integrals as

f6 = f1, f8 = f9 = f10 = f7, f11 = f4, f12 = f5, f13 = f2, f14 = f3,

f17 = f15, f18 = f16, f19 = f20 = f3 + f7 +
f16
3
,

f21 = 2f2 − f4 − f7 −
2f15

3
, f22 = 2f2 − f4 − f7 −

2f15
3
, (4.35)

f25 = 2f1 − 2f24, f27 =
3f1
2

+
f2
2

+
3f4
2
− 3f3

2
− f5

2
− f23

2
,

f28 =
f1
2

+
3f2
2

+
3f3
2
− 3f4

2
− f5

2
− f23

2
, f29 =

3f1
2

+
3f2
2

+
f4
2
− f3

2
− 3f5

2
− 3f23

2
,

f30 = −f2 − f3 + f4 + f5 + f23, f32 = −3f1
2

+
f3
2

+
3f5
2

+
3f23

2
+ f31 −

3f2
2
− f4

2
,

f33 = f1 + f15 − f24 +
f31
2
− f26

2
, f36 = f1 + f2 − f5 − f23 − f31

f34 = −f1 +
3f2
2

+
f4
2

+
5f5
2
− f7 +

f16
3
− 9f3

2
− f23

2
− f24

2
− f15

3
− 3f26

4
− f31

4
,

f35 = −f1
4

+
f2
2

+
5f3
2

+ f23 +
3f24

4
+

3f26
8

+
f31
8
− 3f4

2
− f5

2
− f7

2
− f15

2
− f16

6
,

and since all coefficients are numerical values we have proven that all other integrals
are also uniform transcendental weight functions.
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s

(23)

s

(24)

s2

(25)

s2 + st

(26)

−t s+ t

(27)

t s

(28)

−t t st

(29)

−t t s −st

(30)

st st −st −s2t

(31)

t −t st −st −s2t

(32)

st st −st s2 −s2t

(33)

−2t t t −st s −st

(34)

t t −t −t t −st s

(35)

−t −t s t t

−s −st st s2t

(36)

Figure 4.5.: Non-planar double box integrands with constant leading singularities. A
wavy line in a loop indicates a numerator depending on the corresponding
loop variable. For diagrams containing vertical external lines the order of
the external momenta is changed.
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jnp1 = sJnp
0,0,1,1,1,1,1,0,0 jnp2 = (s+ t)Jnp

0,1,1,0,1,1,1,0,0

jnp3 = tJnp
0,1,1,1,0,1,1,0,0 jnp4 = tJnp

0,1,1,1,1,0,1,0,0

jnp5 = (s+ t)Jnp
0,1,1,1,1,1,0,0,0 jnp6 = sJnp

1,0,0,1,1,1,1,0,0

jnp7 = sJnp
1,0,1,0,1,1,1,0,0 jnp8 = sJnp

1,0,1,1,0,1,1,0,0

jnp9 = sJnp
1,0,1,1,1,0,1,0,0 jnp10 = sJnp

1,0,1,1,1,1,0,0,0

jnp11 = tJnp
1,1,0,0,1,1,1,0,0 jnp12 = (s+ t)Jnp

1,1,0,1,0,1,1,0,0

jnp13 = (s+ t)Jnp
1,1,0,1,1,0,1,0,0 jnp14 = tJnp

1,1,0,1,1,1,0,0,0

jnp15 = (s2 + st)Jnp
1,1,1,0,1,1,1,0,0 jnp16 = stJnp

1,1,1,1,0,1,1,0,0

jnp17 = (s2 + st)Jnp
1,1,1,1,1,0,1,0,0 jnp18 = stJnp

1,1,1,1,1,1,0,0,0

jnp19 = sJnp
1,1,1,1,0,1,1,−1,0 + tJnp

1,1,0,1,0,1,1,0,0

jnp20 = sJnp
1,1,1,1,1,1,0,−1,0 + tJnp

0,1,1,1,1,1,0,0,0

jnp21 = sJnp
1,1,1,0,1,1,1,−1,0 − stJ

np
1,1,1,0,1,1,1,0,0 + tJnp

0,1,1,0,1,1,1,0,0

jnp22 = sJnp
1,1,1,1,1,0,1,−1,0 − stJ

np
1,1,1,1,1,0,1,0,0 + tJnp

1,1,0,1,1,0,1,0,0

Table 4.2.: Planar subdiagrams of non-planar double box with constant leading
singularities

jnp23 = sJnp
0,1,0,1,1,1,1,0,0 jnp24 = sJnp

1,0,1,1,1,1,1,−1,0
jnp25 = s2Jnp

1,0,1,1,1,1,1,0,0 jnp26 = (s2 + st)Jnp
1,1,1,1,1,1,1,−1,0

jnp27 = (s+ t)Jnp
0,1,1,1,1,1,1,−1,0 − tJ

np
0,1,0,1,1,1,1,0,0

jnp28 = sJnp
1,1,0,1,1,1,1,0,−1 + tJnp

1,1,0,1,0,1,1,0,0

jnp29 = stJnp
1,1,0,1,1,1,1,0,0 + tJnp

1,1,0,1,1,1,1,−1,0 − tJ
np
1,1,−1,1,1,1,1,0,0

jnp30 = sJnp
1,1,0,1,1,1,1,−1,0 − stJ

np
1,1,0,1,1,1,1,0,0 − tJ

np
0,1,0,1,1,1,1,0,0 + tJnp

1,1,−1,1,1,1,1,0,0
jnp31 = −s2tJnp

1,1,1,1,1,1,1,0,0 + stJnp
0,1,1,1,1,1,1,0,0 + stJnp

1,1,0,1,1,1,1,0,0 − stJ
np
1,1,1,1,1,1,1,−1,0

jnp32 = −s2tJnp
1,1,1,1,1,1,1,0,0 + stJnp

1,1,0,1,1,1,1,0,0 − stJ
np
1,1,1,1,1,1,1,−1,0

−tJnp
0,1,1,1,1,1,1,−1,0 + tJnp

−1,1,1,1,1,1,1,0,0
jnp33 = s2Jnp

1,1,1,1,1,1,1,0,−1 − s2tJ
np
1,1,1,1,1,1,1,0,0 + stJnp

1,1,0,1,1,1,1,0,0

+stJnp
1,1,1,0,1,1,1,0,0 − stJ

np
1,1,1,1,1,1,1,−1,0

jnp34 = −2tJnp
0,1,0,1,1,1,1,0,0 + sJnp

1,1,1,1,1,1,1,−2,0 − stJ
np
1,1,0,1,1,1,1,0,0

−stJnp
1,1,1,1,1,1,1,−1,0 + tJnp

0,1,1,1,1,1,1,−1,0 + tJnp
1,1,−1,1,1,1,1,0,0

jnp35 = sJnp
1,1,1,1,1,1,1,−1,−1 − stJ

np
1,1,1,0,1,1,1,0,0 + tJnp

0,1,0,1,1,1,1,0,0 + tJnp
0,1,1,0,1,1,1,0,0

−tJnp
0,1,1,1,1,1,0,0,0 − tJ

np
0,1,1,1,1,1,1,−1,0 + tJnp

1,1,0,1,0,1,1,0,0

jnp36 = s2tJnp
1,1,1,1,1,1,1,0,0 + sJnp

0,1,1,1,1,0,1,0,0 − sJ
np
0,1,1,1,1,1,1,0,−1

−stJnp
1,1,0,1,1,1,1,0,0 + stJnp

1,1,1,1,1,1,1,−1,0 − tJ
np
0,1,0,1,1,1,1,0,0−

tJnp
0,1,1,0,1,1,1,0,0 + tJnp

0,1,1,1,1,1,0,0,0 + tJnp
0,1,1,1,1,1,1,−1,0

Table 4.3.: Non-planar diagrams of non-planar double box with constant leading
singularities
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4.3. Diagram A

p2

p1 p3

p4

k1 k2 k3

Figure 4.6.: Diagram A: Planar triple box

Diagram A is the planar triple box shown in figure 4.6 and for the labeling of the
propagators and numerators we follow the notation in [20] by defining

JA
a1,...,a15 =

dDk1d
Dk2d

Dk3[−(k1 − p3)2]−a11 [−(k2 + p1)
2]−a12

[−k21]a1 [−(k1 + p1 + p2)2]a2 [−k22]a3 [−(k2 + p1 + p2)2]a4 [−k23]a5

× [−(k2 − p3)2]−a13 [−(k3 + p1)
2]−a14 [−(k1 − k3)2]−a15

[−(k3 + p1 + p2)2]a6 [−(k1 + p1)2]a7 [−(k1 − k2)2]a8 [−(k2 − k3)2]a9 [−(k3 − p3)2]a10
.

(4.36)

In comparison to all diagrams we have discussed so far in this notation the external
momenta p2 and p3 are not neighboring and consequently the definition of the Man-
delstam variable t = (p1 + p3)

2 is adjusted, while s = (p1 + p2)
2 stays unchanged.

Here the first ten indices a1, ...a10 are associated to propagators and the last 5 indices
a11, ..., a15 are associated to numerators.

We make a general numerator ansatz with 141 free parameters ni

JA =
∑
i

niJ
A
a1,i,...,a15,i , (4.37)

where aj ≤ 1 for j ∈ {1, ..., 10}, aj ≤ 0 for j ∈ {11, ..., 15}, a1+a2+a7+a8+a11+a15 ≥
3, a3 + a4 + a8 + a9 + a12 + a13 ≥ 3, and a5 + a6 + a9 + a10 + a14 + a15 ≥ 3.

Applying the algorithm to this ansatz we get a solution with 101 linear independent
leading singularities and the same number of free parameters so we can choose a set
of 101 linear independent integrands with constant leading singularities. The solution
is given in table 4.4 and 4.5. In figure 4.8 and 4.9 the diagrams are graphically
represented and for all diagrams that are equal up to vertical and horizontal reflection
only one representative is shown. Using again the graphical rules and also taking into
account the integrands of the planar double box one may verify the constant leading
singularity property for most of the integrands.

