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Abstract

This thesis presents a comparison between a holographic model of the Pomeron in the
Witten-Sakai-Sugimoto (WSS) framework and experimental data from the HERA exper-
iment on deep inelastic scattering (DIS). The WSS model, a top-down holographic QCD
dual, is utilized to describe the soft Pomeron as an exchange of glueball states. The pri-
mary focus of this work is the application of this holographic description to predict the
structure functions F1 and F2, which characterize the DIS process at small Bjorken x. The
theoretical framework builds on Regge theory and the concept of Reggeon exchange, using
the Pomeron trajectory to explain the energy dependence of the cross sections. In this
context, we derive the Pomeron-proton vertex, Pomeron propagator, and their coupling to
photons, utilizing the tensor glueball as the leading state on the Pomeron trajectory. A
key result is the derivation of the structure functions in terms of holographic parameters,
which are then compared to experimental data from HERA, demonstrating a good qualita-
tive agreement in the regime of small x and low virtuality Q2. This work provides further
insight into the use of holographic models for describing high-energy QCD processes.
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Chapter 1

Introduction

The strong interaction, one of the four fundamental forces of nature, governs the behav-
ior of quarks and gluons, the elementary particles that form protons, neutrons, and other
hadrons. The widely accepted framework to describe this interaction is quantum chromo-
dynamics (QCD). QCD, as a gauge theory based on SU(3) symmetry, describes how quarks
interact by exchanging gluons. While QCD has been remarkably successful in explaining
high-energy processes through perturbation theory, it presents significant challenges in its
non-perturbative regime, particularly in describing phenomena such as confinement. Con-
finement is the property that quarks and gluons cannot be isolated and are always confined
within hadrons at low energies. Despite extensive efforts, calculating QCD in this confining
region remains one of the most significant unsolved problems in theoretical physics.

One promising approach to gain insights into this regime of QCD is holography, also
known as the AdS/CFT correspondence. Holography provides a dual description of cer-
tain strongly coupled gauge theories in terms of weakly coupled gravitational theories in
higher-dimensional spaces. Specifically, it allows the study of non-perturbative aspects of
QCD using techniques from string theory and gravity. In this context, the exchange of a
Pomeron, a concept originating from Regge theory, plays a pivotal role. The Pomeron is
a trajectory that dominates high-energy scattering processes in QCD and is believed to
represent the exchange of multiple gluons in the strong interaction. In holographic models,
the Pomeron can be identified with a reggeized tensor glueball, a bound state of gluons that
effectively captures the non-perturbative dynamics of QCD. This identification provides a
deeper understanding of high-energy scattering processes, particularly by linking Pomeron
exchange with the exchange of glueball states in the confining regime of QCD.

A key experimental process to probe the structure of hadrons is deep inelastic scattering
(DIS). In this thesis, we focus on the application of holography to understand DIS in the
context of Pomeron exchange. While Regge theory has been extensively used to describe
the energy dependence of scattering amplitudes in the high-energy limit, holography offers
a framework that unifies the soft and hard Pomeron, giving a deeper understanding of
QCD in both the perturbative and non-perturbative regimes.
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The aim of this work is to apply the holographic duality to study Pomeron exchange in DIS
and investigate how it can provide insights into the behavior of scattering amplitudes in
QCD. The central question we address is whether the holographic approach can successfully
model the dynamics of QCD in the confining region, particularly through the lens of the
Pomeron.

In the subsequent chapters, chapter 2 explores the principles of Regge theory. Chapter 3
investigates the theoretical framework of the soft, hard, and holographic Pomeron, eluci-
dating their roles and interconnections within QCD. Chapter 4 focuses on the kinematics
of deep inelastic scattering, establishing the foundational concepts necessary for the ex-
perimental analysis. Chapter 5 introduces the Witten-Sakai-Sugimoto (WSS) model, a
pivotal holographic dual to large-Nc QCD, and discusses its application to the analysis of
Pomeron exchange. Chapter 6 explores glueball states and their couplings within the holo-
graphic framework, essential for understanding the Pomeron-proton interactions. Chapter
7 presents the results of the study, including data analysis, fitting procedures, and a dis-
cussion of the implications. Finally, the appendices provide additional technical details on
kinematics and scattering processes as well as supergravity.
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Chapter 2

Regge Calculus

Before the development of QCD,
nobody dared to apply quantum field
theory to the strong interactions

J.R. Forshaw, [1]

As of today, the widely accepted theory for studying the features of the strong interaction
is QCD. As is expressed in the quote above, though, physicists at first tried different
ways of explaining this somewhat elusive force. The most promising way was to study the
postulated properties of the S -matrix: Lorentz invariance, unitarity and analyticity, along
with the singularities required by unitarity, see appendix A and [1–5].

This framework yields a set of self-consistency conditions for scattering amplitudes. Unitar-
ity leads to the optical theorem (see A.2), which relates the imaginary part of the forward
elastic scattering amplitude to the total cross section. The requirement of analyticity leads
to a dispersion relation connecting the corresponding real parts. Such a self-consistent con-
struction is called a bootstrap, as it does not rely on any inputs from an underlying theory,
such as quantum field theory (QFT). In order to make this bootstrap usable, though, one
also needs to examine the asymptotic behavior of amplitudes, which is the goal of Regge
theory.

2.1 Regge Theory

In this section, we will examine the basic principles of Regge theory following [1, 2, 6].
This theory has its origins in studying the features of the strong force. First attempts at
describing this interaction led to the postulation of a massive particle [7], which we now
know as the pion. Additionally, a plethora of particles was discovered, when examining
higher-energy reactions of particles that interact through the strong force, such as neutrons
and protons. Tullio Regge, therefore, established a framework in which all these seemingly
different contributions of the particles involved can be described in a unified way [8].
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This theoretical approach is based on the analytic properties of scattering amplitudes and
the symmetries of the processes considered. The starting point is to extend the discrete in-
teger angular momentum to continuous complex values in the radial Schrödinger equation,
which can be written as

ψ

(x) +

�
1− λ2 − 1

4

x2
− U(x)

�
ψ(x) = 0, (2.1.1)

where x = kr and λ is the generalized complex angular momentum. Physical states then
correspond to half-integer values of λ with λ = j + 1

2 . This leads to the so-called Regge
trajectories α, which are curves in the complex angular momentum plane relating the
angular momentum of a particle to its mass squared. Since the angular momentum of
the initial and final state in a scattering event must be conserved, equation (2.1.1) can be
solved for each individual value of angular momentum separately in terms of the partial
wave amplitudes. If U(r) is a superposition of Yukawa potentials, the singularities of
those partial wave amplitudes in the complex angular momentum plane are called Regge
poles, which correspond to physical particles. This is an important feature, as it allows
for the classification of seemingly different particles, where the relation between angular
momentum and mass of the particles follows a distinct proportionality, as part of one and
the same Regge trajectory.

Regge theory is valid in the so-called Regge limit, which refers to the regime of high center
of mass energies and fixed momentum transfer with s � |t| and s → ∞. In this limit, the
scattering amplitudes are dominated by the exchange of Reggeons, which are a collective
name for families of particles corresponding to a specific Regge trajectory. Physical particles
then coincide to integer values of angular momentum. The energy dependence of the
scattering amplitude in this limit is determined by those trajectories. It can therefore be
described by an exchange of a single object embodying the properties of an entire family
of particles along a trajectory. Those trajectories are denoted by α (t), which for most
purposes and standard Regge theory are assumed to be linear in t and therefore can be
characterized by the slope α
 and the intercept α0 of the given trajectory. Reggeon exchange
results in a characteristic energy dependence of the amplitude of the form�

s

s0

�α(t)

. (2.1.2)

There exist various Regge trajectories and the first ones considered were the meson tra-
jectories. In this work, though, we are interested in a special form of Regge exchange
called the Pomeron. This trajectory was theoretically proposed in order to explain the
rise of the total pp cross-section with energy. The Pomeron has quantum numbers of the
vacuum, with isospin 0 and charge conjugation parity C = +1 and is therefore considered
to behave like a photon, except that the photon has C = −1. It is up to debate whether
there exist two different Pomeron trajectories with different slope and intercept, which are
called soft and hard Pomeron. The soft Pomeron is associated with non-perturbative QCD
effects and describes the behavior of total cross-sections at lower energies, while the hard
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Pomeron is linked to perturbative QCD processes and becomes significant at higher ener-
gies or in processes involving large momentum transfers. Details about the Pomeron model
of Donnachie and Landshoff can be found in [9–12]. The Pomeron can also be understood
as the reggeized exchange of a pair of gluons [13, 14]. In the holographic model used in the
following sections, there exists only a single soft Pomeron trajectory consisting of glueball
states. The lowest mass state contributing to this trajectory is a 2++ glueball, while the
lighter 0++ state is only subleading [15]. For further information about the hard Pomeron
and a holographic prescription by Brower et al., unifying both Pomeron trajectories, see
chapter 3.

2.2 Regge Pole Formalism

2.2.1 Crossing Symmetry

The amplitude can be defined as a quantity only depending on the Mandelstam variables
s and t, see appendix A.1 and (A.1.2). Crossing symmetry then states that A(s, t) can be
analytically continued to the three physical regions in the Mandelstam plane. An example
of this kind of symmetry is the correspondence of the amplitudes of Bhabha and Coulomb
scattering, see e.g. [6].

In order to analytically continue the amplitude A(s, t) some assumptions about the an-
alytic structure have to be made. One such assumption is, as was already hinted at in
the introduction of this chapter, that bound states correspond to poles in the amplitude.
Thresholds are connected to branch cuts and any singularity has dynamical origin (i.e.
particles). A pole at s = sB with branch points and cuts corresponds to a s-plane bound
state of mass mB =

√
sB with a certain physical threshold. This correspondence stems

from (A.2.4) and the optical theorem. For n particles the thresholds for production of
states with masses M1,M2, . . . is at s = (M1 +M2 + · · · )2, thus for equal masses they are
at s = 4m2, 9m2, . . . corresponding to the branch points of the amplitude.

With the knowledge of the analytic structure of A(s, t), a dispersion relation can be derived.
Fixing t and integrating over a contour with a pole at s
 = s and u
 = u, we get for the
amplitude [4]

A(s, t) =
g2s

s− sB
+

1

2πi

� ∞

s0

ds

Ds(s


, t, u
)
s
 − s

+ (s ↔ u), (2.2.1)

where s0 and u0 are the lower thresholds for the lowest accessible states in the respective
channel and Ds(s


, t, u
) refers to the s-channel discontinuity, defined as

Ds(s, t, u) = −2πig2sδ(s− sB) for s < 4m2. (2.2.2)

With this (2.2.1) can be rewritten more compactly as

A(s, t) =
1

2πi

� ∞

0
ds


Ds(s

, t, u
)

s
 − s
+

1

2πi

� ∞

0
ds


Du(s

, t, u
)

u
 − u
, (2.2.3)

where the discontinuities now include any bound-state contributions.
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2.2.2 Partial-Wave Series Expansion

For spinless particles, the amplitude for a two-particle to two-particle scattering process at
a center of mass energy of

√
s much larger than the masses of the particles involved can

be expanded in terms of the Legendre polynomials Pl(cos θ) as

A(s, t) = 16π
∞�
l=0

(2l + 1)Al (t)Pl (zt) (2.2.4)

with
zt = cos θt = 1 +

2s

t
, (2.2.5)

where θt is the scattering angle with respect to t and Al are called the partial wave am-
plitudes. For s → ∞ the argument of the Legendre polynomials zt becomes proportional
to s. Through crossing symmetry this statement also holds for the exchange of the two
variables s and t in (2.2.4). For large z the Legendre polynomials are then proportional to
zl and we get

Pl (zt) ∼ sl (2.2.6)

and (2.2.4) diverges. Therefore one has to start in a region where the series converges and
then analytically continue to the regions of interest. The divergence of the sum can be
ignored by only considering one resonance with a given spin σ and thus only one partial
wave contributes. For large s the amplitude then becomes

A (s, t) = 16π (2J + 1)AJ(t)PJ

�
1 +

2s

t

�
∼ f(t)sJ (2.2.7)

The optical theorem then gives
σtot ∼ sJ−1 (2.2.8)

Taking a look at particles with different spins we see the proportionality of the cross sections
of particles with corresponding spins:

• spin-0 ∼ s−1

• spin-1 ∼ const.

