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The step-scaling function, the lattice analog of the renormalization group § function, is presented
for the SU(3) gauge system with eight flavors in the fundamental representation. Our investiga-
tion is based on generating dynamical eight flavor gauge field configurations using stout-smeared
Mobius domain wall fermions and Symanzik gauge action. On these gauge field configurations we
perform gradient flow measurements using the Zeuthen, Wilson, or Symanzik kernel and consider
the Symanzik, Wilson plaquette, or clover operators to determine step-scaling functions for a scale
change s = 2 including large, up to 48*, volumes. Considering different flows and operators as well
as the optional use of tree-level improvement allows us to check for possible systematic effects. Our
result covers the range of renormalized coupling up to g2 < 10. In the case of Ny = 8 we observe
that the reach in g2 is limited due to an unphysical first order bulk phase transition caused by large
ultra-violet fluctuations.

We compare our findings to Ny = 4, 6, 10 or 12 flavors results that are obtained using the same
lattice action and analysis. In addition we investigate the phase structure for simulations with
different number of flavors using stout-smeared Mobius domain wall fermions and Symanzik gauge

actions to shed some light on the limited reach in g2.

I. INTRODUCTION

The SU(3) gauge theory with Ny = 8 fundamental
fermions is among the most interesting beyond quan-
tum chromodynamics (QCD) systems. Even though it
has been studied in lattice simulations extensively, its
infrared nature, i.e. whether it is conformal or chirally
broken, is still unknown (see e.g. [1-13] and references
therein). It has even been suggested that due to special
anomaly cancellations in the massless model, Ny = 8
flavors might be the sill of the conformal window [14].

In any case, the Ny = 8 system is expected to be close
to the conformal window, making it an excellent choice
for composite Higgs models, either with all eight flavors
massless or as a mass-split system [15-20] where some of
the flavors are “heavy” and decouple in the infrared (IR)
limit. In applications like the composite Higgs model, it
is assumed that the system is chirally broken in the in-
frared (IR), but a “nearby” infrared fixed point (IRFP)
drives its low-energy dynamics. Such an IRFP occurs
at strong coupling where a nonperturbative approach is
necessary to study the IR properties of the system. Sev-
eral lattice groups have carried out large scale simula-
tions to investigate the phase structure [2, 6, 13, 14], the
step scaling renormalization group S function [1, 4, 5],
and the hadron spectrum [3, 7-12] of the SU(3) 8-flavor
model. While lattice calculations support the expecta-
tion that SU(3) with 8 fundamental fermions is close to
the conformal window, even the latest large-scale simu-
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lations of the hadron spectrum could not unambiguously
determine its infrared nature [21]. The analysis of the ob-
served meson spectrum is consistent with a dilaton chiral
perturbative description as much as with conformal hy-
perscaling [22-26].

Many of the above mentioned works identified a bulk
phase transition of the Ny = 8 model that prevented
the numerical simulations to investigate the strong cou-
pling regime of the system. Recently it was proposed to
add a set of Pauli-Villars (PV) style heavy bosons with
mass at the cutoff level to remove part of the discretiza-
tion effects introduced by the fermions [27]. First re-
sults for the Ny = 8 system indicate that the first order
bulk phase transition can be weakened and even made
continuous once the gauge fields are sufficiently smooth
[14]. Finite size scaling analysis using PV improved ac-
tions predict a continuous phase transition favoring a
Berezinski, Kosterlitz, Thouless (BKT) type “walking”
scaling, i.e. a renormalization group § function that just
touches zero [28—-30]. This scaling behavior suggests that
the 8-flavor system could be the sill where the confor-
mal window opens up. This is an unexpected result that
may have important consequences not only for theories
describing beyond standard model physics but also for
studies of four dimensional conformal systems in general.
The conclusion of “walking” scaling should be checked
by independent lattice studies preferably using different
actions and/or different lattice methods.

In this work we discuss results on the renormalization
group step scaling function of the 8 flavor system using
Mobius domain wall fermions (MDWTF). Tt completes our
systematic investigation of theories with Ny =2 —12 fla-
vors. In previous publications we reported on the Ny = 4
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FIG. 1. Comparison of the step-scaling functions for Ny = 4,
6, 8, 10 and 12 using the ¢ = 0.300 scheme and scale change
s=2.

and 6 [31], 10 [32, 33], and 12 [33, 34] flavor systems,
while we have published results using a slightly differ-
ent quantity, the continuous § function with Ny = 2
[34, 35] and 0 [36] flavors. Figure 1 summarizes our find-
ings in the ¢ = 0.3 step-scaling scheme with scale change
s = 2. Comparison of the nonperturbative results with
perturbation theory shows that flavor numbers Ny < 8
run slower than the perturbative predictions. While with
12 flavors there is strong indication of an infrared con-
formal fixed point, with Ny = 10 we were not able to
reach strong enough couplings to unambiguously iden-
tify a fixed point. The reach of our Ny = 8 simulations
is similarly restricted. The limited range of accessible
gauge coupling is due to an unphysical bulk first order
phase transitions in lattice simulations. Up to renormal-
ized coupling g%, 5 < 10 the step scaling function of
the 8-flavor system shows a steady rise. This, however,
is not in contradiction with the result of Ref. [14] that
suggests 8-flavor could be the sill of the conformal win-
dow. The predicted value of the gauge coupling at the
fixed point is g2_ 5 = 25, well outside the reach of the
present work.! Improved lattice actions will be needed
to reach stronger gauge couplings in MDWF simulations
to be able to verify the claims of staggered fermion sim-
ulations in Ref. [14].

The limited reach in the renormalized coupling g2
prompted us to study the phase structure of SU(3) gauge
system with Ny = 2 — 12 flavors in greater detail. Per-
forming dynamical MDWF simulations in the strong cou-
pling region on small 8* lattices, we compute the gradient
flow (GF) coupling g2_, 3 and show how its value varies

I Figures 3 and 4 of Ref. [14] show that in the ¢ = 0.45 scheme
g2 =~ 30 at the phase transition. The corresponding value is
somewhat smaller with ¢ = 0.30.
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FIG. 2. The renormalized gauge coupling determined using
Symanzik gauge action, Zeuthen flow, and Symanzik operator
in the ¢ = 0.30 scheme on 8* volumes as the function of the
bare coupling for Ny = 2 — 12 flavors.

as we change the bare coupling § in Fig. 2. For systems
with six or more flavors, we observe a discontinuity that
grows with the flavor number. This first order transi-
tion is at least partially related to lattice ultraviolet fluc-
tuations. For any given lattice action it constrains the
bare coupling values that are connected to the pertur-
bative Gaussian fixed point, and consequently limits the
largest renormalized coupling values in finite volumes.
With Ny = 8 flavors the strongest renormalized coupling
we can reach is g2 ~ 14.0 at 3 = 3.98. However, the sim-
ulations show a wide hysteresis loop that indicates that
values with 8 < 4.02 are in a mixed phase. To avoid
this problem we consider bare couplings § > 4.02. Us-
ing lattice volumes 8 < L/a < 48, our predictions of the
s = 2 step scaling function in the SU(3) 8-flavor system
are limited to g2 < 10. The accessible range of renormal-
ized gauge couplings could be increased by using larger
volumes, or by improving the lattice action.