Similar to the planar double box we again tested if all found integrands are UT-
functions after integration. So we build the integrals

IAi :=
ε6e3εγE (−s)3ε

(iπD/2)3

∫
JA
i (4.38)
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and relate them to a basis of integrals where the UT-property is already proven.
Such a basis can be found in [20] and again we found that all integrals are UT-
functions. The integral basis in [20] consists of 26 integrals, however, the 101 inte-
grands we found turned out to correspond to only 25 linear independent integrals.
One diagram of the basis in [20] that is linear independent to the 25 integrals is the
triple bubble integral

ε3e3εγE (−s)3ε

(iπD/2)3

∫
jA0,2,0,0,1,0,0,2,2,0,0,0,0,0,0. (4.39)

Figure 4.7.: Integral that is linear independent to all integrals defined in equation
(4.38). Dots denote squared propagators.

However, if we combine the 101 integrand solutions with the integrands we get by
rotating diagram A by 90 degrees, which is equivalent to exchanging the Mandelstam
variables s and t after integration, we get a set of integrals that also includes the
integral in (4.39).
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t

(1)

s+ t

(2)

s

(3)

t

(4)

s

(6)

st

(17)

s2 + st

(18)

st

(19)

st

(20)

s2

(21)

s2

(22)

s2

(31)

s2

(41)

s2

(42)

s2t

(43)

s2t

(47)

s3

(55)

s3

(56)

s3

(59)

s3

(60)

s3t

(63)

t s

(64)

s −s

(65)

t s

(66)

s −s

(74)

s −s

(75)

st s2

(76)

st s2

(78)

Figure 4.8.: Diagram A integrands with constant leading singularities. A wavy line
in a loop indicates a numerator depending on the corresponding loop
variable.
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t s −st

(84)

st st s2

(88)

s2 s2 −s3

(90)

s2 −s2 s2t

(91)

−t st s −s

(92)

−t −t s −s st

(96)

−st −st s2 s2 −s2

(98)

−st −st s2 s2t −s2

(100)

Figure 4.9.: Diagram A (continued).
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jA1 = tJA
0,1,0,1,0,1,1,1,1,1,0,0,0,0,0 jA2 = (s+ t)JA

0,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA3 = sJA
0,1,0,1,1,1,1,1,1,0,0,0,0,0,0 jA4 = tJA

0,1,1,0,0,1,1,1,1,1,0,0,0,0,0

jA5 = (s+ t)JA
0,1,1,0,1,0,1,1,1,1,0,0,0,0,0 jA6 = sJA

0,1,1,0,1,1,1,1,1,0,0,0,0,0,0

jA7 = (s+ t)JA
1,0,0,1,0,1,1,1,1,1,0,0,0,0,0 jA8 = tJA

1,0,0,1,1,0,1,1,1,1,0,0,0,0,0

jA9 = sJA
1,0,0,1,1,1,1,1,1,0,0,0,0,0,0 jA10 = (s+ t)JA

1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

jA11 = tJA
1,0,1,0,1,0,1,1,1,1,0,0,0,0,0 jA12 = sJA

1,0,1,0,1,1,1,1,1,0,0,0,0,0,0

jA13 = sJA
1,1,0,1,0,1,0,1,1,1,0,0,0,0,0 jA14 = sJA

1,1,0,1,1,0,0,1,1,1,0,0,0,0,0

jA15 = sJA
1,1,1,0,0,1,0,1,1,1,0,0,0,0,0 jA16 = sJA

1,1,1,0,1,0,0,1,1,1,0,0,0,0,0

jA17 = stJA
0,1,0,1,1,1,1,1,1,1,0,0,0,0,0 jA18 = (s2 + st)JA

0,1,1,0,1,1,1,1,1,1,0,0,0,0,0

jA19 = stJA
0,1,1,1,0,1,1,1,1,1,0,0,0,0,0 jA20 = stJA

0,1,1,1,1,0,1,1,1,1,0,0,0,0,0

jA21 = s2JA
0,1,1,1,1,1,1,1,0,1,0,0,0,0,0 jA22 = s2JA

0,1,1,1,1,1,1,1,1,0,0,0,0,0,0

jA23 = (s2 + st)JA
1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 jA24 = stJA

1,0,1,0,1,1,1,1,1,1,0,0,0,0,0

jA25 = stJA
1,0,1,1,0,1,1,1,1,1,0,0,0,0,0 jA26 = stJA

1,0,1,1,1,0,1,1,1,1,0,0,0,0,0

jA27 = s2JA
1,0,1,1,1,1,1,1,0,1,0,0,0,0,0 jA28 = s2JA

1,0,1,1,1,1,1,1,1,0,0,0,0,0,0

jA29 = stJA
1,1,0,1,0,1,1,1,1,1,0,0,0,0,0 jA30 = (s2 + st)JA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA31 = s2JA
1,1,0,1,1,1,0,1,1,1,0,0,0,0,0 jA32 = s2JA

1,1,0,1,1,1,1,1,1,0,0,0,0,0,0

jA33 = (s2 + st)JA
1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 jA34 = stJA

1,1,1,0,1,0,1,1,1,1,0,0,0,0,0

jA35 = s2JA
1,1,1,0,1,1,0,1,1,1,0,0,0,0,0 jA36 = s2JA

1,1,1,0,1,1,1,1,1,0,0,0,0,0,0

jA37 = s2JA
1,1,1,1,0,1,0,1,1,1,0,0,0,0,0 jA38 = s2JA

1,1,1,1,0,1,1,0,1,1,0,0,0,0,0

jA39 = s2JA
1,1,1,1,1,0,0,1,1,1,0,0,0,0,0 jA40 = s2JA

1,1,1,1,1,0,1,0,1,1,0,0,0,0,0

jA41 = s2JA
0,1,1,1,1,1,1,1,1,1,0,0,−1,0,0 jA42 = s2JA

0,1,1,1,1,1,1,1,1,1,0,0,0,−1,0
jA43 = s2tJA

0,1,1,1,1,1,1,1,1,1,0,0,0,0,0 jA44 = s2JA
1,0,1,1,1,1,1,1,1,1,0,0,−1,0,0

jA45 = s2JA
1,0,1,1,1,1,1,1,1,1,0,0,0,−1,0 jA46 = s2tJA

1,0,1,1,1,1,1,1,1,1,0,0,0,0,0

jA47 = s2tJA
1,1,0,1,1,1,1,1,1,1,0,0,0,0,0 jA48 = s2tJA

1,1,1,0,1,1,1,1,1,1,0,0,0,0,0

jA49 = s2JA
1,1,1,1,0,1,1,1,1,1,−1,0,0,0,0 jA50 = s2JA

1,1,1,1,0,1,1,1,1,1,0,−1,0,0,0
jA51 = s2tJA

1,1,1,1,0,1,1,1,1,1,0,0,0,0,0 jA52 = s2JA
1,1,1,1,1,0,1,1,1,1,−1,0,0,0,0

jA53 = s2JA
1,1,1,1,1,0,1,1,1,1,0,−1,0,0,0 jA54 = s2tJA

1,1,1,1,1,0,1,1,1,1,0,0,0,0,0

jA55 = s3JA
1,1,1,1,1,1,0,1,1,1,0,0,0,0,0 jA56 = s3JA

1,1,1,1,1,1,1,0,1,1,0,0,0,0,0

jA57 = s3JA
1,1,1,1,1,1,1,1,0,1,0,0,0,0,0 jA58 = s3JA

1,1,1,1,1,1,1,1,1,0,0,0,0,0,0

jA59 = s3JA
1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0 jA60 = s3JA

1,1,1,1,1,1,1,1,1,1,0,−1,0,0,0
jA61 = s3JA

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,0 jA62 = s3JA
1,1,1,1,1,1,1,1,1,1,0,0,0,−1,0

jA63 = s3tJA
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0

jA64 = sJA
0,1,0,1,1,1,1,1,1,1,0,0,0,−1,0 + tJA

0,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA65 = sJA
0,1,1,0,0,1,1,1,1,1,0,0,0,0,0 − sJA

0,1,1,1,0,1,1,1,1,1,0,0,−1,0,0
jA66 = sJA

0,1,1,1,1,0,1,1,1,1,0,−1,0,0,0 + tJA
0,1,1,0,1,0,1,1,1,1,0,0,0,0,0

jA67 = sJA
0,1,1,1,1,0,1,1,1,1,0,0,−1,0,0 + tJA

0,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA68 = sJA
1,0,1,0,1,1,1,1,1,1,0,0,0,−1,0 + tJA

1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

jA69 = sJA
1,0,1,1,0,1,1,1,1,1,0,−1,0,0,0 + tJA

1,0,0,1,0,1,1,1,1,1,0,0,0,0,0

jA70 = sJA
1,0,1,1,0,1,1,1,1,1,0,0,−1,0,0 + tJA

1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

Table 4.4.: Integrands of Diagram A with constant leading singularities
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jA71 = sJA
1,0,0,1,1,0,1,1,1,1,0,0,0,0,0 − sJA

