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Abstract Even though many scalar field models of dark
energy have been considered in the literature, there is another
interesting class of dark energy models involving a fluid
known as a Chaplygin gas. In addition to describing the
dark energy, both scalar-tensor model and the Chaplygin gas
model are suitable candidates for explaining the spherical
cosmological collapse. One of the most well-known scalar
field models is the quintessence model, which was first intro-
duced to explain an accelerating expanding universe. Using
a special form of the quintessence model that is equivalent to
Chaplygin gas, we describe evolution of a spherical collapse.
We study the cosmological properties of the quintessence
field with a special potential. In addition to the quintessence
model, that can be converted into a Chaplygin gas model
in a particular case, we claim that the fixed-potential tachy-
onic model is equivalent to the Chaplygin gas model. In this
work, we obtain the spherical collapse parameters: the viri-
alized over density parameters, radius, the energy density at
the turnaround moment, etc. We compare the results of the
proposed model with the standard model of cosmology and
the Einstein—de Sitter model. We show that the formation of
the large-scale structures within the framework of a Chaply-
gin gas model happens earlier than predicted in the standard
model.

1 Introduction

Almost decades after the introduction of the Einstein-de sitter
dust model, observations of the redshift in type Ia supernova
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suggested a positive acceleration of the universe [1]. These
results led to the proposal of an unknown exotic matter which
is called dark energy and it satisfies the condition p+3P < 0
where p represents the density of the matter and P denotes
the pressure. There have been many candidates for the dark
energy, the simplest model is based on the cosmological con-
stant which is not dynamic. The cosmological constant faces
two issues, “fine tuning” and “the coincidence problem” [2].
Models of interacting dark energy were introduced to solve
the problem of coincidence. Quintessence [3] and K-essence
[4] models were proposed to solve such issues, these mod-
els are based on either non-minimally or minimally coupled
scalar fields [5,6]. Although these models face the challenge
of fine-tuning, which states that, in terms of mathematical
laws and probabilities, the universe could have been cre-
ated in innumerable different ways. However, our universe
is only a very special case. In recent literature some mod-
els have been investigated in which, in order to solve the
fine tuning problem, it is necessary to consider dark energy
in the initial stage of the universe [1]. Therefore, to explain
the number of structures at present, the contribution of dark
energy cannot be ignored. On the one hand, the process of
structure formation should occur earlier and much slower
than predicted in the standard cosmological model. Addi-
tionally, the analytical calculations show that by considering
some assumptions for the collapse of a homogeneous and
isotropic sphere, one can conclude that the number of struc-
tures formed within the scalar-tensor models is more than
predicted in the ACDM model. Also, numerical analyses
show that the classical spherical model is in good agree-
ment with the simulations [7]. The dynamics of the overden-
sity parameter depend on the evolution of the flux, which
causes the universe to expand. So, dark energy models, such
as scalar-tensor models, can describe the growth of struc-
tures.
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One of the most interesting ideas for the unification of
dark matter and dark energy is the Chaplygin gas model in
which the dark sector of the universe is expressed in terms
of a single component that serves for both dark energy and
dark matter. Chaplygin gas is a perfect fluid that behaves
like a pressureless fluid in the early universe while it causes
the accelerated expansion of the universe at the late time. It
has been shown that the resulting evolution of the universe
is compatible with the observational results [8]. The model
states that the value of the effective cosmological constant is
increasing. The simplest model of the Chaplygin gas satisfies
the following equation of state

P=——, 1)
0
in which A is a constant. In [9], the scenario based on the
dynamics of a generalized D-brane in a space-time (D+1, 1)
is investigated. They stated the conditions for homogene-
ity and demonstrated that the equation of state describes the
evolution of a universe from a matter-dominated phase to
the cosmological constant dominated phase. They wrote the
effective equation of state as follows
A

