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Abstract

In this thesis we study aspects of non-planar corrections to the dilatation
operator of the AdS/CFT correspondence.
The material is presented in two parts. In the first one we review main
theoretical tools that were used in our research. These include basics of
integrability and detailed derivation of the one loop dilatation generator of
the N = 4 SYM theory. The second part contains our main calculations
and results that are based on the two articles [21, 22]. First, in a clear and
pedagogical introductions we guide the reader through our projects and then
present them in their published form.
Our key results are:

• derivation and analysis of the full one-loop dilatation generator of the
N = 4 SYM with orthogonal and symplectic gauge groups

• revealing a new class of non-planar corrections to the dilatation oper-
ator that does not lead to splitting or joining the spin-chain

• derivation of the analytic form for these 1/N corrections in a basis of
BMN operators

• performing standard tests for integrability of the new corrections (with
negative outcome)

• derivation of the full, two-loop dilatation generator of the ABJ theory
and its diagonalization in a basis of short operators

• observation that 1/N corrections in the ABJ theory break parity that
was unexpectedly present in the planar spectrum.
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Chapter 1

Introduction

The AdS/CFT correspondence is a conjecture about the equivalence of strings
propagating in D-dimensional, negatively curved, Anti-de Sitter (AdS) space-
time and certain conformal field theories (CFT) on the D-1 dimensional
boundary of AdS. It manifestly incorporates the idea of holography[2] into
modern approaches to field theory and gravity. The first example of such a
duality was proposed by Maldacena in 1997 [1]. It identifies a gauge theory
without gravity, maximally supersymmetric N = 4 Yang-Mills in four di-
mensions and a theory of quantum gravity, the type IIB superstring theory
on AdS5 × S5. The model attracted enormous attention within the high en-
ergy community and reshaped our way of thinking about both ingredients of
the conjecture. Up to date the proposal has passed so many non-trivial tests
that hardly any high energy theoretical physicists doubt that it is correct.
One of the most spectacular checks of AdS/CFT, the solution of the planar
spectral problem, has been possible due to integrability present in this limit.
This is the starting point of our discussion so let us elaborate more on this
point.
The dictionary between the two sides of the duality relates eigenvalues of a
dilatation generator [23] in a basis of composite operators that are traces of
the N = 4 SYM fields and string energies in IIB theory. The verification
that for “dual” observables these quantum numbers indeed match is called
the spectral problem of AdS/CFT.
In general, the dilatation generator has a very complicated mixing problem.
In other words its action mixes states with different number of traces and
the number of states at every order in perturbation theory grows very fast.
This way the task of diagonalizing the operator becomes more and more in-
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tractable. Fortunately, the operator has a well defined ’t Hooft expansion in
1/N . This allows, as a first approximation, to consider the mixing problem
when the number of colors is very large N → ∞. “Magically”, in this regime
the dilatation generator is equivalent to a Hamiltonian of an integrable spin-
chain [18]. This discovery started a new field of integrability in gauge and
string theory and after a huge amount of effort led to, a very convincing,
conjecture solution of the spectral problem in the large N limit[28]. We will
neither discuss the path to this result nor the details of the solution itself.
Readers interested in these developments and many more aspects of inte-
grability in gauge and string theory are referred to a recent set of excellent
reviews on the subject [74].
After solving the planar theory a natural step is to investigate what happens
when N is finite. This subject is still largely unexplored. The main obstacle
there is the breakdown of the spin-chain picture that was so successful at
the planar level. More precisely, non-planar corrections split and join spin-
chains and the standard integrability machinery of the Bethe ansatz seems
inapplicable. There exists a conventional wisdom that integrable structure is
lost beyond the planar limit. It is based on the fact that certain degeneracies
between planar parity pairs are lifted when 1/N corrections are included in
the spectrum ( see [23] and later chapters of this thesis). This should natu-
rally not stop us from understanding the structure of the full theory. Even
though, as most of the realistic particle physics theories, it might not be
all integrable but still due to the large amount of symmetry is probably the
simplest possible model for understanding 1/N physics.
Some activity beyond the planar limit has been initiated on the level of the
three point functions [93, 95, 94] which can be regarded as building blocks
for non-planar objects. Namely, they are correlation functions of 3 traces
so when we take two of the 3 points coincident they resemble the two point
function of a single and double trace operators.
Also, very recently, some traces of integrability beyond the planar limit were
noticed in a basis of Schur polynomials [96, 97, 98] in which the mixing prob-
lem of the non-planar dilatation generator was equivalent to a system of two
integrable hamiltonians. This might be a promising new direction and frame-
work for understanding the full dilatation operator and the lack or presence
of integrability.
In any case, before we will reach the final conclusion about the possibility of
using integrability at any N and λ, all methods of addressing the problem
are on an equal footing.
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Together with C. Kristjansen and K. Zoubos we embarked on the analysis
of 1/N corrections with conventional techniques of integrability [21]. In or-
der to do that we considered the dilatation generator in N = 4 SYM with
U(N), SO(N) and Sp(n) gauge groups. All of these theories are equivalent
at the planar level, however their non-planar corrections are different. For
orthogonal and symplectic gauge groups we uncovered a new class of 1/N
corrections which does not mix operators with different number of traces. In
the spin chain nomenclature they do not split or join the spin-chain.
This allowed us to derive an analytic formula for energies of these corrections
in a basis of two-impurity operators [5] which is a strong prediction for en-
ergies of semiclassical strings on AdS5 × RP5 (background dual to the field
theory with orthogonal and symplectic gauge groups). Moreover, for the first
time, we were able search for signs of integrability in a standard way. That
means, by trying to construct a modified Bethe Ansatz that would solve their
diagonalization problem. In addition, based on experience with planar inte-
grability, we tried to construct 1/N corrections to higher commuting charges,
hoping that they would commute at every order in N . Unfortunately this
construction was unsuccessful.
Even though all our tests for possible integrability of the new corrections were
negative, comparing our them with semiclassical string solutions will be an
important and non-trivial test of the AdS/CFT correspondence beyond the
planar limit.
In our second project, we studied the interplay between integrability and
parity. The parity operator acts on a single trace operator by inverting the
order of fields inside the trace [75]

P̂ Tr (X1X2...Xn) = Tr (Xn...X2X1) , (1.1)

and on multiple trace operators acts on each of the single trace components.
P̂ commutes with the planar hamiltonian (dilatation operator D0)

[P̂ , D̂0] = 0, (1.2)

so planar eigenstates can be brought into a form with definite parity.
A manifestation of the integrable structure is the presence of a certain de-
generacies in the spectrum between states with opposite parity[23]. This is
explained by the existence of a tower of higher conserved charges1 that lead

1The second charge is usually the Hamiltonian
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to a complete solubility of the planar theory. For example the third charge
Q3 maps one state from the parity pair into the other and vice versa. 1/N
corrections lift these degeneracies, which is usually interpreted as a loss of
the charges. In [22] we investigated these phenomena in another example of
the gauge/gravity duality, the ABJ theory [77]. Even though by construction
the model was manifestly parity breaking, surprisingly, the planar spectrum
was still parity invariant (see e.g.[100]).
We decided to study the non-planar corrections in this model to gain more
understanding about this puzzle. Following [83], we derived the full dilata-
tion operator at two loops and diagonalized it in a basis of short states (6 14
fields inside the trace) using computer algebra. Our observation was that,
as expected, non-planar corrections broke parity and the planar invariance
seemed to be a coincidence. Moreover, similarly to AdS5 × S5, 1/N correc-
tions lifted degeneracies in the spectrum.
In short, this is the content of the thesis. A more pedagogical introduction
and details of the projects can be found in the main text.

Outline

The material is presented in two parts. Part I is mostly introductory and is
meant to be pedagogical.
After a brief introduction to the AdS/CFT duality we review basics of inte-
grability that are necessary to understand the context and the logic behind
our reasoning in the research part of the thesis. This includes Coordinate
Bethe Ansatz, Asymptotic Bethe Ansatz, construction of conserved charges
with boost operator and the parity operator. Then we present a detailed
derivation of the one-loop dilatation generator for N = 4 SYM with unitary,
special-unitary, orthogonal and symplectic gauge groups. We then study its
structure in the context of mixing of composite operators. We identify appro-
priate substructures and classify them into planar and non-planar, or leading
and subleading in the number of colors N respectively. Part II contains the
summary of the results obtained in the projects and both articles in their
published versions. Finally additional material about orthogonal and sym-
plectic contractions, Chan-Paton factors and perturbation theory is collected
in three appendices.
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Introductory Material
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Chapter 2

A brief introduction into the
AdS/CFT correspondence.

This chapter is a very short introduction to the correspondence between
string theory in Anti-de Sitter (AdS) space and conformal field theory (CFT),
AdS/CFT for short. The duality was first conjectured by Maldacena more
than a decade ago [1]. We assume that the readers are already familiar with
AdS/CFT and here, we will only state basic facts that will be relevant for
our discussion in later parts of the thesis.
An extensive and pedagogical introduction to the correspondence can be
found in [16].

2.1 The conjecture

By now we have a large amount of evidence that, at the microscopic level,
information about gravity in d-dimensions can be encoded in a certain quan-
tum field theory in d − 1 dimensions [2]. This observation is known as the
holographic principle (see review [3]).
One of its most concrete examples was proposed by Maldacena in 1997 [1].
It is a conjecture about equivalence between type IIB superstring theory on
AdS5 × S5 background and the four dimensional N = 4 maximally super-
symmetric Yang-Mills theory without gravity.

This very non-trivial proposal comes from two ways of looking at the
same physical system, namely closed strings propagating in the background
of N D3-branes in flat ten dimensions (Fig.2.1).
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Figure 2.1: Closed strings propagating in the background of N D3 branes.

On one hand, D3 branes can be regarded as sources, and effectively re-
placed by the solution of type IIB supergravity. The solution consists of a
metric gµν , a dilaton field φ and a R-R five form field strength F5. They are
explicitly given by

ds2 = H−1/2(r)
�
−dt2 + (dxi)

2
�
+H1/2

�
dr2 + r2dΩ2

5

�
,

eφ = gs, Ftj1j2j3r = �j1j2j3H
−2(r)

Q

r5
, (2.1)

where gs is the string coupling constant and Q the charge of the solution. In
the metric, the first bracket describes coordinates “on” D3 branes (parallel
to the branes), whereas the second bracket, coordinates perpendicular to the
branes. Coordinate r is the radial distance from the branes. Finally the
prefactor

H(r) = 1 +

�
R

r

�4

. (2.2)

can be physically interpreted as a scale factor between the energy Er, of the
D3 brane system measured from some constant distance r, and the energy
seen from infinity E∞, such that

E∞ = H−
1
4 (r)Er. (2.3)

Now, according to the observer at ∞, low energy limit is equivalent to “fo-
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cusing” on D3 branes (r → 0 so H ∼ R4

r4
). In this limit, the metric becomes1

ds2 = R2

�
ηµνdxµdxν

r2
+

dr2

r2

�
+R2dΩ2

5. (2.4)

It describes a product manifold AdS5 × S5, both with radius R. This way,
we can interpret the system upon consideration as closed super-strings (de-
scribed by e.g. Green-Schwarz action) propagating in AdS5×S5 supergravity
background.

On the other hand, when we focus on branes, they can be described by
the effective theory of end-points of the open strings that stretch between
them. It is known that for N incident D3-branes this theory is the N = 4
maximally supersymmetric Yang-Mills theory in Minkowski spacetime (for
short N = 4 SYM). N = 4 SYM is a theory of “gluons” Aµ, six scalars φi

and fermions ψ. It is given explicitly by

S =
2

g2
YM

�
d4xTr

�
1

4
FµνF

µν +
1

2
DµφiDµφi −

1

4
[φi,φj] [φi,φj]

+
1

2
ψ̄ ΓµDµψ − i

2
ψ̄ Γi [φi,ψ]

�
, (2.5)

where the field strength is defined as

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (2.6)

and the covariant derivative acts on scalars and fermions as

Dµφi = ∂µφi − i [Aµ,φi] , (2.7)

Dµψ = ∂µψ − i [Aµ,ψ] . (2.8)

Parameter gYM is the coupling constant of the gauge theory.

All the fields Y = {Aµ,φi,ψ} are N ×N matrices

Yij = Y a(x)T a

ij
, (2.9)

in the adjoint representation of the unitary, special unitary, orthogonal or
symplectic Lie algebra (see B for details). Since the fields are matrices, we

1after change of variables r → R2/r
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can introduce the standard ’t Hooft expansion [4] (generalized to other gauge
groups in [32]) and the effective coupling constant of the theory becomes the
’t Hooft coupling

λ = g2
YM

N, (2.10)

where N is the size of the matrix.

By looking at these two descriptions of the same physical system we could
roughly argue that type IIB superstring theory on AdS5 × S5 background
and the four dimensional N = 4 should be identical and parameters of both
theories satisfy2

g2
YM

= gs, R4 = 4πgsNα�2 = 4πλα�2. (2.11)

Usually onc can find these relations with the string length related to α� by

α� = l2
s
. (2.12)

Manifestation of holography in the conjecture can be seen in the princi-
pal formula of the correspondence[33, 34], which states that gauge invariant
operators O on the boundary of AdS5, serve as sources for supergravity fields
φ (with boundary condition φ0)

�e
�
d4xφ0(�x)O(�x)�CFT = Zstring [φ(�x, z)|z=0 = φ0(�x)] . (2.13)

In other words, each field in Anti-de Sitter space can be mapped 1-1 to an
operator in the field theory. The mass m of the field and the classical scaling
dimension ∆ of the gauge invariant operator are related by

∆ = 2 +
√
4 +R2m2. (2.14)

This is the famous Maldacena’s AdS/CFT conjecture.

2.2 Limits

Looking closer at the relation between parameters(2.11), we can see that
when the coupling λ is small

g2
YM

N = λ =
R4

4πl4
s

� 1, (2.15)

2The first relation comes from DBI action and second, from identifying the ADM mass
of the AdS5 × S5 spacetime with the tension of N D3-branes.
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we can trust the perturbative expansion in the gauge theory, whereas on the
gravity side we have the radius of AdS comparable with the string length
ls, hence difficult to deal with quantum gravity. On the other hand, when λ
becomes large, and we lose control on the gauge theory, classical supergravity
for large R (in ls units) is a good description. Therefore, we see that these two
disconnected regimes make AdS/CFT very difficult to prove, since it would
require a non-perturbative solution of either the N=4 SYM or the string
theory in AdS5 × S5 background with R-R flux. Fortunately, we can take
certain limits which slightly “weaken” the conjecture but allow for explicit
checks. They are usually two limits that one may take

1. The ’t Hooft Limit
On the gauge side we fix the coupling λ ≡ g2

YM
N , while N → ∞. In

the ’t Hooft limit only planar diagrams contribute to the perturbative
series. On the gravity side, since gs = λ/N , we end up with non-
interacting strings gs → 0 in curved space with constant radius R.
This way we weaken the AdS/CFT to a duality between largeN , planar
N=4 SYM and non-interacting strings on AdS5 × S5.

2. The Large λ Limit
Taking the ’t Hooft coupling λ → ∞, physically, makes the string
tension T ∼ λ very large, such that all the string massive modes become
extremely heavy. They decouple from low energies. An effective theory
is then approximated by type IIB supergravity on AdS5 × S5.

In this thesis we will be interested in the first limit, the ’t Hooft limit on the
gauge theory side, and non-planar corrections (next to leading order in N)
to it.

2.3 Conformal symmetry and observables

Both parts of the conjecture have the same global symmetry, the superconfor-
mal group PSU(2, 2/4)(see [6]). It is then appropriate to classify observables
using representations of this symmetry. In all our discussions we will special-
ize to the bosonic part, namely SO(2, 4)× SO(6). SO(2, 4) is the conformal
group in four dimensions and the isometry group of the AdS5 spacetime.
Similarly SO(6) is the global symmetry of the five-sphere S5 and the R-
symmetry of the N = 4 SYM.
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A natural choice of labels for bosonic observables in any of the two systems
are then the six Cartan generators of the symmetry algebra. Physically, they
are the three angular momenta on the sphere (J1, J2, J3) together with two
spins (S1, S2) and the energy E corresponding to rotations and time trans-
lation symmetries of the AdS5. On the gauge theory side the only difference
is that instead of the energy we have dilatations D.

Set of observables on the gauge theory side consists of gauge invariant
operators built of the fields of N = 4 SYM and their covariant derivatives.
More precisely they are linear combinations of traces

O(x) = Ci1...ikik+1..in...
Tr

�
DY i1 ...Y ik

�
Tr

�
Y ik+1 ...Y in

�
... (2.16)

By analyzing the action of the superconformal algebra on the operators we
can distinguish a special class of operators called chiral primary (or BPS). For
example in the sector of scalar fields they have traceless symmetric tensors
Ci..... Their conformal dimension does not receive any quantum corrections
(they are protected) hence it is equal to the classical dimension ∆0. In order
to construct non-BPS operators we insert different fields into traceless sym-
metric combinations. They lead to ”anomalous” corrections to the classical
dimension.
On the string theory side we consider strings propagating in AdS5×S5. Un-
fortunately up to date it has been impossible to quantize superstrings on this
background3, so one usually takes the limit where strings are classical. Then
the task is to find classical string solutions to the equations of motion and
compute their energies. To be more precise, string’s energy in global AdS
coordinates is the eigenvalue of the zero components of the momentum and
special conformal transformation operators

1

2
(P0 +K0) , (2.17)

and, according to the conjecture, it should be ”dual” to i times the eigenval-
ues of the dilatation operator D of the corresponding operator.

In the two cases angular momenta and spins of the operators/solutions
are just integer constants but the energy and dilatations depend non-trivially

3It is possible thought if one takes PP-wave limit of the geometry[5]. This limit is
called the BMN limit.
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on parameters of both theories (e.g. receive quantum corrections). There-
fore, verifying that energies are indeed equal to dilatations is in general a
non-trivial task. This problem is called the ”Spectral Problem of AdS/CFT”.

2.4 Anomalous dimension and Dilatation gen-
erator

In any conformal field theory two point functions of gauge invariant operators
are completely fixed by the symmetry. They have the form

�O(x)Ō(y)� ∼ 1

|x− y|2∆ . (2.18)

If now the classical conformal dimension of the field (determined from the
Lagrangian) receives a small ”quantum correction”

∆ = ∆0 + γ, (2.19)

the correlator becomes

�O(x)Ō(y)� ∼ 1

|x− y|2∆0

�
1− γ lnΛ2|x− y|2

�
, (2.20)

where Λ is a cutoff scale.
If, on the other hand, we analyze the two point correlator from perturbation
theory (see 4), we can see that γ can be effectively obtained as an eigenvalue
of a local operator acting on the trace. For example, at one loop, in the
scalar sector we have

Ď1 O(x) = γ1 O(x), (2.21)

where

D1 =
λ

8π2

L�

l=1

�
1− Pl,l+1 +

1

2
Kl,l+1

�
, (2.22)

where P exchange flavor indices on sites l and l + 1 and K contracts the
indices. Action of the generator will often mix different operators Oi

DOi =
�

j

cijOj, (2.23)
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and in order to find the set of anomalous dimensions γi we have to solve the
mixing problem. This will be explained in later chapters together with the
solution given by Bethe Ansatz.

In general the dilatation generator has a well defined expansion in the ’t
Hooft coupling λ and the number of colors N . Formally we can write

Ď =
�

l=1

�

k=0

Dl,k(λl,
1

Nk
), (2.24)

where at every order in λ diagrams can be grouped into leading in N , usu-
ally called planar due to the fact that they can be drawn on the plane, and
subleading in N , with the topology of the higher genus Riemann surfaces.
In the limit of N → ∞ planar diagrams will dominate the answer and equiv-
alently we will talk about the planar dilatation generator. Especially in this
thesis we will try to analyze non-planar contributions too. Then we will treat
them as small perturbations to the planar generator and the mixing prob-
lem will be solved by means of the usual quantum mechanical perturbation
theory (see C).
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Chapter 3

Basic techniques from
integrability

This chapter is a summary on spin chains and some integrability technology.
On the example of the Heisenberg’s XXX hamiltonian we review the prob-
lem of diagonalization by Bethe Ansatz and discuss details of the asymptotic
Bethe equations. Then we demonstrate how to construct the tower of con-
served charges using boost operator and define the concept of a spin chain
parity. Finally we provide a dictionary between the operators in AdS/CFT
and spin-chains. This chapter is meant to be pedagogical and explicit, so
that later, the reader can easily follow derivations strongly based on these
techniques. Readers that want to know more about integrability than just
the minimum presented here are referred to [7],[8] and [74].

Classical and Quantum Integrability

Before starting, we have to specify “what we talk about when we talk about
integrability”. Roughly speaking, a classical system with N-degrees of free-
dom, described by a hamiltonian H, is integrable (Liouville integrable), if
there exist N conserved charges Qi with zero Poisson bracket (they are in
involution)

{Qi, Qj} = 0, (3.1)

and H is one of the charges. Each of Q’s yields a conservation law that can
be solved (integrated) to fix all the independent degrees of freedom.
A quantum theory defined by hamiltonian-operator H, will be called inte-

14



grable if there exist N conserved charges-operators Qi that commute

[Qi, Qj] = 0, (3.2)

and the hamiltonian is one of them. Therefore all the charges can be diagonal-
ized simultaneously and the set of complete eigenstates with corresponding
eigenvalues can be determined. This way we completely fix the N degrees of
freedom of the quantum system.
Equivalently, by quantum integrable model we will mean a model that can
be ”solved” by some sort of Bethe ansatz (described below).

3.1 Coordinate Bethe Ansatz

The simplest example of a discrete quantum integrable model is a system
of spins on a periodic chain with the nearest-neighbor interactions given by
the famous Heisenberg’s XXX1/2 hamiltonian. It is the seminal example
for application of the Bethe ansatz so we analyze it in great detail. As we
will learn later this hamiltonian plays a crucial role in the problem of finding
planar and non-planar anomalous dimensions of the composite operators in
AdS/CFT . Let us then proceed slowly with defining the setup and consid-
ering some explicit examples.

3.1.1 Heisenberg’s hamiltonian

Consider a collection of ordered points (sites) on a circle that are labelled by
an integer n from 1 to L such that n = n+ L (Fig. 3.1). L plays the role of
the volume of the space and is usually referred to as a fundamental domain.
With each site we associate a vector space V = C2 with a basis that consists

1
2L

...

Figure 3.1: Periodic spin-chain with L-sites
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of a spin up |↑� and a spin down |↓� states represented as two-component
vectors

|↑� =
�

1
0

�
, |↓� =

�
0
1

�
. (3.3)

Therefore an arbitrary state of the chain with length L, is an object in the
2L dimensional Hilbert space that is obtained by tensoring L V

H =
L�

n=1

⊗Vn = V1 ⊗ . . .⊗ VL. (3.4)

To describe spin interactions recall first that the algebra of spins is governed
by Pauli matrices

σ1
n
=

�
0 1
1 0

�
, σ2

n
=

�
0 −i
i 0

�
, σ3

n
=

�
1 0
0 −1

�
. (3.5)

that satisfy the su(2) lie commutation relations
�
σi

n
, σj

m

�
= 2i�ijkσk

n
δmn. (3.6)

The creation and annihilation operators at site n are1

σ±

n
=

1

2

�
σ1
n
± iσ2

n

�
, (3.7)

and they rise or lower the spin at the site respectively

σ+ |↓� = |↑� , σ− |↑� = |↓� . (3.8)

We choose to call the spin up an excitation.
The simplest dynamical situation on a spin-chain is when only the nearest
neighbors interact with each other. As it was first demonstrated by Heisen-
berg, the hamiltonian of such a system is given by

H0 =
L�

n=1

�
1− P̂n,n+1

�
=

1

2

L�

n=1

1− σn ⊗ σn+1 =

1

2

L�

n=1

1−
�
σ1
n
⊗ σ1

n+1 + σ2
n
⊗ σ2

n+1 + σ3
n
⊗ σ3

n+1

�
. (3.9)

1They are given explicitly by

σ+
n =

�
0 1
0 0

�
, σ−

n =

�
0 0
1 0

�
.
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Pn,n+1 is the permutation operator acting on sites n and n+1 and σn⊗σn+1

is the tensor product of the Pauli matrices at n and n+ 1.
In order to get accustomed to the notation let us derive (3.9). For simplicity
take the length of the chain L = 2. First, remind ourselves the tensor product
of two arbitrary square matrices

�
A11 A12

A21 A22

�
⊗

�
B11 B12

B21 B22

�
=





A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22



 .