1,0,1,1,1,0,1,1,1,1,0,0,−1,0,0
jA72 = sJA

1,1,0,1,0,1,1,1,1,1,−1,0,0,0,0 + tJA
1,0,0,1,0,1,1,1,1,1,0,0,0,0,0

jA73 = sJA
1,1,1,0,1,0,1,1,1,1,−1,0,0,0,0 + tJA

0,1,1,0,1,0,1,1,1,1,0,0,0,0,0

jA74 = −sJA
0,1,1,1,0,1,1,1,1,1,0,0,−1,0,0 + sJA

0,1,1,1,0,1,1,1,1,1,0,−1,0,0,0
jA75 = −sJA

1,0,1,1,1,0,1,1,1,1,0,0,−1,0,0 + sJA
1,0,1,1,1,0,1,1,1,1,0,−1,0,0,0

jA76 = stJA
0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 + s2JA

0,1,1,1,1,1,1,1,1,1,0,−1,0,0,0
jA77 = stJA

1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + s2JA
1,0,1,1,1,1,1,1,1,1,0,−1,0,0,0

jA78 = stJA
1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + s2JA

1,1,0,1,1,1,1,1,1,1,−1,0,0,0,0
jA79 = stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 + s2JA
1,1,0,1,1,1,1,1,1,1,0,0,0,−1,0

jA80 = stJA
0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 + s2JA

1,1,1,0,1,1,1,1,1,1,−1,0,0,0,0
jA81 = stJA

1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + s2JA
1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0

jA82 = stJA
1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + s2JA

1,1,1,1,0,1,1,1,1,1,0,0,−1,0,0
jA83 = stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 + s2JA
1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0

jA84 = sJA
0,1,1,0,1,1,1,1,1,1,0,0,0,−1,0 − stJA

0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 + tJA
0,1,1,0,1,0,1,1,1,1,0,0,0,0,0

jA85 = sJA
1,0,0,1,1,1,1,1,1,1,0,0,0,−1,0 − stJA

1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + tJA
1,0,0,1,0,1,1,1,1,1,0,0,0,0,0

jA86 = sJA
1,1,0,1,1,0,1,1,1,1,−1,0,0,0,0 − stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 + tJA
0,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA87 = sJA
1,1,1,0,0,1,1,1,1,1,−1,0,0,0,0 − stJA

1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + tJA
1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

jA88 = stJA
1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 + s2JA
1,1,0,1,1,1,1,1,1,1,0,0,0,0,−1

jA89 = stJA
0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 + stJA

1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + s2JA
1,1,1,0,1,1,1,1,1,1,0,0,0,0,−1

jA90 = s2JA
0,1,1,1,1,0,1,1,1,1,0,0,0,0,0 + s2JA

1,0,1,1,0,1,1,1,1,1,0,0,0,0,0 − s3JA
1,1,1,1,1,1,1,1,1,1,0,0,0,0,−1

jA91 = s2tJA
1,1,1,1,1,1,1,1,1,1,0,0,0,0,−1 + s2JA

1,1,1,1,1,1,0,1,1,0,0,0,0,0,0 − s2JA
1,1,1,1,1,1,1,1,1,1,−1,0,0,−1,0

jA92 = sJA
0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − sJA

0,1,1,1,1,1,1,1,1,1,0,0,−1,−1,0
+stJA

0,1,1,1,1,1,1,1,0,1,0,0,0,0,0 − tJA
0,1,0,1,1,0,1,1,1,1,0,0,0,0,0

jA93 = sJA
1,0,1,1,1,1,1,1,1,0,0,−1,0,0,0 − sJA

1,0,1,1,1,1,1,1,1,1,0,0,−1,−1,0
+stJA

1,0,1,1,1,1,1,1,0,1,0,0,0,0,0 − tJA
1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

jA94 = sJA
1,1,1,1,0,1,0,1,1,1,0,0,−1,0,0 − sJA

1,1,1,1,0,1,1,1,1,1,−1,−1,0,0,0
+stJA

1,1,1,1,0,1,1,0,1,1,0,0,0,0,0 − tJA
1,0,0,1,0,1,1,1,1,1,0,0,0,0,0

jA95 = sJA
1,1,1,1,1,0,0,1,1,1,0,0,−1,0,0 − sJA

1,1,1,1,1,0,1,1,1,1,−1,−1,0,0,0
+stJA

1,1,1,1,1,0,1,0,1,1,0,0,0,0,0 − tJA
0,1,1,0,1,0,1,1,1,1,0,0,0,0,0

jA96 = sJA
1,1,0,1,1,1,0,1,1,0,0,0,0,0,0 − sJA

1,1,0,1,1,1,1,1,1,1,−1,0,0,−1,0
+stJA

1,1,0,1,1,1,1,1,1,1,0,0,0,0,−1 − tJA
0,1,0,1,1,0,1,1,1,1,0,0,0,0,0 − tJA

1,0,0,1,0,1,1,1,1,1,0,0,0,0,0

jA97 = sJA
1,1,1,0,1,1,0,1,1,0,0,0,0,0,0 − sJA

1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0 + stJA
1,1,1,0,1,1,1,1,1,1,0,0,0,0,−1

−tJA
0,1,1,0,1,0,1,1,1,1,0,0,0,0,0 − tJA

1,0,1,0,0,1,1,1,1,1,0,0,0,0,0

jA98 = −stJA
0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 − stJA

1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + s2JA
1,1,1,1,1,1,0,1,0,1,0,0,0,0,0

+s2JA
1,1,1,1,1,1,1,0,1,1,0,0,0,−1,0 − s2JA

1,1,1,1,1,1,1,1,1,1,0,−1,0,0,−1
jA99 = −stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 − stJA
1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + s2JA

1,1,1,1,1,1,1,0,1,0,0,0,0,0,0

+s2JA
1,1,1,1,1,1,1,1,0,1,−1,0,0,0,0 − s2JA

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,−1
jA100 = −stJA

0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 − stJA
1,0,0,1,1,1,1,1,1,1,0,0,0,0,0 + s2tJA

1,1,1,1,1,1,1,0,1,1,0,0,0,0,0

+s2JA
1,1,1,1,1,1,0,1,1,1,0,0,−1,0,0 − s2JA

1,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0
jA101 = −stJA

1,1,0,1,1,0,1,1,1,1,0,0,0,0,0 − stJA
1,1,1,0,0,1,1,1,1,1,0,0,0,0,0 + s2tJA

1,1,1,1,1,1,1,1,0,1,0,0,0,0,0

+s2JA
1,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − s2JA

1,1,1,1,1,1,1,1,1,1,0,0,−1,−1,0

Table 4.5.: Diagram A with constant leading singularities (continued).
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4.4. Diagram E

p2

p1 p3

p4

k3

k1 + p1 k2 − p3

Figure 4.10.: Diagram E, ”tennis court diagram”

Diagram E, sometimes referred to as the tennis court diagram, is the second planar
three-loop diagram and for the momentum labeling we again follow the notation in [20]
and define the integrand family as

JE
a1,...,a15 =

dDk1d
Dk2d

Dk3[−(k3 + p1 + p2)
2]−a11 [−(k2 + p1)

2]−a12

[−(k1 − k3)2]a1 [−(k1 + p1)2]a2 [−(k1 + p1 + p2)2]a3 [−(k2 + p1 + p2)2]a4

× [−(k1 − p3)2]−a13 [−k21]−a14 [−k22]−a15

[−(k2 − p3)2]a5 [−(k2 − k3)2]a6 [−(k1 − k2)2]a7 [−k23]a8 [−(k3 + p1)2]a9 [−(k3 − p3)2]a10
,

(4.40)

where the first ten indices a1, ..., a10 are associated to propagators if they are positive
and all indicies a1, ..., a15 are associated to numerators if they are negative.

The integrand ansatz for diagram E is bigger than the ansatz for diagram A, since
diagram E has five propagators instead of four that depend on k3. This means that
numerators may also scale as (k23)2 for k3 →∞ and so we define

JE =
∑
i

niJ
E
a1,i,...,a15,i , (4.41)

where aj ≤ 1 for j ∈ {1, ..., 10}, aj ≤ 0 for j ∈ {11, ..., 15}, a1+a2+a3+a7+a13+a14 ≥
3, a4 + a5 + a6 + a6 + a12 + a15 ≥ 3, and a1 + a6 + a8 + a9 + a10 + a11 ≥ 3. This ansatz
has 441 terms and using the algorithm in section 3.3.2 we get 171 linear independent
leading singularities and the same number of free parameters ni.

The list of integrands with constant leading singularities can be found in tables
A.1-A.6 in the appendix and the graphical representations of the integrands 1 - 167
can be found in figures A.1 - A.11 also in the appendix.

Again we checked the UT-property of the resulting functions after integration by
comparing it to the basis in [20]. So building the integrals

IEi :=
ε6e3εγE (−s)3ε

(iπD/2)3

∫
JE
i (4.42)
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we found that IE1 -IE170 are UT-functions while IE171 turned out not to have uniform
transcendental weight.

This seems to be a bit surprising at first after having found so many integrands with
constant leading singularities all fulfilling the uniform transcendental weight property,
but we will show that one could have anticipated such a result and it has to do with
fact that we compute the leading singularities in D = 4 dimensions as we will see in
the following section.

4.5. Vanishing Gram Determinants

So far we never discussed the question, whether all the integrands in equation (4.41)
and similar equations for the other diagrams are linear independent. The answer to
that question depends on the dimension D in which we work and while in the cases we
analyzed before, the planar and non-planar double box and diagram A, the integrands
were always linear independent in D = 4 dimensions, this is not true anymore for the
integrands we used for diagram E, where there is exactly one nontrivial solution for
the ni-parameters solving J (E) = 0. This is equivalent to the existence of a nontrivial
numerator for the full ten propagator integral of diagram E that vanishes in four
dimensions. Nontrivial linear combinations of scalar products adding up to zero in four
dimensions can easily be constructed using Gram determinants that were introduced
in section 2.5. Since Gram determinants like

G

(
v1, v2, v3, v4, v5
w1, w2, w3, w4, w5

)
(4.43)

are always zero if either v1, ..., v5 or w1, ..., w5 are linear dependent,

G

(
k3, k1, p1, p2, p3
k3, k2, p1, p2, p3

)
(4.44)

is an example of a term that vanishes in D = 4 dimensions but not for general values
of D. If we use this expression as a numerator for the parent diagram E with all
ten propagators, we can rewrite it as a sum of integrands all appearing in the ansatz
(4.41) and since it is zero in four dimensions we can add it to all of our constant lead-
ing singularity integrands without altering the leading singularities. Using this Gram
determinant in D = 4− 2ε dimensions as numerator and computing the integral will,
however, not lead to a uniform transcendental weight function, which is not unex-
pected, because even if it would have happened to be a uniform transcendental weight
function we could just multiply the Gram determinant with certain terms to spoil the
uniform transcendental weight property while the integrand in four dimensions would
still be zero.
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5. Summary and Conclusion

The main goal of this master thesis was to find bases of integrands with constant
leading singularities. So based on [4], where similar integrand bases have been derived
for planar diagrams of N=4 Super Yang Mills theory, we extended the approach by
applying it also to integrands of non-planar diagrams for general non-supersymmetric
Yang-Mills theories like QCD.

