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Deterministic controlled 
enhancement of local quantum 
coherence
Nikola Horová , Robert Stárek *, Michal Mičuda , Michal Kolář , Jaromír Fiurášek  & Radim Filip 

We investigate assisted enhancement of quantum coherence in a bipartite setting with control and 
target systems, which converts the coherence of the control qubit into the enhanced coherence of the 
target qubit. We assume that only incoherent operations and measurements can be applied locally 
and classical information can be exchanged. In addition, the two subsystems are also coupled by a 
fixed Hamiltonian whose interaction strength can be controlled. This coupling does not generate 
any local coherence from incoherent input states. We show that in this setting a measurement and 
feed-forward based protocol can deterministically enhance the coherence of the target system 
while fully preserving its purity. The protocol can be iterated and several copies of the control state 
can be consumed to drive the target system arbitrarily close to a maximally coherent state. We 
experimentally demonstrate this protocol with a photonic setup and observe the enhancement of 
coherence for up to five iterations of the protocol.

The principle of superposition is a fundamental property of quantum systems. This principle gives rise to quan-
tum coherence, that has been identified in recent years as an important resource in various areas of quantum 
information sciences, quantum technologies and quantum thermodynamics. A rigorous resource theory of 
quantum coherence has been developed1,2 yielding quantification of quantum coherence of both pure and mixed 
states, and several classes of incoherent quantum operations, i.e. operations that cannot generate quantum coher-
ence from input incoherent states, have been identified. The concept of quantum coherence is tightly connected 
to the observation that some states of quantum systems can be more easily prepared than others. In particular, 
one identifies a specific basis of incoherent states and it is postulated that these free states possess zero coherence. 
Within this framework of quantum resource theory, operations that can generate or increase quantum coherence 
are considered to be more costly than the free operations that do not increase the coherence.

Manipulation with quantum coherence has been the subject of numerous recent theoretical3–14 and 
experimental15–21 studies. Of particular interest is the relationship between quantum coherence and quantum 
entanglement, that also represents a fundamental resource, related to but distinct from quantum coherence. 
This relationship becomes particularly relevant in the assisted distillation of quantum coherence4,10,15,18. Here 
one considers a bipartite quantum system consisting of target subsystem A and control subsystem B. Arbitrary 
local operations and measurements on system B and classical communication between A and B are permitted, 
while only incoherent operations can be applied to system A. The goal is to maximize the coherence of system 
A with this restricted set of operations.

In the present work we further investigate this remote control and enhancement of quantum coherence. We 
go beyond the paradigm of assisted coherence distillation and consider a setting depicted in Fig. 1, where we start 
from a product state of target system A and control system B, with limited local coherence in each subsystem. The 
two systems then interact via suitable coupling with a controllable coupling strength, which establishes quantum 
correlations between A and B. This coupling does not generate any local coherence from input incoherent states. 
Only incoherent measurements and incoherent operations are allowed locally on systems A and B. We show that 
for specific intersystem coupling this procedure can deterministically enhance the local coherence of A while 
fully preserving its purity, and it works for any pure control state with non-zero coherence. This measurement-
based protocol can be iterated and the state of system A can be deterministically steered to a state with maximum 
coherence. We also show that instead of controlling the coupling strength of the interaction between the two 
systems, we can consider a fixed coupling strength, and impose suitable phase shift on the input control system 
B. We experimentally demonstrate our protocol with quantum photonic platform, where two-level quantum 
systems are represented by polarization states of single photons and their tunable interaction is provided by a 
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linear optical partial SWAP gate. We develop our protocol for two-level systems and in the concluding part of 
the paper discuss possible extensions to higher dimensional systems.

Results
The protocol.  We consider the quantum circuit illustrated in Fig. 1 with target qubit A and control qubit B 
initially prepared in pure states

where |0� and |1� represent the basis of incoherent states of each qubit. Coherence 1 of pure state |ψ� is quantified 
by the entropy of probabilities of the basis states |0� and |1�,

where h(x) = −x log2(x)− (1− x) log2(1− x) . The coherence is maximized for balanced superposition state 
(|0� + |1�)/

√
2 , i.e. at α = π/4 . As shown in Fig. 1, the qubits A and B are coupled via a unitary operation 

