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Resonant Extraction for Mu2e

Beam Parameters for Resonant Extraction

Maximum Intensity in

DR

Revolution time in DR

Orbit length of DR

Horizontal tune in DR

Protons per extracted
pulse

Spill Duty Factor

Single spill duration

Beam Power

1/31/24

<1X 10"

1.694

505.294

9.650 to 9.666

<4X107

>60%

43

protons

us

protons

kW

Main types of spill non-uniformities:

* Slow variations in the spill rate
e TFast random ripples (noise)
* Higher order harmonics from power supply

Spill ripples negatively impact the data:

¢ Detector pile-up
¢ Reconstruction inefficiency
¢ Dead time

We need to mitigate:

¢ Slow varying noise that could span across many
spill.
¢ TFast variations that could arise within one spill.

Goal:
> 0.6

. _ 1
Spill Duty Factor = m

o2

Extraction scheme is to excite 3™ integer resonance using fixed
strength harmonic sextupoles and move the beam tune closer
to 29/3 using dedicated fast tune-ramping quadrupoles.
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Spill Regulation System

SPILL REGULATION SYSTEM

Fast Regulation Harm_?p:élgcrmtent

e 4
The slow regulation controller will g The fast regulation system would The SRS would also be dealing
be tracking the slow changes in the be supplemented on top of the slow with the n*60 Hz harmonic noise
spill profile producing corrections regulation in order to correct for content arising from the power
to the tune quadrupole current instantaneous ripples in the spill supplies.  The  controller — will
ramp to achieve the uniform spill ntensity. determine the harmonic content of
rate. the ripple and apply feedforward
S corrections.
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Spill Regulation System

1/31/24

Fast Regulation

SPILL REGULATION SYSTEM

Harmonic Content
Tracker

The slow regulation controller will
be tracking the slow changes in the
spill profile producing corrections
to the tune quadrupole current
ramp to achieve the uniform spill
rate.

The fast regulation system would
be supplemented on top of the slow
regulation in order to correct for
instantaneous ripples in the spill
intensity.

The SRS would also be dealing
with the n*60 Hz harmonic noise
content arising from the power
supplies.  The  controller — will
determine the harmonic content of
the ripple and apply feedforward
corrections.
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Fast Regulation Loop

The fast regulation loop deals with instantaneous noises that affect the spill quality within one spill.

The instantaneous fluctuations within one spill due to
. random noises can be large. In the SRS, this is handled by
the fast PID loop controller.

Response
We assume here that this noise (ripples) have a random
nature or otherwise are a semi-random component of

regular harmonic noise that the harmonic controller is not
able to suppress.

[

!

i B

|

©

I_l
(giigit

E—p Response

t
on top of the ideal tune ramp provided by the slow
regulation.

u(t) = Gpe(t) + G’f

de(t) The correction signal to counter the noise will superimpose
e )

e(t)dt + Gp (

The three main parameters to control the spill quality in the fast regulation loop are the three
gain values of the PID controller: (Gp, G;, Gp)

2% Fermilab
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Using Machine Learning

1/31/24

We explore using machine learning (ML) algorithms to tune the PID gain values to

achieve an improved spill quality.

Spill Rate

—— Noised spill rate; SDF = 0.501
—— ldeal spill rate; SDF = 1

The spill quality is quantified by ‘Spill Duty °
Factor’ (SDF), defined by: 5
. /
SDF = ! *]
2

1+ G{ext. rate}

Spill Intensity
N

\LAIIF

1 V\/ V)

2 . . .
where  Ofgyr rarey 18 the variance in the

VoY W

extraction rate computed for one full spill,

assuming the average intensity is normalized to 000 0oL .02

1.

Time, sec

0.03

0.04

We use a simplified semi-analytical model to simulate the dynamics of resonant extraction in

order to generate training data for the machine learning algorithm.
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Physics Simulator Model

NOISE

MACHINE

_ 3 PIDRESPONSE = LATENCY

GENERATION

TRANSIT DELAY

© 2
CORRECTED
« QUADRUPOLE

CURRENT

SPILL MONITOR «

BEAM
EXTRACTION
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Physics Simulator Blocks

1/31/24

0 NOISE GENERATION

/The noise for one full spill is generated
in terms of extraction rate. We assume a
log-normal distribution for the noise
spectrum.

