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Abstract

The occurrence of non-geometric fluxes in T-duality orbits of ordinary flux
compactifications led to constructions of target space actions for the corre-
sponding fields. In this thesis, which is based on [1], we attempt to clarify
their relation and their meaning. In particular, we will see that such actions
can be described as supergravity actions on Lie algebroids: Using techniques
of generalized geometry (which we will briefly review) we can associate to
each O(d, d) transformation a new metric and a redefined Kalb-Ramond field.
These naturally live on a Lie algebroid over the compactification manifold.
Using the Lie algebroid anchor, we can pull back the standard NS-NS action
to this algebroid and find that for certain non-geometric O(d,d) transfor-
mations, the previously known actions drop out. Furthermore, we find that
these results can also be derived by using an appropriate solution of the
strong constraint in double field theory. We can extend the construction to
get a full supergravity action on Lie algebroids to all orders in o/. By ex-
amining the symmetries of the actions, we find that they are not globally
well-defined on non-geometric backgrounds like T-folds — their description
requires more general approaches.
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Chapter 1

Introduction

The path to find a consistent quantum theory of gravity is rarely undertaken
with a well-defined goal in mind. Although several interesting ideas have been
suggested, and many have been in fruitful development for several decades,
it is still not quite clear whether any of these theories will end up describing
the physical phenomena we see in the real world. Two very well-developed
proposals are non-commutative quantum field theory and string theory.

The idea of non-commutative QFT is relatively simple: To cure the non-
renormalizability of the Einstein-Hilbert action, one ’smears out’ the space
by introducing coordinates that are non-commutative, i.e.

[z, 2] = 0" (z). (1.1)

Another approach would be a pointwise Lie algebra structure in the following
sense:

[2#, 2"] = VP (1.2)
The construction of such geometries is much simpler if we take the dual
point of view: Instead of introducing new coordinates, we introduce a new
product on the ring of functions of the spacetime manifold M — we ’deform

the product’. We can observe that (|1.1]) is equivalent to

F(&) % g(2) = f(2)g(e) + 5070, 0, + OF?). (1.3

Another well-known approach to quantum gravity is string theory: We start
by considering a classical theory of a (closed or open) string, and write down
a general sigma model action for it (the following action is a gauge-fixed
version, for the proper description see [2]):

1

2o

S

/ o E,,(X)0. X"0_X", (1.4)

by
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where the string worldsheet ¥ (the two-dimensional analog of a worldline) is
parametrized by o' and o2. To write down the action in the above form, we
introduced the light cone coordinates 0= = o' £ 0%, The coordinates X* are
the string embedding functions, and o', the Regge slope, is a free parameter.
The last ingredients are the coupling constants £, which we can split into
a symmetric and an antisymmetric part:

E[,LV = GMV + Buu, (15)

where G, = G, is the metric, and B, = —B,,, is the Kalb-Ramond field.
One then finds that requiring the vanishing of the beta functions of these
coupling constants gives rise to Einstein’s field equations in linear order of
o/. Thus, string theory naturally describes gravitational degrees of freedom.
This approach has been developed much further, and a very rich theory has
been (partially) uncovered. Among the most important points are the re-
quirement that M be 26-, or, for the supersymmetric extension of ,
10-dimensional. In an attempt to recover physical theories in four dimen-
sions, the approach of string compactification has laid bare a very intricate
mathematical structure. Furthermore, the existence of higher-dimensional
solitonic objects, D-branes, made it possible to connect open string theory
with non-commutative quantum field theory (see [3], we will not cover this
aspect in this thesis).

We will focus on closed strings instead: Compactifying these one-dimensional
objects on a circle (or, more generally, on a torus) gives rise to two dis-
crete quantum numbers: Like in standard Kaluza-Klein compactifications,
the string’s center of mass momentum in the compact direction is quantized.
The second quantum number is the number of times the string winds the S*,
the winding number. This theory permits a duality transformation: Replac-

ing the circle radius R by % (where [; = Vo is the string length parameter)
and exchanging winding and momentum quantum numbers is a symmetry of
the full string partition function. For a comprehensive review of this target
space duality, or T-duality, see [4].

This thesis covers some results of this T-duality invariance: Compactify-
ing a superstring theory, like ITA theory, on a torus, gives rise to a lower-
dimensional theory with a diverse set of scalar fields, for which one can write
down a potential. But as was derived in [5], the compactification of the
T-dual theory on the T-dual torus only gives an equivalent theory if some
additional fields, non-geometric fluzes, are included. On a 6-torus, we can ob-
tain a chain of 3 T-dualities and find several T-dual partners of the standard
H-flux (where H = dB):

Hye 5 £, 25 Qi 5 R (1.6)



There is some evidence that these fluxes give rise to non-commutative (cf. [6])
and even non-associative (cf. [7]) geometry. Thus, they have the potential to
connect string theory with non-commutative quantum field theories. What is
missing, however, is an effective target space description of these additional
fields. Recently, there has been some progress in this area, with proposed
actions both for the @Q-flux [8H10] and for the R-flux |11,|12]. In this thesis,
we will have a closer look at these approaches and we will investigate their
underlying structure.

This work is organized as follows:

The first chapter is this introduction.

The second chapter gives an overview over some topics that are re-
quired to understand the results, but are usually not contained in a
string theory textbook. We will introduce some basic notions of gen-
eralized geometry, double field theory, the mathematical theory of Lie
algebroids, and we will introduce non-geometric fluxes and their de-
scriptions.

In the third chapter, we will review how the T-duality group, O(d, d),
gives rise to redefinitions of the B and G fields, and we will present
some examples for that.

In the fourth chapter, a geometry on Lie algebroids is introduced, and
we will apply these results to the examples of chapter 3, by assigning
a Lie algebroid to every O(d,d) transformation.

In the fifth chapter, we will derive the final result: For each of these Lie
algebroids, we can write down a supergravity action naturally defined
on these algebroids, and we will see how these actions are related to
non-geometric fluxes.

Finally, in the conclusions chapter, we will give a short outlook on
future directions.

For an introduction to the string theory which is required to understand this
thesis, there is an abundance of excellent textbooks available. Most necessary
background materials, however, should be covered by [2,[13}|14].
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INTRODUCTION



Chapter 2

Preliminaries

Before we can start describing supergravity actions on Lie algebroids and
their relation to non-geometric frames, we have to review some basic con-
cepts.

2.1 Generalized geometry

In the following section, we will introduce the concept of generalized geom-
etry: It is based on [15] and was further developed in [16]; this summary
mostly follows the introduction of [17].

The main idea of generalized geometry is to combine the tangent and the
cotangent bundle of a manifold M into the generalized tangent bundle £ =
TM @ T*M. On its sections, the generalized vector fields, we can define a
non-degenerate bilinear form:

(X,Y) :=&(y) + v(x) (2.1)

for X = (z4¢),Y = (y+v) € I'(£). By using the notation

X = (z) . Y= (z) , (2.2)

(X,Y) = %thy (2.3)

= (7 o). (2.4

where I refers to the d-dimensional identity matrix. The symmetry group
which leaves this scalar product invariant is O(d,d;R), which also is the

we can write this as

for

11
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group that relates different Narain lattices in compactifications of bosonic
strings on a d-torus. This is a hint that generalized geometry can be used
to describe T-duality transformations (For a classical review of target space
duality and the O(d,d) group, see [4]). In this thesis, we will allow for these
O(d, d) transformations to depend on the spacetime coordinates, unless we
explicitly mention that they are constant (as in section [2.2])

Of particular importance is the Courant bracket that we can define on gen-
eralized vector fields. It is defined as (cf. e.g. [17]):

[+ &y + Vlcow = [x,y] + Lov — L€ — %d(%v —1,€), (2.5)

where [-,-] is the Lie bracket of two vector fields, £ is the standard Lie
derivative and ¢ is the insertion of a vector field into a differential form.
A general element h € O(d, d), i.e. h' nh = 7, will have the form

h = (: Z) (2.6)

with
a'c+cla=0, (2.7)
b'd + d'b = 0, (2.8)
a'd+c'b =1 (2.9)

%

z ) as X' = h X, so the index structure
i

It acts on generalized vectors X = (

of his

al: b
h;y = J , 2.1
u= (2 5) (2.10)
with I, J=1,...,2d.

