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Resonant Extraction for Mu2e
Main types of  spill non-uniformities:

• Slow variations in the spill rate
• Fast random ripples (noise)
• Higher order harmonics from power supply

Spill ripples negatively impact the data:

• Detector pile-up 
• Reconstruction inefficiency
• Dead time

We need to mitigate:

• Slow varying noise that could span across many 
spill.

• Fast variations that could arise within one spill.

Goal:
 Spill Duty Factor = !

!"#!  > 0.6
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Maximum Intensity in 
DR

< 1 X 1012 protons

Revolution time in DR 1.694 𝜇s

Orbit length of DR 505.294 m

Horizontal tune in DR 9.650 to 9.666

Protons per extracted 
pulse

< 4 X 107 protons

Spill Duty Factor >60% 

Single spill duration 43 ms

Beam Power 8 kW

Beam Parameters for Resonant Extraction

Extraction scheme is to excite 3rd integer resonance using fixed 
strength harmonic sextupoles and move the beam tune closer 
to 29/3 using dedicated fast tune-ramping quadrupoles.



Spill Regulation System

SPILL REGULATION SYSTEM

Slow Regulation Fast Regulation Harmonic Content 
Tracker

The slow regulation controller will 
be tracking the slow changes in the 
spill profile producing corrections 
to the tune quadrupole current 
ramp to achieve the uniform spill 
rate.

The fast regulation system would 
be supplemented on top of the slow 
regulation in order to correct for 
instantaneous ripples in the spill 
intensity. 

The SRS would also be dealing 
with the n*60 Hz harmonic noise 
content arising from the power 
supplies. The controller will 
determine the harmonic content of 
the ripple and apply feedforward 
corrections.
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Fast Regulation Loop

The fast regulation loop deals with instantaneous noises that affect the spill quality within one spill. 

The instantaneous fluctuations within one spill due to 
random noises can be large. In the SRS, this is handled by 
the fast PID loop controller.

We assume here that this noise (ripples) have a random 
nature or otherwise are a semi-random component of 
regular harmonic noise that the harmonic controller is not 
able to suppress. 

The correction signal to counter the noise will superimpose 
on top of the ideal tune ramp provided by the slow 
regulation.

The three main parameters to control the spill quality in the fast regulation loop are the three 
gain values of  the PID controller: (𝐺%, 𝐺&, 𝐺')
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𝑢 𝑡 = 𝐺%𝑒 𝑡 + 𝐺&*
(

)
𝑒 𝜏 𝑑𝜏 + 𝐺'

𝑑𝑒 𝑡
𝑑𝑡



Using Machine Learning 

We explore using machine learning (ML) algorithms to tune the PID gain values to 
achieve an improved spill quality. 

The spill quality is quantified by ‘Spill Duty 
Factor’ (SDF), defined by:

𝑆𝐷𝐹 =
1

1 + 𝜎 *+).	./)*
0

where 𝜎 *+).	./)*
0  is the variance in the 

extraction rate computed for one full spill, 
assuming the average intensity is normalized to 
1.

We use a simplified semi-analytical model to simulate the dynamics of  resonant extraction in 
order to generate training data for the machine learning algorithm.
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Physics Simulator Model

TRANSIT DELAY

NOISE 
GENERATION PID RESPONSE MACHINE 

LATENCY

BEAM 
EXTRACTIONSPILL MONITOR

CORRECTED 
QUADRUPOLE 

CURRENT

1 2

6 57

3

4
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Physics Simulator Blocks

NOISE GENERATION PID RESPONSE1 2

The noise for one full spill is generated 
in terms of  extraction rate. We assume a 
log-normal distribution for the noise 
spectrum.

Since the source of  noise could emanate 
from any of  the elements in the ring, the 
noise is pre-generated before the spill 
and is added directly as fluctuations in 
the spill.

Ideal spill is normalized to an 
expectation value of  1.

With the full extraction rate known, the 
PID calculates the error at every time 
step and computes the control signal.

At every time step, the difference 
between the ideal spill and the actual 
spill is computed, and the PID calculates 
the control signal to be given to counter 
the noise in the spill rate.
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Physics Simulator Blocks

TRANSIT DELAYFIELD SHIELDING EFFECT 
(LATENCY)3 4

The SS beam pipe would screen high 
frequency components of  the quadrupole
𝐵 field.

The PID response in the simulator is thus 
passed through a low-pass filter to 
simulate the steel beam pipe screening 
any magnetic field variations greater 
than 1 kHz.

Once the particle is unstable, it does not 
get immediately extracted once it gets 
unstable. It takes some finite amount of  
turns to get to the septum location. 

Transit time studies were done to 
determine the number of  turns particles 
take to get extracted. This delay is 
modelled into the physics simulator.
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Physics Simulator Blocks

BEAM 
EXTRACTION

SPILL 
MONITOR

CORRECTED 
QUADRUPOLE CURRENT

65 7

According to our analytical 
model, the ideal tune 
current ramp is taken to be 
a logarithmic function in 
time. The delayed and low-
pass filtered PID response is 
superimposed with the 
idealized logarithmic 
quadrupole current curve.

