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We investigate finite-size effects on chiral symmetry breaking in a four-fermion interaction
model at finite temperature and chemical potential. Applying the imaginary-time formal-
ism, the thermal quantum field theory is constructed on an S1 in the imaginary-time di-
rection. In this paper, the finite-size effect is introduced by a compact S1 spatial direction
with a U(1)-valued boundary condition. Thus, we study the model on an RD−2 × S1 × S1

torus. Phase diagrams are obtained by evaluating the local minima of the effective poten-
tial in the leading order of the 1/N expansion. From the grand potential, we calculate the
particle number density and the pressure; then we illustrate the correspondence with the
phase structure. We obtain a stable size for which the sign of the pressure flips from nega-
tive to positive as the size decreases. Furthermore, the finite chemical potential expands the
parameter range over which the stable size exists.
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1. Introduction
Spontaneous symmetry breaking is a key concept in modern physics. In the early years,
Y. Nambu and G. Jona-Lasinio made a significant contribution through a four-fermion inter-
action model with chiral symmetry, now called the Nambu–Jona-Lasinio model [1,2]. Another
four-fermion interaction model is the Gross–Neveu model, which is constructed in two dimen-
sions and invariant under a discrete chiral transformation [3]. These models have often been
used as tools to study chiral symmetry breaking in quantum chromodynamics (QCD) [4–8].

It is well known that the chiral phase structure of a four-fermion interaction model is deter-
mined by its conditions, e.g., finite temperature and chemical potential. The structure is also
affected by the size of the system and boundary conditions (topology of the system). Boundary
conditions are often imposed to be periodic and antiperiodic [9–15]. In the Matsubara formal-
ism, the finite temperature and chemical potential can be regarded as the size and boundary
conditions for the imaginary-time direction. It is also pointed out that inhomogeneous phases
can be energetically favored in a finite-size system in Ref. [16].

There are some works that have previously studied a U(1)-valued boundary condition [17–
23]. In an Abelian gauge theory, such a boundary condition is introduced as the Aharonov–
Bohm effect [24]. The effect is observed in a superconducting ring with an Aharonov–Bohm
magnetic flux. Another finite-size phenomenon that occurs in quantum systems is observed
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as the Casimir effect [25–30], which is caused by a non-trivial quantum vacuum. The Casimir
effect has been studied in a four-fermion interaction model [31,32] and in the context of lattice
simulations [33–36].

In our previous work [23], the finite-size effect, which comes from the size of the system
and U(1)-valued boundary condition, is discussed in a four-fermion interaction model on
RD−1 × S1 without considering any thermal effects. It is assumed that the fermion field acquires
a phase, eiπδ, after going around the spatially compact S1 direction. The ground state evaluated
under a constant expectation value breaks the chiral symmetry for a strong coupling at the
large S1 size limit1. In the periodic (δ = 0.0) boundary condition, as the size decreases, chiral
symmetry breaking tends to be enhanced, and at the small size limit the symmetry is always
broken for any finite coupling constant. On the other hand, the antiperiodic (δ = 1.0) bound-
ary condition has opposite effects on the chiral symmetry. The chiral symmetry breaking tends
to be suppressed as the size decreases, and is restored for an arbitrary coupling constant at the
small size limit. The system with the antiperiodic boundary condition is regarded as mimicking
the finite-temperature system of the fermion field. Sign-flip boundaries of the string tension,
which is given by the derivative of the effective potential with respect to the size, are obtained in
0.4 < δ ≤ 0.5 for any finite size. In particular, we have found a stable size that appears for a lim-
ited phase region, for which the string tension is zero and becomes negative (positive) for a
larger (smaller) size. It seems difficult to realize the limited phase region, but there is a possi-
bility to relax the condition for the stable size at a finite temperature and chemical potential.
Thus, we launched a plan to study the finite-size effect for a four-fermion interaction model at
a finite temperature and chemical potential.