• spin-2 ∼ s1

This behavior is not observed though. For low values of
√
s the cross section is proportional

to s−0.5 and for higher energies it increases more slowly than expected. In order to explain
the energy dependence all the resonance contributions of different spins have to combine
in an appropriate way. This means that all the mesons, e.g. f2, are members of a family of
resonances with increasing spin and mass. For the right center of mass energy dependence
one has to consider the family as a whole, which can be done in the Regge formalism
described above.

The underlying idea of this formalism is to allow a continuous complex valued orbital
angular momentum l and that the Schrödinger equation can be solved for complex l and
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a spherically-symmetric potential. The partial wave amplitudes can then be considered as
functions of complex l:

A(l, t) = Al(t) (2.2.9)

If the potential is a superposition of Yukawa potentials then A (l, t) has poles (i.e. Regge
poles) in the complex l-plane which vary with t via l = α(t). The α(t) are linear trajectories
in the M2 versus spin plane and are called Regge trajectories. Different particles may lie on
the same Regge trajectory, thus families of particles can be identified by the different slopes
and intercept of those trajectories. There also exist so-called daughter trajectories, which
have the same slope, but different intercept. Although one could also consider non-linear
trajectories, in our case only linear α(t) are of interest and thus it is sufficient to consider
trajectories with

α(t) = α(0) + α
t (2.2.10)

The masses of resonances with a certain spin correspond to the values of t, where α(t) is a
non-negative integer.

2.2.3 Sommerfeld-Watson Transform

Since the interpolation from non-negative integer values to the complex l-plane is not
unique, one has to introduce even- and odd-signature amplitudes:

A±(l, t) =

�
Al(t) l even
Al(t) l odd

(2.2.11)

Then we can write (2.2.4) as

A(s, t) = A+(s, t) +A−(s, t) (2.2.12)

with
A±(s, t) = 8π

∞�
l=0

(2l + 1)Al (t) (Pl (zt)± Pl (−zt)) (2.2.13)

Considering that 1
sin(πl) has poles at non-negative integer values of l the series can be

rewritten as a Cauchy integral over the l-plane, where the amplitudes are analytic on the
right-hand half with only isolated singularities:

A±(s, t) = 8π

�
C
dl (2l + 1)A± (l, t)

Pl (zt)± Pl (−zt)

sin(πl)
(2.2.14)

Moving the contour of this integral from +∞ to the left means that we have to integrate
around all the poles α±

i (t) and pick up their residues β±
i (t) until Re l = −1

2 . The result is
then

A±(l, t) =− 16π2
�
i

�
2α±

i (t) + 1
�
β±
i (t)

sin
�
πα±

i (t)
� �

Pα±
i (t) (−zt)± Pα±

i (t) (zt)
�

+ 8π

� − 1
2
+i∞

− 1
2
−i∞

dl
(2l + 1)A±(t)

sin(πl)
(Pl (−zt)± Pl (zt))

(2.2.15)
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where the integral is the so called background integral and is not of interest for our discus-
sion. With the identity Pl(z) = e−iπlPl(−z) for large negative z we can rewrite the factor
outside the fraction as

�
1± e−iπα±

i (t)
�
Pl(−z) where the factors in parentheses are the sig-

nature factors ξ±α which determine the phase of the high-energy behavior of Regge-pole
contributions to the amplitude.

Using the asymptotic behavior of the Legendre polynomials

Pα(z) ∼
Γ
�
α+ 1

2

�
Γ (α+ 1)

(2z)α , (2.2.16)

the properties of the Γ-function
lΓ(l) = Γ(l + 1) (2.2.17)

and
Γ(l + 1)Γ(−l) = − π

sin(πl)
(2.2.18)

and the redefinition of the residues β±
i (t) by absorption of unwanted factors, the amplitudes

have the leading behavior

A±(s, t) ∼
�
i

β±
i (t)Γ

�−α±
i (t)

� �
1± e−iπα±

i (t)
�
sα

±
i (t). (2.2.19)

Most of the time it is beneficial to get rid of the mass dimension of s via relating it to some
scale s0 and make the replacement s →

�
s
s0

�
, since dimensionful quantites are not to be

potentiated.

The odd- and even-signatured amplitudes then depend on the values where the Γ
�
α±
i (t)

�
have poles and we can identify these poles with the exchanges of particles with even or odd
spin σ±, whose squared mass is the corresponding value of t.
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Chapter 3

Soft, Hard, and Holographic
Pomeron

For general remarks on holographic QCD and the connection to Regge theory, see [16]
and [17, 18], where the latter also includes a general discussion of deeply virtual Compton
scattering (DVCS) in a holographic dual of 5d string theory. In this section, though, we
will follow the discussion as presented in [19, 20]. For further information about bottom-up
models of holographic QCD, see e.g. [21].

3.1 The Pomeron and the Duality

Applying Regge theory to DIS was necessary in order to describe the behavior of cross
sections as presented in (2.2.8). The trajectory of the Pomeron has an intercept of around
1.08, which was found to depend on the virtuality of the off-shell photon Q2. For higher
values of Q2 the observed intercept rises to 1.4, suggesting another trajectory, leading to
the distinction between the non-perturbative soft and the perturbative hard or Balitsky-
Fadin-Kuraev-Lipatov (BFKL) Pomeron, where the former was already introduced in the
first section. Both objects share the same quantum numbers, but refer to different entities
as they most notably differ in their value of the intercept. In the following sections we
will introduce the BFKL Pomeron, explain the conceptual differences to the soft Pomeron
presented before, discuss a holographic approach, aiming to unify the descriptions, as well
as compare it to the way the Pomeron is used in our discussion.

3.2 Perturbative Pomeron

In QCD it is not straightforward to construct an object such as the Pomeron from scratch.
As was pointed out before, the Pomeron has the quantum numbers of the vacuum and
therefore also needs to be a color-singlet object. Candidates for the fundamental particles
making up the Pomeron are therefore gluons and in the approach of BFKL, an infinite
set of gluon ladder diagrams are summed. In the following sections we will present the
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initial considerations for constructing this elusive trajectory and will focus on the concepts
and ideas behind this construction, rather than the mathematical rigor behind it. The full
description of this approach can be found in [1, 5].

3.2.1 The Reggeized Gluon

The first process to consider is the scattering of two massless quarks of different flavors due
to colour octet exchange within the Regge limit. Using the eikonal approximation (i.e. all
qµ components are small compared to the components of pµi for s � |t|), the upper quark
line of this Feynman diagram can be written as

−2igpµ1τ
a
ij , (3.2.1)

with the generators of the colour group in the fundamental representation τaij . Also note
that we dropped the factors of δλ�

1λ1
, which ensures helicity conservation. Approximating

the lower vertex similarly, the lowest order amplitude for this type of scattering is then
given by

A(0) = 8παs
s

t
τaijτ

a
kl, (3.2.2)

where αs =
g2

4π is the strong coupling constant.

In next to leading order O(αs) the Feynman diagrams of interest are the box and crossed
box two-gluon exchange diagrams. Diagrams with self-energy insertions on the other hand
are only subleading in ln s and therefore can be ignored. Since these diagrams determine
the renormalization of the coupling constant, this also means that from this point on, we
are fixing αs to be constant, which has to be remedied later in the discussion. Scattering
amplitudes are most efficiently calculated using the so-called Cutkosky rules, from which
the imaginary part of the amplitudes can be obtained via cutting the quark lines as

ImA(1) =
1

2

�
dΠ2A(0)

�
s, k2

�A(0)†�s, (k − q)2
�
, (3.2.3)

with the two-body phase space given by�
dΠ2 =

�
d4k

2π2
δ
�
(p1 − k)2

�
δ
�
(p2 + k2)

�
=

1

8π2s

�
d2k . (3.2.4)

With (3.2.2) we therefore get

A(0)
�
s, k2

�
= −8παsτ

a
mjτ

a
nl

s

k2
(3.2.5)

A(0)†�s, (k − q)2
�
= −8παs(τ

a
miτ

a
nk)

∗ s

(k− q)2
. (3.2.6)

Using the leading logarithmic expansion [22] yields for the amplitude

A(1)
box = −16πα2

s

Nc

s

t
(τaτ b)ij(τ

aτ b)kl ln
�s
t

�
%(t), (3.2.7)
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with
%(t) =

Ncαs

4π2

�
d2k2 −q2

k2(k− q)2
, (3.2.8)

where %(t) is related to the trajectory of the reggeized gluon as

αg(t) = 1 + %(t). (3.2.9)

The integral in (3.2.8) is infrared divergent, because the external quarks are on mass-shell.
Therefore an infrared cutoff has to be introduced, taking into account the off-shellness of
the confined quarks.

The contribution of the crossed box diagram is simply given by replacing s with u, using
u + −s and acknowledging the change of the color factors

A(1)
crossed =

16πα2
s

Nc

s

t
(τaτ b)ij(τ

bτa)kl ln
�s
t

�
%(t). (3.2.10)

Contracting the color factors then yields

A(1) = 8παs
s

t
τaijτ

a
kl ln

�s
t

�
%(t) = A(0) ln

�s
t

�
%(t). (3.2.11)

For higher order terms, diagrams with an additional gluon have to be taken into account,
i.e. qq → qq + g. To do so, a gauge invariant non-local effective vertex Γσ

µν(k1,k2) is
introduced. The amplitude in leading logarithmic approximation up to order α2

s is then
given by

A(0)

�
1 + %(t) ln

� s

k2

�
+

1

2
%2(t) ln2

� s

k2

�
+ . . .

�
, (3.2.12)

where the term in parenthesis simply resembles a Taylor expansion of the expression
�
s
t

��(t),
implying the ansatz

A = A(0)
�s
t

��(t)
, (3.2.13)

which introduces the reggeized gluon propagator

Dµν(s, q
2) = −i

gµν
q2

�
s

s0

��(q2)

, (3.2.14)

cp. (2.1.2). Extending the ideas presented above to even higher orders, i.e. qq → qq + n

gluons, leads to the so-called BFKL ladder, where all the vertical lines are reggeized gluons.

3.2.2 BFKL Equation

Calculating the amplitude for this type of multi-Regge exchange then yields the BFKL
equation [1, 5], which is used to describe the leading logarithmic evolution in ln s of the
gluon ladder. In the case of t = 0, this integral equation can be solved by finding the
eigenfunctions and corresponding eigenvalues of the so-called BFKL kernel K0. By taking
a closer look at the gluon ladders themselves, one finds that the scale of typical transverse
momenta involved is entirely set by the impact factors, which determine the coupling of
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the Pomeron to hadrons, at the top and the bottom of the ladder. Since the BFKL
equation is infrared safe, the integrations over transverse momenta must be dominated by
the horizontal momenta kh. But when going further away from the ends of the ladder,
where kh is set, more and more momenta become significant and in this way the running
of the coupling is introduced into the BFKL framework. This behavior of the broadening
of the momentum range can be understood as a diffusion effect. This type of diffusion can
also be found from a holographic point of view, see section 3.4.1.

3.3 Soft versus Hard Pomeron

The description of the perturbative Pomeron presented in this section is quite different
from the soft Pomeron. They most notably differ in their value of the intercept. The hard
intercept is found by solving the BFKL equation and the soft intercept via experimental
observations to be

αhard(0) = 1 + αsNc
4 ln 2

π

    
αs=0.2

+ 1.5 and αsoft(0) + 1.08. (3.3.1)

There exists two different points of view in treating this discrepancy. On the one hand, the
soft and hard Pomeron are considered to be two distinct objects. The soft Pomeron then
would inherently describe the non-perturbative region and the hard Pomeron the large |t|
region, becoming irrelevant as Q2 goes to zero. On the other hand, it could be the case that
there exists only one Pomeron and the intercept is actually Q2 dependent, interpolating
between the soft and the hard case. One specific way of treating the Pomeron in this
manner will be presented in the following section.

As a concluding remark for the BFKL Pomeron it has to be noted that this description
failed to satisfy its original purpose, namely to calculate perturbatively the rapid rise of
σγ∗p with W 2 at small x, parameterized as an effective power

σγ∗p ≈ F (Q2)(W 2)λ(Q
2). (3.3.2)

However, the calculations of BFKL are considered to be almost certainly invalid. The
approximations used to derive the BFKL equation do not take into account energy con-
servation in a suitable manner and also fail to incorporate non-perturbative effects such
as confinement [1, 5]. Nonetheless, there are ongoing efforts to include confinement in the
BFKL framework, such as introducing modifications to the BFKL kernel [23].