For the computation of the leading singularities and the closely related dlog forms
we used two different approaches. The first was to develop an algorithm for a MATH-
EMATICA program that computed iteratively residues of rational functions. The
second was to use one-loop building blocks and calculate the leading singularities in
a graphical method loop by loop.

We applied these methods to planar and non-planar two loop diagrams as well
as planar three loop diagrams with four massless external momenta and massless
propagators. For the planar and non-planar double box we found 23 respectively 36
integrands and for the two planar three-loop diagrams, denoted as diagram A and E,
we found 101 and 171 integrands.

Using integration by parts identities we could analyze the integrals corresponding to
the integrands. We found that the number of linear independent integrals was always
enough to form complete integral bases that can serve as master integrals for the
corresponding integral family. Another part of the analysis was to find finite integrals
by searching for integrands with vanishing corner cuts.

One central part of the integral analysis was to test the uniform transcendental
weight property of the integrals and we found a positive result for all integrals but one
exception in diagram E. The exception can be explained that by computing the leading
singularities in D = 4 dimensions the vanishing of certain Gram-determinants leads
to ambiguities in our solutions. These ambiguities appear only for integrand families
containing numerators of a certain degree and diagram E was the first integrand
family where this was the case. Extending the analysis of leading singularities to
higher dimensions like D = 6 or a dimension parametrized as D = 4− 2ε can remove
such ambiguities

Possible extensions of our analysis are the application to further diagrams such as
the non-planar three-loop diagrams and the analysis of diagrams with more general
kinematics like five-point two-loop diagrams. By working out more one-loop building
blocks one can try to extend the graphical method in such a way we can apply it to all
integrands that we found with the algorithmic approach. So far we have not proven
that the set of integrands we found for each diagram is complete in the sense that
there are no further integrands of that family with constant leading singularities. For
this purpose the analysis should be extended, by increasing the integrand ansatz for
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5. Summary and Conclusion

each diagram up to a certain power limit in the loop momenta and to proof that all
numerators above this limit lead to integrands that can not be written as dlog forms.
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A. Appendix

A. Appendix

jE1 = −tJE0,1,1,0,1,1,1,0,1,1,0,0,0,0,0 jE2 = (−s− t)JE0,1,1,0,1,1,1,1,0,1,0,0,0,0,0
jE3 = sJE0,1,1,0,1,1,1,1,1,0,0,0,0,0,0 jE4 = −tJE0,1,1,1,0,1,1,0,1,1,0,0,0,0,0
jE5 = (−s− t)JE0,1,1,1,0,1,1,1,0,1,0,0,0,0,0 jE6 = sJE0,1,1,1,0,1,1,1,1,0,0,0,0,0,0
jE7 = −tJE1,0,1,0,1,1,1,0,1,1,0,0,0,0,0 jE8 = sJE1,0,1,0,1,1,1,1,0,1,0,0,0,0,0
jE9 = (−s− t)JE1,0,1,0,1,1,1,1,1,0,0,0,0,0,0 jE10 = −tJE1,0,1,1,1,0,1,0,1,1,0,0,0,0,0
jE11 = sJE1,0,1,1,1,0,1,1,0,1,0,0,0,0,0 jE12 = (−s− t)JE1,0,1,1,1,0,1,1,1,0,0,0,0,0,0
jE13 = −tJE1,0,1,1,1,1,1,0,1,0,0,0,0,0,0 jE14 = sJE1,0,1,1,1,1,1,1,0,0,0,0,0,0,0
jE15 = −tJE1,1,0,0,1,1,1,1,0,1,0,0,0,0,0 jE16 = −tJE1,1,0,0,1,1,1,1,1,0,0,0,0,0,0
jE17 = −tJE1,1,0,1,0,1,1,0,1,1,0,0,0,0,0 jE18 = (−s− t)JE1,1,0,1,0,1,1,1,0,1,0,0,0,0,0
jE19 = sJE1,1,0,1,0,1,1,1,1,0,0,0,0,0,0 jE20 = −tJE1,1,0,1,1,0,1,0,1,1,0,0,0,0,0
jE21 = sJE1,1,0,1,1,0,1,1,0,1,0,0,0,0,0 jE22 = (−s− t)JE1,1,0,1,1,0,1,1,1,0,0,0,0,0,0
jE23 = −tJE1,1,0,1,1,1,1,0,0,1,0,0,0,0,0 jE24 = (−s− t)JE1,1,0,1,1,1,1,1,0,0,0,0,0,0,0
jE25 = −tJE1,1,1,0,1,1,1,0,1,0,0,0,0,0,0 jE26 = (−s− t)JE1,1,1,0,1,1,1,1,0,0,0,0,0,0,0
jE27 = −tJE1,1,1,1,0,1,1,0,0,1,0,0,0,0,0 jE28 = sJE1,1,1,1,0,1,1,1,0,0,0,0,0,0,0
jE29 = −tJE1,1,1,1,1,1,0,0,0,1,0,0,0,0,0 jE30 = −tJE1,1,1,1,1,1,0,0,1,0,0,0,0,0,0
jE31 = t(s+ t)JE0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 jE32 = −stJE0,1,1,1,0,1,1,1,1,1,0,0,0,0,0
jE33 = t2JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0 jE34 = −tJE0,1,1,1,1,1,1,0,1,1,0,−1,0,0,0
jE35 = t2JE0,1,1,1,1,1,1,0,1,1,0,0,0,0,0 jE36 = −stJE0,1,1,1,1,1,1,1,0,1,0,0,0,0,0
jE37 = −stJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,0 jE38 = −stJE1,0,1,0,1,1,1,1,1,1,0,0,0,0,0
jE39 = −stJE1,0,1,1,1,0,1,1,1,1,0,0,0,0,0 jE40 = −tJE1,0,1,1,1,1,1,0,1,1,−1,0,0,0,0
jE41 = sJE1,0,1,1,1,1,1,1,0,1,−1,0,0,0,0 jE42 = (−s− t)JE1,0,1,1,1,1,1,1,1,0,−1,0,0,0,0
jE43 = −stJE1,0,1,1,1,1,1,1,1,0,0,0,0,0,0 jE44 = t2JE1,1,0,0,1,1,1,1,1,1,0,0,0,0,0
jE45 = −stJE1,1,0,1,0,1,1,1,1,1,0,0,0,0,0 jE46 = t(s+ t)JE1,1,0,1,1,0,1,1,1,1,0,0,0,0,0
jE47 = −tJE1,1,0,1,1,1,1,0,1,1,0,−1,0,0,0 jE48 = t2JE1,1,0,1,1,1,1,0,1,1,0,0,0,0,0
jE49 = (−s− t)JE1,1,0,1,1,1,1,1,1,0,0,−1,0,0,0 jE50 = −stJE1,1,0,1,1,1,1,1,1,0,0,0,0,0,0
jE51 = −tJE1,1,1,0,1,1,1,0,1,1,0,0,−1,0,0 jE52 = t2JE1,1,1,0,1,1,1,0,1,1,0,0,0,0,0
jE53 = (−s− t)JE1,1,1,0,1,1,1,1,0,1,0,0,−1,0,0 jE54 = −stJE1,1,1,0,1,1,1,1,0,1,0,0,0,0,0
jE55 = −tJE1,1,1,1,0,1,1,0,1,1,−1,0,0,0,0 jE56 = (−s− t)JE1,1,1,1,0,1,1,1,0,1,−1,0,0,0,0
jE57 = −stJE1,1,1,1,0,1,1,1,0,1,0,0,0,0,0 jE58 = sJE1,1,1,1,0,1,1,1,1,0,−1,0,0,0,0
jE59 = −tJE1,1,1,1,1,0,1,0,1,1,0,0,−1,0,0 jE60 = t2JE1,1,1,1,1,0,1,0,1,1,0,0,0,0,0
jE61 = −stJE1,1,1,1,1,0,1,1,0,1,0,0,0,0,0 jE62 = −stJE1,1,1,1,1,0,1,1,1,0,0,0,0,0,0
jE63 = −tJE1,1,1,1,1,1,0,0,1,1,−1,0,0,0,0 jE64 = −stJE1,1,1,1,1,1,0,1,0,1,0,0,0,0,0
jE65 = −stJE1,1,1,1,1,1,0,1,1,0,0,0,0,0,0 jE66 = −tJE1,1,1,1,1,1,1,0,0,1,0,0,−1,0,0
jE67 = −tJE1,1,1,1,1,1,1,0,1,0,0,−1,0,0,0 jE68 = t2JE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,0
jE69 = t2JE0,1,1,1,1,1,1,1,1,1,0,0,0,0,−1 jE70 = st2JE0,1,1,1,1,1,1,1,1,1,0,0,0,0,0