In the next section we discuss the details of our lat-
tice setup investigating SU(3) with eight fundamental
fermions before we present our step-scaling calculation
in Sec. III. Subsequently we report further details on our
investigations of the bulk phase transition that restricts
the accessible parameter range with Ny = 2 — 12 flavors
and close by summarizing our work in Sec. V.

II. DETAILS OF OUR CALCULATION

We simulate the SU(3) gauge system with eight dy-
namical fermions in the fundamental representation us-
ing the tree-level improved Symanzik (Liischer-Weisz)
gauge action [37, 38] and three times stout-smeared [39]
Mobius domain wall fermions (MDWF) [40]. The do-
main wall height is M5 = 1.0, the Mobius parameters



are bs; = 1.5, ¢5 = 0.5, and the stout-smearing param-
eter o = 0.1. These are the same choices we used for
our previous investigations of SU(3) with Ny = 2 fla-
vors [35], 4 or 6 flavors [31], 10 [32, 33] or 12 [33, 34]
of fundamental fermions. Gauge field configurations are
generated with anti-periodic (periodic) boundary condi-
tions for the fermions (gauge field) in all four space-time
directions using the hybrid Monte Carlo (HMC) [41] up-
date algorithm as implemented in GRID? [42]. Choosing a
trajectory length of 7 = 2 molecular dynamic time units
(MDTU), we save, after thermalization, gauge field con-
figurations every five trajectories. As preferred for step-
scaling calculations, we simulate symmetric (L/a)* hy-
percubic volumes with antiperiodic boundary conditions
for the fermions in all four directions with L/a = 8, 10,
12, 16, 20, 24, 32, and 48 and choose amy = 0. Our pre-
ferred analysis is based on choosing the scale change s = 2
considering the five volume pairs (8 — 16), (10 — 20),
(12 — 24), (16 — 32), and (24 — 48). For all vol-
umes we perform simulations using bare gauge couplings
B=6/g2 € {7.00, 6.50, 6.00, 5.50, 5.50, 4.70, 4.50, 4.40,
4.30, 4.25, 4.20, 4.20, 4.15, 4.10, 4.05, 4.03, 4.02}, where
the smallest 8 values are however only simulated on the
smaller volumes to achieve on all s = 2 volume pairs
roughly the same reach in the renormalized coupling and
staying in the deconfined regime. The number of gener-
ated, thermalized configurations as well as further details
are listed in in Table I in Appendix A. Typically we gen-
erated several hundred MDTU on the small volumes, but
only 170-200 MDTU on the largest L/a = 48 volumes.
We perform simulations with bare coupling 5 > 4.20 us-
ing an extent of Ly = 12 for the fifth dimension of do-
main wall fermions, while L, = 16 is chosen for 5 < 4.20.
As demonstrated in our previous work [32-34] but also
shown in Fig. 3, this choice ensures that the residual chi-
ral symmetry breaking present for MDWEF expressed as
the residual mass am,es remains sufficiently small, below
10~ for B < 4.10. However, am,s increases rapidly for
even stronger coupling.

Subsequently we read-in these gauge field configura-
tions to perform gradient flow measurements. Gradient
flow measurements are separated by 10 MDTU and car-
ried out using Qlua® [43]. We perform a total of three
different gradient flows: Wilson (W), Symanzik (S) and
Zeuthen (Z) [44, 45] flow. For each flow we determine
the Wilson plaquette (W), Symanzik (S) and clover (C)
operator to estimate the energy density (F(t)) as a func-
tion of the gradient flow time ¢. In addition we estimate
the topological charge @ at flow time t.

While MDWF have in general good chiral properties
protecting our zero mass simulations from effects due to
nonzero topological charges, we do observe some topolog-
ical artifacts similar to those encountered in our Ny = 10

2 https://github.com/paboyle/Grid
3 https://usqcd.lns.mit.edu/w/index . php/QLUA
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FIG. 3. Residual mass amy.s as a function of the bare coupling
B determined on (L/a)* volumes with L/a = 32 for SU(3)
gauge systems with Ny =4, 6, 8, 10, or 12 flavors. Different
colors and symbols distinguish the number of flavors; filled,
open, shaded, or framed markers denote the extent L, of the
fiftth dimension for MDWF.

simulations [46]. Since statistically only very few arti-
facts show up within a given set of measurements, we
decided to follow the Alpha collaboration [47, 48] and
project to the @@ = 0 sector by including only configu-
rations with |@Q| < 0.5. Using these measurements we
perform the statistical data analysis using the I'-method
[49] to estimate and accounts for effects due to autocor-
relations.

III. STEP-SCALING ANALYSIS

Central for the gradient flow step-scaling function,
is to define the finite volume gradient flow coupling
9&r(t: L, B) [50],

12872 1
3(N2—1)C(t,L/a) (FE®), @)

gep(t; L, B) =

where the constants are chosen to match the perturba-
tive 1-loop result in the MS scheme [51] with N = 3
for the SU(3) gauge group. The coefficient C(t, L/a) is
a perturbatively computed tree-level improvement term*
[52]. When we analyze the data without tree-level im-
provement, we compensate for zero modes of the gauge
field in periodic volumes by replacing C(c,L/a) with
1/(1 + &(t/L?)) [50]. The flow time t is connected to
the lattice size L,

t=(cL)*/s, (2)

4 Numerical values for L/a < 32 are listed Table III of Ref. [34]
and for L/a > 32 in Table V of Ref. [31].
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and the parameter ¢ specifies the finite volume renor-
malization scheme. In order to obtain the gradient flow
step-scaling 8 function [50] for a scale change s, the dif-
ference of the gradient flow coupling on volume (L/a)*
and (s - L/a)* needs to be determined
2 sL: 42 L:

oslasg) = LEED A
with ¢g2(L, 8) = g4 p(t = (cL)?/8; L, 8). Defining the re-
normalized coupling g2 at a bare coupling 3 implies that
g? is subject to cutoff effects. The phenomenologically
meaningful result is obtained after taking the continuum
limit, which for the step-scaling function corresponds
to taking t/a® — oo, or equivalently L/a — oo while
keeping ¢2(L;B) fixed. Thus at a fixed value of g2,
the bare coupling is tuned toward the Gaussian fixed
point i.e. g3 = 6/8 — 0 for increasing L/a. In practice
we perform simulations on a limited set of lattice
volumes and compensate for that by simulating at
different values of the bare coupling 5. Combining these
simulations at different bare coupling, allows us to cover
the investigated range of the renormalized coupling and
enables to take the L/a — oo continuum limit of the
step-scaling f3. s(g2; L) at fixed g2. In the end this leads
to the continuum step-scaling B-function . s(g2) in the
renormalization scheme c.

