ATLAS-CONEF-2020-053
29 October 2020

@)

ATLAS CONF Note
ATLAS ATLAS-CONF-2020-053 <7

EXPERIMENT
28th October 2020

Interpretations of the combined measurement of
Higgs boson production and decay

The ATLAS Collaboration

First combined measurements of the Higgs boson production and decay using up to 139 fb~! of
proton—proton collision data at v/s = 13 TeV recorded by the ATLAS experiment have recently
been performed. This note presents two interpretations of these combined Higgs boson
measurements. Measurements targeting Simplified Template Cross Sections in different decay
channels are reparameterized in terms of the impact of Standard Model Effective Field Theory
(SMEFT) operators and constraints are reported on the corresponding Wilson coefficients.
Measurements are furthermore interpreted in several MSSM benchmark scenarios, resulting
in constraints on the MSSM parameters (m 4, tanf) that are complementary to those obtained
from direct searches for additional Higgs bosons. For all interpretations, no significant
deviations from the Standard Model are observed.

© 2020 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.



1 Introduction

Following the discovery of the Higgs boson (H) [1-6] by the ATLAS [7] and CMS [8] experiments, its
properties have been probed in proton—proton (pp) collision data produced by the Large Hadron Collider
(LHC) at CERN. The ATLAS collaboration recently presented first results on the combination of Higgs
boson production and decay rate measurements with up to 139 fb=! of 13 TeV pp collision data [9], collected
during LHC Run 2 in the years 2015 through 2018.

Two interpretations of these measurements are presented here, based on an Effective Field Theory (EFT)
framework of the Standard Model (SM), as well as a minimal supersymmetric extension of the Standard
Model (MSSM).

Effective field theories provide a model-independent approach, systematically improvable with higher-order
perturbative calculations, to parametrise the effects of candidate theories beyond the Standard Model (BSM)
that reduce to the Standard Model at low energies. In SM Effective Field Theory (SMEFT), the effects of
BSM dynamics at energy scales A that are large in comparison to the Higgs vacuum-expectation-value v
(A > v) can be parametrised at low energies, £ < A, in terms of higher-dimensional operators built up
from the Standard Model fields and respecting its symmetries. Measurements of (fiducial) cross-sections
allow constraining of the coefficients associated to each SMEFT operator, and hence put constraints on
new physics at some fixed scale A, for which A = 1TeV is used throughout this note. The methodology
employed here is quite similar to the one used by the individual Higgs analyses, especially H— ZZ*— 4¢ (£
=eoru) [l0]and H — bb(VH,V =W or Z)[11, 12]. A similar combined measurement has previously
been performed on a subset of the data [13], but the measurement technique has been significantly developed
in Ref.[14]. Its application to the combined measurements of the H — bb (VH), H— ZZ*— 4( and
H— vy channels comes with specific challenges, linked to the search of the set of operators that can be
effectively probed in the combination, which can be different from the union of operators probed by each
of the individual analyses, due to different correlations between production and decay of these channels.

Conversely, in the MSSM approach a combination of Higgs boson measurements in various decay channels
is used, including besides H — bb (VH) [11], H— ZZ*— 4£[10] and H— vy [15], vector-boson-fusion
production of H — bb (VBF) [16] and H — bb (17H) [17], as well as H > WW* [18], H — 77 [19],
H — multilepton (¢H) [20], and H — puu [21]. These measurements are interpreted in a model-
dependent way, assuming that the observed Higgs boson is the light CP-even Higgs boson of the minimal
supersymmetric extension of the Standard Model. In the past years, measurements were interpreted [22]
in the hMSSM model [23], for various values of the mass of the neutral CP-odd boson A (m,), and the
ratio of the vacuum expectation values of the Higgs doublets (tan S = v,/v;). The use of this model as a
benchmark MSSM scenario to study constraints in the (M4, tan §)-plane suffers from limitations in regions
with small My, or large tan 83, or both low M4 and low tan 8. Here, six more recent benchmark MSSM
scenarios [24, 25] are tested, including two that were especially designed for the low tan 8 (<10) regime.

The note is structured as follows: Section 2 gives an overview of the combined Higgs couplings analysis
that is used as a baseline to derive the results presented. Section 3 describes the general approach of
deriving limits on Wilson coefficients, while Section 4 details the specific choices of Wilson coeflicients
and their combinations probed in this analysis as well as the corresponding results. Similarly, Section 5
describes the approach taken to interpret the Higgs coupling measurements in the context of the MSSM,
while Section 6 presents the resulting limits in the (M4, tan §)-plane. Finally, Section 7 presents the
conclusions.



2 Combined measurement of Higgs boson production and decay

The results of this note are based on pp collision data collected by the ATLAS experiment! [26-28] in
the years from 2015 to 2018, with the LHC operating at a center-of-mass energy of 13 TeV. The decay
channels, targeted production modes and integrated luminosities of the datasets used in each analysis are
summarized in Table 1. The uncertainty on the combined 2015-2018 integrated luminosity is 1.7% [29],
obtained using the LUCID-2 detector [30] for the primary luminosity measurements.

Table 1: The decay channels, targeted production modes and integrated luminosity (£) used for each input analysis of
the combination. The references for the input analyses and information about which measurements they enter are
also provided. The definition of the STXS stage of the signal yield parametrization is detailed in Section 2.2.

Analysis Integrated Reference STXS Usedin Used in
lumi (fb~1) stage. MSSM  EFT
H— yy (all production modes) 139 [15] 1.2 v v
H— ZZ*— 4¢ (all production modes) 139 [10] 1.2 Ve Ve
H — bb (VH) 139 [11] 1.2 v v
H—> WW* (ggH, VBF) 36.1 [18] 1.0 v -
H- 11 (ggH, VBF) 36.1 [19] 1.0 v -
H — bb (VBF) 24.5-30.6 [16] 0 v/ -
H — bb (ttH) 36.1 [17] 0 v -
H — multilepton (ttH) 36.1 [20] 0 v -
H — pu (all production modes) 139 [21] 0 v -

2.1 Simulation of the Standard Model signal

For each Higgs boson decay mode, the used branching fraction corresponds to theoretical calculations at
the highest available order [31].

All analyses except H — bb (VBF) use a consistent set of Higgs boson signal samples which is described
in the following paragraphs. The samples used for H — bb (VBF) are described separately at the end of
this section.

Higgs boson production via gluon-gluon fusion (ggH) is simulated using the Pownec Box [32-35]
NNLOPS implementation [36, 37]. The event generator uses HNNLO [38] to reweight the inclusive Higgs
boson rapidity distribution produced by the next-to-leading order (NLO) generation of pp — H + parton,
with the scale of each parton emission determined using the MiNLO procedure [39]. The PDF4LHC15
parton distribution functions (PDFs) are used for the central prediction and uncertainty. The sample is
normalized such that it reproduces the total cross section predicted by a next-to-next-to-next-to-leading-
order (N°LO) QCD calculation with NLO electroweak corrections applied [31, 40-43]. The NNLOPS

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The pseudorapidity

is defined in terms of the polar angle 8 as n = —Intan(6/2). Angular distance is measured in units of AR = ,/(An)z + (Ap)2.



generator reproduces the Higgs boson pr distribution predicted by the NNLO plus next-to-next-to-leading
logarithm (NNLL) calculation of Hres2.3 [44], which includes the effects of top- and bottom-quark masses
and uses dynamical renormalization and factorization scales.

The VBF and V H production processes are simulated at NLO accuracy in QCD using the Pownec Box [45]
generator with the PDF4LHCI15 set of PDFs, where the simulation of VH relies on improved NLO
calculations [46]. The VBF sample is normalized to an approximate-NNLO QCD cross section with NLO
electroweak corrections applied [31, 47-49]. The V H samples are normalized to cross sections calculated
at NNLO in QCD with NLO electroweak corrections [50, 51] and additional NLO QCD corrections [52]
for the gg — ZH subprocess [31].

Higgs boson production in association with a top—antitop pair is simulated at NLO accuracy in QCD using
the PowHEG Box generator with the PDF4LHC15 set of PDFs for the H— yy and H— ZZ*— 4 decay
processes. For other Higgs boson decays, the MADGRraPH5_AMC@NLO [53] generator is used with the
NNPDF3.0 set of PDFs. In both cases the sample is normalized to a calculation with NLO QCD and
electroweak corrections [31, 54-57].

In addition to the primary Higgs boson processes, separate samples are used to model lower-rate processes.
For the 36 fb~! analyses, Higgs boson production in association with a bottom—antibottom pair (bbH) is
simulated using MADGrAPHS_AMC@NLO [58] with NNPDF2.3LO PDFs and is normalized to a cross
section calculated to NNLO in QCD [31, 59-61]. The sample includes the effect of interference with
the ggH production mechanism. Higgs boson production in association with a single top quark and a
W boson (tHW) is produced at LO accuracy using MapDGRrAPHS_AMC@NLO. Finally, Higgs boson
production in association with a single top quark in the t-channel (tHg) is generated at LO accuracy using
MaDpGraPHS_AMC@NLO with CT10 [62] PDF sets. The tH samples are normalized to NLO QCD
calculations [31, 63]. For the 139 fb~! analyses, the PDF used for the bbH sample is CT10, and the single
top associated samples are produced at NLO accuracy in QCD using the NNPDF3.0NLO PDF set.

In the all-hadronic channel of the H — bb (VBF) analysis, the PowHeG Box generator with the CT10 [62]
set of PDFs is used to simulate the ggH and VBF production processes, and interfaced with PyTH1A8
for parton shower. In the photon channel of the H — bb (VBF) analysis, VBF and ggH production in
association with a photon is simulated using the MADGrRAPHS_AMC@NLO generator with the PDFALHC15
set of PDFs, and also using the PyTHIA8 generator for the parton shower. For both channels, contributions
from VH and ttH production are generated with PyTHiA8 generator with the NNPDF3.0 set of PDFs, and
with MADGrAPHS_AMC @NLO showered with HErRwiG++ and using the NLO CT10 PDF, respectively.

All parton-level events are input to PyTtHia8 [64] to model the Higgs boson decay, parton showering,
hadronization, and multiple parton interactions (MPI). The generators are interfaced to PyTHIAS8, using the
AZNLO and A14 parameter sets [65].

Particle-level events were passed through a GEanT 4 [66] simulation of the ATLAS detector [67] and
reconstructed using the same analysis software as used for the data. Event pileup is included in the
simulation by overlaying inelastic pp collisions, such that the average number of interactions per bunch
crossing reproduces that observed in the data. The inelastic pp collisions were simulated with PyTH1A8 using
the MSTW2008Lo [68] set of PDFs with the A2 [69] set of tuned parameters or using the NNPDF2.3LO
set of PDFs with the A3 [70] set of tuned parameters.