U = exp(−iHt) induced by Hamiltonian H. Subsequently, the control qubit B is measured in the basis of inco-
herent states and a strictly incoherent operation can be applied to target qubit A depending on the result of 
measurement on qubit B. The goal of the protocol is to deterministically enhance the coherence of target qubit 
A while fully preserving its purity. In what follows, we show that this is possible for a non-trivial interaction 
Hamiltonian H that preserves the total population of levels |1� , hence it couples only the basis states |01� and |10� . 
Such a Hamiltonian is available for many physical systems including superconducting qubits22,23, trapped ions24 
or neutral atoms25, and thus well motivated. More specifically, we take

where g is an interaction strength. Consequently, we have

This coupling does not generate any local coherence if the qubits A and B are initially prepared in incoherent 
states ρA and ρB (i.e., density matrices diagonal in the computational basis). By the local coherence of a system 
ρ we mean a coherence C of its individual qubits, e.g., for an i-th subsystem, the local coherence is C(Trj =i[ρ]) . 
Although operation (4) generally introduces correlations between the subsystems, the subsequent partial trace 
prevents gaining local coherence for initially incoherent states. On the other hand, we will later show that cou-
pling (4) increases the local coherence of initially partially coherent input qubits.

In our protocol, a nonvanishing local coherence of control qubit B represents a resource that can be used to 
increase the local coherence of qubit A. The protocol requires control of the effective two-qubit coupling strength 
ω = gt . In practice, this could be achieved, e.g., by choosing the time t when the control system B is measured, 
thus controlling the effective interaction time. The optimal coupling strength ω can be determined from the 
requirement that the normalized output states of qubit A |ψ0�A and |ψ1�A , that correspond to projection of qubit 
B onto |0� or |1� , will possess the same coherence. This yields

and

where

The derivations of these equations are provided in the Supplemental Material. The state |ψ1�A can be deter-
ministically converted to state |ψ0�A by local strictly incoherent unitary operation

(1)|ψ�A = cosα|0� + sin α|1�, |φ�B = cosβ|0� + sin β|1�,

(2)C = h(cos2 α),

(3)H = ig(|01��10| − |10��01|),

(4)U =







1 0 0 0
0 cos(gt) sin(gt) 0
0 − sin(gt) cos(gt) 0
0 0 0 1






.

(5)tanω =
tan α − cot α

tan β + cot β
,

(6)|ψ0�A = cos α̃|0� + sin α̃|1�, |ψ1�A = sin α̃|0� + cos α̃|1�,

(7)tan α̃ =
tan α cot β + cot α tan β

√

tan2 β + cot2 β + tan2 α + cot2 α
.

Figure 1.   Quantum circuit of the measurement-induced quantum coherence enhancement. The target system 
A and control system B are coupled by a fixed Hamiltonian but the coupling strength ω can be controlled. Only 
incoherent operations can be applied locally to systems A and B. After the interaction with A the system B is 
measured in the basis of incoherent states and the measurement outcome is transmitted to A who can apply a 
strictly incoherent1 unitary operation σX that flips the basis states |0� and |1�.
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This operation only flips the basis states and cannot increase the coherence of the state.
The above protocol enhances the coherence of target qubit A for any control state |φ�B with nonvanishing 

coherence. Indeed, assuming 0 < β < π/2 one can prove the following strict inequalities

see the Supplemental Material for the proof. These inequalities imply |α̃ − π/4| < |α − π/4| . This proves that 
the coherence of qubit A is enhanced because the angle α gets closer to π/4 . If several copies of control state |φ�B 
are available, we can iterate the protocol and repeatedly apply the map α → α̃ to asymptotically generate a state 
with maximal coherence in qubit A. The convergence to α = π/4 is asymptotically exponentially fast. Assume 
tan α = 1− ǫ with ǫ ≪ 1 . Then

Since

we get ǫ → qǫ and an exponentially fast convergence. We can thus deterministically concentrate the coherence by 
the measurement and pump it to qubit A starting from several copies of control qubits |φ�B with low coherence.

We can quantify the efficiency of coherence transfer in a single step of the protocol as a ratio of coherence 
gain in target qubit A to coherence consumed from control qubit B,

where CA,(0) is the initial coherence of qubit A, CB,(1) is the coherence of qubit B consumed in the first step, and 
CA,(1) is the coherence of qubit A after the first step of the protocol. The initial coherences CA,(0) and CB,(1) are 
determined directly by Eq. (2) as a function of the initial parameters α , β , and the coherence CA,(1) is determined 
with the help of the output angle α̃ defined in Eq. (7). The color plot of the efficiency η1 in Fig. 3a shows that a 
single step is maximally efficient for α = β . The plots in Fig. 3b,c show that the efficiency in this regime reaches 
unity in the limit of low input coherence.