Our analysis starts by following Eq. (1) to calculate
renormalized couplings g%(L,3) for all volumes using a
given flow-operator combination (with or without tree-
level improvement) and either of the three renormal-
ization schemes (¢ = 0.300, 0.275, and 0.250) consid-
ered. In the following we refer to the different flow
and operator combinations using the shorthand nota-
tion [flow][operator] (indicated by the first capital let-
ter) and prefix an “n” when the tree-level improvement
term C(c, L/a) is included in our analysis. As we de-
tail later, our preferred analysis is based on Zeuthen flow
and Symanzik operator, both with and without the use
of tree-level improvement and referred to as (n)ZS. For
these (n)ZS combinations we list the renormalized cou-
plings together with corresponding integrated autocorre-
lation times in Table I in Appendix A and will use (n)ZS
in the following to detail our analysis steps.

Next we calculate discrete (3. s(¢g2; L) functions, defined
in Eq. (3), for all five volume pairs with scale change of
s = 2. We show these discrete S.s(g%; L) functions by
the colored symbols in the top row plots in Fig. 4. Figure
4 shows our analysis for the ¢ = 0.300 renormalization
scheme and corresponding plots for schemes ¢ = 0.275
and 0.250 are shown in the Appendix B, Figs. 11 and 12,
respectively.

Motivated by the perturbative expansion

Beslg2 L) = bigl. (4)
1=0

we interpolate these discrete . s(g2; L) functions by per-
forming a polynomial fit and achieve a good description

of our data using a polynomial of degree n = 3. Since dis-
cretization effects at weak coupling are sufficiently small
when using tree-level normalization (tln), we constrain
the intercept by to vanish but fit by without tln. The
outcome of these interpolating fits are listed in Tab. II
and the resulting finite volume discrete step-scaling func-
tions B, s(g%; L) at continuous values of g2 are shown in
top row plots of Figs. 4, 11, and 12 by the shaded bands
in the same color as the values of the discrete . s(g2; L)
functions.

In the next step we extrapolate these continuous-in-g>

finite volume discrete step-scaling functions to the infi-
nite volume continuum limit at fixed values of g2 to ob-
tain phenomenologically meaningful results. Specifically
we choose two different fit ansétze to perform these ex-
trapolations which enables us to check for consistency.
Our first choice is to perform a linear fit in (a/L)? using
only our three largest volume pairs 12 — 24, 16 — 32,
and 24 — 48. This fit is shown by a solid black line with
gray error band in top row plots of Figs. 4, 11, and 12
with corresponding p-values given by the solid black in
the second row plots. Secondly we perform a quadratic
fit in (a/L)? using all five volume pair and visualize it by
the black dash-dotted lines. Details of these continuum
extrapolations fits are presented for four selected values
of g2 in the bottom two rows of Figs. 4, 11, and 12. While
linear and quadratic fits result in consistent continuum
step-scaling functions for nZS and ZS for all ¢ schemes
across the range of g2 covered, the goodness of fit (p-
value) is typically higher for nZS than ZS. In particular
quadratic fits for ZS in the range 5.5 < g2 < 8.5 exhibit
low, if not zero, p-values. Taking a look at the finite
volume step-scaling functions in the top row plots, these
poor p-values correspond to the 8 — 16 and/or 10 — 20
data having a different “shape” than the other volume
pairs. This is a sign of these volumes being too small
for these strong coupling. Consequently, we use the lin-
ear fits as our preferred analysis and only show quadratic
fits for consistency.

While the continuum results are expected to be free of
discretization effects, they may nevertheless be subject
to other systematic effects. In addition to varying the
ansatz for the continuum limit extrapolation, we there-
fore also take advantage of our additional gradient flow
measurements and repeat the analysis for all different
flow-operator combinations with and without using tln.
Choosing again four selected values g2 across the range
where we have data, we compare the different determina-
tions of B.s(g?) in Fig. 5 where the different rows show
our three different ¢ schemes and the columns align differ-
ent g2 values. Highlighting our preferred (n)ZS analysis
by the shaded blue bands, we observe an overall consis-
tency of the 18 different analysis mostly at the 1o level.
However, we note that the spread increases as we move
to smaller schemes ¢ and/or to stronger coupling g2. The
total number of “outliers” not touching the blue bands is
very small. Therefore we take the envelope of nZS and ZS
to obtain our final results which in particular for smaller
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FIG. 4. Discrete step-scaling S-function for Ny = 8 in the ¢ = 0.300 gradient flow scheme for our preferred nZS (left) and ZS
(right) data sets. The symbols in the top row show our results for the finite volume discrete 8 function with scale change s = 2.
The dashed lines with shaded error bands in the same color of the data points show the interpolating fits. We consider two
continuum limits: a linear fit (black line with gray error band) in a?/L? to the three largest volume pairs and a quadratic fit to
all volume pairs (black dash-dotted line). The p-values of the continuum extrapolation fits are shown in the plots in the second
row. Further details of the continuum extrapolation at selected g2 values are presented in the small panels at the bottom where
the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical errors are shown.

¢ values visibly increases the error of our final result.
We conclude our presentation on the Ny = 8 step-
scaling function by showing how our final, nonperturba-
tive results® based on nZS + ZS compare to the universal
perturbative 1- and 2-loop predictions, the perturbative
3-loop prediction in the gradient flow scheme [53], and the
3-, 4-, and 5-loop predictions in the MS scheme [54, 55].
As in the case of our previous work for Ny = 4 and

5 ASCII files containing the data corresponding to our final results
(envelope of nZS and ZS) are uploaded as Supplemental Material.

6 flavors [31], we observe that the perturbative step-
scaling function runs noticeable slower than the univer-
sal or MS-scheme perturbative predictions. While 1- and
2-loop as well as 3- and 4-loop are very close to each
other, the 5-loop prediction does not follow the trend sit-
ting essentially between the two groups. Overall the 3-
and 4-loop MS-scheme predictions are qualitatively clos-
est to our nonperturbative result. The 3-loop gradient
flow scheme prediction [53] seems again not to be trust-
worthy at strong coupling (g2 2 4) because it sharply
turns around hinting at a fixed point at g2 ~ 7 where
our nonperturbative § function grows steadily. However,
for weaker coupling 0 < g2 < 3 the perturbative 3-loop
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FIG. 5. Systematic effects on the Ny = 8 results for Bc,s(gf) due to tree-level improvement, different flows and operators as well
as linear or quadratic continuum extrapolation fits. In all cases we obtain the continuum limit considering a linear extrapolation
to the three largest volume pairs and a quadratic extrapolation to all volume pairs. The columns show our continuum limit
results at selective g2 = 2.0, 4.3, 6.6, and 9.0; the rows correspond to renormalization schemes ¢ = 0.300, 0.275, 0.250. Open
symbols indicate extrapolations with a p-value below 5%. The vertical shaded bands highlight our preferred (n)ZS analysis.
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FIG. 6. Comparison of our final Ny = 8 continuum results
obtained from our preferred (n)ZS data set for ¢ = 0.300
(top), 0.275 (middle), and 0.250 (bottom) to universal 1- and
2-loop perturbative predictions (red), 3-loop perturbative pre-
dictions in the gradient flow scheme (purple) and 3-, 4-, and
5-loop MS scheme predictions (orange).

GF prediction perfectly traces our nonperturbative re-
sult. Hence it would be extremely interesting to learn
how the perturbative scheme converges when higher loop
corrections are considered.