Since the source of noise could emanate
from any of the elements in the ring, the
noise 1s pre-generated before the spill
and 1s added directly as fluctuations in
the spill.

normalized to an

Ideal spill 1s

@ PID RESPONSE

With the full extraction rate known, the
PID calculates the error at every time
step and computes the control signal.

At every time step, the difference
between the ideal spill and the actual
spill is computed, and the PID calculates
the control signal to be given to counter
the noise in the spill rate.

~N

J

\expectation value of 1. /
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Physics Simulator Blocks

FIELD SHIELDING EFFECT e TRANSIT DELAY
e (LATENCY) 5

The SS beam pipe would screen high
frequency components of the quadrupole

B field.

The PID response in the simulator is thus
passed through a low-pass filter to
simulate the steel beam pipe screening
any magnetic field variations greater

e )

Once the particle is unstable, it does not
get immediately extracted once it gets
unstable. It takes some finite amount of
turns to get to the septum location.

Transit time studies were done to
determine the number of turns particles
take to get extracted. This delay 1s

than 1 kHz.
J

A

modelled into the physics simulator.

J
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Physics Stmulator Blocks

e CORRECTED . 6 BEAM
QUADRUPOLE CURRENT . EXTRACTION
4 ™\ ( )

1/31/24

] e SPILL
: MONITOR

According to our analytical
model, the 1deal tune
current ramp 1s taken to be
a logarithmic function in
time. The delayed and low-
pass filtered PID response is
superimposed with the
idealized logarithmic

quadrupole current curve.

With the corrected quad
current ramp, the total
extracted beam intensity is
computed for the full spill
duration. This would be
the fast regulated spill.

J:

-

The spill monitor block
computes the spill rate for
one full spill at a time step
of 10 kHz (which is the
total gain bandwidth of
the SRS). We assume the
spill monitor to be fast
enough to not affect the
loop.

N
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PID Tuning Scheme Using ML Simulator

The ML simulator uses the physics simulator iteratively to
compute loss functions and optimize the gain values.

In the very first iteration, the neural network assigns random gain
values and calls the physics simulator. The physics simulator then
outputs the PID loop regulated spill rate, from which the spill duty
factor is calculated.

Once the SDF is calculated, a loss function [ is defined to train the
ML models

l = (1 — SDF)?

1/31/24

EVERY FULL SPILL...

PHYSICS

SIMULATOR

The machine learning tool used in the
optimization of the PID gains is PyTorch
(version 1.8.1).

2% Fermilab
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Ditterentiable Machine Learning Simulator

The loss value, along with the previous three gain
values, are fed into the neural network.

The neural network then calculates the gradient of
the loss function with respect to the PID gain
(i.e., 61/6G) and backpropogates to update the
weights in the direction of minimization of the loss
function, outputting new gain values.

Backpropagation is done through with Adaptive
Momentum (Adam) optimizer:

9: =V J(0)

l = (1 — SDF)?
Noise Transit Current (A Non-Differentiable
(A)
Generation Function Slope Functions
e
1
PID || Low-pass |_ Transit | __} Corrected |_I Corrected
Controller filter Delay Current Spill

Differentiab
Functions

Gp
Gy =
Gi

ML Model

Segment
L Corrected fef L05S (SDF)

le Spill calculation

Figure: A. Narayanan, M. Thieme, et. al, “Optimiz

where:

my = Bimy_q + (1 — B)ge

Ory1 = 0

Ve = Poveos + (1 — B gf

a A
\/5+e .

~ my
mt -

D=

1/31/24

ing Mu2e Spill Regulation Algorithms”, IPAC 2021

0 denotes the network parameters,
1.e., weights and biases of the
network,

Vg denotes gradient w.r.t the
network parameters, J(0) is the loss
function,

€, 1, B> are constants

a 1s the learning rate

2% Fermilab



Backpropagation Scheme

With the updated gain values, the physics simulator is run again for a full spill, but this time with a
completely new random noise profile.