P = — 2
which is the state equation of the generalized Chaplygin gas
with 0 < a < 1. In [10], the constraints on this model of
cosmic background radiation are discussed. In this paper,
from the results of Archeops for the location of the first peak
and, from the results of BOOMERANG for the location of
the third peak, also, from the supernova, high-redshift obser-
vation, and gravitational lensing statistics [11], it is shown
that this model is completely distinguishable from the stan-
dard model of cosmology. In line with previous works in
[12], the WMAP temperature power spectrum and super-
nova data are compared with the generalized Chaplygin gas
model, and it has been shown that the parameter « is in the
range (0, 0.2) with 95% confidence. The authors have also
shown that the generalized model at state « = 1 was ruled
out as a candidate for dark energy with an accuracy of more
than 99.99%. Furthermore, by examining this model in the
non-flat background, one can see that the non-flat state cor-
responds to a flat case with an accuracy of 68% [13]. In
[14,15] the modified Chaplygin gas model with the equation
of state P = Ap — B/p® in which A and B are constant, is
considered. Assuming that the equation of state for the mod-
ified model of the Chaplygin gas is valid from the radiation
period (A = 1/3, and for very large densities) to the cur-
rent time (small densities), they show that their model can
describe the accelerated expansion of the universe. In [16],
it is shown that the inhomogeneous model of Chaplygin gas
can explain dark matter and dark energy together in a geo-
metric setting reminiscent of M-theory. Since the scalar field

@ Springer

can explain both the holographic dark energy and the Chap-
lygin gas model, the relationship between the (interacting)
holographic dark energy density and the energy density of
the Chaplygin gas model is studied in [17,18].

Models that describe the dark energy issue not only
explain the accelerated expansion of the universe, but they
also play a fundamental role in the formation of cosmolog-
ical structures. The large scale structures we see today are
formed by the small perturbations in the inflationary phase of
the early universe, and under the influence of gravity, these
perturbations grow. In 1972 Gunn and Gott proposed the
spherical collapse model [19], which led them to reach a
simple explanation for the growth of the over dense struc-
tures. To understand the formation of the large scale struc-
tures and the growth of perturbations in a matter-dominated
universe within the spherical collapse model, one can con-
sider a spherical region with a radius that expands in time
and with a non-uniform density. According to Birkhoff’s the-
orem [20], the evolution of this radius depends only on the
limited mass within the region. With the expansion of the
cosmic background, this perturbed region begins to expand,
and its radius reaches a maximum value. However, after a
while, depending on its mass and due to its high density, it
decouples from the Hubble background and starts evolving
in a reverse process that decreases the radius or collapse in
the non-linear region. Note that the collapse of this region
does not proceed to a singular point. According to the virial
theorem, the collapse of these perturbations ceases at half
of the maximum radius, which leads to the formation of the
structure. The spherical symmetry makes the problem easier
to solve. Therefore, the spherical collapse model is a suitable
model for understanding the evolution of the perturbations.
Additionally, this model is successful in reproducing the sim-
ulation results [7,21-23].

The studies and progresses mentioned in scalar-tensor the-
ories were within the framework of Einstein’s standard the-
ory of general relativity. In 2004, Motta and Brock inves-
tigated the minimally coupled quintessence model under
different potentials [24] and they concluded, in models
with the assumption of non-minimal coupling of the scalar
field, the evolution of the spherical overdensity parameter
is quite different from the minimally coupled model. The
non-linear evolution of structures within the framework of
non-minimally coupled quintessence models was studied by
Pace et al [7]. They conclude that the value of the virial
overdensity and the linear density threshold for the spheri-
cal collapse are very close to the predictions of the standard
cosmological model. Note that these two parameters play an
essential role in the spherical collapse model. In the paper
by Fan et al. [25], the non-minimally coupled model in the
metric and Palatini formalisms is studied. It is shown that
metric and Palatini formalisms lead to different results for
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linear growth rates. However, this difference is so small, and
it is not observable now.