IV. PHASE DIAGRAM FROM Ny =2-12 WITH
DOMAIN WALL FERMIONS

Figure 1 summarizes our results for the s = 2 step
scaling function with Ny = 4, 6, 8, 10, and 12 flavors.
The reach in the renormalized coupling g2 is limited by
the onset of chiral symmetry breaking for Ny = 2 and
4 flavors and on larger volumes also for Ny = 6 flavors.
With Ny > 8 the simulations even on our largest volumes
never reach the regime where chiral symmetry is broken,
the accessible gauge coupling is limited by the onset of
a strong first order bulk phase transition. The situa-
tion is similar to staggered fermion simulations where
systems with Ny > 8 undergo a bulk transition, thus
limiting the value of the strongest finite volume GF cou-
pling. In most cases this bulk transition is triggered by
strong UV fluctuations and can be mitigated by improv-
ing the action. Reference [27] has shown that the in-
clusion of heavy Pauli-Villars type bosons counter the
induced gauge action of the fermions and lead to numer-
ical simulations with smoother gauge fields at identical
renormalized gauge coupling. The bulk phase transition
caused by UV fluctuations are shifted by the smoother
gauge fields and stronger gauge couplings are accessible
in simulations. Studies of the Ny = 8 system with stag-
gered fermions and sufficient number of heavy PV bosons
suggest that the bulk first order phase transition turns
to a bulk continuous phase transition that favors “walk-
ing scaling”, i.e. a 8 function that just touches zero. This
scenario would make Ny = 8 the sill of the conformal win-
dow, a possibility that most likely is related to 't Hooft
anomaly cancellation with two sets of staggered fermions
[56, 57]. The phase transition occurs at a rather strong
g2 gauge coupling. The value of g2 depends on the renor-
malization scheme, preliminary results indicate g2 > 25
in the ¢ = 0.30 GF scheme and not in the range of exist-
ing simulations that do not utilize PV improvement.

Our MDWF simulations has similar limitations as
staggered ones. With our action we cannot reach the
regime g2 > 10. Trying to push the simulations to
stronger coupling we first observe that residual mass
aMyes, parametrizing the residual chiral symmetry break-
ing present in domain wall fermions, starts to grow. As
we show in Fig. 3, the residual mass at weak coupling
does not show any dependence on the number of fla-
vors. This changes when the bare coupling drops be-
low 5.5 where slight differences in am,es for different Ny
become visible. These differences grow for stronger cou-
pling likely related to the phase structure of the system.

To get a better understanding of the phase structure
and bulk transitions of SU(3) gauge systems with Ny = 2,
4, 6, 8, 10, or 12 flavors we performed a large number



of dedicated small 8* simulations using the same stout-
smeared MDWF with Symanzik gauge action. For all
these simulations we fix the fifth extent of domain-wall
fermions to be L, = 12. First we explore the weak cou-
pling “branch” by starting from existing configurations
at f = 4.05 and decrease (3 in steps of 0.02 down to 3.91.
We observe clear first order phase transitions for Ny > 6,
while Ny = 2 and 4 show a smooth behavior. Near the
transitions we fill in steps of 0.01. Second we explore
the strong coupling branch starting from configurations
at 8 = 3.91 and increase [ in steps of 0.02 again filling in
steps of 0.01 near the transitions. For all simulations we
generate at least 1000 trajectories with trajectory length
7 =2 MDTU and use at least 200 trajectories for ther-
malization. In cases where the transition occurs “late”
or we observe interesting fluctuations, we run these en-
sembles for at least another 1000 trajectories. With our
statistics we have not observed multiple tunneling in any
of the systems, and in some cases we cannot exclude that
a tunneling event may occur later.

We investigate the behavior of the plaquette, the
Polyakov line, the chiral condensate, and the finite vol-
ume renormalized gauge coupling in the ¢ = 0.30 scheme
as the function of the bare coupling 5. We have already
discussed the renormalized gauge coupling in the Intro-
duction, where in Fig. 2 we show only the weak coupling
branch. In Figs. 7, 8, and 9 we show the plaquette, the
absolute value of the Polyakov line, and the chiral con-
densate both from the weak and strong coupling start
simulations. All quantities show the bulk phase transi-
tion at identical bare couplings for Ny > 6, while Ny = 2
and 4 are consistent with a cross over transition. The
increased width of the hysteresis loop is consistent with
the increasing discontinuity of the phase transition for
Ny > 6.

The Ny = 2 and 4 systems do not show any dis-
continuity, though at strong coupling both the Polyakov
line (Fig. 8) and the chiral condensate (Fig. 9) indicate
a transition from the deconfined weak to the confining
strong coupling regime. This transition occurs at strong
bare coupling where we expect the residual mass to be
large, amyes = 0.1. These simulations probe the system
at finite mass and are not necessarily indicative of the
finite temperature chiral transition. We observe a very
different behavior for Ny > 6. All observables indicate
a first order phase transition from the deconfined phase
with large Polyakov line to a confined phase where the
Polyakov line is small (Fig. 8). The chiral condensate also
shows a transition from a chirally symmetric to a chirally
broken regime, but the condensate is very different from
the behavior observed for the Ny = 2 and 4 flavor sys-
tems. After a discontinuity, ({1)) decreases as the gauge
coupling gets stronger, while with small number of fla-
vors we observe the opposite trend. At this point we
cannot tell if we observe a new phase, possibly the ana-
logue of the single site shift symmetry (S4) broken phase
observed in many staggered fermion simulations [58], or
the breakdown of the MDWF action where the mobility
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FIG. 7. Comparison of the plaquette on 8% volumes as the
function of the bare coupling for Ny = 2 — 12 flavors. By
performing starts from weak and strong coupling we are re-
solving a hysteresis for Ny > 6. Both the discontinuity and
the hysteresis width grows with increasing flavor number.

edge of the domain-wall kernel is comparable or below the
domain wall height [59, 60]. Simulations with improved
actions where the first order phase transition occurs on
smoother gauge configurations could clarify this uncer-
tainty in the future.

Independent on the nature of the bulk phase transi-
tion, it limits the accessible parameter range of the sim-
ulations. The finite volume gradient flow coupling is de-
fined at a fixed fraction of the lattice volume, V8t =cL.
Larger volumes allow larger flow times, thus larger renor-
malized couplings. In practice the smallest lattice vol-
umes used in the analysis determines the strongest renor-
malized gauge coupling of the step scaling function. In
Fig. 2 we show g2_,; on 8% volumes. On larger vol-
umes the gauge coupling at fixed c increases, but its value
is still limited. In addition, numerical simulations very
close to the bulk transition could pick up scaling behavior
characteristic to that transition. In this work we limited
the bare couplings to § > 4.02 to avoid contamination
from the bulk transition.