Let us now define the overall coherence transfer efficiency in the following way,

where CA,(n) describes coherence of qubit A after n iterations of the protocol and the total coherence consumed 
from system B is

with CB,(k) being the coherence of qubit B consumed in the k-th iteration. In CB,tot we used additivity of coherence 
measure for factorized control qubits. In the case of constant β and infinite number of iterations, CB,tot diverges, 
and the efficiency is zero. We have numerically investigated the case in which βk changes so that CB,tot converges. 
For simplicity, we assume that initially α = β . We choose the series βk such that CB,(k) = CB,(1)fi(k) , with the 
following choice of profile functions fi(k):

where � is the Heaviside step function. We then sweep the parameter κ which controls the total coherence con-
sumption CB,tot and evaluate the overall efficiency (12) as a function of the consumed coherence. The results in 
Fig. 3d suggest that the efficiency mainly depends on the total spent coherence rather than on the exact evolution 
of CB,(k) , although is seems that the step-function evolution of CB,(k) provides a slightly better efficiency for low 
CB,tot . The maximum of η is determined by the efficiency of the first step, which reaches unity in the limit of low 
input coherence. The efficiency will asymptotically decrease to zero for large amounts of consumed coherence 
CB,tot.

Note that the conditional application of the operation σX to qubit A is not really necessary for deterministic 
coherence concentration. One can instead keep track of the measurement outcomes on qubits B and adapt the 
coupling strength ω at each step accordingly. If the measurement outcome on qubit B is ’1’, then we instead of 
σx application select the next ω′ = −ω where ω is selected using Eq. (5). This choice satisfies the condition on 
equal coherence of output conditional states when the input qubit A has been flipped. The detailed derivation 
is provided in Supplemental Material. The protocol will then deterministically converge to α = π/4 . Typical 
behavior of the protocol is illustrated in Fig. 2. Note that the coupling strength ω decreases at each iteration of 
the protocol and asymptotically vanishes.

(8)σX = |0��1| + |1��0|.

(9)min(tan α, cot α) < tan α̃ < max(tan α, cot α),

(10)tan α̃ ≈ 1+
cot β − tan β

| tan β + cot β|
ǫ.

q =
∣

∣

∣

∣

cot β − tan β

tan β + cot β

∣

∣

∣

∣

< 1

(11)η1 =
CA,(1) − CA,(0)

CB,(1)
,

(12)η = lim
n→∞

CA,(n) − CA,(0)

CB,tot
,

CB,tot =
n

∑

k=1

CB,(k),

(13)

f1(k) = �(κ − (k − 1)), f2(k) = max(1− κ(k − 1), 0), f3(k) = e−κ(k−1), f4(k) =
1

1+ (κ(k − 1))2
,
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For comparison, we provide in Fig. 2 also results of a simpler protocol that does not involve any measurement 
and feed-forward. In this latter scheme, we throw away the qubit B after the interaction and we numerically 
optimize the coupling strength ω at each iteration to maximize the coherence of the output state of qubit A. Note 
that the state of qubit A becomes mixed in this process as illustrated in Fig. 2d. Therefore C is evaluated using 
the general formula for coherence of a mixed state1

where S(ρ) = −Tr(ρ log2 ρ) , and �(ρ) = ρ00|0��0| + ρ11|1��1| is the density matrix of the completely dephased 
state. The protocol without measurement does not converge to a maximally coherent state and the coherence 
saturates at an asymptotic value that is strictly smaller than 1, see Fig. 2b. This illustrates the importance and 
usefulness of the measurement and feed-forward that enable us to control and enhance the coherence while fully 
preserving the purity of the target qubit.

