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The transverse dynamics of high-energy electrons confined in curved geometry are examined,
including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-
charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic
fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the
horizontal tune and chromaticity by another, often overlooked term in the equations of motion. The
additional term is the consequence of oscillations of the kinetic energy, which accompany betatron
oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the
amplitude of the radial oscillation. A highly simplified system model is employed so that physical
effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static
fields, and ultrarelativistic particle velocity (1/y>— 0).

1. INTRODUCTION

At high energies it is well known that beam-induced transverse electric and
magnetic fields of a long beam bunch cancel to order 1/y* provided the beam
pipe is straight and smooth:

21
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where A is the line charge density, a is the scale beam radius, and subscript b

denotes beam-induced components of fields. In curved geometry this relativistic
cancellation is incomplete, with resultant order of magnitude’
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where R, is the radius of curvature of the design orbit. This residual force has
been termed® the centrifugal space-charge force (CSCF) in recent work and was
identified during 1985 as a serious concern for its effect on dynamics in electron
storage rings. The CSCF was the subject of considerable theoretical study at that
time,'™® with effort concentrated primarily on calculation of the force in various

t This work was supported by the Office of Energy Research, Office of Basic Energy Sciences, U.S.
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simplified geometries. Phenomena associated with CSCF include® a shift in design
energy for given bend field, shift in horizontal tune, nonlinear resonances,” and a
significant contribution to chromaticity.

A vital point that was overlooked in the recent development of the CSCF is the
existence of a second space-charge/curvature effect in the particle dynamics. A
particle undergoing betatron oscillations has simultaneous oscillations of its
kinetic energy due to its motion through the beam’s electric potential. In curved
geometry the kinetic-energy oscillation results in a first-order dynamical term in
the horizontal equation of motion, which shifts the betatron frequency. For a
highly relativistic beam this additional term nearly cancels a term proportional to
the gradient of the CSCF. Specifically, in addition to the expected CSCF gradient
term of form

3 A
—— B ~ -
or (E, +B.)s O(Roa)’

there is a term E,/r produced by the energy oscillation that produces the

cancellation
(Er+%+a_f&) ~o<i>.
r or ar/, R2
With this cancellation taken into account, the redisual effect is on the order of
107°-107° smaller than that of the CSCF gradient alone for typical storage-ring
parameters. This cancellation is clearly critical for a proper evaluation of
space-charge effects on dynamics.

It should not be assumed that the CSCF never has a significant effect on tune
and chromaticity. These quantities can, in some situations, be shifted from their
low-current values because the relation between total energy and equilibrium
orbit is altered by the CSCF. This feature, which is also briefly treated here,
differs qualitatively from the direct dynamical role of the CSCF gradient that is
the main concern of this work.

Kinetic-energy oscillations were taken into account in some older work
(1965-70) with application to the electron-ring approach to collective acceleration
of ions.”® Unfortunately, much of the literature associated with that effort
appears in reports not generally available. Correct expressions for tunes of an
intense stored beam were derived at that time, but the cancellation of
space-charge/curvature effects at high energy was not emphasized.

The purpose of the present paper is to derive the space-charge/curvature terms
for the simplest model systems and demonstrate their cancellation. Therefore, an
azimuthally symmetric ring (weak external focusing only) is assumed. The
particles are ultrarelativistic, so effects of order 1/y? are dropped. The subject has
been controversial, and to avoid introducing further confusion a relatively large
number of elementary steps is included in the derivations. Section 2 contains
details of the model. Section 3 presents the expression for the equilibrium orbit
and Section 4 contains a derivation of horizontal and vertical tunes. A detailed
calculation of fields and their gradients is made in Section 5, and the cancellation
of space-charge/curvature effects is demonstrated. A summary of elementary
consequences of the CSCF is given in Section 6.
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2. SYSTEM SPECIFICATION

To evaluate the space-charge/curvature effects in a simple, unambiguous manner,
we consider a weak-focusing system with all fields constant in time and having
azimuthal and median plane symmetry. A cylindrical coordinate system (r, 0, z)
is employed, with electrons (charge = — e) circulating in the positive 6 direction.
The kinetic energy is assumed to be large enough so that terms proportional to
1/y* can be neglected (P = ymc). Then the equations of motion for a single
electron are

) 0
v+ y(F—r0) = —< (E, +'—Bz), 1)
m C
0
m C
. e . )
y=——(E, +ZE)), 3)
mc
PP+ 20 + 2= c2 4)

An externally imposed magnetic field is specified with median plane value
B.(r)é,. In addition to this field, which is treated separately, there are the
beam-induced electric and magnetic fields, whose respective sources are the beam
charge and current densities and which are influenced by the beam pipe geometry
(shielding). Because of the assumed symmetries, the beam-induced fields can be
derived from scalar and vector potentials whose nonzero components satisfy