(3.10)
As a particular example, the product of two-component column vectors is
simply given by

x⊗ y =

�
x1

x2

�
⊗
�

y1
y2

�
=





x1y1
x1y2
x2y1
x2y2



 . (3.11)

The only non-trivial object that we have in the first representation of H0 is
the permutation operator Pi,j. By definition, it interchanges states between
the sites that it acts on

P̂ (x⊗ y) = y ⊗ x. (3.12)

Writing tensor products in components, the above equation is equivalent to

P̂





x1y1
x1y2
x2y1
x2y2



 =





y1x1

y1x2

y2x1

y2x2



 , (3.13)

so we can easily write down the matrix of the permutation operator as a 4×4
matrix

P̂ =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 . (3.14)
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Therefore the matrix representation of the (1− P ) part of the Hamiltonian
in a basis of length L = 2 is

(1− P ) =





0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0



 . (3.15)

Generalization to chains with more sites is straightforward. Permutation
operator on sites i and j of the state

x1 ⊗ ...⊗ xi ⊗ ..⊗ xj ⊗ ...⊗ xL, (3.16)

will be the 2L × 2L matrix that permutes only states i and j and acts as the
identity on the remaining sites.
For the second representation of the hamiltonian let us evaluate the tensor
products of Pauli matrices (3.5). They are

σ1 ⊗ σ1 =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 ,

σ2 ⊗ σ2 =





0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



 ,

σ3 ⊗ σ3 =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



 , (3.17)

so the scalar product in (3.9) in the length two basis is

σ ⊗ σ = σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3 =





1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1



 . (3.18)

It is then easy to see that the two representations of H0 are equivalent

1− P =
1

2
(1− σ ⊗ σ) . (3.19)

Let us now move to the eigenvalue problem of the Heisenberg’s hamiltonian.
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3.1.2 Bethe Ansatz

Once we understand the structure of the hamiltonian the problem that we
want to solve is its diagonalization. By this we mean, for a given fundamental
domain L and the number of excitations M2 (spins up or down), determine
the set of eigenvalues EL

M
and eigenstates

��ψL

M

�
of (3.9). This is expressed

by the quantum mechanical eigenequation

H0

��ψL

M

�
= EL

M

��ψL

M

�
. (3.20)

The solution to this problem was first given by Hans Bethe in 1931[9] and
we present it below.
The most general eigenstate of H0 of length L with M -excitations can be
written as the following superposition

��ψL

M

�
=

L�

1≤n1≤...≤nM

ψ(n1, . . . , nM) |n1, . . . , nM� , (3.21)

where ψ is a periodic wave function

ψ (n2, . . . , nM , n1 + L) = ψ (n1, n2, . . . , nM) . (3.22)

Integers ni from 1 to M denote the position of the excitation (e.g. |5� rep-
resents a magnon at site 5 and |1, 3�, one magnon at site 1 and the other at
3 etc.), so we sum over all possible insertions of the excitations that respect
positions of the other magnons on the chain. The celebrated wave function
was proposed by Bethe and it is given by

ψ(n1, . . . , nM) =
�

π∈SM

Aπ exp

�
i

M�

j=1

pπ(j)nj

�
. (3.23)

The sum is over allM ! permutations π from SM that correspond to the distri-
butions of M magnons on the chain. p’s are so called ”pseudo-momenta” of
the excitations and A’s are ”constants” that can only depend on the pseudo-
momenta but not on the position of the insertion. pi’s and Aπ’s are to be
determined from the eigenvalue equation (C.4) and the periodicity condition
(3.22). To see how it works in practice we will now analyze examples with
zero, one and two magnons on the periodic chain of an arbitrary length L.

2Excitations are usually called magnons or impurities in the condensed matter literature
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3.1.3 M=0

It is easy to see that the state with all spins down (or all spins up)

|0� = |↓ . . . ↓� , (3.24)

is the eigenstate with zero eigenvalue, or the lowest energy (EL

M
= 0). It is

usually chosen as the ferromagnetic vacuum state of the Heisenberg’s hamil-
tonian3 .

3.1.4 M=1

Eigenstate with a single magnon is simply

��ψL

1

�
= A

L�

n1=1

eip1n1 |n1� . (3.25)

We will now use the eigenvalue equation and the periodicity condition to find
the energy and the set of eigenstates. In other words we have to find the
set of possible momenta p1 in the Bethe ansatz (in this example the overall
constant A is irrelevant).
When we act on a state with one magnon inserted at |n1�, most of the
contributions to the 1 − P hamiltonian are zero. Namely, the permutation
operator is equivalent to the identity when acts on sites with the same value
of the spin. There are only two contributions that are non trivially subtracted
from the identity

P̂n1−1,n1 |n1� = |n1 − 1� , P̂n1,n1+1 |n1� = |n1 + 1� . (3.26)

This way the eigenvalue equation becomes4

H0

��ψL

1

�
= L

��ψL

1

�
− (L− 2)

��ψL

1

�
−

L�

n1=1

eip1n1 |n1 − 1� −
L�

n1=1

eip1n1 |n1 + 1� .

(3.27)

3Often in the condensed matter literature one can find a anti-ferromagnetic vacuum
with half spins up and half spins down alternating. Such a state is sometimes also called
the “Neel state”.

4in this simple case A drops out
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The first term is just the identity part of the hamiltonian, the second is the
sum of L− 2 terms when P acts on sites with the same spin and finally the
last two contributions are from the action of P in the nearest neighborhood
of the excitation. Since in both of the last terms we sum over the entire
fundamental domain, we can shift n1 to n1 +1 and n1 − 1 respectively. This
yields the eigenequation

H0

��ψL

1

�
=

�
2− eip1 − e−ip1

� ��ψL

1

�
= EL

1

��ψL

1

�
, (3.28)

with the energy of the single excitation on the chain of length L equal to

EL

1 = 2− eip1 − e−ip1 = 2 (1− cos p) = 4 sin2 p1
2
. (3.29)

Notice that we don’t have any explicit L dependence, yet. This naturally
comes from the periodicity condition (3.22). For a single magnon it reads

eip1(n1+L) = eip1n1 . (3.30)

This implies the set of L!
(L−1)!1! = L allowed momenta, quantized in the units

of the fundamental domain L

p1 =
2π k

L
, k = 0, . . . , L− 1. (3.31)

This is a general feature of the Bethe ansatz that the periodicity condition
is a sort of quantization condition for the pseudo-momenta.
Since neither of the two relevant equations required the presence of A, for
convenience we can set it to one. For more magnons it will not be the case
and these constants will be very important.
Summarizing, given a periodic chain of length L with only one excitation the
Bethe Ansatz solution is

EL

1 = 4 sin2 πk

L
,

��ψL

1

�
=

L�

n1=1

ei
2πk
L n1 |n1� ,

k = 0, . . . L− 1. (3.32)

The M = 1 example is very simple, nevertheless in integrable models, the
energy of the chain with more magnons is just a sum of the one magnon con-
tributions (of course with the appropriate pseudo-momenta). In AdS/CFT
M = 1 example is trivial due to the additional zero momentum condition
that comes from cyclicity of the chain (trace operator).
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3.1.5 M=2

The example with two excitations is already more non-trivial. In theAdS/CFT
correspondence this example can be directly applied to the problem of di-
agonalization of the planar (one-loop) dilatation operator in the basis of so
called BMN states. Let us then write the Bethe ansatz for two impurities
and analyze the corresponding eigenequation.
At M = 2 we have to deal with a scattering matrix which describes the situa-
tion when two magnons cross each other. Therefore the Bethe wave function
for two magnons consists of two terms5

ψ(n1, n2) = eip1n1+ip2n2 + S(p2, p1)e
ip2n1+ip1n2 , (3.33)

where S(p2, p1) is the ”scattering matrix” (or simply S-matrix) that captures
the effect of interchanging of the two magnons. Notice that the term with
the S-matrix in front has momenta p1 and p2 swapped in the exponent.
When solving the eigenequation, we have to distinguish two cases: the first,
when magnons are ”well separated” (n2 ≥ n1 + 1), and second when they
are on the neighboring sites (n2 = n1+1). The two corresponding equations
that we get are

• For n2 ≥ n1 + 1, after acting with H0 and shifting n1 and n2 appropri-
ately we get

EL

2 ψ(n1, n2) = 4ψ(n1, n2)− ψ(n1 − 1, n2)− ψ(n1 + 1, n2)

−ψ(n1, n2 − 1)− ψ(n1, n2 + 1). (3.34)

• For the two magnons next to each other n2 = n1 + 1 we get

EL

2 ψ(n1, n1 + 1) = 2ψ(n1, n1 + 1)− ψ(n1 − 1, n1 + 1)− ψ(n1, n1 + 2).

(3.35)

From the well-separated case we can determine the energy. Namely, inserting
the ansatz for the wave function (3.33) yields

�
EL

2 − 4 sin2 p1
2

− 4 sin2 p2
2

�
ψ(n1, n2) = 0. (3.36)

5according to (3.23) we should have two constants in the wave function. We can just
normalize by the first one and keep the second. As we will see it will be equal to the
S-matrix.

22



The energy of the two-magnon system is just the sum of the individual
magnon contributions

EL

2 (p1, p2) = 4 sin2 p1
2

+ 4 sin2 p2
2

= EL

1 (p1) + EL

1 (p2). (3.37)

This additivity of the energy is one of the consequences of the fact that the
hamiltonian of the system is integrable.
The situation when two magnons are on adjacent sites allows us to fix the
S-matrix. Inserting ansatz (3.33) and energy (3.37) into condition (3.35) can
be solved to

S(p2, p1) = −ei(p1+p2) − 2eip2 + 1

ei(p1+p2) − 2eip1 + 1
. (3.38)

An important property of this S-matrix is that reflection of its arguments is
equivalent to the inversion

S(p1, p2)S(p2, p1) = 1. (3.39)

We will use this condition frequently.
Periodicity implies that for M = 2 the wave function satisfies

ψ(n2, n1 + L) = ψ(n1, n2). (3.40)

Inserting Bethe ansatz (3.33) gives

eip1n2+ip2n1eip2L+S(p2, p1)e
ip1Leip2n2+ip1n1 = eip1n1+ip2n2+S(p2, p1)e

ip2n1+ip1n2 .
(3.41)

Now comparing the coefficients in front of the appropriate exponents leaves
us with two equations

eip1L =
1

S(p2, p1)
= S(p1, p2), eip2L = S(p2, p1), (3.42)

where in the second equality we used (3.39). They are known as the Bethe
equations. One can see them as quantization conditions for the pseudomo-
mentum of each of the magnons in the presence of the other.
Solving Bethe equations is in general a difficult problem, however some sim-
plifications appear when we assume more conditions on the pseudomomenta.
For example, if they are real the S-matrix can be represented as a pure phase

S(p2, p1) = eiθ(p2,p1). (3.43)
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Then taking the logarithm of (3.42) yields

p1 =
2πm1

L
+

θ(p1, p2)

L
, p2 =

2πm2

L
+

θ(p2, p1)

L
, (3.44)

and the problem boils down to finding of all the possible pairs (m1,m2) (Bethe
quantum numbers) that satisfy (3.42). We do not discuss the properties of
the solutions here but an interested reader is referred to an extensive review
with many details and further references therein [17].

3.1.6 General M

The above procedure can be repeated for an arbitrary number of excitations
(magnons). A very non-trivial fact, and a consequence of integrability, is
that the energy is always the sum of the energies of the single excitations

EL

M
=

M�

k=1

4 sin2 pk
2
. (3.45)

In addition the the S-matrix in the multi magnon wave function is a prod-
uct of the two body scattering matrices. This way the system of M Bethe
equations can be written as

eipkL =
M�

j=1, j �=k

S(pk, pj). (3.46)

This particular property of the scattering on a spin-chain is called ”factor-
ized scattering” and it can be regarded as a definition of integrability of the
hamiltonian that governs the system.
Before we move to the discussion about asymptotic Bethe ansatz let us give
an equivalent, but a very useful, representation of the Bethe equations.

3.1.7 Rapidity variables

Bethe equations give a set of quantization conditions for the momenta of the
excitations on the chain. In practice, for more than two excitations, the equa-
tions are quite complicated to solve analytically and one has to use numerical
analysis. Nevertheless, there is a very useful set of variables that puts Bethe
equations into more elegant and usually easier-to-work-with form. These
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variables are called rapidities u and are defined for every pseudomomentum
pk as

uk =
1

2
cot

pk
2
. (3.47)

The first advantage of this parametrization can be already seen on the level
of the S-matrix. When expressed on the ”rapidity plane”, the two magnon
scattering matrix has the following form

S(u1, u2) =
u1 − u2 + i

u1 − u2 − i
. (3.48)

Similarly, the exponent of pk (that appears in Bethe equations) is given by

eipk =
uk +

i

2

uk − i

2

, (3.49)

so finally for the spin-chain of length L with M , (3.46) becomes

�
uk +

i

2

uk − i

2

�L

=
M�

j �=k

uk − uj + i

uk − uj − i
. (3.50)

One can also check that the energy of a single magnon is

E(uk) =
i

uk +
i

2

− i

uk − i

2

=
1

u2
k
+ 1

4

, (3.51)

hence, the total energy of M magnons is simply

E =
M�

k

1

u2
k
+ 1

4

. (3.52)

For AdS/CFT chains we have one additional constraint. It comes from
the fact that single trace operators are by definition symmetric under cyclic
permutations which means in particular that the translation operator

eP ≡ exp

�
M�

k=1

pk

�
, (3.53)

where pk are magnons momenta, should leave the trace invariant. Therefore
we require

eP = 1, (3.54)
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which implies that the total momentum should be zero

P =
M�

k=1

pk = 0. (3.55)

In terms of rapidities it reads

eiP =
M�

k=1

uk +
i

2

uk − i

2

= 1. (3.56)

In the literature the set of rapidities is usually referred to as Bethe roots. We
will use these names interchangeably.

3.1.8 M=2 on the rapidity plane

It is an instructive exercise to solve Bethe equations on the rapidity plane
(for M = 2). If we assume that the total momentum is conserved, from
(3.56) we have that

u1 + i/2

ui − i/2
=

u2 − i/2

u2 + i/2
. (3.57)

This equation is solved by real roots u2 = −u1 = u. Inserting them back
into Bethe equations (3.50), and dividing by the right hand side we have

�
u+ i/2

u− i/2

�J+1

= 1, (3.58)

where J = L− 2 is the number of sites with the vacuum spin value. The so-
lution can be found in a straightforward way and it is given by the cotangent
function

u =
1

2
cot

πn

J + 1
, n = 0, .., J + 1. (3.59)

From the definition of the roots we can read the associated pseudomomenta

p =
2πn

J + 1
, n = 0, .., J + 1. (3.60)

Then magnon’s energy (3.52) is the sum of two identical contributions

E =
2�

k=2

1

u2
k
+ 1

4

=
2

u2 + 1
4

= 4 sin2 2πn

J + 1
. (3.61)
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Finally we can notice that S(u,−u) = 1 so Bethe states (3.33) take a very
elegant form

|ψk� =
�

1≤n1≤n2≤L

�
ei

2πk
J+1 (n2−n1) + e−i

2πk
J+1 (n2−n1)

�
|n1, n2�

=
J+1�

n1=1

J+1−n1�

p=0

�
ei

2πk
J+1 (p+1) + e−i

2πk
J+1 (p+1)

�
|n1, n1 + p+ 1�

=
J+1�

n1=1

J+1−n1�

p=0

2 cos
2πk (p+ 1)

J + 1
|n1, n1 + p+ 1� . (3.62)

We will use these states for further analysis of the flip operator in orthogonal
and symplectic AdS/CFT dualities.

3.1.9 Asymptotic Bethe Ansatz

Very often we have to deal with a situation when hamiltonian H0 of the
system is perturbed by one or more operators6

H = H0 + gH1 + g2H2 + ... (3.63)

If these corrections ”respect” the integrable structure, one can still use a mod-
ification of the Bethe ansatz, the Asymptotic Bethe Ansatz7 (ABA) [10], to
new energies and states that diagonalize these perturbations. We describe
this procedure for a single correction added to H0. Further terms, similarly
to the perturbation theory in the ordinary quantum mechanics, can be com-
puted iteratively using the standard algorithm (see App.C for a short brush
up on quantum mechanical perturbation theory).
The idea is that the presence of the perturbation will cause a shift to the
Bethe roots

uk = u0
k
+ g u1

k
. (3.64)

6In principle they should be ”smaller” corrections to the leading, dominant behavior.
7Following the condensed matter literature we used here the term Asymptotic Bethe

Ansatz but probably more appropriate name would the “Perturbative Bethe Ansatz”. In
AdS/CFT integrability literature term Asymptotic Bethe Ansatz is usually reserved for
psu(2, 2/4) Bethe equations for the spin-chain of N = 4 SYM with infinite length [107].
From our construction it should be clear that we are only concerned with diagonalizing a
hamiltonian defined by perturbative series in some expansion parameter.
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Then we can modify Bethe equations (3.50) in an appropriate way, expand
in g and require that they are satisfied order by order in powers of g.
There are few ways that one can modify Bethe ansatz. We can for example
write the ”constants” in (3.23) as a series in g, add a phase factor to the S-
Matrix [11] or modify Bethe equations with some function of the roots that
is also a series in g. Here we concentrate on this last method.
Let us introduce the modifying function x(uk)

x(uk) = uk (1− g f(uk)) , (3.65)

with roots uk given by (3.64), and postulate that Bethe equation is satisfied

�
x
�
uk +

i

2

�

x
�
uk − i

2

�
�L

=
M�

j �=k

uk − uj + i

uk − uj − i
. (3.66)

If we insert (3.64) and (3.65), at order g0 we get the standard Bethe equations

�
u0
k
+ i

2

u0
k
− i

2

�L

=
M�

j �=k

u0
k
− u0

j
+ i

u0
k
− u0

j
− i

, (3.67)

which are satisfied by definition of u0
k
.

At order g1 we can divide each side by the zeroth order contribution and get
the first consistency condition for functions f

L

�
f(u0

k
+

i

2
)− f(u0

k
− i

2
) +

i u1
k

(u0
k
)2 + 1

4

�
= 2i

M�

j �=k

u1
k
− u1

j�
u0
k
− u0

j

�2
+ 1

, (3.68)

or more transparently

f(u0
k
+

i

2
)− f(u0

k
− i

2
) = − i u1

k

(u0
k
)2 + 1

4

+
2i

L

M�

j �=k

u1
k
− u1

j�
u0
k
− u0

j

�2
+ 1

. (3.69)

In addition we have the momentum conservation condition (3.56). At g0 it
is simply expressed in terms of the leading roots u0

k

M�

k=1

u0
k
+ i

2

u0
k
− i

2

= 1. (3.70)

28



At first order in g we get another condition for f ’s

M�

k=1

�
f(u0

k
+

i

2
)− f(u0

k
− i

2
)

�
=

M�

k=1

−iu1
k

(u0
k
)2 + 1

4

. (3.71)

We will also need the formula for the new energy from the ABA. In general
if we add a correction to the energy that also depends on the modified Bethe
roots E1

k
(uk), then the expansion in g is

Ek = E0
k
(u0

k
+ g u1

k
) + g E1

k
(u0

k
+ g u1

k
)

= E0
k
(u0

k
) + g

�
E1

k
(u0

k
) + u1

k
(E0

k
(u0

k
))�
�
+O(g2). (3.72)

This could also be incorporated into the ABA. Namely, by following the
procedure of modification of the Bethe equations and substituting x(u±

k
)

into formula (3.51)

Ek =
i

x(u0
k
+ g u1

k
+ i

2)
− i

x(u0
k
+ g u1

k
− i

2)
. (3.73)

Then at the first order we get standard formula in terms of u0
k
whereas at

O(g) the correction is

δEk

E0
k
(u0

k
)
= i(u0

k
− i

2
)f(u0

k
+

i

2
)− i(u0

k
+

i

2
)f(u0

k
− i

2
)− 2u0

k
u1
k

(u0
k
)2 + 1

4

. (3.74)

3.1.10 ABA for M=2

Here we examine in details how ABA works for two magnons. First, we
do not assume any specific form of the perturbation hamiltonian and give
a general result for M = 2. Then, to make the reader even more confident
with the techniques, we analyze a known example of correction from the
AdS/CFT duality.
For M = 2, at the leading order everything stays the same as it should, so
we have u0

2 = −u0
1 = u. However at O(g) both, the momentum conservation

and Bethe equations give a set of three equations that are at the same time
consistency conditions for f and equations for u1 and u2. The momentum
conservation gives

f(u+
i

2
)− f(u− i

2
) + f(−(u− i

2
))− f(−(u+

i

2
)) = − i(u1

2 + u1
1)

u2 + 1
4

, (3.75)
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whereas from the Bethe equations we get

f(−(u− i

2
))− f(−(u+

i

2
)) =

i

2L

(1− 2L)u1
1 − u1

2

u2 + 1
4

,

f(u+
i

2
)− f(u− i

2
) =

i

2L

(1− 2L)u1
2 − u1

1

u2 + 1
4

. (3.76)

Notice that in principle we have several ways to fulfil the conservation of
momentum. However the most ”natural” is to assume u2 = −u1 and function
f to be either even or odd.
Now consider an explicit form of the modification given by Zhukovsky map

x(u) =
u

2
+

u

2

�
1− 2g

u2
= u

�
1− g

1

2u2
− g2

1

4u4
+O(g3)

�
. (3.77)

We are only interested in the first order correction so the relevant function
for us is

f(u) =
1

2u2
, . (3.78)

An important fact is that it satisfies

f(u+
i

2
)− f(u− i

2
) = − i u

(u2 + 1
4)

2
. (3.79)

Notice also that this function is even so the conservation of the momenta
implies that u1

2 = −u1
1 = u1. Then the two Bethe equations reduce to

f(u+
i

2
)− f(u− i

2
) =

i(1− L)

L

u1

u2 + 1
4

, (3.80)

and can be solved by

u1 =
J + 2

J + 1

u

u2 + 1
4

. (3.81)

Then the correction to the energy (3.74) is

δE = −16 sin4

�
nπ

j + 1

�
− 64

1

J + 1
cos2

�
nπ

j + 1

�
sin4

�
nπ

j + 1

�
. (3.82)

We will perform a similar analysis for the flip part of the SO(N) and Sp(N)
dilatation operators in later sections.
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3.2 Boost Operator and Conserved Charges

The existence of a complete set of commuting integrals of motion is the key
feature of the integrability of the Heisenberg’s hamiltonian. In [14] Luscher
showed that charges (like the hamiltonian) are local operators that act on
the chain and can be put into the form

Qn =
�

i1,...,in−1

GT

n−1(i1, ..., in−1), (3.83)

where {i1, ..., in−1} is an ordered subset of the chain’s sites, and GT is a
translationally covariant and symmetric function that obeys the property of
locality

GT

n
(i1, ..., in) = 0, |in − i1| ≥ n. (3.84)

Formally, charges are related to the logarithmic derivatives with respect to
spectral parameter λ of the so-called transfer matrix T (λ) 8

Qn = 2i
dn−1

dλn−1
lnT−1(λ0)T (λ)|λ=λ0 , (3.85)

where λ0 = i/2. Nevertheless, it is very difficult to extract their explicit form
this way, mostly because the size of the transfer matrix grows exponentially
with the length of the chain. Fortunately there exists an alternative method
of constructing the charges with a boost operator. For more extensive review
and further references see [13]. The boost operator is defined as the first
moment of the hamiltonian

B̂ =
1

2i

L�

j=1

j σj · σj+1. (3.86)

Its commutator with the transfer matrix is equal to the derivative

�
B̂, T (λ)

�
=

∂

∂λ
T (λ), (3.87)

therefore, up to some constant terms, boost operator generates conserved
charges recursively

[B̂, Q̂n] = Q̂n+1. (3.88)

8For more details on formal aspects of Bethe Ansatz see [12].
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We are not going to prove these formula but instead we construct the first
two conserved charges of the Heisenberg’s hamiltonian9.
The second conserved charge Q2 is usually related to the hamiltonian as

Q2 = aH0 + c, (3.89)

hence for construction of the higher charges we will only need the part of H0

with Pauli matrices. Namely, take

Q2 =
�

i

σa

i
σa

i+1, (3.90)

where we sum over a = 1, 2, 3.
Let us then construct Q3 using boost operator. We will need three useful
identities for commutators

[A,BC] = [A,B]C +B[A,C], [AB,C] = A[B,C] + [A,C]B, (3.91)

and

[AB,C D] = A[B,C]D + [A,C]BD + C A[B,D] + C[A,D]B. (3.92)

By definition (3.88) , Q3 is just the commutator of the boost operator with
Q2

Q3 =
�
B̂, Q2

�
=

1

2i

�

i,j

j [σa

j
σa

j+1, σ
b

i
σb

i+1]. (3.93)

We can use the above identities and the su(2) algebra of spins

[σa

i
, σb

j
] = 2i δij�

abcσc

j
, (3.94)

to write

Q3 =
�

i,j

j �abc
�
δj+1,iσ

a

j
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i
σb

i+1 + δj,iσ
c

i
σa

j+1σ
b

i+1

+δj+1,i+1σ
b

i
σa

j
σc

i+1 + δj,i+1σ
b

i
σc

i+1σ
a

j+1

�

=
�

i

�abc
�
(i− 1)σa

i−1σ
c

i
σb

i+1 + iσc

i
σa

i+1σ
b

i+1

+iσb

i
σa

i
σc

i+1 + (i+ 1)σb

i
σc

i+1σ
a

i+2

�
. (3.95)

9Readers interested in the details of proof are again referred to [13]
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Notice that because of the antisymmetry of �abc, terms with two σ’s acting
on the same site vanish. If we shift by 1 the sum over the first term and then
recombine both nonzero terms again, we get

Q3 =
�

i

i�abcσa

i
σc

i+1σ
b

i+2 + (i+ 1)�abcσb

i
σc

i+1σ
a

i+2

=
�

i

�
i�acb + (i+ 1)�cab

�
σa

i
σb

i+1σ
c

i+2 =
�

i

�abcσa

i
σb

i+1σ
c

i+2, (3.96)

where in the second line we first relabeled the indices (a, b, c) that are being
summed over and then used the definition of the anti-symmetric Levi-Civita
symbol �. Finally using the definition of the cross product

(A× B)i = �ijkAjBk, (3.97)

we can write the first conserved charge

Q3 =
�

i

�abcσa

i
σb

i+1σ
c

i+2 =
�

i

(σi × σi+1) · σi+2. (3.98)

It indeed has a manifestly local form that is invariant under shifts along the
chain and acts on the three nearest sites at the time.
The next charge Q4 can be obtained in the same straightforward (but a bit
tedious) method. By definition

Q4 = [B̂, Q3] =
1

2i

�

j,i

j�abc[σα

j
σα

j+1, σ
a

i
σb

i+1σ
c

i+2] (3.99)

Iterative application of our commutator identities gives

[AB,CDE] = A[B,C]DE + [A,C]BDE + CA[B,D]E

+CAD[BE] + C[A,D]EB + CD[A,E]B. (3.100)

Then we have

1

2i

�

i,j

j�abc
�
σα

j
[σα

j+1, σ
a

i
]σb
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c
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j
, σa

i
]σα
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b

i+1σ
c
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+σa

i
σα

j
[σα

j+1, σ
b

i+1]σ
c

i+2 + σa

i
σα

j
σb

i+1[σ
α

j+1, σ
c

i+2]

+σa

i
[σα

j
, σb

i+1]σ
c

i+2σ
α

j+1 + σa

i
σb

i+1[σ
α

j
, σc

i+2]σ
α

j+1

�
. (3.101)
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Now, using the commutation relations for Pauli matrices yields
�

i,j

j�abc
�
�αadδj+1,iσ

α

j
σd

i
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i+1σ
c

i+2 + �αadδj,iσ
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j+1σ
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c

i+2
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a

i
σα

j
σd

i+1σ
c
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a

i
σα

j
σb

i+1σ
d

i+2

+�αbdδj,i+1σ
a

i
σd

i+1σ
c

i+2σ
α

j+1 + �αcdδj,i+2σ
a

i
σb

i+1σ
d

i+2σ
α

j+1

�
. (3.102)

Performing the sum over j and shifting appropriate terms we finally get

Q4 = 2
�

i

(σi × σi+1)× σi+2 · σi+3 + σi · σi+2 − 4Q2. (3.103)

Again it is a local operator acting on four nearest neighbors on the chain.
Just for the reference we write Q4 in terms of the permutation operators.
Using the identity

�abc�ade = δbdδce − δbeδcd, (3.104)

and then
σi · σj = 2Pi,j − 1i,j, (3.105)

we can write it as

Q4 = −8
�

i=1

(1i,i+1 − Pi,i+1)− 4
�

i

Pi,i+2 + 4
�

i

Pi,i+3

−8
�

i

(Pi,i+3Pi+1,i+2 − Pi,i+2Pi+1,i+3). (3.106)

This is the familiar form that can be compared e.g. with [15].