V. SUMMARY

In this work we have reported our results of the step
scaling function of the SU(3) gauge N; = 8 fundamental
flavors system. Our continuum limit results are consis-
tent with prior calculations based on staggered lattice
fermions as shown in Fig. 10. While all numerical results
in Fig. 10 use the same gradient flow renormalization
scheme ¢ = 0.30, the scale change is different. Judging
from the differences between the 4-loop perturbative re-
sults in the MS scheme for s = 2 and s = 1.5 shown in
Fig. 10, we infer that the difference caused by switching
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line on 8* volumes as the function of the bare coupling for
Ny = 2 — 12 flavors. By performing starts from weak and
strong coupling we are resolving a hysteresis for Ny > 6.
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FIG. 9. Comparison of the absolute value of the chiral con-
densate (19)) on 8* volumes as the function of the bare cou-
pling for Ny = 2—12 flavors. By performing starts from weak
and strong coupling we are resolving a hysteresis for Ny > 6.
Both the discontinuity and the hysteresis width grows with
increasing flavor number.

from s = 2 to s = 1.5 in the nonperturbative numerical
calculation could be of similar magnitude as the observed
changes of the nonperturbative results. We tried to con-
firm this by repeating our analysis with s = 1.5 forming
the volume pairs (8 — 12), (16 — 24), and (32 — 48) but
unfortunately were not able to obtain a conclusive result.
The two larger volume pairs, (16 — 24) and (32 — 48)
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FIG. 10. Comparison of our Ny = 8 continuum results ob-
tained from our preferred (n)ZS data set for ¢ = 0.300 to the
nonperturbative results obtained by Hasenfratz et al. [4] and
the Lattice Higgs Collaboration (LatHC) [5]. While our re-
sults are based on the scale change s = 2, both prior studies
used s = 3/2.

turn out to be too noisy, whereas 8* volumes are too
small to be reliable in a linear continuum extrapolation
in a?/L%.

This completes our first approach to investigate the
renormalization group properties of SU(3) gauge systems
with Ny = 2 — 12 fundamental fermions using chirally
symmetric Mobius domain wall fermions and Symanzik
gauge action.

Most existing numerical simulations of many-flavor
systems encounter a first order bulk phase transition at
strong coupling. This phase transition limits the param-
eter range of the simulations and restricts the strongest
renormalized gauge coupling that can be reached at en-
ergy scales comparable to the inverse lattice size. Com-
parison of results obtained using different lattice actions
shows that the discontinuity of the bulk transition de-
pends strongly on the action. This suggests that, at least
to some extent, the bulk phase transition is caused by
strong ultraviolet lattice fluctuations, and improved lat-
tice actions may open up the parameter space allowing to
study many-flavor systems at stronger gauge couplings.

The results presented in this work reach up to g2 ~ 10,
much below the possible continuous phase transition sug-
gested in Ref. [14]. The phase diagram shows that the
simulations are limited by a bulk first order transition
and an improvement similar to the case of staggered
fermions could help opening up the parameter space.
This is, however, beyond the scope of the present work.
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Appendix A: Renormalized couplings g2 and details
of the polynomial interpolation

TABLE I: Details of our preferred analysis for Ny = 8 based on Zeuthen flow and Symanzik operator. For each ensemble specified
by the spatial extent L/a and bare gauge coupling 8 we list the number of measurements N as well as the renormalized couplings
g2 for the analysis with (nZS) and without tree-level improvement (ZS) for the three renormalization schemes ¢ = 0.300, 0.275
and 0.250. In addition the integrated autocorrelation times estimated using the I'-method [49] are listed in units of 10 MDTU.

c¢ = 0.300 c=0.275 c = 0.250

L/a B N gf(nZS) gZ(ZS) Tint gf(nZS) gf(ZS) Tint gf(nZS) gf(ZS) Tint

8 7.00 991 1.4494(21) 1.5233(22) 0.51(5) 1.4427(17) 1.5506(18) 0.50(5) 1.4342(14) 1.5962(15) 0.50(5)
8 6.50 1041 1.6582(24) 1.7427(25) 0.53(6) 1.6486(20) 1.7719(21) 0.52(6) 1.6368(16) 1.8217(17) 0.52(6)
8 6.00 1001 1.9504(28) 2.0498(30) 0.51(6) 1.9354(24) 2.0801(26) 0.54(6) 1.9173(19) 2.1339(21) 0.53(6)
8 5.50 1041 2.3478(35) 2.4674(36) 0.53(7) 2.3271(29) 2.5011(31) 0.56(6) 2.3020(24) 2.5620(26) 0.56(6)
8 5.00 1091 2.9989(48) 3.1517(50) 0.61(7) 2.9627(37) 3.1842(40) 0.54(6) 2.9196(29) 3.2494(32) 0.50(4)
8 4.70 1091 3.6321(64) 3.8172(67) 0.62(8) 3.5762(52) 3.8436(56) 0.61(8) 3.5107(42) 3.9072(47) 0.60(8)
8 4.50 1001 4.2508(82) 4.4675(86) 0.68(9) 4.1754(67) 4.4877(73) 0.66(9) 4.0861(55) 4.5477(61) 0.65(9)
8 4.40 862 4.6547(93) 4.8919(98) 0.62(8) 4.5647(76) 4.9060(82) 0.59(8) 4.4583(61) 4.9619(67) 0.56(7)
8 4.30 1031 5.2072(98) 5.473(10) 0.62(8) 5.0962(81) 5.4773(87) 0.60(7) 4.9627(66) 5.5232(73) 0.58(7)
8 425 957 5.560(13) 5.843(14) 0.7(1) 5.432(11) 5.838(12) 0.7(1) 5.2778(93) 5.874(10) 0.7(1)
8 4.20 637 5.985(16) 6.290(17) 0.57(9) 5.840(13) 6.277(14) 0.56(8) 5.661(11) 6.301(12) 0.55(7)
8 4.15 415 6.555(23) 6.889(24) 0.51(7) 6.373( 6.849(22) 0.57(10) 6.149(17) 6.844(19) 0.58(10)
8 4.10 405 7.390(37) 7.766(39) 0.9(2)  7.144( 7.678(34)  0.9(2) 6.840(27) 7.612(30) 1.0(2)
8 4.05 398 8.741(63) 9.186(66) 1.2(3) 8.365( 8.990(58) 1.3(3) 7.903(45) 8.796(50) 1.4(4)
8 4.03 368 9.669(95) 10.16(10) 1.6(5) 9.189( 9.876(86) 1.5(5) 8.617(68) 9.591(75) 1.6(5)
8 4.02 356 10.06(12) 10.57(13) 1.8(6)  9.56(1 10.27(11)  1.9(6) 8.940(85) 9.950(94) 1.8(6)
10 7.00 605 1.4735(28) 1.5026(29) 0.58(9) 1.4663(24) 1.5077(24) 0.59(9) 1.4576(20) 1.5193(21) 0.59(10)
10 6.50 605 1.6971(36) 1.7307(37) 0.7(1) 1.6862(30) 1.7339(31) 0.6(1) 1.6735(24) 1.7443(25) 0.62(10)
10 6.00 605 1.9964(41) 2.0358(42) 0.57(8) 1.9801(32) 2.0361(33) 0.50(4) 1.9619(26) 2.0449(27) 0.49(4)
10 5.50 605 2.4311(49) 2.4791(50) 0.55(8) 2.4060(39) 2.4740(40) 0.51(6) 2.3781(31) 2.4788(32) 0.49(6)
10 5.00 605 3.1205(69) 3.1913(70) 0.61(10) 3.0885(56) 3.1757(57) 0.57(8) 3.0428(44) 3.1716(45) 0.54(8)
10 4.70 605 3.7937(74) 3.8686(75) 0.51(6) 3.7352(59) 3.8407(61) 0.47(5) 3.6707(49) 3.8261(51) 0.49(4)
10 4.50 605 4.4778(91) 4.5662(93) 0.51(7) 4.3981(7 4.5223(77) 0.49(7) 4.3103(61) 4.4927(63) 0.49(7)
10 4.40 605 4.962(12) 5.060(13) 0.7(1) 4.8611(97) 4.9985(100) 0.59(9) 4.7516(75) 4.9528(78) 0.53(9)
10 4.30 605 5.536(17) 5.645(17) 1.0(2) 5.422(14) 5.575(15) 1.0(2) 5.296(11) 5.520(12) 0.9(2)
10 4.20 605 6.415(17) 6.542(18) 0.7(1) 6.268(14) 6.446(15) 0.6(1) 6.106(12) 6.365(12) 0.62(10)
10 4.15 603 7.045(20) 7.185(21) 0.8(1) 6.881(17) 7.075(18) 0.8(1) 6.691(14) 6.974(15) 0.7(1)
10 410 600 7.917(39) 8.073(40) 1.8(5) 7.727(33) 7.945(34) 1.7(4) T7.498(27) T7.815(28) 1.5(4)
10 4.05 584 9.443(53) 9.629(54) 1.6(4) 9.202(46) 9.462(48) 1.4(3) 8.868(38) 9.243(40) 1.3(3)
10 4.03 567 10.596(54) 10.806(56) 1.1(3) 10.281(50) 10.572(51) 1.2(3) 9.863(45) 10.281(47) 1.1(3)
12 7.00 487 1.5027(36) 1.5170(36) 0.7(1) 1.4937(28) 1.5137(28) 0.7(1) 1.4832(21) 1.5123(22) 0.6(1)
12 6.50 498 1.7292(40) 1.7456(40) 0.7(1) 1.7171(31) 1.7402(32) 0.6(1) 1.7031(24) 1.7365(25) 0.53(8)
12 6.00 495 2.0341(48) 2.0535(48) 0.7(1) 2.0179(41) 2.0449(41) 0.7(1) 1.9991(33) 2.0383(34) 0.7(1)




