
K̄N Feshbach Resonance in The Skyrme Model
Takashi Ezoe1,2 and Atsushi Hosaka1,2

1Research Center for Nuclear Physics, Osaka University, Ibaraki, 567-0048, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 Japan

E-mail: 1ezoe@rcnp.osaka-u.ac.jp,
2hosaka@rcnp.osaka-u.ac.jp

(Received February 1, 2019)

We study the Λ (1405) resonance as a K̄N Feshbach resonance in the Skyrme model. To describe the
K̄N Feshbach resonance, we combine the Callan-Klebanov’s bound state approach for hyperons and
our modified bound state approach for kaon-nucleon systems. Our numerical result shows that the
width of the Feshbach resonance seems to be narrow.
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1. Introduction

Λ (1405) is considered to be a candidate of the exotic hadrons, whose properties can not be easily
explained by a three-quark state. To determine the properties of Λ (1405) is one of the important
tasks in hadron physics. There are long-standing discussions for the Λ (1405) resonance. According
to Refs [1, 2], it was identified with the K̄N quasi-bound state embedded in the πΣ continuum. In
recent studies of the chiral unitary approach, Λ (1405) is considered to be a resonance of the K̄N and
πΣ channels [3]. However, their detailed structures are under debate.

In the previous works, we have discussed the kaon-nucleon systems and their interactions with a
modified bound state approach in the Skyrme model [4,5], where the order of projection and variation
is different from the Callan-Klebanov’s bound state approach [6, 7]. We have shown there exists one
bound state in K̄N

(
JP = 1/2−, I = 0

)
channel with the binding energy of order ten MeV in the pre-

vious work [4]. In this article, we explain how to describe the Λ (1405) as a K̄N Feshbach resonance
as an extension of our previous study.

2. Method

Let us start with the SU(3) Skyrme Lagrangian [8–10]

L =
1

16
F2
πtr

(
∂µU∂µU†

)
+

1
32e2 tr

[(
∂µU

)
U†, (∂νU) U†

]2
+ LWZ + LS B, (1)

where U is the SU(3)-valued chiral field. In the Lagrangian Eq. (1), the first and second terms are
the normal Skyrme Lagrangians, the third one, LWZ , is the contribution of the chiral anomaly called
Wess-Zumino term [11–13], and the last, LS B, is the explicit symmetry breaking term due to the finite
masses of pseudo-scalar mesons. In this study, we consider the chiral limit for the u and d sectors,
mu = md = 0,ms , 0. There are three model parameters: the pion decay constant Fπ, the Skyrme
parameter e, and the mass of the kaon mK .

In the ordinary SU(3) Skyrme model, the ansatz U is composed of a 3×3 matrix defined by SU(3)
Nambu-Golodstone bosons. However, in this study, we use the following two ansatze to investigate
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Λ (1405) as a K̄N Feshbach resonance,

UCK = A (t)
√

UπUK
√

UπA (t) (2)

and

UEH = A (t)
√

UπA† (t) UK A (t)
√

UπA† (t) , (3)

where A (t) is an SU(2) isospin rotation matrix, Uπ is the hedgehog soliton embedded in an SU(3)
matrix,

Uπ = Uπ (r) =
(
ξ2 (r) 0

0 1

)
, ξ2 (r) = exp [iτ · r̂F (r)] , (4)

and

UK = UK (r, t) = exp
2
√

2i
Fπ

(
0 K

K† 0

) , K = K (r, t) =
(
K+ (r, t)
K0 (r, t)

)
. (5)

The upper ansatz is proposed by Callan and Klebanov to investigate hyperons [6, 7] (CK approach)
and the lower one is introduced in our previous work [4] to describe the kaon-nucleon systems (EH
approach). The difference in the CK and EH approaches is discussed in Ref. [4].

Before moving on to the K̄N Feshbach resonance in the Skyrme model, we consider an effective
Lagrangian method for the decay of Λ (1405). The relevant Lagrangian is given by,

L = gΛ∗πΣψ̄a
Σπ

aψΛ∗ + (h.c.) , (6)

where gΛ∗πΣ is a dimensionless coupling constant for the Λ (1405)-πΣ vertex, a = 1, 2, 3 are the
isospin indices, and (h.c.) stands for the Hermitian conjugate to the first term. Using Eq. (6), the
decay width of the Λ (1405)→ πΣ process is given by,

ΓΛ∗→πΣ = g2
Λ∗πΣ

3
2π

∣∣∣ p⃗∣∣∣ (EΣ + mΣ)

2mΛ∗
, (7)

where masses of particles are denoted by m, the particle energies is denoted by E, and the relative
momentum of π and Σ is denoted by

∣∣∣ p⃗∣∣∣, which are determined by the energy-momentum conserva-
tion.