This paper is organized as follows. In Sect. 2 we begin with a brief review of a four-fermion
interaction model on a D-dimensional Minkowski spacetime at a finite temperature with a com-
pact direction. In the imaginary-time formalism, the effective potential for the model is identical
with one on a Euclidean torus, RD−2 × S1 × S1. We obtain an explicit expression for the effec-
tive potential in the leading order of the 1/N expansion. In Sect. 3 we show the phase bifurcation
diagrams on the μ–T and L–T planes and the behavior of the dynamically generated fermion
mass. In Sect. 4 we calculate the grand potential; we then evaluate the particle number density
and the pressure. The chiral phase transition and the stability of the system are also discussed.
Finally, we summarize our results in Sect. 5.

2. Four-fermion interaction model on a torus
A Dirac fermion ψ in even dimensions is composed of two components, the left- and right-
handed fermions ψL and ψR, which are eigenstates of the chirality operator γ 5: γ 5ψL = −ψL

and γ 5ψR = ψR. The chiral symmetry is defined as the invariance of a theory under the chiral
transformation ψ → eiγ 5θψ . Explicit mass terms are prohibited by the symmetry. The simplest
interaction between fermions and anti-fermions that preserves the chiral symmetry is the four-
fermion interaction.

To investigate the phase structure that emerges by spontaneous chiral symmetry breaking,
we employ a four-fermion interaction model. The action on a D-dimensional Minkowski

1Because the continuous chiral symmetry cannot be broken in two dimensions, the Gross–Neveu model
is employed, and the discrete chiral symmetry is evaluated in two dimensions.
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spacetime, MD(2 ≤ D < 4), is written as

S =
∫

dDx

⎡
⎣ N∑

a=1

ψ̄a(x)iγ μ∂μψa(x) + λ0

2N

⎛
⎝(

N∑
a=1

ψ̄a(x)ψa(x)

)2

+
(

N∑
a=1

ψ̄a(x)iγ 5ψa(x)

)2
⎞
⎠

⎤
⎦ ,

(1)

where the index, a, denotes a species of the fermion field, ψ(x), N is the number of species, and
λ0 represents a bare coupling constant of the four-fermion interactions. For simplicity, we omit
the index, a, and the summation symbol in all subsequent equations.

By introducing the auxiliary fields σ (x) and π (x), the action can be rewritten as

S =
∫

dDx
[
ψ̄ (x)(iγ μ∂μ − σ (x) − iγ 5π (x))ψ (x) − N

2λ0
(σ (x)2 + π (x)2)

]
. (2)

The original action (1) is reproduced by substituting the solutions of the equations of motion:
σ (x) = −N−1λ0ψ̄ (x)ψ (x) and π (x) = −N−1λ0ψ̄ (x)iγ 5ψ (x). When σ (x), or ψ̄ (x)ψ (x), devel-
ops a non-vanishing vacuum expectation value, the fermion fields dynamically acquire mass
and the chiral symmetry is spontaneously broken.

In the following, we assume that the expectation values are homogeneous and set σ (x) =
σ and π (x) = π . Performing the path integrals of the fermion field, we obtain the effective
potential in the leading order of the 1/N expansion [7,23],

VD(σ, π ) = σ 2 + π2

2λ0
−

∫
dDk

i(2π )D
tr ln

γ μkμ − σ − iγ 5π

−M
, (3)

where M is an arbitrary mass scale and the trace, tr, denotes the sum over the spinor indices.
By the chiral transformation we can set π = 0 without loss of generality.

The expectation value of σ is regarded as an order parameter of the chiral symmetry breaking
and the value is determined by observing the minimum of the effective potential. Thus, the
dynamically generated fermion mass, m0, is found as a solution of the gap equation:

∂VD(σ )
∂σ

∣∣∣∣
σ=m0

= 0. (4)

The effective potential (3) is divergent because of the infinite momentum integral. Without
changing the solution of the gap equation, the infinite zero-point energy, VD(σ = 0), is removed
from the potential VD(σ ) → VD(σ ) − VD(σ = 0). The divergence induced by the interaction is
subtracted by introducing the renormalized four-fermion coupling, λr,

∂2VD(σ )
∂σ 2

∣∣∣∣
σ=μr

= μD−2
r

λr
, (5)

where μr is the renormalization scale.
On MD the gap equation (4) has a non-trivial solution if the renormalized coupling, λr, is

larger than the critical one, λc:

λc = (4π )
D
2

tr I · (1 − D)�
(
1 − D

2

) . (6)

The mass, m0, is derived as a function of the dimension, D, the renormalized coupling, λr, and
the renormalization scale, μr:

m0 =
[

(4π )D/2

tr I�(1 − D/2)

(
1
λr

− 1
λc

)]1/(D−2)

μr. (7)

In the present paper we focus on the strong coupling theory, λr > λc.
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We introduce finite-temperature and finite-size effects to the action (1). According to the Mat-
subara formalism we assign the antiperiodic boundary condition to the imaginary-time direc-
tion,

ψ (x1, . . . , xD−1, xD + β ) = −ψ (x1, . . . , xD−1, xD), (8)

where β denotes the inverse temperature. A finite particle number density and chemical poten-
tial, μ, are introduced by adding a term, −μ

∫
dDx ψ (x)†ψ (x), to the action (1). We compactify

the spatial direction, xD − 1, by imposing a U(1)-valued boundary condition,

ψ (x1, . . . , xD−1 + L, xD) = e−iπδψ (x1, . . . , xD−1, xD), (9)

where L is the length of the compactified space and δ is a U(1) phase from the boundary condi-
tion. Therefore, we assign boundary conditions for the two directions, xD − 1 and xD, and study
the model on a torus-like topology, RD−2 × S1 × S1.

Under the boundary conditions (8) and (9) the momentum takes discrete values,

kδ,n = 2π

L

(
n + δ

2

)
, ωμ,n′ = 2π

β

(
n′ + 1

2

)
− iμ, (10)

where kδ, n denotes a discrete momentum for the compactified space, and ωμ,n′ a Matsubara
frequency with chemical potential, μ. Thus, the effective potential (3) is rewritten as

VD (σ ; L, δ, β, μ) = σ 2

2λ0
− tr I

2βL

∞∑
n,n′=−∞

∫
dD−2k

(2π )D−2
ln

k2 + k2
δ,n + ω2

μ,n′ + σ 2

M2
. (11)

The momentum integrals are replaced by summations over the integers n and n
′
.

Because the ultraviolet divergences are not modified by the compactification, a finite expres-
sion is obtained by subtracting the divergent zero-point energy, VD(σ = 0; L = ∞, δ = 0, β =
∞, μ = 0), and substituting the renormalized coupling, λr, defined by Eq. (5) on MD. By ap-
plying the zeta function regularization to calculate the Matsubara frequency summation [23],
we obtain

VD(σ ; L, δ, β, μ)
μD

r
= 1

2

(
1
λr

− 1
λc

)(
σ

μr

)2

− tr I · �
(
1 − D

2

)
(4π )

D
2 D

(
σ

μr

)2· D
2

− trI
C(D + 1)Lμr

∫ ∞

0

dq
μr

(
q
μr

)D−2

ln

(
2

cosh L
√

q2 + σ 2 − cos πδ

exp{L
√

q2 + σ 2}

)

− tr I
C(D)βLμ2

r

∞∑
n=−∞

∫ ∞

0

dq
μr

(
q
μr

)D−3

× ln

⎛
⎝2

cosh β

√
q2 + k2

δ,n + σ 2 + cosh βμ

exp{β
√

q2 + k2
δ,n + σ 2}

⎞
⎠ , (12)

where we set C(D) = (4π )
D−2

2 �( D−2
2 ). The renormalized coupling λr and the renormalization

scale μr are eliminated from Eq. (12) by using the dynamically generated fermion mass m0 (7)
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Fig. 1. Behavior of the effective potential (purple: T/m0 = 0.1, green: T/m0 = 0.2, and light blue: T/m0 =
0.4) for Lm0 = 1.5 and δ = 0.0.

on MD. Therefore, Eq. (12) is simplified to

VD (σ ; L, δ, β, μ)
mD

0

= tr I · �
(
1 − D

2

)
(4π )

D
2

[
1
2

(
σ

m0

)2

− 1
D

(
σ

m0

)2· D
2

]

− tr I
C(D + 1)Lm0

∫ ∞

0

dq
m0

(
q

m0

)D−2

ln

(
2

cosh L
√

q2 + σ 2 − cos πδ

exp{L
√

q2 + σ 2}

)