After the 2"d full spill, the SDF and the loss function are again
computed and fed into the neural network to compute the loss
gradients.

The neural network again updates the weights and gives a new
set of (Gp, Gy, Gp), and the physics simulator is called again.

This is done iteratively until the loss function becomes minimal (i.e., the PID loop’s performance
becomes maximal).

We refer to this approach as a Hybrid ML Simulator because only those functions which must be differentiable (i.c.,
(61/6G) computable) are made so. This allows functions such as noise generation and tune ramps to be pre-computed
and excluded from the more computationally expensive gradient calculation and backpropagation steps.

2% Fermilab
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Differentiable Stmulator - Results

The sensitivity of control varies across the spill duration.

To characterize this sensitivity, our system divides the full spill
into subdomains.

The ML simulator optimizes (Gp, G;, Gp) within each of the
subdomain with every spill.

1/31/24
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ML Optimization at work...

Evolution of PID gain values Evolution of the SDF
014 © Gdo (]
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A. Narayanan, M. Thieme, et. al, “Optimizing Mu2e Spill Regulation Algorithms”, IPAC 2021
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Evolution of PID gains
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A. Narayanan, M. Thieme, et. al, “Optimizing MuZ2e Spill Regulation Algorithms”, IPAC 2021
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Spill Regulation ML Model

We next explore the possibility of a Machine Learning agent entirely e
replacing the PID controller, instead of simply tuning the gains of the t
PID controller. )

Reset Gate: controls how /—>®—>®— Update Gate: controls if

much of the old output is @ @ the new output is the new
Since the spill is temporally sensitive, a Recurrent Neural Network was ~ partof the newinput. : : f input or the old output.
chosen to train the model to emulate the PID controller. : :

RNNs typically suffer from ‘short-term’” memory (the ‘vanishing gradient
problem’).

To over come that, LSTM and GRU are a type of neural network that
have ‘internal loops’ that enables connecting temporally sensitive past
information to perform present tasks.

® ®

4

A = |

Image source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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GRU ML Model Replacing PID

Time window size = t,,

/

( Spill data of
:L t,, previous

time steps

ML
Qgent

ty, no. of spill data before t,

an: [Stn-tw, Stn-tw+1, ++) Stn]

(" )
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GRU Neural Net

\ with 2 hidden layers )
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SIMULATOR

t,, no. of spill data before t,, 1

Stn+1 = [Stn-tw+1, Stn-tws2, ey Stnea]
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GRU Model Matching PID Performance

ML vs PID
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A. Narayanan, J. Jang, M. Thieme, et al., “ML Techniques in Slow Spill Regulation System for Mu2e”, NAPAC 2022.
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GRU Model Performance

Spill Regulation Example @ low-pass = 1 kHz

Noise
81 — PID
— ML
6 <
4 -

Intensity

. /\/M\ I\Av . \/K\/A\V\I\\A\A\A\'\
{ PPN T RV

0 160 260 300 400
Spill Position

A. Narayanan, J. Jang, M. Thieme, et al., “ML Techniques in Slow Spill Regulation System for Mu2e”, NAPAC 2022.
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Performance vs Bandwidth
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Reinforcement Learning

Reinforcement Learning (RL) 1s a type of ML technique that enables an agent to

interact with the environment by trial and error using feedback from its own actions
and experiences.

The action function a 1s defined as the set of

l action a; l actions taken by our agent in its environment.
. The state function s 1s defined as the set of
Agent Environment .
environment parameters that affect the course
state__s_t_im 4 reward | I of our agent.

MERESHORE ey The reward function 7 is defined as a value we

assign to a specific action a taken in a specific
state S.

As the agent progresses in time, we
accumulate a set of (a,s,7):  (So, @g,71), (51,1, 72), o, (Si, @4, Ti1), o, (ST, A, Trg1)

2% Fermilab
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Reinforcement Learning in Resonant Extraction
Environment

Quadrupole current
The 1s defined as the set of
actions taken by our agent in its environment.