Therefore, in this paper we study the non-linear evolu-
tion of structures in the framework of the spherical collapse
model using the Chaplygin gas model. Section 2 presents
an introduction to the quintessence model, and shows that
by choosing an appropriate potential for the quintessence,
one obtains the equation of state of the Chaplygin gas. In
sect 3, this article studies the non-linear evolution of struc-
tures and shows that the quintessence model, in a special
form, is equivalent to the Chaplygin gas model and plays an
effective role in the spherical collapse model. We also dis-
cusse that the results of this model are the possibility for the
formation of the structures in this framework occurs sooner
than the cosmological standard model. Section 4 discusses
that the tachyon field under a constant potential is equivalent
to the Chaplygin gas model and examines the parameters
of the spherical collapse model within this framework. Also,
we show that the formation of structures under the Chaplygin
gas model happens faster than what the standard cosmolog-
ical model predicts. Section 5 contains a conclusion to this
article.

2 Quintessence filed as a Chaplygin gas

In 1988, Ratra and Peebles [26] proposed a scenario in
which one can use a scalar field which is universal, rolling,
self-interacting, and homogeneous to describe the dynamical
energy density of the universe. Models based on this scenario
are known as quintessence. Also, the quintessence fields are
one of the best candidates for the scalar field to explain the
formation of the large scale structures in the universe. Fol-
lowing Ratra and Peebles, quintessence fields were studied
more by Robert R. Caldwel, Duhal Dave and Paul Steinhardt
[27]. Some people even considered it as the fifth fundamental
force of nature. The action for the quintessence field can be
written as

1
S = /d4x\/—_g|: - zg’wamavqﬁ - V(¢)} 3

where V (¢) is the scalar field potential. We assume that
the field is only a function of time ¢ = ¢ (z). We use the
FLRW metric to describe the expanding universe, so we have
J/—g = a(t)? where a(t) is the scale factor. Then the point-
like Lagrangian of this field becomes

1.
L= a3[§¢2 - V(¢>)]. 4)

One can easily write the equation of motion as

é+3Hd+V'(p)=0. 5)
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Fig. 1 The behavior of EoS parameter w(z) versus the redshift for
the AC DM, quintessence and non-minimally coupled tachyon models
(NMCT)

If we choose the potential in this model as follows

V(p) = @ (eosh(ﬁm) + (6)

1
cosh(v/3k¢) )
one can conclude that the scalar quintessence model is equiv-
alent to the Chaplygin gas model (Appendix A). For the
aforementioned potential, A and « are constants. Many obser-
vations place constraints on the model parameters, x and A
should approximately take the values k ~ 0.06, 0.28< A
<0.550. The energy density and the pressure are obtained as

1.
Py = 5¢>2 + V(9), (7

1.
Py = §¢2 ~ V(). 8)

One can use the expressions in (7) and (8) to find the equation
of state parameter (EoS) as
P2
N () o
Py P> +2V()

In the slow-roll approximation ¢> << V(¢), we have
P ~ —p. In Fig.1, we draw a graph of the EoS parame-
ter for the quintessence verse the redshift, and we compare it
with the results of the AC DM and non-minimally coupled
tachyon models (NMCT). As we see from the figure, w is
a constant (w = —1) for the AC DM model. However, for
the quintessence and the NMCT models, at high redshifts the
value of w is slightly different from the standard model, while
atlow redshifts, it takes a value which completely agrees with
the standard model. One can use the components of the stress
tensor to find energy densities of the field and matter as

Py

Q= —h—, (10)
3M2 H?
P
Q= — 11
" 3M2 H? (n

@ Springer
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Fig. 2 The energy density versus the redshift for the ACDM,
quintessence and NMCT models

where H and M), are Hubble parameter and Planck mass
respectively. The energy densities of the scalar field and mat-
ter are give by

pp = ppoa T2 (12)
Pm = Pmoa >, (13)
which leads to the continuity equations

0 +3Hpy(1 + £24) =0, (14)
Pm +3Hpy = 0. (15)