3.3 Parity operator.

Parity operator can be defined formally [75] by its action on a spin at site
Xn within a chain of length L as

ΠXnΠ
−1 = XL−n+1. (3.107)

Equivalently its action on the tensor product state is given by the product
of permutation operators

Π = P1,LP2,L−1...PL
2 ,

L+2
2
, L− even, (3.108)

Π = P1,LP2,L−1...PL−1
2 ,

L+3
2
, L− odd. (3.109)
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So the tensor product state after the parity transforms to

ΠX1 ⊗X2 ⊗ ...⊗XL−1 ⊗XLΠ
−1

= XL ⊗XL−1 ⊗ ...⊗X2 ⊗X1. (3.110)

It is a unitary operator

ΠΠ† = 1, Π = Π−1 = Π†, (3.111)

that commutes with the hamiltonian and flips the sign of the momenta.
This definition will require only minor modifications in the AdS/CFT con-
text the operator itself will play an important role in searches of non-planar
integrability.
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Chapter 4

One-loop Dilatation Generator
of N = 4 SYM

Here we include the details of the dilatation generator of N = 4 SYM at one
loop in SO(6) and SU(2) scalar sectors. First we review their derivations
for scalar fields in the adjoint representation of unitary, special-unitary, or-
thogonal and symplectic group. Then we specialize to the SU(2) subsector
and analyze planar and non-planar contributions that are obtained by acting
with the operator according to the rules for each of the gauge groups. At the
planar level, orthogonal and symplectic contributions are equal to a half of
the (special) unitary and are captured by the well known Heisenberg’s hamil-
tonian. At the non planar level, in addition to the ”standard” cut and join
action, we discover a new interesting class of operators that do not change
the number of traces. We close the chapter with a summary table on all the
possible one-loop contributions and their action on single and double trace
states. Broader discussion of these issues can be found in [19], [18], [23].

4.1 One-loop SO(6) dilatation generator.

In this section we review the derivation the dilatation operator in N = 4
SYM to one-loop in the scalar sector. Building blocks will be the six scalar
fields of the theory φi, i = 1, ..., 6, a subset usually referred to as the SO(6)
sector.
The derivation is based on the method of an effective vertex described in
[23], and the main idea behind it is as follows. As we discussed before, the
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anomalous dimension of a composite operator can be deduced from it’s two
point correlation function

�O1(x)O2(0)� = �Tr (φ1...φL)(x) Tr (φ1...φL)(0)�, (4.1)

that we evaluate using perturbation theory. At each level of perturbative
expansion we have a certain number of Feynman diagrams that are represen-
tation of the contractions between a given number of fields from the operator
at 0, as well as at x. For example at tree level only single sites are contracted,
at one-loop, at a time, we can contract at most a pair of fields from the op-
erator etc. This way, at each level, we can always contract certain number of
fields (with accordance to the diagram) such that what is left is an effective
operator that can only be contracted with a certain number (depending on
the level) of external scalars. Schematically we have

�O1(x)O2(0)� =
�
O1

��Ď0

��O2

�
+ λ

�
O1

��Ď1

��O2

�
+ ... (4.2)

This operator(s) is called an effective vertex.
For example the tree level contribution is just the classical scaling dimension
of the operator which is its length times the scaling dimension of the field
that it is built of. Scaling dimension of the scalar field is one [φi] = 1 so the
tree level operator should just measure the length of the state

�
O1

��Ď0

��O2

�
= L. (4.3)

It is then not too difficult to deduce that

D0 =

�
8π2

g2
YM

�2 �
Trφ−

i
φ+
i

(4.4)

where φ+ is contracted with scalars at 0 and φ− at x respectively. The sum
runs over all sites of the state.
The one loop example is more involved. In N = 4 SYM there are three
diagrams (Fig.4.1) that contribute to the two point function at this level:
scalar four point vertex, gluon exchange between two scalar lines and the self
energy correction to the scalar propagator, that at one loop consists of the
gluon intermediate state and a fermion loop. Then, in order to derive the
effective vertex, we can proceed with a general algorithm. First, we look at
the Lagrangian of the theory and identify terms in the potential that give
rise to these interactions. They are:
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• four-scalar vertex

U4s = − 1

2g2
YM

Tr [φi,φj] [φi,φj] , (4.5)

• gluon-scalars vertex

Usg = − 2i

g2
YM

Tr ∂µφi [Aµ,φi] , (4.6)

• scalar-fermions vertex

Us2f = − i

g2
YM

Tr ψ̄Γi [φi,ψ] . (4.7)

Next, we use them to write each of the four terms corresponding to the
Feynman diagrams. Then contract gluons, fermions and some scalars (in
the intermediate gluon diagram) so that what is left can only be contracted
with the external fields inside the operators (scalars). Finally, in front of
each term we put the ”coupling” constant that is the value of the Feynman
integral of the diagram. Below we go through these steps explicitly so the
reader can learn the general procedure.

4.1.1 Scalar vertex

Let us start with the interaction vertex of four scalar fields. This is the
simplest diagram because we do not need to contract any fields inside it. In
other words, the only interesting thing is the non-trivial combinatorics that
the vertex

U4s = − 1

2g2
YM

Tr [φi,φj] [φi,φj] . (4.8)

Figure 4.1: One-loop diagrams.
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leads to. Since all the fields have to be contracted with either the operator at
x (O+) or 0 (O−), we split scalars to φi = φ+

i
+ φ−

i
= i+ + i−, and remember

that the only nonvanishing contractions are1

�i−, j+� = δij. (4.9)

Plugging it into (4.8) and leaving only terms with two pluses and two minuses
gives six traces

Tr
�
i+, j+

� �
i−, j−

�
, Tr

�
i−, j−

� �
i+, j+

�
, Tr

�
i+, j−

� �
i+, j−

�
,

Tr
�
i−, j+

� �
i−, j+

�
, Tr

�
i−, j+

�
,
�
i+, j−

�
, Tr

�
i+, j−

� �
i−, j+

�
. (4.10)

The first and the last pairs consist of elements that are cyclic permutations
of each other. Similarly, the third and fourth terms are equal because of the
summation over i and j (we can freely relabel i ↔ j). This yields

U4s = − 1

g2
YM

�
Tr

�
i+, j−

� �
i+, j−

�
+ Tr

�
i+, j−

� �
i−, j+

�
+ Tr

�
i+, j+

� �
i−, j−

��
.

(4.11)
It is convenient to further rewrite the second term using the Jacobi identity.
Namely, notice that

Tr
�
i+, j−

� �
i−, j+

�
= Tr (i+j− − j−i+)

�
i−, j+

�
= Tr i+

�
j−,

�
i−, j+

��
,(4.12)

so using the Jacobi identity for the commutator

�
j−,

�
i−, j+

��
= −

�
i−,

�
j+, j−

��
−
�
j+,

�
j−, i−

��
, (4.13)

one can insert it back to get

Tr
�
i+

�
j−,

�
i−, j+

���
= Tr

�
i+, j+

� �
i−, j−

�
− Tr

�
i+, i−

� �
j+, j−

�
. (4.14)

Adding all together we can write U4s as a sum of three terms

U4s =
2

g2
YM

: (VD + VF + VK) :, (4.15)

1we neglect the space-time dependence that can be easily restored at each stage of the
computation
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where

VD =
1

2
Tr

�
i+, i−

� �
j+, j−

�
,

VF = −Tr
�
i+, j+

� �
i−, j−

�
,

VK = −1

2
Tr

�
i+, j−

� �
i+, j−

�
. (4.16)

Normal ordering symbol :: means that we only contract fields with external
operators (and not inside the effective vertex).
Next, the coupling constant, the one loop Feynman integral in dimensional
regularisation2 (divided by the factor of L tree level propagators), is given
by �

g2
YM

8π2x2

�L−2−L �g2
YM

8π2

�4 � dz

(x− z)4z4
=

g2
YM

Λ

32π2
, (4.17)

where

Λ = log x−2 −
�
1

�
+ γ + log π + 2

�
. (4.18)

Finally, the contribution to the effective vertex from the four-point scalar
interaction is

V4s =
g2
YM

Λ

16π2
(: VD : + : VF : + : VK :) . (4.19)

Note that since we did not perform any contractions, this part of the effective
vertex will remain invariant under the change of the gauge group. In other
words, we will always have three terms (4.16) coming form the four scalar
interaction but they will be built from matrices in the representation of the
unitary, orthogonal or symplectic Lie algebra, depending on which of the
gauge groups we consider.
With this warm up we can proceed to the other two diagrams.

4.1.2 Gluon exchange

The diagram for gluon exchange comes from expanding the exponent of the
action to the order that we have two gluon-scalars (4.6) vertices

4

g4
YM

Tr ∂µφi [Aµ,φi] Tr ∂νφj [Aν ,φj] . (4.20)

2in D = 4− 2�
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Even though the spacetime dependence will be take into account by the
Feynman integral, we keep derivatives to distinguish scalar fields within each
term.
The only contraction that is needed is the one between gluons. The re-
sult will contain four scalars that can be appended to an arbitrary nearest-
neighbors fields inside any operator. Before contracting gluons it is conve-
nient to rewrite the vertices as

Tr ∂µφi [Aµ,φi] = Tr ∂µφi (Aµφi − φiAµ)

TrAµ (φi∂µφi − ∂µφi φi) = TrAµ [φi, ∂µφi] . (4.21)

While contracting the gluon fields, we can see that the result is exactly the
same for all the gauge groups! Let us see this explicitly.
With U(N) contraction (A.4) we simply have

4

g4
YM

Tr [φi, ∂µφi] [φj, ∂µφj] . (4.22)

For SU(N) we get an extra 1/N term that has two traces of a single com-
mutator. This vanishes due to the cyclicity of the trace.
For SO(N) contraction (A.17), the result is

1

2

�
Tr [φi, ∂µφi] [φj, ∂µφj]− Tr [φi, ∂µφi] ([φj, ∂µφj])

T
�
. (4.23)

After using ([A,B])T = −[A,B] terms add up again to (4.22).
For Sp(N) contraction (A.24), one gets

1

2

�
Tr [φi, ∂µφi] [φj, ∂µφj] + Tr [φi, ∂µφi] J([φj, ∂µφj])

TJ
�
, (4.24)

which after substituting

([φj, ∂µφj])
T = J∂µφiJ

2φiJ − JφiJ
2∂µφiJ = J [φi, ∂µφi]J, (4.25)

combines with the first term into (4.22).
Finally inserting φi = i+ + i−, the combinatorics from the gluon exchange is

8

g4
YM

Tr
�
i+, i−

� �
j+, j−

�
. (4.26)

Combining it with the Feynman integral coefficient (that can be found in e.g.
[43]) we have the part of the effective vertex that comes from gluon exchange

Uge =
g2
YM

(Λ+ 2)

32π2

�
Tr

�
i+, i−

� �
j+, j−

��
. (4.27)
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4.1.3 Self-Energy

The last contribution comes from the self energy correction to the scalar
propagator. It contains two diagrams, one with the gluon propagator and
one with the fermionic loop. We consider them separately.

Gluon propagator

The gluon propagator can be obtained from (4.26) by contracting an addi-
tional pair of scalars. For the unitary and special unitary (1/N terms appear
with opposite signs) contractions the result is

32

g4
YM

�
N Tr i+i− − Tr i+ Tr i−

�
, (4.28)

where for traceless SU(N) generators the second term disappears.
For orthogonal group we have

16

g4
YM

�
(N − 1)Tr i+i− − Tr i+ Tr i− + Tr i+(i−)T

�

=
16

g4
YM

(N − 2)Tr i+i−, (4.29)

where again terms with traces over single SO(N) fields vanish due to anti-
symmetry. Finally the symplectic group contractions yield

16

g4
YM

�
(N + 1)Tr i+i− − Tr i+ Tr i− + Tr i+J(i−)TJ

�

=
16

g4
YM

(N + 2)Tr i+i−. (4.30)

Fermion loop

Similar combinatorial contribution comes from fermions. If we first rewrite
the two terms that come from the expansion of the exponent of the N = 4
action, as

1

g4
YM

Tr ψ̄ [φi,ψ] Trψ
�
ψ̄,φi

�
, (4.31)

it is clear that after contracting ψ̄ and ψ, the structure that emerges is
identical to (4.26). Therefore this step is the same for all gauge groups

− 2

g4
YM

Tr
�
ψ̄,φi

�
[ψ,φi] . (4.32)
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Now contracting the remaining fermions produces the same traces as we got
from the gluon propagator. Taking into account Feynman integrals (see [20])
we have the scalar self energy contributions to the effective vertex

UU(N)
se

=
g2
YM

(Λ+ 1)

8π2

�
N Tr i+i− − Tr i+ Tr i−

�
, (4.33)

USU(N)
se

=
g2
YM

(Λ+ 1)

8π2

�
N Tr i+i−

�
, (4.34)

USO(N)
se

=
g2
YM

(Λ+ 1)

16π2
(N − 2)Tr i+i−, (4.35)

USp(N)
se

=
g2
YM

(Λ+ 1)

16π2
(N + 2)Tr i+i−. (4.36)

4.1.4 Cancellation of D-terms

One loop effective vertex is the sum of the contributions that we derived
above. Nevertheless, when acting on an arbitrary single trace operator in
the scalar sector, we can demonstrate that for all the gauge groups D-term
from the four point scalars cancels against the gluon exchange and the self
energy. The argument goes as follows.

• U(N)
The sum of D-term, gluon exchange and scalar self energy can be writ-
ten as

g2
YM

(Λ+ 1)

8π2

�
1

2
: Tr[i+, i−][j+, j−] : +N : Tr i+i− : −Tr i+ Tr i−

�
.

(4.37)
From Wick’s theorem

φ1 . . .φn =: φ1 . . .φn : + :
�

contractions

φ1 . . .φn : (4.38)

we can change the normal ordered terms into non-normally ordered mi-
nus (normally ordered) contractions. This way the double commutator
becomes

1

2
Tr

�
i+, i−

� �
j+, j−

�
− 2 :

�
NTr i−i+ − Tr i− Tr i+

�
:

=
1

2
Tr

�
i+, i−

� �
j+, j−

�
− 2

�
NTr i−i+ − Tr i− Tr i+

�

+6N(N2 − 1). (4.39)
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On the other hand the two terms that come from self energy are

N Tr i−i+ − Tr i− Tr i+ − 6N(N2 − 1), (4.40)

so the sum of the three terms is finally

1

2
Tr

�
i+, i−

� �
j+, j−

�
−N Tr i−i+ + Tr i− Tr i+. (4.41)

Important thing to notice now is that when we apply this part to an
arbitrary operator we also have to include self-contractions. Now, it is
easy to see that when we contract i+ with j− inside the vertex, this
precisely cancels the two remaining terms. It is then sufficient to show
that when one apply the double commutator on a single trace, the
result gives zero. First write it as

Tr (i+i− − i−i+)[j+, j−] = Tr i+[i−, [j+, j−]]. (4.42)

Then acting with i+ on a state we have

Tr i+[i−, [j+, j−]]Tr i−1 i
−

2 ...i
−

L
= Tr [i−1 , [j

+, j−]]i−2 ...i
−

L

+Tr i−1 [i
−

2 , [j
+, j−]]...i−

L
+ ...+ Tr i−1 ...[i

−

L
, [j+, j−]] = 0, (4.43)

where we get site k inside the commutator due to the δik from the
contraction. Then once we expand the commutators it is clear that
each of the terms cancels one on the right and one on the left (the
one on the left in the first term cancels the one on the right of L).
Hence there is no contribution from D-terms, self energy and the gluon
exchange.

• SU(N), SO(N), Sp(N)
The cancellation can be shown analogously for the other three groups.
Always the D-term and the gluon exchange (that are both invariant
under the change of the gauge group), when written without normal
order, cancel the self energy part with one of the internal contractions.
Similarly we can see that acting on an arbitrary single trace will lead
to null result as well (for SO(N) and Sp(N) we will get extra terms
with transpositions but, up to a minus sign depending on the length,
they are equivalent to these from the U(N) contraction and therefore
cancel mutually).
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Finally we have the one loop dilatation operator of N = 4 SYM in the
SO(6) sector

D1 = −g2
YM

Λ

16π2

�
: Tr [i+, j+][i−, j−] : +

1

2
: Tr [i+, j−][i+, j−] :

�
(4.44)

4.1.5 SU(2) subsector

There are several subsectors of the theory in which we focus only on a sub-
group of fields of N = 4 SYM. In everything what follows, we restrict to the
SU(2) subsector that consists of two of the three complex scalars, say

Z =
1√
2
(φ5 + iφ6), W =

1√
2
(φ3 + iφ4) . (4.45)

For these fields the K-term vanishes and our dilatation operator (4.44) (for
all the gauge groups) reduces to

D̂ = −g2
YM

8π2
: Tr [Z,W ]

�
Ž, W̌

�
: (4.46)

where fields act on states as matrix derivatives

Žj

i
=

δ

δZ i
j

, W̌ j

i
=

δ

δW i
j

. (4.47)

Normal ordering symbol :: means that Ž and W̌ act only on fields inside the
state and not within the effective vertex.
This will be our main tool to analyze planar and non-planar interactions and
search for integrability at one loop.

4.2 Structure of the dilatation operator

In this section we analyze the structure of the one loop dilatation operator
(4.46) in the N = 4 SYM with U(N), SU(N), SO(N) and Sp(N) gauge
groups. The analysis can be performed in a very systematic way by applying
it to a generic single and double trace states. While acting with (4.46), we
use the contraction rules derived in Appendix A. In general we distinguish
two contributions. A leading in color N called ”planar” and a subleading in
1/N called ”non-planar”. Planar contributions come from the action on the
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nearest-neighbor sites of the state/chain, while the non-planar from append-
ing the dilatation operator to all the other non-adjacent sites. Furthermore,
the non-planar contributions can be grouped into those that increase the
number of traces within a state that they act on (H+), those that decrease
the number of traces within the state (H−), and finally those that do not
change the number of traces, but still act in a highly non-local way (Hflip).
All the details and derivations are presented below. The results are summa-
rized in table Tab.(4.3).

4.2.1 U(N)

We start with fields in the adjoint representation of the unitary U(N) group.
They are N ×N matrices

Aij(x) = Aa(x)T a

ij
, a = 1, ..N2. (4.48)

where T a are the N2 generators of the U(N) in the adjoint representation

(T a)bc = ifabc. (4.49)

We drop the space-time dependence (since it can be simply restored) and
from now on when writing (Z,W,A,B,C,..etc.) we refer to matrices.
Before we start the derivations, as a warm up, let us consider the action of
one part of (4.46), say Tr

�
ZWŽW̌

�
, on Tr (AZBWC)

Tr
�
ZWŽW̌

�
Tr (AZBWC) . (4.50)

First we write both terms in components

Tr
�
ZWŽW̌

�
Tr (AZBWC) = Zβ

α
W γ

β
Žκ

γ
W̌α

κ
Aν

µ
Zρ

ν
Bφ

ρ
W σ

φ
Cµ

σ
, (4.51)

then using the U(N) contraction rules

Žκ

γ
Zρ

ν
= δκ

ν
δρ
γ
, W̌ α

κ
W σ

φ
= δα

φ
δσ
κ
, (4.52)

we have

Zβ

α
W γ

β
δκ
ν
δρ
γ
δα
φ
δσ
κ
Aν

µ
Bφ

ρ
Cµ

σ
= Zβ

φ
W ρ

β
Aκ

µ
Bφ

ρ
Cµ

κ
. (4.53)

This again can be written in terms of traces so the result is

Tr (ZWB)Tr (AC) . (4.54)
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This is the standard algorithm that one can apply when acting with the
dilatation operator on any state with any gauge group contraction rule.
In order to see the general structure of the dilatation operator, it is then
sufficient to look how it acts on single and double trace states. We define
them as

O1 = Tr (ZBWC) = Aν

µ
Zρ

ν
Bφ

ρ
W σ

φ
Cµ

σ

O2 = Tr (AZB) Tr (CWD) = Aβ

α
Zκ

β
Bα

κ
Cν

µ
W ρ

ν
Dµ

ρ
. (4.55)

Z and W are the single fields/matrices that will be contracted with Ž and
W̌ from the dilatation operator. On the other hand, A, B, C and D are any
words of the U(N) fields of an arbitrary length.
We start with the action on O1. It does not matter which field we append
first but we present the derivation by always first applying Ž and then W̌ .
The result is

ĎU(N)O1 = −g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

��

= −g2
YM

8π2
{Tr ([Z,W ]B) Tr (AC)− Tr (B) Tr (A[Z,W ]C)}

=
g2
YM

8π2
{Tr (B) Tr (A[Z,W ]C) + Tr ([W,Z]B)Tr (AC)}

=
g2
YM

8π2
{Tr (B) Tr (A[Z,W ]C) + Tr (�ZBW �)Tr (AC)} .

(4.56)

The first line is just the contraction of Ž and the second, contraction of W̌ .
Remember that both of them are only contracted with fields from the state.
In the third line we swap the commutator and bring the overall minus sign
inside the brackets. Finally in the last line we introduced a new notation

�ZBW � ≡ Z BW −W BZ, (4.57)

which will prove to be very convenient in finding general patterns for dilata-
tion operators.
Similarly, using the same set of contraction rules, the action on the double
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trace operators3 is

ĎU(N)O2 = −g2
YM

8π2

�
Tr

�
W̌ [Z,W ]A

�
Tr (WB)− Tr

�
[Z,W ]W̌A

�
Tr (WB)

�

= −g2
YM

8π2
{Tr ([Z,W ]AB)− Tr (A[Z,W ]B)}

=
g2
YM

8π2
{Tr (A[Z,W ]B) + Tr ([W,Z]AB)}

=
g2
YM

8π2
{Tr (A[Z,W ]B) + Tr (�ZABW �)} . (4.58)

Again the first two lines are contractions of Ž and W̌ respectively, the third
is a swap of the commutator and the overall minus and the last line is just
the third line rewritten in the new notation defined in (4.57).
Now we are ready to classify different contributions to the dilatation operator.
Let us start with the nearest neighbors. This so-called planar or the leading
N part can be obtained from formula (4.56) by setting Bi

j
= δi

j
. This way the

trace over B brings a factor of N and the second term with the commutator
vanishes due to the cyclicity of the trace. So we have

Tr (B) = Tr (δ) = δi
i
= N, Tr (�W δZ�) = 0, (4.59)

and the planar contribution is

ĎU(N)Tr (AZWC) ≡ ȞU(N)
0 Tr (AZWC) =

g2N

8π2
Tr (A[Z,W ]C) . (4.60)

It is not too hard to notice that H0 acts on two sites Z and W as

Ȟ0Tr (AZWB) =
λ

8π2
(1− P )Tr (AZWB) , (4.61)

where 1 is just the identity and P is the permutation operator that inter-
changes the position of Z and W . Notice that we have used the ’t Hooft
coupling

g2
YM

N = λ. (4.62)

We can picture Z as for example a spin up ↑ and W as a spin down ↓. Then
a single trace state can be viewed as a periodic chain of spins. Furthermore,

3here and for SU(N) we use O2 = Tr (ZA) Tr (WB) but for orthogonal and symplectic
contractions it was more transpartent to use definitions (4.55).
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H0 is plays a role of the gauge theory Heisenberg’s hamiltonian governing
the nearest-neighbor interactions in the system. This was in fact one of most
important discoveries[18] that triggered a new field of planar integrability in
gauge and string theories.
Let us now move to the non-planar contributions. From (4.56), if B �= δ, we
can identify two terms with an action of the following operator

H+ =
1

N
H0

ij
Šij. (4.63)

When appended to Z and W at sites i and j, it first splits the chain with a
”split” (or ”cut”) operator Sij as

Š T r (AZBWC) = Tr (B)Tr (AZWC) + Tr (AC)Tr (ZBW ) , (4.64)

and then acts on Z and W by λ

8π2 (1 − P ) what we denote by H0. 4 Notice
that because we absorbed a factor of N into λ we have 1/N in front. Another
way to put it is that H+ is a subleading contribution in the number of colors
with respect to H0.
Often in the literature the action of the split (or cut) operator is presented
on a spin chain like state5 built of fields φi at site i that can have one of the
two values, Z (↑) or W (↓). In this convention S acts as

Ši,jTr (φ1...φi−1φiφi+1...φj−1φjφj+1...φL)

= Tr (φi+1...φj−1)Tr (φ1...φi−1φiφjφj+1...φL)

+Tr (φ1...φi−1φj+1...φL)Tr (φiφi+1...φj−1φj) . (4.65)

From formula (4.76), we can identify yet another 1/N contribution

H− =
1

N
H0

i,j
J̌ij. (4.66)

When appended into sites i and j inside two different traces, it first unites
the traces with a ”join” operator

J̌T r (AZB)Tr (CWD) = Tr (BAZWDC) + Tr (ZBADCW ) , (4.67)

4We will use the symbol H0 only for planar (nearest neighbors) part of the dilatation
operator and H0

ij for λ
8π2 (1− P ) on arbitrary, non-adjacent sites.