With the corrected quad 
current ramp, the total 
extracted beam intensity is 
computed for the full spill 
duration. This would be 
the fast regulated spill.

The spill monitor block 
computes the spill rate for 
one full spill at a time step 
of  10 kHz (which is the 
total gain bandwidth of  
the SRS). We assume the 
spill monitor to be fast 
enough to not affect the 
loop.
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PID Tuning Scheme Using ML Simulator

The ML simulator uses the physics simulator iteratively to 
compute loss functions and optimize the gain values.

In the very first iteration, the neural network assigns random gain 
values and calls the physics simulator. The physics simulator then 
outputs the PID loop regulated spill rate, from which the spill duty 
factor is calculated. 

Once the SDF is calculated, a loss function 𝑙 is defined to train the 
ML model: 
 

𝑙 = 1 − 𝑆𝐷𝐹 0
The machine learning tool used in the 

optimization of the PID gains is PyTorch 
(version 1.8.1). 

PHYSICS 
SIMULATOR

ML
MODEL

EVERY FULL SPILL…
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Differentiable Machine Learning Simulator

The loss value, along with the previous three gain 
values, are fed into the neural network.

The neural network then calculates the gradient of 
the loss function with respect to the PID gain 
(i.e.,	𝛿𝑙/𝛿𝐺) and backpropogates to update the 
weights in the direction of minimization of the loss 
function, outputting new gain values.

𝑙 = 1 − 𝑆𝐷𝐹 0
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Backpropagation is done through with Adaptive 
Momentum (Adam) optimizer: 

𝑔! = ∇"	𝐽 𝜃

𝑚! = 𝛽#𝑚!$# + 1−𝛽# 𝑔!

𝑣! = 𝛽%𝑣!$# + 1−𝛽% 𝑔!%
𝜃456 = 𝜃4 −

𝛼
%𝑣 + 𝜖

	 *𝑚4

3𝑚! =
𝑚!

1−𝛽#
	

4𝑣 =
𝑣!

1−𝛽%

where: 
• 𝜃 denotes the network parameters, 

i.e., weights and biases of the 
network, 

• ∇" denotes gradient w.r.t the 
network parameters, 𝐽(𝜃) is the loss 
function, 

• 𝜖, 𝛽#, 𝛽% are constants
• 𝛼 is the learning rate

Figure: A. Narayanan, M. Thieme, et. al, “Optimizing Mu2e Spill Regulation Algorithms”, IPAC 2021



Backpropagation Scheme

With the updated gain values, the physics simulator is run again for a full spill, but this time with a 
completely new random noise profile.

After the 2nd full spill, the SDF and the loss function are again 
computed and fed into the neural network to compute the loss 
gradients.  

The neural network again updates the weights and gives a new 
set of (𝐺& , 𝐺' , 𝐺(), and the physics simulator is called again.

This is done iteratively until the loss function becomes minimal (i.e., the PID loop’s performance 
becomes maximal).  

We refer to this approach as a Hybrid ML Simulator because only those functions which must be differentiable (i.e., 
(𝛿𝑙/𝛿𝐺) computable) are made so. This allows functions such as noise generation and tune ramps to be pre-computed 
and excluded from the more computationally expensive gradient calculation and backpropagation steps.
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Differentiable Simulator - Results

The sensitivity of  control varies across the spill duration. 

To characterize this sensitivity, our system divides the full spill 
into subdomains.

The ML simulator optimizes 𝐺%, 𝐺&, 𝐺'  within each of  the 
subdomain with every spill. 
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ML Optimization at work…
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A. Narayanan, M. Thieme, et. al, “Optimizing Mu2e Spill Regulation Algorithms”, IPAC 2021



Evolution of  PID gains

A. Narayanan, M. Thieme, et. al, “Optimizing Mu2e Spill Regulation Algorithms”, IPAC 2021
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Spill Regulation ML Model

We next explore the possibility of a Machine Learning agent entirely 
replacing the PID controller, instead of simply tuning the gains of the 
PID controller. 

Since the spill is temporally sensitive, a Recurrent Neural Network was 
chosen to train the model to emulate the PID controller.

To over come that, LSTM and GRU are a type of neural network that 
have ‘internal loops’ that enables connecting temporally sensitive past 
information to perform present tasks.
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Image source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs typically suffer from ‘short-term’ memory (the ‘vanishing gradient 
problem’). 