By taking the time derivative of Eq. (10), we find the varia-
tions in the field density as

: H
24 = —.Q¢H|:3(1 + wy) + 2ﬁi|, (16)
where

H
ZE = =3(1 + wy$2yp). a7
Using the following change of variable

=—(1+2 d (18)

d(na) Yz

one can write the change of field density with respect to the
redshift

p_ (U427 —2V(9) .
Q‘P = 3.Q¢(.Q¢ 1) ((1 +Z)2¢/2 —|—2V(¢)> 1+~
(19)

Note that prime denotes the derivative with respect to z. The
value of 24 approaches to zero for the large redshifts (early
times), while from the observations we know that the value
of this parameter for small z (present time) approximately
equals to 0.7. From Fig. 2, one can see that the value of
£24 in the quintessence model is very close to the prediction
of the standard model of cosmology. Now, using the above

@ Springer

Fig. 3 The variations of the dimensionless Hubble parameter with
respect to the redshift for the quintessence, minimally-coupled tachyon
and the standard cosmological models

equations, we find the relation between the Hubble parameter
and the energy density of the scalar field as follows

_3E@

E'(z) 21y z(] + wp$24), (20)

where

E(z) = E, (21)
Hy

in which Hy is the Hubble parameter at the present time (In
Fig. 3, the dimensionless Hubble parameter E(z) is plotted
for different models in terms of the redshift.). One can see
that for z = 0, we have E(0) = 1. Formation of large scale
cosmological structures such as super clusters is one of the
main questions in cosmology and astrophysics.

Probably some factors such as inhomogeneous distribu-
tion of matter are responsible for the growth of the per-
turbations in the early universe that caused the formation
of the cosmological structures during the period of matter-
dominant. To understand the perturbations growth in the
matter-dominant epoch which formed the structures that we
have today, we consider a slice of the expanding universe
with a radius of R and non-uniform density p = p(1 + §) (
where § denotes overdensity parameter in a matter-dominant
universe). Thus, the linear evolution of overdensity parame-
ter (Appendix B) can be written as
3 w> 8/( 3 £ mo

8" (a) + (— + 77, 0(a) =0.

a ' E) " 245E2(a) 22)

Here, we assume that the collapse is spherical and homoge-
neous. We also ignore the effects of rotation and shear. Evi-
dently, a better approximation for the spherical collapse can
be obtained if one considers an angular momentum. How-
ever, note that we do not see shear effect for a sphere, and the
shear tensor equals to zero. Nevertheless, we write an equa-
tion of evolution of overdensity parameter in a non-linear



Page 50f 11 391

Eur. Phys. J. C (2020) 80:391
| =- Quintessence ’// .
L - -7
R -
157 ACDM Pgitae
L R ’/’
——  NmeT Pestas
= 10 ol
- ”
o
27
0.5- P
[ /"
[ ~
0.0 j/.‘ | L L P |
0.0 0.1 0.2 0.3 0.4 0.5

a

Fig. 4 The the linear evolution of overdensity parameter §; vs the scale
factor for the AC DM, quintessence and NMCT models
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Fig. 5 The non-linear evolution of overdensity parameter 8,; versus
the scale factor for the AC DM, quintessence and NMCT models

regime as
5" (a) + (3 + E/(“)>5/( yod b sy
a4 e Ew )Y T3040
§ﬂ(l 8)8(a) =0 (23)
B 2 a’E(a)? + @=0

In the equations mentioned above, §, E, and a denote den-
sity contrast, dimensionless Hubble parameter, and the scale
factor; respectively. From WMAP and Planck’s observations
we approximately have £2,, = 0.3. We numerically solve
the non-linear growth equations of the perturbations. We
imposed the initial conditions in a way to have the growth
of non-linear perturbations larger than 10. Note that these
initial conditions are necessary for the formation of the large
scale structures. In Figs. 4 and 5, we plot linear and non-
linear density contrast versus the scale factor and compare the
results of the quintessence model with AC DM and coupled
tachyon model. Therefore, the results of the quintessence
model are similar to the standard cosmological model.