Table A.1.: Diagram E: Integrands with constant leading singularities
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jE71 = −stJE1,0,1,1,1,1,1,1,1,1,−1,0,0,0,0 jE72 = t2JE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,0
jE73 = t2JE1,1,1,0,1,1,1,1,1,1,−1,0,0,0,0 jE74 = −stJE1,1,1,1,0,1,1,1,1,1,−1,0,0,0,0
jE75 = t2JE1,1,1,1,1,0,1,1,1,1,−1,0,0,0,0 jE76 = t2JE1,1,1,1,1,0,1,1,1,1,0,0,0,−1,0
jE77 = st2JE1,1,1,1,1,0,1,1,1,1,0,0,0,0,0 jE78 = −stJE1,1,1,1,1,1,0,1,1,1,−1,0,0,0,0
jE79 = t2JE1,1,1,1,1,1,1,0,1,1,−1,0,0,0,0 jE80 = (−s− t)JE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0
jE81 = −stJE1,1,1,1,1,1,1,1,0,1,−1,0,0,0,0 jE82 = −stJE1,1,1,1,1,1,1,1,0,1,0,0,−1,0,0
jE83 = (−s− t)JE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 jE84 = −stJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,0
jE85 = −stJE1,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 jE86 = t2JE1,1,1,1,1,1,1,1,1,1,−2,0,0,0,0
jE87 = −stJE1,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0 jE88 = −stJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,0
jE89 = t2JE1,1,1,1,1,1,1,1,1,1,−1,0,0,−1,0 jE90 = st2JE1,1,1,1,1,1,1,1,1,1,−1,0,0,0,0
jE91 = (−s− t)JE0,1,1,0,1,1,1,1,1,0,0,0,0,0,0 + (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0
jE92 = sJE1,0,1,0,1,1,1,1,1,0,0,0,0,0,0 + tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0
jE93 = (−s− t)JE1,1,0,1,1,0,1,1,0,1,0,0,0,0,0 + (s+ t)JE1,1,1,1,1,0,1,1,0,1,0,0,−1,0,0
jE94 = sJE1,0,1,1,1,0,1,1,1,0,0,0,0,0,0 + tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0
jE95 = (−s− t)JE1,1,1,1,1,1,0,1,0,0,0,0,0,0,0 + (s+ t)JE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0
jE96 = (−s− t)JE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0 + sJE1,1,1,1,1,1,0,1,0,0,0,0,0,0,0
jE97 = tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1 − tJE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0
jE98 = −tJE1,0,1,0,1,1,1,1,1,1,−1,0,0,0,0 + tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0
jE99 = −tJE1,0,1,1,1,0,1,1,1,1,−1,0,0,0,0 + tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0
jE100 = −sJE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0 + sJE1,1,1,1,1,1,0,1,1,−1,0,0,0,0,0
jE101 = (−s− t)JE1,1,1,1,1,1,0,1,0,1,−1,0,0,0,0 + (s+ t)JE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0
jE102 = −tJE1,1,1,0,1,1,1,0,0,1,0,0,0,0,0 + tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,0,0
jE103 = −tJE1,1,0,1,1,1,1,0,1,0,0,0,0,0,0 + tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,0
jE104 = tJE1,1,1,1,1,1,1,1,0,0,0,0,0,0,−1 − tJE1,1,1,1,1,1,1,1,0,0,0,0,0,−1,0
jE105 = −stJE1,1,1,1,1,1,1,1,0,0,0,0,0,0,0 − tJE1,1,1,1,1,1,1,1,0,0,0,0,0,0,−1
jE106 = sJE1,1,0,1,1,1,1,1,−1,1,0,0,0,0,0 − st2JE1,1,0,1,1,1,1,1,1,1,0,0,0,0,0
jE107 = sJE1,1,0,1,1,1,1,1,0,1,0,−1,0,0,0 − st2JE1,1,0,1,1,1,1,1,1,1,0,0,0,0,0
jE108 = −st2JE1,1,0,1,1,1,1,1,1,1,0,0,0,0,0 − stJE1,1,0,1,1,1,1,1,0,1,0,0,0,0,0
jE109 = −t(2s+ t)JE0,1,1,0,1,1,1,1,1,1,0,0,0,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE110 = sJE1,1,1,0,1,1,1,1,1,−1,0,0,0,0,0 − st2JE1,1,1,0,1,1,1,1,1,1,0,0,0,0,0
jE111 = sJE1,1,1,0,1,1,1,1,1,0,0,0,−1,0,0 − st2JE1,1,1,0,1,1,1,1,1,1,0,0,0,0,0
jE112 = −st2JE1,1,1,0,1,1,1,1,1,1,0,0,0,0,0 − stJE1,1,1,0,1,1,1,1,1,0,0,0,0,0,0
jE113 = stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0 − t(2s+ t)JE1,1,0,1,1,0,1,1,1,1,0,0,0,0,0
jE114 = sJE1,1,1,0,1,1,1,1,−1,1,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,0,1,−1,−1,0,0,0
jE115 = −tJE1,1,1,1,0,1,1,1,0,1,0,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,0,1,0,0,−1,0,−1
jE116 = sJE1,1,0,1,1,1,1,1,1,−1,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,0,−1,0,0
jE117 = −tJE1,0,1,1,1,1,1,1,1,0,0,0,0,0,−1 + tJE1,1,1,1,1,1,1,1,1,0,0,−1,0,−1,0
jE118 = −stJE0,1,1,1,1,1,1,1,1,1,0,−1,0,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE119 = stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0 + t2JE1,1,0,1,1,1,1,1,1,1,0,0,0,0,−1
jE120 = sJE1,1,1,1,1,1,1,1,−1,1,0,0,−1,0,0 + tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0
jE121 = sJE1,1,1,1,1,1,1,1,1,−1,0,−1,0,0,0 + tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1

Table A.2.: Diagram E: Integrands with constant leading singularities (continued)
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jE122 = −tJE1,0,1,1,0,1,1,0,1,1,0,0,0,0,0 + tJE1,1,1,1,1,1,1,0,1,1,0,−1,−1,0,0 + t2JE1,1,1,1,1,1,0,0,1,1,0,0,0,0,0
jE123 = (−s− 2t)JE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0 + sJE1,1,1,1,1,1,0,1,−1,1,0,0,0,0,0 + tJE1,1,1,1,1,1,0,1,1,1,−2,0,0,0,0
jE124 = (−s− 2t)JE1,1,1,1,1,1,0,1,1,0,−1,0,0,0,0 + sJE1,1,1,1,1,1,0,1,0,1,−1,0,0,0,0 + tJE1,1,1,1,1,1,0,1,1,1,−2,0,0,0,0
jE125 = sJE1,1,0,1,1,1,1,1,0,0,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0
jE126 = sJE1,1,1,0,1,1,1,1,0,0,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1
jE127 = sJE1,1,1,0,1,1,1,1,0,1,0,0,−1,0,0 + tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE128 = −tJE1,1,1,0,1,1,1,1,0,1,0,0,0,−1,0 + tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE129 = −sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,1,0,1,1,1,1,1,0,1,−1,0,0,0,0 − tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0
jE130 = sJE1,1,1,1,1,1,1,1,0,0,0,0,−1,0,0 − sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0
jE131 = −sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,0,1,1,1,1,1,0,−1,0,0,0,0 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1
jE132 = sJE1,1,1,1,1,1,1,1,0,0,0,−1,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1
jE133 = −st2JE1,1,1,0,1,1,1,1,1,1,0,0,0,0,0 − stJE1,1,1,0,1,1,1,1,1,1,0,0,−1,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE134 = −st2JE1,1,0,1,1,1,1,1,1,1,0,0,0,0,0 − stJE1,1,0,1,1,1,1,1,1,1,0,−1,0,0,0 + stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0
jE135 = −tJE1,1,1,0,1,1,1,1,0,1,−1,0,0,0,0 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1 + tJE1,1,1,1,1,1,1,1,1,1,−2,−1,0,0,0
jE136 = −tJE1,1,0,1,1,1,1,1,1,0,−1,0,0,0,0 − tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−2,0,−1,0,0
jE137 = (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,0,1,1,1,1,1,1,−1,0,0,0,0

−tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1 + tJE0,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0
jE138 = −tJE1,1,0,0,1,1,1,0,1,1,0,0,0,0,0 − tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0

+tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0
jE139 = sJE1,1,1,1,1,0,1,1,0,1,0,0,−1,0,0 − tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0

+tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0 + t(s+ t)JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0
jE140 = −tJE1,1,0,1,1,1,1,1,1,1,−1,−1,0,0,0 + tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0

−tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1
jE141 = sJE0,1,1,1,0,1,1,1,0,1,0,0,0,0,0 + (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1

+tJE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,−1 + t(s+ t)JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0
jE142 = (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,1,0,1,1,1,1,1,−1,0,0,0,0 − tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1

+tJE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,−1 + t(s+ t)JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0
jE143 = (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,1,1,1,1,1,0,1,0,0,0,0,−1 − tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1

+tJE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,−1 + t(s+ t)JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0
jE144 = sJE0,1,1,0,1,1,1,1,0,1,0,0,0,0,0 + (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1

+tJE0,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE145 = (s+ t)JE1,1,1,1,1,0,1,1,0,1,0,0,−1,0,0 − tJE1,1,1,1,1,0,1,1,0,1,0,0,0,−1,0 − tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0

+tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0 + t(s+ t)JE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0
jE146 = sJE0,1,1,1,1,1,1,1,0,1,0,−1,0,0,0 + (s+ t)JE0,1,1,1,1,1,1,1,1,0,0,−1,0,0,0 − tJE0,1,1,1,1,1,1,1,1,0,0,0,0,0,−1

+tJE0,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0 − t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0
jE147 = (−s− t)tJE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0 − tJE1,1,0,1,1,0,1,1,1,1,−1,0,0,0,0 + tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0

−tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,0,1,1,1,1,−1,0,−1,0,0
jE148 = sJE1,0,1,1,1,1,1,1,1,−1,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,0

−tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,−1,0

Table A.3.: Diagram E: Integrands with constant leading singularities (continued).
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jE149 = sJE1,0,1,1,1,1,1,1,1,0,−1,0,0,0,0 − sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,0
−tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,−1,0

jE150 = sJE1,1,1,1,0,1,1,1,−1,1,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,0,0
+tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,0,−1 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1

jE151 = sJE1,1,1,1,0,1,1,1,0,1,−1,0,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,0,0
+tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,0,−1 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1

jE152 = sJE1,0,1,1,0,1,1,1,1,0,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,1,0,0,−1,−1,0,0 − stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0
+tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE153 = sJE1,1,0,1,1,1,1,1,1,0,0,−1,0,0,0 + stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0 + tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0
−tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE154 = stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0 − tJE1,1,0,1,1,1,1,1,1,0,0,0,0,0,−1 + tJE1,1,1,0,1,1,1,1,1,0,0,0,0,−1,0
−tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE155 = −sJE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,0 − tJE1,0,1,1,1,1,1,1,1,1,−2,0,0,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,0
−tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,−1,0

jE156 = −sJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,0,0 − tJE1,1,1,1,0,1,1,1,1,1,−2,0,0,0,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,0,0
+tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,0,−1 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1

jE157 = st2JE1,1,1,1,1,1,0,1,1,1,0,0,0,0,0 − stJE1,0,1,1,0,1,1,1,1,1,0,0,0,0,0 − stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0
+stJE1,1,1,1,1,1,1,1,1,1,0,−1,−1,0,0 + t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0

jE158 = (−s− t)tJE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0 + sJE1,1,0,1,1,0,1,1,1,0,0,0,0,0,0 + stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0
+tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0 − tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,0,1,1,1,1,−1,0,−1,0,0

jE159 = (−s− t)tJE0,1,1,1,1,0,1,1,1,1,0,0,0,0,0 + sJE1,1,1,1,1,0,1,1,1,0,0,0,−1,0,0 + stJE1,1,1,1,1,0,1,1,1,1,0,0,−1,0,0
+tJE1,1,1,1,1,0,1,1,1,0,0,0,0,−1,0 − tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,0,1,1,1,1,−1,0,−1,0,0

jE160 = sJE1,1,0,1,0,1,1,1,0,1,0,0,0,0,0 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1 − tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0
+tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0 + tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE161 = −tJE1,1,0,1,1,1,1,0,1,1,−1,0,0,0,0 + tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,0 − tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,0
−tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−2,0,0,−1,0 + t(s+ t)JE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,0

jE162 = −(−s− t)tJE1,1,1,1,1,0,1,1,1,1,−1,0,0,0,0 − tJE1,1,1,0,1,1,1,0,1,1,−1,0,0,0,0 + tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,0,0
−tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,0,−1 − tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,0,−1 + tJE1,1,1,1,1,1,1,1,1,1,−2,0,0,0,−1

jE163 = −tJE1,1,0,1,0,1,1,1,1,1,−1,0,0,0,0 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1 − tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0
+tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0 + tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE164 = −tJE1,1,0,1,1,1,1,1,0,1,0,0,0,0,−1 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1 − tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0
+tJE1,1,1,0,1,1,1,1,1,1,−1,0,−1,0,0 + tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1

jE165 = −tJE1,0,1,1,1,1,1,1,1,1,−1,0,0,0,−1 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1 − tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0
+tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1 + tJE1,1,1,1,1,1,1,1,1,1,−1,−1,0,−1,0

jE166 = sJE1,0,1,1,0,1,1,1,0,1,0,0,0,0,0 − sJE1,1,1,1,1,1,1,1,0,1,0,−1,−1,0,0 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1
−tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0
−tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1 + t2JE1,1,1,0,1,1,1,1,1,1,0,0,0,−1,0

jE167 = 2tJE1,1,1,1,0,1,1,1,1,1,−1,0,0,−1,0 − 2tJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1 + (s+ t)tJE1,1,1,1,1,1,0,1,1,1,−1,0,0,0,0
−tJE1,0,1,1,0,1,1,1,1,1,−1,0,0,0,0 + tJE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1
−tJE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0 + tJE1,1,1,1,1,1,1,1,1,1,−1,−1,−1,0,0

Table A.4.: Diagram E: Integrands with constant leading singularities (continued).
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jE168 = −JE1,0,1,0,1,1,1,1,1,−1,0,0,0,0,0 − JE1,0,1,1,0,1,1,0,1,0,0,0,0,0,0 − JE1,0,1,1,1,1,1,1,1,0,−1,0,0,0,−1
−JE1,1,0,1,0,1,1,1,0,0,0,0,0,0,0 − JE1,1,0,1,1,1,1,0,1,0,0,−1,0,0,0 − JE1,1,0,1,1,1,1,1,1,−1,0,0,0,0,−1
−JE1,1,1,0,1,1,1,0,1,0,0,0,−1,0,0 − JE1,1,1,0,1,1,1,1,0,0,0,0,0,−1,0 − JE1,1,1,1,0,1,1,1,1,0,−1,0,0,−1,0
−JE1,1,1,1,1,1,1,1,0,0,0,0,−1,0,−1 − JE1,1,1,1,1,1,1,1,1,0,−1,−1,−1,0,0 − JE1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1,0
+JE1,0,1,0,1,1,1,0,1,0,0,0,0,0,0 + JE1,0,1,1,0,1,1,1,1,0,−1,0,0,0,0 + JE1,0,1,1,1,1,1,1,1,−1,0,0,0,0,−1
+JE1,1,0,1,0,1,1,0,1,0,0,0,0,0,0 + JE1,1,0,1,1,1,1,1,0,0,0,0,0,0,−1 + JE1,1,0,1,1,1,1,1,1,−1,0,−1,0,0,0
+JE1,1,1,0,1,1,1,1,0,0,0,0,−1,0,0 + JE1,1,1,0,1,1,1,1,1,−1,0,0,0,−1,0 + JE1,1,1,1,0,1,1,1,0,0,0,0,0,−1,0
+JE1,1,1,1,1,1,1,0,1,0,0,−1,−1,0,0 + JE1,1,1,1,1,1,1,1,1,0,−1,−1,0,−1,0 + JE1,1,1,1,1,1,1,1,1,0,−1,0,−1,0,−1

jE169 = −JE1,0,1,0,1,1,1,1,1,0,−1,0,0,0,0 − JE1,0,1,1,0,1,1,0,1,1,−1,0,0,0,0 − JE −−1,0,1,1,1,1,1,1,1,1,−2,0,0,0,−1
−JE1,1,0,1,0,1,1,1,0,1,−1,0,0,0,0 − JE1,1,0,1,1,1,1,0,1,1,−1,−1,0,0,0 − JE1,1,0,1,1,1,1,1,1,0,−1,0,0,0,−1
−JE1,1,1,0,1,1,1,0,1,1,−1,0,−1,0,0 − JE1,1,1,0,1,1,1,1,0,1,−1,0,0,−1,0 − JE1,1,1,1,0,1,1,1,1,1,−2,0,0,−1,0
−JE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,−1 − JE1,1,1,1,1,1,1,1,1,0,−1,−1,0,−1,0 − JE1,1,1,1,1,1,1,1,1,1,−2,−1,−1,0,0
+(s+ t)[−JE0,1,1,1,0,1,1,1,1,1,−1,0,0,0,0 + JE0,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0 + JE1,0,1,1,0,1,1,1,1,1,−1,0,0,0,0]

+(s+ t)[−JE1,0,1,1,1,0,1,1,1,1,−1,0,0,0,0 + JE1,1,1,1,1,0,1,1,1,1,−1,0,−1,0,0 − JE1,1,1,1,1,1,1,1,1,1,−1,−1,−1,0,0]
−t(s+ t)JE1,1,1,1,1,1,0,1,1,1,−1,0,0,0,0 + JE1,0,1,0,1,1,1,0,1,1,−1,0,0,0,0 + JE1,0,1,1,0,1,1,1,1,1,−2,0,0,0,0
+JE1,0,1,1,1,1,1,1,1,0,−1,0,0,0,−1 + JE1,1,0,1,0,1,1,0,1,1,−1,0,0,0,0 + JE1,1,0,1,1,1,1,1,0,1,−1,0,0,0,−1
+JE1,1,0,1,1,1,1,1,1,0,−1,−1,0,0,0 + JE1,1,1,0,1,1,1,1,0,1,−1,0,−1,0,0 + JE1,1,1,0,1,1,1,1,1,0,−1,0,0,−1,0
+JE1,1,1,1,0,1,1,1,0,1,−1,0,0,−1,0 + JE1,1,1,1,1,1,1,0,1,1,−1,−1,−1,0,0 + JE1,1,1,1,1,1,1,1,1,1,−2,−1,0,−1,0
+JE1,1,1,1,1,1,1,1,1,1,−2,0,−1,0,−1

jE170 = −JE1,0,1,0,1,1,1,1,0,0,0,0,0,0,0 − JE1,0,1,1,0,1,1,0,0,1,0,0,0,0,0 − JE1,0,1,1,1,1,1,1,0,1,−1,0,0,0,−1
−JE1,1,0,1,0,1,1,1,−1,1,0,0,0,0,0 − JE1,1,0,1,1,1,1,0,0,1,0,−1,0,0,0 − JE1,1,0,1,1,1,1,1,0,0,0,0,0,0,−1
−JE1,1,1,0,1,1,1,0,0,1,0,0,−1,0,0 − JE1,1,1,0,1,1,1,1,−1,1,0,0,0,−1,0 − JE1,1,1,1,0,1,1,1,0,1,−1,0,0,−1,0
−JE1,1,1,1,1,1,1,1,0,0,0,−1,0,−1,0 − JE1,1,1,1,1,1,1,1,0,1,−1,−1,−1,0,0 − JE1,1,1,1,1,1,1,1,−1,1,0,0,−1,0,−1
+JE1,0,1,0,1,1,1,0,0,1,0,0,0,0,0 + JE1,0,1,1,0,1,1,1,0,1,−1,0,0,0,0 + JE1,0,1,1,1,1,1,1,0,0,0,0,0,0,−1
+JE1,1,0,1,0,1,1,0,0,1,0,0,0,0,0 + JE1,1,0,1,1,1,1,1,−1,1,0,0,0,0,−1 + JE1,1,0,1,1,1,1,1,0,0,0,−1,0,0,0
+JE1,1,1,0,1,1,1,1,−1,1,0,0,−1,0,0 + JE1,1,1,0,1,1,1,1,0,0,0,0,0,−1,0 + JE1,1,1,1,0,1,1,1,−1,1,0,0,0,−1,0
+JE1,1,1,1,1,1,1,0,0,1,0,−1,−1,0,0 + JE1,1,1,1,1,1,1,1,0,1,−1,−1,0,−1,0 + JE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,−1