To give these transformations a physical interpretation, we introduce a second
metric on F by combining the Kalb-Ramond two-form B and the metric G
into the generalized metric H:

(2.11)

o (G-BG'B BG!
-\ —¢'B G

A simple calculation shows that H is symmetric and actually an element of
O(d,d) itself. We can let an O(d, d) transformation h act on H by conjuga-
tion, i.e. H' = h!H h. This allows us to generalize diffeomorphisms and B
field gauge transformations, because they are contained as subgroups:
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I 0
hgauge = (—dA ]I) )

hait = (é <A?>‘1) |

We can actually replace dA by a general two-form, it need not be exact for
hgauge € O(d,d); the matrix A has to be invertible. If we require these to
be symmetries of the Courant bracket , however, dA has to be at least
closed. As we will investigate in chapter [3] these transformations act on the
G and B fields as follows:

hyauge © G = G, B' = B+dA, (2.12)
hag: G = A'GA, B = A'BA. (2.13)

We will denote the group generated by hgauee and hgig as the geometric sub-
group O(d, d)geom of O(d, d).

Because the dimension of O(d, d)geom is 3d*—1d, and the dimension of O(d, d)
is 2d* — d, there are some additional O(d, d) elements which do not have such
a simple interpretation. An example of these non-geometric transformations
are the f-transforms, which do not leave the Courant bracket invariant:

hy = (g _HB) (2.14)

for a bivector 5. Taken together, all of these transformations generate the
identity component O(d, d)y of O(d,d) (for details, see appendix [A]).

In section we will use the structures provided by generalized geometry
to find a Lie algebroid associated to each of these O(d,d) elements. This
will allow us to elucidate the physical interpretation of the non-geometric
transformations.

2.2 Double Field Theory

In this section, we will briefly review some basic concepts of double field
theory; it is based on the very accessible introduction [18]. For original
papers, see [19-22], and some reviews with connection to the topic of this
thesis are [23-25].

Double field theory (DFT) goes one step further than generalized geom-
etry: Instead of just 'doubling’ the tangent bundle, the whole (compact)
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space is doubled. We introduce an additional set of coordinates &; canoni-
cally conjugate to the winding numbers w® to obtain the doubled coordinates
XM = (7;,2%), M =1,...,2d. With the aid of these, we can write down an
action that is manifestly O(d,d) invariant. But to relate this to ‘ordinary’,
d-dimensional physics, we need to impose another constraint to reduce the
dimensions — for this, we can employ the level matching condition:

L—L=0. (2.15)

In our situation, (i.e. for closed strings winding cycles in a compact manifold)
this is equivalent to

N — N = —pw'. (2.16)

For the fields in the massless sector with N = N = 0, we arrive at the famous
section condition in Fourier space

90" = 0. (2.17)

However, the exact meaning of the above equation is not entirely clear: Some-
times, it is used as an off-shell constraint in the sense that 9;0°(A(x, %)) is
set to zero for all ‘physical’ fields and gauge parameters A(z,Z) in the the-
ory. This is also called the ‘weak constraint’. Often, this is not enough, so
one imposes this condition also on the products of fields. This is called the
‘strong constraint’:

90" (A(z,2)B(z,%)) =0 (2.18)

for all A(x,Z), B(z,Z) in the theory. For a further discussion of possible
different interpretations of this condition, see [26]. In the following, we will
use the strong constraint, and all terms vanishing under it will be dropped.
The action on this doubled space is usually defined for the NS-NS sector,
and involves the generalized metric ‘H, the redefined dilaton d with

e =e72,/|G] (2.19)

and the combined derivatives 8y, = (9',3;). It is obtained by imposing some
constraints on the resulting theory: Invariance under global O(d,d) trans-
formations and generalized diffeomorphism invariance. The former trans-
formations act on the generalized metric Hy;y as in generalized geometry,
while the coordinates transform in the fundamental and the dilaton d forms
a singlet, i.e. for a constant O(d, d) matrix

h = (2 Z) (2.20)
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we have
H =h'Hh, d=d, (2.21)
X'=hX = 9 = (n")'0. (2.22)
The generalized diffeomorphisms are the generalizations of ordinary diffeo-
morphisms and B field gauge transformations and are parametrized by an
O(d, d) vector €. These gauge symmetries can be expressed by introduc-

ing a generalized Lie derivative £¢ that acts on generalized vectors AM and
one-forms By as follows [18]:

LeAM = €P9p AM — (9pe™ — 0Mep) AT, (2.23)
EgBM = fpapBM + (apr — ang)Bp (224)

As always, the generalization to higher tensor fields follows from the Leibniz
rule. The generalized diffeomorphisms then act as

se 7 = Oy (EMe ), (2.25)
SHMN = LeHMN, (2.26)

Finally, we can write down the action:
1 1
SprT = / dP xdP ze2? {g HMN 15)%¢ HKL On Hxr —5 HMN On HKL O, Huk

— 207d O HMN + 4 HMN 91,d Ond | .
(2.27)

Unfortunately, this action does not have the most convenient form for our
goal: We want to find a particular solution of the strong constraint to reduce
it to the Lie algebroid actions that we want to derive. To facilitate that,
we can combine B and G into the field &;; = G;; + B;;. Furthermore, we
introduce the derivatives

D; = 0; — E,0", (2.28)
D; = 0; + Ewi0”. (2.29)

One can now express the DFT action in these fields:
1 ., . 4
Sprr = /dDildei"eQd [ - Zngkg]leglepgij +4D'dD;d+

n igkz (ngisz'gjl +l_?j5kil_?i51j> + <Didﬁj(€ij +l—)idngji> } :
(2.30)
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The global O(d, d) transformations (2.21)) then act as

& = (a€ +b)(c€ +d)7 !,

D' =MD, D =M'D, (2:31)
where
M = (d —c&Y, (2.32)
M= (d+c&)t. (2.33)
This implies the following transformation behavior for the metric:
G=MGM, (2.34)

where G’ is the transformed metric.

That (c€ + d) is always invertible for positive definite G is shown in ap-
pendix [A] In section [5.2.1], we will use this form of the action and the above
transformations to relate double field theory to supergravity actions on Lie
algebroids. For now, it’s tedious, but quite straightforward to show that

(2.30) reduces to the standard NS-NS action when setting 0 to zero.