2.2 Signal yield parametrization

In all analyses listed in Table 1, the estimated contributions to the Higgs boson signal yield are separately
parametrized for every contributing permutation of Higgs boson production/decay mode, i.e. the likelihood
for each analysis region & is modeled as

L(Nelu'X.8) = Poisson (Nelsk(1'™~,0) + bi(6)) (1)

sk@,0) = Y X X Lx (0 X By () x €75(0), @)
,X

i,.X

where N is the observed event count, si is the expected signal count, £ is the integrated luminosity, u
is a scale parameter for the SM Higgs boson signal (o X B)é’l\)/([,MC used in the MC simulation with the
indices i and X enumerating the considered production and decay modes. Furthermore, e;;’X represents
the corresponding acceptances times efficiency, by represents the expected event count from background
processes, and 6 represents the ensemble of nuisance parameters that describe the systematic uncertainties
that originate from theoretical and experimental sources. Unlike the cross-section results presented
in Ref. [9], which only account for signal theory uncertainties in migration effects that occur at the
reconstruction level through the term €"-X (@), the scale factor formulation of Eq. (2) used here also accounts
for the effect of theory uncertainties on the inclusive signal cross-section via the term (o X B )g’l\)/(LMC(()).
For the analysis presented here, the scale factor uX is factorized as

ixX ol x BH=X 3)
(X Bgunc:

where o' and BY =X represent Higgs boson production cross sections and branching fractions respectively.
The Higgs boson production cross sections o= are parameterized at a minimum granularity of inclusive
production rates, labeled by LO process (i=ggH, VBF, . ..). A more fine-grained definition of Higgs boson
production cross sections additionally partitioned in particle-level kinematic regions, e.g. in bins of p;I,
allow the ensemble of parameters o to describe deviations in differential distributions, with the level
of detail controlled by the number of particle-level regions i that are defined. Conversely, the precision
with which this more fine-grained ensemble of parameters o' can be measured depends on the design
of the analysis as well as the amount of available data. Analysis regions k, defined at the reconstruction
level, are typically chosen to match the particle-level regions i as closely as possible, in order to reduce
the extrapolation uncertainty. As reconstruction-level selections do generally not correspond exactly to
particle level regions, multiple particle-level regions i will contribute to the signal yield si of Eq. (2).

For an interpretation of the measured Higgs boson data in a particular physics model (SMEFT, MSSM)
with parameters a, the original model parameters o' and B =X are replaced with functional expressions
that parameterize the predictions of the model, o (@) and B =X (@), so that the likelihood of Eq. (1) is
directly expressed in the parameters a, and constraints on these parameters can be directly inferred from the
modified likelihood expression. While the original parameters o~ no longer appear in the reparameterized
expression, the granularity of the definition of the regions that defined o will continue to be a relevant
factor in the achievable level of detail in the parameterization in a.



For the analyses presented here, regions in Higgs boson production phase space known as simplified
template cross sections [31, 71-73] (STXS) are used. STXS regions are defined in terms of the kinematics
of the Higgs boson and, when they are present, of associated jets and W and Z bosons, independently of
the Higgs boson decay process. Partitions are chosen according to three criteria: sensitivity to deviations
from the SM expectation, avoidance of large theory uncertainties in the corresponding SM predictions, and
approximately matching experimental selections so as to minimize model-dependent extrapolations with
respect to e.g. the acceptance factor of the STXS bins. All STXS regions are defined for a Higgs boson
rapidity yg satisfying |yg| < 2.5, corresponding approximately to the region of experimental sensitivity.
Jets are reconstructed from all stable particles with an average lifetime greater than 10 ps, excluding the
decay products of the Higgs boson and leptons from W and Z boson decays, using the anti-k, algorithm
with a jet radius parameter R = 0.4, and must have a transverse momentum prje; > 30 GeV. Higgs boson
production is first classified according to the nature of the initial state and the associated particles, the
latter including the decay products of the W and Z bosons if they are present. These classes are: t7H and
tH processes; gqqg — Hqq processes, with contributions from both VBF production and quark-initiated
V H production with a hadronic decay of the gauge boson; V H production with a leptonic decay of the
vector boson (V(lep)H), including gg — ZH production; and finally the ggH process. The last process
is considered together with gg — ZH, Z — gg production, as a single gg — H process. The bbH
production mode is modeled as a 1% [31] increase of the gg — H yield in each STXS cross section,
since the acceptances for both processes are similar for all input analyses [31]. Theory uncertainties for
the gg — H, gq — Hqq, and ttH processes are defined as in Ref. [10, 15], while those of the V(lep)H
process follow the scheme described in Ref. [74].

For each production mode, multiple levels of progressively more detailed partitioning are defined with
STXS stages [31]. The most detailed Stage 1.2 splitting of the STXS framework is implemented by the
139 fb~! measurements of H — bb (VH), H— ZZ*— 4¢ and H — 7y presented in this note, which allows
for their use in the EFT interpretation analysis. However, as the individual analyses provide only limited
sensitivity to some of the Stage 1.2 categories, some of these categories are merged for the combined EFT
analysis. The mapping of the merged EFT regions to the STXS Stage 1.2 regions is detailed in Table 2,
and the corresponding measured signal strengths and their correlations are shown in Fig. 1 and Fig. 2
respectively. For the measurement bins defined by merging several bins of the STXS Stage-1.2 framework,
the efficiency and acceptance factors "X are determined using SM predictions for the relative fraction of

k
each Stage-1.2 bin. SM uncertainties in these fractions are taken into account.

For the MSSM interpretation only inclusive cross section predictions are available, hence STXS Stage 1.2
regions do not represent a useful level of detail for this interpretation. Therefore, for the MSSM analysis all
STXS-1.2 cross sections are merged into the six Stage-0 cross sections (as defined in the first column of
Table 2.) Therefore, the MSSM interpretation can include six additional Higgs boson analyses that are only
available in more coarse-grained STXS levels (Level 0 and 1.0), as shown in Table 1.
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Figure 1: Measured signal strength for each STXS category entering the EFT analysis. The corresponding categories
are defined in Table 2. Input data taken from Ref. [9]. The probability to obtain the observed data under the SM
hypothesis (psar) is 91%.
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Figure 2: Correlation matrix corresponding to the measurements shown in Fig. 1. Input data taken from Ref. [9].



Table 2: Definition of Simplified Template Cross Sections at Stage-0 and Stage-1.2, and their mapping to the merged
regions used for the EFT reinterpretation analysis. All dimensional quantities are in units of GeV. All bins sharing
the same label are merged.

STXS Region STXS Region H—-vyy H—ZZ*—4¢ H — bb (VH)
Stage-0 Stage-1.2
Njes = 0, pH <10 Njats = 0, pi <10 Njes = 0, pH <10
Njeis = 0, 10<pH Njeis = 0, 10<p¥ Njets = 0, 10<p¥
Nies = 1, pH <60 Nies = 1, pH <60 Niegs = 1, pH <60
Nigis = 1, 60<pf <120 Nigis = 1, 60<p <120 Niess = 1, 60<pH <120
Niegs = 1, 120<pH <200 Niws = 1, 120<pH <200 Niets = 1, 120<pH <200
Niews > 2, m;;<350, pH <60 Niews > 2, mj;<350, p <120 Nies > 2, pH <200
Niws > 2, m;;<350, 60<pl! <120 Niws > 2, m;;<350, pi <120 Nis > 2, pH <200
T Niews 2 2, mj;<350, 120<py <200 Niews > 2, m;;<350, 120<pH <200 Njes > 2, p <200
&0 Nies > 2, 350<m;;<700, pH <200, i <25 Niews > 2, 350<m;;, pH <200 Nies > 2, pi <200
Niess = 2, 350<m;;<700, pH <200, 25<pl 7/ Niess = 2, 350<m;;, pH <200 Niews > 2, pi < 200
Niess = 2, 700<m;;, pH <200, pi#/ <25 Niets > 2,350<m;;, pH <200 Niess = 2, pH < 200
Nieis 2 2, 700<mj;, pH <200, 25<pi/ Nieis > 2, 350<m;, pH <200 N 2 2, pH <200
200<pH <300 200<pH <300 200<pH
300<pH <450 300<pH <450 200<pk
450<pll <650 450<pl! 200<pk
650<pi! 450<pi! 200<p¥
Niets =0 Njets < 1
Njels =1 Njels <1
! Niets > 2, mj;<60 Niets 2 2, mjj<60 Vv 120<m;;<350 VBF
< = Niets = 2, 60<m;;<120 Niets = 2, 60<m;;<120 Niets = 2, 60<m;;<120
T R Niets = 2, 120<m;;<350 Niets = 2, mj;<60 v 120<m;; <350 VBF
T Njess = 2,350<m;; 200<p! Njews = 2,350<m;;,200<p  Nigs = 2,350<m;;, 200<p!!
s EE Niess = 2, 350<m;;<700, pH <200, p7 <25 Ny = 2, 350<m;;<700, pH <200 VBF
z Nies > 2, 350<m;;<700, pH <200, 25<pH7 Nigyy > 2, 350<m;;<700, pH <200 VBF
Niess = 2, 700<m;;, pH <200, p¥7 <25 Niess = 2, 700<m;;, pH <200 VBF
Niess = 2, 700<m;;, pH <200, 25<ph/ Niets > 2,700<m;;, pH <200 VBE
. PY <75 (Njets = 0/ Niets = 1/ Nigys > 2) WH py <150 VH lep WH py <250
§ 5 75<pY <150 (Njets = 0/ Njets = 1/ Niets 2 2) WH pY <150 VH lep WH pY <250
1 ; 150<pY <250 (Njes = 0/ Niets = 1/ Njegs = 2) WH 150<py VH lep WH pY <250
Sl 250<py <400 (Njets = 0/ Njets = 1/ Njegs > 2) WH 150<py VH lep WH 250<py
’ 400<py (Niets = 0/ Niets = 1/ Njggs > 2) WH 150<py. VH lep WH 250<py.
PY <75 (Njets = 0/ Niets = 1/ Nies > 2) ZH pY <150 VH lep ZH pY <150
N 75<p¥ <150 (Njews = 0/ Njews = 1/ Nis > 2) ZH pY <150 VH lep ZH pY <150
? é 150<pY <250 (Niets = 0/ Niets = 1/ Njeys > 2) ZH 150<p¥ VH lep ZH 150<p¥ <250
T 250<py <400 (Njets = 0/ Njets = 1/ Njegs > 2) ZH 150<pY VH lep ZH 250<pY.
i 400<py (Niets = 0/ Nieys = 1/ Njgts > 2) ZH 150<pY. VH lep ZH 250<pY.
PY. <75 (Njets = 0/ Niets = 1/ Nies > 2) ZH pY <150 VH lep ZH pY <150
§ s 75<pY <150 (Njews = 0/ Niets = 1/ Nigs = 2) ZH p¥ <150 VH lep ZH p¥ <150
13 150<py <250 (Njets = 0/ Njets = 1/ Nigts 2 2) ZH 150<p¥ VH lep ZH 150<p¥ <250
® % 250<400 (Njeis = 0/ Njets = 1/ Njegs = 2) ZH 150<py VH lep ZH 250<p¥
; 250<py (Njets = 0/ Niets = 1/ Nigys > 2) ZH 150<pY. VH lep ZH 250<pY.
pH <60 pH <60 t(H
60<pi <120 60<pH <120 1(0OH
s 120<pH <200 120<pH <200 1(OH
200<pH <300 200<pH 1(OH
300<pi 200<pH t(H
bbH merged with ggH
tH tH t(OH




3 Methodology of Effective Field Theory interpretations

Standard Model Effective Field Theory provides a theoretically elegant language to encode the modifications
of the Higgs properties induced by a wide class of beyond-the-SM models that reduce to the SM at
low energies, and is systematically improvable with higher-order perturbative calculations. Within the
mathematical language of the SMEFT, the effects of BSM dynamics at high energies A > v, well above the
electroweak scale v = 246 GeV, can be parametrised at low energies, E < A, in terms of higher-dimensional
operators built up from the Standard Model fields and respecting its symmetries such as gauge invariance

Nag P Nas b g
.ESMEFT=£sm+ZA—120i()+ZA—J40](.)+..., 4)
i J

where Lgy is the SM Lagrangian, Ol.(é) and O® represent a complete set of operators of mass-dimensions
d = 6and d = 8, and ¢}, b; are the corresponding Wilson coeflicients. Operators with d = 5 and
d = 7 violate lepton and/or baryon number conservation and are not relevant for Higgs physics. The
effective theory expansion in Eq. (4) is robust, fully general, and can be systematically matched to explicit
ultraviolet-complete BSM scenarios.