5Do not confuse it with the SO(6) sector!
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and then acts again with (1− P ) similarly to the H+ case.
Again, on chain like states, the ”join” operator is given by

J̌i,jTr (φ1...φi−1φiφi+1...φp)Tr (φp+1..φj−1φjφj+1...φL)

= Tr (φi+1...φpφ1...φiφj...φLφp+1...φj−1)

+Tr (φi...φpφ1...φi−1φj+1...φLφp+1...φj) (4.68)

In the discussion above we skipped an important fact that when the dilatation
operator is ”applied” on a state, we sum over all possible contractions. Hence
we should write all the operators as sums over appropriate sites that we
append them into. This way the nearest neighbors part, like the Heisenberg’s
hamiltonian, is a sum over all L (the length of the state) sites

H0O
1,L =

L�

i=1

H0
i,i+1 O

1,L. (4.69)

The splitting part is a sum over 1 ≤ i < j ≤ L within a single trace

H+O
1,L =

L�

1≤i<j≤L

H0
i,j
Šij O

1,L, (4.70)

and the joining contribution is a sum over all p sites inside the first and L−p
inside the second trace6

H−O
p,L =

p�

i=1

L�

j=p+1

H0
i,j
J̌ij O

p,L. (4.71)

Summarizing, the most general structure of the U(N) dilatation operator is

ĎU(N) = H0 +
1

N
H− +

1

N
H+ (4.72)

where H0 acts on the nearest neighbors within the same trace, H− acts on
the states with more than one trace and reduces the number of traces by one
and finally H+ splits the trace increasing the number of traces by one.

6Of course we can act with split or join operators on multi-trace operators so the
summation will have to be adjusted in an obvious way.
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4.2.2 SU(N)

After the detailed explanation of the U(N) gauge group example we can
completely analogously consider the dilatation operator and states built of
the matrices in the adjoint representation of SU(N). Since

U(N) = SU(N)× U(1), (4.73)

SU(N) differs from U(N) only by subtraction of the singlet. This is reflected
in the completness relations

(T a)β
α
(T a)µ

ν
= δβ

ν
δµ
α
− 1

N
δβ
α
δµ
ν
, (4.74)

that lead to the set of SU(N) contraction rules (see A.2). We use those to
derive the action of the dilatation operator on single and double trace states.
On single trace states the SU(N) dilatation operator acts in the following
way

ĎSU(N)O1 = −g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

�

− 1

N
Tr

�
W̌ [Z,W ]

�
Tr (BWCA) +

1

N
Tr

�
[Z,W ]W̌

�
Tr (BWCA)

�

= −g2
YM

8π2
{Tr ([Z,W ]B) Tr (AC)− Tr (B) Tr (A[Z,W ]C)

− 1

N
Tr ([Z,W ]BCA) +

1

N
Tr (BCA[Z,W ])

�

=
g2
YM

8π2
{Tr (B) Tr (A[Z,W ]C) + Tr ([W,Z]B)Tr (AC)}

=
g2
YM

8π2
{Tr (B) Tr (A[Z,W ]C) + Tr (�ZBW �)Tr (AC)} .(4.75)

The first two lines come from the SU(N) contraction of Ž. We can clearly
see that 1/N terms cancel with each other. The third and fourth lines are
the results of appending W̌ . Again, 1/N terms cancel and the result has
the same form as for U(N). This is not a surprize due to a well know fact
that the auxiliary U(1) ”photon” in U(N) = SU(N)×U(1) does not couple
directly to gluons.
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The same situation happens on double trace states

ĎSU(N)O2 = −g2
YM

8π2

�
Tr

�
W̌ [Z,W ]A

�
Tr (WB)− Tr

�
[Z,W ]W̌A

�
Tr (WB)

− 1

N
Tr

�
W̌ [Z,W ]

�
Tr (A)Tr (WB) +

1

N
Tr

�
[Z,W ]W̌

�
Tr (A)Tr (WB)

�

= −g2
YM

8π2

�
Tr ([Z,W ]AB)− 1

N
Tr ([Z,W ]A)Tr (B)− Tr (A[Z,W ]B)

+
1

N
Tr (A[Z,W ])Tr (B)

�
=

g2
YM

8π2
{Tr (A[Z,W ]B) + Tr ([W,Z]AB)

=
g2
YM

8π2
{Tr (A[Z,W ]B) + Tr (�ZABW �)} ,

(4.76)

where we first contracted Ž, then W̌ and finally we rewrote the expression
into the same form as U(N).
The conclusion is then that the one loop dilatation operator is the same for
U(N) and SU(N) gauge groups

ĎSU(N) = ĎU(N) = H0 +
1

N
H+ +

1

N
H−. (4.77)

This statement should be true to all loops.

4.2.3 SO(N)

Now we move to the orthogonal matrices. As one could expect, the structure
of the planar contribution will be the same as for the unitary and special
unitary matrices. Nevertheless, at the non-planar level, we uncover two new
contributions. One that joins two traces with a simultaneous transposition
and the other, more promising, that conserves the number of traces. Let us
first work out the details in the systematic way.
All the fields are now N ×N antisymmetric matrices

Z = Zij = −Zji = −ZT . (4.78)

Generators in the adjoint representation of SO(N) satisfy the completness
relations

(T a)
αβ

(T a)
νµ

=
1

2
(δβνδαµ − δανδβµ) , (4.79)
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that lead to the set of contraction rules derived in A.3. The two crucial ones
are

Tr
�
X̌OXY

�
=

1

2

�
Tr [O]Tr [Y ]− Tr

�
OY T

��
(4.80)

Tr
�
X̌O

�
Tr [XY ] =

1

2

�
Tr [OY ]− Tr

�
OY T

��
. (4.81)

Similarly to the previous cases we can use them to identify the action of the
SO(N) operator on single and double trace states. States are now7

O1 = Tr (AZBWC) = AµνZνρBρφWφσCσµ

O2 = Tr (AZB) Tr (CWD) = AαβZβκBκα CµνWνρDρµ. (4.82)

Since the contractions are bit more involved than before and it is not hard
to lose a minus sign, we proceed with a step-by-step action of the SO(N)
dilatation operator on a single trace state. After contracting Ž, we get

ĎSO(N)O1 = −g2
YM

8π2

1

2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

�

−Tr
�
W̌ [Z,W ](BWCA)T

�
+ Tr

�
[Z,W ]W̌ (BWCA)T

��
.

(4.83)

To rewrite the last two terms in a more convenient form, we can just use
the obvious property of the trace, namely Tr (A) = Tr

�
AT

�
, and the anti-

symmetry of the SO(N) matrices. In detail, we write the first of them as

Tr
�
W̌ [Z,W ](BWCA)T

�
= Tr

��
W TZT W̌ T − ZTW T W̌ T

�
BWCA

�

= Tr
�
ZWW̌BWCA

�
− Tr

�
WZW̌BWCA

�
= Tr

�
[Z,W ]W̌BWCA

�

(4.84)

and similarly the second

Tr
�
[Z,W ]W̌ (BWCA)T

�
= Tr

��
W̌ TW TZT − W̌ TZTW T

�
BWCA

�

= Tr
�
W̌ZWBWCA

�
− Tr

�
W̌WZBWCA

�
= Tr

�
W̌ [Z,W ]BWCA

�
.

(4.85)

7We postpone the SO(N) projection of states to later chapters and here only care
about the dilatation operator itself.
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They nicely combine with the first two terms and cancel the factor of 1/2 in
front. This way (4.83) becomes

− g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

��

= −g2
YM

8π2

1

2

�
Tr ([Z,W ]B)Tr (CA)− Tr

�
[Z,W ]B (CA)T

�

−Tr (B)Tr (CA[Z,W ]) + Tr
�
B (CA[Z,W ])T

��
. (4.86)

After the second equality sign, follows the result of contracting W̌ . We can
already recognize the familiar, first and the third terms. Leave them for a
moment and rewrite the other two. Using the symmetry of the trace under
transpositions, we can swap the (T ) into B in the fourth term. Also, in
accordance to what we did show in (4.84) or (4.85), the second term is

Tr
�
([Z,W ]B)T CA

�
= −Tr

�
BT [Z,W ]CA

�
. (4.87)

Summing up, we have

− g2
YM

8π2

1

2
{−Tr ([W,Z]B)Tr (AC)− Tr (B)Tr (A[Z,W ]C)

+Tr
�
A[Z,W ]BTC

�
+ Tr

�
ABT [Z,W ]C

��
, (4.88)

or into a more clear and elegant form

ĎSO(N)O1 =
g2
YM

8π2

1

2
{Tr (B)Tr (A[Z,W ]C) + Tr (�ZBW �)Tr (AC)

−Tr
�
ABT [Z,W ]C

�
− Tr

�
A[Z,W ]BTC

��
.(4.89)

Before analyzing it as we did for the U(N) and SU(N), let us derive the
action on double trace operators. After the first contraction the result is

ĎSO(N)Tr (AZB)Tr (CWD) = −g2
YM

8π2

1

2

�
Tr

�
W̌ [Z,W ]BA

�
Tr (CWD)

−Tr
�
W̌ [Z,W ](BA)T

�
Tr (CWD)− Tr

�
[Z,W ]W̌BA

�
Tr (CWD)

+Tr
�
[Z,W ]W̌ (BA)T

�
Tr (CWD)

�
.

(4.90)
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With the experience from previous derivations we already know that the
above traces with transpositions can be rewritten as

Tr
�
W̌ [Z,W ](BA)T

�
= Tr

�
[Z,W ]W̌BA

�
,

T r
�
[Z,W ]W̌ (BA)T

�
= Tr

�
W̌ [Z,W ]BA

�
, (4.91)

and the factor of 1/2 is cancelled again to produce

− g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BA

�
− Tr

�
[Z,W ]W̌BA

��
Tr (CWD)

= −g2
YM

8π2

1

2

�
Tr ([Z,W ]BADC)− Tr

�
[Z,W ]BA(DC)T

�

−Tr (BA[Z,W ]DC) + Tr
�
BA[Z,W ](DC)T

��
. (4.92)

The last two lines are obviously obtained after contracting W̌ . Now if we
rewrite the second term as

Tr
�
([Z,W ]BA)TDC

�
= Tr

�
(ZWBA−WZBA)T DC

�

= Tr
��
(BA)TWZ − (BA)TZW

�
DC

�
= −Tr

�
(BA)T [Z,W ]DC

�
, (4.93)

the result of acting with (4.46) on double trace states can be brought into
this elegant form

ĎSO(N)O2 =
g2
YM

8π2

1

2
{Tr (BA[Z,W ]DC) + Tr (�ZBADCW �)

−Tr
�
(BA)T [Z,W ]DC

�
− Tr

�
BA[Z,W ](DC)T

��
. (4.94)

Now, planar contribution to the anomalous dimension of the SO(N) states
is obtained from (4.89) by setting Bij = δij. As one gets Tr (B) = N and
other three terms in (4.89) vanish, the result that emerges is

HSO(N)
0 O1 =

1

2

g2
YM

N

8π2
Tr (A[Z,W ]C) =

1

2
HU(N)

0 O1. (4.95)

As far as only gauge theories are under consideration, this factor of 1/2 is
just a consequence of the completness relations. Later, we will get some
hints from the dual string theory that requires a ”mirror” string in order for
a classical solution to satisfy the orientifold projection. This might lead to a
factor of two, but it still requires better understanding.
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Another familiar structure is the SO(N) split operator HSO

+ that can be
determined directly from (4.89), with the condition that B �= δ. It is simply
equal to the half of the U(N) counterpart

HSO(N)
+ O1 =

1

2
HU(N)

+ O1. (4.96)

Now a new structure. From (4.94) we see that the joining contribution for

SO(N), HSO(N)
− , consists of two terms

HSO(N)
− O2 =

1

2
HU(N)

− O2 +HSO;f
− O2. (4.97)

One is just a half of the unitary counterpart, HU(N)
− , but the extra piece,

HSO;f
− , joins traces with an additional transposition. More precisely it acts

as

HSO;f
− O2 = −1

2

λ

8π2

�
Tr

�
(BA)T [Z,W ]DC

�
+ Tr

�
BA[Z,W ](DC)T

��
.

(4.98)
Or on two sites, i and j, inside two different traces, it acts as a product of a
”join-with-flip” operator JSO;f

JSO;fTr (AZB)Tr (CWD) = Tr
�
(BA)TZWDC

�
+ Tr

�
BAZW (DC)T

�
.

(4.99)
and the usual H0

HSO;f
− = −1

2
H0

ij
JSO;f
ij

. (4.100)

This is a novel contribution that was discovered in [21].
Just for the future reference we write the action of JSO;f on a spin chain like
operators

J̌SO

i,j
Tr (φ1...φi−1φiφi+1...φp)Tr (φp+1..φj−1φjφj+1...φL)

= Tr
�
(φi+1...φpφ1...φi−1)

Tφiφj...φLφp+1...φj−1

�

+Tr
�
φi+1...φpφ1...φiφj(φj+1...φLφp+1...φj−1)

T
�
. (4.101)

Last but not least, we have another new contribution, HSO(N)
flip

. It does not
change the number of traces inside the state that it acts on

HSO(N)
flip

Tr (AZBWC) = −1

2

λ

8π2

�
Tr

�
ABT [Z,W ]C

�
+ Tr

�
A[Z,W ]BTC

��
.

(4.102)
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We can identify a substructure that consists of a flip operator F SO that cuts
out the part of the operator between the sites, transposes it and gules back
before and after the two sites

F SO Tr (AZBWC) = Tr
�
ABTZWC

�
+ Tr

�
AZWBTC

�
. (4.103)

Then, ”as usually” for our non-planar hamiltonians, it is followed by H0
i,j

�
HSO(N)

flip

�

ij

= −1

2
H0

ij
F SO

ij
. (4.104)

Also for the future reference we write F SO acting on a spin chain like operator

F̂ SO

i,j
Tr (φ1...φi−1φiφi+1...φj−1φjφj+1...φL)

= Tr
�
φ1...φi−1(φi+1...φj−1)

Tφiφjφj+1...φL

�

+Tr
�
φ1...φi−1φiφj(φi+1...φj−1)

Tφj+1..φL

�
. (4.105)

Since the flip operator does not break the chain, we can use it to test inte-
grability at the non-planar level by standard tools! Note that this has not
been possible with 1/N corrections known up to date. Their action always
involved interaction of two chains which did not allow for a known Bethe-
like ansatz solution. More on this issues and tests of the possible integrable
structure of Hflip will be discussed in later chapters.
Summarizing, the SO(N) dilatation operator can be written as

ĎSO(N) = HSO(N)
0 +

1

N
HSO(N)

+ +
1

N
HSO(N)

− +
1

N
HSO(N)

flip
, (4.106)

where the planar (nearest-neighbors) part is a half of the U(N) contribution,
joining and joining-with-flip parts act on two traces, the split part cuts a
single chain into two pieces and finally the flip contribution is a non-local
interaction within a single trace.

4.2.4 Sp(N)

We will see that the results for the symplectic gauge group are closely related
to those of SO(N). All the derivations are carefully presented below with a
stress on the differences with respect to the orthogonal group.
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The rules for appending the operator into a state built of symplectic matrices
are based on the completness relations

(T a)
αβ

(T a)
νµ

=
1

2
(δβνδαµ − JανJβµ) , (4.107)

where J is an antisymmetric, traceless matrix that squares to minus one

JT = −J, J2 = −1. (4.108)

In appendix A.4 we derived the two crucial contraction rules

Tr
�
X̌OXY

�
=

1

2

�
Tr (O)Tr (Y )− Tr

�
OJY TJ

��
(4.109)

Tr
�
X̌O

�
Tr (XY ) =

1

2

�
Tr (OY ) + Tr

�
OJY TJ

��
. (4.110)

Notice that the first one can be obtained from the SO(N) counterpart (A.16)
just by changing Y T → JY TJ . However, if we want to get the second rule
from (A.17), we have to change Y T → −JY TJ . This relative minus sign will
reappear below in the part of the dilatation operator that joins two traces
with a simultaneous flip.
Let us now go through the action on a single trace state O1. Contracting Ž
yields

ĎSp(N)O1 = −g2
YM

8π2

1

2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

�

+Tr
�
W̌ [Z,W ]J(BWCA)TJ

�
− Tr

�
[Z,W ]W̌J(BWCA)TJ

��
.

(4.111)

Due to (4.108), the two terms with transpositions can be rewritten as

Tr
�
W̌ [Z,W ]J(BWCA)TJ

�
= Tr

�
JTW TZT W̌ TJTBWCA

�

−Tr
�
JTZTW T W̌ TJTBWCA

�
= Tr

�
JJWJJZJJW̌JJBWCA

�

−Tr
�
JJZJJWJJW̌JJBWCA

�
= −Tr

�
[Z,W ]W̌BWCA

�

(4.112)

and similarly

Tr
�
[Z,W ]W̌J(BWCA)TJ

�
= Tr

�
JT W̌ TW TZTJTBWCA

�

−Tr
�
JT W̌ TZTW TJTBWCA

�
= Tr

�
JJW̌JJZJJWJJBWCA

�

−Tr
�
JJW̌JJZJJWJJBWCA

�
= −Tr

�
W̌ [Z,W ]BWCA

�
.(4.113)

58



Therefore, as in the previous cases, they nicely combine with the other two
terms to cancel the factor of 1/2 in front

− g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BWCA

�
− Tr

�
[Z,W ]W̌BWCA

��

= −g2
YM

8π2

1

2
{Tr ([Z,W ]B)Tr (AC)− Tr (B)Tr (A[Z,W ]C)

−Tr
�
[Z,W ]BJ(CA)TJ

�
+ Tr

�
BJ(CA[Z,W ])TJ

��
. (4.114)

The second equality sign is followed by the result of contracting W̌ . Again we
can juggle the transposition in order to obtain a formula structurally familiar
from the orthogonal case. First rewrite

Tr
�
[Z,W ]BJ(CA)TJ

�
= Tr

�
(J [Z,W ]BJ)T CA

�

= Tr
��
JBTW TZTJ − JBTZTW TJ

�
CA

�

= Tr
��
JBTJWJJZJJ − JBTJZJJWJJ

�
CA

�

= −Tr
�
JBTJ [Z,W ]CA

�
, (4.115)

where in the second line we dropped the transpositions from J ’s because they
are always paired and the minus signs cancel. Then, we shuffle

Tr
�
BJ(CA[Z,W ])TJ

�
= Tr

�
JBTJCA[Z,W ]

�

= Tr
�
A[Z,W ]JBTJC

�
. (4.116)

Finally the action of the Sp(N) dilatation operator on a single trace operator
is

ĎSp(N)O1 =
g2
YM

8π2

1

2
{Tr (B)Tr (A[Z,W ]C) + Tr (�ZBW �)Tr (AC)

−Tr
�
AJBTJ [Z,W ]C

�
− Tr

�
A[Z,W ]JBTJC

��
.

(4.117)

This can be linked with the orthogonal result by a map BT ↔ JBTJ .
The same way, on an arbitrary double trace state, the dilatation operator
acts as

ĎSp(N)O2 = −g2
YM

8π2

1

2

�
Tr

�
W̌ [Z,W ]BA

�
Tr (CWD)

+Tr
�
W̌ [Z,W ]J(BA)TJ

�
Tr (CWD)− Tr

�
[Z,W ]W̌BA

�
Tr (CWD)

−Tr
�
[Z,W ]W̌J(BA)TJ

�
Tr (CWD)

�
.

(4.118)
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As before, the transposition can be shifted from BA into J ’s and single
symplectic matrices. We rewrite

Tr
�
W̌ [Z,W ]J(BA)TJ

�
= −Tr

�
[Z,W ]W̌BA

�
, (4.119)

and
Tr

�
[Z,W ]W̌J(BA)TJ

�
= −Tr

�
W̌ [Z,W ]BA

�
, (4.120)

so that 1/2 cancels again and, after the first contraction, the result is

− g2
YM

8π2

�
Tr

�
W̌ [Z,W ]BA

�
− Tr

�
[Z,W ]W̌BA

��
Tr (CWD) . (4.121)

At this point, a crucial sign difference with SO(N) pops up. Namely, in
order to contract W̌ we use rule (4.110), with the relative minus sign with
respect to the orthogonal (A.17). Then when contracting within each term
we do not change the sign in front of the term with transpositions. What we
mean is

g2
YM

8π2

1

2
{Tr (BA[Z,W ]DC) + Tr (�ZBADCW �)

−Tr
�
[Z,W ]BAJ(DC)TJ

�
+ Tr

�
BA[Z,W ]J(DC)TJ

��
. (4.122)

The last term already has the required form and we only rewrite the third
term so that it becomes

Tr
�
[Z,W ]BAJ(DC)TJ

�
= Tr

�
(J [Z,W ]BAJ)TDC

�
=

Tr
�
J(BA)T (W TZT − ZTW T )JDC

�
= Tr

�
J(BA)TJWJJZJJDC

�

−Tr
�
J(BA)TJZJJWJJDC

�
= −Tr

�
J(BA)TJ [Z,W ]DC

�
.

(4.123)

The action of Ď on O2 is then

ĎSp(N)O2,p =
g2
YM

8π2

1

2
{Tr (BA[Z,W ]DC) + Tr (�ZBADCW �)

+Tr
�
J(BA)TJ [Z,W ]DC

�
+ Tr

�
BA[Z,W ]J(DC)TJ

��
. (4.124)

With (4.117) and (4.124) at hand we can analyze the general structure of the
Sp(N) dilatation operator.
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Planar part is the same as for SO(N), equal to the half of the U(N) contri-
bution

HSp(N)
0 =

1

2
HU(N)

0 . (4.125)

Similarly, operator H+, that increases the number of traces, is equal to the
half of its U(N) counterpart

HSp(N)
+ =

1

2
HU(N)

+ . (4.126)

Also H− is a sum of a half of the U(N) ”join” operator and a ”join-with-flip”

HSp(N)
− =

1

2
HU(N)

− +HSp;f
− . (4.127)

The new Sp(N) correction, acting on two sites within two different traces,
joins them by first transposing the part from the first trace and inserting J
before and after and then does the same with the part in the second trace

HSp;f
− O2,p =

λ

8π2

1

2

�
Tr

�
J(BA)TJ [Z,W ]DC

�
+ Tr

�
BA[Z,W ]J(DC)TJ

��
.

(4.128)
Note that the there is a sign difference with SO(N), so the map would have
to be J(X)TJ ↔ −(X)T .
Finally the Sp(N) flip acts within a single trace as

HSp(N)
flip

O1 = − λ

8π2

1

2

�
Tr

�
AJBTJ [Z,W ]C

�
− Tr

�
A[Z,W ]JBTJC

��
.

(4.129)
Both, ”flip” and ”join-with-flip” Sp(N) operators have the generic substruc-
tures of the non-planar contributions. The flip operator acting on sites i and
j is just given by �

HSp(N)
flip

�

ij

= −1

2
H0

ij
F Sp

ij
, (4.130)

where F Sp cuts out the part of the operator between the sites that it acts
on, transposes it and gules back in between two J ’s before and after the two
sites

F Sp Tr (AZBWC) = Tr
�
AJBTJZWC

�
+ Tr

�
AZWJBTJC

�
. (4.131)

Similarly the join-with-flip on i and j is
�
HSp;f

−

�

i,j

=
1

2
H0

ij
JSp;f
ij

, (4.132)
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where

JSp;fTr (AZB)Tr (CWD) = Tr
�
J(BA)TJZWDC

�
+Tr

�
BAZWJ(DC)TJ

�
.

(4.133)
To see their action in more detail we write it on a spin-chain like operators

F̂ Sp

i,j
Tr (φ1...φi−1φiφi+1...φj−1φjφj+1...φL)

= Tr
�
φ1...φi−1J(φi+1...φj−1)

TJφiφjφj+1...φL

�

+Tr
�
φ1...φi−1φiφjJ(φi+1...φj−1)

TJφj+1..φL

�
, (4.134)

and

ĴSp

i,j
Tr (φ1...φi−1φiφi+1...φp)Tr (φp+1..φj−1φjφj+1...φL)

= Tr
�
J(φi+1...φpφ1...φi−1)

TJφiφj...φLφp+1...φj−1

�

+Tr
�
φi+1...φpφ1...φiφjJ(φj+1...φLφp+1...φj−1)

TJ
�
. (4.135)

Summarizing the symplectic gauge group dilatation operator can be written
as

ĎSp(N) = HSp(N)
0 +

1

N
HSp(N)

+ +
1

N
HSp(N)

− +
1

N
HSp(N)

flip
. (4.136)
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4.3 Summary

Here we once again give a summary of the one-loop formulas for the dilatation
operator. We assume that a single trace states have length L and double trace

Ď U(N) SU(N) SO(N) Sp(N)

Planar H0 H0
1
2H0

1
2H0

Split H+ H+
1
2H+

1
2H+

Join H− H−
1
2H−

1
2H−

Flip × × HSO

flip
HSp

flip

Join+ Flip × × HSO;f
− HSp;f

−

Table 4.1: Planar and Non-planar contributions to the one-loop dilatation
operator

states, p fields on the first trace and L−p on the second. Planar contributions
are obtained from the nearest neighbor Heisenberg hamiltonian

H0 =
λ

8π2

L�

i

(1i,i+1 − Pi,i+1) , (4.137)

and i = L+ 1 = 1.
Cutting operator H+ that acts within the same trace is given by

H+ =
λ

8π2

�

1≤i<j≤L

(1ij − Pij)Sij ≡
�

1≤i<j≤L

H0
ij
Sij. (4.138)

Join operator acts within two traces by

H− =
λ

8π2

p�

i=1

L�

j=p+1

(1ij − Pij) Jij ≡
p�

i=1

L�

j=p+1

H0
ij
Jij. (4.139)

Join with flip operators for orthogonal and symplectic gauge groups are

HSO;f
− = −1

2

λ

8π2

p�

i=1

L�

j=p+1

(1ij − Pij) J
SO;f
ij

= −1

2

p�

i=1

L�

j=p+1

H0
ij
JSO;f
ij

(4.140)

HSp;f
− =

1

2

λ

8π2

p�

i=1

L�

j=p+1

(1ij − Pij) J
Sp;f
ij

=
1

2

p�

i=1

L�

j=p+1

H0
ij
JSp;f
ij

.(4.141)
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Orthogonal and symplectic flip operators are

HSO(N)
flip

=
1

2

λ

8π2

L�

1≤i<j≤L

(1ij − Pij)F
SO

ij
≡ 1

2

L�

1≤i<j≤L

H0
ij
F SO

ij
(4.142)

HSp(N)
flip

=
1

2

λ

8π2

L�

1≤i<j≤L

(1ij − Pij)F
Sp

ij
≡ 1

2

L�

1≤i<j≤L

H0
ij
F Sp

ij
. (4.143)

The one-loop non-planar corrections: cut, join, join+flip and flip act on

O1 = Tr (AZBWC) ,

O2 = Tr (AZB)Tr (CWD) , (4.144)

as

Š O1 = Tr (B)Tr (AZWC) + Tr (AC)Tr (ZBW ) (4.145)

J̌ O2 = Tr (BAZWDC) + Tr (ZBADCW ) (4.146)

J̌SO;f O2 = Tr
�
(BA)TZWDC

�
+ Tr

�
BAZW (DC)T

�
(4.147)

J̌Sp;f O2 = Tr
�
J(BA)TJZWDC

�
+ Tr

�
BAZWJ(DC)TJ

�
(4.148)

F̌ SO O1 = Tr
�
ABTZWC

�
+ Tr

�
AZWBTC

�
(4.149)

F̌ Sp O1 = Tr
�
AJBTJZWC

�
+ Tr

�
AZWJBTJC

�
. (4.150)
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Part II

Main Results
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Chapter 5

Spectral problem for
Orthogonal and Symplectic
groups

5.1 Summary

By now, we have a solid understanding of the spectral problem of AdS5/CFT4

at the planar limit. It is believed (and has been checked on several examples)
that in this limit, a set of equations called Y-system [28] allows one to obtain
the anomalous dimension of an arbitrary single trace operator at any value of
the ’t Hooft coupling λ. The key to this solution is the integrable structure
of the planar N = 4 SYM.