2.3 Lie algebroids

A Lie algebroid is a vector bundle E over a manifold M[T|that has a (fiberwise)
R-linear Lie algebra structure |-, ]g : I'(E) x T'(F) — I'(E). In addition, it
supports a C*>°(M)-linear Lie algebra morphism p : E — T'M which fulfills a
Leibniz rule:

[S7f ' t]E = f ' [S’t]E +p(8)(f) : ta

for all s,t € I'(E), f € C>(M). As we will soon see, this structure allows us
to extend many basic constructions in differential geometry, such as higher
tensor fields and exterior derivatives. A comprehensive overview of the math-
ematical structure of Lie algebroids and the closely associated Lie groupoids
can be found in [27-29).

The homomorphism property of p actually follows from the Leibniz rule and
the Jacobi identity for [+, ]g (cf. [29]), and need not be imposed.

To make the above definition more concrete, we will look at some examples:

1Unless explicitly mentioned, all mathematical objects that can be smooth are assumed
to be smooth in this thesis.
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(E7 ['7 ']Ea P)

S—(TM, |-, 1, id)

M

Figure 2.1: The Lie algebroids we consider have an invertible anchor p, so
they have the same dimension as the tangent bundle. In the most simple situ-
ations, p can just be intepreted as a global rotation of T'M; we will, however,
also consider Lie algebroids without such a simple geometric interpretation.

e The most obvious example is the tangent bundle with the standard Lie
bracket, (T'M,id, [-,-]). The proof of the Leibniz rule and the Jacobi
identity are simple exercises in differential geometry. In the following,
we will call this the tangent Lie algebroid.

e Another quite trivial example is a Lie algebra g interpreted as a vector
bundle over a single point py, with the anchor the constant map 0. If
the base manifold is larger, but the anchor still vanishes at each point,
each fiber of the vector bundle is a Lie algebra, and they are completely
independent.

e A non-trivial example of a Lie algebroid is the Atiyah Lie algebroid [30],
which can be used to define complex analytic connections of complex
principal bundles and to study their existence. For more details on the
construction, see |27].

Let P be a (real or complex) principal G-bundle over M. Consider the
following short exact sequence of vector bundles over M:

Pxg j TP Tx
G G

Here, g is the Lie algebra of G and the action of G on TP is the

TM. (2.35)
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tangential map to the right multiplication by a group element. Thus,
the sections of %P are G-invariant vector fields on the principal bundle.

So, intuitively, the Atiyah sequence gives a decomposition of % into
its Lie algebra and its T'"M part.

The Lie algebra structure of TP on % is well-defined, because the

G-invariant vector fields in T'P are closed under the Lie bracket.

The differential of the projection, T'm, is the corresponding Lie algebroid
anchor.

Its kernel is the adjoint bundle P—gg (this is the associated bundle with

respect to the adjoint action of G on g). The inclusion j of this bundle

in ZZ is induced by the G-equivariant

G
J:Pxg—TP,
(u, z) — To(my)(x),

where m, : G — P, g — ug is the right multiplication of G on u € P,
and e is the unit in G.

(2.36)

The image of j coincides with the vertical tangent vectors T™ P of TP,
so choosing a splitting of this sequence is equivalent to choosing a con-
nection on P. We can go a bit further by noting that % is also closed
under the Lie bracket, and j is a Lie algebra morphism. Then we can
also give PTXQ a Lie algebroid structure. All in all, we can interpret
not just as a sequence of vector bundles, but also as a short se-
quence of Lie algebroids. One can show that a splitting in this category

is equivalent to a flat connection on P.

The triple (%%, [+, -], m,) is called the Atiyah Lie algebroid associated to
P.

Despite their interesting mathematical structure, we won’t be con-
cerned with such Lie algebroids in this thesis. They still have some
connection to physics, though: For example, they occur when studying
Strominger’s equations in heterotic string theory (see e.g. [31]) and they
have connections to versions of noncommutative geometry [32] that are
themselves used to define new physical theories (see e.g. [33]).

Let (M, ) be a Poisson manifold, i.e. [3, B]sx = 0, where [-, -]y is the
Schouten-Nijenhuis bracket of multivector fields (see e.g. [34]):

(XA AXp YIA LAY Jen =) (D)X AL (2.37)

s,t

CAX A AX AN XGYIAYIA LAY ALY,
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where the entries with a hat are omitted.

Locally, this means that

Bleldg,pibd = o] (2.38)
Then the cotangent bundle T* M can be equipped with a Lie algebroid
structure (cf. e.g. [29]).

The anchor, which maps covector fields to vector fields, is just (%

B4 T*M — TM,
§= fz‘dﬂ = 5”@'8]'-
The bracket is the Koszul bracket of one-forms:
€]k o = (&80 — mB"0,& + 0; (B¥mi&y)) da' =
= g1y dn — Lrnd§ — dB(E,n) = (2.39)
= Lty — tgr(nds,
for &,n e T'(T*M).
Due to the second line of (2.39)), we find that

(df, dglx = —d{f. g}, (2.40)

where f,g € C®(M) and {-,-} is the Poisson bracket of functions
induced by f.

Note that often in the construction of the Koszul bracket, /3 is replaced
by —f; this is just a matter of convention.

This Lie algebroid will occur later on in our examples; we will, however,
also consider quasi-Poisson manifolds, where the Poisson bracket does
not fulfill the Jacobi identity and [3, S]sny will not vanish. To preserve
the Lie algebroid properties, we will have to add an additional term
to (2.39). This result can be interpreted as an effect of an underlying
non-associative geometry.

Further constructions of Lie algebroids and related geometric concepts are
developed in chapter [4]

2The notation [a; .. .a,] denotes the antisymmetrization of the indices ay, . ..,a, with
a prefactor of 1%!
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2.4 Non-geometric fluxes and their actions

We'll now briefly present the theory of non-geometric fluxes, which was de-
veloped in [5].

In summary, these results indicate that the description of the bosonic part
of string theory is incomplete: If we compactify type IIB theory on a T°/Z,
orientifold, and demand that the form of the resulting physical theory is
invariant under a chain of T-duality transformations, we find that we have
to ’add’ an additional set of fields — non-geometric fluxes.

2.4.1 Shelton-Taylor-Wecht fluxes

This exposition mostly follows [35] and originally goes back to [5].
The basic strategy is going to be as follows: We will compactify type 1IB
string theory on an

X =T°/ (QZy(-1)") (2.41)

background and calculate the superpotential for the scalar fields of the four-
dimensional theory. Then we will compactify the dual ITA theory on a twisted
torus (which we will briefly cover in , for more details on such backgrounds,
see [36].) The Zy acts on T° as ' +— —x' for i = 1,...,6,  is the worldsheet
parity operator and Fj, counts the left-moving fermionic modes.

We will look at the case where the T is a product of three identical two-tori;
this means in particular that we only have one complex structure modulus 7
and one Kéhler modulus U.

We want to calculate the potential for the scalar fields in the theory, which
has two ingredients: The superpotential W and the Kahler potential K.
The superpotential is given by the Gukov-Vafa-Witten formula [37]

W= /G3 AQ, (2.42)
X

with the holomorphic 3-form Q and Gs = dCy — SHsy (S = Cy + ie ? is
the axiodilaton). The Kahler potential K is the same for the ITA and IIB
compactifications we will consider, so we will ignore it.

But the superpotential is different:

For the IIB theory, it has the following expansion (cf. [35]):

W = ag — 3a17 + 3as7? — as7® + S(—by + 3017 — 3bo7? + b37?),  (2.43)

where the coefficients a;, b; are integrated Fi3) and H fluxes around different
cycles of the tori; as this is just a rough overview of the topic, we will not give
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their explicit form. These fluxes are not independent — they are constrained
by the Bianchi identity of the self-dual Fy field strength.