In this analysis the “Warsaw” basis [75] is used, which forms a complete set of all Ol.(6) operators in
Eq. (4) allowed by the SM gauge symmetries. This basis is widely used in EFT measurements in various
fields of particle physics and the usage of a common basis will allow easier future combination of these
measurements. Contributions of operators of mass-dimension d = 8 are not considered. The goal of the
analysis is to constrain the d = 6 Wilson coeflicients that correspond to operators that either directly or
indirectly impact Higgs boson couplings to SM particles [14, 76]. Table 3 lists the operators considered
in this analysis, and their corresponding Wilson coefficients c;. Here, all CP-even d = 6 operators were
considered for which the A~2-suppressed contribution to any of the STXS categories measured in Figure 1
exceeds 1%o with respect to the SM prediction at ¢; = 1. In this analysis, a value of A = 1 TeV is assumed,
coeflicients for alternative values of A = X can be trivially obtained through a scaling with a factor
(X/1TeV)2. All complex-valued Wilson coeffients, notably c,w, c,G, cup and ¢, g in this analysis, are
used with J(¢;) = 0.

3.1 Simulation of the impact of SMEFT operators

The impact of the d = 6 SMEFT operators listed in Table 3 has been computed with the UFO model of
Madgraph [53], using lowest order calculations in QCD for all production and decay modes.

Calculations for Higgs production modes with tree-level diagrams have been performed with SMEFTsim [77],
under the assumption of a U(3)> flavour symmetry (which corresponds to the unbroken global flavour
symmetry present in the SM outside the Yukawa sector), and providing the Fermi constant Gg, and the Z
and W boson masses as input. Cross-sections have been calculated at NLO accuracy in QCD for ggH,
gg—ZH and H — gg with SMEFTatNLO [78] and at NLO accuracy in QED for SMEFT-SM interference
terms in H— yy [79], also providing mw as input. SMEFT modifications to the background processes in
the included analyses are not considered.

In the simulation, kinematic cuts on the minimal (b-)jet transverse momentum of pt > 20 GeV have
been imposed. Furthermore, for the Higgs boson decay a requirement of AR > 0.05 between two jets
or two leptons is imposed in order to avoid divergences in the matrix element calculation. Additional
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Table 3: Wilson coefficients c¢; and corresponding d = 6 SMEFT operators O; used in this analysis. Corresponding
example diagrams are shown in Tables 17 and 18 in Appendix A.

Wilson coeflicient Operator Wilson coefficient Operator
CHD (H'H)O(HTH) CuG (Gpo™ TAu,)H GL,
CHDD (H'D*H) (HD,H) Cuw (oo u ) H W,
f A A ~
CHG H TIiGva 1 CuB (épo"”ur)H Byv
4 - -
CHs HH B B ¢ USARRZIN!
cHw HOH Wi W . (@pYud)@y"as)
CHWB H't'HW,, B" c‘q'”q (GpyYut ) (Gsy T qr)
Cott (H'I'H)(l_perH) qq 4pYuT qr)\qsYy q:
, ~ 71 7. yH
Cont (H'H)(Gyu, 7) Cqq (GpYua:)(@ry*qs)
_ 31 = I = A
CaH (H[H)(q— d H) qu (qP’YMT qr)(Qr?’ T qS)
p=r - —
= - ¢ (dpyuur) (s yHu;)
‘i (LDt (1) & ) )
o - uu pru r N
i (H'ED  H) (pTiy" i) e (Gp ) iy uy)
D 5 7
CHe (H'i gum(ew“er) ) (itp yu T Auy ) (dsy*TAdy)
C(ng (H'i D . H)(Gpy"qr) Cg; <Lip7yTA(fIr)(ﬁsy'uTAut)
-H - —_ =
By (H'i D] H)(GpT"y"qr) Cou (GpyuT?qr)(dsy*TAdy)
CHu (H'i'D  H)(ipy ) cw KWl w ke
2 7 B C
CHd (H'i D ,H)(d,y"d,) cG fABCGY G G"

generator-level cuts are listed in Table 9 in Appendix A. For all events PyTH1A8 [64] is used for the
simulation of parton showering, where Higgs decay is based on the Higgs width from Madgraph. A
matching is performed to remove phase space overlap between the jets from the matrix element and the
shower. The CKKW-1 algorithm is used for all tree-level processes, with a matching parameter of 30 GeV,
whereas the MLM algorithm [80, 81] is used for loop-induced processes, in particular ggH. The Rivet
program [82] with the HiggsTemplateCrossSections [83] routine is used to analyse the simulated
events, compute high-level kinematic quantities and classify the events according to their STXS bin.2

The STXS cross section predictions for a specific process, calculated as described above, are simulated in
three independent parts:
OSTXS = OSM + Cint + OBSM (5)

where osy is the SM cross section, oy, describes the interference between the SMEFT operators (BSM
physics) and SM operators, and ogsym is the cross-section involving exclusively SMEFT operators. When
considering only d = 6 SMEFT operators, it follows from Eq. (4) that o, consists of terms involving
a single d = 6 SMEFT operator, suppressing each term by a factor A=2, and that o-ggy contains terms
involving products of two d = 6 SMEFT operators, suppressing each term by a factor A™*. For this reason
the impact of the oggym term is generally expected to be small, though its impact may still be non-negligible

2 The Rivet al gorithm has been modified to classify events in which a Higgs boson and two leptons arise from the same production
vertex as VH production events. This modification ensures the proper classification of events with leptons from off-shell V
decays, since MadGraph is only saving on-shell intermediate particles. Contributions from off-shell V bosons are small in the
SM, but can be enhanced by SMEFT operators.
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in certain regions of phase space, €. g. when energy scales are of order A.

The lowest-order cross-section terms generated by d = 8 operators that involve interference between
SM and d = 8 SMEFT operators are also suppressed by a factor A™*. As no complete calculations are
available yet for d = 8 operators, their magnitude relative to ogsm, which is suppressed at the same order, is
unknown. However, SMEFT interpretations will be presented both with and without the oggy contribution
to give a general indication of the sensitivity of the analysis to A~ terms.

To reduce the impact of the limited QCD calculation order of SMEFT operators, the parametrisation of the
predicted cross section is computed as a relative correction to a SM prediction that is computed at the
highest available order for each process:

(N)LO (N)LO
(NNNLO (1 N Tint 9Bsm )

(6)

OSTXS = Ogy ~Lo T Lo

SM Tsm
This calculation strategy assumes that the correction to the cross section from SMEFT operators is
comparable at LO and higher orders [84].

Observable cross-sections are further modified by the impact of SMEFT operators on Higgs decay branching
fractions. Since the Higgs boson is a narrow, scalar particle, and only on-shell production is considered in
this analysis, its production cross section and decay width factorise. The impact of SMEFT operators on
production and decay therefore also factorise and can be derived independently. Thus, the cross section for
a given STXS region i and a given decay mode H — X is

( ) FH—)X FH—)X F]?S?/[X
. . . . . .
(oxB)=X = of x BH=X = Ogm + Tine + Tpsm ) X = @)
H H , TH
F + 1—‘mt + 1—‘BSM
Factorising the SM prediction, to allow the use of Eq. (6), the expression becomes
. ) l—-_I-I—>X rH—)X
O—l U_l 1 + l;-lll—>X + }ilsgx
iHoX i HoX int,(N)LO BSM,(N)LO I'g I's
(oXB) = (0XB) g\ (N)NLO (1 i T ) 1-H 1—~H . (®)
SM,(N)LO SM,(N)LO 1+ o+ 3

SM FH
where the ratios ojne/0sm and Iy /T'sm have a linear dependence on SMEFT operators and are suppressed
by a factor A2, and the ratios o-gsm /0 sy and T'gsm/T'sm have a quadratic dependence on SMEFT operators
and are suppressed by a factor A™*. In the analysis these ratios are parametrised as

ol , ol ,
L= " AT BM = ) Bicjex )
0.1 joJ ol jk =
7 SM  Jjk
H—>X Hox H—>X HoX
mt re - BSM -
FHox ZA G X Z ¢jcr (10)
ra H
int _ r# BSM _ r#
=LA G T = DBl e an
SM SM Tk

where all A; and Bj; are constant factors obtained from simulation that express the sensitivity of the
analysis to the operators O; that correspond to the Wilson coefficients ¢;, and indices j, k run over all

12



non-negligible operators.

From Equations (8)-(11) two statistical models are constructed for the interpretation of the data: a fully
linearised variant that only considers terms suppressed by up to a factor A~2, and a quadratic variant that
considers all available terms, including those with suppression factor A™*.

3.2 Statistical model with linear terms

In a scenario where A~*-suppressed contributions are ignored, the predicted signal event count can be
explicitly linearised as function of the Wilson coefficients c;. Ignoring all A~*-suppressed BSM terms in
Eq. (8), and using the parametrisation of Eq. (9)-(11), the expression for the cross-section reduces to

. ]—'I—Il—>X
OJ + 1In-IHX
iH-X _ i, H—X int,(N)LO Fom
(oxB) = (0XB)g\ (iNNLO X (1 t X S (12)
SM,(N)LO 1+
T
SM

H—-X
L+ S A7 g

_ ) 7
(oxB):H=X  sl1+ ) AT | x| — |, (13)
SM,((N)N)LO Zjl joc 1+ A}"ch
Z

A Taylor expansion of the ratio expression in Eq. (13) results in a fully linearised expression for terms of
order A2,

L H-X  _ i H—X i rH-x rH -4
(OxB)I, = (oxB)g Ko X (1 + Z AZicj + Z AT e - Z Al c]-) +0 (A™)(14)
7 7 7

. N . H-X H _
(XB) st oo X (1 n Z (A;." + AT AL ) cj) +0 (A 4) , (15)
7

where all higher order terms from the expansion are suppressed by power A~ or beyond. Fig. 3 visualises
the linear scale factors A}'f and (Al."HﬁX - A;H) for the relevant SMEFT operators associated to ¢; on the
STXS cross-sections and branching fractions. Using Eq. (15), the signal strength modifier for each analysis
region k is computed as

i, H—>X
X _ (O—XB)SMﬁ—A*2 (16)

L
a (oXB)smMc
It is assumed that the systematic uncertainties assigned to the acceptance factors e;'(’x that multiply "X
in Eq. (2), arising from theory uncertainties which are fully taken into account in the SM cross-section
prediction, cover the possible acceptance changes induced by SMEFT operators in Higgs production
through the full validity range of the SMEFT model. The use of this assumption is motivated by the
similarity of reconstruction-level analysis regions to STXS cross-section regions, which are designed to be
relatively insensitive to acceptance changes induced by SMEFT operators. The effect of SMEFT operators
on other observables used in the definition of the analysis regions, e.g through multivariate discriminants,
is assumed to be negligible.
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Conversely, the effect of SMEFT operators on Higgs boson decays can strongly affect the acceptance
factors ei’x , since decays are not limited to a restricted fiducial phase space in the STXS framework. The
four-body H— ZZ*— 4¢ analysis is significantly impacted by acceptance effects due to the explicit relation
of the analysis-level selection to m, and an acceptance correction factor developed in Ref. [10] is used as
an additional multiplicative factor in Eq. (16) for all analysis regions measuring H— ZZ*— 4¢ decays.
This acceptance correction is derived as a function of cgw, cgp and cywa, as only these are measured in
Ref. [10]. In principle, a dependence of this correction on c}‘}l and cy. is also expected, but is neglected in
this analysis as the overall sensitivity to these operators is small. The small non-linear effect that the use of
this acceptance correction has with respect to the assumed the linearity of Eq. (16) for H— ZZ*— 4( is

neglected. For all other Higgs decays, the acceptance effects are neglected.