Instead of controlling the coupling strength ω , we can also control the concentration of quantum coherence 
by applying a phase shift ϕ to input qubit B, which yields the input control state cosβ|0� + eiϕ sin β|1� . This latter 
approach is less universal, because it works only for a restricted range of input states and coupling strengths, but is 
appealing because the control of two-qubit interaction is replaced with local control of qubit B. We illustrate this 
protocol for a maximally entangling two-qubit gate U obtained at ω = π/4 . We again require that the two condi-
tional output states of qubit A |ψ0,1� possess the same coherence. This yields an expression for the phase shift ϕ,

the derivation is provided in the Supplemental Material. The condition | cosϕ| ≤ 1 defines the range of α and β 
for which the protocol works. In particular, this condition is always satisfied if α = β . Numerical calculations 
confirm that if the phase shift (15) exists, then the protocol enhances the coherence of qubit A. Besides the bit 
flip σX the two conditional output states of qubit A will differ also by some phase shift δ of the amplitude of state 
|1� that should be compensated by a local strictly incoherent operation exp(iδσZ) , where σZ = |0��0| − |1��1| , 
or tracked and taken into account in the iterative version of the protocol. For ω = π/4 we find that the iterative 

(14)C(ρ) = S(�(ρ))− S(ρ),

(15)cosϕ =
1

2

tan2 α + tan2 β − cot2 α − cot2 β

tan α tan β + cot α cot β
,

Figure 2.   Convergence of the deterministic coherence enhancement protocol for α0 = π/16 and β = π/16 . 
We plot the parameter α specifying the state of qubit A after n iterations (a), the coherence of qubit A (b), the 
dependence of the coupling strength ω on the iteration step n (c), and the state purity P = Tr

(

ρ2
)

 (d). Blue 
circles represent results for the protocol with measurement and feed-forward. For comparison, orange squares 
indicate results for a scheme without measurement.

0 15 30 45

β [deg]

0

15

30

45

α
[d
eg
]

(a)

0 10 20 30 40

α = β [deg]

0.00

0.25

0.50

0.75

1.00

η
1

(b)

10−2410−12 100

0.9

1.0

(c)

0 2 4 6 8
CB,tot

0.0

0.1

0.2

0.3

0.4

η

(d)

0.0

0.5

1.0

Figure 3.   (a) Color-coded efficiency of a single step η1 versus initial parameters α,β , white contours mark levels 
0.1–0.8 with 0.1 steps. The plot is symmetrical because we assume that β ≤ α and if not, we swap the qubits. 
(b,c) Section of (a) along the line α = β , (c) is evaluated in logarithmic scale to show the convergence η1 → 1 in 
the limit of α → 0 . (d) Numerically approximated overall efficiency η ( n = 1000 , β1 = 20 deg) is plotted versus 
the total coherence consumed from system B. The tested evolutions of CB,(k) are marked with the following 
colors and symbols: blue dots - f1 , orange diamonds - f2 , green ’x’ marks - f3 , and red crosses - f4 . The profile 
functions fj are defined in Eq. (13).
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protocol with fixed β and initial point α0 = β will converge to state with maximum coherence provided that 
π/8 < β < 3π/8.

Experimental setup.  We have experimentally tested the proposed protocols with a quantum photonic 
setup26,27, where qubits are encoded into polarization states of single photons. The interaction between the two 
qubits is provided by a unitary partial-SWAP gate

where �− = |�−���−| is the projector onto the anti-symmetric singlet Bell state |�−� = 1√
2
(|01� − |10�) , 

�+ = I −�− is the projector onto the three-dimensional symmetric subspace of two-qubits, and I denotes the 
identity operator. The partial SWAP gate induces the same coupling of states |01� and |10� as the Hamiltonian (3) 
up to local phase shifts that can be taken into account and do not affect the performance of the presented protocol. 
See Supplemental Material for the detailed analysis. Design of the linear optical partial SWAP gate28 is described 
in Methods section.

Detailed experimental setup is depicted in Fig. 4. Its core that implements the partial SWAP gate is formed 
by a displaced Sagnac interferometer, which ensures the inherent passive interferometric stability of the setup29. 
Correlated photon pairs are generated in the process of spontaneous parametric down-conversion in a non-
linear crystal pumped by a laser diode (not shown in the figure). The two photons are spatially separated at 
a polarizing beam splitter and guided to the depicted experimental setup. Polarization states of photons are 
prepared and controlled with half- and quarter-wave plates and Glan-Taylor prisms. Then the photons enter 
the central interferometer which implements the partial SWAP gate. At the output, the photons are detected by 
single-photon avalanche photodiodes. With this compact and inherently stable setup we have implemented the 
partial-SWAP gate with the unprecedently high gate fidelity that exceeded 0.97 for all tested coupling strengths 
ω in the interval [0,π/2].

