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The effect of the quantum decoherence of neutrino mass states on collective oscillations of neutrinos has been
studied for the case of three f lavors using a method based on the stability analysis of the Lindblad equation
with the neutrino evolution Hamiltonian including the effects of the self-interaction. New analytical condi-
tions for the appearance of collective neutrino oscillations in supernova explosions have been obtained taking
into account the quantum decoherence of neutrinos.
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As is known, there are three neutrino f lavors (elec-
tron, , muon, , and tau, , neutrinos) and three
neutrino mass states ν1, ν2, and ν3. Each neutrino f la-
vor is a superposition of neutrino mass states; as a
result, f lavor oscillations of neutrinos propagating
both in vacuum and in a medium occur. However, the
interaction of neutrinos with the medium can violate
the superposition of neutrino mass states, which leads
to the suppression of f lavor oscillations of neutrinos.
This phenomenon is called the quantum decoherence
of neutrinos.

The quantum decoherence of neutrinos can be due
to the interaction with the medium both within the
minimally extended Standard Model and beyond it. It
was previously shown that the quantum decoherence
of neutrinos can be due to the interaction of neutrinos
with the f luctuating medium and with the f luctuating
magnetic field [1–3], as well as to the interaction with
the f luctuating gravitational field [4]. Two quantum-
field approaches to describe the quantum decoher-
ence of neutrinos were developed in [5–9], where it
was shown that the quantum decoherence of neutrino
mass states can be due to the decay of a neutrino into
a lighter neutrino state and a massless particle [5–7],
as well as to the inverse process, i.e., absorption of the
massless particle.

In all cited works, the evolution of the neutrino is
described by the equation that is in structure the Lind-
blad equation [10, 11], irrespectively of the description
approach and the mechanism of the quantum deco-
herence of neutrinos. In this work, we study the effect

of the quantum decoherence of neutrino mass states
on collective oscillations [12]. Describing the evolu-
tion of the neutrino by the Lindblad equation, we
show that quantum decoherence can suppress collec-
tive oscillations of neutrinos. Previously, we demon-
strated this for the case of two neutrino f lavors in [13].
Here, we generalize the results to the case of three
neutrino f lavors. It is important to consider three neu-
trino generations because collective oscillations of
neutrinos appear (and can be theoretically described)
in the cases of both the direct and inverse hierarchies
of neutrino masses, whereas collective oscillations in
the case of two neutrino generations appear only for
the inverse hierarchy (see, e.g., [14]). In addition, the
Dirac CP-violating phase cannot be introduced in the
case of two neutrino generations [15].

It is noteworthy that the Lindblad equation is
widely used to study the quantum decoherence of neu-
trinos in neutrino f luxes from terrestrial sources [16–
20] and from the Sun [21].

To study f lavor oscillations of neutrinos taking into
account the interaction between neutrinos and the
quantum decoherence of neutrino mass states in the
case of three f lavors, we perform the stability analysis
of the evolution equation [22–26], which allows us to
numerically estimate the considered effect under real
astrophysical conditions.

We describe the evolution of the neutrino and
antineutrino in terms of the density matrices 
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and , respectively, which satisfy the Lindblad
equations

(1)

(2)

where  is the total Hamiltonian
of the neutrino, which includes the vacuum contribu-
tion , the interaction with the medium (electrons,
neutrons, and protons) , and the neutrino–neu-
trino interaction . The evolution equations (1) and
(2) for the neutrino and antineutrino, respectively, are
written in the f lavor basis. The neutrino–neutrino and
antineutrino–antineutrino interaction Hamiltonians

 and  depend on the density matrices  and
 (see, e.g., review [12]). In Eqs. (1) and (2), D is the

dissipator describing the quantum decoherence of
neutrino states and is given by the expression

(3)

where  are the dissipative operators corresponding
to the interaction of the neutrino with the ambient
medium and N is the dimension of the space of the
corresponding density matrices on which these opera-
tors act (N = 2 and 3 in the cases of two and three f la-
vors, respectively).

Further, it is convenient to rewrite Eqs. (1) and (2)
using the representation of operators in terms of the
SU(3) basis matrices, i.e., Gell-Mann matrices :

. In this representation, the evolution equa-
tions for the neutrino and antineutrino have the form

(4)

(5)

Here,  ( ) and  ( ) are the coefficients of the
representation of the density matrix and the Hamilto-
nian of the neutrino (antineutrino) in terms of the
Gell-Mann matrices,

(6)

are the structural constants of the SU(3) algebra (gen-
eralized Levi-Civita symbols), and  is the matrix in
the effective mass basis, which should be symmetric
and positively defined by definition because 
[16] (this condition ensures that the von Neumann
entropy of an open system does not decrease). For the
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total probability to be conserved, the off-diagonal ele-
ments should be zero: .