’ action a¢ l
The. state variable s 1s defined as the set of RESONANT
environment parameters that affect the course Agent EXTRACTION
Of our agent' statgit_1_>_> f reward r l

next state Sgyq

The reward value r  1s defined as a value we
assign to a specific action a taken in a specific
state S.

In the case of slow spill, the action space 1s continuous as the control signal’s
magnitude could be any real number. To deal with continuous action space, we use
policy-based actor-critic methods whereby two neural networks are trained.

2% Fermilab
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Reinforcement Learning in Resonant Extraction
Environment

Quadrupole current
The 1s defined as the set of
actions taken by our agent in its environment.

e(t),e'(t), [ e(t)dt,t, etc.,

’ action a¢ l
Th 1s defined as the set of RESONANT
environment parameters that affect the course Agent EXTRACTION
Of our agent' statgit_1_>_> f reward r l

next state Sgyq

The reward value r  1s defined as a value we
assign to a specific action a taken in a specific
state S.

In the case of slow spill, the action space 1s continuous as the control signal’s
magnitude could be any real number. To deal with continuous action space, we use
policy-based actor-critic methods whereby two neural networks are trained.
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Reinforcement Learning in Resonant Extraction

Environment

Quadrupole current

The Caction variable @) 1s defined as the set of

actions taken by our agent in its environment.

e(t),e'(t), [ e(t)dt,t, etc.,

Thé&_ state variable s) 1s defined as the set of

environment parameters that affect the course

of our agent.
Scaled with regulation

/ performance

!

RESONANT
EXTRACTION

reward r l

Th is defined as a value we

assign to a specific action a taken in a specific

state S.

next state Sgyq

In the case of slow spill, the action space 1s continuous as the control signal’s
magnitude could be any real number. To deal with continuous action space, we use
policy-based actor-critic methods whereby two neural networks are trained.

1/31/24
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Reinforcement Learning — Actor Model

ACTOR NETWORK

STATES

Actor value :
a real number

[ 21.345]

RESONANT
EXTRACTION

The actor network takes in the state space variables as the input and outputs
the action (i.e., the control signal) to be superimposed to the tune ramp quad
current.

This action 1s played for the next time step and the new spill rate 1s obtained.

2% Fermilab
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Reinforcement Learning — Actor Model

CRITIC NETWORK

REWARDS

Critic value :
a real number

RESONANT
EXTRACTION () [0.5638]

The critic network takes in the reward values for the episode and gives out a
value ‘criticizing’ the how good the action taken was.

This 1s fed back into the actor network so it takes a better action the next time.

This way, the both the networks together directly learns the policy.
3¢ Fermilab
1/31/24
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Reinforcement Learning — Actor Critic Method

OBTAINREWARD  p BEGYNANT

TAKE ACTION
ACTOR LOss ' CRITIC
MODEL MODEL
¢ $
RL AGENT

Actor learns to act
better.

1/31/24

OBSERVE STATE

EXTRACTION

Critic learns to criticize
better.
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Reinforcement Learning — Initial Results

33

G5

Control Signal

04

G3

c2

Gl

o

Spll Magnitude

w

Iteration: 10

—— Model Output
—— Quad Response

b3 109 20 09 400
Time steps

Iteration: 10

- Corrected Spill
- Noised Spill

b3 109 200 09 400
Tirme steps

SDF

10

(K]

6

o4

G2

co

Iteration: 10

4
Training Episodas

5

2% Fermilab



THANK YOU



Optimal PID Gains per subdomain
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Evolution of the SDF
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Reinforcement Learning — A fun example

Action space:

* Accelerate at constant rate
* Decelerate at constant rate
e Turn right at fixed angle

e Turn left at fixed angle

State space:
* The raw 96x96 pixels of every frame

Rewards:

e -0.1 for every passing frame

e 1000/Ny for every track tile visited

* Episode finished when all tiles are visited

2% Fermilab
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Reinforcement Learning — A fun example
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