3 Spherical collapse via quintessence field

In this section, our goal is to understand how the pertur-
bations in the universe grow within the framework of the
quintessence model and form a dense structure. The intended
area expands within an expanding background up to a max-
imum radius R,,,. Then the expansion of the perturbed
region stops, and the process of collapse continues. However,
itis important to note that the intended area does not collapse
to a singular point, and the expanding process ends at half
of the maximum radius, which is called virialized radius.
Hence, it is essential to realize that the intended area does
not collapse to a singular point, and in half of the maximum
radius, it is virialized, making the collapse to stop [28,29].
To find the growth of the perturbations, we numerically solve
the Eq. (22). As mentioned before, solving this equation is
very sensitive to the choice of the initial conditions. Thus, to
solve the equation and find the correct value for the linear
overdensity parameter 6.. The value of this parameter in the
Eds model is constant and equals to 1.68 [7]. However, one
can see from Fig. 6 that overdensity parameter changes with
the redshift, and eventually, both models share the value of the
Eds model. To determine the virialized overdensity parame-
ter, let us consider the sphere with density in the background
of pp as defined below

(24)

in which R is the radius of the structure, a. denotes the virial-
ized scale factor and p is the density of the structure. Equation
(24) can be rewritten as

Xe\3
Ay =1+5@) =5 (). 25)
where x. is defined as a./a;4. a. and a;, denote the scale
factor in the virialization and the turn-around epochs; respec-
tively. In the Eq. (25), A and & present the radius of structures
and perturbations in the turn-around time. In the Eds model,
The value of Ay is constant and equals to 178. However, in
the other two models, it varies with the redshift. But for the
large redshifts, Ay has the same value as the Eds model. In
Fig. 6, we plot the virialized overdensity parameter versus
z¢ for the quintessence, AC DM, NMCT, and Eds models.
Virialized overdensity is a constant for the Eds model, and
it equals to 178. However, for the other models, it varies
with the redshift. For the quintessence model and the stan-
dard model, the value of this parameter is approximately the
same. But in the tachyonic model, the slope of the graph
approaches the Eds model slightly faster, which means that
the perturbations in the tachyonic model turn to virialized
overdensity faster. Thus, the possibility for the formation of
the structures in this model occurs sooner than the other two
models.

@ Springer
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Fig. 6 The evolution of virialized overdensity parameter Ay versus z.
for the AC DM, quintessence, NMCT and Eds models
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Fig. 7 The behavior of X versus z. for the AC DM, quintessence, Eds
and NMCT models

As we mentioned earlier, the growth of the perturbations
during the collapse phase is virilized at half of the maximum
radius, and so the structures can be formed. At the turnaround
moment, we plot the radius of the cosmological structures A
for the four models, as shown in Fig. 7. One can see that A
takes its maximum value for the Eds model, which is 0.5.
However, in the other models, the value of A depends on the
redshift and for higher redshifts, it tends to the Eds values.

The & parameter that appears in Eq. (25) is as follows

_ P (Rta)
Pb

It can be seen from Fig. 8 that the parameter & for the Eds
model is a constant and equal to 5.6. But, for the other mod-
els, it varies with respect to virialized redshift, and for large
redshifts takes a value which is close to what it has in the
Eds model. But the coupled tachyonic model tends to the
Eds model with a steeper slope, which means that within
the framework of the tachyonic model, during virialization,
the structures take the return path faster than other models.
Therefore, it can be concluded that in this model the struc-
tures are formed faster than the other models.