c=0.300 c=0275 c=0.250
Lja B N ge(nZS) ge(ZS) 7w ge(nZS)  ge(Z8) T ge(nZS)  g2(ZS)  Tim
12 5.50 491 2.4930(59) 2.5176(59) 0.6(1) 2.4676(46) 2.5007(46) 0.57(9) 2.4383(36) 2.4862(37) 0.52(3)
12 5.00 491 3.224(11) 3.255(11) 1.1(3) 3.1835(82) 3.2262(83) 0.9(2) 3.1376(60) 3.1992(62) 0.8(2)
12 470 494 3.941(12) 3.978(13) 1.1(2) 3.879(10) 3.931(11) 1.1(2) 3.8115(85) 3.8863(87) 1.1(2)
12 440 466 5.162(21) 5.211(21) 1.3(3) 5.063(16) 5.131(16) 1.1(3) 4.956(13) 5.053(13) 1.0(2)
12 4.30 467 5.859(23) 5.914(24) 1.1(3) 5.725(18) 5.802(18) 1.0(2) 5.584(14) 5.693(15) 0.9(2)
12 420 491 6.798(22) 6.862(22) 0.9(2) 6.638(18) 6.727(18) 0.8(2) 6.469(14) 6.596(15) 0.8(2)
12 4.15 490 7.429(32) 7.500(33) 1.3(3) 7.261(27) 7.358(27) 1.2(3) 7.081(22) 7.220(22) 1.1(3)
12 410 590 8.397(30) 8.477(30) 1.0(2) 8.205(24) 8.315(24) 0.9(2) 8.004(19) 8.161(19) 0.8(1)
12 4.05 577 9.866(48) 9.959(48) 1.6(4) 9.689(42) 9.819(42) 1.6(4) 9.468(35) 9.654(35) 1.4(3)
12 4.03 557 10.895(54) 10.999(54) 1.5(4) 10.711(52) 10.854(52) 1.6(4) 10.487(50) 10.693(51) 1.6(4)
16 7.00 592 1.5479(34) 1.5526(34) 0.7(1) 1.5363(25) 1.5429(25) 0.56(8) 1.5238(20) 1.5333(20) 0.52(7)
16 6.50 555 1.7838(44) 1.7893(44) 0.8(1) 1.7696(35) 1.7772(35) 0.7(1) 1.7541(28) 1.7650(28) 0.7(1)
16 6.00 305 2.1350(89) 2.1415(90) 1.2(3) 2.1112(69) 2.1202(69) 1.0(3) 2.0857(51) 2.0987(52) 0.8(2)
16 5.50 195 2.6065(93) 2.6145(94) 0.6(2) 2.5759(78) 2.5870(79) 0.6(2) 2.5429(65) 2.5588(65) 0.6(2)
16 5.00 339 3.379(17) 3.390(17) 1.6(5) 3.335(14) 3.350(14) 1.5(5) 3.287(11) 3.307(11) 1.4(4)
16 4.70 431 4.221(18) 4.234(18) 1.4(4) 4.143(14) 4.161(14) 1.2(3) 4.062(11) 4.087(11) 1.2(3)
16 4.50 208 5.015(40) 5.030(40) 2.4(10) 4.910(31) 4.931(31) 2.0(8) 4.802(23) 4.832(23) 1.7(6)
16 4.40 261 5.578(47) 5.595(47) 3(1)  5.456(36) 5.480(37)  3(1)  5.330(27) 5.363(28) 2.4(9)
16 4.30 369 6.258(23) 6.277(23) 1.0(3) 6.119(18) 6.145(18) 0.9(2) 5.974(14) 6.012(14) 0.8(2)
16 4.25 232 6.728(46) 6.748(46) 1.9(7) 6.574(37) 6.602(37) 1.9(7) 6.413(31) 6.453(31) 1.9(7)
16 4.20 481 7.282(27) 7.304(27) 1.3(3) 7.106(21) 7.136(21) 1.1(3) 6.924(17) 6.967(17) 1.0(2)
16 4.15 487 8.082(34) 8.107(34) 1.4(4) 7.867(26) 7.901(26) 1.3(3) 7.650(20) 7.698(21) 1.2(3)
16 4.10 569 9.054(46) 9.082(46) 2.5(7) 8.817(36) 8.855(36) 2.2(6) 8.583(28) 8.637(28) 2.0(5)
16 4.05 443 10.623(38) 10.655(38) 1.1(3) 10.365(33) 10.409(34) 1.2(3) 10.121(29) 10.184(29) 1.2(3)
16 4.03 356 11.484(64) 11.520(64) 1.6(5) 11.239(56) 11.288(56) 1.7(5) 11.032(46) 11.100(46) 1.5(5)
16 4.02 515 12.139(54) 12.176(54) 1.5(4) 11.920(46) 11.971(47) 1.4(3) 11.736(42) 11.809(42) 1.3(3)
20 7.00 201 1.5782(65) 1.5802(65) 1.1(3) 1.5665(52) 1.5693(52) 1.1(3) 1.5530(38) 1.5579(38) 0.9(2)
20 6.50 220 1.829(11) 1.831(11) 1.7(6) 1.8134(89) 1.8166(89) 1.6(6) 1.7966(69) 1.8013(69) 1.4(5)
20 6.00 165 2.154(11) 2.157(11) 0.9(3) 2.1360(92) 2.1398(92) 0.9(3) 2.1151(75) 2.1206(76) 0.9(3)
20 5.50 164 2.675(20) 2.678(20) 2.1(9) 2.644(15) 2.649(15) 1.8(7) 2.611(11) 2.617(11) 1.5(6)
20 5.00 128 3.554(32) 3.559(32) 1.9(9) 3.497(25) 3.504(25) 1.6(7) 3.437(18) 3.446(19) 1.4(5)
20 4.70 271 4.416(23) 4.422(23) 1.2(4) 4.328(18) 4.335(18) 1.1(3) 4.237(14) 4.248(14) 1.1(3)
20 4.50 271 5.288(28) 5.204(28) 1.7(6) 5.160(21) 5.178(21) 1.5(5) 5.048(17) 5.061(17) 1.4(5)
20 4.40 271 5.879(42) 5.887(43) 2.3(9) 5.746(31) 5.756(31) 1.9(7) 5.608(23) 5.623(23) 1.6(6)
20 4.30 271 6.703(60) 6.712(61) 3(1)  6.532(46) 6.543(46)  3(1)  6.357(32) 6.373(33) 2.3(8)
20 4.20 271 7.855(76) 7.864(76) A(2)  7.630(56) 7.643(56)  3(1)  7.408(39) 7.427(39)  3(1)
20 4.15 257 8.627(50) 8.638(50) 1.9(7) 8.374(39) 8.389(39) 1.7(6) 8.124(30) 8.145(30) 1.6(5)
20 4.10 269 9.643(57) 9.655(57) 1.8(6) 9.359(45) 9.375(45) 1.6(6) 9.079(34) 9.102(34) 1.4(5)
20 4.05 267 11.23(11) 11.25(11) 4(2) 10.927(87) 10.946(87) 4(2) 10.626(61) 10.653(62) 3(1)
20 4.03 236 12.299(75) 12.315(75) 1.9(7) 11.931(59) 11.952(59) 1.7(6) 11.621(48) 11.651(48) 1.5(5)
24 7.00 323 L.6101(31) 1.6111(81) 2.0(6) 1.5963(58) 1.5077(58) 1.4(4) 1.5816(42) 1.5836(43) 1.2(3)
24 6.50 315 1.866(11) 1.867(11) 2.5(9) 1.8483(82) 1.8500(82) 2.0(6) 1.8299(63) 1.8322(63) 1.7(5)
24 6.00 212 2.233(13) 2.234(13) 1.6(6) 2.208(11) 2.210(11) 1.5(5) 2.1811(85) 2.1838(86) 1.4(5)
24 550 261 2.805(19) 2.807(19) 2.5(10) 2.761(15) 2.763(15) 2.1(8) 2.715(11) 2.718(11) 1.8(6)
24 5.00 296 3.683(19) 3.685(19) 1.7(5) 3.617(14) 3.621(14) 1.4(4) 3.550(11) 3.554(11) 1.3(4)
24 470 259 4.603(25) 4.605(25) 1.7(6) 4.508(20) 4.512(20) 1.6(6) 4.410(16) 4.415(16) 1.5(5)
24 450 315 5.588(39) 5.591(39) 3(1)  5.452(30) 5.457(30) 2.7(10) 5.313(23) 5.320(23) 2.4(9)
24 440 208 6.177(40) 6.180(40) 1.8(7) 6.024(31) 6.029(31) 1.6(6) 5.868(24) 5.876(24) 1.5(5)
24 4.30 230 7.005(86) 7.009(86) 4(2)  6.827(65) 6.833(65)  3(2)  6.646(47) 6.654(47)  3(1)
24 420 281 8.258(59) 8.263(59) 3(1)  8.026(47) 8.033(47)  3(1)  7.790(36) 7.800(36) 2.5(9)
24 4.15 269 9.094(91) 9.100(91) 5(2)  8.819(69) 8.827(69)  4(2) 8.544(52) 8.554(52) 4(2)
24 410 282 10.157(94) 10.163(94) 4(2)  9.840(72) 9.849(72)  4(1)  9.533(55) 9.545(55)  3(1)
24 4.05 269 11.984(78) 11.991(78) 1.9(7) 11.570(60) 11.580(60) 1.7(6) 11.187(46) 11.201(46) 1.5(5)
24 4.03 255 12.917(94) 12.925(94) 2.1(8) 12.514(68) 12.525(68) 1.7(6) 12.139(55) 12.154(55) 1.6(6)
32 7.00 216 1.657(13) 1.657(13) 3(1) L.6AI3(100) 1.6417(100) 3(1) 1.6249(77) 1.6256(77) 2.3(10)
32 6.50 201 1.910(12) 1.910(12) 2.0(8) 1.8949(91) 1.8954(91) 1.7(6) 1.8777(67) 1.8785(67) 1.3(5)
32 6.00 201 2.326(14) 2.327(14) 2.0(8) 2.296(12) 2.296(12) 1.8(7) 2.2640(92) 2.2649(92) 1.7(6)
32 550 201 2.887(38) 2.888(38) 6(3)  2.851(31) 2.852(31)  6(3) 2.811(24) 2.812(24) 5(3)
32 5.00 203 3.922(43) 3.923(43) 6(3)  3.848(32) 3.849(32)  4(2) 3.771(23) 3.772(23)  4(2)
32 4.70 205 4.980(83) 4.981(83) 9(5)  4.850(64) 4.851(64)  8(4) 4.721(48) 4.723(48)  7(4)
32 4.40 201 6.80(11) 6.80(11)  8(5)  6.607(81) 6.608(81)  7(4)  6.408(56) 6.411(56) 5(3)
32 4.30 201 7.710(69) 7.711(69) 3(1)  7.488(56) 7.490(56)  3(1) 7.259(43) 7.262(44) 3(1)
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¢ =0.300 c=0.275 c=0.250
L/a B N g2(nZS)  g2(ZS) Tint ge (nZS) g2 (28) Tt ge(nZS)  g2(ZS) Tint