3.3 Statistical model with linear and quadratic terms

Alternatively, inserting the parametrisation of Eq. (9)-(11) in Eq. (8), gives

H-X H-X
1+ 3 A e+ 2B cjex
= a7

H H
1+ AL cj+ZBrk CjCk
i k7

i H-X _ i, H->X o .. i ..
(OXB)gyp, x4 = (TXB)y oo | 1+ Z Ajlei+ Z Bjcick
J ik
a7
resulting in a prediction that includes all terms proportional to A™*, while also retaining the terms suppressed
by higher powers of A that arise in the ratio expression for the Higgs width. Assumptions made for this
model on acceptance factors for production and decay are identical to those for the linear model.

While the set of operators proportional to A~ considered in Eq. (8) is not complete, as terms expressing
SM interference with d = 8 operators are not considered, a comparison of results obtained with the linear
and quadratic statistical model will be indicative of the sensitivity of the measurement terms suppressed by
A4

Figure 4 illustrates the relative importance of the quadratic terms by comparing the impact c;A; + C?B i of
variations of coeflicients c; in the various STXS regions and decay rates when including only linear terms
Aj (shaded histograms) and when including both the linear and quadratic terms Bj; (open histograms).
The relative importance of the quadratic term increases linearly with the considered variation of c;, hence
chosen magnitudes of the variations do not only scale the shown impact, but also the relative magnitude of
the quadratic term. Figure 4 shows that the strongest impact of quadratic terms can be expected in the
high-pr regions of VH production for coefficients c}’;)q, c}gq, CHd»> CHy and in the tH channel for operator
cgy- Other regions that are subject to a moderately strong impact of quadratic terms are inclusive ggH
production for operators cys and ¢, i, and TH=YY for cyp, where in the latter case the impact is notably
negative.
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Figure 3: Impact of the most relevant SMEFT operators on the STXS regions and decay modes, relative to the
SM cross-section, under the assumption of the linearized SMEFT model. For all coefficients ¢; a unit variation is
considered, unless specified otherwise in the legend. To judge the experimental sensitivity to constrain the operators
from the data in the listed STXS regions, the statistical uncertainty on the corresponding regions (o) is shown in
the top panel. For columns corresponding to multiple STXSXBR regions, the shown uncertainty reflects the statistical
uncertainty on the average, under the assumption of uncorrelated statistical uncertainties. For presentational clarity,
the statistical uncertainty of low precision STXS regions is clipped in the plot. The full parametrisation can be found
in Tables 10 to 15 in Appendix A.

4 Constraints on Wilson coefficients of SMEFT operators

The aim of the EFT analysis is to obtain constraints on the Wilson coeficients ¢; through a maximum
likelihood analysis of the Higgs measurements expressed in the merged STXS Stage-1.2 regions shown in
Table 2, i.e. H—yy, H— ZZ*— 4¢ and H — bb (VH): all signal strength modifiers u*X of Eq. (2) are
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Figure 4: Comparison of the impact of the most relevant SMEFT operators on the STXS regions and decay modes,
relative to the SM cross-section, for the linearized SMEFT model (shaded histogram) and the linear+quadratic SMEFT
model (open histogram). For all coefficients c; a unit variation is considered, unless specified otherwise in the legend.
The variation shown for some c; differ from those shown in Fig. 3. To judge the experimental sensitivity to constrain
the operators from the data in the listed STXS regions, the statistical uncertainty on the corresponding regions
(07stat) 1s shown in the top panel. For columns corresponding to multiple STXSXBR regions, the shown uncertainty
reflects the statistical uncertainty on the average, under the assumption of uncorrelated statistical uncertainties. For
presentational clarity, the statistical uncertainty of low precision STXS regions is clipped in the plot.

directly expressed in terms of the coefficients c;:

. (exB):E=X (01 . .
. _ X _ SMEFT i,X i,.X
sk(ci,0) = ;X i R B X L X (XB)gy e (0) X €.7(6), (18)

with £, EZX(()) and @ as defined in Eq. (2), and where the signal cross-section (O-XB)QI\}/(IEFT(C]') is either
taken from the linear model of Eq. (15) or the quadratic model of Eq. (17). In all results presented in
this Section, the set of nuisance parameters 6 has been pruned, using an impact ranking technique, from
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0O(1000) down to O(700) nuisance parameters, which has an estimated cumulative impact on the estimated
systematic uncertainty of less than 1%.

The available data samples contain insufficient information to constrain all coefficients ¢; of Table 3
simultaneously, hence a standard numerical joint maximum likelihood estimation of this set of parameters
c¢; will not converge. As degrees of freedom left unconstrained by the data do not necessarily correspond
to individual coefficients c;, but may also be linear combinations }, j ajCjs the numeric estimation cannot
be made to converge by considering only an appropriate subset of c; in the estimation procedure, hence a
modified basis will be used for the analysis.

4.1 Sensitivity estimate and choice of measured parameters

To determine a modified basis ¢/ that can be estimated from the data, the SM expected covariance matrix
Vstxs of the measurement, expressed in the basis of cross sections (00X B)¢rxs» 18 analysed. The correlation
matrix Csrxs corresponding to the Vsrxs is shown in Fig. 2. From Vsrxs, the Hessian matrix VS‘TIXS is
obtained, and is rotated from the STXS basis ,ui’X to the SMEFT basis c;

-1 T -1
VomerT = P(i,X)—>(j) Vsrxs Pi.x)—)- (19)
The rotation matrix P(; x);), is based on the linearised SMEFT model of Eq. (15):

(20)

. H-X H . . .
where A;.T‘ , A; and A; are the constant factors obtained from simulation.

In the limit of Gaussian STXS measurements, the matrix VS‘I\}IEFT represents the Fisher information matrix
of its SMEFT re-parametrisation. An eigenvalue decomposition of the Fisher information matrix yields the
eigenvectors e; and their corresponding variances obtained from the eigenvalues, V(e;) = El.‘l. Figure 5
lists the eigenvectors and their corresponding eigenvalues obtained from the expected measurements and
accounting for observed values of nuisance parameters, ranked by eigenvalue and truncated to eigenvalues
A; > 0.01, corresponding to a truncation at an estimated uncertainty of o, < 10, well beyond the natural

validity range of the ¢; of EFTs of O(1).

From the ranking of Figure 5 and a survey of the sensitivity of the STXS regions to the Wilson coefficients
in the linearised model, as shown in Fig. 3, the following observations are made:

1. Parameter c‘;}q can be individually well constrained (ev-3). The sensitivity is driven by the

V H measurements, in particular H — bb (VH).

2. Parameters cyg, |cuc| and |c,p| are constrained by ggH and 17 H, while, ¢ ool ., e®

aq> €aq> €qq> Cuus € g5
Cqus Cqu» and ¢ are only constrained from ##H (and ¢, from tH) and affect the shape of the signal
in a similar way. Therefore, only one linear combination (ev-5) of them can be precisely estimated.
The most sensitive of these eigenvectors (ev-1,2) are a combination of ¢y and ¢, i, which are the

operators constrained strongest from ggH.

3. Parameters cgw, cgp and cgwp are primarily constrained from H— yy decay (ev-1). The direction
of ev-1 agrees at the percent-level with the predicted direction from the analytical calculation for
H— vy decay width, as well as with the direction defined by the coefficient C,,, of the SILH basis.
Weaker constraints on ¢,,w andc, g arise through a correlation with VH and VBF production (ev-2,3).
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Figure 5: Eigenvectors of the inverse EFT covariance matrix obtained from EFT propagation to the covariance matrix
Vstxs and with a significant (>0.01) eigenvalue A. This eigenvalue threshold corresponds to an approximate expected
uncertainty on that eigenvector of > 10.

4. A notable correlation exists between the weak constraints of 0}3 P c‘; ;» CHe and c‘” (ev-9,10). This

correlation has its source in the common measurement of most of these: H — bb (VH). For this
same reason also cg,, and cg 4 are expected to be correlated, and this correlation group also includes

cy , (€v-4). Based on these observations, ¢y, and ¢, are grouped, ¢y, and c;, are grouped, and

cHu, cgq and ch are grouped.

Furthermore, parameters cyn, cqg and |c.y| all act as a global cross-section scale factor, are hence
degenerate with a rescaling of all other ¢; and therefore fixed at to zero. Balancing the aims of easy
interpretability (each individual ¢; maps to a model parameter, or combinations of ¢; that arise in similar
processes map to model parameter ) and full decorrelation achieving numeric stability (each eigenvector e;
is a model parameter) , a new eigenvector decomposition in sub-spaces is constructed with guidance from
the above observations on the decomposition:

{ei} = e, )%

(1) 3) (€1)] (1) ®) (1) (8) @®)
CHG’ CMG7 CMH’ qq’ qu’ qq’ qu7 uu Cuu, Cud9 Cqu9 Cqu, qu’ CG} X

{

{

{caw, cHB, CHWB, CHDD» CuW > CuB, } X
{ (Iil)l’CHe} X

3)

{cgcnt %

{cHus CHas Chy, }-

The eigenvectors and values of the corresponding subspaces are listed in Table 4 and qualitatively confirm

the observations from the analysis of the full STXS covariance matrix. The final parameter set cJ’. constitutes

(3)

the marked entries in Table 4 plus ¢ Hy

basis is visualised in Fig. 6.

and the rotation matrix of this basis c]’. with respect to the Warsaw

The impact of variations of cJ’. on the STXS regions and Higgs boson branching fractions is shown in
Fig 7, with the same parameter grouping as was shown in Fig. 3, and demonstrates clearly that the basis
c]’. represents impact variations across regions that are much more orthogonal than the Warsaw basis c;.
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Figure 6: Visualization of the rotation matrix from the Warsaw basis c; to the fit basis cj’..

Scans of the profile likelihood reparametrized in the rotated basis c;. confirm the absence of constraints
in the direction of eigenvectors with weak eigenvalues, an example of which is shown in Fig. 8a, and
the corresponding parameters are fixed to zero in the analysis. Furthermore, correlations between most

cJ’. exhibit a close to linear behaviour in a range of 20, as is shown in Fig. 8b, with the correlation of
’ (11
most ¢; and CHIO He

acceptance correction (See Fig. 8c for c}f}q, as a prominent example ).

being the main exception due to non-linear effects introduced by the H— ZZ*— 4(

No separate optimisation of the parameter basis c]’. is performed for the quadratic SMEFT model of Eq. (17)
as the non-linear effects of this model are expected to vanish for small c;, thus asymptotically yielding the
same rotation matrix as Eq. (20).
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Table 4: Eigenvectors and eigenvalues from subspace rotations. The estimated variance associated with each
eigenvector is the inverse of the corresponding eigenvalue. The eigenvectors CZ]G,M G uH op through ng,u G.uH top
have eigenvalues 4 < 0.0001 and are not shown. Eigenvectors that are retained as parameterized degrees of freedom

in the final fit to data are marked in the last column.