3.4 Holographic Pomeron

Following [19], this section aims to present yet another formulation of the Pomeron and
its properties. The motivation behind this new description has already been mentioned
before: How are the soft and hard Pomeron related? What is the connection between the
tensor glueball exchange on one hand and the exchange of a ladder of reggeized gluons
on the other? Brower et al. try to solve this problem in a holographic manner. They
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do so by using concepts of string theory in curved-space and are able to find a single j-
plane Schrödinger operator, interpolating between the two descriptions, unifying the BFKL
Pomeron at negative t and the soft Pomeron at positive t.

In the Regge regime (s → ∞, t fixed) the Regge behavior of QCD amplitudes is in good
correspondence with the scattering in string theory on flat spaces. In other regimes, this
statement does not hold. For elastic scattering at large angles, for example, the amplitudes
in string theory are suppressed exponentially, whereas in QCD, they are suppressed by
powers of s. In order to tackle this problem, one can take a look at the limit of N → ∞ and
s → ∞, where the scattering amplitudes are dominated by the single Pomeron exchange.
As was already pointed out before, the Pomeron is a color-singlet state built from gluons.
In string theory the Pomeron is identified as the Regge trajectory of the higher-dimensional
graviton.

Approaching QCD in a holographic manner also has its caveats. For example, only large-N
gauge theories have a small or zero beta-function and are therefore conformally invariant,
which is not the case for real QCD. Also, as is the case for the BFKL framework, confine-
ment effects are generally neglected. In holography, though, this problem can be remedied
by considering different background geometries.

3.4.1 Conformally-invariant Scattering

Following the methods as presented in the previous section in the large-N limit one can
write down the single-Pomeron-exchange amplitude for quarkonium states as�

dkh
kh

�
dk
h
k
h

ΦA(kh)K
�
kh, k



h, s

�
Φ
�
k
h

�
, (3.4.1)

with the impact factors Φi, the magnitude of the transverse momenta kh and the BFKL
kernel K. The kernel can be approximated by a diffusion kernel times a power of s as

K�
kh, k



h, s

� ≈ sj0√
4πD ln s

e
−
�
ln k�h−ln kh

�2
4D ln s , (3.4.2)

with j0 = 1 + αsNc
4 ln 2
π , cf. 3.3.1, and D = αsNc

7ζ(3)
2π , where the diffusion occurs in the

variable ln kh over the diffusion time τ ∼ ln s. From the string theoretical point of view,
this diffusion can be interpreted as a time-dilation of the boosted string, making the string
appear longer and larger. This growth corresponds to a random walk in the transverse
dimensions to the motion of the string.

Assuming that the holographic principle holds, the scattering of states in N = 4 super-
symmetric Yang-Mills theory is equivalent to string scattering on a curved background of
the form AdS5 × S5. The AdS5 coordinates are xµ and the holographic coordinate r of
the Poincaré patch, running from r = 0 to r = ∞ at the boundary. Since the holographic
coordinate can be interpreted as the energy scale of the system, r = 0 corresponds to the
infrared and r → ∞ to the ultraviolet. For t = 0 the scattering of two strings in such a

13



background can be described via

K�
r, r
, s

�
=

sj0√
4πD ln s

e
−
�
ln r−ln r�

�2
4D ln s , (3.4.3)

with
j0 = 2− 2√

λ
+O�

λ−1
�
, D =

1

2λ
+O�

λ−1
�

(3.4.4)

and the ’t Hooft coupling λ ≡ R4

α�2 = g2YMN , where R is the radius of the AdS5 space.
Comparing this to (3.4.2) identifies the transverse momentum of the gauge theory with the
coordinate r from holography. In this sense, holography provides a promising framework
for investigating the duality between gauge theory and string theory, with QCD as a specific
example.
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Chapter 4

Deep Inelastic Scattering

4.1 Deep Inelastic Lepton-Proton Scattering

In this section, we introduce the necessary kinematics of the reactions of interest. We will
mostly follow [24–26]. Generally speaking, we are interested in DIS of charged leptons off
fixed targets (protons). Only the direction and energy of the scattered leptons are measured
by the detector, so we do not observe the final hadronic state. The main quantities of
interest are the structure functions, which are given by the absorptive part of the forward
virtual Compton amplitude. Via the optical theorem, this amplitude is related to the total
cross section, see figure 4.1. The structure functions behavior at low Bjorken-x or high
energy has been a research area with extensive experimental and theoretical studies in the
past, e.g. [24, 27–32]. In the scope of this work, we will only be interested in aspects based
on Regge theory, where the region of low-x is dominated by Pomeron exchange, see (4.2.1).

We focus on the first-order amplitude, or in other words, the first Born approximation,
where only a single photon is exchanged, see figure 4.2.

q q

p(p, λ)

γ∗ν(q)

p(p, λ
)

γ∗µ(q)

Figure 4.1. Feynman diagram of virtual Compton forward scattering.
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k

k


γ∗(q)

p(p)

e(k)

X(p
)

e(k
)

Figure 4.2. Feynman diagram for deep inelastic lepton-hadron scattering via the exchange of a
virtual photon with momentum q. Since the final state is not directly measured it is denoted by X

with momentum p�.

4.2 Kinematics

The process we are considering is inelastic scattering of electrons and positrons off protons,
see figure 4.1. We will use the standard kinematic variables, see e.g. [25, 26, 33]. They are
defined1 as follows:

s = (p+ k)2 ,

q = k − k
,

W 2 = p
2 = (p+ q)2 ,

Q2 = −q2,

ν = E − E
 =
p · q
mp

=
W 2 +Q2 −m2

p

2mp
,

x =
−q2

2mpν
=

Q2

W 2 +Q2 −m2
p

,

y =
ν

E
=

p · q
p · k =

W 2 +Q2 −m2
p

s−m2
p

.

(4.2.1)

Here, s is the square of the center-of-mass energy of the whole system, whereas W 2 is
the square of the center-of-mass energy of the hadronic part. The quantities ν, y, x are
the energy loss of the lepton, the fractional energy loss of the lepton and the Bjorken-x,
respectively. We also have

% =
2 (1− y)− y2δ

�
W 2, Q2

�
1 + (1− y)2 + y2δ (W 2, Q2)

(4.2.2)

where
δ
�
W 2, Q2

�
=

2m2
pQ

2�
W 2 +Q2 −m2

p

�2 (4.2.3)

1Note: in holography, the mostly-plus convention is usually favored over the mostly-minus convention,
cf. A.1
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and the kinematic limits for y and % at given W 2 > m2
p and q2 ≤ 0:

1 ≥ % ≥ 0 ⇐⇒ 0 ≤ y ≤ 2

1 +
�
1 + 2δ (W 2, Q2)

(4.2.4)

4.3 Deep Inelastic Scattering Amplitude

For the definition of the scattering amplitude, we will follow [25], which gives a slightly
different definition compared to that of Britzger et al. [24]. The Feynman diagram for DIS
is shown in figure 4.2 and the scattering amplitude for this diagram is given by

iM = (−ie)2
�−iηµν

q2

�
�k
|jµ' (0)|k, s'��X|jνh(0)|p, λ� , (4.3.1)

where −ie, j' and jh are the vertex factor for both vertices, the leptonic and the hadronic
electromagnetic current, respectively. The spin of the lepton and the helicity of the hadron
are given by s' and λ, respectively.

�−iηµν
q2

�
is the photon propagator, where the metric

stems from the sum over the polarization states of the photon2 as [35]�
p

εpµε
p∗
ν = −ηµν . (4.3.2)

The differential cross-section is then obtained by squaring M, multiplied with the phase
space factors and summing over the final lepton and hadron polarisation states as

dσ =
�
X

�
d3k


(2π)32E
 (2π)
4δ4

�
k + p− k
 − pX

� |M|2
(2E)(2M)

=
�
X

�
d3k


(2π)32E

(2π)4δ4(k + p− k
 − pX)

(2E)(2M)

e4

q4

×�p, λ|jνh(0)|X��X|jνh(0)|p, λ� �k, s'|j'µ(0)|k
��k
|j'ν(0)|k, s'� .

(4.3.3)

It is then instructive to define the leptonic tensor 3µν as

3µν =
�

final spin

�k
|jν' (0)|k, s'��k, s'|jµ' (0)|k
� , (4.3.4)

as well as the hadronic tensor Wµν as

Wµν(p, q)λλ� =
1

4π

�
d4x eiq·x

�
p, λ
  �jµh (x), jνh(0)�  p, λ� , (4.3.5)

with the polarisations of the initial and final hadron λ and λ
. The commutator is only
needed for analytic continuation and is of no interest for the process given here, as can be
seen in the following. Inserting a complete set and exploiting translation invariance yields

Wµν(p, q)λλ� =
1

4π

�
X

�
(2π)4δ4(q + p− pX) �p, λ
|jµh (0)|X��X|jνh(0)|p, λ�

−(2π)4δ4(q + p− pX) �p, λ
|jνh(0)|X��X|jµh (0)|p, λ�


.

(4.3.6)

2At this stage of the discussion, we are only considering the leptonic current. Due to the gauge freedom
of QED [3, 34], it is sufficient to consider the polarization sum as in (4.3.2). In general, for a massive
off-shell photon, one needs to consider the polarizations as presented in (4.7.1) and (7.1.1).

17



Since the only allowed states are those with p0X ≥ p0, only the first term survives and the
commutator in (4.3.5) can be dropped.

4.4 Double Virtual Forward Compton Scattering

In DIS, one effectively studies the absorption of the virtual photon on the proton as depicted
in figure 4.1. Since the total γ∗p absorption cross section is related to the absorptive part of
the virtual forward Compton scattering amplitude, we will focus on this scattering process
given by

γ∗(q) + p(p, λ) −→ γ∗(q) + p(p, λ
) (4.4.1)

and figure 4.1. Using a different notation from Britzger et al., the amplitude is given by

T µν = i

�
d4x eiq·x

�
p, λ


   T̂ (jµ(x)jν(0))   p, λ� , (4.4.2)

where T̂ denotes the covariantised time-order product and jµ(x) the hadronic part of the
electromagnetic current. Comparing this quantity to (4.3.5) we see that T µν and Wµν

share the same structure and therefore can be decomposed in an equivalent way. Using the
optical theorem mentioned before we have�

X

�
dLIPS |Tγp→X |2 = 2 Im Tγp→γp(s, t = 0) (4.4.3)

and one therefore gets the relations

2 Im T µν = 4πW µν (4.4.4)

and we therefore define the hadronic tensor in an equivalent way as

Wµν
λλ� =

i

2π

�
d4x eiq·x

�
p, λ


   T̂ (jµ(x)jν(0))   p, λ� . (4.4.5)

4.5 Form Factors

For any particle that interacts with quarks confined within a hadron, so-called form factors
have to be introduced. They aim to capture our ignorance of certain properties about the
scattered particles. Since the Pomeron can be seen as a C = 1 photon, it is reasonable to
introduce two form factors, the Dirac and Pauli form factors F1(t) and F2(t), respectively
and it is assumed that they are equal for C = 1 and C = −1. F2 takes into account
that quarks are not free when scattered, but bound within hadrons. Since the Pomeron
is an isosinglet exchange, the Pauli form factor includes the elastic electromagnetic form
factor of the proton and the neutron. At t = 0, F2 can be omitted, as the value of this
form factor is merely the sum of the anomalous magnetic moments of the proton and the
neutron, which is small and also remains small for t > 0. F1, on the other hand, is only
determined by the proton form factor, since the one for the neutron is negligibly small.
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4.6 Hadronic Tensor and Structure Functions

As mentioned in the section 4.4, the hadronic tensor is defined as the absorptive part
of T µν

λ�λ, averaged over the proton helicities. For reference, we will start with giving the
definitions as presented in [24]:

Wµν (p, q) =
1

2

�
λ�,λ

δλ�λ
1

2i

�T µν
λ�λ (p, q)−

�T νµ
λ�λ (p, q)

�∗�
. (4.6.1)

Focusing on the unpolarized case, this tensor can also be expressed using the structure
functions of DIS, W1 and W2:

Wµν (p, q) = W1

�
ν,−q2

��−ηµν +
qµqν

q2

�
− 1

m2
p

W2

�
ν,−q2

��
pµ − p · q

q2
qµ
��

pν − p · q
q2

qν
�
.