− tr I

C(D)βLm2
0

∞∑
n=−∞

∫ ∞

0

dq
m0

(
q

m0

)D−3

× ln

⎛
⎝2

cosh β

√
q2 + k2

δ,n + σ 2 + cosh βμ

exp{β
√

q2 + k2
δ,n + σ 2}

⎞
⎠ . (13)

The first term is equivalent to the effective potential on MD and the others show contributions
from finite size, finite temperature, and finite chemical potential. As is known, the four-fermion
interaction model is non-renormalizable in four dimensions, because the first term diverges at
D = 4.

In the following, we numerically evaluate the effective potential in the 2- and 3D instances.
The trace in the spinor space is taken as tr I = 2D/2. Typical behavior of the effective potential
is shown in Fig. 1, where we do not normalize the effective potential as VD(σ = 0; L, δ, β,
μ) = 0, because the L, δ, β, μ dependence of VD(σ ; L, δ, β, μ) has a decisive contribution
to the thermodynamic properties discussed in Sect. 4. It is observed that the chiral symmetry
tends to be restored for high temperature and chemical potential; in particular, a first-order
phase transition takes place via the effect of the chemical potential. Because the third term in

Eq. (13) behaves similarly to a step function, θ
(
|μ| −

√
q2 + k2

δ,n + σ 2
)

, at T = 0, the chemical

potential has no significant contribution for μ � |σ |.

3. Phase structure
An order parameter of chiral symmetry breaking is the expectation value of the composite op-
erator,

〈
ψ̄ψ

〉
. It is proportional to the auxiliary field, σ , in the ground state. The state is obtained

by evaluating the minimum of the effective potential, VD(m; L, δ, β, μ) ≤ VD(σ ; L, δ, β, μ) for
any σ . The value at the minimum, σ = m, corresponds to a dynamically generated fermion
mass. The local minima of the effective potential indicate the existence of metastable states.
Not only the ground state but also the metastable states have some phenomenological conse-
quences. In this paper, we assume a spatially constant ground state and evaluate the number of
extrema. In that sense, our results do not directly indicate the presence of the inhomogeneous
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Fig. 2. Phase diagram on the μ–T plane (D = 3.0, Lm0 = 8.0, and δ = 1.0) and behavior of the effective
potential along the dashed line (T/m0 = 0.03).

phase, but the ground state can become inhomogeneous in the presence of multiple minima in
certain regions of the parameter space.

3.1 Phase diagrams
To find the precise phase structure of the four-fermion interaction model, we evaluate the local
minima of the effective potential and plot bifurcation diagrams. Because of the chiral symme-
try, the potential is an even function of σ . The states are classified by the number of extrema
and the position of the minimum of the effective potential for σ ≥ 0. The class of states is
described by introducing two symbols, a

bS and a
bB. The former and the latter represent a sym-

metric phase and a broken phase, respectively. The upper index a is the number of extrema for
σ ≥ 0 and the lower index b is the number of extrema from the origin to the minimum, i.e., the
bth extremum is the minimum and b ≤ a. As an example, the phase diagram on a μ–T plane
is divided into four regions for D = 3.0, Lm0 = 8.0, and δ = 1.0. The correspondences between
the symbol and behavior of the effective potential are shown in Fig. 2. The symmetric phase
1
1S is realized for high temperature and chemical potential, outside the outer boundary. At the
outer boundary, a second-order phase transition takes place. The broken phase contains three
regions identified by the number of extrema and the position of the minimum. A discontinuous
change in the dynamical mass is observed on the boundary between (b1), 4

4B and (b2), 4
2B.

We analyze the phase structure at the periodic (δ = 0.0) and antiperiodic (δ = 1.0) boundary
conditions for simplicity. Figures 3 and 4 show the phase diagrams on the μ–T plane for some
fixed sizes and boundary conditions. It is known that, on non-compactified spaces, R and R2,
the critical temperatures at zero chemical potential are eγ /π � 0.57 (D = 2.0) and 1/ln 4 � 0.72
(D = 3.0), and the critical chemical potentials at zero temperature are 1/

√
2 � 0.71 (D = 2.0)

and 1 (D = 3.0) with normalization by m0 [4,37–39]. The finite-size effects primarily appear
at low temperature with high chemical potential, and high temperature with low chemical po-
tential. The effect of the boundary condition is suppressed for large sizes, but at a certain size
prominently appears.