Parameter Definition Eigenvalue Fit
Para-
meter

I I 1900 v

Hq Hgq
o 1 -0.27cgw — 0.84cyp + 0.47cgwp — 0.02¢,w — 0.05¢,B 245000 v
3
% 2 -0.96cgw + 0.19cyp — 0.20cgws + 0.02¢, B 33 v
Q
E 3 —0.08cygw +0.50cyp +0.86cygwp +0.07cgpp + 0.03¢,w + 0.06¢, B 4 Vv
=
E, 4 0.03cgws — 0.85cgpp + 0.32¢,w + 0.43¢c, B 0.017
ey
T% 5 —0.0lcgw +0.07cygp +0.05cgwp — 0.44cypp — 0.86¢c,w —0.23¢c, B 0.0077
Q
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5 +0.02¢, — 1.0, +0.06¢50 +0.03¢(), +0.02¢, +0.02c,1 0.02
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Figure 7: Impact of coefficients of the rotated basis ¢’ on the STXS regions and decay modes, relative to the SM
cross-section, under the assumption of the linearized SMEFT model. For all coefficients ¢’ a unit variation is
considered, unless specified otherwise in the legend. Additional eigenvectors that are not part of the fit basis are
shown in gray for completeness. Scales and groupings in this figure are consistent with those in Fig. 3. To judge the
experimental sensitivity to constrain the operators from the data in the listed STXS regions, the statistical uncertainty
on the corresponding regions (o g,¢) is shown in the top panel. For columns corresponding to multiple STXSXBR
regions, the shown uncertainty reflects the statistical uncertainty on the average, under the assumption of uncorrelated
statistical uncertainties. For presentational clarity, the statistical uncertainty of low precision STXS regions is clipped
in the plot.
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Figure 8: Scans of the profile likelihood of the linear SMEFT model over various parameters. For each scan, the pull
of selected other parameters is shown on the same scale. The lower and upper horizontal dashed lines represent the
threshold for the profile likelihood ration corresponding to 1 o and 2 o confidence intervals respectively. The scan
of the weak eigenvector CE]G’M GuH op (a) is representative of most scans of approximately flat directions, which are
fixed in the fit. The scan of cgg,v, HB.HWB.HDD uw up (D) 18 representative of most scans of parameters included in
the final fit, illustrating linear correlations with other parameters of interest in a wide scan range. The scan of ¢}

(c) illustrates one of the few non-linear correlation effects observed, in this case caused by a residual effect of the
H — ZZ acceptance correction. The shaded region indicates the parameter space where one or more observable

bins have negative predicted signal cross-section.
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4.2 Results

The observed and the SM expected constraints on the parameters ¢’ using the linearised SMEFT model,
and the SMEFT model with additional quadratic terms are summarised in Tables 5 and 6, and visualized
in Figures 9, 10 and 13. All measured parameters are consistent with the SM expectation within their
uncertainty.

One-dimensional profile likelihood scans in each c]’., profiled over all other ¢, are shown in Figures 11 and
12 for the expected and observed data. All scanned parameters for the linearized model exhibit Gaussian
behaviour to good approximation, except for CEJI“) He' which is affected by the non-linear acceptance
correction effects in the H— ZZ*— 4( decay channel that dominates the measurement of this coefficient.

The profile likelihood for the model including quadratic terms sometimes results in two local minima per
parameter, notably for c%’ HB.HWB.HDD.uw 5 A0d CS%;M G.uH top’ and to a lesser extent C(I:jl)q’ and generally
result in rather non-Gaussian likelihood scans for that reason. Despite this, constraints obtained from the
model including quadratic terms are generally somewhat tighter than those obtained from the linearized

model, suggesting a non-negligible influence of d = 6 operator terms suppressed by power A™.
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Figure 9: Summary of observed measurements of the parameters ¢; with the SMEFT linearized model (blue) and the
SMEFT model with additional quadratic terms (orange). The ranges shown correspond to 68% (solid) and 95%
(dashed) confidence level intervals, where all other coefficients and all nuisance parameters were profiled. For the
model with quadratic terms, two exactly degenerate solutions are found for cng HB.HWB.HDD uW B> which are both

indicated.
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Figure 10: Summary of SM expected measurements of the parameters ¢ with the SMEFT linearized model (blue)
and the SMEFT model with additional quadratic terms (orange). The ranges shown correspond to 68% (solid) and
95% (dashed) confidence level intervals, where all other coefficients and all nuisance parameters were profiled.
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Table 5: Summary of the observed measurement of the parameters ¢; with the SMEFT linearized model and the
SMEFT model with additional quadratic terms. The ranges correspond to 68% and 95% confidence level intervals,
where all other coefficients and all nuisance parameters were profiled.

Model Parameter Linear Model Quadratic Model
Measured 68% CI 95% CI Measured 68% CI 95% CI
value value
Cl[alr]c,uc,uH,top -0.006  [-0.015,0.00007] [-0.022, 0.008] —0.008 [-0.014,-0.0016] [-0.019, 0.005]
CZJG,LtG,uH,[Op 0.4 [0.04,0.7] [-0.32,1] 0.4 [0.04,1.4] [-0.32,2.0]
CHG G sop 0.9 [~0.07,1.8] [~1.0,2.8] 0.09 [-1.3,0.30] [~1.7,0.5]

Chty wpawe. DD awap 0008 [-0.009,0.023]  [-0.024,0.04]  -0.1,0.004 [-0.13,-0.07]A [0.15,0.023]
[-0.0027,0.013]

[2]

iy 1w HDDaw s —0-008 [~0.5,0.4] [-1.0,0.9] -0.04 [-0.4,0.31] [~0.6,0.6]
oy mBaWB.HDDawap  —1-8 [~4,0.00020] [-6,2.1] -1 [-2.4,-0.06] (-3.1.2]
5, -0.018 [-0.1,0.033]  [-0.16,0.09] -0.001 [-0.08,0.05]  [-0.18,0.09]
CZJM HdHgO -0.26 [-0.7,0.07] [-1.1,0.4] 0 [-0.13,0.15] [-0.26,0.27]
"E]M,u/ -0.08 [-1.6,1.0] [-2.8,2.3] 0.07 [-0.8,1] [-1.9,1.6]
621<1>,He 15 [1.4,27] [-2.9,36] 0.9 [-7.7] [-10,10]
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Table 6: Summary of the SM expected measurement of the parameters ¢ with the SMEFT linearized model and the
SMEFT model with additional quadratic terms. The ranges correspond to 68% and 95% confidence level intervals,
where all other coefficients and all nuisance parameters were profiled.

Model Parameter Linear Model Quadratic Model

68% CI 95% CI 68% CI 95% CI
CHG G atH top [-0.007,0.007] [-0.014,0.014] [-0.008,0.009] [-0.015,0.020]
CHG G atH 10p [-0.33,0.3] [-0.7,0.6] [-0.4, 1.3] [-0.9,2.0]
CHG Gt 10 [-0.9,0.9] [-1.9,1.9] [-1.5,0.4] [-1.9,0.8]
Comw 1B HWE.HDDww up 1 —0-014,0.014]  [-0.028,0.028]  [-0.11,0.014]  [-0.13,0.029]
Cg\]/V,HB,HWB,HDD,uW,uB [-0.4,0.4] [-0.8,0.8] [-0.5,0.4] [-0.8,0.7]
Cow s awE.HDDww ap 1—17:22] [-3.4,4] [-1.9,1.1] [-2.3,1.9]
i [-0.06,0.06]  [-0.12,0.12]  [-0.16,0.05]  [-0.25,0.08]
- O [-0.4,0.4] [-0.7,0.7] [-0.23,0.25] [-0.4,0.4]
cl[;]lm’ y [-1.2,1.1] [-2.3,2.3] [-1.3,1.1] [-2.5,1.9]
ngzm,ﬂe [-3.2,11] [-6,23] [~11,4] [~14,9]
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Figure 11: Profile likelihood scans of the fitted coefficients ¢’ on SM expected and observed data, comparing the
SMEFT linearized model (blue) and the SMEFT linear plus quadratic model (orange). The horizontal dashed
lines in each plot correspond to the asymptotic threshold values for 68% and 95% confidence intervals. Profile
likelihood scans of the linear plus quadratic model can exhibit 2 minima in the scanned parameter, whereas scans of
the linearized model can only have one minimum per parameter. Multiple minima in the coefficients ¢’ that are

profiled in each scan may furthermore result in discontinuous derivatives in the profile likelihood (e.g. prominently
visible in the observed data in (¢)).
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likelihood scans of the linear plus quadratic model can exhibit 2 minima in the scanned parameter, whereas scans of
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5 Methodology of MSSM interpretations

Supersymmetry (SUSY) [85-93], a theoretically motivated framework for extending the Standard Model,
is conceived to address some of the Standard Model’s unanswered questions, particularly the hierarchy
problem [94-97], which is related to the fine tuning needed to obtain the correct mass for the observed
Higgs boson. SUSY can also provide credible dark matter candidates [98, 99] and can improve the
unification of the electroweak and strong interactions [100—108].

The minimal supersymmetric extension of the Standard Model (MSSM) [109-113] predicts partners for
each of the SM states. There are a total of eight spin-half partners of the electroweak gauge and Higgs
bosons: the neutral bino (superpartner of the U(1) gauge field); the winos, which are a charged pair and a
neutral particle (superpartners of the W bosons of the SU(2) L gauge fields), and the Higgsinos, which are
two neutral particles and a charged pair (superpartners of the Higgs field’s degrees of freedom). The Higgs
sector consists of two SU(2) doublets, H; and H,. Both Higgs doublets acquire vacuum expectation values,
v1 and v, respectively. Their ratio is denoted by tan 8 = v, /vy, and they satisfy vf + v% =% ~ (246 GeV)>.
Five Higgs bosons are predicted in the MSSM: two neutral CP-even bosons /2 and H, one neutral CP-odd
boson A, and two charged bosons H=*.

In addition to searches for MSSM particles, such as additional Higgs bosons, evidence for the MSSM, or
constraints on its parameters can also be obtained from studies of the properties of the 2(125) under the
assumption that it is the light CP-even £ boson of the theory.

The MSSM has over a hundred parameters that describe the pattern of sparticle masses and their decays.
This parameter space is too large to be scanned exhaustively and compared to ATLAS data. Hence, several
benchmark scenarios have been proposed over the years. By making some assumptions, the scenarios
reduce the parameter space and simplify the interpretations of the results.

5.1 MSSM Benchmark Scenarios

In this study, properties of the measured of the 125 GeV Higgs boson are compared to six MSSM benchmark
scenarios, under the assumption that the observed boson is the light CP-even Higgs boson /4 of the MSSM
theory. In each benchmark scenario the compatibility of the scenario with the observed Higgs data is tested
for a range of benchmark parameter values. For all scenarios, two benchmark parameters are considered:
m4 and tan 8.

The six benchmarks are summarized below. Detailed information on the models and on their specific
parameter settings can be found in Refs. [24, 25].

1. M 1?5 scenario: All superparticles are chosen to be so heavy that production and decays of the MSSM
Higgs bosons are only mildly affected by their presence. The loop-induced SUSY contribution to the
couplings of the light CP-even scalar are small, and the heavy Higgs bosons with masses up to 2 TeV
decay only to SM particles.

2. M;zs (Y) scenario: All charginos and neutralinos are relatively light, with significant higgsino-
gaugino mixing. This affects the decays of the heavier Higgs bosons, weakening the exclusion
bounds from H/A — 77 searches, as well as the decay of the SM-like Higgs boson to photons. On
the other hand, the possibility to look for additional Higgs bosons through their decays to charginos
and neutralinos opens up.
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3. M;zs (T) scenario: Light staus and light gaugino-like charginos and neutralinos. The effect of the
light staus on the decays of the heavier Higgs bosons, as well as on the decay of the SM-like Higgs
boson to photons, is most relevant at large tan. Compared with the previous scenario, a larger mass
for the higgsinos implies that the decays of the heavier Higgs bosons to charginos and neutralinos
become relevant at larger values of M4.

4. M'?*(alignment) scenario: In the “alignment without decoupling” scenario, for a given value of
tan 8, one of the two neutral CP-even scalars has SM-like couplings independently of the mass
spectrum of the remaining Higgs bosons. In particular, for tan 8 around 7 the properties of the
lighter scalar / are in agreement with those of the observed Higgs boson also for relatively low
values of M4.