156 3¢ &¢
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where the beam’s charge density is p. Gaussian units are employed. The electric
and magnetic fields induced by the beam are given by the usual relations, i.e.,

E, = —0¢/dr, B, = — 3Ae/3z, etc. For the present calculation we neglect the
nonlinear effect on current resulting from betatron oscillations and, therefore,
have

Jo = pc, @)

the modification of J, being second order in the mean betatron oscillation
amplitudes. Both ¢ and A, are taken to vanish on the conducting beam-pipe
boundary; that is, the fully shielded case is treated when a pipe is present. Some
previous calculations have treated an unshielded charge ring; this is also treated
here in Section 5.

3. EQUILIBRIUM ORBIT

The total particle energy
E =ymc*—e¢ (8)
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is conserved. From Eq. (1) the circular median plane orbit associated with energy
E has radius R satisfying

ymc* = Re(E, + B,), 9

where the fields are the sum of external and beam-induced components. We
define the CSCF with an overall minus sign to agree with the conventions of other
authors:
F= —(E, + B,),. (10)
Then, since
E,+B,=B, —F

we have the equilibrium relation

y(R)mc* = Re[B.(R) — F(R)]. (11)
Here B.(R) and F(R) are the median plane values of B,, and F at R. It will
be shown in Section 5 that in a good approximation, F= — ¢/r, which is

positive. Hence for given R the value of y is reduced somewhat from the
low-current relation (y =eRB,/mc?), and we have the approximate relation
E =eRB,(R), which includes the effect of the beam-induced fields. Note that the
circular radius R is not in general equal to the design orbit radius (R,) since we
are considering a beam with a spread of energies around the design energy E,. In
fact, R, may be set arbitrarily, although it is usually convenient to define it to be
the beam center.

4. BETATRON FREQUENCIES

Every electron is characterized by an equilibrium radius R(E) for a circular orbit
in the median plane and may undergo small-amplitude (betatron) oscillations in r
and z around that orbit. The particle variables satisfy the linearized equations of
motion derived from Egs. (1)-(4). We define

r=R+ 6r, (12a)
y=7v(R) + by, (12b)
z =90z, (12¢)
B,=B,(R) (12d)
B, = aB (12e)
E,=E,(R) (12f)
E,= aE (12g)
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The time-averaged values of the small-amplitude quantities vanish in linear
(first-order) theory. Note also that r6 is constant ( =c) through this order. The
linearized equations of motion are

c? « 2 e (OE, 8B
~Zoy+ y(R)(ar Yo 6r> --2 ( R ) or, (13)
3E, 4B,
s = - LG5, 9
87 = —— E,(R)F, (15)
mc
% r + RSO = (r) = 0. (16)

The feature that is different from the usual in this system is the retention of the
first term on the left-hand side of Eq. (13) (= — ¢?6y/R). It is found to nearly
cancel the portion of the right-hand side of Eq. (13), which is induced by the
beam. As mentioned, some previous work includes this term, but it is overlooked
in the recent analyses.

To obtain the betatron frequencies we first integrate Eq. (15) in time to obtain

e
0y=—-——E or.
v=——SE(R)or (a7

This expression is used to eliminate dy from Eq. (13), giving

« ¢2 e (E, 3E, OB
6 = [— Rt — (——’ r ——Z> ] .
r By + 5 + Fy or (18)

Expressions for the betatron frequencies (w,, w,) for a particle with equilibrium
radius R follow immediately from Eqs. (14) and (18):

¢* e (E, OE, aB
“r=R ym ( e e (19)
, e (aE, 83,)
=— =, 20
® 9z 8z /x (20)
with all quantities evaluated at (z =0, r = R). The corresponding tunes are
(Qr: Qz) - (wr’ wz) (21)

It is convenient to define here a quantity dG/3r, analogous to F, that contains
both of the beam-induced terms in Eq. (19):

oG 10 oB
e (forE+ZE) .
b

or r ar or (22)
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Then we have from Egs. (19) and (21)

) eR? [dB .(R) dG(R)]
=1+
Q=1 y(R)ymc*L dR dR 23)
It follows from Eq. (7) (and Maxwell’s equations) that
9E, 9B, 10 9B, 19)
+ = -=)=0.
( oz oz ) (r or or ),, 4Jt(p c 0 (24)
Using Egs. (20)-(24) we get
2
2___€R [dBe(R) 3 dG(R)]
Q: y(R)mc*L dR dr 1’ (25)

and the usual vacuum relation for tunes in a weak-focusing machine is recovered
despite the presence of space charge:

QX+ Q2=1.0. (26)

An evaluation of Q, that neglects the term ( — c* §y/R) in Eq. (13) leads to an
incorrect version of Eq. (23) in which dG/dR is replaced by dF/dR.