For the ITA compactification on a twisted torus with geometric flux lej (which
is itself constrained), we can also calculate the superpotential:

W = ag— 37 + 3am? — asm + S(— By + 3817) +3U (70 + (71 + 72 +73)7),
(2.44)
where the coefficients «;, 8;,7; are again given by integrated fluxes — this
time, they correspond to the R-R fluxes, the H flux and the geometric flux
of the ITA theory.
There are again some constraints these coefficients have to satisfy, but the
main 'problem’ is clear: The two superpotentials clearly have different expan-
sions and cannot possibly match up. For some of these coefficients, however,
we can see a pattern. For example, the well-known mapping of Ramond-
Ramond fluxes under T-duality can be recovered by comparing coefficients
of the superpotential. So if we want to take T-duality seriously, then there
must be some way in which we can extend the field content of string theory
such that the whole superpotential is T-duality invariant. And indeed, there
is a unique way to do so, which is shown in the following sequence of maps,
which represents which fluxes are mapped to each other under T-dualities:

Hiy, = fh = QY 1 RU*, (2.45)

So we argue that a generic string compactification contains two new sets
of fields: The @ and the R flux — these are called non-geometric fluzes.
These are not completely independent of each other, because the Bianchi
identities and relations between the geometric fields also imply relations for
non-geometric fluxes.

The exact nature of these (possibly) new degrees of freedom, and their ten-
dimensional origin is still a bit unclear, which has led to many new ideas and
developments in recent years.

In the following, we review two different proposals for low-energy effective
target space actions for non-geometric fluxes, we’ll call them the R action
[11,/12] and the @ action [8-10]. Both roughly have the form of the standard
NS-NS action and arise under field redefinitions of the G and B fields (which
resemble the application of the Buscher rules for T-duality), but are derived
in different ways.

2.4.2 R action

This action was constructed in [11}12] with the goal to find an action that is
manifestly invariant under the ordinary diffeomorphisms and 3 transforma-
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tions of generalized geometry.
To be able to accomplish this, we introduce a bivector field

B=B"1 (2.46)
and a metric on the cotangent bundle,
§=—BGB. (2.47)

So the main idea is to replace the geometric objects living on the tangent
bundle by dual objects on T*M. We can also introduce a new derivative
operator with upper indices as

Def = (",,. (2.48)
We define the R-flux as
Rebe = 3plaimy, gl (2.49)

Then the proposed action is given by

1 " ~
SR:_@/CZJJ |9’

This theory can be interpreted in a Lie algebroid setting, for more details,
see chapter [4

4

A 1 - A
(R — ER““RM - 4gabD“¢Db¢> . (2.50)

2.4.3 (@ action

The simplest (but not the original [8]) way to derive this action employs
double field theory and is described in [9] as follows: We take the standard
DFT action, do a T-duality in all directions and solve the strong constraint
by setting d=0. Explicitly, this is realized by the O(d, d) transformation

0 I
h = (1[ 0) . (2.51)
According to (2.31)), h acts on £ = G + B as follows:

E(x, %) =& 17, ). (2.52)

We now introduce N - -

EY =g + pY, (2.53)
such that £-1 = &, for a bivector field 89 and a metric gy (so §¥ is its
inverse). Our goal is to rewrite the DFT action such that these fields are
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described explicitly. But this is straightforward, because is an O(d, d)
element, and the double field theory action is invariant under O(d,d) trans-
formations. According to , the action of h on the derivatives D and D
implies that we can write the DFT action ([2.30]) with:

D' = § — &y, (2.54)

D =9 +EFo,. (2.55)

If we then take this action and set d = 0, we arrive, up to total derivative
terms, at
1

= 24 ~ 9" L i ~ ik gj
So = =55 | 4'a/15le ™ (R(G) +4(06)* = R Rij + 455:8™ B 0pd0d

~ % j 1 ~ ~ ~rg ij 1 ~
— 204,d0, (§;; 8" 67") — 1Jix9i19 QM9 4 §gqukpolkq
+ gﬂgpqﬁjm (lepamgkq + akgpomkq)

Lo T 2GS 9 ~iJ T RIS ~
— 59 339pa (87" B0, 0,57 — 28" 70,57 055" )
(2.56)
where
Q,f1 = g, pM (2.57)
and
a3 o—2d
e = —. (2.58)
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Chapter 3

O(d,d) field redefinitions &
non-geometric frames

In this chapter, we will review some geometric concepts that are associated
to non-geometric fluxes and we will explicitly work out how O(d, d) transfor-
mations can be defined as redefinitions of the G and B field. These results
will then be applied to arrive at the field redefinitions that describe the )
and R actions.

3.1 Field redefinitions

Recall from section [2.1] that an element h € O(d, d) (i.e. h*n h = ) has the

following structure:
a’; b
hy; = J ; .
n=(2 ). ()

where
a'c 4+ cla=0=Db'd + d'b,
ald+c'b =1, (32)
which is equivalent to
ab’ 4+ ba' = 0 = cd’ + dc’,
(3.3)

ad’ +bct = 1.

We have already argued that the identity component of O(d, d) is generated
by the groups in table [3.1] (For more details and the remaining generators,
T-dualities, see appendix . We have also seen how these transformations
act on the generalized metric H:

H =h"Hh, (3.4)

25
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Table 3.1: Generators of O(d, d)

Diffeomorphisms (61 )

Gauge transformations

/_\
wl:I
\_/

[ transformations

||
N
O H
‘:‘m
N——

where ‘H was given as

24— <G — BG™'B BGl) (3.5)

-G 'B G!

This action is transitive: Given any H and H’ that have the structure above
(for B antisymmetric and G' symmetric and positive definite), we can always
find an O(d,d) element h that relates them in this way. But the action is
not injective: For each H, there is an O(d) x O(d) subgroup that leaves H
invariant (this can easily be seen by counting dimensions). These stabilizers
can even be determined explicitly (cf. [1]):

hOl:(Bo1 (()é)t 1B (00 ) (3.6)

_( -G <0t>1B G (o)™
hOZ_(GOQ— L0y B BG-(0L)! ) (3.7)

where O, Oy are chosen such that
O!GO; = G, (3.8)

fori=1,2.

One could now ask the question whether O(d,d) transformations always
transform generalized metrics into new generalized metrics in the following
sense: If

H'(G,B) = ' H(G, B)h, (3.9)

can we find a new metric § and a new Kalb-Ramond field B such that

H'(G,B) =M(j, B), (3.10)
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and how can we express these new fields §(G, B), B(G, B)?
Finding out how the metric transforms is simple: We just need to look at
the bottom right component of (3.4), G™!, and we read off that

gl =+ (G-B)p'G[d+ (G- B). (3.11)

That the above expression is well-defined is non-trivial to prove: If we intro-
duce
v=d+ (G — B)b, (3.12)

we would like to define

=G0 (3.13)
Although it’s pretty clear that this leaves g positive definite and symmetric,
the redefinition only makes sense if 7 is invertible. We will prove this in ap-
pendix [A] but the proof depends on the positivity of G, and for backgrounds
with an indefinite signature, we can actually find Counterexamplesﬂ
Note that this problem already arises in double field theory (consider equation
(2.31]), where the same issue can occur).
We can use the result for the metric to find the transformed B field. Consider
the upper right component of H, BG™!; it transforms as

Bi ' = (c+ (G —B)a)'G " (d+ (G — B)b) — L. (3.14)