(4.6.2)

We will also need the transverse and longitudinal cross sections for the total γ∗p absorption
process defined as

σT
�
W 2,−q2

�
=

2πmp

W 2 −m2
p

e2W1

�
ν,Q2

�
σL

�
W 2,−q2

�
=

2πmp

W 2 −m2
p

e2
	
W2

�
ν,Q2

� ν2 +Q2

Q2
−W1

�
ν,Q2

�
 (4.6.3)

where e > 0 is the proton charge. In the following though, we will make use of the dimen-
sionless structure functions F1 = W1 and F2 = − ν

mp
W2, with the definitions presented in

the section above and rewrite (4.6.1) as

Wµν(p, q) =
1

2

�
λ,λ�

δλλ� Im T µν
λλ�(p, q) =

1

2i

�
λ,λ�

�T µν
λλ (p, q)− T ∗νµ

λλ (p, q)
�
, (4.6.4)

(4.6.2) as

Wµν (p, q) = F1(x, q
2)

�
−ηµν +

qµqν

q2

�
+

2x

q2
F2

�
x, q2

��
pµ +

qµ

2x

��
pν − qν

2x

� (4.6.5)

and (4.6.3) as

σT
�
q2, ν

�
=

4π2αem

mpκγ
F1

�
q2, ν

�
σL

�
q2, ν

�
=

4π2αem

mpκγ

	
−F1

�
q2, ν

�
+

mp

ν

�
q +

ν2

q2

�
F2

�
q2, ν

�

,

(4.6.6)

where e2 = 4παem and the flux factor in Hand’s convention κγ = ν − q2

2mp
, cf. [36], which

normalizes the flux of incoming particles.
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The quantity that is directly measured at HERA is the reduced cross section defined as

σred
�
q2,W 2, y

�
=

1 + (1− y)2 + y2δ
�
W 2, q2

��
1 + (1− y)2

�
(1 + 2δ(W 2, q2))

q2

4π2αem
(1− x)

× �
σT

�
W 2, q2

�− εσL
�
W 2, q2

�� (4.6.7)

and the total photoproduction cross section is given by

σγp
�
W 2

�
= σT

�
W 2, 0

�
. (4.6.8)

4.7 Matrix Element for Pomeron Scattering

For large W 2, small x, the virtual Compton amplitude is deemed to be dominated by
the exchange of soft and hard Pomerons, as well as the f2R reggeon, in the case of the
tensor-Pomeron approach of Britzger et al. In our approach, we are only considering the
contribution of one Pomeron and no other reggeons, therefore restricting to low Q2 as
well as low-x. Our expression for the matrix element will look similar to that presented
there, but our definitions of the quantities used, such as the Pomeron propagator and the
Pomeron-proton-proton vertex, will be different. Also, since we are dealing with off-shell
photons, we need to take into account the polarization terms. For the matrix element we
find

T µν
λλ� =

1

i2πmpe2

�
−ηµα +

qµqα

q2

��
−ηνσ +

qνqσ

q2

�
iVαβκλiΔ

κλ,γδiΓγδ, (4.7.1)

with

ΓGpp
µν = λP

�
ū
�
p
, s


�γµPν + γνPµ

2
u(p, s)

�
(4.7.2)

Vαβκλ = e2Tr
�Q2

�	 t2q
4

M2
KK

�
ηακηβλ + ηβκηαλ

�
+ t3

�
ηβλqκqα + ηαλqκqβ + ηακqβqλ + ηβκqαqλ

− 2ηαβqκqλ − q2
�
ηακηβλ + ηβκηαλ

��
 (4.7.3)

ΔG
µν,γδ =

1

2s

�
ηαγηβδ + ηβγηαδ − 1

2
ηαβηγδ

��−iα

Gs

��G , (4.7.4)

see (6.5.4), (6.6.9) and (6.6.23). From these expressions, the matrix element can be calcu-
lated, allowing the structure functions W1 and W2 to be determined by comparison with
equation (4.6.2).
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Chapter 5

Witten-Sakai-Sugimoto Model

In this section, the model of Sakai and Sugimoto [37, 38], which is a holographic dual
to large Nc QCD with massless flavors in four dimensions, will be presented. It is often
also called the WSS model, acknowledging the important work of Edward Witten [39]
regarding the AdS-structure, thermal phase transition and confinement in holographic
theories. Following [37, 38], this model is constructed by placing Nf probe flavor D8-
branes into a D4-brane background consisting of Nc color branes. We demand Nf � Nc

and therefore the high Nc limit ensures that the flavor branes can be introduced as a probe,
so that the back-reaction of those branes on the color brane background is negligible. In
principle, these could be considered as well, but it can be rather challenging and for the
scope of this discussion, no deeper insight is to be expected by doing so. The background
of the WSS model satisfies the supergravity equations of motion in ten dimensions, see
appendix B.

Other top-down models, e.g. [40], using D6-branes in a D4 background, fail to contain
the spontaneous breaking of chiral symmetry in QCD and therefore do not produce the
massless pions as Nambu-Goldstone bosons of this symmetry. In order to implement the
breaking of supersymmetry and the spontaneous breaking of the U(Nf )L ×U(Nf )R chiral
symmetry into this model, the configuration of the branes is crucial. SUSY is broken by
compactifying the Nc D4-branes on a S1 of radius M−1

KK as well as imposing antiperiodic
boundary conditions for the fermions on those branes. The chiral symmetry is broken by
placing Nf D8−D8 pairs transversely to this S1:

0 1 2 3 4 5 6 7 8 9
D4 • • • • •
D8−D8 • • • • • • • • •

The chiral symmetry in QCD is therefore realized as the gauge symmetry of the D8−D8

pairs. The radial coordinate U transverse to the D4-branes is bounded from below, due to
an existing horizon in the supergravity background for U ≥ UKK . In the limit of U → UKK
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the radius of the S1 shrinks to zero. At some point1 U = U0, the D8 brane-pairs merge into
a single component, resulting in the reduction to just one U(Nf ) gauge symmetry. Thus,
this brane configuration yields an intuitive picture for holographically breaking the chiral
symmetry.

Although it is to be expected that this model is in the same universality class as the four-
dimensional massless large Nc QCD, those theories are not equivalent in the high energy
regime. As is generally the case when compactifying branes to a circle, an infinite tower
of Kaluza-Klein modes of mass scale MKK arises. These modes are not observed in QCD
and therefore have to be much heavier than the states which appear in QCD. Also, since
our brane configuration is invariant under rotations of the x5...9 plane, there also exists an
SO (5) symmetry. Therefore, only singlet states with respect to this symmetry are used,
as QCD does not have such a symmetry.

5.1 Properties of the Brane System

The compactified direction of this brane system is x4 with a radius of M−1
KK . MKK is

the Kaluza-Klein mass defining the energy scale of this brane system, i.e. at energies
lower than MKK we obtain a four-dimensional U(Nc) gauge theory in the D4-brane world
volume. Therefore for the different types of strings we have:

• 4−4 strings are open strings with both ends attached to the D4-brane, representing
fermions in the adjoint representation of U (Nc) and gauge field bosons. By the
imposition of the boundary conditions, the former acquire masses of order MKK .
The massless modes of those strings are:

– the gauge field A
(D4)
µ with (µ = 0, 1, 2, 3)

– the scalar fields A
(D4)
4 and Φi with (i = 5, 6, 7, 8, 9)

• 4−8 strings are open strings attached on one end to the D4 brane and on the other
to D8. At high energies, they represent Nf flavors of massless fermions in the funda-
mental representation of U(Nc) and are interpreted as quarks. The 4−8 strings, on
the other hand, then have opposite chirality. The low-energy modes correspond to
mesons and are represented as:

– A
(D8)
µ

– A
(D8)
z , see section 5.3

• 8−8 strings create a tachyon field that becomes massive by separating the D8 − D8

pair along the x4 direction, which is essential for the chiral interpretation of the
geometry. The mass of the tachyon mode is then given as

m2 =

�
Δx4

2πα


�2

− 1

2α
 (5.1.1)
1In the original WSS model one has U0 = UKK , which corresponds to an antipodal embedding of the

flavour branes
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and for Δx4 � √
α
, the tachyon becomes massive and can be neglected in the massless

spectrum. Since no 8−8 strings are involved, the massless spectrum on the D4-brane and
the minimal couplings among them are not affected by the separation Δx4.

5.2 D4 Background

The D8−D8 brane system is then described in terms of supergravity. The solution for the
D4-brane reads

ds2 =

�
U

R

� 3
2 �

ηµνdx
µdxν + f (U) dτ2

�
+

�
R

U

� 3
2
�

dU2

f (U)
+ U2dΩ2

4

�
(5.2.1)

with

eφ = gs

�
U

R

� 3
4

, F4 = dC3 =
2πNc

V4
%4, f(U) = 1− U3

KK

U3
(5.2.2)

where dΩ2
4, %4 and V4 = 8π2

3 are the line element, volume form and volume of a unit S4,
respectively and eφ is the dilaton. The D4-branes are extended in the xµ (µ = 0, 1, 2, 3)

and τ directions. R is the AdS radius of the D4 background and related to the string
coupling and string length via

R3 = πgsNcl
3
s . (5.2.3)

The coordinate U is bounded from below via U ≥ UKK and in order to avoid a singularity
at U = UKK , τ must be periodic with

τ ∼ τ + δτ , δτ ≡ 4π

3

R3/2

U
1/2
KK

. (5.2.4)

The Kaluza-Klein mass is defined as

MKK =
2π

δτ
=

3

2

U
1/2
KK

R3/2
(5.2.5)

and specifies the energy scale below which the dual theory reduces to four-dimensional
Yang-Mills theory. The Yang-Mills coupling at the cutoff scale MKK is related to the
string coupling via

g2YM =
(2π)2gsls

δτ
(5.2.6)

The supergravity description relates the parameters R,UKK and gs

R3 =
1

2

g2YMNcl
2
s

MKK
, UKK =

2

9
g2YMNcMKK l2s , gs =

1

2π

g2YM

MKK ls
. (5.2.7)

In order to show the stability of the embedding of the D8-brane into the D4 background,
the induced metric on the D8-brane has to be introduced and the resulting equation of
motion needs to be checked. This procedure shows that the probe configuration is stable
with respect to small fluctuations, cf. [38].
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5.3 Gauge Field on the D8-brane

Going back to the initial definition of the geometry of this model, it is clear that the gauge
field on the D8-brane has nine components:

• Aµ with µ = 0, 1, 2, 3

• Az

• Aα = 0 where α = 5, 6, 7, 8 are the coordinates on the S4.

All the α components are set to zero, since we are only considering SO(5) singlet states.
With these considerations, we can define the action of the brane via the so-called DBI
action. It is a general result for the action on branes and can be defined and used for all
different dimensionalities of the branes concerned. Essentially it is just a generalisation
of the Nambu-Goto action for higher dimensions and gauge fields living on the brane.
Therefore, it only depends on the induced metric, also called pullback, on the brane with
respect to the background, the gauge fields and the dilaton. In general terms it reads for
a D8-brane in the mostly plus convention:

SD8 = −T8

�
d9x e−φ

�
− det(gMN + 2πα
FMN ) + SCS , (5.3.1)

where T8 = (2π)−8l−9
s is the tension of the brane, gMN is the induced metric and FMN the

field strength tensor. SCS is the Chern-Simons contribution to the action, given by

SCS = µ

�
D8

C3TrF
3 (5.3.2)

= µ

�
D8

F4ω5(A), (5.3.3)

with the normalization constant µ = 1/48π3 and the RR 4-form field strength F4 = dC3

and the Chern-Simons 5-form

ω5(A) = Tr

�
AF 2 − 1

2
A3F +

1

10
A5

�
, (5.3.4)

satisfying dω5 = TrF 3. The Chern-Simons term is crucial for studying the chiral anomaly
[37], but will be omitted in the following, since for our study this term is not of any interest.
Using the assumptions on the gauge fields and plugging everything into (5.3.1), one gets

SD8 = −T̃
�
2πα
�2 � d4x dz

	
R3

4Uz
ηµνηρσFµρFνσ +

9

8

U3
z

UKK
ηµνFµzFνz



+O�

F 3
�
, (5.3.5)

where Uz ≡ �
U3
KK + z2UKK

� 1
3 and T̃ = 2

3R
3
2U

1
2
KKT8V4g

−1
s . In order to define the field

strengths, the gauge fields are expanded in terms of complete sets {ψn(z)}n≥1 and {ϕn(z)}n≥0:

Aµ(x
µ, z) =

�
n

B(n)
µ (xµ)ψn(z), (5.3.6)

Az(x
µ, z) = ϕ(0)(xµ)φ0(z) +

�
n=1

ϕ(n)(xµ)φn(z), (5.3.7)
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where B
(n)
µ are the vector meson fields and ϕ(n) are scalar fields. In terms of those fields,

the field strengths of (5.3.5) are then given by

Fµν(x
µ, z) =

�
n

�
∂µB

(n)
ν (xµ)− ∂νB

(n)
µ (xµ)