5. CALCULATION OF FIELDS

5.1. Case 1: Infinite Vertical Annulus

Consider first the unphysical case of beam charge distributed between radii R,
and R, but extending uniformly and without limit in the vertical (z) direction,
ie.,

p=p(r) R, <r<R,. (27)

The fields are also functions of r only, and the external magnetic field has the
constant value B,. It follows immediately from Eqs. (5)-(7) that

_9G_ (19 oB, 19 84) 190 ( Jo )
J— + —_— = —_— —_—— = —_—— =
or <r or 7E, or )b ror + orror rAo =4m\p 0, (28)
and Eq. (23) gives
Q?=1.0. 29)

The beam-induced modifications of tune cancel exactly in this special case, and
chromaticity (§ = PdQ,/dP = ydQ,/dy) also vanishes.
5.2. Case 2: Unshielded Ring of Charge of Vanishing Height and Thickness

This case has been examined by several authors;*”® we set

p(r, 2) = A 6(r — Ry) 8(z2). (30)
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It is of interest to evaluate fields in the median plane at values of r near R,. The
scalar potential is readily evaluated using complete elliptic integrals:

_ (@ PO _ \[E
6= f @r L= RK ), (31)

where K (k) is an elliptic integral of the first kind,” and

4rR,
“NerRy T2 2

Similarly, the vector potential is

A= [ arp B0 00 € (33)

|r—x'|

_(%~1)¢—4A\/§E—g‘l (34)

where E(k) is an elliptic integral of the second kind.° Defining the variable
x =r — R, and making expansions in the small quantity

x _r-— R,
<1, 35
R R, (35)

we obtain beam-induced fields in the median plane, just outside of the charge
ring:

7 w 5 w
o n 2]y ) S|
o= n 3 16w +21 3 16wln 3 + s (36)
w 3 21 w w 9 w
e ()2 BB () () o ]
e=2 n 3 2w 16w +2ln 3 16wln 3 + (37)
2A 19 1 w Sw w
oLttt () ()
. Ro[ 1+ 16w 21 3 +81n 3 + , (38)
p  Z[L 2L S, n ] o
o  R:lw® 16 2w 8 \8 ’ (39)
B —Q———1~+iw—ll ('”)+§ I (E)+ ] 40
>~ Rl 16" "2 "\g) g "3 ’ (40)
0B, _2Ar1 .11 1,3 ( ) ]
ar Rilw?'16 w3\ ’ (41)
2A [ w 3 w
-2 [1n(Z)-Jo-vn ()
R _1 In 5) 3" wln 3 + , (42)
or Rilw 2 "8 ’ (43)
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An examination of Egs. (36)—(44) reveals several essential features of the
fields. Since a beam of infinitesimal diameter was assumed, the fields E,, and B,,
diverge (~2A/x), but these terms cancel (as expected) in forming the sum F. The
order of magnitude of F is A/R,, which can be predicted from a simple
dimensional analysis of the unshielded ring. The most significant feature for the
present study is the difference between the expressions for 3G /dr and oF/or,
which appear, respectively, in the correct and incorrect formulas for the
horizontal tune [see Eq. (23)]. The strong divergence OF/dr ~2A/Ryx is
cancelled from the expression for dG/dr by the additional term E,/r, which is the
consequence of the oscillations of y in curved geometry. The order of magnitude
of 3G/3r is the very small quantity A/Rj. Weak (logarithmic) divergences in the
fields are of no real concern since they are insensitive to a cutoff applied at a finite
beam edge radius (a < Ry).

5.3. Case 3: Shielded Beam

Two useful relations, readily derived from Egs. (5)—(7) and Eq. (22), are

oG &

= - T (Ae- ), 45)
F & 10 A
(S5+25)Ao—0)+- 5 (g - 4)= =22, (46)

Since the quantity (A, — ¢) vanishes on the conducting boundary around the
beam, it is clear from Eq. (46) that A4/r? acts as a source for (A — ¢) within the
shielded region, and that 3G /dr is thereby determined. An essential point here is
that Ay/r? is small (or order A/R}) and that the quantity (A, — ¢) will therefore
be of the order Ab%/Rj, where b is the scale pipe radius.