For instance, in two dimensions at Lm0 = 8.0 and δ = 0.0, we can observe the complex be-
havior of the boundaries. As the chemical potential increases at low temperature, the domain
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Fig. 3. Phase diagrams in two dimensions on a μ–T plane (above: Lm0 = 3.0, below: Lm0 = 8.0) for δ =
0.0 (left) and δ = 1.0 (right).

Fig. 4. Phase diagrams in three dimensions on a μ–T plane (above: Lm0 = 2.0, below: Lm0 = 4.0) for δ

= 0.0 (left) and δ = 1.0 (right).

7/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/1/013B09/6455332 by D

ESY-Zentralbibliothek user on 24 February 2022



PTEP 2022, 013B09 T. Inagaki et al.

Fig. 5. Phase diagrams in two dimensions on an L–T plane (above: μ/m0 = 0.5, below: μ/m0 = 0.7) for δ

= 0.0 (left) and δ = 1.0 (right).

changes 4
4B → 5

5B → 5
3B → 5

1S → 3
1S → 1

1S and a mass jump appears twice at the boundaries
between 5

5B → 5
3B and 5

3B→5
1S.

The basic properties are common between two and three dimensions. Their differences come
from the continuous momentum in the additional space, R. At Lm0 = 4.0 and δ = 0.0 in three
dimensions, only the second-order phase transition takes place, and no critical end-point ap-
pears on the boundary between the symmetric and broken phases. In the broken phase, the
dynamical mass discontinuously changes at the boundary between 4

4B and 4
2B.

By observing the phase diagrams on a μ–T plane, we can recognize the differences that emerge
via the size of the system and the boundary conditions. To determine the length dependence
of the chiral symmetry, next we plot the phase structure on the L–T plane. We show the phase
diagrams on the L–T plane in Figs. 5 and 6. At T = μ = 0, the finite-size effect enhances and
suppresses the chiral symmetry breaking for the periodic and antiperiodic boundary conditions,
respectively [23]. As is observed in Figs. 5 and 6, this relation is reversed for certain intervals
of size at a finite temperature and chemical potential. For low temperatures, the broken and
symmetric phases alternate with increasing size of the system, L. A first-order phase transition
occurs at the boundaries between a

bB and a
1S (b 
= 1).

3.2 Dynamically generated fermion mass
The dynamically generated fermion mass, m, satisfies the gap equation:

∂VD (σ ; L, δ, β, μ)
∂σ

∣∣∣∣
σ=m

= 0. (14)

We show the dynamical mass as a function of the U(1) phase and the length in Figs. 7 and 8.
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Fig. 6. Phase diagrams in three dimensions on an L–T plane (above: μ/m0 = 0.5, below: μ/m0 = 0.7) for
δ = 0.0 (left) and δ = 1.0 (right).

Fig. 7. Dynamically generated fermion mass as a function of δ (left) and L (right) in two dimensions:
(T/m0, μ/m0; color) = (0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).

Fig. 8. Dynamically generated fermion mass as a function of δ (left) and L (right) in three dimensions:
(T/m0, μ/m0; color) = (0.005, 0.0; purple), (0.005, 1.0; green), (0.2, 1.0; yellow).
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Fig. 9. Grand potential as a function of δ (left) and L (right) in two dimensions: (T/m0, μ/m0; color) =
(0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).

Fig. 10. Grand potential as a function of δ (left) and L (right) in three dimensions: (T/m0, μ/m0; color) =
(0.005, 0.0; purple), (0.005, 1.0; green), (0.2, 1.0; yellow).

The dashed line (m/m0 = 1) indicates the value at L → ∞, β → ∞, and μ = 0. For μ = 0 (purple
curves) the dynamical mass at δ = 0.0 is heavier than that at δ = 1.0. In the two graphs on the
left of Figs. 7 and 8 the dynamical mass vanishes and the chiral symmetry is restored around
periodic boundary condition (δ = 0.0) slightly below the critical chemical potential.