�
ψn(z) (5.3.8)

≡
�
n

F (n)
µν (xµ)ψn(z), (5.3.9)

Fµz(x
µ, z) =

�
n

�
∂µϕ

(n)(xµ)φn(z)−B(n)
µ (xµ)ψ̇n(z)

�
. (5.3.10)

Dropping the terms with φ(n), the action is then rewritten as

SD8 = −T̃
�
2πα
�2R3

�
d4x dZ

�
m,n

�1
4
K− 1

3F (m)
µν Fµν(m)ψnψm

+
1

2
M2

KKKB(m)
µ Bµ(m)∂Zψm∂Zψn



, (5.3.11)

where the dimensionless coordinate Z is defined by

Z ≡ z

UKK
, K(Z) = 1 + Z2 =

�
Uz

UKK

�3

. (5.3.12)

The functions ψn must satisfy the eigenvalue equation

−K
1
3∂Z(K∂Zψn) = λnψn (5.3.13)

with the normalization condition

T̃
�
2πα
�2R3

�
dZ K− 1

3ψnψm = δnm. (5.3.14)

This leads to
T̃
�
2πα
�2R3

�
dZ K∂Zψm∂Zψn = λnδnm (5.3.15)

and
SD8 =

�
d4x

�
n=1

	
F (n)
µν Fµν(n) +

1

2
m2

nB
(n)
µ Bµ(n)



, (5.3.16)

where the mass of the vector mesons is given by m2
n ≡ λnM

2
KK > 1. On the other hand,

the functions φn(z) are chosen to satisfy φn(Z) ∝ ∂Zψn(Z) and the pseudoscalar-mode,
representing the Goldstone bosons of chiral symmetry breaking, is defined as

φ0 =
1√

πκK(z)MKK
, (5.3.17)

with
κ =

λNc

216π3
, (5.3.18)

where λ is the ’t Hooft coupling. The null-mode satisfies the orthonormal condition

(φm, φn) ≡ 9

4
T̃
�
2πα
�2U3

KK

�
dZ Kφnφm = δnm. (5.3.19)
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The field strength (5.3.10) can then be rewritten as

Fµz = ∂µφ
(0) +

�
n≥1

�
m−1

n ∂µφ
(n) −B(n)

µ

�
ψ̇n (5.3.20)

and by absorbing the first term in the parenthesis via the gauge transformation

B(n)
µ → B(n)

µ +m−1
n ∂µφ

(n), (5.3.21)

the action (5.3.5) can be rewritten as

SD8 = −
�

d4x

�
1

2

�
∂µϕ

(0)
�2

+
�
n≥1

�
1

4
F (n)
µν Fµν(n) +

1

2
m2

nB
(n)
µ Bµ(n)

��
, (5.3.22)

where ϕ(0) is the massless pion field and B
(n)
µ represents a tower of vector fields of mass

squared λn which are interpreted as vector mesons.

Going back to the U(Nf )L×U(Nf )R chiral symmetry, we now take a look at the interaction
of the mesons with the external gauge fields ALµ and ARµ. Since photons couple in the
same way to the left and right parts, the couplings of the mesons to the photon field can
be found via

ALµ = ARµ = eQAem
µ , (5.3.23)

where e is the electromagnetic coupling constant and Q is the electric charge matrix, in
our case given by

Q =
1

3

�2

−1

−1

�, (5.3.24)

where in principle more quark flavors could be considered as well, but so far we will stick
to this definition of Q in the case of Nf = 3. In the next step the external gauge fields are
introduced by imposing the asymptotic values of the Aµ field on the D8-brane as

lim
z→+∞Aµ(x

µ, z) = ALµ(x
µ) and lim

z→−∞Aµ(x
µ, z) = ARµ(x

µ), (5.3.25)

reflecting the fact that the D8-branes of different chirality lie on antipodal points of the
background geometry. One therefore gets a modified mode expansion (5.3.6):

Aµ(x
µ, z) = ALµ(x

µ)ψ+(z) +ARµ(x
µ)ψ−(z) +

∞�
n=1

B(n)
µ ψn(z), (5.3.26)

with
ψ±(z) ≡ 1

2
(1± ψ0(z)), ψ0(z) ≡ 2

π
arctan z, ∂zψ±(z) ∝ φ0(z), (5.3.27)

where ψ±(z) are the non-renormalizable zero modes of (5.3.13).

Using this expansion of Aµ in the integration of action (5.3.5) yields divergent coefficients
of the kinetic terms of the left and right gauge fields. This reflects the vanishing gauge
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coupling corresponding to the U(Nf )L × U(Nf )R symmetry. Although this divergences
could be circumvented by a suitable cut-off, in the following we will simply ignore those
divergent terms as they are of no interest in the study conducted here.

In the following we make a distinction between vector and axial-vector fields, using the
notation

Vµ ≡ 1

2
(ALµ +ARµ), Aµ ≡ 1

2
(ALµ −ARµ), vnµ ≡ B(2n−1)

µ , anµ ≡ B(2n)
µ , (5.3.28)

where V is the photon field.

Rewriting the gauge field (5.3.6) in terms of these fields yields

Aµ(x
µ, z) = Vµ(x

µ) +Aµ(x
µ)ψ0(z) +

∞�
n=1

vnµ(x
µ)ψ2n−1(z) +

∞�
n=1

anµ(x
µ)ψ2n(z), (5.3.29)

where in the following we will drop the terms with axial fields Aµ and aµ, as they do
not contribute to the discussion conducted here. With this definition and also using the
completeness relation

κ
�
n

K− 1
3
�
z

�
ψn(z)ψn

�
z

�
= δ(z − z
), (5.3.30)

we can rewrite the first term of the action (5.3.5) as

S
(1)
D8 = κ

�
d4x dzTr

	
1

2
K− 1

3 (z)F 2
µν(x

µ, z)



⊇ κ

2

�
d4xTr

�
aVV

�
∂µVν − ∂νVµ

�2
+
�
∂µv

n
ν − ∂νv

n
µ

�2
+aVvn

�
∂µVν − ∂νVµ

��
∂µv

n
ν − ∂νv

n
µ

�
 (5.3.31)

where the couplings are given by

aVV = κ

�
dz K− 1

3 , aVvn = κ

�
dz K− 1

3ψ2n−1. (5.3.32)

Since (5.3.31) mixes the photon field with the vector fields, the Sakai-Sugimoto model
reproduces vector meson dominance (VMD).
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Chapter 6

Glueballs and their Couplings

In this chapter, we discuss the glueball spectrum as derived from metric fluctuations in
the stringy background. Inserting these fluctuations into the background, provided by
the Sakai-Sugimoto model, yields the effective interaction Lagrangian for glueballs and
vector mesons. However, since these calculations are rather involved, we will only sketch
the derivations and only present the key formulas and results. For further information,
please refer to [41–46]. The coupling of the Pomeron to the proton, as well as the Pomeron
propagator are then found by means of comparing results from Regge theory and String
theory. The exchange of a trajectory of glueball states, which we identify as the Pomeron,
corresponds to closed string scattering, justifying the procedure. For the full discussion we
refer to [15, 47–49] and references therein.

6.1 Metric Fluctuations

Gravitons arise as spin-two excitations for the effective p-dimensional theory. Those ex-
citations are associated with the stress-energy tensor Tµν of the conformal field theory as
this is the dual to the AdS-metric perturbations which are identified with gravitons. In
general the AdS soliton metric is written as

ds2 =
r2

L2

�
f(r) dτ2 + ηµν dx

µ dxν
�
+

L2

r2
f−1(r) dr2 , (6.1.1)

with
f(r) =

�
1− Rp+1

rp+1

�
. (6.1.2)

This geometry is only locally asymptotically AdS though, since in order to avoid a conical
singularity at r = R the coordinate τ is chosen to be periodic τ = τ + 2πβ with

β =
4πL2

(p+ 1)R
. (6.1.3)

Imposing anti-periodic boundary conditions for fermions on this circle, i.e. fermions pick
up a minus sign when moving around the circle, also breaks supersymmetry without the
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explicit inclusion of additional Supersymmetry (SUSY)-breaking terms in the action. In
order to find the spectrum of gravitons on the background (6.1.1) one solves the equations
of motion and writes the perturbed metric as

gab = ḡab + hab, (6.1.4)

where hab describes the fluctuations of the background metric ḡab. Linearizing the equations
of motion of the Einstein equation, see e.g. [50],

Rab +
p+ 1

L2
gab = 0 (6.1.5)

leads (i.e. in the transverse traceless gauge, for easier computation) to the condition for
hab

1

2
∇a∇bh

c
c +

1

2
∇2hab −∇c∇(ahb)c −

p+ 1

L2
hab = 0, (6.1.6)

where in the following the ansatz for the gravitons

hab = Hab(r)e
ik·x (6.1.7)

is used, where Hab(r) is the radial profile of the tensor and kµ is a p-dimensional momentum
vector with k2 = −M2. One can further define

Hab = εab
r2

L2
H(r), (6.1.8)

where εab is a constant traceless polarization tensor.

Given this preliminaries, we will now take a look at what solutions one gets for the IIA
stringy background.

6.2 Stringy Background

In the model presented in [51] one works in terms of type IIA string theory and arrives at a
dual of QCD4, but in order to find the graviton modes corresponding to the glueball states
of interest, i.e. the tensor 2++ state, we will start with the overall geometrical construction
of 11 dimensional M-theory (Sugra) on AdS7×S4. The AdS part has Euclidean space-time
coordinates x1, x2, x3, x4, x5 and x11 as well as a radial coordinate r. Coordinates on S4 are
denoted by xα with α = 7, 8, 9, 10. Now one compactifies x11 like it is presented in appendix
B.1 resulting in type IIA string theory. The D4 background considered in the model of
Sakai and Sugimoto yields a five-dimensional Yang-Mills CFT, which upon compactifying
x5 = τ on a pseudo thermal circle, where β = 2π

MKK
, is dimensionally reduced to QCD4.

In order to find the glueball modes of interest one is only interested in excitations which are
compatible with QCD4 and therefore all Kaluza-Klein modes arising from compactification
are ignored and only SO(5) singlet states are considered. These restrictions reduce the
problem to six independent wave equations from which we are only interested in T4.
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6.3 Glueball Spectrum

In the strong coupling limit at large N , where string theory becomes classical gravity in
the AdS7 black hole metric defined as

ds2 =

�
r2 − 1

r4

�
dτ2 + r2

�
i=1,2,3,4,11

dxi
2 +

�
r2 − 1

r4

�−1

dr2 +
1

4
dΩ4

2 , (6.3.1)

where the radius of curvature RAdS is related to the radius of the S4 L via

RAdS =
L

2
. (6.3.2)

In generic M-theory the supergraviton spectrum consists of the graviton GMN and a 3-form
field AMNL, where in our case we are only considering the former. After the procedure
presented above, one is therefore left with a graviton Gµν , a dilaton φ and a NS-NS tensor
field Bµν , with µ, ν = {1, . . . , 10}. We are only interested in the JPC = 2++ state, which is
given by Gij and the quadratic fluctuations in the AdS7 background that survive for QCD4

in the weak coupling limit. In order to count the number of independent fluctuations for
a field of given spin one considers harmonic plane waves propagating in the AdS radial
direction, r, with euclidean time, x4, without any dependence on the spatial coordinates
x1, x2, x3, x11 and the compactified direction τ .

As established in (6.1.8), gravitons have two polarization indices. Since the polarization
tensor has to be traceless, one is left with 5×6

2 − 1 = 14 independent components. In the
case of a flat background this holds generally, but for AdS this form of polarization only
will occur for r → ∞.

The background metric is flat in the first four directions, i.e. g11 = g22 = g33 = g11,11 = r2

and warped in the τ direction, with gττ = r2 − r−4. In other words, the system has SO(4)

symmetry which breaks up into 9, 4 and 1 dimensional irreducible representations under
SO(4) leading to three distinct equations, where we are only interested in the one denoted
by T4. The 9-dimensional representation leads to a degenerate spectrum of spins under the
physical SO(3) symmetry and breaks into 5⊕ 3⊕ 1, yielding for the 2++-state Gij :

hij − 1

3
δijhkk $= 0, (6.3.3)

with i, j, k = 1, 2, 3. A full list of metric perturbations can be found in [43]. Analyzing the
linearized Einstein equations (6.1.6) for the AdS background presented above then leads
to the three independent equations mentioned earlier, T4, V4 and S4, where the equation
for T4 is given as

d

dr

�
r7 − r

� d

dr
T4(x) +

�
m2r3

�
T4(r) = 0 (6.3.4)

Considering the following metric perturbations (cf. (6.1.7))

hµν = %µν(r)e
ik4x4 , (6.3.5)
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with k4 = im and fixing the gauge to h4µ = 0, the tensor hij of (6.3.3) can be written as

hij = qijr
2T4(r)e

−mx4 , (6.3.6)

where qij is an arbitrary constant traceless and symmetric 3× 3 matrix.

