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Fig. 1. (a) Schematic of AAH model in flat spacetime, where o = 0 and all hoppings are J. (b) Schematic of AAH model in curved

spacetime, where o > 1 and hopping Jj, is power-law site position dependent. Fractal dimensions I" of eigenstates of AAH chain

in (c) flat spacetime with o =0 and (d) curved spacetime with o =1 as a function of the eigenenergy E/J and modulation

amplitude A/J . In panel (¢) ¢ =0, and data in panel (d) are calculated and averaged over 41 values of ¢ ranging from 0 to 2m.

Other parameters: L = Fyj5 = 610 .
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Fig. 2. (a) Schematic of momentum-state lattice; (b) wave packet evolution dynamics in AAH chain in curved spacetime. From left

to right, A/J =0, 1.0, 1.5, and 3.0. The initial sites of wave packet are ng = 10 (top panel) and no = 30 (bottom panel), re-

spectively. The grey dashed line marks the theoretical value of the phase separation critical site nc .
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Fig. 3. Observation of the phase separation critical site: (a) The time-averaged evolving fractal dimension I'eyo and (b) the time-

averaged wave packet width TW as a function of the initial site for various A/J , where the time averaging range covers the final

0.5 ms of the total evolution time of 1 ms; (c) the phase separation critical site n. as a function of A/J. The red and blue dia-

monds are obtained from the data of I'eyo and W , respectively, and the black line represents the theoretical value. Other para-

meters: o =1 and ¢ =0.
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Fig. 4. Energy spectrum of the preparation process of eigenstates with eigenenergy (a) E/J = —2.131 and (b) E/J =0.122,
where the blue points represent the preparation path, and red points mark eigenstates with an adiabatic parameter A > 0.1 with
the eigenstate in the preparation path at the same time. (c¢) and (d) are the corresponding preparation fidelity in panels (a) and (b),
respectively. In the insets, the blue bars indicate the wave packet distribution at zero time and the time-averaged wave packet dis-
tribution during the holding stage, while the dotted bars denote the corresponding theoretical eigenstates. Preparation parameters:
(a) no =33, a=3, tevo=0.80 ms, and 0 =30 —1; (b) no =23, a =5, tevo =0.80 ms, and ¢ =30 — 1. The holding
stage (shaded area) lasts for thog = 0.25 ms. Other parameters: A\/J = 1.5 and ¢ =0.
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Fig. 5. Observation of three distinct phase in the energy spectrum: (a) Eigenenergy as a function of energy level index. Here, the

blue points denote the localized subchain with Lj,. = 24, and the red points represent the extended subchain with Lexi = 10. The

spacetime curvature parameter o = 1; (b) I’ as a function of eigenenergy, where the shaded area is taken from panel (a). The

data consists of four phases ¢ =0, 0.51, 1.0nr and 1.5, and o is modulated from 30 to 1 during preparation. Other paramet-

ers: \/J=1.5.
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Abstract

Anderson localization is a profound phenomenon in condensed matter physics, representing a fundamental
transition in eigenstates, which is triggered off by disorder. The one-dimensional Aubry-André-Harper (AAH)
model, an iconic quasiperiodic lattice model, is one of the simplest models that demonstrate the Anderson
localization transition. Recently, with the growth of interest in quantum lattice models in curved spacetime
(CST), the AAH model in CST has been proposed to explore the interplay between Anderson localization and
CST physics. Several CST lattice models have been realized in optical waveguide systems to date, but there are
still significant challenges to the experimental preparation and measurement of states, primarily due to the
difficulty in dynamically modulating the lattices in such systems. In this work, we propose an experimental
scheme using a momentum-state lattice (MSL) in an ultracold atom system to realize the AAH model in CST
and study the Anderson localization in this context. Due to the individually controllable coupling between
adjacent momentum states in each pair, the coupling amplitude in the MSL can be encoded as a power-law
position-dependent J, o n?, which is conducive to the effective simulation of CST. The numerical calculation
results of the MSL Hamiltonian show that the phase separation appears in a 34-site AAH chain in CST, where
wave packet dynamics exhibit the localized behavior on one side of the critical site and the extended behavior
on the other side. The critical site of phase separation is identified by extracting the turning points of the
evolving fractal dimension and wave packet width from the evolution simulations. Furthermore, by modulating
the spacetime curvature parameter o, we propose a method of preparing the eigenstates of the AAH chain in
CST, and perform numerical simulations in the MSL. By calculating the fractal dimension of eigenstates
prepared using the aforementioned method, we analyze the localization properties of eigenstates under various
quasiperiodic modulation phases, confirming the coexistence of localized phase, swing phase, and extended phase
in the energy spectrum. Unlike traditional localized and extended phases, eigenstates in the swing phase of the
AAH model in CST exhibit different localization properties under different modulation phases, indicating the
existence of a swing mobility edge. Our results provide a feasible experimental method for studying Anderson
localization in CST and presents a new platform for realizing quantum lattice models in curved spacetime.