32 4.20 332 9.204(67) 9.206(67) 5(2)  8.875(50) 8.877(50)  4(2) 8.555(36) 8.559(36)  3(1)
32 415 171 10.04(11) 10.04(11) 3(1)  9.689(86) 9.692(86)  3(1)  9.345(65) 9.348(65)  2(1)
32 410 329 11.45(14) 11.46(14) 7(3)  11.02(11) 11.02(11)  6(3) 10.595(79) 10.600(80) 5(2)
32 4.05 271 13.21(14) 13.21(14) 6(3) 12.689(98) 12.693(98) 5(2) 12.209(72) 12.214(73) 4(2)
18 7.00 101 1.714(21) 1.714(21) 6(3)  1.702(16) 1.703(16)  5(3) 1.689(11) 1.689(11) 3(2)
48 6.50 100 2.008(13) 2.009(13) 1.6(8) 1.990(12) 1.991(12) 1.8(9) 1.970(11) 1.971(11) 1.9(10)
48 6.00 101 2.486(32) 2.486(32) 5(3)  2451(27) 2451(27)  5(3) 2.413(23) 2.414(23)  5(3)
48 550 100 3.107(61) 3.107(61) 6(3)  3.059(55) 3.059(55)  6(3)  3.008(49) 3.009(49)  6(3)
48 5.00 100 4.326(86) 4.326(86) 7(4)  4.239(67) 4.239(67)  7(4)  4.144(49) 4.144(49)  5(3)
48 470 102 5.54(15) 5.55(15)  9(4)  5.39(11)  5.39(11)  9(4) 5.237(79) 5.237(79)  8(4)
48 4.40 131 7.81(13) 7.81(13)  6(3)  7.534(95) 7.534(95)  6(3) 7.266(70) 7.267(70)  5(3)
48 430 91 8.535(97) 8.536(97) 4(2)  8.321(80) 8.321(80)  3(2) 8.090(62) 8.091(62) 3(2)
48 420 91 10.37(18) 10.37(18) 6(3)  10.04(14) 10.04(14) 6(3)  9.70(11) 9.71(11)  5(3)
48 415 87 11.63(16) 11.63(16) 5(3)  11.18(13) 11.18(13)  5(3) 10.744(99) 10.745(99) 4(2)
48 410 96 13.00(26) 13.00(26) 7(4)  12.54(19) 12.54(19)  7(4)  12.08(14) 12.09(14) 6(3)