§ =14 8(ara). (26)
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Fig. 8 The behavior of & versus z. for the AC DM, quintessence, Eds
and NMCT models

4 Tachyon field with a constant potential

Let us assume that the Chaplygin gas acts as a tachyon field,
so its Lagrangian becomes

L=—-V($)n/l-—a¢2 27)

The potential in this model is a constant and equals to Vj.
Using the Euler-Lagrange method, one can obtain the equa-
tion of motion as

b ) 1 av
L S S L CO N (28)
1 —¢? Vip) dé¢
Using the energy-momentum tensor, we find the energy den-
sity and pressure for the tachyon field

Vv
T} = Py ==V (@)1 - ¢ (30)

The EoS parameter corresponding to the tachyon field is

— @1 (31)

Wy = —
? P

So, the energy density of the tachyon and matter field are as
follows

—3(14wyp)

Pp = Pp0a and oy = pmoa >, (32)

with the continuity equations

Py + 3Hpg (1 + wg) =0, (33)
and
om +3Hpy =0. (34

We know that the tachyon energy density is

R¢ = —24H[3(1 + wp) + 2%]. (35)
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Using the Friedman and the continuity equations, we find the
expression for

H 3

—=—=( £24). 36
I 2( + wy2¢) (36)
Using the change of variable ﬁ = —(1+ Z)dd—z , the
Eq. (35) can be rewritten as

2}y = —32p04(2¢p — DL +2)7", (37)

where prime represents the derivative with respect to z.
According to the Planck’s recent results, this parameter is
approximately 0.7, but tends to zero for the very large red-
shifts [7]. As discussed in the previous section, the spherical
collapse model for a fixed-potential tachyonic model (FPTM)
which is equivalent to a Chaplygin gas can be studied. In
Fig. 9, the EoS parameter w is plotted for both the FPTM and
the AC DM models. One can see that, for the small redshifts,
the value of wg approaches to —1. In Fig. 10, the behaviour
of energy density of the FPTM is compared with the stan-
dard model of cosmology. The plot shows that the variation
of §2(z) for the different redshifts is similar for both of the
models.

The Hubble dimensionless parameter E(z) is plotted in
Fig. 11. This graph shows the compatibility of the fixed-
potential tachyon model with the standard cosmological
model. We solve Egs. (22) and (23) for the FPTM and
obtained the growth of linear and non-linear tachyonic per-
turbations. In Figs. 12 and 13, we plot the growth of linear
and non-linear perturbations in terms of a function of the
scale factor. Then to describe the spherical collapse model
in the framework of the fixed-potential tachyonic model, we
need to solve Egs. (25) and (26) for the FPTM state. We
numerically solved these equations and plot the evolution
of virialized overdensity Ay, linear overdensity §., radius
of the structure A and & parameters in Figs. 14, 15, 16 and
17; respectively. These graphs show that in the tachyonic
model, the §. and & curves tend to Eds model faster than the
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Fig. 9 The behaviour of Eos parameter w versus z for the AC DM and
FPTM models
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Fig. 10 The variation of energy density parameter £2(z) versus z for
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Fig. 11 The variation of the Hubble dimensionless parameter E(z)
versus z for the AC DM and FPTM models
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Fig. 12 The behaviour of the non-linear tachyonic perturbations &,
versus a for the AC DM and FPTM models

quintessence and standard models. Therefore, we conclude
that within the framework of the tachyon model, the pertur-

@ Springer



391 Page8of 11

Eur. Phys. J. C (2020) 80:391

0
\
LY

[ >
05" P

0.0 0.1 0.2 0.3 0.4 0.5
a

Fig. 13 The behaviour of the linear tachyonic perturbations §; versus
a for the ACDM and FPTM models

300¢ \\ - - —FPTM ]
280 \ SNMCT |
---ACDM ]
260 ]
—Eds
3 2401 s 1
N ]
220 M ]
~\.\\
200 e

80 —_— S

0.0 0.5 1.0 1.5 2.0
Ze

Fig. 14 The evolution of virialized overdensity parameter Ay versus
z¢ for the ACDM, FPTM, NMCT and Eds models