6.4 Interactions with Mesons

The effective interaction Lagrangian for glueballs and mesons in the Sakai Sugimoto model
are then found by inserting the respective metric fluctuation in the D8 brane action and
then integrating over the bulk coordinates. Following [46], the interactions for the tensor
glueball are described via

LGvv =
1

2
Tr

�
t2M

2
KKvµvνGµν + t3FµρF

ρ
ν Gµν



, (6.4.1)

where there also exist many other interactions with baryons, pseudoscalar-, vector- and
axial vector-fields, hence the indexing. The couplings t2 and t3 are again given by the
expressions

tmn
2 = κ

�
dz Kψ


2m−1(z)ψ


2n−1(z)T4(z), (6.4.2)

tmn
3 = κ

�
dz K− 1

3ψ2m−1(z)ψ2n−1(z)T4(z), (6.4.3)

where T4(z) is the radial profile of the glueball, see (6.3.4). Replacing the vector mesons
with photons by using VMD twice in (6.4.1) yields

LGVV = Tr

	
tV

∗V∗
2 (Q1, Q2)

Q2
1Q

2
2

M2
KK

VµVνGµν

+ tV
∗V∗

3 (Q1, Q2)Gµν Tr
�
FV∗V∗
µρ F ρV∗

ν

�

,

(6.4.4)

with

tV
∗V∗

2 (Q1, Q2) =
M4

KK

Q2
1Q

2
2

κ

�
dz KJ 
(Q1, z)J 
(Q2, z)T4(z), (6.4.5)

tV
∗V∗

3 (Q1, Q2) = κ

�
dz K− 1

3J (Q1, z)J (Q2, z)T4(z), (6.4.6)

where the off-shell bulk-to-boundary propagator J , cf. (5.3.13), was introduced with

�
1 + z2

� 1
3∂z

��
1 + z2

�
∂zJ

�
=

Q2

M2
KK

J (6.4.7)

6.5 Glueball Coupling to Photons

We will now use the interaction Lagrangian (6.4.4) in order to determine the vertex factors
for the glueball-photon-photon vertex. We will do this by means of functional derivation.
The diagram for the process is shown in figure 6.1.
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Gκλ

Vα(q) Vβ(q

)

Figure 6.1. Feynman diagram for (6.4.4).

Dropping the prefactors and the couplings we calculate the vertex factor of the first term
in the interaction Lagrangian L1 as

1

i3
δL1

δVαVβGκλ
= iηµκηνλ

δ

δVαVβ
VµVν = iηµκηνλ

�
δαµδ

β
ν + δαν δ

β
µ

�
= i

�
ηακηβλ + ηβκηαλ

� (6.5.1)

The second term L2 is not as straightforward as one has to express the field strengths in
terms of the photon field Vµ. Here we also ignore the prefactors, couplings and the trace
for now and get

1

i3
δL2

δVαVβGκλ
= iηµκηνλ

δ

δVαVβ

�
(∂µVρ − ∂ρVµ)(∂νVρ − ∂ρVν)



(6.5.2)

with

• ∂µVρ∂νVρ −→ i22ηαβqµq


ν

• −∂µVρ∂
ρVν −→ −i2qµq


ρ
�
δαρ δ

β
ν + δαν δ

β
κ

�
• −∂ρVµ∂νVρ −→ −i2qρq



ν

�
δαµη

βρ + δβµη
αρ
�

• ∂ρVµ∂
ρVν −→ i2qρq


ρ
�
δαµδ

β
ν + δαν δ

β
µ

�
.

Since in forward scattering we have q = −q
 we get

δL2

δVαVβGκλ
= −iηµκηνλ

�
qµq

ρ
�
δαρ δ

β
ν + δαν δ

β
ρ

�
+ qρqν

�
δαµη

βρ + δβµη
αρ
�

− 2ηαβqµqν − q2
�
δαµδ

β
ν + δαν δ

β
µ

�

= −i

�
ηβλqκqα + ηαλqκqβ + ηακqβqλ + ηβκqαqλ

− 2ηαβqκqλ − q2
�
ηακηβλ + ηβκηαλ

��
(6.5.3)
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Restoring the dropped prefactors and also the ones we have from VMD, see (5.3.23), as
well as the trace we get as a final result for the vertex

Vαβκλ
GVV = ie2Tr

�Q2
�� t2q

4

M2
KK

�
ηακηβλ + ηβκηαλ

�
− t3

�
ηβλqκqα + ηαλqκqβ + ηακqβqλ + ηβκqαqλ

− 2ηαβqκqλ − q2
�
ηακηβλ + ηβκηαλ

��� (6.5.4)

6.6 Glueball-Proton Coupling and Pomeron Propagator

Since there is no known way of calculating the full tree-level string amplitudes in curved
backgrounds, certain approximations need to be put into place:

• Approximate the scattering amplitude with the Virasoro-Shapiro amplitude for the
scattering of four closed string tachyons in flat space.

• Calculate the coupling of the Pomeron to the proton as the vertex of a proton and a
2++-glueball (i.e. the lowest state on the Pomeron trajectory).

• Convert this amplitude into the Regge limit of a full tree-level string amplitude via
”Reggeization”.

6.6.1 Proton Coupling

As already stated in (6.3.3), the glueball field can be treated as a rank-2 symmetric traceless
tensor hµν and should therefore couple predominantly to the QCD stress-energy tensor Tµν

in the following way [15]
Sint = λP

�
d4xhµνT

µν . (6.6.1)

Under this assumption the glueball-proton-proton vertex is given by

ΓGpp
µν =

�
p
, s


  Tµν(0)
  p, s� . (6.6.2)

This matrix element can be written in terms of form factors, using the symmetry and
conservation of Tµν , as

ΓGpp
µν = λP ū

�
p
, s


��
A(t)

γµPν + γνPµ

2
+B(t)

i(Pµσνρ + Pνσµρ)k
ρ

4mp

+C(t)

�
kµkν − ηµνk

2
�

mp

�
u(p, s),

(6.6.3)

where k = p−p
, t = k2 and P = p+p�
2 . This general form of the matrix element reduces to

only the first term, as for the proton with spin 1
2 and mass mp the coefficients are implied
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to be constrained to A(0) = 1, B(0) = 0 and the contribution from C(t) is suppressed in
the Regge limit. We therefore simply get for the vertex

ΓGpp
µν = λP

	
ū
�
p
, s


�γµPν + γνPµ

2
u(p, s)



. (6.6.4)

We can now further simplify this expression by calculating the sums over the spins of the
initial- and final-state spinor via the completeness relation�

s=1,2

usūs = γαp
α +m. (6.6.5)

Using Casimir’s trick, c.f. [52], we rewrite expression (6.6.4) as�
s=1,2

us
γµPν + γνPµ

2
ūs = Tr

	
(γαp

α +m)
γµPν + γνPµ

2



(6.6.6)

=
1

2
Tr[γαγµP

αPν + γαγνP
αPµ +m(γµPν + γνPµ)], (6.6.7)

where we can use the trace properties of the gamma matrices

Tr[γργσ] = 4ηρσ and Tr[(γ)n] = 0 for n odd (6.6.8)

and (6.6.4) therefore simplifies to

ΓGpp
µν = 4λPPµPν . (6.6.9)

6.6.2 Reggeization of the Propagator

In order to reggeize the propagator one must now also include the higher spin states on
the trajectory. In terms of string theory those states correspond to excitations of strings
on the curved background. To do so one uses the so-called Virasoro-Shapiro amplitude,
which describes scattering of closed strings and is dual to the exchange of the Pomeron
trajectory. It also incorporates crossing symmetry (i.e. symmetry under exchanges of s,t
and u) and in flat space this amplitude reads for four closed string tachyons

Ac(p1, p2, p3, p4) =

Kc
Γ[−ac(s)]Γ[−ac(t)]Γ[−ac(u)]

Γ[−ac(t)− ac(s)]Γ[−ac(t)− ac(u)]Γ[−ac(u)− ac(s)]
,

(6.6.10)

where Kc is a kinematic prefactor, reflecting the scattering of strings with higher spin and
ac(x) is defined as a linear function

ac(x) = ac(0) + a
cx. (6.6.11)

Writing the u dependence in terms of s and t one has for 2 → 2 scattering of particles with
equal mass m:

χ ≡ ac(s) + ac(t) + ac(u) = 4a
cm
2 + 3ac(0) (6.6.12)

34



and therefore the Virasoro-Shapiro amplitude reads with this redefinition

Γ[−ac(s)]Γ[−ac(t)]Γ[ac(s) + ac(t)− χ]

Γ[−ac(t)− ac(s)]Γ[ac(t)− χ]Γ[ac(s)− χ]
. (6.6.13)

Using Stirling’s formula for the asymptotics of the gamma functions

Γ[s+ t] = Γ[s]st (6.6.14)

and
lim
s→∞ a(s) = a
s (6.6.15)

one gets the Regge limit of the Virasoro-Shapiro amplitude

e−iπac(t)
�
a
cs

�2ac(t) Γ[−ac(t)]

Γ[−ac(t)− χ]
. (6.6.16)

The general propagator which one wants to reggeize here is given by the massive spin-2
propagator

ΔG
αβ,γδ(k) =

dαβ,γδ(k)

k2 −m2
G

(6.6.17)

with
dαβ,γδ =

1

2

�
ηαγηβδ + ηβγηαδ − 1

2
ηαβηγδ

�
(6.6.18)

The next step is to compare this stringy result with the traditional parameters of Regge
theory, where we have

αc(0) + α

cm

2
J = J (6.6.19)

and from this one gets for the glueball with J = 2

m2
G = m2

2 = −ac(0)

a
c
, 2ac(0) + 2 = αG(0) and 2a
c = α


G . (6.6.20)

The Regge limit of the Virasoro-Shapiro amplitude is then given by the replacement

1

t−mG
−→ α


G
2

e−iπ
2
αG(t)Γ[−χ]Γ

�
1− αG(t)

2



Γ
�
αG(t)

2 − 1− χ

 �

α

Gs
2

�αG(t)−2

, (6.6.21)

with αG(t) = 1 + %G + α

Gt.

With the values [53]

λP = 8.88 GeV−1

α

G = 0.25 GeV−2

%G = 0.086

(6.6.22)

the propagator for DIS (i.e. t = 0) is then given by

ΔG
αβ,γδ(k) =

1.02
�−iα


Gs
��G

2s

�
ηαγηβδ + ηβγηαδ − 1

2
ηαβηγδ

�
(6.6.23)
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Chapter 7

Results

7.1 Matrix Element and Structure Functions

With the vertices and the propagator defined in the previous sections, we find the hadronic
tensor as

T µν(p, q) = i
(−iα


GW
2)�G

2πW 2

�
−ηµα +

qµqα

q2

��
−ηνβ +

qνqβ

q2

�
Tr

�Q2
�
4λP

�
tVV2 q4

M2
KK

(ηακηβλ + ηβκηαλ)

− tVV3
�
ηβλqκqα + ηαλqκqβ + ηακqβqλ + ηβκqαqλ − 2ηαβqκqλ − q2(ηακηβλ + ηβκηαλ)

��

× 1

2

�
ηκγηλδ + ηλγηκδ − 1

2
ηκληγδ

�
pγpδ.

(7.1.1)

Contracting this expression yields for the t2-term

q4

M2
KK

�
2pµpν − 1

2
p2ηµν + p2

qµqν

2q2
− 2(p · q)q

µpν + pµqν

q2
+ 2(p · q)2 q

µqν

q4

�
(7.1.2)

and for the t3-term

2(p · q)(pµqν + qµpν)− 2q2pµpν − p2qµqν − (p · q)2ηµν . (7.1.3)

We can now plug this result into (4.6.4) and use

(−ia)b + (ia)b = ab
�
(−i)b + (i)b



= ab

�
eib

π
2 + e−ibπ

2



= 2ab cos b

π

2
(7.1.4)
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and from this we calculate the hadronic tensor as

Wµν =
λP

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��
ηµν

�
4t3(p · q)2 − t2

M2
KK

p2q4 − 2t3p
2q2

�
+qµqν

�
4

t2
M2

KK

(p · q)2 + t2
M2

KK

p2q2 + 2t3p
2

�
−(pµqν + qµpν)4(p · q)

�
t2

M2
KK

q2 + t3

�
+pµpν

�
4q2

�� t2
M2

KK

q2 + t3

�

.