jE171 = (st+ t2)[−JE0,1,1,0,1,1,1,0,1,1,0,0,0,0,0 + JE0,1,1,0,1,1,1,1,1,1,−1,0,0,0,0 − JE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,−1]
+t2JE0,1,1,1,1,1,1,0,1,1,0,0,0,0,−1 + (s2 + st)[JE0,1,1,1,0,1,1,1,1,1,−1,0,0,0,0 − JE0,1,1,1,1,1,1,1,1,1,−1,−1,0,0,0]
+(s2t+ st2)JE0,1,1,1,1,1,1,1,1,1,−1,0,0,0,0 + tJE1,0,1,0,1,1,1,−1,1,1,0,0,0,0,0 + 2sJE1,0,1,0,1,1,1,0,0,1,0,0,0,0,0
+(−s− t)JE1,0,1,0,1,1,1,0,1,0,0,0,0,0,0 + (−s− t)JE1,0,1,0,1,1,1,0,1,1,−1,0,0,0,0 − 2sJE1,0,1,0,1,1,1,1,0,0,0,0,0,0,0
+sJE1,0,1,0,1,1,1,1,1,−1,0,0,0,0,0 + (s+ t)JE1,0,1,0,1,1,1,1,1,0,−1,0,0,0,0 − tJE1,0,1,1,0,1,1,−1,1,1,0,0,0,0,0
−2sJE1,0,1,1,0,1,1,0,0,1,0,0,0,0,0 − sJE1,0,1,1,0,1,1,0,1,0,0,0,0,0,0 + (3s+ 2t)JE1,0,1,1,0,1,1,0,1,1,−1,0,0,0,0
+2sJE1,0,1,1,0,1,1,1,0,0,0,0,0,0,0 − sJE1,0,1,1,0,1,1,1,1,0,−1,0,0,0,0 + (−s− t)JE1,0,1,1,0,1,1,1,1,1,−2,0,0,0,0
+(s2 + st)[−JE1,0,1,1,0,1,1,1,1,1,−1,0,0,0,0 + JE1,0,1,1,1,0,1,1,1,1,−1,0,0,0,0 + 2sJE1,0,1,1,1,1,1,0,1,0,0,−1,0,0,0
+tJE1,0,1,1,1,1,1,0,1,0,0,0,0,0,−1 − 2sJE1,0,1,1,1,1,1,0,1,1,−1,−1,0,0,0 − tJE1,0,1,1,1,1,1,0,1,1,−1,0,0,0,−1
−(2s+ t)JE1,0,1,1,1,1,1,1,1,0,−1,0,0,0,−1 + sJE1,0,1,1,1,1,1,1,1,−1,0,0,0,0,−1 + 2sJE1,0,1,1,1,1,1,1,1,0,−1,−1,0,0,0
−2sJE1,0,1,1,1,1,1,1,1,−1,0,−1,0,0,0 + 2s2JE1,0,1,1,1,1,1,1,1,0,0,−1,0,0,0 + (s+ t)JE1,0,1,1,1,1,1,1,1,1,−2,0,0,0,−1
+...(see next page)

Table A.5.: Diagram E: Integrands with constant leading singularities (continued).
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...(see previous page)
−2tJE1,1,0,0,1,1,1,−1,1,1,0,0,0,0,0 + 2tJE1,1,0,0,1,1,1,0,0,1,0,0,0,0,0 + 2tJE1,1,0,0,1,1,1,0,1,0,0,0,0,0,0
+(2st+ 2t2)JE1,1,0,0,1,1,1,0,1,1,0,0,0,0,0 − 2tJE1,1,0,0,1,1,1,1,0,0,0,0,0,0,0 + tJE1,1,0,1,0,1,1,−1,1,1,0,0,0,0,0
−tJE1,1,0,1,0,1,1,0,0,1,0,0,0,0,0 + sJE1,1,0,1,0,1,1,0,1,0,0,0,0,0,0 + (−s− t)JE1,1,0,1,0,1,1,0,1,1,−1,0,0,0,0
−sJE1,1,0,1,0,1,1,1,0,0,0,0,0,0,0 + (s+ t)JE1,1,0,1,0,1,1,1,0,1,−1,0,0,0,0 + (−st− t2)JE1,1,0,1,1,0,1,0,1,1,0,0,0,0,0
+(st+ t2)JE1,1,0,1,1,0,1,1,1,1,−1,0,0,0,0 + tJE1,1,0,1,1,1,1,−1,1,1,0,−1,0,0,0 + t2JE1,1,0,1,1,1,1,−1,1,1,0,0,0,0,0
−tJE1,1,0,1,1,1,1,0,0,1,0,0,0,0,−1 + (−s− t)JE1,1,0,1,1,1,1,0,1,0,0,−1,0,0,0 − tJE1,1,0,1,1,1,1,0,1,0,0,0,0,0,−1
+(s− t)JE1,1,0,1,1,1,1,0,1,1,−1,−1,0,0,0 + 2tJE1,1,0,1,1,1,1,0,1,1,−1,0,0,0,−1 + (−st− t2)JE1,1,0,1,1,1,1,0,1,1,−1,0,0,0,0
−t2JE1,1,0,1,1,1,1,0,1,1,0,0,0,0,−1 + (s+ 2t)JE1,1,0,1,1,1,1,1,0,0,0,0,0,0,−1 + (−s− t)JE1,1,0,1,1,1,1,1,0,1,−1,0,0,0,−1
+sJE1,1,0,1,1,1,1,1,1,−1,0,−1,0,0,0 − sJE1,1,0,1,1,1,1,1,1,−1,0,0,0,0,−1 + (−s+ t)JE1,1,0,1,1,1,1,1,1,0,−1,−1,0,0,0
+(s− t)JE1,1,0,1,1,1,1,1,1,0,−1,0,0,0,−1 + (−st− t2)JE1,1,0,1,1,1,1,1,1,1,−1,0,0,0,−1 + tJE1,1,1,0,1,1,1,−1,1,1,0,0,−1,0,0
+t2JE1,1,1,0,1,1,1,−1,1,1,0,0,0,0,0 + (−2s− t)JE1,1,1,0,1,1,1,0,0,1,0,0,−1,0,0 − tJE1,1,1,0,1,1,1,0,0,1,0,0,0,−1,0
+sJE1,1,1,0,1,1,1,0,1,0,0,0,−1,0,0 − tJE1,1,1,0,1,1,1,0,1,0,0,0,0,−1,0 + (s− t)JE1,1,1,0,1,1,1,0,1,1,−1,0,−1,0,0
+2tJE1,1,1,0,1,1,1,0,1,1,−1,0,0,−1,0 + (−st− t2)JE1,1,1,0,1,1,1,0,1,1,−1,0,0,0,0 − t2JE1,1,1,0,1,1,1,0,1,1,0,0,0,−1,0
+2sJE1,1,1,0,1,1,1,1,−1,1,0,0,−1,0,0 − 2sJE1,1,1,0,1,1,1,1,−1,1,0,0,0,−1,0 − sJE1,1,1,0,1,1,1,1,0,0,0,0,−1,0,0
+(3s+ 2t)JE1,1,1,0,1,1,1,1,0,0,0,0,0,−1,0 + (−s+ t)[JE1,1,1,0,1,1,1,1,0,1,−1,0,−1,0,0 − JE1,1,1,0,1,1,1,1,0,1,−1,0,0,−1,0]
−sJE1,1,1,0,1,1,1,1,1,−1,0,0,0,−1,0 − (s+ t)JE1,1,1,0,1,1,1,1,1,0,−1,0,0,−1,0 − (st+ t2)JE1,1,1,0,1,1,1,1,1,1,−1,0,0,−1,0
+2sJE1,1,1,1,0,1,1,0,0,1,0,0,−1,0,0 + tJE1,1,1,1,0,1,1,0,0,1,0,0,0,−1,0 − 2sJE1,1,1,1,0,1,1,0,1,1,−1,0,−1,0,0
−tJE1,1,1,1,0,1,1,0,1,1,−1,0,0,−1,0 − 2sJE1,1,1,1,0,1,1,1,−1,1,0,0,−1,0,0 + 2sJE1,1,1,1,0,1,1,1,−1,1,0,0,0,−1,0
−sJE1,1,1,1,0,1,1,1,0,0,0,0,0,−1,0 + 2sJE1,1,1,1,0,1,1,1,0,1,−1,0,−1,0,0 + (−3s− t)JE1,1,1,1,0,1,1,1,0,1,−1,0,0,−1,0
+2s2JE1,1,1,1,0,1,1,1,0,1,0,0,−1,0,0 + sJE1,1,1,1,0,1,1,1,1,0,−1,0,0,−1,0 + (s+ t)JE1,1,1,1,0,1,1,1,1,1,−2,0,0,−1,0
+t2JE1,1,1,1,1,0,1,0,1,1,0,0,0,−1,0 − (s2 + st)JE1,1,1,1,1,0,1,1,1,1,−1,0,−1,0,0 − (st+ t2)JE1,1,1,1,1,0,1,1,1,1,−1,0,0,−1,0
+(s2t+ st2)JE1,1,1,1,1,0,1,1,1,1,−1,0,0,0,0 − t2JE1,1,1,1,1,1,0,−1,1,1,0,0,0,0,0 + (2st+ 2t2)JE1,1,1,1,1,1,0,0,1,1,−1,0,0,0,0
−4st2JE1,1,1,1,1,1,0,0,1,1,0,0,0,0,0 − (st+ t2)JE1,1,1,1,1,1,0,1,1,1,−2,0,0,0,0 − 3st(s+ t)JE1,1,1,1,1,1,0,1,1,1,−1,0,0,0,0
−2s2t2JE1,1,1,1,1,1,0,1,1,1,0,0,0,0,0 − tJE1,1,1,1,1,1,1,−1,1,1,0,−1,−1,0,0 + tJE1,1,1,1,1,1,1,0,0,1,0,0,−1,0,−1
−sJE1,1,1,1,1,1,1,0,1,0,0,−1,−1,0,0 + tJE1,1,1,1,1,1,1,0,1,0,0,−1,0,−1,0 + (s+ 2t)JE1,1,1,1,1,1,1,0,1,1,−1,−1,−1,0,0
−tJE1,1,1,1,1,1,1,0,1,1,−1,−1,0,−1,0 − tJE1,1,1,1,1,1,1,0,1,1,−1,0,−1,0,−1 − t2JE1,1,1,1,1,1,1,0,1,1,−1,0,0,−1,0
−t2JE1,1,1,1,1,1,1,0,1,1,−1,0,0,0,−1 − 4stJE1,1,1,1,1,1,1,0,1,1,0,−1,−1,0,0 + 2sJE1,1,1,1,1,1,1,1,0,0,0,−1,−1,0,0
−2sJE1,1,1,1,1,1,1,1,0,0,0,−1,0,−1,0 − sJE1,1,1,1,1,1,1,1,0,0,0,0,−1,0,−1 − 2tJE1,1,1,1,1,1,1,1,0,0,0,0,0,−1,−1
−2stJE1,1,1,1,1,1,1,1,0,0,0,0,0,0,−1 − 2sJE1,1,1,1,1,1,1,1,0,1,−1,−1,−1,0,0 + 2sJE1,1,1,1,1,1,1,1,0,1,−1,−1,0,−1,0
+(s− t)JE1,1,1,1,1,1,1,1,0,1,−1,0,−1,0,−1 + 2tJE1,1,1,1,1,1,1,1,0,1,−1,0,0,−1,−1 − 2s2JE1,1,1,1,1,1,1,1,0,1,0,−1,−1,0,0
+2stJE1,1,1,1,1,1,1,1,0,1,0,0,−1,0,−1 + sJE1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1,0 − sJE1,1,1,1,1,1,1,1,1,0,−1,−1,−1,0,0
−tJE1,1,1,1,1,1,1,1,1,0,−1,−1,0,−1,0 + sJE1,1,1,1,1,1,1,1,1,0,−1,0,−1,0,−1 + 2tJE1,1,1,1,1,1,1,1,1,0,−1,0,0,−1,−1
−2s2JE1,1,1,1,1,1,1,1,1,0,0,−1,−1,0,0 + 2stJE1,1,1,1,1,1,1,1,1,0,0,−1,0,−1,0 + (s− t)JE1,1,1,1,1,1,1,1,1,1,−2,−1,−1,0,0
+(−s+ t)[JE1,1,1,1,1,1,1,1,1,1,−2,−1,0,−1,0 + JE1,1,1,1,1,1,1,1,1,1,−2,0,−1,0,−1]− 2tJE1,1,1,1,1,1,1,1,1,1,−2,0,0,−1,−1
+(st+ t2)JE1,1,1,1,1,1,1,1,1,1,−2,0,0,−1,0 + (st+ t2)JE1,1,1,1,1,1,1,1,1,1,−2,0,0,0,−1
+2stJE1,1,1,1,1,1,1,1,1,1,−1,−1,0,−1,0 + 2stJE1,1,1,1,1,1,1,1,1,1,−1,0,−1,0,−1 + 2t2JE1,1,1,1,1,1,1,1,1,1,−1,0,0,−1,−1
−2s2tJE1,1,1,1,1,1,1,1,1,1,0,−1,−1,0,0 + (s2 − 3st)JE1,1,1,1,1,1,1,1,1,1,−1,−1,−1,0,0