1.688
1.686 e -,,,.-———-'ﬂ‘—"
R
1.684 - < 1
o ,0"/1/
© 1.682- oS
'.'// - - -FPTM
1680 4 ----NMCT
o - --ACDM
L o/
1.678 Y Eus
0.0 0.5 1.0 15 2.0
Zc

Fig. 15 The behaviour of the linear overdensity parameter §. versus
z for the ACDM, FPTM, NMCT and Eds models

bations are virialized faster, and the structures are formed
earlier.
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5 Conclusion

In this paper, we used the Chaplygin gas model to describe
the spherical collapse of the large-scale structures. We
solved the quintessence model with potential V(¢) =
ﬂ(cosh2(\/§¢) +1)/Q2 cosh(\/g¢)). Numerical analysis
of this model showed that for 0.28 < A < 0.55, our
model agrees with the current observational results. Then,
we obtained the equation of state parameter for this model.
As we expected, the EoS parameter of our model changed
over time, and in the case of small redshifts, the standard cos-
mological model was favored. Also, using the parameter of
the equation of state and the continuity equation, we obtained
the evolution of the Hubble dimensionless parameter and the
energy density of the scalar field. The results showed that
within the framework of the Chaplygin gas model, during
virialization, the structures take the return path faster than
other models. Therefore, it can be concluded that in this
model, the structures are formed faster than the other mod-
els. Then, using the numerical solution of the differential
equations of growth of non-linear and linear perturbation, we
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investigated the structure formation parameters. In studying
the structure formation of the spherical collapse model, we
obtained parameters such as structure radius, virialized over-
density Ay and & parameters. By considering the Chaplygin
gas as an ordinary tachyonic scalar field, ¢, one can obtain
a corresponding potential for it. Finally, we considered the
fixed-potential tachyon model as another candidate for the
Chaplygin gas and calculated all the parameters of the spher-
ical collapse for it. During virialization, the results confirmed
that in the framework of the fixed potential tachyonic model,
the structures take the return path faster than other models.
Therefore, it can be concluded that in this model, the struc-
tures are formed faster than the other models. Therefore, we
conclude that the Chaplygin gas model can properly explain
the spherical collapse of the large-scale structures.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]
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6 Appendix A: Quintessence and tachyon equivalence
to the Chaplygin gas

The simplest form of the equation of state for the Chaplygin
gas is

A
pP=-=, (38)
P

where A is a positive constant. Equation (38) is a particu-
lar form for the tachyon’s equation of state with a constant
potential. The general form of the equation of state for the
tachyonic model is

2
po V@ 39)

0

where ¢ denotes the tachyonic field. In Eq. (39), one can treat
the potential as a constant, and find the EoS for the Chaplygin
gas. Now, using Eq. (38) and the continuity equation p +

3(a/a)(p + P) =0, we find

B
p=Ja+ L (40)

a
where A and B are positive constants and a is the scale factor.
One can see that for a << (B/A)!/, the energy density p
will be in the order of ~ +/B/a> and when a is much larger
than (B/A)1/6, p tends to —P =~ «/Z Thus, one can con-
clude that in the past, when the scale factor was smaller, the
Chaplygin gas can be considered as a pressureless matter.
As we get closer to the present time, the scale factor grows,
and the density of the Chaplygin gas becomes the same as
the density of cosmological constant. Therefore, this fluid
can be the source of undergoing accelerated expansion at the
current time. Now, we will show that by choosing a partic-
ular potential in the quintessence model [30], we obtain the
equation of state of the Chaplygin gas. In the quintessence
model, the energy density of the scalar field and its pressure
are written as p = @2/2 4+ V(¢) and P = <132/2 — V().
Using these equations, we find