Keywords: Anderson localization, curved spacetime, ultracold atoms, momentum-state lattice

PACS: 03.67.Ac, 04.62.4+v, 37.10.Jk, 72.15.Rn DOI: 10.7498 /aps.74.20241592
CSTR: 32037.14.aps.74.20241592

* Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key R&D
Program of China (Grant Nos. 2020YFA0309804, 2023YF(C2206200), the Shanghai Municipal Science and Technology Major
Project, China (Grant No. 2019SHZDZXO01), and the Innovation Program for Quantum Science and Technology, China
(Grant No. 2021ZD0302002).

1 Corresponding author. E-mail: daihan@ustc.edu.cn

020301-9


http://doi.org/10.7498/aps.74.20241592
https://cstr.cn/32037.14.aps.74.20241592
mailto:daihan@ustc.edu.cn
mailto:daihan@ustc.edu.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Chinese Physical Society

%i@%"—*&Acta Physica Sinica

Institute of Physics, CAS

75 #hiH2 F BJAubry-André-HarperZ B & 5%
2 BRRT
Aubry—Andr é ~Harper momentum-—state chain in curved spacetime

MAOQO Yiyi  DAI Hanning

5] Fi{5 B Citation: Acta Physica Sinica, 74, 020301 (2025) DOI: 10.7498/aps.74.20241592
TEZE[R]1E View online: https:/doi.org/10.7498/aps.74.20241592
BHAPIZS View table of contents: http://wulixb.iphy.ac.cn

FEAT ARG HoAh S

Articles you may be interested in

VR T B A% T AL MR N
Nonlinear topological pumping in momentum space lattice of ultracold atoms

WAL 2023, 72(16): 160302 https://doi.org/10.7498/aps.72.20230740

i'|3;FL/?JAubry—Andlr é FRAN A 25 diL e PRARLL
Electrical circuit simulation of nonreciprocal Aubry—Andr é models

PrPieEdR. 2022, 71(16): 160301 https:/doi.org/10.7498/aps.71.20220219

JEIAIK ST 2 s R GE T I B )2 E NS
Dynamic topological phenomena in periodically driven Raman lattice

YIBR2EA. 2024, 73(14): 140301 https://doi.org/10.7498/aps.73.20240535

— ARV I Sl AR T B AR PR SR F M
Topological phase in one—dimensional momentum space lattice of ultracold atoms without chiral symmetry

PyFEEEAR. 2024, 73(4): 040301 https:/doi.org/10.7498/aps.73.20231566

S RIS — A0 b T Mon 40 25 1 S50 5 B
Experimental realization of Mott insulator of ultracold 87RD atoms in two—dimensional optical lattice

YIBR2AHR. 2020, 69(19): 193201  hitps:/doi.org/10.7498/aps.69.20200513

BT AR T 2 R BRI 5T

Non—equilibrium quantum many—body physics with ultracold atoms

YIBR2A 4. 2023, 72(23): 230701 hitps:/doi.org/10.7498/aps.72.20231375


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.74.20241592
http://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.72.20230740
https://doi.org/10.7498/aps.71.20220219
https://doi.org/10.7498/aps.73.20240535
https://doi.org/10.7498/aps.73.20231566
https://doi.org/10.7498/aps.69.20200513
https://doi.org/10.7498/aps.72.20231375

	1 引　言
	2 弯曲时空下的对角AAH模型
	3 基于动量态晶格的数值模拟结果
	4 结　论
	参考文献