Table A.6.: Diagram E: Integrands with constant leading singularities (continued).
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Figure A.1.: Diagram E integrands with constant leading singularities. A wavy line
in a loop indicates a numerator depending on the corresponding loop
variable.
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Figure A.2.: Diagram E (continued).
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Figure A.3.: Diagram E (continued).
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Figure A.4.: Diagram E (continued).
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Figure A.5.: Diagram E (continued).
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Figure A.6.: Diagram E (continued).
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Figure A.7.: Diagram E (continued).
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Figure A.8.: Diagram E (continued).
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Figure A.9.: Diagram E (continued).
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Figure A.10.: Diagram E (continued).
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Figure A.11.: Diagram E (continued).

77



Bibliography

[1] J. M. Henn and J. C. Plefka, Scattering Amplitudes in Gauge Theories, Lect.
Notes Phys. 883 (2014) 1–195.

[2] H. Elvang and Y.-t. Huang, Scattering Amplitudes, 1308.1697.

[3] J. M. Henn, Multiloop integrals in dimensional regularization made simple,
Phys. Rev. Lett. 110 (2013) 251601, [1304.1806].

[4] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for
Planar Scattering Amplitudes, JHEP 06 (2012) 125, [1012.6032].

[5] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
1995.

[6] J. M. Henn, Lectures on differential equations for Feynman integrals, J. Phys.
A48 (2015) 153001, [1412.2296].

[7] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to
Calculate beta Functions in 4 Loops, Nucl. Phys. B192 (1981) 159–204.

[8] J. Gluza, K. Kajda and D. A. Kosower, Towards a Basis for Planar Two-Loop
Integrals, Phys. Rev. D83 (2011) 045012, [1009.0472].

[9] A. V. Smirnov and A. V. Petukhov, The Number of Master Integrals is Finite,
Lett. Math. Phys. 97 (2011) 37–44, [1004.4199].

[10] J. C. Collins, Renormalization, vol. 26 of Cambridge Monographs on
Mathematical Physics.

Cambridge University Press, Cambridge, 1986.

[11] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order
perturbative calculations, JHEP 07 (2004) 046, [hep-ph/0404258].

[12] A. V. Smirnov, FIRE5: a C++ implementation of Feynman Integral
REduction, Comput. Phys. Commun. 189 (2015) 182–191, [1408.2372].

[13] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J.
Phys. Conf. Ser. 523 (2014) 012059, [1310.1145].

[14] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral
Reduction, 1201.4330.

[15] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e-
Annihilation Into mu+ mu- in the Weinberg Model, Nucl. Phys. B160
(1979) 151–207.

78

http://dx.doi.org/10.1007/978-3-642-54022-6
http://dx.doi.org/10.1007/978-3-642-54022-6
https://arxiv.org/abs/1308.1697
http://dx.doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
http://dx.doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
http://dx.doi.org/10.1088/1751-8113/48/15/153001
http://dx.doi.org/10.1088/1751-8113/48/15/153001
https://arxiv.org/abs/1412.2296
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1103/PhysRevD.83.045012
https://arxiv.org/abs/1009.0472
http://dx.doi.org/10.1007/s11005-010-0450-0
https://arxiv.org/abs/1004.4199
http://dx.doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/hep-ph/0404258
http://dx.doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://dx.doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://arxiv.org/abs/1201.4330
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90234-7


Bibliography

[16] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic
Singularities and Maximally Supersymmetric Amplitudes, JHEP 06 (2015)
202, [1412.8584].

[17] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a
Nonplanar Amplituhedron, JHEP 06 (2016) 098, [1512.08591].

[18] L. J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond.
Proceedings, Theoretical Advanced Study Institute in Elementary Particle
Physics, TASI-95, Boulder, USA, June 4-30, 1995, pp. 539–584, 1996.

hep-ph/9601359.

[19] I. Wolfram Research, Mathematica, Version 10.3.
Champaign, Illinois, 2015.

[20] J. M. Henn, A. V. Smirnov and V. A. Smirnov, Analytic results for planar
three-loop four-point integrals from a Knizhnik-Zamolodchikov equation,
JHEP 07 (2013) 128, [1306.2799].

79

http://dx.doi.org/10.1007/JHEP06(2015)202
http://dx.doi.org/10.1007/JHEP06(2015)202
https://arxiv.org/abs/1412.8584
http://dx.doi.org/10.1007/JHEP06(2016)098
https://arxiv.org/abs/1512.08591
https://arxiv.org/abs/hep-ph/9601359
http://dx.doi.org/10.1007/JHEP07(2013)128
https://arxiv.org/abs/1306.2799

	Introduction
	Loop-Integral Methods
	D-Dimensional Integrals
	Integration by Parts Identities
	Differential Equations
	Uniform Transcendentality and Pure Functions
	Integral Reduction
	Unitarity Cuts
	Optical Theorem
	Generalized Cuts

	Leading Singularities
	Dlog Forms

	Computing Dlog Forms and Leading Singularities
	Example for Deriving a Dlog Form
	One-loop Dlog Forms
	Bubble
	Triangle
	Box

	Algorithm for Automated Computation
	Choosing the Right Parametrization
	Basic Algorithm
	Handling Terms with Quadratic Factors
	Systematic Analysis of Numerators

	Deriving Dlog Forms Using Building Blocks
	Generalized Box
	Planar Double Box
	Non-planar Double Box

	Leading Singularities in Multi-loop Diagrams
	The n-loop Ladder
	Three Loop Ladder with Numerator
	Triangle Building Blocks
	Iterative Triangles
	Diagrams with Mixed Leading Singularities


	Results
	Planar Double Box
	Integrand Basis
	Testing Uniform Transcendental Weight
	Finite Integrals
	New Basis

	Non-planar Double Box
	Diagram A
	Diagram E
	Vanishing Gram Determinants

	Summary and Conclusion
	Appendix