5. M;ZEFT scenario: This scenario is characterized by a flexible mass scale Msysy of the superpartners.

s

In all the original benchmark scenarios presented above, the supersymmetric partners of the SM
fermions (sfermions) are tied to the TeV scale. In this case, the parameter region tan 8 < 5 is ruled
out because the mass My, of the SM-like Higgs boson is predicted to be lower than the measured
value. To re-open the parameter region of low tan 8 values, the sfermion mass scale, Msysy is
adjusted dynamically from 6 TeV to 10'6 TeV to achieve a 125 GeV Higgs. As in this scenario all
superparticles are chosen to be so heavy that production and decays of the MSSM Higgs bosons are
only mildly affected by their presence, the SUSY contribution to the Higgs properties is calculated
with an effective field theory (EFT).

6. M;?::FT( X) scenario: In contrast to the M}%FT scenario, this scenario features light neutralinos
and charginos whose presence significantly alters the phenomenology of the Higgs boson. The
SUSY scale is again adjusted at every parameter point in order to obtain a light Higgs mass of
My =~ 125 GeV.

5.2 Interpretation of Higgs data

For each MSSM benchmark point modified Higgs production cross sections and decay branching fractions
are predicted. Higgs masses and mixing (and effective Yukawa couplings) have been calculated with
FeynHiggs [114—-120]. Branching ratio predictions combine the most precise estimates of FeynHiggs,
HDECAY [121, 122] and PROPHECY4f[123, 124]. For the gluon-fusion process inclusive cross sections
are obtained with SusHi[125, 126], which includes NLO QCD corrections [127], NNLO QCD corrections
for the top-quark contribution in the effective theory of a heavy top quark [128-132] and electroweak effects
by light quarks [133, 134]. For the SM-like Higgs boson SusHi adds N3LO corrections in the effective
theory of a heavy top quark in a threshold expansion [41, 135, 136]. Cross sections for bottom-quark
initiated Higgs production rely on matched predictions [137—140], which are based on the five flavour
NNLO QCD calculation [61] and the four flavour NLO QCD calculation [59, 60].

Since MSSM Higgs production cross sections are only calculated inclusively, the STXS Stage-1.2 phase
space partitioning of production cross sections is not used in this analysis. Instead a splitting by production
process is used to express the signal strength modifies u"*X in the signal yield expression of Eq. (2):

ol (my,tan B) ' BX(my, tan B)

i X
Osm By

WX (my,tan B) = = ri(ma, tan B) - rX (my, tan B), 1)
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where the index i enumerates the STXS-0 production processes: ggH, bbH, ttH, VBF, qq/qs—ZH,
88— ZH, qq—WH, as defined in Table 2. All nine analyses listed in Table 1 are available in STXS-0 form
and allow to measure Higgs decays to WW, ZZ, bb, 7, uu, yy, enumerated by index X in Eq. (21).

In this analysis, the numerical predictions provided for MSSM scenarios by the LHC Higgs Cross Section
Working Group are used [141] for the benchmarks listed in Section 5.1, which provide all Bl\)f[SSM (m;L)
and the inclusive Higgs widths Fl’\l,lg’SXM(m;l), where m; is the mass of the light CP-even Higgs boson &
predicted by the MSSM and may differ somewhat from the assumed SM value of 125.09 GeV. However,
regions of the benchmark parameter space where m, differs from the assumed SM value by more than 3
GeV, the estimated uncertainty on the calculated Higgs mass in FeynHiggs [116, 142], will be considered

as excluded.

For the cross-section scale factor for the ggH and bbH processes, the numeric cross sections predictions
are used. Conversely, the MSSM cross sections for the gq/gg—V H and VBF processes are not provided.
Instead, the cross-section scale factors for these are estimated from the corresponding relative change to the
partial decay width I'y in the MSSM. The predictions for the #(f) H and gg— Z H cross-section scale factors
are obtained with a similar rescaling, using the square of the relative change in the coupling strengths in the
MSSM. The expression for all MSSM cross-section productions are specified in Table 7, where all SM
cross sections and partial widths are evaluated for a Higgs mass m, . These SM cross sections, as well as
the partial widths, are provided by Ref. [141].

Table 7: Expressions used for STXS-0 production cross-sections in the MSSM interpretation. The Higgs

couplings strength scale factor «; is provided numerically, while the scale factors «{,, k; are calculated from

2 _ TH-I ’ h—i ’
K" = Tssm M) [Ty (my,).

STXS-0 Process  Expression for cross-section scale factor 7'

ggH Tt ) /o ()

bbH oM (my ) [ SV (m))

VBF 0.73kj3 +0.27«%

qq/98—VH K

ttH K/

g¢—ZH 2.456k7 + 0.456«;* — 1.903k%, &, — 0.011k’,«] +0.003k;«],
tHW 2.909«7% + 2.310k73 — 4.220&} K}y,

tHq 2.633k)* +3.578k1y, — 5.211k} K}y,

X

All branching ratios scale factors r* are calculated as

h—X ’ h ’
X _ Dhissm 7,) ) Ugpm ()

- h—X ’ h 7N
Ton ™ Omy) - Tygam (my,)

(22)

X

As the cross section and branching ratio scale factors r, 7X are only calculated for a discrete set of points
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in the 2-dimensional benchmark parameter space, a likelihood based on Eq. (21) and the expressions in
Table 7 cannot be differentially expressed in terms of its theory parameters (m4, tan ). Instead, exclusion
contours are based on a numerical interpolation of the profile likelihood ratio at fixed values of (m4,tan ),
profiling only the nuisance parameters.

6 Limits on MSSM

Figure 14 shows the observed and expected 95% CL exclusion limits of the MSSM in the two-dimensional
plane of m4 and tan 3 for the Mézs, Mézs (), M 225 (), MI125 (alignment) benchmark scenarios. For all
four scenarios, the regions excluded by the Higgs mass requirement (|m; — 125.09 GeV| < 3 GeV) are
separately indicated with gray shaded areas.

In the M,'** scenario, the low m, region is disfavored due to the suppression of & — bb in that region.
In the M}llZS(f') scenario, the region at low m4 and tan 5 < 55 is excluded due to a predicted significant
enhancement of the Higgs width in combination with a suppression of the branching fraction 4 — yy. In
the region tan 8 > 55, the T loop has a significant impact on the 2bb coupling, resulting in an enhanced
prediction of BR(hA — vyvy), and is therefore excluded. The observed exclusion range starts at a larger
value of tan 8 than the expected exclusion range because the observed value of «, is larger than one
(k) = 1.06f8:8§) [9]) Similar to the M}?S (7) scenario, in the Mﬁzs( X) scenario, low values of m4 are
excluded due to the suppression of BR(2 — vyy). In the region with tan § < 10, the enhancement of
electroweakino effects and the absence of a T loop will enhance BR(h — y7y) but the resulting exclusion is
less stringent than that of the m; mass requirement. In the M, 225 (alignment) scenario, the limit of alignment
without decoupling is only realized for tan § ~ 7 and m4 > 170 GeV. For larger values of my MSSM
couplings are more similar to SM couplings causing the allowed region to open up.

In all four benchmarks the MSSM analysis generally excludes the low m 4 regime for most of the scanned
tan 8 range, while the requirement |m; — 125.09] < 3 GeV helps to exclude the low tan 3 range for all
scanned values of my4, which is not covered by the direct searches for MSSM H/A — 77 [143] and
H* — th [144].

Figure 15 shows the observed and expected 95% CL exclusion limits of the MSSM in the two-dimensional
plane of m 4 and tan S for the M éisFT and M ;?SFT( ¥) scenarios. No results of direct searches are available for
these benchmarks. No part of the parameter space is excluded by the condition |m; —125.09 GeV| < 3 GeV
for these benchmarks, as m; = 125.09 GeV can be achieved throughout the shown range of (m4, tan 3)

because of the flexible mgysy scale in these benchmarks.

125 125 (= . o c o Ar .
For both the M hEFT and M, h’EFT( X) scenarios, the limit at low m4 is driven by a predicted enhancement

in H — bb decays. In the MAZESFT( X) scenario, the H— vy decay is enhanced in the tan 8 < 1.5 region
due to the presence of light charginos. As the observed coupling of the Higgs boson to photons slightly

exceeds the expected value (k, = 1.06J_r8:8§), the constraint from H— 7y is less strong than expected.
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Figure 14: Exclusion contours in the (ma,tan 8) plane for (a) the M}>, (b) M}* (%), (¢) M,*(%) and (d)
M,izs (alignment) scenarios. Observed (solid) and expected (dashed) contours at 95% C.L., defined as —2In A = 5.99
according to the asymptotic approximation, are shown. The excluded parameter space is marked in yellow. The
parameter space excluded by the condition [m; — 125.09] < 3 GeV is marked in gray. For comparison, the parameter
space excluded by the search for H/A — 77 [143] and for H* — tb [144] are overlaid in blue and purple, respectively.
For the M;zs (alignment) scenario no exclusion limits from the search for H* — th exist.
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(solid) and expected (dashed) contours at 95% C.L., defined as —2InA = 5.99 according to the asymptotic
approximation, are shown. The excluded parameter space is marked in yellow.

7 Conclusions

Novel interpretations of the combined Higgs boson measurements recently presented by ATLAS have
been performed. Constraints on linear combinations of Wilson coefficients corresponding to SM Effective
Field Theory operators in the Warsaw basis are reported. In this model-independent parametrization of
new physics effects, no significant deviations from the SM have been observed. A comparison of results
interpreted with a linearized SMEFT model and a model that also includes quadratic terms shows sizeable
sensitivity to operators suppressed by A* in all of the measured parameters. Constraints have also been
set on the parameters m4, tan 8 of the MSSM, in the context of six benchmark scenarios proposed by the
BSM subgroup of the LHC Higgs Cross-Section WG. These results are complementary to limits from
direct searches for additional Higgs bosons.
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Appendix

A Additional material concerning the EFT interpretation

O-jet, p'f <10 GeV.

0det, 10 = p¥ <200 GeV

Toot, p!f <60 GeV

1et, 60 < p¥ <120 GeV

1et, 120 = p’;’ <200 GeV

@ = 24et, m, <350 GeV, p <120 GeV
¥ = 2det, m; <350 GeV, 120 = p <200 GeV
= 24et, m; = 350 GeV, p'* <200 GeV

200 = p* <300 GeV

300 = p! <450 GeV

P = 450 Gev

99—=H

= 2-jet, m; <350 GeV, VH veto

g -
£ & = 24et, m; <350 GeV, VH topo
gy x = 2:jet, 350 = m;; <700 GeV, p <200 GeV
s = 24et, m, = 700 GeV, p <200 GeV
= 24et, m, = 350 GV, p!’ = 200 GeV
“qgq—Fiv, .p-: <i50Gev B, fo
qq—Hlv, p = 150GeV x B,
99/49—Hil, pY <150 GeV x B
99/40~Hi, pY = 150 GeV x B, ,
e d 60 < p! <120 GeV
@
= 120 = p”<ZDDGsV
= 200 GeV
) IH x B, .-
° “ojét p';’é 10 GeV o
O, 10 = p¥ <200 GeV
T ¢ 1-jet, pYf <60 GeV
L“’N Tet, 60 = p¥ < 120 GeV
& x Toot, 120 = p¥ <200 GeV
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Figure 16: Correlation matrix corresponding to the expected measurements shown in Fig. 1.
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Table 8: Eigenvectors of the inverse of the EFT covariance matrix of Eq. (19) with eigenvalues > 0.01. This
eigenvalue limit corresponds to an approximate expected uncertainty on that eigenvector of > 10.