Once non-planar (≥ 1
N
) corrections to the dilatation generator are taken

into account, the situation complicates. First of all is not fully understood if
integrability can help to solve this problem as well. The paradigm seems to
be that non-planar corrections “break integrability”. It comes from an ob-
servation about explicit diagonalization of the full dilatation generator in a
basis of short operators. There, one can notice that planar parity pairs (two
states with the same planar energy but opposite parity) are lifted by non-
planar corrections. As pointed out in [23] these states with opposite parity
can be mapped to each other with the third conserved charge Q3. Therefore,
their absence in the full spectrum is usually considered as a hint that with
1/N corrections included higher charges are absent, so is integrability.
However in a series of papers [96, 97, 98] authors showed that there exists
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special basis in which some non-planar corrections can be mapped into inte-
grable model.

The second important fact about non-planar corrections is their non-
local action on the spin-chain. More precisely, subleading corrections to the
dilatation generator in N=4 SYM with U(N) gauge group, lead to mixing
of operators with different number of traces. In the spin-chain language they
split or join chains. These are not common phenomena in one-dimensional
exactly solvable systems so we cannot use any existing technology like in the
case of planar limit described by Heisenberg’s hamiltonian.

These two arguments motivated us to consider N=4 SYM with orthogo-
nal and symplectic gauge groups. Their construction, similarly to U(N), is
based on Chan-Paton factors of open strings that end on N D3 branes (see
B). In order to share our excitment we encourage the reader to look at ’t
Hooft double line diagrams on Fig. 5.1. The first and third are standard
planar and non-planar diagram in ’t Hooft expansion for fields in the ad-
joint representation of the U(N). On the contrary, the middle diagram is
obtained by contracting fields in the adjoint representation of the orthogonal
or symplectic group (see A). First, notice that for diagram in the middle,
with the propagator with lines that cross each other, it is impossible to con-
sistently draw arrows (orient the diagram) on each line that point in opposite
directions. These type of diagrams is called non-orientable and correspond
non-orientable string worldsheets.

Figure 5.1: Planar and non-planar diagrams. The most right and most left
are in U(N) gauge theory whereas the middle comes from SO(N) (or Sp(N))
contractions.
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Now let us associate with each diagram a weight

NL(g2
YM

)P−V , (5.1)

where L stands for the number of closed loops, V for the number of vertices
and P for the number of propagators. For the U(N) diagrams we have

(a) N5(g2
YM

)8−5 = N2λ3, (5.2)

(c) N3(g2
YM

)7−4 = λ3, (5.3)

whereas for the middle diagram

(b) N4(g2
YM

)8−5 = Nλ3. (5.4)

As we can see, at order λ3 in U(N) theory, we have the leading planar
contribution (a) the first subleading correction (b) at order N−2. A novelty
for orthogonal and symplectic gauge groups is the correction of order N−1.
Naturally when we take N → ∞ the topology of the leading diagrams is the
same for all gauge groups.
It is not obvious from this simple example, but on the level of the dilatation
operator these new corrections do not lead to splitting or joining of traces.
Hence there is a hope and a possibility to search for integrability in a usual
manner (e.g. find some generalized Bethe Ansatz that would diagonalize
these corrections).

Last but not least, matrices in the adjoint representation of SO(N) (or
Sp(N)) are antisymmetric and for a given length L of the gauge invariant
operator OL, we can only have states of one parity. This can be seen from
the fundamental property of trace, that for every matrix A

TrAT = TrA. (5.5)

Then e.g. for a single trace operator1 composed of antisymmetric matrices
XT

i
= −Xi, we have

OL = Tr (X1...XL)
T = (−1)L Tr (XL...X1) ≡ (−1)L P̌ OL, (5.6)

so for L even we can only have operators with positive parity whereas for L
odd, only the negative parity is allowed.

1the same argument holds for multi trace operators
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In other words, the argument with planar parity pairs loses its meaning but
we still know that planar theory is integrable. Considering orthogonal and
symplectic groups gives us then more general perspective on what are the
crucial features of an integrable theory and a possibility to understand how
(if) integrability breaks at the non-planar level.

With these motivations we embarked on analyzing the “flip” 1/N correc-
tions to the planar dilatation in N=4 SYM with orthogonal and symplectic
gauge groups.
First, based on the experience with constructing conserved charges by boost
operator we tried to guess the correction to Q4

2, such that it would commute
with the hamiltonian at each oder in 1/N . More precisely, we assumed that
if integrability is present at 1/N , the corrected operators

Ĥ = Ĥ0 +
1

N
Ĥflip, Q̂4 = Q̂(0)

4 +
1

N
Q̂(1)

4 , (5.7)

will also commute at 1/N . This gave the following constraint

[Ĥ0, Q̂
(1)
4 ] + [Ĥflip, Q̂

(0)
4 ] = 0. (5.8)

We then tried several (semi-constructive) guesses, however none of them
satisfied this relation3. It remains unclear if our failure was due to breaking
of integrability or our lack of a more systematic approach to the construction
Q1

4.

Then we have managed to find an analytic formula for the correction to
the energy of BMN states from Hflip. As reader remembers these are the
states with two magnons that diagonalize planar XXX hamiltonian. They
can be written in a compact form as

|n� ≡ OJ

n
=

1

J + 1

J�

p=0

cos

�
πn(2p+ 1)

J + 1

�
OJ

p
, 0 ≤ n ≤ J

2
. (5.9)

2Notice that since we only have states of one parity for a given length, Q3 loses it’s
meaning.

3we used computer algebra to check this constraint.
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The first correction to the energy is then given by

En

1 = �n|Ĥflip|n�

= − 2

J + 1
tan2

�
πn

J + 1

�
− 1

J + 1
sin2

�
πn

J + 1

��
J − 1

cos
�
2πn
J+1

�
�
.

(5.10)

Our prediction is that, on the string theory side, this formula should corre-
spond to the energy of two excitations propagating on the string’s worldsheet
with a crosscap. So far this has not been confirmed by an explicit computa-
tion and we leave it for a future project.
With (5.10) at hand we tried to find a modification of Bethe Ansatz in the
spirit of perturbative ABA in 1/N that would reproduce our correction. As
we discussed, there are several ways to modify the ansatz and we tried each of
them. Unfortunately all the modifications lead to contradictory conditions.
Below we present the article in the published version. It contains more details
about the key steps that we just summarized and some additional comments
on the string theory side of the AdS/CFT with orthogonal and symplectic
gauge groups.
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Abstract

We study the spectral problem of N = 4 SYM with gauge group SO(N)
and Sp(N). At the planar level, the difference to the case of gauge group
SU(N) is only due to certain states being projected out, however at the non-
planar level novel effects appear: While 1

N
-corrections in the SU(N) case

are always associated with splitting and joining of spin chains, this is not
so for SO(N) and Sp(N). Here the leading 1

N
-corrections, which are due to

non-orientable Feynman diagrams in the field theory, originate from a term
in the dilatation operator which acts inside a single spin chain. This makes
it possible to test for integrability of the leading 1

N
-corrections by standard

(Bethe ansatz) means and we carry out various such tests. For orthogonal
and symplectic gauge group the dual string theory lives on the orientifold
AdS5 × RP5. We discuss various issues related to semi-classical strings on
this background.
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5.2 Introduction

Whereas the planar spectral problem of N = 4 SYM seems to be close to
resolution [18, 23, 107, 25, 26, 27, 28, 29, 30], much less has been achieved in
the non-planar case. Non-planar corrections, when studied perturbatively in
1
N
, lead to a breakdown of the spin chain picture which was the key to the

progress at the planar level. More precisely, 1
N
-corrections to the dilatation

generator lead to interactions which split and join spin chains [43]. This
enormously enlarges the Hilbert space of states and, furthermore, implies
that excitations on different chains can interact, rendering the standard tools
of integrable spin chains inapplicable and leaving little hope for the existence
of a Bethe ansatz in the usual sense.4

In order to gain further insight into 1
N
-corrections we will study N = 4

SYM with gauge groups SO(N) and Sp(N). At the planar level, the only
essential difference of these theories from the traditionally studied SU(N)
case is that certain states are projected out. However, at the non-planar
level new effects arise. Namely, for orthogonal and symplectic gauge group
the leading non-planar corrections originate from non-orientable Feynman
diagrams with a single cross-cap [32]. At the level of the dilatation generator
these leading non-planar corrections are described by an operator which acts
entirely inside a single spin chain. This implies that restricting oneself to
the leading 1

N
-corrections one does not face the problems mentioned above.

The Hilbert space of states remains the same as on the planar level and all
interactions take place inside a single spin chain. Thus the existence of a
usual Bethe ansatz is not a priori excluded and one may test for integrability
using standard methods.

In the AdS/CFT correspondence, changing the gauge group on the field
theory side translates into a modification of the background geometry on
the string theory side. For orthogonal and symplectic gauge groups the
relevant geometry becomes that of the orientifold AdS5 × RP5 where the
case of Sp(N) differs from that of SO(N) by the presence of an additional
B-field [36]. In the case of N = 4 SYM with gauge group SU(N) the
leading non-planar effects on the string theory side have their origin in string
diagrams of genus one but in the case of orthogonal and symplectic gauge
groups the leading non-planar corrections should be associated with non-
orientable string worldsheets with a single cross-cap. At least naively, it

4The situation is the same in the three–dimensional ABJM and ABJ theories [83, 22].
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seems easier to deal with cross-caps than higher genus surfaces so our study
might open new avenues for comparison of gauge and string theory beyond
the planar limit.

Our main focus will be on the gauge theory side where we will study in
depth the one-loop dilatation generator. We start in section 5.3 by explain-
ing the reduction of the space of states compared to the theory with gauge
group SU(N) and subsequently write down the one-loop dilatation generator
including all non-planar corrections. In section 5.5 we determine analytically
the leading 1

N
-correction to the anomalous dimension of two-excitation states,

thereby providing a prediction for the dual string theory. After that, in sec-
tion 5.6, we search for integrability in the non-planar spectrum in various
ways. We look for unexpected degeneracies and for conserved charges. In
addition, we put forward various possible modifications of the planar Bethe
equations which would produce the correct 1

N
-correction for two-excitation

states and test numerically if these equations also work for higher numbers
of excitations. Unfortunately, the outcome of these tests is negative. In
section 5.7, we discuss the dual string theory picture and, in particular, men-
tion a number of interesting open problems. Finally, section 6.7 contains our
conclusion.

5.3 N = 4 SYM with gauge group SO(N)

In this section we will study non-planar effects in the spectrum of N = 4
SYM with gauge group SO(N). Before doing so, it is useful to briefly recall
how this theory arises as a suitable projection of the SU(N) theory. As
is well known, in string theory the latter is constructed by taking the low-
energy limit of a stack of N D3-branes in ten-dimensional Minkowski space.
The group SU(N) arises because the matrices λi

j
encoding the Chan-Paton

factors of the open strings stretching between the D3-branes are hermitian.
In order to obtain an orthogonal gauge group, one performs an orientifold

projection which, on bosonic states, amounts to relating the Chan-Paton
matrices to their transpose matrices as [55]

λ = −η−1λTη (5.11)

where η is a symmetric matrix which can simply be taken to be unity. The
Chan-Paton matrices are thus restricted to be antisymmetric N × N ma-
trices, which generate the adjoint representation of the group SO(N). As
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explained in [36], in order to ensure that this procedure does not breakN = 4
supersymmetry one has to combine it with a spacetime identification of the
six transverse to the brane coordinates X i as X i → −X i. This procedure
leaves us with N = 4 SYM with gauge group SO(N).

We will restrict ourselves to considering the SU(2) sub-sector of the the-
ory, consisting of multi-trace operators built from two complex fields, say φ
and Z, i.e. operators of the form

O = Tr(Z . . . Zφ . . .φZ . . .)Tr(Z . . . Zφ . . .φZ . . .) . . . (5.12)

The adjoint fields Z and φ, being elements of the algebra of SO(N), fulfill

φT = −φ, ZT = −Z. (5.13)

The dilatation generator of the SU(2) sub-sector at one and two-loops can
formally be written in the same way as for the SU(N) case [23]. At one loop
order it reads5

D̂ = −g2YM

8π2
Tr[φ, Z][φ̌, Ž] ≡ g2YM

8π2
Ĥ. (5.14)

Here Ž is an operator which acts on a field Z by contraction of SO(N)
indices, i.e.

ŽαβZγ� =
1

2
(δα�δβγ − δαγδβ�), (5.15)

and similarly for φ̌.
In the analysis of N = 4 SYM with gauge group SU(N) the concept of

parity played a central role. In a spin chain context, parity is the operation
which inverts the order of operators inside a given trace, i.e. [75]

P̂Tr(Xi1Xi2 . . . XiL) = Tr(XiLXiL−1 . . . Xi1). (5.16)

Parity commutes with Ĥ which means that eigenstates of Ĥ can be chosen
to be states with definite parity. (The same is the case for ABJM theory,
whereas for ABJ theory parity is broken at the non-planar level [83, 22].)
In general, for N = 4 SYM with gauge group SU(N), for a given length
L the spectrum will then contain operators of positive as well as negative

5We chose to keep the normalization of generators TrT aT b = δab when passing from
SU(N) to SO(N).
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parity. However, since the group generators for gauge group SO(N) are
antisymmetric, a state is related to its parity conjugate in the following way:

P̂Tr(Xi1Xi2 . . . XiL) = (−1)LTr(Xi1Xi2 . . . XiL). (5.17)

In other words, parity has been gauged. We thus see that, compared to the
case of SU(N), the SO(N) theory has a lot fewer states: For even length
only positive parity states survive whereas for odd length only negative parity
states survive. When acting on operators of the type (6.10), the one-loop
dilatation generator Ĥ can be usefully decomposed as

Ĥ = N Ĥ0 + Ĥ+ + Ĥ− + Ĥflip. (5.18)

Here Ĥ0 is the planar part which, up to a factor of two, is the same as for
SU(N), i.e.6

ĤSO(N)
0 ≡ Ĥ0 =

1

2

L�

i=1

(1− Pi,i+1) =
1

2
ĤSU(N)

0 . (5.19)

In particular, this means that the information about the planar anomalous
dimensions in the case of gauge group SO(N) is encoded in the same Heisen-
berg spin chain Bethe equations as for SU(N). However, due to the fact that
certain states are projected out, some of the other information encoded in
these equations becomes redundant.

For single trace operators consisting of M fields of type φ and (L −M)
fields of type Z, where M ≤ L/2, the Bethe equations are expressed in terms
of M rapidities {uk}Mk=1 and read

�
uk +

i

2

uk − i

2

�L

=
M�

j=1,j �=k

uk − uj + i

uk − uj − i
. (5.20)

The rapidity u is related to the momentum p via

u =
1

2
cot

�p
2

�
, (5.21)

and the eigenvalues of Ĥ0 are given by

E0 =
1

2

M�

k=1

1

u2
k
+ 1

4

= 2
M�

k=1

sin2
�pk
2

�
. (5.22)

6The relative factor of 1
2 in the hamiltonian arises because of our normalisation of the

gauge group generators.
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The momenta have to satisfy the condition

�

k

pk = 0, (5.23)

which reflects the cyclicity of the trace. The Bethe equations, the cyclicity
constraint and the expression for the energy are all invariant under uk → −uk.
This implies that for any solution, {uk}, either {−uk} = {uk} or {−uk} is a
partner solution of the same energy. Following [46, 47], we will refer to the
first type of solutions as unpaired solutions and the second type as paired.
In SU(N) terminology, the two solutions in a pair are each other’s parity
conjugates. The values of the higher conserved charges for the two states
are identical for even charges and differ by a sign for odd charges. Unpaired
states have vanishing odd charges. Considering gauge group SO(N) instead
of SU(N), the two states in a pair get identified via eqn. (5.17) and the odd
charges lose their meaning. An unpaired state survives the projection if it has
parity (−1)L where L is its length. The reduction procedure is hence clear
on the level of solutions. It would be neat, however, if it could be formulated
at the level of the Bethe equations.7

At the non-planar level the dilatation operator contains the three terms
Ĥ+, Ĥ− and Ĥflip. The operators Ĥ+ and Ĥ− respectively increase and
decrease the trace number by one and have analogues in the case of SU(N).
The operator Ĥflip is trace conserving and does not have any analogue in
the case of SU(N). In the language of string theory the operators Ĥ+ and
Ĥ− correspond to string splitting and joining whereas Ĥflip corresponds to
the insertion of a cross-cap on the string worldsheet. It is well-known that
for gauge theories with orthogonal or symplectic gauge group the topological
expansion includes Feynman diagrams which correspond to non-orientable
surfaces, i.e. surfaces with cross-caps [32]. Each occurrence of a cross-cap
is associated with a factor of 1

N
whereas a handle as usual gives rise to a

factor of 1
N2 , see Fig. 5.2. Acting with Ĥflip on a single trace operator gives

7One can show that the surviving unpaired states always have L and M even [56]. For
these states, one can hence directly see that the Bethe equations will take a form like

�
uk + i

2

uk − i
2

�L−1

=

M/2�

j=1,j �=k

uk − uj + i

uk − uj − i

uk + uj + i

uk + uj − i

which is similar to the (not completely unrelated) case of open strings [58, 59, 63, 60].
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Figure 5.2: A planar Feynman diagram (a), a non-orientable diagram with a
single cross-cap (b) and a diagram of genus one (c).

a contribution for each pair of fields of type φ, Z that the operator contains.
This contribution is most conveniently described in the following way

ĤflipTr(φXZY ) =
1

2
Tr(XTY [Z,φ]) +

1

2
Tr(Y XT [Z,φ]). (5.24)

Here X and Y are arbitrary operators, and it is understood that the Ž and
φ̌ in Ĥflip are contracted with the explicitly written Z and φ in Tr(φXZY ).
The operator Ĥflip hence cuts out a piece of the operator and reinserts it
with the opposite orientation. Since this piece can be of arbitrary length, we
see that all sites in the chain are involved in the interaction. So, although
Ĥflip takes single-trace operators to single-trace operators, and can thus be
interpreted as a spin-chain interaction, in constrast with the planar part of
the dilatation operator its action on the spin chain is highly non-local.

Up to a factor of 2, the operator Ĥ+ takes the same form for SU(N) and
SO(N) whereas the operator Ĥ− has extra terms for SO(N). More precisely

ĤSO(N)
+ =

1

2
ĤSU(N)

+ (5.25)

ĤSO(N)
− Tr(φX)Tr(ZY ) =

1

2
ĤSU(N)

− Tr(φX)Tr(ZY )

+
1

2
Tr(XTY [φ, Z]) +

1

2
Tr(Y XT [Z,φ]),

(5.26)

where the notation is as above and where ĤSU(N)
± can be found in [43]. The

extra terms in ĤSO(N)
− are natural since for non-orientable surfaces there are

two possible ways of gluing objects together. We notice that in a basis of pla-
nar eigenstates the perturbations Ĥ+ and Ĥ− are always off-diagonal. Only
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Ĥflip can have diagonal matrix elements in such a basis. Treating the energy
corrections perturbatively in 1

N
, Ĥ+ and Ĥ− will thus generically give cor-

rections to the energy of order 1
N2 whereas Ĥflip can give corrections already

at order 1
N
. The expansion of the anomalous dimensions hence generically

takes the form

E =
g2YMN

8π2

�
E0 +

1

N
E1 +

1

N2
E2 +O

�
1

N3

��
, (5.27)

where the contribution E1 is mainly due to Ĥflip. It should be noticed, how-
ever, that if there are degeneracies in the planar spectrum, energy corrections
induced by Ĥ+ and Ĥ− can also be of order 1

N
. This phenomenon does not

occur for strong coupling where the closed string perturbation theory taking
into account string splitting and joining always gives rise to an expansion
in 1

N2 . The 1
N

corrections to the energies induced by Ĥ+ and Ĥ− are hence
expected to vanish for strong coupling (and only arise here due to an order
of limits issue). Assuming this to be true we can thus study corrections to
the string energy induced by cross-caps by considering only the corrections
coming from Ĥflip.

5.4 N = 4 SYM with gauge group Sp(N).

We now consider the case of N = 4 SYM with gauge group Sp(N), the group
of N × N symplectic matrices. The construction of this theory in terms of
an orientifold projection is also well known [55]: The projection in this case
relates the Chan-Paton matrices of open-string states as

λ = −J−1λTJ (5.28)

where J is an antisymmetric matrix satisfying J 2 = −1N×N , which can be
taken to be (N is even):

J =

�
0 1
−1 0

�

N×N

. (5.29)

The Chan-Paton matrices in this case turn out to be symmetric, and generate
the adjoint representation of Sp(N). Combining this with the identification
X i → −X i of the N = 4 SYM scalars leads to N = 4 SYM theory with
gauge group Sp(N) [36].
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In Sp(N), indices are raised and lowered with the matrix J , and adjoint
fields with both indices down are symmetric. Thus an adjoint field Zα

β
=

JαγZγβ behaves in the following way under transposition

ZT = JZJ . (5.30)

This in particular implies that a single trace operator is again related to its
parity conjugate as given in eqn. (5.17) and parity is gauged in the same
way as before. Furthermore, for gauge group Sp(N) the one-loop dilatation
generator of N = 4 SYM can again formally be expressed in exactly the same
form as for SU(N), cf. eqn. (5.14). Only the contraction rules are different.
More precisely one has

ŽαβZγ� =
1

2
(δα�δβγ − JαγJβ�). (5.31)

Again one finds that the Hamiltonian can be written in the form given
in (5.18). The action of ĤSp(N)

flip
can be presented in the following way

ĤSp(N)
flip

Tr(φXZY ) =
1

2
Tr(JXTJY [Z,φ]) +

1

2
Tr(Y JXTJ [Z,φ]). (5.32)

We notice that the result differs from that of SO(N) by XT being replaced by
JXTJ . This difference amounts to a shift of sign as we have for an operator
X of length L

SO(N) : XT = (−1)L P̂X, (5.33)

Sp(N) : JXTJ = (−1)L+1 P̂X, (5.34)

where P̂ is the parity operator. This is in full accordance with the general
result that SO(N) can be understood as Sp(−N) [31, 35]. Notice that this
sign difference need not explicitly manifest itself in the off-diagonal terms Ĥ+

and Ĥ− since these will generically give rise to energy corrections of order 1
N2 .

For Sp(N) we again find that the operator Ĥ+ differs from that of SU(N)
only by a factor of 1

2 whereas the operator Ĥ− has extra terms compared to
the corresponding operator for SU(N). More precisely

ĤSp(N)
+ =

1

2
HSU(N)

+ (5.35)

ĤSp(N)
− Tr(φX)Tr(ZY ) =

1

2
ĤSU(N)

− Tr(φX)Tr(ZY ) (5.36)

+
1

2
Tr(JXTJY [φ, Z]) +

1

2
Tr(Y JXTJ [Z,φ]).

79



The difference between the extra terms for Sp(N) and SO(N) is that XT is
replaced by JXTJ , cf. eqn (5.26), which as before amounts to a change of
sign.

5.5 Analysis of BMN operators

BMN operators are operators consisting of a background of Z fields and a
finite number of excitations in the form of φ-fields. We will restrict ourselves
to discussing the simplest operators of this type, i.e. those having two ex-
citations. Two-excitation BMN operators always have positive parity and
therefore in the case of gauge group SO(N) exist only for even length. At
the planar level a basis for the two-excitation states can be chosen as

OJ

p
= Tr(φZpφZJ−p), 0 ≤ p ≤ J. (5.37)

In terms of these the eigenstates of Ĥ0 read

|n� ≡ OJ

n
=

1

J + 1

J�

p=0

cos

�
πn(2p+ 1)

J + 1

�
OJ

p
, 0 ≤ n ≤ J

2
, (5.38)

and the corresponding eigenvalues are

En

0 = 4 sin2

�
πn

J + 1

�
. (5.39)

The inverse transformation giving OJ

p
in terms of |n� takes the form

OJ

p
= |0�+ 2

J/2�

n=1

cos

�
πn(2p+ 1)

J + 1

�
|n�. (5.40)

The energy correction induced by the perturbation Ĥflip is simply given by
the expression from first order quantum mechanical perturbation theory, i.e.