By using equation (3.13]), we can read off that

1

B=~7"'(v"-G)(v")"". (3.15)
where we defined
d=c+ (G — B)a. (3.16)

Showing that B is antisymmetric can either be done explicitly by using the
relations (3.3]), or by noting that H' = h* H h is still symmetric.
To summarize, we have

g=7"G ("), (3.17)
B=y"(0"-G) ()" (3.18)

We can now check which effects the transformations of table B.1 have on the
B and G field:

-1 0 0 -1 0 I
1 _ _ o
Take, for example, G = < 0 1), B = <1 0 > and h = n = <H 0>. Then

y=G—-B= (:i 1)7 which is not invertible.
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e Diffeomorphisms: Let

A 0
=4 0. o
Because b = 0, we have
ya = (A7 (3.20)
da = (G — B)A. (3.21)

Then the transformed metric is simply
§=72'G (") = A'GA. (3:22)
For the Kalb-Ramond field, we find

B =7;"(1a04 — G) (v4) ' = A’ ((A'f)*1 AG + B) - G) A=

= A'BA.
(3.23)
This is, of course, precisely the way we expect a diffeomorphism to act
on these fields. For A € O(d), this is a volume-preserving diffeomor-
phism, which is a symmetry of the NS-NS action.

e Gauge transformations: Gauge transformations have the form

hp — (g g) . (3.24)

Note the difference between B and B. To represent an actual symmetry
transformation, we will take B to be exact, i.e. B = —dA. We find that

=1 (3.25)
05 = (G — B) +B. (3.26)

Thus, the metric is unchanged:

g=0G, (3.27)

and R
B=DB-B, (3.28)
which, for B = —dA, gives the expected form of a gauge transformation

B = B+dA. (3.29)
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e (-transformations: For
_ (T =5
hg = (0 1 ) (3.30)
we have

78 =1-(G - B)B, 3.31)
g =G — B. 3.32)

For this case, unfortunately, ¢ and B don’t have a simple form:
Gg=(0—(G—-B)B) G+ B(G + B)) (3.33)

and
B = (I— (G—B)ﬁ)*l(B— (G—B)B(G—i—B))(]I—i—B(G—i—B))*l. (3.34)

Unlike the previous examples, this transformation is not a symmetry
of the NS-NS action. It will, however, appear in the transformation
to non-geometric frames, and can be interpreted to give rise to non-
geometric effects.

T-dualities The remaining O(d, d) generators (which are not in table

are T-dualities:
0 +1

(3.35)

+1 0

0 1

These are O(d, d) elements that do not live in the identity component
of the group (see appendix . They give rise to
v+ =1—FE; + (G- B)Ej,
br = *F, + (G — B)(I - Ey),
where F; = diag(1,0,...,0). In the appendix, we did not need to

explicitly calculate the inverse of vy, but noting that £ (G — B)E; =
G11F4, it’s trivial to check that

(3.36)
(3.37)

= (- B+ o (£E - (- B)G - BIE).  (339)

11
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The transformations of the G and B field are then given by the well-
known Buscher rules [38] (if we choose the + sign in (3.35))):

1 ~

g1 = G By =0,

R By ~ Gy ~

g1j = :FG_ljl = Gj1, By = q:G_1j1 = —Bj, (3.39)
BB — G1;,G4; ~ B,G; — B1.Gy;

Gij =Gy + — 1JG11 =1, By =B+ — 1JG11 L

where 7,7 # 1. Note that we do not transform the dilaton ¢, the
transformation factor in the string frame will be introduced into our
action via a change of the measure. For the details, see the construction
in chapter [5

So these transformations correspond to a T-duality in the 1-direction
(of course, a T-duality in the i-direction can be performed analogously).

h = (g g) (3.40)

is a T-duality in all d directions.

Note that

This transformation relates gauge and S transforms:

(g g)(fﬂ) @ (g g) - @ (ﬁ) (3.41)

To find the inverse of the field redefinitions, we just form v and ¢ of the
transformed fields and apply the rules above with the inverse O(d, d) trans-
formation h™!. Because hnh =7, and n? = I, we find that

t wt
“l=pn'n= (d bt). (3.42)

C a

So if we call these new maps 4 and ) , we have

j=a'+ (g — B)Y', (3.43)
§=c'+ (g — B)d, (3.44)

and, as we can infer from (3.13)), ¥ = v~ L.

I
2
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3.2 R frame

We will now examine a frame that is reached via non-geometric S-transforms.
It was introduced in [11,|12] without an O(d,d) interpretation, but we can
see that it fits into our framework.

In this construction, we will assume that the Kalb-Ramond field is invertible.
We then introduce the bivector field

~

B =B (3.45)

Consider the transformation

Br = (2&3 g) (g _}é> - (2&3 tif)' (3.46)

hp is the composition of a gauge and a [-transformation. Note that this
means that the transformation parameters depend explicitly on the back-
ground fields. We can calculate the effects of the transformation on these
fields as before. First we find that

Jr = (14 BG ) (347

and
=G+ B. (3.48)

We could then calculate the transformed fields § and B to get
§=—-BG'B, (3.49)

and .
B =B. (3.50)

But these fields do not give the description we are looking for; we want
to describe the theory using tensors acting on covector fields, i.e. §,8 €
[(TM @ TM). So we redefine

Gg=g¢'=-B'GB™! (3.51)

and R
p=B"" (3.52)

We can then write the redefined generalized metric H' in the new fields as:

~~1 _ p—1sp—1 p—1n
W = (9 ?A_fﬂ 5,\9>. (3.53)
—gp g
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So all the entries of H' look like the entries of H, with the identifications
G gl (3.54)
B g (3.55)

We will equip the R frame with a Lie algebroid structure in section [4.2.2}
this will allow us to reproduce the action (2.50)).

3.3 (@ frame

The O(d, d) matrix that was used to obtain the action for the @) frame from

DFT in [9] was . (g g) (3.56)

Unfortunately, in the framework of generalized geometry, for an O(d, d) trans-

formation
a b
h = (C d) : (3.57)

we interpret the components as maps

a:TM —TM,
b:T*"M — TM,
c:TM —T*M,
d:T"M — T*M.

So we would need to interpret I as a map between the tangent and the
cotangent bundle of M; such a canonical isomorphism exists, but it is usually
given by the metric on M. In case of a torus, this would of course coincide,
but, in general, we want to find another transformation that will give the
same result.

Let’s consider

B 0 (G — BG-1B)™!
ho = (G _ BC-1B 0 . (3.58)

For this transformation, we find
o= 1+BG )™ (3.59)

and
69 = G — BG™'B = dj,. (3.60)



3.3. Q FRAME 33

So the transformed background fields are
g= I+ BGHGI -G 'B) (3.61)

and
(G-B)
B=(+BG™) (fﬂ + BGH7Y(G — BG*BS—G) I[-G7'B)= (3.62)
= (I+ BG ") (-B)(I - G™'B).