The photonic platform employed in our experiment provides a convenient testbed for proof-of-principle 
demonstration and verification of the proposed protocol for controlled enhancement of quantum coherence. 
Although the coherence of polarization states of single photons could be easily manipulated with the waveplates, 
we do not use the waveplates for such purpose in the main part of our experiment. We emphasize that we utilize 
the waveplates solely to prepare the input states and to set the measurement basis for the characterization of 
the output states. The partial SWAP operation that forms the core of the demonstrated protocol is implemented 
with a Mach–Zehnder interferometer that does not contain any waveplates. Our results reported below thus 
confirm the functioning of the protocol, which is applicable to any physical system, including those where the 
coherence changing-operations can be more experimentally demanding and costly than incoherent operations.

Experimental results.  We have first experimentally probed a single step of the coherence enhancement 
procedure. In order to compensate for the additional phase shifts induced by the partial SWAP gate, the qubit 
A is prepared in state cosα|0� + i sin α|1� while the control qubit B was prepared in state cosβ|0� + sin β|1�.

In this measurement we have probed the symmetric scenario where both qubits A and B initially have the 
same coherence, α = β . The two-qubit coupling strength ω is set according to Eq. (5). We perform full quan-
tum tomography of the output two-qubit state, reconstruct the density matrix by likelihood maximization30, 
and extract from it (non-normalized) density matrices ρA0 and ρA1 corresponding to projection of qubit 
B onto the basis states |0� and |1� , respectively. We then apply a correcting phase shift 2ω together with the 
conditional bit flip σX to the reconstructed density matrix ρA1 and obtain the overall output state of qubit A, 
ρA = ρA0 + σXe

−iωσZρA1e
iωσZσX . Alternatively, we can choose only the subset of the two-qubit coincidences 

that correspond to projections of qubit B onto the computational basis states, and from this restricted data set 

(16)UPSWAP = �+ + ei2ω�−,

Figure 4.   Experimental setup. The Mach–Zehnder interferometer is folded into displaced Sagnac 
interferometer. Polarization states of single photons are prepared and analyzed with the use of waveplates, 
polarizing beam splitters and Glan-Taylor prisms. Photons are detected by silicon avalanche photodiodes 
operating in the Geiger mode. The auxiliary detector is used only for the tuning of the interferometric phase.
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we directly reconstruct the single-qubit density matrices ρA0 and ρA1 . These two procedures yield very similar 
results and in what follows we report data obtained with the former procedure.

The experimental results are displayed in Fig. 5 for six different values of α . We plot in the figure the coherence 
of the state C as well as the state purity P = Tr(ρ2) . Since the experimentally determined states are not exactly 
pure, we use the general expression for coherence of a mixed state (14). For reference, the curves in Fig. 5 specify 
the theoretical prediction for an ideal pure-state protocol. We can see that the experimental data closely follow 
the theoretical expectation. The protocol enhances the local coherence of qubit A while maintaining its very high 
purity. The input state is practically perfectly pure, with P > 0.992 for all α considered, while the output state 
becomes slightly mixed. This can be attributed mainly to the imperfections of the two-qubit partial SWAP gate, 
such as residual phase fluctuations in the interferometer and an imperfect visibility of two-photon interference.

Here and in the rest of our paper, the error-bars represent one standard deviation and were obtained using 
parametric bootstrapping. With the knowledge of reconstructed states, measurement operators, mean count-rate 
in the tomogram, and under the assumption of the Poissonian distribution of measured coincidence number, 
we generated 1000 tomograms, processed them the same way as the original tomograms, obtaining a set for 
each quantity of interest (e.g. coherence, purity). We evaluated the standard deviation of this set. For quantities 
of interest near its theoretical boundary, purity in this case, we instead found 0.158 and 0.84 quantiles and used 
them to plot asymmetrical error-bars, in which lies 68.2% of all samples, equivalently to one standard deviation.

Having verified the functioning of a single step of the protocol, we now proceed to experimental test of the 
iterative coherence enhancement scheme. At each step, we determine the output density matrix ρA of qubit A 
and use it as an input state of the next step of the protocol, while keeping the state of qubit B (i.e. the angle β ) 
fixed at each step. The suitable coupling strength ω is at each step again determined from Eq. (5), where the angle 
α is chosen according to the theoretical prediction for ideal pure state protocol, depicted in Fig. 2. We prepare 
a mixed polarization state ρA of a single photon by preparing a statistical mixture of the two eigenstates of ρA 
with weights equal to the corresponding eigenvalues. Such preparation allows us to study the noise accumula-
tion effect in the protocol, in contrast to the case of pure state preparation only. We start the iterative protocol 
from a symmetric input, α0 = β . In Fig. 6 we plot the experimental results for two different initial coherences, 
α0 = 15◦ and α0 = 20◦.