GRU ML Model Replacing PID
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Spill data of 
𝑡) previous 
time steps

Time window size = 𝑡"

S𝑡!= [stn-tw, stn-tw+1, …, stn]

𝑡" no. of spill data before 𝑡#

PHYSICS 
SIMULATOR

I(tn) 

S𝑡1 I

GRU Neural Net
with 2 hidden layers

Stn+1 = [stn-tw+1, stn-tw+2, …, stn+1]

𝑡" no. of spill data before 𝑡#$%
ML 
agent

Quad current

Spill data for 𝑡+,#

𝑡# = 𝑡#$%
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GRU Model Matching PID Performance

Raw SDF Relative performance to PID
SDF = %

%$& !"#.	&'#!
( 𝑀𝐿'() − 𝑁𝑜𝑖𝑠𝑒'()

𝑃𝐼𝐷'() − 𝑁𝑜𝑖𝑠𝑒'()
Blue line =

A. Narayanan, J. Jang, M. Thieme, et al., “ML Techniques in Slow Spill Regulation System for Mu2e”, NAPAC 2022.
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GRU Model Performance

A. Narayanan, J. Jang, M. Thieme, et al., “ML Techniques in Slow Spill Regulation System for Mu2e”, NAPAC 2022.
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Performance vs Bandwidth



The action function 𝑎 is defined as the set of  
actions taken by our agent in its environment.

The state function 𝑠 is defined as the set of  
environment parameters that affect the course 
of  our agent.

The reward function 𝑟 is defined as a value we 
assign to a specific action 𝑎 taken in a specific 
state 𝑠.

As the agent progresses in time, we 
accumulate a set of  (𝑎, 𝑠, 𝑟): 𝑠!, 𝑎!, 𝑟" , 𝑠", 𝑎", 𝑟# , … , 𝑠$ , 𝑎$ , 𝑟$%" , … , 𝑠& , 𝑎& , 𝑟&%"

Reinforcement Learning

Reinforcement Learning (RL) is a type of  ML technique that enables an agent to 
interact with the environment by trial and error using feedback from its own actions 
and experiences. 
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The   action variable 𝑎    is defined as the set of  
actions taken by our agent in its environment.

The  state variable 𝑠    is defined as the set of  
environment parameters that affect the course 
of  our agent.

The   reward value 𝑟     is defined as a value we 
assign to a specific action 𝑎 taken in a specific 
state 𝑠.

Reinforcement Learning in Resonant Extraction 
Environment

Quadrupole current

In the case of  slow spill, the action space is continuous as the control signal’s 
magnitude could be any real number. To deal with continuous action space, we use 
policy-based actor-critic methods whereby two neural networks are trained.

RESONANT
EXTRACTION
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𝑒 𝑡 , 𝑒2 𝑡 , ∫ 𝑒 𝑡 𝑑𝑡, 𝑡,	etc.,

1/31/2424



The   action variable 𝑎    is defined as the set of  
actions taken by our agent in its environment.

The  state variable 𝑠    is defined as the set of  
environment parameters that affect the course 
of  our agent.

The   reward value 𝑟     is defined as a value we 
assign to a specific action 𝑎 taken in a specific 
state 𝑠.

Reinforcement Learning in Resonant Extraction 
Environment

Quadrupole current

In the case of  slow spill, the action space is continuous as the control signal’s 
magnitude could be any real number. To deal with continuous action space, we use 
policy-based actor-critic methods whereby two neural networks are trained.

RESONANT
EXTRACTION

𝑒 𝑡 , 𝑒2 𝑡 , ∫ 𝑒 𝑡 𝑑𝑡, 𝑡,	etc.,

Scaled with regulation 
performance

1/31/2425



Reinforcement Learning – Actor Model

[ 21.345]

Actor value :
a real number

ACTOR NETWORK

STATES

RESONANT
EXTRACTION

The actor network takes in the state space variables as the input and outputs 
the action (i.e., the control signal) to be superimposed to the tune ramp quad 
current.
This action is played for the next time step and the new spill rate is obtained.
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Reinforcement Learning – Actor Model

[ 0.5638]

Critic value :
a real number

CRITIC NETWORK

REWARDS

The critic network takes in the reward values for the episode and gives out a 
value ‘criticizing’ the how good the action taken was. 
This is fed back into the actor network so it takes a better action the next time.

RESONANT
EXTRACTION

This way, the both the networks together directly learns the policy.
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Reinforcement Learning – Actor Critic Method

ACTOR 
MODEL

CRITIC
MODEL

RESONANT
EXTRACTION

OBSERVE STATE

OBTAIN REWARDLOSS

TAKE ACTION

RL AGENT
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Actor learns to act 
better.

Critic learns to criticize 
better.
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Reinforcement Learning – Initial Results



THANK YOU
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Reinforcement Learning – A fun example

Action space: 
• Accelerate at constant rate
• Decelerate at constant rate
• Turn right at fixed angle
• Turn left at fixed angle

State space: 
• The raw 96x96 pixels of  every frame

Rewards:
• -0.1 for every passing frame
• 1000/Ntiles for every track tile visited
• Episode finished when all tiles are visited
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Reinforcement Learning – A fun example