We'll again introduce a bivector field 3, as
B=g'Bj" (3.63)
We can also work out the inverse of these transformations:

G=(G"' =B g +87 (3.64)
B=(g" =B (=BG +8)" (3.65)

So this is the field redefinition that we have already encountered in section
2.4.3 and in [8H10], because adding both equations gives us

G+B=(3'+p)". (3.66)

By considering equation (3.61]), we can rewrite the transformation hg as

ho = (2 901) . (3.67)

So in the case of a torus compactification (which we will briefly consider in
section [5.5)), where g = I, we recover the transformation

h— (g g) . (3.68)

In the context of double field theory, where O(d,d) acts on (doubled) co-
ordinates, we could have used this transformation in the first place (as was
done in [9]). In fact, the DFT action is only invariant under constant
O(d, d) transformations.
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Chapter 4

Lie algebroid geometry

In this chapter, we will show how concepts from ordinary differential ge-
ometry ’on TM’ can be transferred to Lie algebroids. Afterwards, we will
investigate these structures for the examples relevant to our work.

4.1 Riemannian geometry on Lie algebroids

Lie algebroids can be used to build physical theories due to one important
aspect: We can easily develop a differential geometry on them.

Basically, we just need to replace each T'M in most definitions of a textbook
on differential geometry by the Lie algebroid E. To see how this actually
works, we will develop all the techniques we need in this section. For a
further exposition of this material, see [27,28,139].

In the following, let M be a Riemannian manifold and F a Lie algebroid over
M with anchor p.

One main reason to study sections of T'M (vector fields) is their roles as
derivative operators on functions f € C>(M). Using the anchor map, we
can give the same interpretation to a section s € I'(E) by defining

D,f = pls)f. (4.1)

Obviously, this reduces to the ordinary partial derivative on the tangent
bundle.

As for any other vector bundle, we can introduce local frame fields €, on any
chart of the Lie algebroid E and use them as a vector space basis at each
fiber. The duals of €, will be denoted by €* (so €*eg = d5). This allows
us to write down local formulas in index notation, just as we are used to it
from standard differential geometry — in the following, Greek indices will be

35



36 CHAPTER 4. LIE ALGEBROID GEOMETRY

used on the Lie algebroid and Latin indices for objects ’living’ on the tangent
bundle.

To extend to actions of Lie-algebroid-valued vector fields on themselves,
we define connections on Lie algebroids as maps V : I'(E) x I'(E) — I'(E)
that satisfy

1. Vigpgu = fVu+ gV,
2. Vi(t+u) =Vt + Vu,

3. V,(ft) = [Vt +t-p(s)f

for all s,t,u € I'(E), f,g € C>®(M).

Using the Leibniz rule, we can extend V to higher tensor fields, i.e. sections
of T(E®" @ E*®*).

In index notation, a connection is defined by its Christoffel symbols:

I3, €0 =V e, (4.2)

and we will denote the derivative (4.1]) in the direction of a basis vector field
as

Dof = D, f = plea)f- (4.3)
So, the connection V., applied to a section s = s%, € I'(F) gives
Ve, (8%€a) = $°Ve e + €aplep)s® = eq (Dps® +T5,57) (4.4)
which is the well-known formula from Riemannian geometry if we replace D
by 0.
We also want to find the action of the covariant derivative on sections of E*.

Let s* = s,e* € I'(E*). Then for t = t%, € I'(F), s*(t) is a function on M.
So, by the product rule, for a section u € I'(E), we have

p(u)(s"(t)) = (Vus™)(t) + s (Vut), (4.5)

and if we set u = €, and t = €3, we get in components:

Dysg = (Vas*)s + SVFZ[B, (4.6)

or
Val(sse’) = €’ (Dasg — [ 55,) . (4.7)

Thus, our definitions are designed to give exactly the same formula for the
covariant derivative as in normal differential geometry — we get a —1I" for each
lower index and a +I" for each upper index of a tensor.

To write down a supergravity action on a Lie algebroid, we will obviously
have to define a metric on it:
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Definition 4.1. Let E be a vector bundle over a manifold M. A metric on
F is a section g € I'(E* ® E*) that induces a positive definite inner product
on every fiber.

In our case, M will be a Riemannian manifold with metric G and the anchor
p will be invertible. This allows us to pull back the metric from the tangent
bundle to the Lie algebroid as follows:

9(s,t) = G(p(s), p(t)) Vst € L(E). (4.8)

Note that g is positive definite because p is invertible. We will extend this
construction to connections and their curvature tensors in the next chapter.
A very important tensor field associated to a connection is its curvature
tensor, which is defined as in the case of the Levi-Civita connection on a
Riemannian manifold:

R(s,t)u = [V, ViJu — Visg,u, (4.9)

where |-, -] is the Lie algebroid bracket on E. A connection with vanishing
curvature is called a flat connection.
We can also introduce the torsion tensor of the connection V:

T(s,t) =Vt —Vis—Is,tg. (4.10)

To show that these maps are actually tensor fields, we need to show that
they are C*(M)-linear:

R(fs, gt)(hu) = fghR(s,1),
T(fs,gt) = fgT(s,1),

for any f,g,h € C*°(M) and s,t,u € I'(E). To illustrate how all our defini-
tions ensure this result, we will prove the tensor property for the torsion:

T(fs,gt) = Vis(gt) = Valfs) = [fs.gt]s =
=t-p(fs)(g) + fgVst —gs-pt)(f) — fgVis —t-p(fs)(g) + glt, fs]p =
= fgVist —gs-p(t)(f) — fgVis — fgls,t]le + gs - p(t)(f) =
= fg-T(s,t).

If we have a metric g on the Lie algebroid, then we can require a connection
to be compatible with that metric:

Vis(g(t,u)) = g(Vst,u) + g(t, Vsu), (4.11)
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for all s,t,u € I'(E). (Note that Vs(g(t,u)) = p(s)(g(t,u)).)

The Levi-Civita connection ¥V on E is defined as the unique metric-compatible
connection with vanishing torsion. The uniqueness and existence can be de-
rived by considering the expression

p(s)gl(t, u) + p(1)g(s, ) = plu)g(s.t) =
g( us t) + g(Vtu — ﬁut, s)+ g(@ts — @st, u) + 29(6315, u) =
= g([s, uJE, t) + g([t,ulp, s) + g([t, s]p. w) +29(Vt, ),

or, by rearranging,

9Tt = 3 (p()g(t. 1) + p(0)g(s,0) — pl)gls, 1)+
+ g([S, t]E> u) - g([s7 U]E> t) - g([t’ U]E’ S)):

which is called the Koszul formula. Because the covariant derivative doesn’t
occur on the right-hand-side, this expression can be used to define the Levi-
Civita connection on any metric Lie algebroid, and it’s a simple exercise to
show that it satisfies all the required properties.

Note that although V is torsion-free, its Christoffel symbols will, in general,
not be symmetric in its lower indices — unless [€,, €3] = 0 for the basis €,
we are working in.

We already considered higher tensor fields as sections of E®" @ E*®° and
we can define differential k-forms as sections of A* E*. On these, we can
introduce a nilpotent exterior derivative via the following formula:

dpw (81, - - - s Sk Sk41) = Z(_l)i/)<5i) (@ (s1,- 5805 Sk41)) +

> (=10 ([si 8518, 81,2 803 84y Skg1)

i<j

(4.12)

(4.13)
where w € T(A"E*), s1,...,8041 € [(E). This defines the Chevalley-
FEilenberg algebra of E.