This situation depends on the size, L. Observing the dynamical mass as a function of L (green
and yellow curves), we see that the broken and symmetric phases alternate with increasing size
of the system, L. This is consistent with the phase diagrams in Figs. 5 and 6. The dynamical mass
changes more smoothly in three dimensions than in two dimensions, because of the continuous
momentum.

4. Thermodynamic quantities
In the preceding sections, we have evaluated the effective potential and shown the phase struc-
ture and the dynamically generated fermion mass. Other thermodynamic quantities are also
derived from the effective potential. Here we discuss particle number density and pressure.

4.1 Grand potential
A minimum value of the effective potential can be naively regarded as the density of the grand
potential, denoted by �D(L, δ, T, μ). We set the value of the effective potential to zero under a
homogeneous and non-vanishing chiral condensate, an infinite volume, zero temperature, and
a zero chemical potential. The definition of the grand potential that we consider is given by

�D (L, δ, T, μ) = [VD (m; L, δ, β(= 1/T ), μ) − VD (m0)] LV, (15)

where LV denotes (D − 1)-dimensional volume.
The grand potential is shown in Figs. 9 and 10 as a function of the boundary condition, δ,

and the size, L. Sharp bends are observed at the same parameters where the mass jumps appear
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Fig. 11. Particle number density fixed to μ = 0.7 as a function of δ (left) and L (right) in two dimensions.
The green and yellow curves denote T/m0 = 0.005 and T/m0 = 0.1 respectively.

in Figs. 7 and 8. Thus, the phase boundary is found by observing the sharp bends in Figs. 9
and 10.

A stable size is a state for which the pressure is zero and becomes negative (positive) for a
larger (smaller) size. We find the existence of a stable size for a finite chemical potential at low
temperature. For a finite chemical potential (green curve), it is observed that the grand potential
at δ = 0.0 is minimized at Lm0 ∼ 4.0. This size is realized in the chirally symmetric phase. This
stable state disappears at μ = 0, because the grand potential (purple curves) is a monotonic
function of L and divergent at the small-L limit.

4.2 Particle number density
To investigate the origin of the complex behavior of the phase diagrams, we study the contri-
bution of the chemical potential. The particle number density is defined by the derivative of
the grand potential with respect to the chemical potential:

ρD (L, δ, T, μ) = − 1
VL

∂�D (L, δ, T, μ)
∂μ

. (16)

We normalize the particle number density by m0 and obtain
ρD(L, δ, T, μ)

mD−1
0

= tr I
C(D − 1)

1
Lm0

∞∑
n=−∞

∫ ∞

0

d q
m0

(
q

m0

)D−3 sinh μ/T

cosh
√

q2 + k2
δ,n + m2/T + cosh μ/T

. (17)

In two dimensions the expression reads

ρ2(L, δ, T, μ)
m0

= 1
Lm0

∞∑
n=−∞

sinh μ/T

cosh
√

k2
δ,n + m2/T + cosh μ/T

. (18)

The numerical results are shown in Fig. 11 as a function of δ and L. At the limit T → 0,
sinh μ/T

cosh
√

k2
δ,n + m2/T + cosh μ/T

−→ sgn (μ)θ
(
|μ| −

√
k2

δ,n + m2
)

, (19)

a non-zero lower bound appears for k2
δ,n, except for the periodic boundary condition. This im-

plies that the particle number, ρ2(L, δ, T, μ)L, becomes an integer at T → 0. Because of the
degeneracy of the states, the possible values are restricted to 0, 1, 3, 5, … and 0, 2, 4, … for δ

= 0.0 and 1.0 respectively.
We find the correspondences between Figs. 7 and 11. The particle number density vanishes

in the broken phase for m > 0. In the symmetric phase, the particle number density vanishes
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Fig. 12. Particle number density fixed to μ = 1.0 as a function of δ (left) and L (right) in three dimensions.
The green and yellow curves denote T/m0 = 0.005 and T/m0 = 0.2 respectively.

because the non-zero lower bound for k2
δ=1.0,n strongly suppresses the summation in Eq. (18)

for Lm0 � 1.7 at δ = 1.0. At T/m0 = 0.1 we observe pre-transitional phenomena because of
the finite-temperature effect. As is shown in Fig. 12 at D = 3.0, the continuous momentum
for the additional dimension enhances the pre-transitional phenomena at a finite temperature
and induces a finite number density near the phase boundary. Through the analysis of the
particle number density and the comparison with the dynamical mass, the complex behavior
in the phase diagrams is caused by a balance between the particle production and the mass
generation.