Collective oscillations of neutrinos appear in
superdense astrophysical media, where the effective
mass basis almost coincides with the f lavor one. In this
case, the matrices  in the f lavor and effective mass
bases can be taken as the same matrix. As a result, the
matrix  can be represented in the general form

(7)

If the propagating neutrino keeps its energy, i.e.,
, then  [18].

Let the system at a certain initial time t0 be in the

stationary state , so that

(8)

where . In this case, there is a basis in
which the matrices  and  are diagonal:

(9)

(10)

The coefficients of their representations in terms of the
Gell-Mann matrices have the form

(11)

Similar formulas are also obtained for the antineu-
trino.

Specifying initial conditions, we analyze the stabil-
ity of the evolution equations (4) and (5). We assume
that time-dependent amplitude variations  and 
of the density matrix and the Hamiltonian with
respect to their initial values  and  are small:

(12)

(13)

where  and  are the variational amplitudes and ω
are the frequencies of excited modes near the initial
position. The elements of the Hamiltonian of the sys-
tem  depend on the density matrices  and  of
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the neutrino and antineutrino, respectively; then, 
can be written in the form

(14)

We substitute Eqs. (12)–(14) into the evolution equa-
tion (4) with the initial conditions (11) taking into
account the properties of the structural constants .
Neglecting the second order terms in the commutator

 and remaining only the off-diagonal elements
, ,  of the

density matrix, we obtain the equation for eigenvalues
in the matrix form

(15)

Here,

(16)

is the column of the off-diagonal elements of the den-
sity matrix,

(17)

is the decoherence matrix, and the stability matrix on
the right hand side of Eq. (15) can be represented in
the block form in terms of the matrices

(18)

(19)

Then, the elements of the stability matrix can be writ-
ten in the form
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where ,  = 1, 2, 3.
For the subsequent analysis of the instability of the

system, it is necessary to determine the eigenvalues of
the stability matrix; in the case of three f lavors, this
requires numerical calculations because of a large
dimension of the matrix. In our case, the presence of
this instability will indicate the possibility of collective
oscillations of neutrinos.

According to Eq. (12), if the frequencies of excited
modes ω are imaginary, the off-diagonal elements of
the density matrix increase exponentially, indicating
the instability of the system. As a result, collective
oscillations appear.

Let { } be a set of the eigenvalues of the stability
matrix specified by Eqs. (15), (18), and (19). Then, the
conditions for the appearance of collective oscillations
of neutrinos between the ith and jth f lavor states can
be written in the form

(21)

(22)

Here, the first condition is the general condition
for the appearance of collective oscillations and was
obtained in previous works (see, e.g., [24]), whereas
the second condition obtained for the case of three
flavors is new and includes the effect of quantum
decoherence of neutrino mass states.

We now numerically estimate the effect of quan-
tum decoherence of neutrinos on collective oscilla-
tions of neutrinos. The authors of [26] show that the
imaginary part of the eigenvalues of the stability
matrix under real conditions of the supernova explo-
sion can be Im[λ] ~ 10–18–10–17 GeV. To estimate the
effect of quantum decoherence of neutrinos on collec-
tive oscillations of neutrinos, experimental constraints
on the decoherence parameters can be used. In partic-
ular, the decoherence parameter for neutrino fluxes
from terrestrial sources and from the Sun is limited as
Γ < 10–24 GeV [16] and Γ < 10–28 GeV [21], respec-
tively.

We emphasize that the presented constraints can-
not be used for extreme conditions of the supernova
because they are obtained for strongly different ambi-
ent conditions (for terrestrial and solar matter). In par-
ticular, we showed in [6] that the quantum decoher-
ence parameter due to the radiative decay of the neu-
trino under the conditions of the supernova explosion
can reach Γ ~ 10–21 GeV. Furthermore, quantum
decoherence can also arise due to the physics beyond
the Standard Model [7, 27]. Since the imaginary part
of eigenvalues of the stability matrix should be larger

∂
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than the decoherence parameters for the appearance
of collective oscillations of neutrinos (see Eq. (22)),
the detection of neutrino f luxes from supernova explo-
sions will allow one to limit decoherence parameters
under extreme astrophysical conditions to Γ ~ 10–18–
10–17 GeV.

We note that it is important to obtain constraints on
the quantum decoherence parameters of neutrinos
from experimental data on neutrino f luxes from vari-
ous sources because this can provide bounds on the
widths of various neutrino processes (using the results
obtained in [5–7] and unconventional interactions of
neutrinos [8, 9]).
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