Using the exterior derivative dg, we can define cocycles and coboundaries in
the usual way:

75 ={w e I(A*E")|w € ker(dg)}, (4.14)
B : = {w e I'(A*E")|w € im(dg)}. (4.15)

Then we define the k-th cohomology group as
Z}

E

(4.16)
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For the Lie algebroids we consider, i.e. those with an invertible anchor p, our
definitions imply that
Hip (M) = HY(E), (4.17)

where H¥:(M) is the de Rham cohomology of M. To see why this holds,
consider a k-form w in T'(A*E*). Then we can pull back w to T'(A*T*M)
using exterior products of

(V) B = T*M. (4.18)

For this map we find that

<<Ak+1 (pfl)t> (dEw)> (X1, Xppr) = dpw (p7H(X0), o p 7 (Xkrn))

= Do (X)) (w (P ), X (X)) ) +

0 ([0 (X, o7 (K (K)o p (X,

1<j

=d <<Ak (pil)t) w) (Xl, c. Xk-+1),
(4.19)
where we used that p~! is an isomorphism of Lie algebras.

So if w is closed on FE, then (Ak (p_l)t> w is closed on T'M, and if w is

exact on E, then (Ak (,o_l)t> w is exact on E. As the map is invertible, the

cohomologies are isomorphic.

4.2 Examples

We will now start to connect the theory of non-geometric frames with the
constructions above. For each O(d,d) field redefinition, we can associate a
Lie algebroid that, as a vector bundle, is a subbundle of TM & T*M, the
generalized tangent bundle. For our two main examples, which will be used
to describe the ) action and the R action, we will simply use T'M and
T*M and equip each of them with a fiberwise Lie algebra structure and a
compatible anchor.

But let’s look at some simpler Lie algebroids first:

In the case of the tangent Lie algebroid, i.e. the tangent bundle with the
standard Lie bracket between two vector fields, all the constructions of the
last section give the well-known results of Riemannian geometry.
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If the Lie algebroid F is just a Lie algebra g (i.e. if M is a point), then the
k-forms on E with the differential reduce to the Chevalley-Eilenberg
algebra of g.
For the case of the Poisson Lie algebroid, the nilpotent differential is an
operator on I'(A*T'M), the multivector fields of M. The exterior derivative
dg is then just given by

dEa = [ﬁ, a]SN, (420)
where « is a multivector field, [+, -Jsny is the Schouten-Nijenhuis bracket and
[ is the Poisson bivector with

8, Blsx = 0. (4.21)

4.2.1 TM

The idea of the following construction is rather simple: We want to equip
TM with a Lie algebroid structure that is different from (7'M, [, -]1,id) and
allows us to describe non-geometric frames. We want to find an anchor map
p from T'M to itself that induces the transformation behavior for the
metric. So if G is the metric on M, then

Vit Gpo = p(v)iGp(v) = vy 1G (v 1) v Yo € T(TM), (4.22)
where v = d + (G — B)b. Now we can simply read off that

p=("1". (4.23)

Because it can be somewhat confusing, we should remind ourselves of the
index structure of all the maps we will use in this section. For convenience,
and because it will help later on, we will use different indices for the tangent
bundle with the normal Lie bracket and the tangent bundle with the different
Lie algebroid structure. The conventions will be as follows: Latin indices will
be used on (T'M, [, |1,id) and Greek indices on E = (T'M, [, ]g,p). Then
the anchor, its inverses and transposes have the following index form:

p: B —=TM Pa
pt:T*M — E* Pa”
p i TM — E (P
() B T (),
For the partial derivative on the Lie algebroid , this means that

Daf = Deaf = p(ea)f = pcaecf = (pt) Cecf' (424>

«
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We also want to introduce the bracket [-, -] such that
p([s.tlg) = [p(s), p(t)];, Vs,t € T(E). (4.25)
Because p is invertible, this determines [-,-|g uniquely. Thus, the following

result will actually be valid for all the Lie algebroids we consider: As soon
as the anchor p is identified, the bracket is already fixed.
If s = s%¢,, t = t%¢, for an (in general) non-holonomic basis e,, we find that

[s,t]e = p~ " ([p(s), p(t)]1)
=07 (05 "0 (") = p5 700", 87) + "1 "5 en, €] ) ea)
— |7 Dat 17Dy + 578 (p71) "o (Do — Dap + ppslen, ) | e

— o
=F2%

where we defined the structure constants F 075 of the Lie algebroid.
So, to summarize,

[s,t]p = (s"Dgt* — t°Dys™ + s FS) eq. (4.26)

The Jacobi identity follows from the linearity of the anchor and the Jacobi
identity for [-,-]1; for the Leibniz rule we observe

s, f - tle = p~ ' ([p(s), p(f0)]L) = p~ " ([p(s), fp(t)]L)
p~ (f - o(s), p(t)]L + p(t) - p(s)f)
s, tle+t-p(s)f.

Q@ frame

An application of the construction above is the field redefinition correspond-
ing to the @ frame [8410] of section[3.3] The O(d, d) transformation we used
was

so we have
79 =(G—-B)(G-BG'B)'=(I-BG"H1-BG'BG ™!
= (1 - BGY)((I+ BG ) (1I-BG )™ (4.28)
= I+ BG )L

Thus, to set up the Lie algebroid Eqg = (T'M, [, |g, pg), we will use the
anchor
po=(h) " =1-G B =1+ (129)
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To write down our formulas, we will use the coordinate basis e, on both Eg
and (T'M, [-,-]1,id), for which [e,, e;) = 0.

We can then use definition (4.26]) to write down the corresponding Lie bracket
['7 ']Q:

(5,1 = (5 (O — Gue™0u) 1 — £ (3 — Guof0u) '+

. (4.30)
+ 25 I+ B8) " (91 — Giele3 ) 5b9§g|d]>6a,
where the partial derivative is
Dof = 0uf + BupG"0. = Ouf — Gap3"O. (4.31)

We can already see that Q,,"* = 0,,3™ is contained in the structure con-
stants of the algebra, but it’s not easy to give a physical interpretation of the
bracket.

4.2.2 T*M

We also want to apply our findings to the setting of [11,|12], the R frame.
There, all the fields are naturally defined on the cotangent bundle, instead of
the tangent bundle. Thus, we also want to equip 17" M with a Lie algebroid
structure £ associated to an O(d, d) field redefinition.

This time, however, it’s not quite clear what our anchor is supposed to be,
but we can impose the following condition: On T'M, we required the O(d, d)
transform of the standard metric to be its pullback to the Lie algebroid; for
T*M, a metric, i.e. a positive definite bilinear form for one-forms, would be
G~!. Thus, we will require that the Lie algebroid metric g is given as the
O(d, d) transformed G~*:

_ —1\? -1 _ _ t _
g=0p'Gp= (7 ‘G (v ) =7'Gly = (Gly) GGy, (4.32)
SO
p=G 1. (4.33)
Again, we should be aware of the index structure of the involved maps:
p: B —=TM P
phT*M — E* P
p ' :TM — E ().
—1\¢t * * -
i sTM (5,
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Just as before, the bracket is already determined because p is invertible, and
we can basically just copy the formula:

(5,3 = p7" ([p(s), p(1)]1) = (4.34)
=G2°

= [56D%t0 = tsDs0+ 545 (071) ., (D" = D70 + g " [en, ") |

where s = s,e%,t = t,e® € I'(T*M) and G)° are again called the structure
constants.
The partial derivative also has the same formula as before:

D®f := Deaf = p*8y = (p')™ s (4.35)

We now described two ways to find Lie algebroids associated to non-geometric
frames, and we should find out whether they provide the same geometric
descriptions. Fortunately, the two constructions are related in the following
way: R

pr = pr+ - G, (4.36)

where G is the O(d, d) transformed metric G = 4G (y~!)". This also implies
that the brackets are related:

(s, tl7ar = p7* (lpr(s), pr()]1) = G pr- <[pT*(éS)’pT*(@t)L> =

R PR (4.37)

— G ([Gs, Gt]T*M) .
So as long as we use the transformed metric G to relate our quantities, all
geometric objects of both constructions can be identified.