A good approximation to (A, — ¢) is obtained by substituting the straight- pipe
limiting form of Ay in the right-hand side of Eq. (46), along with r 2> Rj2
Further, it is clear that we may neglect the term r ' 8/3r(Ao — ¢), which is of the
order ).b/R?,. Eq. (46) becomes

3 5, )
—+= 47
(3+ 25) - 9= 25, @)
where Aj = ¢’ is the straight-pipe solution, i.e.,
* &
<8 2+—>(A or ¢°) = —4np. (48)

A simple application of Egs. (47) and (48) is to a round beam (constant density

p = A/ma® inside radius a) centered in a round pipe of radius b. Defining the
variable u = Vx* + z* we have

1d ddy

udu du

= —4npH(a — u), (49)
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where H is the step function. The solution of Eq. (49) with A(u=b)=01is
b b Z-u?
A§,=2A{H(u _a) 1n( >+H(a —u)[ln (—) L ]} (50)

u a 2a*

To find (Ag — ¢) we must integrate Eq. (47), which because of cylindrical
symmetry around the beam axis may be written

1d d A

S u T (A - ) =20, 51
uduudu( 0= 9) R3 (51)
A first integration yields, for u <a
d 2ATu?. (b\ u®* u*
L (Ag—p)=—| %1 (—)+————]. 52
U Ao =9 R%[z ") "4 82 (52)
Then, from Eq. (45)
3G & z2d\1d
(4 =<1+——)—— Ag —
or 822( o= ¢) u du udu( o= ¢)
2AT1. /by 1 3z% 1x?
Sead 3\ (—)+ —————— -]. 53
R%[Zn a/ 4 8a*> 8a* (53)

Note that, for this simple case, the second derivative 3°G/3r” vanishes at the pipe
center. This is a consequence of the cylindrical symmetry. However, in general
3*G/ar? will be of the order A/R3a.

Since the quantity (Ag — ¢) has the negligible magnitude ( ~ Ab*/R}) we obtain
the approximate value of F:

F=—(E+B)y=—orty-9)-L= - 2= _L_o(2) (4

Other approximate formulas for the shielded beam fields are

dF  1d¢° _ ( A )
dR R, dx =0 Roa/’ (53)
d*F 1 d*¢° A
dR> R, dx* <R0a2)' (56)
aG A dF
E = O(R_%> <<d—R; , (57)
(12~G = (L) <<ﬁ 58
dR* “\R%a) ~dR* (58)

6. CONSEQUENCES

Recall the basic formulas [Eqs. (11) for the orbit and (23) for the radial tune]. It
has been shown that dG/dR is O(A/R}) and may therefore be neglected.
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Furthermore, F = — ¢°/R, so we have the elegant formula:
E =~ ymc® — e¢® = eRB.,. (59)

The total energy (E), rather than the kinetic energy, relates radius (R) to the
external field B.(R). As previously noted, ¢° is negative, so the kinetic energy is
slightly lower for given RB, than it would be in the absence of space charge.

Dropping dG/dR from the tune formula [Eq. (23)] and eliminating y with Eq.
(11) we obtain
R(dB./dR —dG/dR)

=1+
Q; B._F (60)
RdB./dR
=1+——
B.—F (61)

Equation (60) was given by Laslett.® Although the incorrect term dF/dR has
been displaced by the negligible dG/dR in the tune formula, F still enters through
the equilibrium expression for y(R) and in general affects both tune and
chromaticity. We consider the simple case

B.(R) = BO(%)>", (62)
where n in the constant-field index
dInB,
= - m—z ) (63)
In the absence of space charge
Ql=1-n, (64)

which is independent of energy, so chromaticity vanishes in this limit. With finite
space charge

Qf=1—1—_—;;/—&zl~n<1—Rd;e>. (65)

Since ¢° is negative, Q, is slightly decreased from the vacuum limit (except for
the case of constant B,, where n vanishes).
For the chromaticity (§) we have

aQ, dQ?/dR
= (r22) = (552 (66)
dy/o \2Q, dy/dR /,
where all quantities-and derivatives are evaluated on the design orbit (R,). If only
the linear terms in F is kept, this expression becomes
§—[ RB, d(—nF/Be)/dR]

“l2V1-n d(RB.)/dR ],

_ n [i dRF ﬁdRBe]
~ 2V1-n’lB.dR B2 dR 1,
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o[- L Lon )
~ 2V1-nr*l B.dR RB, " ],

n Ei)
=~ ———=). 67

2 V 1- n3 <Be 0 ( )
This expression vanishes if the beam and pipe are symmetric across the design
orbit; however, for the unsymmetrical situation & has a small positive value. It is
tempting to define chromaticity as & = (E dQ,/dE), since total particle energy (E)

is conserved. The resulting expression for & is unchanged from Eq. (67) in lowest
order in F.
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