The figure displays the coherence and purity of the state after each step of the protocol, together with the 
effective angle α , and the utilized two-qubit coupling strength ω . The angle α was determined from the domi-
nant eigenstate |a1� of ρA and characterizes the coherence of |a1� . Therefore, the angle α does not contain any 
information about the purity of the state, it rather describes the eigenbasis of the output states. We can write 
ρA = (2a1 − 1)|a1��a1| + (1− a1)I , where a1 is the maximum eigenvalue of ρA , I denotes the identity operator, 
and I/2 represents a maximally mixed state. The effective angle α increases at each step and closely follows the 
theoretical prediction, i.e. the dominant eigenstate |a1� of the output state ρA evolves according to the protocol. 
However, simultaneously the noise and imperfections accumulate and the state purity P = Tr[ρ2

A] is reduced 
after each step of the protocol, as shown in Fig. 6c. The loss of purity reduces the coherence of the output state 
ρA and at a certain point, this effect outweighs the gain of coherence induced by the evolution of the dominant 
eigenstate |a1� . Therefore, the coherence of qubit A starts to decrease after some number of iterations of the 
protocol, see Fig. 6b. Specifically, for α0 = 15◦ we observe that the coherence increases up to the 5th step of 
the protocol while for α0 = 20◦ the coherence of qubit A reaches its maximum already at the 3rd step and then 
drops down. The data in Fig. 6 thus illustrate the sensitivity of the quantum coherence manipulation protocol to 
noise and imperfections. Thanks to the very high fidelity of our linear optical partial SWAP gate, we were able 
to observe the improvement of coherence up to 5 iterations of the protocol.
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Figure 5.   Experimental results for a single step of the coherence enhancement protocol with identical input 
states of qubits A and B, α = β . The experimentally determined purity P (a) and coherence C (b) of input 
(orange horizontal dashes) and output (blue circles) state of qubit A are plotted for 6 different input states. The 
solid and dashed lines indicate theoretical predictions (they coincide for the purity P).
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The difference in coherence maxima positions in Fig. 6b is related mainly to the partial SWAP gate imple-
mentation. Computational basis states |01� and |10� are coupled by the partial SWAP gate, and the coupling 
strength ω is determined by the interferometric phase ϕ = 2ω . Therefore, the output populations of |01� and |10� 
are sensitive to ϕ and vulnerable to phase noise. These populations increase as the parameters α and β get closer 
to π/4 , and therefore the protocol becomes more vulnerable to dephasing in this limit. Moreover, the phase 
misalignment breaks the condition |ψ0�A = σx|ψ1�A , which increases the mixedness of the output state. Also 
this effect becomes more pronounced when α and β get closer to π/4 , because then the probabilities of the two 
measurement outcomes on qubit B become more balanced.

Finally, we have experimentally tested the alternative protocol, where the coupling strength ω is fixed and at 
each step of the protocol we adjust the phase of qubit B to enhance the coherence of qubit A. Experimental results 
for this protocol are displayed in Fig. 7. We set ω = π/4 hence we employ the maximally entangling 

√
SWAP 

gate as considered in the preceding theoretical analysis. The left panels show results for α0 = 20◦ , when this 
protocol cannot be iterated to infinity and terminates after second step, because the phase shift (15) that should 
be applied to the control qubit B does not exist anymore. In Fig. 7b we present results for α0 = 30◦ . In this case 
the protocol can be arbitrarily iterated and in theory should converge to a maximally coherent state. In practice, 
we observe that the coherence grows up to the third iteration and then it begins to moderately decrease again 
as the noise accumulates.

Discussion
We have presented and experimentally tested a novel protocol for control and enhancement of quantum coher-
ence under a restricted set of operations that include a local strictly incoherent operations and measurements, 
feed-forward, and a fixed interaction Hamiltonian with a tunable coupling strength. We have observed that the 
quantum coherence of the target system can be remotely deterministically controlled and steered to a maximally 
coherent state within this setting. The considered set of operations is practically motivated, because the strictly 
incoherent operations and measurements are usually easy to implement and also the considered interaction 
Hamiltonian (3) is physically well motivated and available for many experimental systems and platforms such 
as superconducting qubits, trapped ions and neutral atoms22–25.