R frame

The main objects of the R frame |111|12] of section [3.2] live on the cotangent
bundle, so the T*M Lie algebroid provides the natural setting to describe it.
We can, however, also use the equivalent T'M algebroid.

So in this section we will consider three Lie algebroids: The standard tangent
bundle (T'M, |-, -], id), the tangent bundle with the Lie algebroid structure
121 (TM, [, |lrm, pr), and the cotangent bundle[£.2.2] (T*M, [+, I, pr+).

The O(d, d) matrix realizing the transformation to our frame is

hy = (2]% :@ , (4.38)
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where 3 = B~!. This gives

vr=—-1—(G—-B)=—-GB. (4.39)

Thus, the anchors are
pr =G =GB, (4.40)
pre = — . (4.41)

They induce the partial derivatives
Dof = pr(ea)f = =B GP0,f,
Df = pr(e) f = "0, f.

Note that e* € I'(T*M) is the dual basis to e, € I'(T'M), and we’ll assume

[ea, 61,][, =0.
The brackets are

and

[S, t]T*M - [SbBbcacta - thbCacSa + QSCtd (B_1> B[dfafé‘d}e] e”.

Playing around with the terms of [s,t|7«y, we find that that the bracket
coincides with the H-twisted Koszul bracket (up to a sign):

For more details, see [12].

Remark: Non-holonomic bases & Non-geometry

We still have to consider an important question: Can these non-geometric
effects really not be explained by geometry? Or, more precisely: Can we re-
alize these non-geometric Lie algebroids by simply choosing a non-holonomic
basis of the tangent bundle? So we want to find a basis é, € I'(T'M) such
that

[€a, €] = Fgpée. (4.43)

But a simple calculation shows that this can be realized by

é. = peeq. (4.44)
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Equivalently, we could replace a generic O(d, d) transformation

h:(iz) (4.45)

hy = (’3 ( A?)_l) (4.46)

A= (" +v(G+B), (4.47)

by a diffeomorphism

with

and because the anchor would not change, the geometry would be the same.
But the difference to a 'normal’ diffeomorphism is that it explicitly depends
on the metric and the B-field; thus, we need a generalized geometry to de-
scribe these frames.



46

CHAPTER 4. LIE ALGEBROID GEOMETRY



Chapter 5

Supergravity on Lie algebroids

In this chapter, we will finally work out a supergravity action on Lie alge-
broids that are isomorphic to the tangent bundle. Our constructions will not
depend on any specific algebroid, like a Dirac subbundle of T'M & T*M; they
can be used in more general settings.

We will start with a general Lie algebroid (E,[-,|g, p) over a Riemannian
manifold (M, G), where p is invertible and G € T'(T*M gy, T*M) is a
positive definite metric on M.

Then we have already seen in (4.8)) how we can pull back the metric G from
the tangent bundle to a metric § € I'(E* Qg £*) on the Lie algebroid:

g(s,t) = G(p(s), p(t)) Vs, t € T(E). (5.1)
Locally, we can write this formula as
gaﬁ = paapbgGab. (52)

Note that the p-factors on the right hand side are transposed.

For this metric, we can determine the Levi-Civita connection v by the Koszul
formula (4.12). By using the anchor properties, the definition of §, and the
non-degeneracy of the metric, we find that

Vit = p" (Vpwp(t))  Vs,t € T(E), (5.3)
where V is the Levi Civita connection with respect to G. To find the corre-

sponding formula for one-forms, note that for s,¢t € I'(E) and 7 € I'(E*), we
have

Dy(7(s)) = (6,57') (s)+ 7 (@w) , (5.4)

47
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and
Dy(7(s)) = Dy [((p71)"(7)) (p(s))] = p() [((p~")"(7)) (p(s))] =

= (Vo (p™H)'(7)) ok

=" (Vo (p™ ) (7

Combining these equations gives

(Ver) (5) = 2 (Vo0 (0™ () (5) (5.6)

for all s,t € I'(E) and 7 € ['(E™).
We can determine the Christoffel symbols I'g of V by using (5.3)):

Fg’Y = <p_1)ac paﬂpb’)’rgb + (p_1>ab paﬂaapb'y' (57)

Because the curvature and torsion tensors are defined via the connection and
the bracket, we can easily see that

fzgs, tyu = p~H (R(p(s), p(t))p(u)) , (5.8)
T(s,t) = p~  (T(p(s), p(t))), (5.9)

where s,t,u € I'(E), R and T are the torsion and the curvature of ¥V and R
and T are torsion and curvature of V. Thus, T vanishes (but remember that
this doesn’t imply that the Christoffel symbols fgv are symmetric in ((,7)
— this is, in general, not the case).

Because R is C°°(M )-linear, we find the local relation

Ry = (p7")%ap" 800" R bea- (5.10)

Notice that there seems to be a pattern that fits the following, more general
picture: Given an (r, s)-tensor-field A%, on (Q"TM) @ (Q*T*M),
we can define an (r, s)-tensor-field on (Q)" F) @ (Q° E*) as follows:

A\mm%ﬁl..ﬂs _ (p71)a1 e (pﬂ)ar arpblﬁl .. 'PbsgsAal"'arbl...bs- (5.11)

We will call such a field A a p-tensor.

As we have already seen, the covariant derivatives on the tangent bundle and
on the Lie algebroid are compatible, so the above map also works for deriva-
tives of fields, in the same way that we observed for the exterior derivative.
For such a p-tensor, it’s a simple exercise to show that all full contractions of
(r, s)-tensors on FE are equal to the contractions of the corresponding (r, s)-
tensors on T'M. An example for this is the Ricci scalar:

R= "R, = G*R%,. = R. (5.12)
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5.1 Gauge fields

As we discussed in chapter [3] the transformation of the B field is a bit more
complicated than just applying the anchor. To write down the Kalb-Ramond
field B on T'M as a pushforward of a two-form on E, we have to define this
two-form in the first place. Because B € I'(T*M \T*M), we want to write

B=((p")'A(p))0b (5.13)

for a b € T'(E* \ E*). For example, in the TM frame, we have p = (y7!)! =
t
A%, and

B=4"1(3" - g)(3 )" (5.14)

So in this case, we would have
b=A/0" —g. (5.15)

We want to investigate the behavior of the Lie algebroid Kalb-Ramond field
b under gauge transformations B — B + d§ for a £ € I'(T*M). Naively, we
would say that

(A(p™1)") (d&) = d ((p~)"¢) (5.16)

implies that the gauge symmetry corresponds to
b— b+ dg, (5.17)

for a & € I'(T*M), but unfortunately, in the situations we will consider, the
anchor p itself depends on the B field as well; this will add a correction
term A¢ to the gauge transformations of every field that’s pulled back to the
Lie algebroid. We will avoid these complications by only considering gauge
independent objects; and if we define the 3-form

O = dgb, (5.18)
we find that
@aﬁ'y = paapbﬁpc'yHabca (519)
and
% = Oy Oscc §7°97 7" = H” (5.20)

is invariant under gauge transformations of the B field.
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5.2 Constructing the action

We have now defined all the ingredients we need to write down the super-
gravity action in Lie algebroid frames. Consider the standard NS-NS action
on T'M:

1 1
S