4.3 Pressure
In the preceding section, we have analyzed the particle number density and mentioned the cor-
respondence between the particle number density and the dynamical mass.

Here we evaluate pressure to find a stable size. The pressure is given by the derivative of the
grand potential with respect to L,

PD (L, δ, T, μ) = − 1
V

∂�D (L, δ, T, μ)
∂L

, (20)

and expressed as

PD (L, δ, T, μ)
mD

0

= − tr I · �
(
1 − D

2

)
(4π )

D
2

[
1
2

((
m
m0

)2

− 1

)
− 1

D

((
m
m0

)2· D
2

− 1

)]

− tr I
C(D + 1)

∫ ∞

0

d q
m0

(
q

m0

)D−2
√

q2 + m2

m0

exp
(
−L

√
q2 + m2

)
− cos πδ

cosh L
√

q2 + m2 − cos πδ

+ tr I
C(D)

1
Lm0

∞∑
n=−∞

∫ ∞

0

d q
m0

(
q

m0

)D−3

× k2
δ,n

m0

√
k2

δ,n + q2 + m2

exp
(
−

√
k2

δ,n + q2 + m2/T
)

+ cosh μ/T

cosh
√

k2
δ,n + q2 + m2/T + cosh μ/T

. (21)
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Fig. 13. Pressure as a function of δ (left) and L (right) in two dimensions. (T/m0, μ/m0; color) =
(0.005, 0.0; purple), (0.005, 0.7; green), (0.1, 0.7; yellow).

Fig. 14. Sign-flip boundaries of the pressure on a δ–L plane in two dimensions: the purple and green
curves denote μ/m0 = 0.0 and μ/m0 = 0.7 respectively. (Rep. or Att.)/(Rep. or Att.) indicates whether the
pressure is repulsive or attractive, at μ/m0 = 0.0 on the left and μ/m0 = 0.7 on the right.

In two dimensions it reads

P2 (L, δ, T, μ)
m2

0

= − 1
4π

[
1 −

(
1 − ln

(
m
m0

)2
)(

m
m0

)2
]

− 1
π

∫ ∞

0

d q
m0

√
q2 + m2

m0

exp
(
−L

√
q2 + m2

)
− cos πδ

cosh L
√

q2 + m2 − cos πδ

+ 1
Lm0

∞∑
n=−∞

k2
δ,n

m0

√
k2

δ,n + m2

exp
(
−

√
k2

δ,n + m2/T
)

+ cosh μ/T

cosh
√

k2
δ,n + m2/T + cosh μ/T

. (22)

In Figs. 13 and 15 the behavior of the pressure is shown as a function of δ and L. For a finite
chemical potential, discontinuous changes in the pressure are observed at the same points where
the dynamical mass and the particle number density change discontinuously. The critical L and
δ for a second-order phase transition are found by observing the bends of the pressure curve.

At a stable size, the sign of the pressure flips from positive to negative as the size increases.
The sign-flip points of the pressure appear at the local and global minima of the grand poten-
tial. In Figs. 14 and 16 the behavior of the sign-flip boundaries is shown on a δ–L plane. At
low temperature and zero chemical potential (purple curve on the left), the sign-flip boundary
approaches δ = 0.5 with increasing size; in addition, the pressure is repulsive and attractive
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Fig. 15. Pressure as a function of δ (left) and L (right) in three dimensions. (T/m0, μ/m0; color) =
(0.005, 0.0; purple), (0.005, 1.0; green), (0.2, 1.0; yellow).