En

1 = �n|Ĥflip|n�. (5.41)

In order to determine this quantity we first evaluate ĤflipOJ

p
where J is

assumed to be even. We find (after some manipulations)

ĤflipOJ

p
= −1

4
(1− (−1)p)

�
2OJ

p
−OJ

p−1 −OJ

p+1

�

−1

2
(−1)p

�
OJ

0 +OJ

J
+ 2

J−1�

k=1

(−1)kOJ

k

�
. (5.42)
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Having this expression, it is straightforward to determine the general matrix
element of Ĥflip as all sums involved are geometric sums. The result reads

�m|Ĥflip|n� =

− 1

J + 1
sin2

�
πm

J + 1

�


δn,m(J + 1)− 1

cos
�

π(n−m)
J+1

� − 1

cos
�

π(n+m)
J+1

�






− 2

J + 1

sin2
�

πm

J+1

�

cos
�

πn

J+1

�
cos

�
πm

J+1

� . (5.43)

We notice that Ĥflip is not hermitian but this phenomenon is well-known [37,
43]: The operator Ĥflip is related to its hermitian conjugate by a similarity
transformation. For n = m the expression (5.43) reduces to

En

1 = �n|Ĥflip|n� (5.44)

= − 2

J + 1
tan2

�
πn

J + 1

�
− 1

J + 1
sin2

�
πn

J + 1

��
J − 1

cos
�
2πn
J+1

�
�
.

This should correspond to the energy correction to a closed string state re-
sulting from the insertion of a cross-cap on its worldsheet. Defining λ� =
g2YMN/J2 and g2 = J2/N , the anomalous dimensions of BMN operators
were originally believed to have a double expansion in λ� and g2 in the limit
λ, J,N → ∞ with λ�, g2 fixed [5, 49, 50]. This double expansion worked for
BMN operators in N = 4 SYM with gauge group SU(N) for the first few
terms in λ� and g2 and led to some success in reproducing the first non-planar
correction on the gauge theory side from LCSFT, for a review see [51]. Later
it was understood that planar BMN scaling breaks down at four loop order
in the gauge theory [52, 25, 53]. Furthermore, on the string theory side a
BMN expansion would involve half-integer powers of λ� starting at one-loop
order [54]. Here the first few terms of the expansion in powers of λ� and g2
for the anomalous dimension in (5.45) read

En =
λ�

2

�
n2 − g2

n2

4J2

�
, (5.45)

meaning that the first non-planar contribution would not survive the above
mentioned limit. Still it would be interesting to analyse the cross-cap scenario
in the pp-wave geometry by some version of LCSFT.
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5.6 Search for integrability at finite N

For gauge group SU(N) an important concept in the search for integrability
was the occurrence of so-called planar parity pairs, i.e. pairs of operators
which at the planar level had the same anomalous dimension but opposite
parity. The existence of such parity pairs could be traced back to the ex-
istence of an extra conserved charge commuting with the Hamiltonian but
anti-commuting with parity [23]. When splitting and joining of traces were
taken into account the degeneracy between the operators in a parity pair
disappeared and this was taken as an indication that integrability was lost
beyond the planar level [23]. The situation was the same for ABJM the-
ory [83]. In the case of gauge group SO(N) where parity is gauged one
obviously does not even have planar parity pairs. Thus one has to invent
other means to test for integrability.

One option is to look for other types of degeneracies in the spectrum which
could survive the non-planar corrections. One such type of degeneracy is that
between anomalous dimensions of certain single- and multi-trace operators,
for instance between BMN operators with different number of traces, i.e.
operators of the type

OJ0;J1,...Jk
n

≡ OJ0
n
Tr(ZJ1)Tr(ZJ2) . . .Tr(ZJk), (5.46)

with anomalous dimension

EJ0;J1,...Jk
0;n = 4 sin2(

πn

J0 + 1
). (5.47)

These degeneracies between BMN states with different numbers of traces
were what rendered the non-planar problem of N = 4 SYM with gauge
group SU(N) intractable. The degeneracies are less pronounced in the case
of gauge group SO(N) due to the gauging of the parity symmetry. The first
case of planar degenerate BMN states in the SO(N) case is the degeneracy
between the states O8

3 and O2;4
1 . The second case is the degeneracy between

the operators O14
5 and O8;6

3 . Using the full Hamiltonian we can easily check
if the first non-planar correction which is of order 1

N
lifts the degeneracy

in these two cases and it turns out that it does. There is thus no hint of
non-planar integrability from this analysis.

Another option to test for integrability is to directly try to construct con-
served charges commuting with the Hamiltonian. In the higher loop analysis
ofN = 4 SYM it was found that such conserved charges could be constructed
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order by order in the coupling constant, λ [23]. More generally one can gen-
erate perturbatively integrable long range spin chains with GL(K) symmetry
starting from chains with nearest neighbour interactions [38, 60]. The con-
struction can be elegantly described in terms of a master symmetry [39] or a
boost operator [40] and leads to a large family of long range perturbatively
integrable spin chains [61, 62]. These techniques do unfortunately not imme-
diately apply to our case as they require that the spin chain length exceeds
the range of the interaction. Nevertheless, we will discuss the possibility of
constructing higher conserved charges perturbatively in 1

N
. For spin chains

with local interactions integrability follows as soon as a single additional
charge commuting with the Hamiltonian can be found [41, 42]. Again, this
does not necessarily apply to our type of spin chain.

Since, as discussed earlier, the odd charges lose their meaning in our
setting, where parity is gauged, at planar level the next higher conserved
charge after the hamiltonian Ĥ = Q̂2 is the even charge Q̂4. If we expand to
first order in 1/N ,

Ĥ = Ĥ0 +
1

N
Ĥflip, Q̂4 = Q̂(0)

4 +
1

N
Q̂(1)

4 , (5.48)

our task is to determine a suitable Q̂(1)
4 such that

[Ĥ0, Q̂
(1)
4 ] + [Ĥflip, Q̂

(0)
4 ] = 0. (5.49)

Since Ĥflip only acts within a single trace, we can assume the same about

Q̂(1)
4 . At the planar level, the higher charges can be constructed iteratively

starting from the Hamiltonian by means of the boost operator B̂ [13], i.e.

[B̂, Q̂(0)
n
] = Q̂(0)

n+1, (5.50)

where B̂ is a moment of the Hamiltonian:

B̂ =
1

2i

L�

j=1

j σj · σj+1, (5.51)

with the σ’s being the Pauli matrices.
Ignoring constants and terms commuting with Ĥ(0), this gives8

Q̂(0)
4 =

L�

i=1

(−8 [Pi,i+3Pi+1,i+2 − Pi,i+2Pi+1,i+3] + 4Pi,i+3 − 4Pi,i+2) . (5.52)

8This matches the expression for Q̂(0)
4 given in [15], up to the terms mentioned.
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Lacking a constructive way of extending this expression beyond the planar
level, we have tried to guess a possible form by first rewriting all the permu-
tation operators in terms of nearest-neighbour ones:

Pi,i+3 = Pi+2,i+3Pi+1,i+2Pi,i+1Pi+1,i+2Pi+2,i+3 and

Pi,i+2 = Pi+1,i+2Pi,i+1Pi+1,i+2
(5.53)

and then using the relation Pi,i+1 = Ii,i+1−2H(0)
i,i+1 (cf. eqn. (5.19)) to rewrite

Q̂(0)
4 in terms of the planar Hamiltonian. Having done this (with the caveat

that the rewritings in (5.53) are not unique), it is then natural to introduce
a dependence on Ĥflip by perturbing as:

H(0)
i,i+1 → H(0)

i,i+1 +
1

N
Hflip

i
, (5.54)

where we have decomposed Ĥflip as

Ĥflip =
L�

i=1

Hflip

i
. (5.55)

More precisely, we define Hflip

i
by

Hflip

i
=

L�

j=1

Hflip

ij
, (5.56)

with Hflip

ij
acting on sites i and j of a periodic chain of length L as, (cf. eqn.

(5.24)) 9

Hflip

ij
(ML−j+1,L−j+i−1 ⊗ ai ⊗N1,j−i−1 ⊗ bj ⊗M1,L−j)

=− 1

2

�
(N T ⊗M)L−i,L−2 ⊗ [ai, bj]⊗ ⊗ (N T ⊗M)1,L−i−1

�

− 1

2

�
(M⊗N T )L−i,L−2 ⊗ [ai, bj]⊗ ⊗ (M⊗N T )1,L−i−1

�
.

(5.57)

9Note that there is an ambiguity in the location of the index i on the chain after the
action of Hflip

i , which we have fixed by cyclically shifting the resulting chain by a suitable
number of sites, such that the first term of the commutator [ai, bj ] always ends up at
position i. Keeping track of i is important when deforming the higher charges, since in

a typical term Hflip
i will be preceded or followed by e.g. H(0)

i,i+1 or H(0)
i+1,i+2 and the sum

over i is performed only at the end.
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Here we have defined Mk,l = mk ⊗mk+1 · · ·ml−1 ⊗ml and similarly for N .

The expression for Q̂(1)
4 obtained by inserting (5.54) into (5.52) is too long

to be reproduced here, but with the help of computer algebra we can check
whether (5.49) is satisfied. This turns out not to be the case for our naive

guess for Q̂(1)
4 . Given the amount of ambiguity involved in obtaining Q̂(1)

4 ,
this is perhaps not surprising, and outlines the need for a more systematic
approach.

A third way to look for integrability is to see if the first few non-planar
corrections can be reproduced from a perturbative Bethe ansatz as was the
case in the higher loop analysis of [23, 47]. The most obvious way to check
this is to simply try and derive a set of Bethe equations, for instance us-
ing the coordinate space approach. This direct approach is, however, not
straightforward. First, it is not clear how to implement the gauging of parity
in a convenient way in this language. Secondly, it is obvious that our spin
chain does not have an asymptotic regime since, as soon as we go beyond
the planar limit, all sites of the chain interact with each other. Therefore,
we will take a more naive approach.

Let us recall the perturbative Bethe equation for N = 4 SYM with gauge
group SU(N). For operators of length L containing M φ-fields and (L−M)
Z-fields (with M ≤ L/2) it reads

�
x(uk +

i

2)

x(uk − i

2)

�L

=
M�

j �=k

uk − uj + i

uk − uj − i
, (5.58)

where

x(u) =
1

2
u+

1

2

�
u2 − 2g2 ≡ u(1− g2f(u)), (5.59)

and where g2 =
g2YMN

8π2 . Here u is related to the momentum p via

eip =
x+(u)

x−(u)
, (5.60)

with

x±(u) = x(u± i

2
). (5.61)

For later convenience we notice that purely algebraic arguments pertaining
to the symmetry properties of the full N = 4 SYM (and not just its SU(2)-
sector) imply that one needs [44]

x+ +
g2

2x+
− x− − g2

2x−
= i, (5.62)
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which is of course fulfilled by the function x(u) given above. Furthermore,
we have the cyclicity constraint (5.23) and the energy is given as

E =
�

k

1

g2

��
1 + 8g2 sin2(

pk
2
)− 1

�
. (5.63)

For BMN states with two excitations we have M = 2, L = J + 2. Follow-
ing [47] and expanding the Bethe root u ≡ u1 = −u2 as

u = u0 + g2δu, (5.64)

we find from the Bethe equation to order g2

δu =
u0

u2
0 +

1
4

�
J + 2

J + 1

�
, (5.65)

and consequently, with E = E0 + g2δE,

δESU(N) = −16 sin4

�
nπ

J + 1

�
− 64

1

J + 1
cos2

�
nπ

J + 1

�
sin4

�
nπ

J + 1

�
,

(5.66)
where the first term comes from the correction to the dispersion relation and
the second one from the correction of the momenta. Let us rewrite the first
1
N
-correction to the BMN states of the SO(N) gauge theory in a similar way

δESO(N) = − sin2

�
nπ

J + 1

�
(5.67)

− 1

J + 1

�
2 tan2

�
πn

J + 1

�
− 1

2
tan2

�
2πn

J + 1

�
cos

�
2πn

J + 1

��
.

From this expression it is clear that if this were to arise from a Bethe system
the first term would have to originate from a correction of the dispersion
relation and the second one from a correction of the rapidities, i.e. a correction
of the Bethe equations. The needed correction of the rapidities would be

δu = − 1

J + 1

4u2
0 + 1

64u3
0 (4u

2
0 − 1)

. (5.68)

There are of course many possible ways to deform the Bethe equations so
that we would get the rapidity corrections for two-excitation states appear-
ing in (5.68). Given a plausible deformation one can test if it gives the
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correct answer for the energy of states with more excitations which we can
of course again compute using quantum mechanical perturbation theory. Let
us illustrate this with a simple example. Parametrising the function x(u) as

x(u) = u(1− 1

N
f(u)), (5.69)

we find that in order to correctly reproduce the 1
N
-correction to the energies

of the two-excitation states the function f(u) needs to fulfill the following
equation

f−(u) ≡ f(u+
i

2
)− f(u− i

2
) = −i

1

16u3(4u2 − 1)
. (5.70)

This implies that f(u) can neither be written as a Taylor expansion nor
as a Laurent expansion in u. Notice, however, that to solve the modified
Bethe equations perturbatively we would only need to know f−(u). We
have checked whether the Bethe equations with the expression for the x(u)
given in eqn. (5.69) and the dispersion relation corrected by the first term
in eqn. (5.67) correctly reproduce the energy of states with four excitations
and length eight, cf. Appendix 5.8. We found that the simple modification
of the Bethe ansatz described above does not lead to the correct non-planar
correction to the energy of any of these states. Now, one may ask whether
the algebraic arguments which led to (5.62) and (5.63) are valid for the
non-planar case as well. I follows from the analysis of reference [44] that
the dispersion relation can indeed be modified to include a correction which
would lead to the first term in the relation (5.67). However, the relation (5.62)
to leading order in λ simply becomes x+(u) − x−(u) = i which leads to the
following constraint on the function f(u)

f(u+
i

2
) + f(u− i

2
) = 2iu

�
f(u+

i

2
)− f(u− i

2
)

�
. (5.71)

This constraint is unfortunately incompatible with the relation (5.70). Thus
the naive proposal for the modification of the Bethe ansatz would anyway
not have a chance to work for the full N = 4 SYM theory.

Obviously, there are many other possible ways to deform the Bethe ansatz.
In particular, there is the possibility of including a phase factor [48]. This
would, in the simplest possible approach, mean modifying the Bethe ansatz
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to �
uk +

i

2

uk − i

2

�L

=
M�

j �=k

uk − uj + i

uk − uj − i

�
1 +

i

N
h(uk − uj)

�
. (5.72)

Here we have for simplicity assumed that the phase factor depends only on
the difference of rapidities and that the modification of the Bethe equations
is due to the appearance of a phase factor alone. Demanding again the
modification of rapidities to be given by (5.68) we find for the function h(u)

h(u) =
1

2u3 (u2 − 1)
. (5.73)

Note the non-trivial fact that h(u) is real for real u and that h(u) does not
depend on the length of the spin chain. We have checked if the modified
Bethe equation (5.72) correctly reproduce the energy correction for length
eight and four excitations. Unfortunately, this is not the case. Needless to
say that the tests performed here do not exclude the existence of a modified
Bethe ansatz.

5.7 Comments on the string theory side

As discussed in the previous sections, the spectral problem of SO(N) and
Sp(N) N = 4 SYM theory exhibits several interesting differences compared
to the SU(N) case. In this section we make some preliminary observations
on how these differences manifest themselves on the string theory side.

In sections 2 and 3 we sketched how the N = 4 SYM theory with orthog-
onal or symplectic gauge group can be obtained by performing an orientifold
operation on a stack of D3-branes. Taking the near-horizon limit we find that
the AdS/CFT dual gravity background should be given by an orientifold of
AdS5 × S5 [36]. Embedding the sphere in R6 as

6�

i=1

(X i)2 = 1 , (5.74)

this orientifold is a combination of the Z2 action X i → −X i and the world-
sheet orientation reversal σ → 2π − σ. Note that the Z2 acts without fixed
points on S5 and thus there is no orientifold plane. Consequently, there is no
need for additional branes to cancel the orientifold plane charge, and thus no
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open string sector. Therefore, this setting still corresponds to an N = 4 the-
ory.10 The dual geometry is now AdS5×RP5, and the difference between the
SO(N) and Sp(N) projections lies in the presence of an additional B-field.

As discussed in [64], in the strict planar (free string) limit all correlation
function calculations in the orientifolded theory can be reduced, up to trivial
rescalings, to those in the oriented one. We thus do not expect our picture of
planar integrability to be modified in a major way. Of course, any spinning
string solutions on S5 not invariant under the orientifold procedure will be
projected out.

Therefore, in the planar limit the differences to the S5 case are relatively
minor and arise only because some spinning string solutions on S5 are not
invariant under the orientifold transformation and are projected out. This
corresponds to the fact, discussed in section 2, that certain gauge theory
operators are projected out, depending on their length and parity. Unfortu-
nately, since the semi-classical string solutions have large length, the distinc-
tion between odd and even length is not as apparent as on the gauge theory
side. It would be interesting to do a thorough analysis of spinning strings
on AdS5 × RP5 along the lines of [65, 66, 67] and we hope to return to this
problem in the future.

For the moment, however, we will confine ourselves to the straightforward
observation that, by analogy with other contexts involving orientifolds, one
can obtain invariant solutions by extending known ones with the addition
of mirror strings. Let us demonstrate this for the SU(2) sector, in which
classical string solutions can be described in terms of their profile on an S2

inside S5. This S2 is defined by
�3

i=1(x
i)2 = 1, where we have written the

coordinates of S5 as X1 ± iX4 = x1 exp(±iφ1), etc. Then the orientifold
projection can be taken to act on the coordinates of this S2 as xi → −xi,
resulting in the real projective space RP2. Now, given any string solution
with a profile xi(σ) for 0 ≤ σ < 2π on S2, we can construct a “doubled”
solution on RP2 by taking the profile to be xi(σ) for 0 ≤ σ < π and −xi(σ)
for π ≤ σ < 2π. See Fig. 5.3 for a drawing of such a solution on RP2. Note
that, despite appearances, the string in the figure is a closed string, since
antipodal points are identified on RP2. The energy of such strings is always
quadratic in xi(σ), so it will be exactly the same as the solution on S2.11

10Orientifolds of N = 4 SYM with fixed planes, which lead to N = 2 conformal theories
with additional flavours, have been considered in an integrability context in [57, 58, 59].

11For the purpose of comparing with weak coupling results, it might thus be more appro-
priate to use a different normalisation of the SU(N) and SO(N) generators in the gauge

89



Figure 5.3: A closed string solution on RP2 which is invariant under the
orientifold. The configuration X(σ = 0) = xA, X(σ = π) = xB = xC ∼ −xB,
X(σ = 2π) = xD is invariant under X i → −X i and σ → 2π − σ.

Arguing in this way, it seems that any solution which in the original
AdS5×S5 geometry is confined to a half S2 (the fundamental domain of RP2)
inside the S5, can be extended to a solution in AdS5×RP5 by superimposing
it with its mirror under the transformation Xi → −Xi and σ → 2π−σ. This
includes for instance the giant magnon solution [45] and the folded spinning
string solution [65].12

Things become more interesting when considering 1
N
-corrections, which

correspond to turning on string interactions. Recall that the analogue of
a spin chain splitting–and–joining operation is a process where a string de-
cays into two strings, which later recombine, creating a worldsheet of genus
one. Such processes are not well understood, even in the pp-wave geometry,
the main obstacle coming from the necessity of summing over the infinite
number of intermediate states (see [51] for a discussion). A simple model
for splitting and joining of semi-classical strings in AdS5 × S5 was presented
in [72]. However, as discussed (in a simplified model) in [73], semi-classical
splitting–and-joining does not seem to capture all of the relevant physics.

In our SO(N) case, apart from the splitting–and–joining terms Ĥ+ and
Ĥ−, the dilatation operator contains an additional term which we have de-
noted by Ĥflip. What is the analogue of this term on the string side? It

theory, or alternatively rescale the length of the string before and after the orientifold.
12Giant magnon solutions on RP2 have previously appeared in the context of the AdS4×

|||CP3 dual of ABJM theory, where the RP2 in that context arises as a suitable subspace of
|||CP3 [68, 69, 70, 71]. The main difference in our case is that, since we are dealing with an
orientifold, we additionally need to implement the worldsheet identification σ → 2π − σ.
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Figure 5.4: Two-point string amplitudes. (I) The (planar) cylinder ampli-
tude. (II) A cylinder with a cross-cap, contributing at order 1

N
. (III) A

cylinder with a handle, contributing at order 1
N2 .

will clearly be related to the fact that, due to the orientifold operation,
one should now also consider non-orientable string worldsheets, or in other
words worldsheets with cross-caps. Recall the weighting of a worldsheet with
b boundaries (each with N Chan-Paton factors), c cross-caps and g handles:

(Ngs)
bgc

s
g2g−2
s

= λ2g−2+b+cN−c−2g+2, (5.75)

where on the right-hand side we have rewritten the result in terms of gauge
theory quantities, where the ’t Hooft coupling is λ = g2

YM
N = gsN . We

see that a cross-cap weights the amplitude by a factor of 1
N

compared to the
oriented amplitude, while a handle by a factor of 1

N2 . See Fig. 5.4. The cross-
cap contribution thus, as expected, appears at the same order as the leading
contribution from Ĥflip on the gauge theory side and it is natural to identify
the two. Intuitively, it is also clear that Ĥflip is associated with cross-caps
since the operator acts by cutting out a piece of an operator and gluing it
back in with the opposite orientation. Since it does not require summation
over all intermediate states, the cross-cap calculation on the string theory
side could be expected to be simpler than the genus-one case.

It would be very interesting to perform such a non-oriented string calcu-
lation and compare with the gauge theory side. Especially using a pp-wave
geometry one might be able to compare with our gauge theory results for
BMN operators, cf. section 5.5.
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5.8 Conclusion

We have studied a number of features which distinguish the spectral problem
of N = 4 SYM with gauge group SO(N) or Sp(N) from that of N = 4 SYM
with gauge group SU(N). Of particular interest to us was the difference
in the leading non-planar corrections. For orthogonal and symplectic gauge
groups the leading non-planar corrections define a novel type of spin chain
interaction of highly non-local nature which cuts out a piece of the chain and
re-inserts it with the opposite orientation. Unlike the case of gauge group
SU(N), the leading non-planar corrections a priori could fit into the standard
framework of integrability. However, the resulting spin chain did not show
any signs of integrability when studied by usual methods. In particular,
our attempts to describe the diagonalization problem for Ĥflip by means of a
Bethe ansatz were unsuccessful. However, given that the spin chain described
by this Hamiltonian seems to lack an asymptotic regime (since all sites of
the chain are involved in the interaction) it could still be that integrability,
if present, simply cannot be formulated in terms of a Bethe ansatz.

Just as N = 4 SYM with orthogonal or symplectic gauge group is much
less studied than its SU(N) cousin, the same holds for the dual string theo-
ries. Here we briefly discussed some issues related to studying the spectrum
of type IIB string theory on the AdS5 × RP5 background. We mentioned
some features of spinning string solutions and discussed how the leading non-
planar corrections to anomalous dimensions on the gauge theory side should
originate from non-oriented string worldsheets with a single cross-cap. By
considering such worldsheets, one might hope to reproduce the leading non-
planar corrections for two-excitation states that we found from the gauge
theory side. More generally, as cross-caps might be easier to handle than
higher genus surfaces, this might open new possibilities for comparing gauge
and string theories beyond the planar limit.

A Numerical tests of Bethe equations.

We specify here the details of the numerical tests we performed. We focused
on the (single trace) states of length eight with four excitations. There are
three such highest weight states. At one loop order at the planar level they
can be described in terms of the corresponding roots of the Bethe equations
given in (5.20). The three sets of roots {u1

i
}, {u2

i
} and {u3

i
}, i ∈ {1, 2, 3, 4}

92



read13

{u1
i
} = {±0.525,±0.129}, (5.76)

{u2
i
} = {±0.0413,±1.026i}, (5.77)

{u3
i
} = {±0.463± 0.502i}, (5.78)

and the corresponding planar one-loop energies, Ej

0, j = 1, 2, 3 are the roots
of the polynomial

− x3 + 10x2 − 29x+ 200 = 0. (5.79)

By direct diagonalization of H0 +
1
N
Ĥflip we find the 1

N
-corrections to the

energies, Ei

1 to be14

E1
1 = 1.618, E2

1 = −6.75, E3
1 = −19.85. (5.80)

On the other hand solving the Bethe ansatz (5.58) with x(u) given by (5.69)
and (5.70) we find the following 1

N
-correction to the rapidities

δui

1 = {±0.0255± 0.000893i}, (5.81)

δui

2 = {±47.6,±138.4i}, (5.82)

δui

3 = {±3.65,±10.74}, (5.83)

which leads to the following 1
N
-correction to the energies

E1
1 = −0.43, E2

1 = −504, E3
1 = −26.6. (5.84)

These values clearly differ from the exact ones given in eqn. (5.80).
Using instead the deformed Bethe ansatz given by (5.72) and (5.73) the

1
N
− correction to the Bethe roots are

{δu1
i
} = {±1.146± 0.0327i}, (5.85)

{δu2
i
} = {±5.96,±17.29i}, (5.86)

{δu3
i
} = {±0.799,±1.045}, (5.87)

and the energy corrections, Ei

1 become

E1
1 = −2.07, E2

1 = −63.6, E3
1 = −8.25. (5.88)

These values also fail to agree with the exact ones given in eqn. (5.80).

13These roots as well as others can be found in references [46, 47].
14We remark that the operators considered here do not exhibit degeneracy with any

multi-trace states and thus there are no further corrections to their energies of order 1
N .
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Chapter 6

Non-planar ABJ theory and
parity

6.1 Summary

The most famous and concrete example of gauge/gravity duality, the Mal-
dacena’s conjecture about AdS5 × S5 and N = 4 SYM, drastically changed
our way of thinking about both, gravity and gauge theories. Nevertheless,
it is just an example of the duality, so one, natural, next step is to under-
stand which of it’s properties are universal and shared with other holographic
systems and which are not.