No. Eigenvalue Eigenvector

1 299310 —0.02cy + 0.55¢hG — 0.23¢kw — 0.70c g + 0.39¢wa + 0.02¢,G — 0.02¢,w — 0.04¢, 5

2 121830 —0.83cpG — 0.15cuw — 0.47chp + 0.26cgws — 0.03¢,G — 0.03cy B

3 1960 0.10cw + 0.03cgwp — 0.02¢;, —0.05¢y;  +0.99¢5;  +0.09ck, - 0.03cp 4 +0.02c],

4 38 +0.03cyo +0.02cygpp +0.09cyp +0.15cgwp +0.02¢, g +0.08¢,G — 0.026;1_}1 - 0.0662, -0.02cge — 0.416‘11_1)61 -
0.11¢y, +0.84cp, = 0.26¢54 +0.04c],

5 19 +0.17¢cG + 0.07cgo + 0.02cgg — 0.19¢cgw + 0.10cyp + 0.06cgwp — 0.08c, g + 0.06€dH -0.69¢,G + 0.096}3, -
0.13¢;, = 0.07cz, = 0.02¢}  +0.03¢ gz, +0.10c], +0.03¢y +0.22¢,4 +0.05¢5, +0.52¢5 +0.02¢,,, +0.23¢, +
O.OSC‘S’d + O.ISC‘;M + 0.03c'5d

6 10 ~0.20c70 ~ 0.02¢pipp — 0.5Tcpw —0.34cwg —0.02¢, 11 —0.08¢ g —0.04¢,G —0.13¢)), +0.54¢%) +0.13cpre -
0.106(1'_}‘] + 0.086;}‘] +0.08cHy —0.02cy g4 — 0.40cl’l +0.02¢44 + 0.0402'(} +0.02¢},,

7 59 +0.08cg — 0.07cgo — 0.03cgpp +0.73cgw — 0.23cyp — 0.11cqy — 0.13¢,g — 0.02¢,,w — 0.03¢,B — O.lSC(II_I)l +
044y, +0.10c, = 0.07¢g;  +0.08¢h, = 0.02¢51 4 = 0.25¢]; +0.09¢ +0.02¢5, +0.22¢5; +0.10¢, +0.06¢5,

8 1.1 ~0.29¢G +0.04cgyn — 0.02cHpp + 0.03¢G +0.08¢w - 0.02cHp — 0.10c, 1 — 0.68¢,G +0.02¢};, +0.08¢5;, —
0.01ch, =002y —0.01¢f;, +0.04ck, —0.02¢k 4 —0.03¢), 0.04chy —0.24¢ 4 —0.04c)y —0.52¢ —0.02¢,, ~
0.25¢f, - 0.03¢, — 0.01¢y, - 0.15¢, - 0.03¢,

9 0.30 +0.03¢g —0.0lcw +0.06cgn —0.12cygpp +0.09cgw — 0.41cyp — 0.70cgwp + 0.06¢, g —0.11cgg — 0.05¢,,G —
0.01c,w — 0.02¢c,, 5 — O.37c‘;1’1 +0.16cHe — 0.36c;}q - O.OZC‘ISJ)q = 0.03cpy +0.01cgg +0.10¢],

10 0.16 +0.02cG —0.02cw + 0.27cgn — 0.04cgpp — 0.09cgw + 0.09cygp + 0.09cgwp + 0.01c.g +0.08¢c, i —0.52¢c4 —
0.07¢,G = 0.01cuw = 0.04c,p - 0.58¢cy;, - 0.26¢4, +0.29ck, +031cf;, +0.10cs, - 0.12¢], - 0.04cy,

11 0.036 +0.22€G - O.SGCHD +0. 19CHDD + 0,01€HG + 0.03CHW + 0.0301-13 +0.07CHWB - O.OZCEH +0-7OCuH +0.09CdH -
0.16¢,G +0.04c,w —0.01c, g — 0.066};1 -0.1 8621 +0.09ch, + 0.036‘11_1)6[ -0.04cyg— 0.07cl’l +0.01c, — 0.01lcy, -
0.10¢; = 0.09¢gy = 0.02¢y, —0.01¢l, - 0.02¢,, —0.01¢,

12 0023 ~0.05¢G +0.09cp0 — 0.01cppp — 0.01cpp = 0.02¢,p +0.01¢,G +0.3Tcuw +0.03¢), +0.05¢5), — 0.02¢p, -

0.03¢y;,, = 0.01cp, +0.03¢], +0.03¢qq — 0.91¢;y +0.08¢qy +0.03cf, +0.02¢f,
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Table 9: Settings used in the MADGRraPHS5_aMC@NLO generation. The parameters drll, drjj, drbb, and drjb
describe the minimum radial difference between two leptons, jets, b-jets or a jet and a b-jet. The parameters ptj, ptb,

ptl, and etal describe the minimum transverse momentum of a jet, b-jet, lepton, and the maximum pseudorapidity
of a lepton.

Parameter Value Default Comment
lhaid 90400 263000 sets a to the default
PDF4LHC15_nlo_30_pdfas NNPDF30_lo_as_0130  value assumed in the PDF

fit (o = 0.118 for 90400)

drll, drjj, 0.05 0.4 Avoid bias in the
drbb, drjb selection, minimum value
of 0.05 chosen to avoid
divergences.
ptj, ptb 20 GeV 20 GeV Chosen to match jet
selection of the Rivet
routine.
ptl 0 GeV 10 GeV Cut applied only to
charged leptons.
etal 10 2.5 Cut applied only to

charged leptons.
Merging scale for
CKKW-L scheme.
Recommended to be 1/4
of the relevant scale of the
process. Settings
propagated to Pythia.

ktdurham 30 GeV X
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Table 10: Parametrisation of the gg — H bins with 0- and Nje=1 selection of the STXS as defined in its stage 1.2
with the parameter definitions of the SMEFTsim model. The numbers are rounded according to their statistical
uncertainty. Dimensional quantities are printed in units of GeV.

Category in ggH Njeis < 1 Parametrisation

200<p¥<300 0.12cgo — 0.030cypp + 47cpyc — 0.122¢,5 + 1.69¢,6 —
0.120c‘;}l +0.058¢;,

300<p¥<450 0.12¢go —0.029¢cypp +60cyc —0.12¢, 5y +2.1¢,6 — 0.1 1c‘;1>l +
0.055¢;,

450<p¥<650 0.12¢go — 0.030cypp + 70cpc — 0.14c, g +2.cuG — 0.13c(;;l +
0.07¢;,

p‘T" >650 0.12¢go —0.02cypp +200cys —0.05¢, g + 10¢,6 — 0.O7c‘1f1’l +
0.06¢;,

Nietgzo,p¥<10 0.12cgo — 0.02%4cypp + 42.0cyc — 0.117¢c,5 + 1.59¢,6 —
0.117c‘;}l +0.0587¢;,

Njetg=0,p‘T‘I>10 0.12cgo — 0.0295cypp + 42.2cyg — 0.1186¢, 4 + 1.62¢,6 —
0.1 1820}31 +0.0590c¢;,

Njetszl,p‘T‘I<60 0.12cgo — 0.0330cypp + 44.0cyc — 0.132¢,5 + 1.60c,6 —
0.132c;§}l +0.065¢;,

NjetS:1,60<plTLI<120 0.12cgo — 0.0314cypp + 43.5¢cuc — 0.125¢,4 + 1.58¢c,6 —
O.lZSci}l +0.063¢;,

Nijets=1, 120<p¥<200 0.12cgo — 0.028¢cypp + 44cpg — 0.118¢,g + 1.60c, —

0.112¢%), +0.058¢],
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Table 11: Parametrisation of the gg — H bins with 2-jet selection of the STXS as defined in its stage 1.2 with the
parameter definitions of the SMEFTsim model. The numbers are rounded according to their statistical uncertainty.
Dimensional quantities are printed in units of GeV.

Category in ggH Nje;s>2

Parametrisation

]\Ijetszz, mjj<350,p¥ <60

]Vjetszzy mjj<350, 60<p!1:1<120

]Vjetszzy mjj<350, 120<p{.{<200

Hjj

Njets 2, 350<m <700, pH <200, p1. 77 <

Niets 22, 350<m;;<700, pH <200, pi/7 >

Niets=2, m;;>700, pH <200, p2!

Niews=2, m;;>700, pH <200, p2!

1 <25

7505

25

25

0.12cgo — 0.033cypp + 46cuc — 0.128c,y + 1.63c,c —
0.132¢5), +0.065¢],

0.12cgo — 0.033cypp + 47cuc — 0.133c,yg + 1.59c,c —
0.130¢5), +0.065¢],

0.12cgo — 0.032cypp + 46cuc — 0.132¢,y + 1.48c,c —
0.130¢5), + 0.066¢],
0.12CH|:,—0.038CHDD+48CHG—O.16C,4H+1.60C,,,G_0.147C21+
0.075¢},

0.12cgo — 0.033cypp + 42CHG - 0-131CuH + 1-43CuG -
0.124¢%), +0.064c],
O.IZCHD—O.O33CHDD+50CHG—O.14CMH+1.60Cu6—0.13cgl+
0.068¢],

0.12cygo —0.030cHpp +44CHG _0-13CuH + 1~4CuG _0'136(;1)1 +
0.061¢],

Table 12: Parametrisation of the gg — H{{ bins of the STXS as defined in its stage 1.2 with the parameters definition
of the SMEFTsim model. The numbers are rounded according to their statistical uncertainty. Dimensional quantities

are printed in units of GeV.

Category in gg — H{t

Parametrisation

p‘T/ <75

75<p¥<150

150<py <250, Njers=0

150<py <250, > Niis=1

pY>250

0.12¢5-0.0057¢ipp +0.0090¢ i +0.0454¢,, 11 +0.309¢,,G —
0.0102¢}y, - 0.283¢y), — 0.0231cp, — 0.827¢}, - 0.289cy,  +
0.246¢#, +0.296ckq +0.218¢;,
0.12¢5-0.0015¢ 1 +0.0088¢ i +0.0542¢,,11 +0.387 ¢, —
0.0103c}y, - 0.284cy), — 0.0235cp, — 0.698¢}, - 0.250cy,  +
0.199¢s7, +0.257cprq +0.220¢],
0.12¢p5 +0.020cgpp + 0.008¢gws + 0.100c, 51 +0.539¢,G —
0.0104c}y, - 0.287cyy, — 0.0236cH, — 0.499¢}, - 0.199¢y,  +
0.105¢s7, +0.205¢pq +0.223¢],
0.12¢470+0.0142¢ 11 +0.0084¢ 11w +0.085 1 ¢,y +0.491 ¢y
0.0103¢y, — 0.284c};, — 0.0233ch, — 0.552c; - 0.212¢f) +
0.131cpz, +0.219¢54 +0.219¢],
0.12¢p0 +0.050¢p +0.0091¢grwg +0.163¢,z1 +0.680¢,G —
0.0108c};, — 0.286¢;, — 0.0240cH, — 0.352c); - 0.171cy) +
0.020¢s, +0.177cpra +0.221¢},
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Table 13: Parametrisation of the gg — Hqq bins of the STXS as defined in its stage 1.2 with the parameter definitions
of the SMEFTsim model. The numbers are rounded according to their statistical uncertainty. Dimensional quantities
are printed in units of GeV.