TABLE II. Results of the interpolation fits for the five Ny = 8 lattice volume pairs for our preferred ZS (top half) and nZS
(bottom half) analysis using renormalization schemes ¢ = 0.300, 0.275, and 0.250. Since discretization effects are sufficiently
small for nZS, we constrain the constant term by = 0 in Eq. (4) whereas for ZS the intercept b is fitted. In addition we list
the degree of freedom (d.o.f.), x?/d.o.f. as well as the p-value.

analysis ¢ d.o.f. x?/d.of. p-value b3 bo b1 bo
816 7S 0300 12 0764  0.689 -0.00313(34) 0.0489(50) -0.071(21) 0.027(23)
10520 ZS 0300 10 0431  0.932 -0.00420(44) 0.0637(69) -0.107(30) 0.086(34)
12524 ZS 0300 9 038 0943 -0.00221(47) 0.0347(74) 0.018(32) -0.034(37)
16532 7S 0300 8  0.608 0.772 -0.00327(71) 0.057(11) -0.064(50) 0.045(60)
24 48  ZS 0300 7 0960 0459 -0.0011(16) 0.025(23) 0.07(10) -0.10(12)
816 7S 0275 12 051 0702 -0.00237(31) 0.0418(44) -0.071(18) 0.013(19)
10520 7S 0275 10 0421  0.937 -0.00407(38) 0.0609(58) -0.104(25) 0.076(28)
12524 ZS 0275 9 0367 0951 -0.00258(38) 0.0385(60) -0.001(25) -0.018(29)
16 — 32 ZS 0275 8 0.609 0.771 —0.00344(58) 0.0569(90) —0.066(40) 0.046(47)
24 48 7S 0275 7 0931 0481 -0.0013(13) 0.027(20) 0.061(34) -0.090(97)
8 — 16 ZS 0.250 12 0.774 0.679 —0.00107(29) 0.0300(39) —0.067(15) —0.012(17)
10520 ZS 0250 10 0441 0927 -0.00370(33) 0.0565(49) -0.102(20) 0.065(22)
12524 7S 0250 9 0474  0.893 -0.00282(32) 0.0410(49) -0.017(20) -0.007(23)
16532  ZS 0250 8  0.652 9.734 -0.00361(48) 0.0571(72) -0.068(32) 0.047(37)
24 548  ZS 0250 7 0932  0.480 -0.0014(11) 0.020(16) 0.050(68) -0.074(77)
8 — 16 nZS 0.300 13 0.835 0.623 =-0.00321(19) 0.0478(18) -0.0147(32) —
10 — 20 nZS 0.300 11 0.999 0.445 2—0.00338(20) 0.0488(23) —0.0190(49) —
12524 nZS 0300 10 0433 0931 -0.00267(22) 0.0419(26) -0.0043(57)  —
16 — 32 nZS 0.300 9 0.604 0.795 -0.00283(37) 0.0490(40) -0.0247(79) —
24 +48  nZS 0300 8 0935 0486 -0.00232(74) 0.0445(79) -0.017(15)
8516  uZS 0275 13 0763 0.701 -0.00271(18) 0.0450(16) -0.0130(27)
10520  nzS 0275 11 1085 0369 -0.00340(18) 0.0483(19) -0.0190(40)
12524 nZS 0275 10 0371  0.960 -0.00290(18) 0.0431(21) -0.0081(44)  —
16 — 32 nZS 0.275 9 0.647 0.757 —0.00299(30) 0.0491(32) -0.0245(63) —
24 48  nZS 0275 8 0923 0496 -0.00238(63) 0.0444(65) -0.016(12)
8 =16 nZS 0.250 13 0.813 0.647 —0.00169(18) 0.0400(15) —0.0086(24) —
10520 nZS 0250 11 1163 0307 -0.00322(16) 0.0468(16) -0.0175(33)
12524  nZS 0250 10 0439 0928 -0.00308(16) 0.0441(17) -0.0108(35)
16532  nZS 0250 9  0.758  0.655 -0.00314(24) 0.0491(25) -0.0243(49)
24 — 48 nZS 0.250 8 0.931 0.489 —0.00239(51) 0.0437(52) -0.0139(94) —
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FIG. 11. Discrete step-scaling S-function for Ny = 8 in the ¢ = 0.275 gradient flow scheme for our preferred nZS (left) and
ZS (right) data sets. The symbols in the top row show our results for the finite volume discrete 8 function with scale change
s = 2. The dashed lines with shaded error bands in the same color of the data points show the interpolating fits. We consider
two continuum limits: a linear fit (black line with gray error band) in a?/L? to the three largest volume pairs and a quadratic
fit to all volume pairs (black dash-dotted line). The p-values of the continuum extrapolation fits are shown in the plots in
the second row. Further details of the continuum extrapolation at selected g2 values are presented in the small panels at the
bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets.
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FIG. 12. Discrete step-scaling S-function for Ny = 8 in the ¢ = 0.250 gradient flow scheme for our preferred nZS (left) and
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fit to all volume pairs (black dash-dotted line). The p-values of the continuum extrapolation fits are shown in the plots in
the second row. Further details of the continuum extrapolation at selected g2 values are presented in the small panels at the
bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical errors
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