4‘}2 =P+ p, 41
V(g)=(p—P)/2. (42)
Using Eqgs. (38) and (40) we have:
‘5 B

T 45JAT Bjad

1 A
V(p) = =[a®/A+ Bja® + ————]. 44
@) = 31’y A+ Blab 4+ et (“44)

(43)

Applying the change of variable % = —aH % and using

H? = (871G /3)p, Eq. (43) becomes
k dp VB
V3da A5+ B’

where k equals to /87 G. Integrating the above equation, we
obtain

(45)

4Be2*/§"¢
a®=— (46)
Al — 62«/§K¢)2

substituting Eq. (46) into Eq. (44), we find the proper form
of the potential function as follows

V(p) = @ (cosh(ﬁxqs) + (47)

1
COSh(\/§K¢) )

7 Appendix B: The evolution of overdensity parameter

To investigate the cosmic fluid, we use the continuity, Euler,
and Poisson equations, which describe the dynamic of the

@ Springer
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fluid. These equations are

ap

o V(o) + pVrv =0, (48)
0 V) + V¢+V’P+”5 0 (49)
— 4+ v.V,.(v — =0,

ot ' PYr o+ P

V2¢p =4nG(p + 3P), (50)
and

p+3H(P +p) =0, (51

where v is velocity, and ¢ is gravitational potential. The phys-
ical coordinate r that is related to the comoving coordinate
X via r = ax in which a is the scale factor. Since it is not
possible to find a general solution to the non-linear equa-
tions, we write the quantities such as density, pressure, and
gravitational potential as two parts of the background field
and the perturbations around it. Writing these quantities in
the comoving coordinates, the energy density, the equation
of state, velocity, and the gravitational potential take the fol-
lowing forms

o(x,1) = p[l +8(x,1)], (52)
P = wp(x,1), (53)
v(x,t) = alH(a)x +u(x, )], 54)
and

D = Dy(x, 1) +P(x,1). (55)

Using the quantities defined above, the equations of the
dynamics of the fluid can be written as

§4+ (1 +w)(148)Vyu =0, (56)
9 1

M OHu+ WV u+ —Vyp =0, (57)
ot a?

and

V2 —47G(1 + 3w)a’ps = 0. (58)

Taking the divergence from (57), we have
1
V. (u.V)u] = 502 +0% — w?, (59)

where 6 = Vy.u. Also, the stress tensor o;; and the rotational
tensor w;; are defined as

C_Lfowl oty 1 60

% =3 o Tt ) T30 ©0)
1 (ou/  3u'

=5 (a_ - a_> ’ D

which can be used to define w? = w;j»"/ and 02 = o;;0.
Now if we take derivative from Eq. (56) with respect to time

@ Springer

and use Egs. (56, 57, 58 and 59) , we obtain the following
equation for the evolution of the spherical overdensity
4430 §

S+(2H—L>S———
l4+w 31 +w) 148
—47Gp(1 + o)1 +3w)8(1 +8)

—(1+w)(1+8)(C>—w’) =0.

(62)

Using the change of variable % =—a % , werewrite Eq. (62)
as follows

S/I(a) + <§ _I_ E/(a) — L’) 8/(61)
a E(a) 14+ w
4430 8 ()

30+ 14w 1+ (63)

3 2,
> @+ @1 +30)5@ +5(@)

— 1+ o)1+ 8))(0? — o> =0,
aH2@) ( )( (a)( )

where E (a) = H/Hy and wy,( denotes the density parameter
of matter in present. In the spherical collapse model, we can
ignore the stress and rotational tensors. Also, we assume the
matter is pressureless. So for the nonlinear regime, we obtain

5 3+E/(a) g_4( 1 )5’2
a E(a)) 3\1+5s

3( 2y
- = §(1+6)=0.
2(a5E2> (1+8)

(64)

For the linear regime, the equation for the evolution of the
spherical overdensity becomes

E’ 2
5”~|—<E+ﬂ)5/—§< mo

« T Ew > m>5=0' ©5)
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