(7.1.5)

Matching the factors of (4.6.2) we find for the structure functions

W1 =
λP

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��

4t3(p · q)2 − 2t3p
2q2 − t2

M2
KK

q4p2
�

=
λP

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��

t3

��
W 2 + q2

�2 − 2W 2m2
p +m4

p

�
+

t2
M2

KK

q4m2
p

�
(7.1.6)

and

W2 =
λPm2

p

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��−4q2

�� t2
M2

KK

q4 + t3q
2

�
(7.1.7)

and with
F1 = W1 and F2 = − ν

mp
W2 =

(p · q)
m2

p

W2

we get for the dimensionless structure functions

F1 =
λP

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��

t3

��
W 2 + q2

�2 − 2W 2m2
p +m4

p

�
+

t2
M2

KK

q4m2
p

�
(7.1.8)

and

F2 =
λP

2πW 2

�
α

GW

2
��G cos

�π
2
%G
�
Tr

�Q2
��
2q2

��
W 2 + q2 −m2

p

�� t2
M2

KK

q2 + t3

�
(7.1.9)

7.2 Data

We acquire our data from [54], also see [55] for an in-depth review of the detectors and
the definitions of the cross-sections, kinematics and errors. At the Hadron-Elektron-Ring-
Anlage (HERA), the deep inelastic scattering of electrons on protons is studied at center-
of-mass energies of up to

√
s + 320 GeV. The two collaborations H1 and ZEUS explored
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a large phase space in Bjorken x and negative four-momentum-transfer squared Q2, where
the range of these variables for neutral current interactions was:

0.045 ≤Q2 ≤ 50000 GeV2 (7.2.1)
6× 10−7 ≤x ≤ 0.65, (7.2.2)

where we are only interested in the region of low x and low Q2 ≤ 1 GeV2. Therefore
we are also only considering proton beam energies of Ep = 920 GeV and Ep = 820 GeV,
corresponding to a

√
s of 318 GeV and 300 GeV, respectively. The electron beam energy,

on the other hand, was Ee + 27.5 GeV and the beam was longitudinally polarized.

The two detectors H1 and ZEUS both had an almost 4π hermetic coverage, but used differ-
ent technical solutions and also kinematic reconstructions in order to significantly reduce
systematic uncertainties. Both detectors had calorimeters with an inner part to measure
electromagnetic energy and identify electrons and an outer part to measure hadronic en-
ergy and determine the missing energy. H1 used a liquid-argon calorimeter, whilst ZEUS
used a uranium-scintillator. Therefore, H1 was better suited for fine segmentation and was
able to identify electrons down to lower energies, whereas the uranium-scintillator made
jet studies easier. The backward region of H1 consisted of a lead-scintillating fibre (a.k.a.
”spaghetti” calorimeter) and ZEUS used a uranium-scintillator there as well. The field
strength of the solenoidal magnetic field used in both detectors was 1.16T and 1.43T and
the tracking devices were cylindrical drift chambers in both cases. H1 used two concentric
drift chambers, while ZEUS only featured one large chamber. Later on, both detectors also
employed a silicon microvertex detector in order to identify electrons in low-Q2 events.

The DIS cross section depends on
√
s, Q2 and x, where

x =
Q2

sy
(7.2.3)

and y is the inelasticity of the reaction. For neutral current scattering, the so-called electron
method was applied, for which the quantities y and Q2 were calculated using the variables
measured for the scattered electron as

y = 1− Σe

2Ee
, Q2 =

P 2
T,e

1− y
, x =

Q2

sy
, (7.2.4)

where Σe = E

e(1− cos θe), E


e is the energy of the scattered electron, θe is the angle with
respect to the proton beam and PT,e is its transverse momentum.

Overall, the data consists of 41 data sets, which were then combined into 8 tables, where
only the first two cover the region of interest in our low-Q2 study. This region is covered
by data from both experiments, whereas the lowest (Q2 ≥ 0.045 GeV2) only come from
ZEUS, where a special tagging device was used. The uncertainties listed in the tables of
[54] consist of:

• procedural uncertainties from the choices made in the combination of the results from
both experiments.
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• experimental uncertainties.

• model and parameterisation uncertainties for the parton distribution functions.

The data provided from HERA contains the variables Q2, x and σred.

7.3 Fitting and Calculation of the Couplings

The scripts for calculating the couplings and for fitting the data were coded in Python and
the following libraries were used:

• NumPy

• lmfit

• SciPy

• pandas

• iminuit

7.3.1 Couplings
The couplings were calculated using (5.3.13), (6.4.5), (6.4.6),(6.4.7) and (6.3.4). We sub-
stitute for the vector meson mode equation

Z = tan(x) =⇒ dZ = cos−2(x) (7.3.1)

and get for (5.3.13)
ψ


2n(x) = −M2n cos

− 4
3 (x)ψ2n(x), (7.3.2)

where we introduced the eigenvalue M and are only interested in the even modes of the
vector meson fields ψ as they correspond to the non-normalizable modes of the photon.
We also get for (6.4.7)

J 

 = cos−
4
3 (x)

Q2

M2
KK

J . (7.3.3)

For the tensor glueball mode equation we use the substitution

r = cos−
1
3 (x) =⇒ dr =

1

3

sin(x)

cos
4
3 (x)

, (7.3.4)

which is equivalent, since 1 + Z2 =
�

r
rk

�6
, cp. (5.3.12), and (6.3.4) then reads

T 


4 (x) = cos−

4
3 (x)

�
cos

1
3 (x)

sin(x)
T 

4(x)− λTT4(x)

�
. (7.3.5)

We also introduce the IR boundary at U = UKK as well as the UV boundary at U = ∞
for the new coordinates

% = 10−8 (7.3.6)
bIR = % (7.3.7)

bUV =
π

2
− %, (7.3.8)

39



where % is the chosen cutoff value.

Since we can solve (7.3.2) and (7.3.5) as initial value problems, we need to introduce the
boundary conditions at UKK as

ψ2n(bIR) = 1 (7.3.9)
ψ

2n(bIR) = 0 (7.3.10)

T4(bIR) = 1 (7.3.11)
T 

4(bIR) = 0. (7.3.12)

On the other hand, we solve (7.3.3) as a boundary value problem and set

J 
(bIR) = 0 (7.3.13)
J (bUV) = 1. (7.3.14)

In order to find the eigenfunctions we now use scipy.integrate.solve_ivp for T4 and
scipy.integrate.solve_bvp for J . Since we are not interested in excited glueball states,
it is sufficient to only consider the first eigenvalue at λT = 2.455. We now also rewrite
(6.4.5) and (6.4.6) as

tV
∗V∗

2 (Q1, Q2) =
M4

KK

Q2
1Q

2
2

2Nκ

�
dx

�
1 + tan2(x)

�− 1
3

cos2(x)

J 
(Q1, x)

dZ

J 
(Q2, x)

dZ
T4(x), (7.3.15)

tV
∗V∗

3 (Q1, Q2) = 2Nκ

�
dx

�
1 + tan2(x)

�− 1
3

cos2(x)
J (Q1, x)J (Q2, x)T4(x), (7.3.16)

where N is the factor we obtain from canonical normalization [46]1 and is given by

N = 103.1365217
√
λNcMKK . (7.3.17)

The factor of 2 stems from the fact that we only integrated the half interval. We then use
scipy.integrate.quad for numerically integrating those expressions for different values
of Q, but with Q1 = Q2 and store the interpolated result via splines, see figure 7.1.

7.3.2 Fitting

In order to fit the data to the model presented above, first of all we need to translate
the given quantities into the quantities used in the model via the relations established in
section 4.2, i.e.

W 2 =
Q2

x
−Q2 +m2

p (7.3.18)

y =
Q2

x
�
s−m2

p

� . (7.3.19)

1Note that in this paper they defined the numerical value as N−1 rather than N as given here.
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Figure 7.1. (left) The calculated couplings t2 and t3 at MKK = 0.949 GeV, plotted as functions
of Q2. The scaled versions t2 · t2c and t3 · t3c , obtained from the fit, are also displayed along with
the associated error bands, representing the uncertainty in the fitted parameters. (right) The ratio
of the two couplings, t2/t3, is shown, as well as the scaled ratio (t2 · t2c)/(t3 · t3c), including the
uncertainties.

Since our model is only valid for values of Q2 → 0, we are rather restricted in the amount
of data points we can use in the fit, as HERA only provided few data points in the region
of very small Q2. The data in the low Q2 and low x region fitted at HERA show poor χ2

values, see [54] p. 27f and the best fits of the HERAPDF2.0 analysis were achieved for
15 GeV2 ≤ Q2 ≤ 150 GeV2. Therefore we need to compromise between few data points at
low Q2 and many data points further away from the actual region of interest. In order to
do so we compared at different Q2-cutoff value of the results with respect to their reduced
χ2 values and found the best fit for Q2 ≤ 0.5 GeV2, resulting in χ2

red = 0.909. As is
suggested by the plots, deviations to our model predominantly arise for higher values of
Q2, but on the other hand the fitting results turn out to be worse when only considering
smaller values of Q2, as there are too few data points to be included in the fit. The results
of the corrections to the parameters t2 and t3 can be found in (7.3.20). The plots of the
fit for the different

√
s values are presented in figure 7.2 and 7.3.

The values we get for the correction parameters are further off as initially expected. Whilst
t3 seems to behave rather nicely, the corrective factor for t2 is off by almost one order of
magnitude. Albeit being discouraging for the validity of the model, there are at least some
ways of making this result plausible. When one reduces the limit on Q2 and compares
the fit as Q2 → 0 we notice that the corrective parameter for t2 also diminishes. But as
already mentioned before, the goodness-of-fit analysis shows that the fits also get worse
in this region. We therefore conclude that especially t2 is not easily checked with the
model and data presented above, since the fits are always skewed in direction of higher Q2,
instead of lower Q2, where we assume the model to be valid. In this sense the model and
the fitting procedure is not suitable to describe the given data points. Whether this fact
can be improved by new and plenty data at Q2 → 0 is yet to be determined.
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Figure 7.2. Fit for
√
s = 318 GeV. The bands show the error of the parameters as determined by

the fit.

The values for the correction parameters and their errors are

t2c = 9.18180± 0.378

t3c = 1.49477± 0.043
(7.3.20)

and for the fit we get for 68 datapoints

χ2 = 61.81745 (7.3.21)
χ2
red = 0.90908 (7.3.22)

Overall, the fits are in good correspondence with the data. Especially for the parameter
t2c , though, the discrepancy between the calculated value and the needed correction is vast,
as can be seen in figure 7.1. From this fact it can be concluded that our calculations yields
a sensible form factor behavior, but both couplings fall of too quickly in the WSS model
and apparently this effect is more prominent for t2 as compared to t3.
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Figure 7.3. Fit for
√
s = 300 GeV. The bands show the error of the parameters as determined by

the fit.

7.3.3 Summary

From our study, we conclude that the available data in the region of interest is insufficient
to yield meaningful results, particularly in the region where Q2 → 0, which is the primary
focus of our model but remains very sparse in data. The falloff of the couplings in the WSS
model is known to be too rapid, and as of the time this study was conducted, there is no
clear method to address this issue. To make more sense of the analysis presented above,
it is imperative to obtain more data points that can be used for fitting; new experiments
capable of probing the required range of virtualities are discussed in the next section. On
the other hand, the behavior of the quantities themselves, as calculated in section 7.1,
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shows good correspondence with the existing data.

7.4 Future experiments

In this section we will give reference to experiments suitable for further examining the
region of low Q2, see [33, 56, 57].