Category in qqg — Hqq Parametrisation

NjetS:O 0.12cygo — 0.011cypp + 0.32cgw + 0.008cyp + 0.048cywr —
0.36¢;, + 0464 +0.027cp, - 0.0125¢a +0.18¢;,

]Vjetsz 1 0.12cgo—0.0111cypp +0.187cyw +0.0063CHB +0.047cyws —
0.368cgl + 0.003c;;q + 0.39cgq +0.0278cy, —0.0113¢cy 4 +
0.183¢;,

Njetszijj<6O 0.12cygo — 0.011cypp + 0.38cyw + 0.012¢cyp + 0.060cywr —
0.36¢5y, +0.94cy; +0.055¢s, —0.022¢p4 +0.178¢;,

Nietg 2260<mjj< 120 0.12cygo—0.0072cypp +0.638cgw +0.0230cyp +0.100cywr —
0.3646}‘31 - O.OISC(I;)q + 2.O7C‘Ifl’q + 0.152cy,, — 0.0593cyq +
0.181¢/,

Niets 22120<m]'j <350 0.12cgo—0.0099cHpp —0.0ZICHW +0.0017cyp +0.0368CHWB -
0.363c(1‘fl)l - 0.003C(111)q - O.lSSc?I’q —0.0038cg, +0.0022¢4 +
0.181¢],

]Vjets Zijj >350, p!;l >200 0.12cgo—0.0072cypp +0.188CHW —0.0012cyp +0~0380HWB -
0.362cy, + 0.047cy; — 1.33cf;, — 0.095cH, +0.0314cq +
0.181¢;,

Niew>2350<m;; <700, pH <200, pH77 <25 0.12¢50-0.0110¢11pp—0.134¢ gw —0.0014c 5 +0.0234¢ v —
0.3686‘21 - 0.3710(;1)q —0.0203¢g, + 0.0084ckq + 0.184cl’l

Njets 22350<m;;<700, pH <200, pi7>25  0.12¢50 — 0.0101cppp —0.143cpw +0.027crws —0.358¢5), +
O.OOZC(I'}q - O.38c(IfI’q —0.0204cg, +0.0081cyq + 0.18361’1

Niews=2m;;>700, pH <200, p/ <25 0.12¢50-0.0101cpp —0.117 ¢y —0.0016¢ 15 +0.023 1 gy —
0.365¢5y, + 0.010¢y, - 0.364cf;, — 0.0216ck, +0.0074ck g +
0.182¢),

Niews=2m;;>700, pH <200, p7 25 0.12¢570 — 0.0096¢pp — 0.168cpw +0.023¢grwn —0.361¢5), +

0.0150(;}61 - 0.4420‘;}(1 - 0.0282cp, +0.0091cpq + 0.180c,
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Table 14: Parametrisation of the leptonic gq/gg—V H bins of the STXS as defined in its stage 1.2 with the parameter
definitions of the SMEFTsim model. The numbers are rounded according to their statistical uncertainty. Dimensional
quantities are printed in units of GeV.

Category in gg — H{v

Parametrisation

py.<75

75<pY <150

150<pY <250, Nieis=0
150<pY <250, Njews> 1

pY>250

0.12ct0 — 0.0304cupp +0.813caw — 0.241cy), + 1.142¢}) +
0.183¢],
0.12¢15 - 0.0304ckpp + 0.946cHw — 0.244c5y, + 1.90c) +
0.183¢],
0.12¢n5 - 0.0312¢kpp + 1.06cHw — 0.247cy), + 4.07c}; +
0.187c],
0.12¢n5 - 0.0307chpp + 1.08caw — 0.239¢y;, + 3.58¢5; +
0.180c;,
0.12¢n5 - 0.0282¢kpp + 1.07caw — 0.228¢y;, + 10.6¢5; +
0.170¢;,

Category in qqg — H{(

Parametrisation

p‘T/ <75

p‘T/<150

PY <250, Njets=0

p¥ <250, Nje[szl

p‘T/>250

0.12¢go+0.0129cupp +0.665€HW +0.0835CHB +0.303cyws —
0.03620}31 — 0.2410(;}[ —0.0359¢g, + 0.0290‘13q + 1.270(1‘;’q +
0.245¢5, — 0.1064c54 +0.183¢],

0.12cygo +0.0128¢cypp +0.771cgw +0.092cyp +0.341cgwa —
0.0360cy), — 0.238¢5;, — 0.0362cp, + 0.01cy, + 1.80cy +
0.403¢, — 0.166¢k4 + 0.182¢],

0.12cyo + 0.013cypp + 0.86¢cyw + 0.103¢cyp + 0.366cywr —
0.035¢}y, — 0.232¢%, — 0.0358cp, — 0.12¢};, + 3.63c}y, +
0.87chy —0.323cpq + 0.177¢),

0.12cyo + 0.013cypp + 0.85cyw + 0.102cyp + 0.373cywr —
0.036¢}y, — 0.230¢%y, — 0.0367cp — 0.10cf;, + 3.19¢, +
0.77cyu — 0.282¢cyq + 0.177cl’l

0.12cgo + 0.010cypp + 0.88cyw + 0.135¢yp + 0.41cygwgp —
0.037c}y,—0.234c5;,~0.036¢k, — 1.12¢} +9.9¢5 +2.51cr, -
0.81cra +0.181¢),
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Table 15: Parametrisation of the 17H and t H bins of the STXS as defined in its stage 1.2 with the parameter definitions
of the SMEFTsim model. The numbers are rounded according to their statistical uncertainty. No new physics is
considered in the top quark decay. Dimensional quantities are printed in units of GeV.

Category in 1tH or tH

Parametrisation

pg <60

60<pi! <120

120<pH <200

200<pH <300

pH>300

tH

0.021cg + 0.12cgn — 0.0301cypp + 0.411cyg — 0.121cy g —
0.764c,c — 0.004¢c,,w — 0.0015¢,5 — 0.1216};’1 + 0.003162(1 +
0.0612¢], + 0.0154c), +0.121¢l, 1 +0.0142¢5, +0.299¢5) +
0.0088¢(;,0.128¢45, — 0.0015¢", + 0.0213¢", + 0.0056¢L, +
0.08263; - 0.001c'q”d + 0.021562)(1
0.061cg + 0.12cgo — 0.0286¢cypp + 0.450cyG — 0.1149¢, 5 —
0.790c, G —0.005¢,w — 0.0017¢c,p — 0.1 1510(21)1 + 0.00326(;}(1 +
0.0574¢], + 0.0183c.l, +0.138¢(, 1 +0.0175¢5, +0.340c5) +
0.0104¢(,0.147¢lp, — 0.0017¢, + 0.0244¢®, + 0.0066¢L, +
0.096862;4 - 0.0010;)‘1 + 0.02436‘;"1
0.152¢G + 0.12cgn — 0.0282cypp + 0.553chG + 0.0013cygw —
0.113c,xg — 0.890c,c — 0.007¢c,,w — 0.002¢,p — 0.1140(21)1 +
0.0045¢};, +0.0569c;, +0.0282c}, +0.202¢, 1 +0.0275¢, +
0.493¢5 + 0.0156¢,0.217¢(h, — 0.0025¢", + 0.0347¢", +
0.009702;4 + 0.13802;4 - 0.00166(;61 + 0.03456(;;,
0.311¢cg + 0.12cgn — 0.0277cypp + 0.68chc + 0.002cyw
0.00lcgwp — 0.112¢,5 — 0.97¢c, — 0.0105¢,w — 0.003¢, 5
0.114cfy, - 0.0015¢} +0.0091c5;, +0.0569c], +0.0493cy,
0.336¢0,1 + 0.0484¢0, + 0.82¢5h + 0.0268c!;,0.358¢L, —
0.0042¢, +0.0545¢%, + 0.0159c{, +0.228¢{, - 0.0025¢.,
0.0541¢®

qd
0.58¢cg + 0.12cyn — 0.0276¢cypp + 0.84cyg + 0.003cyw —
0.001cgwp — 0.110¢, g — 1.04¢, — 0.0186¢,w — 0.0068¢, 5 —
0.1 120(21)1 —0.0]056‘([3[1 +0.0503cgq +0.0110cq,, —0.0032cy 4 +
0.056¢/, + 0.120cl, + 0.75¢0,1 + 0.122¢5), + 1.70c5) +
0.064¢,0.78¢f, — 0.0091¢”, + 0.110¢%, + 0.0344c, +
0.497¢f, — 0.0045¢%, +0.111c,
0.12¢gn—0.0272cypp +0.254cyG +0.1808cgw —0.0764 ¢, 5 —
0.119¢,G — 0.170c,w — 0.2679621 + 0.3196}3(1 +0.1341¢), +
0.418¢%),

+

+
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Table 16: Interference term parametrisation of the decay widths of the considered Higgs boson decays as well as for

the total Higgs boson width. Only terms with (

in units of GeV.

ine

Tan ) > 0.001%c¢; are considered. Dimensional quantities are printed
v

Channel Tine/T'sm

H—yy —40.15¢cygg — 13.08cyw + 22.4cgwg — 0.9463cw + 0.12cyn —
0.2417cypp +0.03447 ¢, gy —1.151¢,,w —2.150¢, 5 —0.3637021 +
0.1819¢;,

H—Z7Z*—4¢ 0.12¢go + 0.005¢cgpp — 0.296¢cHw — 0.197cyp + 0.296cyws +
0.12602}1 - 0.234(3(;1)1 - 0.101cp, + 0.181c),

H — bb (VH) 0.12cgn — 0.030cypp — 0.121cqy — 0.121c21 +0.061c),

Total —0.001cw + 0.12cgo — 0.030cypp + 1.362cyc — 0.048cyw —

0.049¢cyp + 0-046CHWB —0.005c.g —0.012¢, g — 0.085¢c44 +
0.051c,g — 0.002¢,w — 0.003¢c,p — 0.1500}31 + O.OlSc‘iI)q +
0.079¢;,
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Table 17: Definition of the most relevant EFT operators impacting the Higgs boson production and decay in the
considered phase space together with examples of diagrams in which they play a role.

Coeflicient Operator Example process
. 79— q
CHDD (H'D*H) (HD,H) feH
q q
] g
cHG H'H GG Z? H
g
, q q
cHB H'H B, B* Ze oy
Z
q q
] q q
crw HYH W Wi We m
4
q q
q q
CHWB HTTIH WIVIWB“V Y ---—- H
V4
q q
. ¢
cent (HH)(Ipe, H) H <
¢
_ - q ¢
. (H'i'D H)(T,y"1,) 2L,
q ~H
_ q 14
¢ (HIDLH) [, ) (P
q “H
T_(—) _ q 7 e
CHe (H'iD  H)(epyter) 5 e
q ~H
o .69 _ q Z.ot
CHg (H'iD ,H)(Gpy"qr) ) t
q T~ H
W.¢
oy q
g (H'i D! H)(gpt'y"qy) NSy
q T~ H
— _ ot
CHu (H'iD yH)Gpy uy) " ¢
u S~ H
o d~. St
CHd (HTI DuH)(dp'yﬂdr) ) VA
d S~ H
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Table 18: Definition of the most relevant EFT operators impacting the Higgs boson production and decay in the
considered phase space together with examples of diagrams in which they play a role.

Coefficient Operator Example process
— 8 --—-H
e
8 t
Cuw (Gpotu) T HWE, I\ 7 Lot
R Y T S i
Cqq (@pYud0)(Gry"as)
Cay (@pYut'ar)(Gsy" 7' qr)
Cqq (@pYua)(Gry*qs)
Cqq (GpYut ) (Gry" Tl qs)
Cun (dpyyur) (isyHue) q ><£<<\ fl
Cuu (Y puttr) (it yH ) q t
Cqu (@pYuge) Gy y*us)
oy @I u)(dgy?TAdy)
Cqu (GpyuT qr) sy T uy)
< @yl TAd))
o peeararalt Ty
8
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