In this study, we identify the coupling constant with the matrix element of the interaction La-
grangian,

gΛ∗πΣ ≡ ⟨πΣ| Lint |Λ (1405)⟩ = 2
Fπ
⟨π| ∂µπa |0⟩ ⟨Σ| J5,a

µ |Λ (1405)⟩ , (8)

where we employ a current-current type Lagrangian,

Lint =
2

Fπ
∂µπ

aJ5,a
µ . (9)

In Eq. (9), ∂µπa is the one-pion axial current, and J5,a
µ is the baryon axial current. When we evaluate

the matrix element Eq. (8), a nontrivial value is the matrix element of the baryon axial current. To
calculate it, we combine the CK and EH approaches; the initial Λ (1405) is described as a K̄N bound
state in the EH approach while the final Σ is generated as an s-quark and di-quark bound state in the
CK one.
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In the rest of this section, we show how to evaluate the matrix element. First, the axial current
is obtained from the SU(3) Skyrme Lagrangian Eq. (1) as the Noether’s current associated with the
SU(3) axial transformation,

J5,µ,a =
iF2

π

16
tr

[
T a (

Rµ − Lµ
)]
+

i
16e2 tr

[
T a {[

Rν,
[
Rν,Rµ

]] − [
Lν,

[
Lν, Lµ

]]}]
− Nc

48π2 ϵ
µναβtr

[
T a

2

(
LνLαLβ + RνRαRβ

)]
, (10)

where T a (a = 1, 2, · · · 8) are the Gell-Mann matrices,

Rµ = U∂µU†, Lµ = U†∂µU, (11)

and the variable U is given by,

U =
√

UπUK
√

Uπ. (12)

In Eq. (10), the first term derived from the second derivative term, the second from the Skyrme term,
and the last from the Wess-Zumino term in the SU(3) Skyrme Lagrangian Eq. (1).

Next, expanding UK with respect to the kaon field K, we obtain,

J5,µ,a = J5,µ,a,(0) + J5,µ,a,(2) + O
(
K3

)
, (13)

where superscripts (0) and (2) stand for the order of the kaon field. To describe the K̄N Feshbach
resonance, we concentrate on J5,µ,a,(2) which contains two kaon fields, K and K†. We identify K (K†)
with a kaon annihilation (creation) operator to perform a quantization. Here, what is important is that
the kaon is quantized as a physical kaon in our approach [4] while it is quantized as an s-quark in the
CK approach [6, 7] after collective quantization,K → KEH for the EH approach

K → A (t) KCK for the CK approach.
(14)

The relation between fields and operators is summarized in Tab. I. In the following discussion, we

Table I. Identification of creation and annihilation operators for the kaon and s-quark.

Kaon Anti-kaon s-quark s̄-quark
K Annihilation Creation Creation Annihilation
K† Creation Annihilation Annihilation Creation

follow the table. On the other hand, the Hedgehog soliton is collective-quantized by the isospin rota-
tion,

ξ (r)→ A (t) ξA† (t) . (15)

Third, we consider the initial and final states. The former is constructed by combining isospin
1/2 anti-kaon and nucleon to form isospin 0 by using the Clebsch-Gordan coefficients,

|Λ (1405)⟩ = |K̄N⟩ =
√

1
2
|pK−⟩ +

√
1
2
|nK̄0⟩ . (16)
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For the Σ state, it is given by

|Σ (J3 = 1/2)⟩ = |d (J = 1) s (J = 1/2)⟩ =
√

2
3
|d (J3 = 1) s↓⟩ −

√
1
3
|d (J3 = 0) s↑⟩ , (17)

where J is the spin, J3 is the third component of J, and s↓ (s↑) stands for the s-quark with spin
down (up).

Finally, we show the wave functions for the particles. The anti-kaon and s-quark wave functions
are obtained by solving the equations of motion for the bound states and the equations of motion
are shown in Refs. [4, 6], respectively. On the other hand, the nucleon and di-quark wave functions
defined in the SU(2) isospin space and they are anti-symmetric and symmetric, respectively, in the
isospin space [14]. For example, the nucleon wave functions are given by [15],

|p ↑⟩ = 1
π

(a1 + ia2) , |p ↓⟩ = − i
π

(a0 − ia3) (18)

|n ↑⟩ = i
π

(a0 + ia3) , |n ↓⟩ = −1
π

(a1 − ia2) , (19)

where ↑ (↓) stands for the spin up (down).

3. Result

We have numerically calculated the matrix element Eq. (8) and derived the width from Eq. (7).
For numerical calculations, we keep mass of the kaon at 495 MeV and consider several parameter
sets for Fπ and e. Our preliminary numerical calculation shows that the width of the K̄N Feshbach
resonance is found to be narrow around ten MeV depending on the choice of the parameters. Details
will be discussed elsewhere. The result indicates that the Skyrme model can naturally accommodate
Λ (1405) as a Feshbach resonance of K̄N, supporting its molecular like structure.

4. Conclusion

In this article, we show an outline to describe the Λ (1405) as a K̄N Feshbach resonance in the
Skyrme model. To do that, what is essential idea is to combine the CK and EH approach. The former
is used to describe the final Σ as a bound state of an s-quark and di-quark. On the other hand, the
latter is for describing Λ (1405) as the K̄N bound state. As a result, the Λ (1405) resonance is realized
as a narrow resonance. In the future, we will show more detailed discussions for the K̄N Feshbach
resonance in the Skyrme model.
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