7.4.1 EIC

The Electron Ion Collider (EIC) is an upcomming accelerator facility situated at Brookhaven
National Laboratory on Long Island, New York, and is currently under construction. It
will facilitate the most powerful electron microscope in terms of resolving power, intensity
and versatility in order to study the structure of atomic nuclei, protons and neutrons. The
EIC will be capable of colliding high-energy electron beams with high-energy proton beams
or beams of light ions and it features:

• Highly polarized (∼ 70%) electron and proton beams

• Ion beams from deuterons to heavy nuclei (e.g. Au, Pb, U)

• Variable e+ p center-of-mass energies
√
s from 20-140 GeV

• High collision electron-nucleon luminosity of 1033 − 1034cm−2s−1

• More than one interaction region

In addition to neutral-current inclusive DIS processes, such as e+ p/A → e
 +X, the EIC
will enable measurements in various other scattering processes. These include charged-
current inclusive DIS (e+ p/A → ν +X) at high Q2, where the electron-quark interaction
is mediated by the exchange of a W± boson rather than a virtual photon. Another type
of process is semi-inclusive DIS (e + p/A → e
 + h + X), in which at least one hadron is
detected alongside the scattered electron. Furthermore, the EIC will facilitate exclusive
DIS (e + p/A → e
 + . . . ), where all particles involved in the process are measured with
high precision. Additional key measurements will include DVCS and deeply virtual meson
production, both crucial for probing generalized parton distributions (GPDs).

7.4.2 LHeC

The first ideas of realising an ep collider at CERN date back as early as 1984, but only
in 2007 it was found to be feasible to also include this type of reaction to the Large
Hadron Collider (LHC) operation besides pp-collisions and hence this setup was called the
Large Hadron Electron Collider (LHeC). It is estimated that the earliest possible start of
operation of this new collider is in 2032, during the LHC Run 5 period. The achievable
center-of-mass energy of about

√
s + 1.5 TeV is expected to allow an insightful study of

DIS, especially at low-x. Therefore, the LHeC would be able to vastly extend the kinematic
range for DIS experiments. And since it is combined with the hadron beams of the LHC,
this new setup would also yield the highest resolutions microscope for examining the actual
structure and dynamics inside matter. At low-x it is also capable of investigating the parton
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interaction dynamics in a regime, where HERA’s energy range was too limited. It will also
be able to determine αs very accurately.

The energy of the electron beam is chosen to be Ee + 50 GeV, which is almost double
of HERA. The range of virtualities important for the study presented here, Q2 → 0, can
be achieved by reducing Ee to about 10 GeV. With the extension of the Q2 and x range
by more than an order of magnitude and an increased luminosity by a factor of about a
thousand, as compared to HERA, the LHeC provides an invaluable tool for studying QCD
in a domain, where new phenomena are to be expected. It will also be able to examine the
validity of the BFKL evolution.

The LHeC will provide new insight into the one-dimensional structure of nuclei and the
proton, as well as multidimensional aspects of the structure of hadrons. This can be
achieved by measuring processes with more exclusive final states like the production of jets,
semi-inclusive production of hadrons and exclusive processes like DVCS. High precission
DIS colliders like LHeC and also EIC therefore allow for investigating the 3D structure of
hadrons in great detail. Compared to the EIC, the LHeC will be capable of achieving even
smaller values of x, as well as higher values of Q2, yielding a wider range of about 2 orders
of magnitude in both variables. It should also be noted here, that the upgraded version
of the LHC, the Future Circular Collider (FCC), will be able to increase the range by yet
again roughly one order of magnitude. Another difference between the two colliders is that
the EIC will be able to use polarized beams, as was mentioned before, whilst the LHeC
will not. For the study conducted here, it is to be expected that the EIC will offer more
insights, as it will be capable of achieving lower values of Q2 than LHeC.

7.4.3 Other Colliders

There are also other colliders targeting a similar kinematic region. Below, we provide a list
of upcoming experiments, which is by no means complete. For more detailed information
about these experiments, please refer to the references cited.

• Electron-ion collider in China (EicC) [58]

• Electron-Nucleon Collider (ENC) [59]
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Appendix A

Kinematics and Scattering

A.1 Mandelstam Variables and S -matrix

The Lorentz-invariant Mandelstam variables for the two-body scattering process are defined
in the mostly minus convention1 via

s = (p1 + p2)
2 (A.1.1a)

t = (p1 − p3)
2 (A.1.1b)

u = (p1 − p4)
2 (A.1.1c)

and they satisfy the relation

s+ t+ u =

4�
i=1

m2
i , (A.1.2)

with s and t the square of the total energy and the four-momentum transfer between 1

and 3 in the center-of-mass frame, respectively. Since u is not an independent variable, the
scattering amplitude can be expressed as A(s, t).

1in the mostly plus convention, which will be used in the main text, those quantities obtain an additional
minus sign, see e.g. [60]

2

1

4

3

s, t, u

Figure A.1. Scattering of two particles from state 1 + 2 to state 3 + 4.
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The propability of the transition from initial state 1+2 or |i� to the final state 3+4 or |f�
is defined such that

Pfi = |�f |S |i�| 2 = �i|S†|f��f |S |i� (A.1.3)
With

� |f��f | being a complete set of orthonormal states. Since the propability of starting
with one state and ending up in another state has to be 1 one can write

1 = �i|S†|f��f |S |i� = �i|SS†|i� (A.1.4)

and therefore it follows that the S -matrix has to be unitary.

A.2 Optical Theorem

Unitarity of S is an important feature as it can be used to relate the total cross section
and the forward elastic scattering amplitude. The part of the scattering matrix that is
not proportional to the identity, thus including all nontrivial interactions, is the transition
matrix T which is defined via

�f |S |i� = �P 

1P



2 . . . P



n|S |P1P2� = δfi + i(2π)4δ4(P f − P i) �f |T |i� (A.2.1)

The orthonormality condition

δji = �j|SS†|i� =
�
f

�j|S |f��f |S†|i� (A.2.2)

reads for the T -matrix

�j|T |i� − �j|T †|i� = (2π)4i
�
f

δ4(P f − P i) �j|T †|f��f |T |i� (A.2.3)

and for the same initial state as the final state, i.e. j = i, we get

2 Im �i|T |i� = (2π)4i
�
f

δ4(P f − P i)|�f |T |i�|2. (A.2.4)

The cross section for the reaction 1 + 2 → n is

σ12→n =
1

4|p1|
√
s

�
(2π)4 i

�
f

δ4(P f − P i)|�f |T |i�|2 (A.2.5)

Since �i|T |i� is the scattering amplitude for the reaction where the direction of motion of the
particles is unchanged (in other words θs = 0) we get with the assumption of equal masses
on the upper and lower halfs of the diagram the variable t to be zero. The relationship
between the elastic scattering amplitude A(s, t) and the total cross section is called the
optical theorem and can be expressed as

σtot
12 =

1

2|p1|
√
s
ImA (s, t = 0) , (A.2.6)

where the total cross section is defined via

σtot =

�
dσ

dΩ
dΩ (A.2.7)

and can be described as the ratio of the number of interactions per unit time per target
particle and the incident flux, see for example [35].
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Appendix B

Supergravity

This section will briefly present some concepts of M-theory and Type IIA supergravity,
where the latter is proposed as the low-energy limit of the former. Through dualities and
compactifications, supergravity is related to string theory and acts as a classical limit in
11 dimensions. The discussion will not delve too deeply into the theory as a whole, but
rather aims to explain important concepts used, for example in establishing some concepts
used in the Sakai-Sugimoto model of section 5. For further details refer to [61–65]. The
calculations for the actual glueball modes, etc., are rather involved and beyond the scope
of this discussion. The reader is referred to the papers by, for example, Rebhan et al. and
references therein for these calculations in the Sakai-Sugimoto model [41, 43, 46, 51, 66, 67].

B.1 Kaluza-Klein Compactification

The concept of extra dimensions, which are imperceptible to us due to their minuteness,
dates back as early as 1914, well before the first considerations of String Theory. The first
attempt was a gravitational theory in five dimensions unifying gravity and electromag-
netism. This extra dimension, x4, was compactified on a torus of radius R with

x4 = x4 + 2πR, (B.1.1)

resulting in a metric that seperates into Gµν , Gµ4 and G44, which correspond to a tensor
(the metric), a vector and a scalar field, respectively. In the general case of D = d+1, the
metric is parameterized as

ds2 = GD
MN dxM dxN = Gµν dx

µ dxν +Gdd

�
dxd +Aµ dx

µ
�2

, (B.1.2)

where µ, ν run over all the noncompact dimensions 0, ..., d − 1. In d-dimensional actions
the indices are raised and lowered via Gµν rather than GD

µν . Since the metric (B.1.2) is
invariant under translations of xd, it allows reparameterizations

x
d = xd + λ(xµ) (B.1.3)
A


µ = Aµ − ∂µλ (B.1.4)
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and therefore gauge transformations arise as part of the higher-dimensional coordinate
group, which is known as the Kaluza-Klein mechanism. In the case of a massless scalar Φ

in D-dimensions, the xd-dependence can be expanded into a complete set,

Φ
�
xM

�
=

∞�
−∞

Φn(x
µ) exp

�
inxd

R

�
, (B.1.5)

with Gdd = 1 and where the momentum in the periodic dimension is quantized to pd = n
R .

Thus the D-dimensional wave equation ∂M∂MΦ = 0 becomes

∂µ∂
µΦn(x

µ) =
n2

R2
Φn(x

µ) (B.1.6)

and the modes Φn become an infinite tower of d-dimensional fields of mass

−pµpµ =
n2

R2
, (B.1.7)

which is non-zero for all fields where pd $= 0. This so-called Kaluza-Klein tower of states
can only be seen for energies above 1

R , otherwise only the xd-independent fields survive
and one retains d-dimensional physics. The compact momentum pd acts as the charge
corresponding to the gauge invariance (B.1.4), relating momentum conservation in the
fifth dimension with conservation of electric charge. In this example, all the Kaluza-Klein
states are massive, but in general and, for example, in curved backgrounds, those fields can
also be massless while still carrying a Kaluza-Klein charge. The metric component in the
compact direction can be redefined as

Gdd = e2σ (B.1.8)

and is also called the dilaton. Geometrically speaking, it defines the volume of the com-
pactified dimension. Typically, one works with constant dilatons. In this sense, the dilaton
itself is a remnant of compactification and therefore M-theory has none in its spectrum.

B.2 Supergravity to Type IIA Superstring

The expression supergravity is shorthand for supersymmetric gravity, which is a field theory
combining two very important symmetries, i.e. Poincaré and spacetime supersymmetry in-
variance. Poincaré invariance combines the properties of the Lorentz group with invariance
with respect to translations. SUSY extends the concept of conserved quantities, which are
typically scalars, vectors or tensors representing, for example, charge, momentum or stress-
energy, by introducing conserved quantities that transform as spinors. As the amount of
supercharges does not depend on the representation of the spinor, i.e. Weyl or Majorana,
a general supersymmetry algebra has 4N supercharges in four dimensions and likewise in
any other number of dimensions. In the four-dimensional case, one is also limited to 32

supercharges. This limit of N = 8 also holds in higher dimensions, but d = 11 is the
maximum for which SUSY is possible, since beyond that, the representations become too
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large and would allow for unphysical higher-spin particles (spin greater than 2) and multi-
ple gravitons. The bosonic part of the unique supersymmetric action in eleven dimensions
reads

SSugra
11 =

1

2κ211

�
d11x

√−g

�
R− 1

2
|F4|2

�
− 1

12κ211

�
A3 ∧ F4 ∧ F4, (B.2.1)

with the field strength F4 with its 3-form potential A3 and the 11-dimensional gravitational
constant, defined via

2κ211 =
1

2π
(2π3p)

9, (B.2.2)

where 3p is the 11-dimensional Planck length. The action for a p-form field is proportional
to �

ddx
√−g|Fp|2 =

�
ddx

√−g

p!
GM1N1 . . . GMpNpFM1...MpFN1...Np . (B.2.3)

Compactifying this theory in d = 11 on a torus to d = 10, as in section B.1, and keeping
only the massless fields, one is left with a KK-scalar from g11,11, a vector from gµ11, a
2-form potential from Aµν11 and 3-form potential from Aµνσ. This is exactly the massless
content of the IIA superstring, where the scalar is interpreted as the dilaton. Similar to
section B.1, one writes the metric as

ds2 = G11
MN (xµ) dxM dxN

= G10
µν(x

µ) dxµ dxν + exp(2σ(xµ))
�
dx10 +Aν(x

µ) dxν
�2
,

(B.2.4)

Following the procedure presented in section B.1, the action in type IIA string theory
therefore reads, after dropping the Chern-Simons term and introducing the kinematics of
the dilaton field, as

SIIA
10 =

1

2κ210

�
d10x

√−ge−2Φ

�
R− 1

2
e2Φ|F4|2 + 4∂MΦ∂MΦ

�
, (B.2.5)

where κ210 is defined as κ11
2πR , where R is the radius of the compactified dimension.
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