Figure 6.   Experimental test of iterative coherence enhancement. The effective angle α (a), coherence (b) and 
purity (c) of qubit A and the coupling strength ω (d) are plotted in dependence on the number n of steps of the 
protocol. The results are presented for two different inputs α0 = β = 15◦ (blue) and α0 = β = 20◦ (orange). 
Symbols represent experimental data, solid lines guide the eye, and dashed lines indicate theoretical predictions. 
Data at n = 0 represent the reference input state.

Figure 7.   Experimental results for iterative protocol with a fixed coupling strength ω = π/4 and control 
exercised by phase shifts applied to input qubit B. The coherence, purity and effective angle α of qubit A are 
plotted for two different inputs α0 = β = 20◦ (a) and α0 = β = 30◦ (b). Data at n = 0 represent the reference 
input state. Blue dots are experimental data, black ’+’ marks show the theoretical prediction for comparison. The 
lines are to guide the eye.
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While we have presented the protocol for two-dimensional systems (qubits), extension to higher-dimensional 
systems is possible. Consider interaction Hamiltonian Hjk = ig(|jk��kj| − |kj��jk|) . Following the above protocol 
and utilizing a control system B prepared in superposition of states |j� and |k� one can enhance the quantum 
coherence of target system in a two-dimensional subspace spanned by |j� and |k� . One can then apply a unitary 
permutation operation Uπ =

∑

j |π(j)��j| to the target system to address a different subspace and repeat the whole 
procedure to drive the state of the target system A towards the maximally coherent state. One can also consider 
variants of this protocol, where one can switch on and off couplings of different pairs of quantum levels |j� and 
|k� or even simultaneously switch on several such elementary couplings. A detailed study of these scenarios will 
be the subject of future work.

Methods
Linear optical partial SWAP gate.  The linear optical partial-SWAP gate is schematically illustrated in 
Fig. 8. The gate is formed by a balanced interferometer with an additional balanced beam splitter inserted into 
each of its arms28. The coupling strength ω is controlled by the phase shift between the two interferometer 
arms and is fully tunable. The gate operation is based on two-photon interference at a balanced beam splitter. 
If the input photons are in a symmetric state, they bunch at the first balanced beam splitter and must propagate 
through the upper interferometer arm to reach the designated gate outputs. On the other hand, if the photons 
are initially at the anti-symmetric singlet state, they remain antibunched after interference at BS1 and each pho-
ton propagates in one arm of the interferometer, which imposes the phase shift 2ω between the symmetric and 
antisymmetric states of the two qubits. The gate operates in the coincidence basis and its successful application 
is heralded by coincidence detection of a single photon in each of the two gate output ports indicated in Fig. 8. 
Similarly to other linear optical quantum gates26, the gate is probabilistic and its theoretical success probability is 
1
8 irrespective of the coupling strength ω . In the experiment, we automatically post-select the successful events by 
measuring two-photon coincidences between the two output ports of the gate. Note that this probabilistic nature 
of the linear optical partial SWAP gate does not preclude testing of our deterministic protocol, because it only 
reduces the data acquisition rate, but upon success it realizes the required quantum circuit that could in principle 
be implemented deterministically on other platforms.

The interferometric phase is controlled by a piezo element coupled to a mirror in the interferometer. To set the 
phase, we first block the input beam B and measure the single-photon counts at the outputs of the interferometer. 
A computer program then controls the piezo voltage to reach the desired set point. We have separately tested 
the program and observed the deviation of phase setting lesser than 1.1 degrees RMS. This automatic method 
sometimes fails due to noise and hysteresis. In the experiment, we have always checked whether the adjustment 
procedure succeeded, and in the case of failure, we have repeated the adjustment. Detailed test results are pro-
vided in the Supplemental Material.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. The code used for generation of the presented numerical results and the code used to process the experi-
mental data are available from the corresponding author upon reasonable request.

Received: 30 September 2022; Accepted: 14 December 2022

Figure 8.   Linear optical partial SWAP gate28. A Mach–Zehnder interferometer is formed by two balanced 
beam splitters. Two additional balanced beam splitters are inserted inside the interferometer. The interaction 
strength ω is determined by the relative phase shift between the interferometer arms. Successful gate operation is 
indicated by coincidence detection of a single photon in each of the two output gate ports indicated in the figure.
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