In 2008, new class of AdS4/CFT3 dualities was constructed by Aharony,
Bergman, Jafferis and Maldacena [76]. The proposal came from studying N
coincident M2-branes on the C4/Zk orbifold. According to authors of [76],
such system is described by 3 dimensional N = 6 supersymmetric Chern-
Simons-matter theory with gauge group U(N)k × U(N)−k. The theory was
abbreviated to the ABJM model after the names of the authors (for peda-
gogical review of the ABJM model see [99]).
Actually, as shown by [77], one can consider generalized ABJM model with
gauge group SU(M)k × SU(N)−k that on the M theory side corresponds
min(M,N) M2 branes moving on C4/Zk and |M − N | fractional branes lo-
calized at the singularity. This example is known as the ABJ model. Since
it is straightforward to extract all the results for ABJM theory from ABJ,
below we summarize the former one.
The 3D gauge theory has three parameters, Chern-Simons level k and size
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of the rectangular matrices M ×N . k plays a role of the coupling constant,
in a sense that all interactions are suppressed as 1/k. Therefore, by referring
to weak coupling regime we will mean the limit of large k.
The number of parameters makes the duality somehow richer than the Mal-
dacena’s model. Namely, we can consider different relative scaling of N , M
and k that lead to different gravity duals. The most interesting case from
the perspective of integrability is when N1/5 � k and M1/5 � k. M the-
ory is then well approximated by weakly coupled type IIA string theory on
AdS4 × CP3 with additional NS B-field B2.

Action for the gauge theory was first written down explicitly in [84].
Its global symmetry (and the isometry group of the AdS4 × CP3) is the
orthosymplectic supergroup OSp(6/4) that contains as bosonic subgroups
SU(4) R-symmetry and SO(2, 3) conformal group in 3 dimensions1. The
theory has N = 6 supersymmetry.
Observables of the gauge theory are gauge invariant operators constructed
out of gauge fields Am and Âm (m = 0, 1, 2), four complex scalars Y I , four
Majorana fermions ψI (I = 1, 2, 3, 4), and their complex conjugates. Mat-
ter fields (scalars and fermions) are M × N matrices in the bi-fundamental
representation of the gauge group.

Formally it is possible to introduce ’t Hooft large N (M) expansion. This
is done by introducing two ’t Hooft parameters

λ =
4πN

k
, λ̂ =

4πM

k
. (6.1)

and taking double ’t Hooft limit

N, M → ∞, k → ∞, λ, λ̂ fixed. (6.2)

According to the AdS4/CFT3 dictionary, string coupling is related to k via

gs ∼
�
N

k5

�1/4

=
λ5/4

N
, (6.3)

hence in the planar limit strings do not interact. As before, non-planar
contributions come from splitting and joining of strings.

As one could expect from the N = 4 SYM experience, the spin-chain
is the OSp(6/4) chain that represents single trace operators. A novelty is

1spacetime rotations and dilatations
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though due to the bi-fundamental M × N fields. They lead to a staggered
spin-chain that can be seen as two chains intertwined . Also, since fields on
even sites are different from those on odd sites, length of the chain must be
even.
The two loop planar dilatation generator for this model was derived in [80]
and asymptotic Bethe Ansatz proposed [80, 103].
One can consider a simple sector to work with, the SU(2) × SU(2) (the
analog of the SU(2) from AdS5/CFT4), where only two pairs of scalar fields
are taken into account. For example we can choose the vacuum of the chain
to be

Tr
�
Y 1Y †

4 Y
1Y †

4 ....
�

(6.4)

where Y 1 is the vacuum on one chain and Y 4 on the other. Then excitations
are Y 2 and Y †

3 on the first and second chain respectively. The full two loop2

dilatation operator in this sector was derived in [83, 22]. It has the following
structure

D = λλ̂

�
D0 +

1

M (D+ +D−) +
1

M2
(D00 +D++ +D−−)

�
, (6.5)

whereD+ and D++ increase the number of traces by one and two respectively
and D− and D−− decrease the number of traces by one and two. Moreover,
D0 does not change the number of traces and D00 first adds one trace and
subsequently removes one or vice versa. Finally 1

M
stands for 1

N
or 1

M
and

1
M2 stands for 1

N2 ,
1

M2 or 1
MN

. It was our main tool in the article presented
in the next section so see there for more details and its explicit form in terms
of the scalar fields.

Our research was largely motivated by aspects of parity and their rela-
tions to integrable structure. In AdS4/CFT3 these issues are particularly
subtle. By construction, the ABJ theory breaks parity. On the string side
the difference between M and N leads to additional θ angle on the world-
sheet that in general breaks parity. On the gauge theory, since the spin-chain
consists of two alternating chains, one might expect that this parity break-
ing will appear as a different dispersion relation for magnons on different
chains. Nevertheless, explicit perturbative computations (up to four loops)

2there are two chains so the first correction to the dilatation generator comes at two
loops. Chains decouple in perturbation theory up to 6 loops
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[100, 101, 102] showed no signs of parity breaking (all the formulas are invari-
ant under the exchange of λ and λ̂). These gives us a very interesting puzzle
and a testing ground for relations between parity and integrable structure.

In the project we decided to address these questions on the gauge theory
side using the full two loop dilatation operator that we derived. More pre-
cisely we diagonalized it in a basis of short operators with excitations on one
and two chains at the same time. For states with excitations on one chain
only there was no mixing between states with different parities, hence parity
was still present. However, once we considered excitations on both chains,
mixing corrections at non-planar level appeared. As we expected, their form
was proportional to M − N , hence for the parity invariant ABJM model
(M = N) they disappeared.
In both models, ABJM and ABJ, nonplanar corrections lifted degeneracies
between planar parity pairs which seems to be a universal phenomena among
non-planar corrections.

Below we present the article in it’s published version. Readers interested
in details of derivations of the full two loop dilatation generator of ABJM
theory are referred to [83].
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Abstract

While the ABJ Chern–Simons–matter theory and its string theory dual man-
ifestly lack parity invariance, no sign of parity violation has so far been
observed on the weak coupling spin chain side. In particular, the planar two-
loop dilatation generator of ABJ theory is parity invariant. In this letter we
derive the non-planar part of the two-loop dilatation generator of ABJ theory
in its SU(2)× SU(2) sub-sector. Applying the dilatation generator to short
operators, we explicitly demonstrate that, for operators carrying excitations
on both spin chains, the non-planar part breaks parity invariance. For oper-
ators with only one type of excitation, however, parity remains conserved at
the non-planar level. We furthermore observe that, as for ABJM theory, the
degeneracy between planar parity pairs is lifted when non-planar corrections
are taken into account.
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6.2 Summary of the project

While the ABJ Chern–Simons–matter theory and its string theory dual man-
ifestly lack parity invariance, no sign of parity violation has so far been
observed on the weak coupling spin chain side. In particular, the planar two-
loop dilatation generator of ABJ theory is parity invariant. In this letter we
derive the non-planar part of the two-loop dilatation generator of ABJ theory
in its SU(2)× SU(2) sub-sector. Applying the dilatation generator to short
operators, we explicitly demonstrate that, for operators carrying excitations
on both spin chains, the non-planar part breaks parity invariance. For oper-
ators with only one type of excitation, however, parity remains conserved at
the non-planar level. We furthermore observe that, as for ABJM theory, the
degeneracy between planar parity pairs is lifted when non-planar corrections
are taken into account.

6.3 Introduction

The concept of spin chain parity [75] played a crucial role in the discov-
ery of higher loop integrability of the planar spectral problem of N = 4
SYM [23]. For a spin chain state the parity operation simply inverts the
order of spins at the sites of the chain. In the field theory language the oper-
ation correspondingly inverts the order of fields inside a single trace operator
or equivalently complex conjugates the gauge group generators. N = 4 SYM
theory is parity invariant. In particular, the theory’s dilatation generator
commutes with parity. Integrability of the planar spectral problem at one
loop order, discovered first in [18], implies the existence of a tower of higher
conserved charges. The first of these, while commuting with the dilatation
generator, anti-commutes with parity. As a consequence one finds in the pla-
nar spectrum pairs of operators with opposite parity but the same conformal
dimension, denoted as planar parity pairs. The fact that these planar parity
pairs survived higher loop corrections constituted the seed for the unveiling
of higher loop integrability [23, 47]. When non-planar corrections were taken
into account, parity was still a good quantum number but the degeneracies
between planar parity pairs disappeared [23]. While not disproving integra-
bility this shows that the standard construction of conserved charges does
not work any more.

The discovery of a novel AdS4/CFT3 correspondence [76, 77] has pro-
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vided us with the possibility of studying the effects of parity violation in a
supersymmetric gauge theory and its dual string theory. A supersymmetric
N = 6 Chern–Simons–matter theory with gauge group SU(M)k×SU(N)

−k
,

where k denotes the Chern–Simons level, has been found to be dual to type
IIA string theory on AdS4 × CP 3 with a background NS B–field B2 having
non-trivial holonomy on CP 1 ⊂ CP 3. More precisely3

1

2π

�

CP 1⊂CP 3

B2 =
M −N

k
. (6.6)

This B–field holonomy causes breaking of world-sheet parity for M �= N
and results in a string background which breaks target-space parity [77].
Correspondingly, the dual field theory does not respect three-dimensional
parity invariance. For M = N the Chern–Simons–matter theory is known as
ABJM theory whereas the general version is denoted as ABJ theory. Our aim
is to investigate how the parity breaking on the field theory side manifests
itself in the spin chain language. The first steps in this direction were taken
in [78, 79] where the two-loop planar dilatation generator of ABJ theory was
derived, respectively in an SU(4) sub-sector and for the full set of fields.
However, rather surprisingly, in these studies no effects of parity violation
were seen. In fact the planar two-loop dilatation generator of ABJ theory
differs from that of ABJM theory [80, 81, 82] only by an overall pre-factor.
This raises the question of whether the parity symmetry of the spin chain
has a deeper significance, or is simply an accidental symmetry of the two-
loop planar approximation. In the present letter we will derive the two-loop
non-planar dilatation generator of ABJ theory in a SU(2)×SU(2) ⊂ SU(4)
sub-sector and explicitly demonstrate parity-breaking effects.

We start by, in section 6.4, briefly describing ABJ theory and subse-
quently proceed to derive its full (planar plus non-planar) two-loop dilata-
tion generator in the SU(2)×SU(2) sector in section 6.5. As the derivation
follows closely that of ABJM theory [83] we shall be very brief. In section 6.6
we explicitly apply the dilatation generator to a series of short operators and
determine their spectrum. In particular, we show that the non-planar part of
the dilatation generator does not conserve parity. In addition, we observe a
lifting of all planar degeneracies. Finally, section 6.7 contains our conclusion.

3Here we have assumed that M ≥ N . Quantum consistency of the theory requires in
addition that M −N ≤ k [77].
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6.4 ABJ theory

Our notation will follow that of references [84, 81]. ABJ theory [77] (see also
[85] for a discussion at the classical level) is a three-dimensional N = 6 super-
conformal Chern–Simons–matter theory with gauge group U(M)k×U(N)

−k

and R-symmetry group SU(4). The parameter k denotes the Chern–Simons
level. The fields of ABJ theory consist of gauge fields Am and Ām, complex
scalars Y I and Majorana spinors ΨI , I ∈ {1, . . . 4}. The two gauge fields Am

and Ām belong to the adjoint representation of U(M) and U(N) respectively.
For N = M , ABJ theory reduces to ABJM theory. The scalars Y I and the
spinors ΨI are bi-fundamental and transform in the M × N representation
of the gauge group and in the fundamental and anti-fundamental represen-
tation of SU(4) respectively. For our purposes it proves convenient to write
the scalars and spinors explicitly in terms of their SU(2) component fields,
i.e. [84]

Y I = {ZA,W †A}, Y †

I
= {Z†

A
,WA},

ΨI = {�AB ξB eiπ/4, �AB ω†B e−iπ/4, },
ΨI† = {−�AB ξ†

B
e−iπ/4,−�AB ωB eiπ/4},

where now A,B ∈ {1, 2}. Expressed in terms of these fields the action reads

S =

�
d3x

�
k

4π
�mnpTr(Am∂nAp +

2i

3
AmAnAp)−

k

4π
�mnpTr(Ām∂nĀp +

2i

3
ĀmĀnĀp)

−Tr(DmZ)
†DmZ − Tr(DmW )†DmW + iTrξ†D/ ξ + iTrω†D/ ω

−V ferm

D
− V bos

D
− V ferm

F
− V bos

F

�
.

Here the covariant derivatives are defined as

DmZ
A = ∂mZ

A+ iAmZ
A− iZAĀm, DmWA = ∂mWA+ iĀmWA− iWAAm,

(6.7)
and similarly for DmξB and DmωB. The decomposition of the scalars and
fermions into their SU(2) components has allowed us to split the bosonic as
well as the fermionic potential into D–terms and F–terms. An explicit form
of these can be found in [84]. The theory has two ’t Hooft parameters

λ =
4πN

k
, λ̂ =

4πM

k
, (6.8)
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and one can consider the double ’t Hooft limit

N, M → ∞, k → ∞, λ, λ̂ fixed. (6.9)

Furthermore, the theory has a multiple expansion in λ, λ̂, 1
N

and 1
M
. The

action of three-dimensional parity flips the levels of the Chern–Simons terms,
which produces a different theory if M �= N . Thus the ABJ model is not
parity invariant.

In this letter we will be interested in studying non-planar corrections
(i.e. 1

N
and 1

M
corrections) for anomalous dimensions at the leading two-loop

level. We shall restrict ourselves to considering scalar operators belonging to
a SU(2)× SU(2) sub-sector i.e. operators of the following type

O = Tr
�
ZA1WB1 . . . Z

ALWBL

�
, (6.10)

where Ai, Bi ∈ {1, 2}, and their multi-trace generalizations. A central object
in our analysis will be the parity operation which acts on an operator by
inverting the order of the fields inside each of its traces, i.e.4

P : Tr
�
ZA1WB1 . . . Z

ALWBL

�
−→ Tr

�
WBLZ

AL . . .WB1Z
A1
�
. (6.11)

Strictly speaking the parity operation (which would be a true symmetry in
ABJM theory) involves in addition a complex conjugation of the fields [78]
but as complex conjugating the fields inside an operator does not change its
anomalous dimension the present definition suffices for our purposes.

6.5 The derivation of the full dilatation gen-
erator

The derivation of the full two-loop dilatation generator of ABJ theory is
slightly lengthy but follows closely the one for ABJM theory [83]. The con-
tractions one has to do are the same as before, only now one has to carefully
keep track of whether a given contraction gives a factor of N or a factor of
M . The Feynman diagrams which contribute at two-loop order consist of
the ones depicted in figure 1 plus 14 self-energy diagrams. All diagrams of
course come in planar as well as non-planar versions. In order to handle most

4We notice that it is not possible to define in a natural and simple way a parity operation
which acts only on Z or W fields.
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easily the combinatorics of planar as well as non-planar diagrams it is again
convenient to make use of the method of effective vertices [86]. An effective
vertex is a space-time independent vertex which, when contracted with a
given operator of the type (6.10) gives the combinatorial factor associated
with a particular Feynman integral times the value of the integral. If things
work as in N = 4 SYM and as in ABJM theory [83] the contribution from the
bosonic D–terms should cancel against contributions from gluon exchange,
fermion exchange and self-interactions to all orders in the genus expansion
and this is indeed what happens. To prove this we first calculate the effective
vertices corresponding to the four diagrams in figure 1. We notice, however,
that for operators belonging to the SU(2)×SU(2) sector there are no contri-
butions from Fig. 1d. Adding the contributions from the bosonic potential,
gluon exchange and fermion exchange we find

(V bos)eff + (V ferm)eff + (V gluon)eff

= (V bos

F
)eff + V + const :

�
Tr

�
Z†

C
ZC

�
+ Tr

�
WCW

†C
��

:, (6.12)

where

const = −1

8
(λ2 + λ̂2)− 1

2
λλ̂+

5

24

λ2

N2
+

5

24

λ̂2

M2
+

1

3

λ

N

λ̂

M
, (6.13)

and where : : means that self-contractions should be excluded. The quantity
V is a vertex which can be shown to give a vanishing contribution when
applied to any operator in the SU(2)× SU(2) sector. Furthermore, the last
term in eqn. (6.12) has exactly the form expected for self-energies and one
can show that it precisely cancels the contribution from these. To do so one
has to check the cancellation of both the planar and the non-planar part of
the constant appearing in eqn. (6.13). The planar part of the analysis can
be carried out with the aid of reference [78]. The non-planar part, however,
requires a careful analysis of the non-planar versions of the 14 self-energy
diagrams.

Collecting everything, we thus verify that the full two-loop dilatation
generator is indeed given only by the F–terms in the bosonic potential, i.e.

D = (V bos

F
)eff = − λ

N

λ̂

M
: Tr

�
W †AZ†

B
W †CWAZ

BWC −W †AZ†

B
W †CWCZ

BWA

+Z†

A
W †BZ†

C
ZAWBZ

C − Z†

A
W †BZ†

C
ZCWBZ

A

�
: . (6.14)
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It is easy to see that the dilatation generator vanishes when acting on an
operator consisting of only two of the four fields from the SU(2) × SU(2)
sector. Accordingly we will denote two of the fields, say Z1 and W1, as
background fields and Z2 and W2 as excitations. It is likewise easy to see
that operators with only one type of excitation, say W2’s, form a closed set
under dilatations. For operators with only W2 -excitations the dilatation
generator consists of four terms whereas in the case with two different types
of excitations it has 16 terms. In both cases D is easily seen to reduce to the
one of [80, 81] in the planar limit

Dplanar ≡ λ λ̂D0 = λ λ̂
2L�

k=1

(1− Pk,k+2), (6.15)

where Pk,k+2 denotes the permutation between sites k and k + 2 and 2L
denotes the total number of fields inside an operator. It differs from the
planar dilatation generator of ABJM theory only by having the pre-factor
λλ̂ instead of λ2. As explained in [80, 81] this is the Hamiltonian of two
alternating SU(2) Heisenberg spin chains, coupled via a momentum condi-
tion. As mentioned earlier, integrability implies that there exists a tower of
charges which all commute and which commute with the Hamiltonian. In
particular, there exists one such charge Q3 which anti-commutes with parity.
In addition, the planar dilatation generator itself commutes with parity, i.e.

[Dplanar, Q3] = [Dplanar, P ] = {Q3, P} = 0. (6.16)

As a consequence, the spectrum of the planar theory has degenerate parity
pairs, i.e. pairs of operators with identical anomalous dimension but opposite
parity. In reference [83] it was shown that for ABJM theory at the non-
planar level the two-loop dilatation generator still commutes with parity but
the degeneracies between parity pairs are lifted. This hinted towards the
absence of higher conserved charges, at least in a standard form. Below we
will analyse the situation for ABJ theory and find that again the planar
degeneracies disappear but in addition the non-planar two-loop dilatation
generator does not any longer commute with parity.

When acting with the dilatation generator on a given operator we have
to perform three contractions as dictated by the three hermitian conjugate
fields. It is easy to see that by acting with the dilatation generator one
can change the number of traces in a given operator by at most two. More
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precisely, the two-loop dilatation generator has the expansion

D = λλ̂

�
D0 +

1

M (D+ +D−) +
1

M2
(D00 +D++ +D−−)

�
. (6.17)

Here D+ and D++ increase the number of traces by one and two respectively
and D− and D−− decrease the number of traces by one and two. Finally,
D0 does not change the number of traces and D00 first adds one trace and
subsequently removes one or vice versa. The quantity 1

M
stands for 1

N
or 1

M

and 1
M2 stands for 1

N2 ,
1

M2 or 1
MN

.
Even for short operators it is in practice hard to diagonalise the full dilata-

tion generator exactly. But one can relatively easily diagonalise the planar
dilatation generator, either by brute force or by means of the Bethe equa-
tions. Subsequently the non-planar terms can be treated as perturbations
and the energy corrections found approximately using quantum mechanical
perturbation theory [43]. Notice that while energy corrections are generi-
cally of order 1

M2 , degeneracies in the planar spectrum will lead to energy
corrections of order 1

M
. (For details see [83].)

6.6 Short Operators

In this section we determine non-planar corrections to the anomalous dimen-
sions of a number of short operators. This is done by explicitly computing
and diagonalising the planar mixing matrix (aided by GPL Maxima as well as
Mathematica) and subsequently determining the non-planar corrections by
quantum mechanical perturbation theory.

6.6.1 Operators with excitations on the same chain

In this sector, the simplest set of operators for which one observes degenerate
parity pairs as well as non-trivial mixing between operators with one, two
and three traces consists of operators of length 14 with three excitations.
There are in total 17 such non-protected operators. Among the non-protected
operators there are only eight which are not descendants. Their explicit
form can be found in reference [83]. The planar anomalous dimensions (in
units of λ λ̂), trace structure and parity for these eight operators, denoted as
O1, . . . ,O8, are
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Eigenvector Eigenvalue Trace structure Parity
O1 5 (14) −
O2 6 (2)(12) −
O3 5 (14) +
O4 5 +

√
5 (2)(12) +

O5 5−
√
5 (2)(12) +

O6 4 (4)(10) +
O7 4 (2)(2)(10) +
O8 6 (2)(4)(8) +

We have one pair of degenerate single trace operators with opposite parity,
namely the operators O1 and O3.5

Expressing the dilatation generator in the basis above and taking into
account all non-planar corrections we get (in units of λλ̂)6





5+ 15
MN 0 0 0 0 0 0 0

3
N + 3

M 6+ 24
MN 0 0 0 0 0 0

0 0 5+ 35
MN 0 0 − 4

N − 4
M − 4

MN − 2
MN

0 0 −
√
5/2
M −

√
5/2
N

√
5+5+

(5
√
5+35)

MN
3
√
5−5

MN
1

MN 0 1
M + 1

N

0 0 −
√
5/2
M −

√
5/2
N − 5+3

√
5

MN 5−
√
5− 5

√
5−35

MN − 1
MN 0 − 1

M − 1
N

0 0 − 10
N − 10

M
4
√
5+20

MN − 20−4
√
5

MN 4+ 28
MN 0 0

0 0 − 10
MN

2
√
5+10
N + 2

√
5+10
M

2
√
5−10
N + 2

√
5−10
M 0 4+ 32

MN − 2
MN

0 0 − 10
MN

12
√
5+20
N + 12

√
5+20
M

12
√
5−20
N + 12

√
5−20
M

4
N + 4

M − 8
MN 6+ 40

MN





.

This mixing matrix of course reduces to that of ABJM theory for N = M as
it should, cf. [83]. We notice that for this type of operators the positive and
negative parity states still decouple, i.e. parity is preserved. The states O1

and O2 are exact eigenstates of the full dilatation generator with non-planar
corrections equal to

δE1 =
15

NM
, δE2 =

24

NM
. (6.18)

For the remaining operators we observe that all matrix elements between
degenerate states vanish. Thus the leading non-planar corrections to the

5We also observe a degeneracy between the negative parity double trace state O2 and
the positive parity triple trace state O8 as well as a degeneracy between the double trace
stateO6 and the triple trace stateO7 both of positive parity. However, states with different
numbers of traces cannot be connected via the conserved charge Q3.

6Notice that by construction the mixing matrix is not hermitian but related to its
hermitian conjugate by a similarity transformation [37, 43].
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anomalous dimensions can be found using second order non-degenerate per-
turbation theory. The results read

δE3 =
40

M2
+

40

N2
+

115

MN
, δE4 = 4(5 + 2

√
5)

�
1

N2
+

1

M2

�
+

3(25 + 7
√
5)

MN
,

δE5 = 4(5− 2
√
5)

�
1

N2
+

1

M2

�
+

3(25− 7
√
5)

MN
, δE6 = − 40

N2
− 40

M2
− 52

MN
,

δE7 =
32

MN
, δE8 = −40

�
1

N2
+

1

M2

�
− 40

MN
(6.19)

We observe that all degeneracies found at the planar level get lifted when
non-planar corrections are taken into account, for all values of M and N .
This in particular holds for the degeneracies between the members of the
planar parity pair (O1,O3). We have considered a number of different types
of states with only one type of excitation and have found that the same
pattern persists in all cases. In fact, one can explicitly show that the matrix
elements between n and (n+ 1)–trace states of the normal ordered operator
in eqn. (6.14), (i.e. D without its pre-factor) can only depend on M and N
through the combination M +N . Thus one cannot have parity breaking.

6.6.2 Operators with excitations on both chains

The simplest multiplet of operators which have non-planar energy corrections
are operators of length six with two excitations. There are in total three such
non-protected highest weight states. These read

O1 =Tr(Z1W1Z1W2Z2W1) + Tr(Z1W1Z1W1Z2W2)− 2Tr(Z1W1Z2W1Z1W2),

O2 =Tr(Z1W1Z1W2Z2W1)− Tr(Z1W1Z1W1Z2W2),

O3 =Tr(Z1W1)Tr(Z1W1Z2W2)− Tr(Z1W1)Tr(Z1W2Z2W1).
(6.20)

Their associated planar anomalous dimension (in units of λλ̂), parity and
trace structure are

Eigenvector Eigenvalue Trace Structure Parity
O1 6 (6) +
O2 6 (6) −
O3 8 (2)(4) −
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Already in this simple case we have one pair of degenerate states with oppo-
site parity, namely O1 and O2. Expressing the dilatation generator in this
basis and taking into account all non-planar corrections we get (in units of
λλ̂) 


6 0 1

M
− 1

N

0 6− 12
MN

− 3
M
− 3

N
6
M
− 6

N
− 6

M
− 6

N
8− 8

MN



 .

We observe that in this case the dilatation generator does mix states with
different parity. In other words, the non-planar dilatation generator does
not commute with P . Calculating the energies by second order quantum
mechanical perturbation theory we find

δE1 = − 3

N2
− 3

M2
+

6

MN
, δE2 = − 9

M2
− 9

N2
− 30

MN
, δE3 =

4

M2
+

4

N2
+

4

MN
.

(6.21)
In particular, we see that the planar degeneracy is lifted.