Fig. 16. Sign-flip boundaries of pressure on a δ–L plane in three dimensions: the purple and green curves
are μ/m0 = 0.0 and μ/m0 = 1.0 respectively. (Rep. or Att.)/(Rep. or Att.) indicates whether the pressure
is repulsive or attractive, at μ/m0 = 0.0 on the left and μ/m0 = 0.7 on the right.

around the periodic and antiperiodic boundary conditions, respectively. The finite-size effect is
suppressed for a larger L and the thermal fluctuations induce a repulsive pressure. Thus, the
repulsive pressure is favored for a larger L at T/m0 = 0.1 (D = 2) and T/m0 = 0.2 (D = 3). For
a finite chemical potential (green curves) the complex behavior of the sign-flip boundaries are
observed on the δ–L plane. At μ = 0 the stable size is found only for Lm0 < 1.0 on the purple
curves with a negative slope in Figs. 14 and 16. For a finite chemical potential, the stable size is
found for a wide range of δ. For example, the stable size exists on the green curves near Lm0 ∼
4.0 for δ � 0.5 and a metastable size near Lm0 ∼ 8.0 for δ � 0.5 in Fig. 14.

The finite-size effect is described by the second line in Eq. (13) at T = μ = 0. This term
dominates the potential energy for a small L. The term is negative, and the energy decreases via
the finite-size effect for 1/2 < δ ≤ 1. Thus, an attractive force is induced. On the other hand, the
term is positive for 0 ≤ δ < 1/3 at the small-L limit and a repulsive force is induced. Therefore, the
sign of the force is flipped between δ = 1/3 and 1/2. The integrand in the second line of Eq. (13) is

rewritten as Re[qD−2 ln(1 − e−L
√

q2+σ 2+iπδ )]. The term is understood as an ansatz of the Fermi–
Dirac (δ = 1.0) and Bose–Einstein (δ = 0.0) distributions in finite-temperature systems. This
difference in the distribution induces an opposite contribution to the thermodynamic potential.
The phase δ is regarded as an imaginary chemical potential [40,41].
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5. Conclusions
We have studied dynamical chiral symmetry breaking in the four-fermion interaction model
on S1 and R × S1 at a finite temperature and a finite chemical potential. We have started from
the broken phase at L → ∞, T → 0, μ = 0 and introduced the finite-size and thermal effects.
The U(1)-valued boundary condition has been assigned for a compactified space. Assuming
a homogeneous chiral condensate, we have obtained an explicit expression for the effective
potential in the leading order of the 1/N expansion.

The phase structure of the system has been evaluated by observing the extrema of the effective
potential. We have found the boundaries at which the number of extrema and the position of the
minimum change and shown the precise phase structure on the μ–T and L–T planes. The finite-
size effect induces complex behavior near the critical chemical potential at low temperature, and
the broken and symmetric phases alternate with increasing size of the system. The behavior of
the dynamical mass has been shown as δ and L vary.

We define the grand potential whose zero-point is located at L → ∞, T → 0, and μ = 0. The
stable size, i.e., the global minimum of the grand potential, is observed for a finite chemical
potential around the periodic boundary condition. The grand potential is not bounded below
around the antiperiodic boundary condition. From the analysis of the particle number density,
we have shown the trade-off relationship between the dynamical mass and the particle number
density. The mass and density gaps appear at the same δ and L. The phase structure of the
system is also determined by observing the pressure. We have shown that the critical value of
the second-order phase transition is fixed from the bends for the pressure. Through the analysis
of the thermodynamic quantities, it is considered that the complex behavior of the boundaries
on the phase diagrams is caused by competition between the dynamical mass, m, the inverse of
the size, 2π /L, and the chemical potential, μ.

Calculating the pressure provides us with alternative information about the system. If the
sign of the pressure changes from positive to negative with increasing L, the sign-flip point is
metastable. We have plotted the sign-flip boundaries on the δ–L plane. We have found that the
contribution of a finite chemical potential generates additional metastable sizes.

In considering more realistic situations, it would be interesting to introduce fermion flavors,
current mass, and an electromagnetic field. In some systems, we cannot avoid considering the
possibility of the inhomogeneous chiral condensate [42]. We continue to study such situations
and hope to report on them in the future.
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