Let us analyse a slightly larger multiplet of operators with two excitations
of different types that exhibit some more of the above mentioned non-trivial
features of the topological expansion: Operators of length eight with one
excitation of each type. There are in total 7 such non-protected operators.
Their explicit form can be found in reference [83] and the planar anomalous
dimensions (in units of λλ̂), trace structure and parity of these operators,
denoted as O1, . . . ,O7, are

Eigenvector Eigenvalue Trace Structure Parity
O1 8 (8) −
O2 4 (8) −
O3 8 (4)(4) −
O4 6 (2)(6) −
O5 8 (2)(2)(4) −
O6 4 (8) +
O7 6 (2)(6) +

Notice that we have two pairs of degenerate operators with opposite parity,
namely the single trace operators O2 and O6 and the double trace operators
O4 and O7.7

7The double trace operators O4 and O7 can be related via Q3 when letting Q3 act only
on the longer of the two constituent traces of the operators.
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Expressing the dilatation generator in the basis given above and taking
into account all non-planar corrections we get (in units of λλ̂)





8 8
MN

8
N
+ 8

M

2
N
+ 2

M
− 8

MN
0 2

M
− 2

N
8

MN
4− 12

MN
0 − 1

N
− 1

M
− 4

MN
0 1

N
− 1

M
8
N
+ 8

M
−4

N
− 4

M
8 0 0 4

M
− 4

N
0

0 −8
N
− 8

M
− 8

MN
6− 8

MN
−6

N
− 6

M

4
M
− 4

N
0

0 8
MN

0 −6
N
− 6

M
8− 8

MN
0 6

N
− 6

M

0 0 0 1
M
− 1

N
0 4+ 4

MN

1
N
+ 1

M

0 0 0 0 2
N
− 2

M

4
N
+ 4

M
6+ 8

MN





.

This mixing matrix of course reduces to that of ABJM theory for N = M as
it should, cf. [83]. We observe again that the dilatation generator does mix
states with different parity. To find the corrections to the eigenvalues we use
perturbation theory as described in section 6.5. First, we notice that most
matrix elements between degenerate states vanish. The only exception are
the matrix elements between the states O1 and O3. To find the non-planar
correction to the energy of these states we diagonalise the Hamiltonian in
the corresponding subspace and find

δE1,3 = ∓
�

8

N
+

8

M

�
. (6.22)

For the remaining operators the leading non-planar corrections to the energy
can be found using second order non-degenerate perturbation theory. The
results read

δE2 = − 20

NM
− 4

N2
− 4

M2
, δE4 = − 40

NM
− 12

N2
− 12

M2
,

δE5 =
16

NM
+

24

N2
+

24

M2
, δE6 =

4

MN
− 4

N2
− 4

M2
, δE7 =

24

MN
− 4

N2
− 4

M2
.

We again notice that all degeneracies observed at the planar level get lifted
when non-planar corrections are taken into account, for all values of M and
N . This in particular holds for the degeneracies between the members of
the two parity pairs. We have examined a number of operators with excita-
tions of two different types and found that the same pattern persists in all
cases. A closer scrutiny of the action of the dilatation generator reveals that
the asymmetry between M and N originates from the situation where the
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operator separates two neighbouring excitations, a situation which one does
not encounter when the two excitations are on the same chain. Let us note
that the characteristic polynomial of the anomalous dimension matrices will
always be even in M −N . This implies that the eigenvalues will generically
be even under the interchange of M and N (as is the case above). A pos-
sible exception might arise in cases where nonzero matrix elements appear
between planar degenerate states which have opposite parity and differ in
trace number by one (notice that the requirement of different trace structure
prevents this complication from arising for planar parity pairs). Although
mixing of the above type does occur, we did not observe any asymmetry in
the eigenvalues for the explicit cases we examined.

6.7 Conclusion

We have derived and analysed the non-planar corrections to the two-loop
dilatation generator of ABJ theory in the SU(2) × SU(2) sub-sector. Our
analysis shows that these corrections mix states with positive and negative
parity, i.e.

[DABJ

non−planar
, P ] �= 0. (6.23)

More precisely, the value of the commutator is proportional to M −N . This
is in contrast to earlier studies of the planar two-loop dilatation genera-
tor which did not reveal any sign of parity breaking [78, 79]. Furthermore,
whereas the planar dilatation generator could be proved to be integrable, we
do not see any indication of this being the case for the non-planar one, since
none of the planar degeneracies between parity pairs survive the inclusion of
non-planar corrections. It is an interesting question whether the planar di-
latation generator remains integrable and parity invariant when higher loop
corrections are taken into account. In this connection it is worth mentioning
that parity breaking does not prevent integrability [78, 79]. At planar level,
one could try to address the question of parity breaking at higher-loop order
from the string theory side by calculating a transition amplitude between
two string states of different parity living in an instanton background of the
ABJ theory dual. We note that an interesting effect of parity breaking in the
non-interacting string theory has been observed in [87].

One could also try to match the results of the present calculation to the
behaviour of the dual string theory by calculating the semi-classical ampli-
tude for non-parity-conserving splitting of a one-string state into a two-string
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state in the spirit of [72, 73]. Of course, this calculation would at best al-
low us to obtain qualitative agreement between non-planar gauge theory and
interacting string theory. How to achieve quantitative agreement remains a
challenge.
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Chapter 7

Conclusions

In order not to overlap too much with conclusions from the articles presented
before we only highlight our key results and outline some suggestions for fu-
ture investigation.
The central object in our studies was the one-loop dilatation generator in
relatively unexplored N = 4 SYM with orthogonal and symplectic gauge
groups. As we showed, its planar limit is just a subset of the U(N) cousin
but the Hilbert space of states that it acts on is largely truncated due to
parity constraints. At the non-planar level, in addition to known splitting
and joining corrections, we revealed a new class of 1/N contributions that
preserve the number of traces, or in other words, do not break the spin-
chain. We found analytic expression for the corresponding energies in the
basis of BMN states. This is our main prediction for dual string theory on
AdS5 × RP5 [36].
A natural guess is that our new non-planar corrections will be linked to
string worldsheets with crosscaps. Intuitively computations on the string
theory should be more tractable than on worldsheets with topology of the
torus that are dual to the known 1/N2 terms. The comparison has not yet
been achieved but we hope to report on it in the future.
As far as integrability is concerned, we only tried to search for signs of it
by standard methods, namely by constructing a modification of the Bethe
Ansatz or higher conserved charges. The outcome of our tests was negative
however it is not enough to conclude that integrability is indeed broken be-
yond the planar limit.
It is very likely that our naive analysis of the perturbative series in 1/N is
not the most efficient one and the problem requires fundamental rethinking.
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Conceptually, we are just taking into account a particular subclass of Feyn-
man (’t Hooft) diagrams and these, as we know well from many examples
in amplitude computations, only exhibit certain, beautiful, properties after
being summed or rearranged in an appropriate way. Therefore it might be
that the theory is integrable but we will only see it when we sum up all the
non-planar corrections.
As we can see, even though the problem of non-planar corrections seems to
be well defined and easy to work with on the gauge theory side, it is hard
to see any clear integrable structure. Based on previous experience, it might
be that the best way to look at the problem will be from the string theory
perspective. At first, this would require better understanding of the AdS
sigma model on higher genus Riemann surfaces. There has not been much
progress in that direction but it is definitely an interesting field for future
exploration.
There are several possible follow-ups on our projects. The most concrete is
understanding the details of the string theory dual of SO(N) and Sp(N)
theories and finding string configurations that would match the energy cor-
rection that we derived. This would be a non-trivial test of the gauge/gravity
duality at the non-planar level.
There is definitely more room for understanding the relation between parity
and integrable structure. This could be done by deriving and analyzing the
full higher loop dilatation operator in ABJ(M) models. Also along these
lines, it would be interesting to investigate parity in the spectrum of the
dilatation operator in the N = 2 theories recently studied in [104].
Since it is quite clear that the standard language that we used to address
the non-planar questions is not the most fruitful, a new framework for diag-
onalization of the full dilatation operator is needed. A way to proceed could
be to use the basis of Schur polynomials and express all the observables in
terms of the symmetric group theory data along the lines of [96, 105, 106].
This would hopefully allow for a more constructive approach to the problem
and give a hint if the non-planar theory is integrable or not.
It is also worth mentioning that interesting 1/N contributions appear in scat-
tering amplitudes too. As we have learned by studying them at their planar
limit, they exhibit many surprising identities that are not obviously linked
with integrability of the underlying theory. It will be very interesting to in-
vestigate how many of these relations hold beyond the planar approximation.
It will hopefully shed some light on the non-planar structure of the dilatation
operator as well.
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Appendix A

Contraction rules

In this appendix we derive the contraction rules for unitary U(N), special uni-
tary SU(N), special orthogonal SO(N) and symplectic Sp(N) gauge groups.
We are only interested in the combinatorial part so the spacetime dependence
is always ommited. We choose to normalize all the generators with the same
constant

TrT aT b = aδab. (A.1)

As a consequence the action is the same for all gauge groups and we don’t
need to worry about different constants in Feynman rules.
The dimensions of the adjoint representation for our gauge groups are

dim(Adj)
U(N) SU(N) SO(N) Sp(N)
N2 N2 − 1 1

2N(N − 1) 1
2N(N + 1)

They can be deduced from the completeness relations

Completeness relations

U(N) (T a)β
α
(T a)µ

ν
= aδβ

ν
δµ
α

SU(N) (T a)β
α
(T a)µ

ν
= a

�
δβ
ν
δµ
α
− 1

N
δβ
α
δµ
ν

�

SO(N) (T a)
αβ

(T a)
νµ

= a

2 (δβνδαµ − δανδβµ)
Sp(N) (T a)

αβ
(T a)

νµ
= a

2 (δβνδαµ − JανJβµ)

where for the symplectic group we have J2 = −1. It is then easy to check
that for β = ν and α = µ in the completeness relations give the appropriate
dimensionalities.
Now we are ready to derive all the relevant contractions that are extensively
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used while applying the dilatation operator to any state. A contracted pair
will be denoted by X̌ and X and all the other letters will denote words of
fields of an arbitrary length. Also for simplicity we set a = 1.

A.1 U(N)

The most common contractions are

Tr
�
X̌XOY

�
= NTr [OY ] (A.2)

Tr
�
X̌OXY

�
= Tr [O]Tr [Y ] (A.3)

Tr
�
X̌O

�
Tr [XY ] = Tr [OY ] (A.4)

(A.5)

Derivations

Tr
�
X̌XOY

�
= X̌α

β
Xγ

α
Oµ

γ
Y β

µ
= δα

α
δγ
β
Oµ

γ
Y β

µ
= NTr [OY ] (A.6)

Tr
�
X̌OXY

�
= X̌α

β
Oγ

α
Xµ

γ
Y β

µ
= δα

γ
δµ
β
Oγ

α
Y β

µ
= Tr [O]Tr [Y ] (A.7)

Tr
�
X̌O

�
Tr [XY ] = X̌α

β
Oβ

α
Xµ

γ
Y γ

µ
= δα

γ
δµ
β
Oβ

α
Y γ

µ
= Tr [OY ] (A.8)

A.2 SU(N)

The same contraction rules for special unitary matrices are

Tr
�
X̌XOY

�
= NTr [OY ]− 1

N
Tr [OY ] (A.9)

Tr
�
X̌OXY

�
= Tr [O]Tr [Y ]− 1

N
Tr [OY ] (A.10)

Tr
�
X̌O

�
Tr [XY ] = Tr [OY ]− 1

N
Tr [O]Tr [Y ] (A.11)

Derivations

Tr
�
X̌XOY

�
= X̌α

β
Xγ

α
Oµ

γ
Y β

µ
= δα

α
δγ
β
Oµ

γ
Y β

µ
− 1

N
δα
β
δγ
α
Oµ

γ
Y β

µ

= NTr [OY ]− 1

N
Tr [OY ] (A.12)
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Tr
�
X̌OXY

�
= X̌α

β
Oγ

α
Xµ

γ
Y β

µ
= δα

γ
δµ
β
Oγ

α
Y β

µ
− 1

N
δα
β
δµ
γ
Oγ

α
Y β

µ

= Tr [O]Tr [Y ]− 1

N
Tr [OY ] (A.13)

Tr
�
X̌O

�
Tr [XY ] = X̌α

β
Oβ

α
Xµ

γ
Y γ

µ
= δα

γ
δµ
β
Oβ

α
Y γ

µ
− 1

N
δα
β
δµ
γ
Oβ

α
Y γ

µ

= Tr [OY ]− 1

N
Tr [O]Tr [Y ] (A.14)

A.3 SO(N)

In the orthogonal case we have

Tr
�
X̌XOY

�
=

1

2
(NTr [OY ]− Tr [OY ]) (A.15)

Tr
�
X̌OXY

�
=

1

2

�
Tr [O]Tr [Y ]− Tr

�
OY T

��
(A.16)

Tr
�
X̌O

�
Tr [XY ] =

1

2

�
Tr [OY ]− Tr

�
OY T

��
(A.17)

(A.18)

Derivations

Tr
�
X̌XOY

�
= X̌αβXβγOγδYδα =

1

2
(Nδαγ − δαγ)OγδYδα

=
1

2
(NTr [OY ]− Tr [OY ]) (A.19)

Tr
�
X̌OXY

�
= X̌αβOβγXγδYδα =

1

2
(δαδδβγ − δαγδβδ)OβγYδα

=
1

2
(OββYδδ −OβγYβγ) =

1

2

�
Tr [O]Tr [Y ]− Tr

�
OY T

��
(A.20)

Tr
�
X̌O

�
Tr [XY ] = X̌αβOβαXγδYδγ =

1

2
(δαδδβγ − δαγδβδ)OβαYδγ

=
1

2
(OβαYαβ −OβαYβα) =

1

2

�
Tr [OY ]− Tr

�
OY T

��
(A.21)
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A.4 Sp(N)

And finally for symplectic matrices

Tr
�
X̌XOY

�
=

1

2
(NTr [OY ] + Tr [OY ]) (A.22)

Tr
�
X̌OXY

�
=

1

2

�
Tr [O]Tr [Y ]− Tr

�
OJY TJ

��
(A.23)

Tr
�
X̌O

�
Tr [XY ] =

1

2

�
Tr [OY ] + Tr

�
OJY TJ

��
, (A.24)

(A.25)

where J is usually chosen to be

J =

�
0 1k

−1k 0

�
, (A.26)

where n = 2k. It satisfies

J2 = JαβJβγ ≡ −δαγ = −1, J−1 = JT = −J. (A.27)

Derivations

Tr
�
X̌XOY

�
= X̌αβXβγOγδYδα =

1

2
(Nδαγ − JαβJβγ)OγδYδα

=
1

2
(NTr [OY ] + Tr [OY ]) =

N + 1

2
Tr [OY ] . (A.28)

Tr
�
X̌OXY

�
= X̌αβOβγXγδYδα =

1

2
(δαδδβγ − JαγJβδ)OβγYδα

1

2

�
OββYδδ − JαγO

T

γβ
JβδYδα

�
=

1

2

�
Tr [O]Tr [Y ]− Tr

�
OJY TJ

��
(A.29)

Tr
�
X̌O

�
Tr [XY ] = X̌αβOβαXγδYδγ =

1

2
(δαδδβγ − JαγJβδ)OβαYδγ

=
1

2

�
Tr [OY ] + Tr

�
OJY TJ

��
(A.30)
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Appendix B

Chan-Paton factors and gauge
theories

One of the main projects that this thesis is based on was to investigate
the gauge/gravity duality for orthogonal SO(n) and symplectic Sp(n) gauge
groups. Here I review some basic knowlege about Chan-Paton factors and the
way they lead to a gauge theory with unitary (oriented strings), orthogonal or
symplectic gauge groups (non-oriented strings). It is sufficient to consider the
example of the open bosonic string since, as we will see, Chan-Paton factors
are the same for open superstring theories. More details can be found in e.g.
[89] or other standard books on string theory.

B.0.1 Oriented strings

Originally Chan-Paton factors were introduced in the old models of strings
for strong interactions. Quark and antiquark were connected with a flux
tube (a string) and since quarks had to carry the SU(3) flavour quantum
numbers the end points were labeled by qi, i = 1, 2, 3. In the context of the
contemporary open string theories these quantum numbers are naturally be
generalized to an arbitrary integer n (see Fig.B.0.1). This way string states
in addition to the oscillator number N and the momentum k are label by
two integers, from the left and the right endpoint of the string, i, j = 1, . . . n

|N, k, ij� , (B.1)

hence at each level we have n× n states. Then in a natural way a set of n2
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Figure B.1: Chan-Paton factors. Top: Old string for strong interactions with
quark and antiquark at the endpoints connected with the flux tube. Bottom:
General open sting with chages I, J = 1, . . . N .

Hermitain matrices λa

ij
forms a complete basis for the endpoints. Namely we

can write any string state at level N with k as

|N, k, a� =
n�

i,j=1

λa

ij
|N, k, ij� . (B.2)

Matrices λa

ij
are normalized to

Tr
�
λaλb

�
= δab, (B.3)

and furnish the representation of the unitary group U(n). They are usually
refered to as the Chan-Paton factors.
Notice that by definition the factors does not interfere with either the world-
sheet or spacetime coordinates. Therefore neither the conformal or the
Poincare symmetries change with these new degrees of freedom.
By analyzing the scattering amplitudes of the masless open string states we
can see that are efectively described by the Yang-Mills theory with U(n)
gauge group. Let us see this in more details. First of all when we study
the disck amplitudes of states with Chan-Paton factors the extra factor that
emerges for an appropriate ordering is

Tr (λa1λa2λa3λa4) . (B.4)

This exhibits a global U(n) symmetry under transformations

λa → UλaU †. (B.5)

From studying the scattering amplitudes of three and four masless gauge
bosons we realize that this global worldsheet symmetry is also a local sym-
metry of the effective theory dercribing interactions.Namely, the interaction
of the massles vector string states is described in terms of the action

S = − 1

4g�2
o

�
Tr (FµνF

µν) (B.6)
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where
Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (B.7)

and the vector fields are n× n matrices Aµ = Aa

µ
λa in the adjoint represen-

tation of the U(n) gauge group. This way the low energy effective action for
open strings is just given by the U(n) Yang-Mills theory (B.6).

B.0.2 Non-oriented strings

The spectrum of non oriented strings, as the name indicates, should be sym-
metric under the change of orientation of the worldsheet. By this we mean
changing parameter σ → π − σ for open staings and σ → 2π − σ for the
closed. This can be expressed more precisely by introducing the worldsheet-
parity operator Ω. On the open string states without Chan-Paton factors its
action is

Ω |N, k� = ωN |N, k� (B.8)

where
ωN = (−1)1+α�m2

. (B.9)

since the spectrum of unoriented strings should have ωN = 1, only states with
odd masses would be allowed. Nevertheless when we introduce Chan-Paton
factors the worldsheet parity acts on the states as

Ω |N, k, ij� = ωN |N, k, ji� . (B.10)

If we now pick a basis for λ to be either symmetric (sa = 1) or anti-symmetric
(sa = −1), then

Ω |N, k, a� = ωNs
a |N, k, a� , (B.11)

end the eigenvalue of the worldsheet parity operator is now equal to ωNsa.
This gives us two possibilities for the states of the unoriented open strings
with Chan-Paton factors, namely we can have states with odd masses and
antisymmetric λ or even masses and symmetric λ.
Our main interest is on the massles gauge bosons hence we consider antisym-
metric λ’s. The scattering amplitudes are simply captured by the Yang-Mills
action however the fields are now Aµ = Aa

µ
λa, whith a = 1, . . . 12n(n − 1),

and transform in the adjoint representation of the special orthogonal group
SO(n).
One more group that we can obtain from Chan-Paton factors is the sym-
plectic Sp(n). In this case we first consider more general symmetry group of
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the oriented strings which consists of the worldsheet parity action combined
with a U(n) rotation. It is usualy denoted as Ωγ and on a general open string
state it acts as

Ωγ |N, k, ij� = ωNγjj� |N, k, j�i�� γ−1
i�i . (B.12)

Analogously to the previous cases we can require that the states of unoriented
theory are with the eigenvalue ωγ = 1. In addition we require that acting
twice with Ωγ should bring us to the same state. This is expressed by the
condition

Ω2
γ
|N, k, ij� = ω2

N

�
γ
�
γT

��
ii�
|N, k, i�j��

�
γ−1γT

�
j�j

, (B.13)

so we have
γT = ±γ. (B.14)

Hence we must have either symmetric or antisymmetric γ. For the symmetric
case it is always possible to chose a basis that γ is equal to unity. This bring
us back to the SO(n) case. However the antisymmetric γ lead to a more
interesting modification. Namely one can choose a basis in which

J =

�
0 1n

−1n 0

�
. (B.15)

Then choosing a basis for Chan-Paton matrices such that

J (λa)T J = saλa, s = ±1, (B.16)

the states of unoriented open string theory with odd mass have sa = 1,
whereas with even mass sa = −1. This way we get massles gauge bosons
dercribed by the Yang-Mills theory with matrices

J (λa)T J = −λa, (B.17)

that transform in the adjoint representation of Sp(2n) group.
The discussion is completely analogous for type IIB superstrings on AdS5×S5

and their relation to the N = 4 SYM with fields in the adjoint representation
of the unitary, orthogonal or symplectic gauge groups. There will be addi-
tional requirements in order for SUSY to be preserved but we will discuss
them while analyzing specific examples.
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Appendix C

Perturbation Theory in QM

Even though the perturbation theory is a part of the undergraduate course on
quantum mechanics, we briefly review nondegenerate and degenerate, time-
independent perturbation theory in this appendix. We closely follow [88]
where one can find more details.

C.1 Nondegenerate perturbation theory

Le us beging with the nondegenerate case when there is no more than one
state with the same energy.
Assume that we are given a Hamiltonian H0 and a complete set of orthonor-
mal eigenstates φn

�φn|φm� = δnm, (C.1)

with corresponding eigenvalues E0
n
, such that the eigen-equation holds

H0φn = E0
n
φn. (C.2)

This will be our starting point to which we will want to add a small pertur-
bation. We introduce an expansion parameter λ � 1 and consider a system
described by

H = H0 + λH1 (C.3)

where H1 is some hermitean operator. The problem that we would like to
solve is finding a complete set of states ψn with En so that

(H0 + λH1)ψn = Enψn. (C.4)
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The way we will proceed is that we will expand the eigenstates and eigen-
values of the new Hamiltonian in powers of λ and then plugging into (C.4),
we will solve equations that come with appropriate powers of λ (λ0,λ1...etc.).
Naturally we require that for λ → 0

En → E0
n
, ψn → φn. (C.5)

First, since φn form a complete set, we can expand ψn in this basis as

ψn = N(λ)

�
φn +

�

k �=n

Cnk(λ)φn

�
, (C.6)

where
Cnk(λ) = λC(1)

nk
+ λ2C(2)

nk
+ . . . , (C.7)

and in order to satisfy (C.5)

N(0) = 1, Cnk(0) = 0. (C.8)

Then we expand the eigenvalues

En = E0
n
+ λE1

n
+ λ2E2

n
+ . . . , (C.9)

and plug everything into (C.4)

(H0 + λH1)

�
φn + λ

�

k �=n

C1
nk
φk + λ2

�

k �=n

C2
nk
φk + . . .

�

=
�
E0

n
+ λE1

n
+ λ2E2

n
+ . . .

�
�
φn + λ

�

k �=n

C1
nk
φk + λ2

�

k �=n

C2
nk
φk + . . .

�
.(C.10)

At λ0 we simply have the eigen equation for H0 (C.2). Then at λ1

H0

�

k �=n

C1
nk
φk +H1φn = E0

n

�

k �=n

C1
nk
φk + E1

n
φn, (C.11)

which with the use of (C.2) can be written as

E1
n
φn = H1φn +

�

k �=n

�
E0

k
− E0

n

�
C1

nk
φk. (C.12)
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By taking the scalar product with φn (and using orthonormality) we deter-
mine the first correction to the energy

E1
n
= �φn|H1|φn� . (C.13)

If instead we take a scalar product with φl, l �= n then

�φl|H1|φn� = C1
nl

�
E0

n
− E0

l

�
, (C.14)

and we can determine the correction to the eigenstate

C1
nl
=

�φl|H1|φn�
E0

n
− E0

l

. (C.15)

This can be continued to higher powers in λ but for our purposes the above
analysis is sufficient.
Summarizing, the corrected wave function and the new energy are

ψn = φn + λ
�

k �=n

�φk|H1|φn�
E0

n
− E0

k

φk +O(λ2), (C.16)

and
En = E0

n
+ λ �φn|H1|φn� . (C.17)

Let us now see how the analysis is modified when degenerations in the spec-
trum are present.

C.2 Degenerate perturbation theory

Perturbation theory with degenerate states works very similarly to the non-
degenerate case but we have to remember that there might be a subset of
eigenstates φi

n
of the Hamiltonian H0 that has the same energy E0

n
, namely

H0φ
i

n
= E0

n
φi

n
. (C.18)

In this case we first solve the problem in the non-degenerate subset according
to the previous section, and and then deal with degenerate states separately.
This is done as follows.
Again we assume that the eigenstates are normalized as

�
φi

n
|φj

m

�
= δnmδ

ij. (C.19)
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Moreover we write ψn in terms of linear combinations of the degenerate states

ψn = N(λ)

�
�

i

αiφ
i

n
+ λ

�

k �=n

C1
nk

�

i

βiφ
i

k
+ . . .

�
(C.20)

and after plugging everything into (C.4), the task is to find the corrections
to the energy and eigenstates, as well as αi and βi. To the first order in λ
we get

H0

�

k �=n

C1
nk

�

i

βiφ
i

k
+H1

�

i

αiφ
i

n
= E1

n

�

i

αiφ
i

n
+ E0

n

�

k �=n

C1
nk

�

i

βiφ
i

k
.

(C.21)
By taking the scalar product with φj

n
we get a set of equations

E1
n
αj =

�

i

αi

�
φj

n
|H1|φi

n

�
. (C.22)

In addition one often have to assume that
�

i

|αi|2 = 1. (C.23)

On the other hand, taking the scalar product with φj

l
, l �= n leads to

C1
nl
βj =

�

i

αi

�
φj

l
|H1|φi

n

�

E0
n
− E0

l

. (C.24)

Depending on the level of degeneracy we have to solve the above sets of equa-
tions to diagonalize the Hamiltonian in the degenerate perturbation theory.
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