FERMILAB-PUB-25-0513-CSAID-STUDENT

Advancing otsdag: Enhancements for Usability, Accuracy, and Robustness

Advancing otsdagq:

Enhancements for Usability, Accuracy, and Robustness

A. Mohammed! and R. Rivera?®
DEigin Community College, CCI Internship®
2 Fermi National Accelerator Laboratory, Advisor

(*Electronic mail: amoha210@illinois.edu)
(Dated: 24 July 2025)

High-energy physics (HEP) experiments require data acquisition (DAQ) systems that can orchestrate complex detector
operations, high data throughput, and responsive, real-time feedback to operators. Traditional DAQ stacks, which
are often bespoke, command-line driven and highly specific, impose large learning curves on users. The Off-The-
Shelf Data Acquisition (otsdaq) framework was created to address these issues by offering a highly customizable and
scalable browser-based ’desktop’ environment, in which experiment-specific control and monitoring applications can
be easily deployed and integrated. Although the initial development of the otsdaqg software was aimed at the Fermilab
Test Beam Facility, otsdagq is now being leveraged for broader deployment, including the upcoming MuZ2e experiment,
where real-time monitoring of field-programmable gate array (FPGA)-based Data Transfer Controllers (DTCs), Clock
and Fanout (CFO) boards, and several other subsystems are critical. We contribute a set of targeted improvements to
otsdaq: bitmap visualization functionality for configured data, improved and corrected delta-based DTC throughput
metrics, version control (VC)-backed source navigation for console messages, custom navigation hooks to eliminate
disruptive user interface glitches, and copy-to-clipboard support for macro execution history. These changes improve

usability, reduce debugging time, and increase accuracy in performance data as Mu2e moves toward commissioning.

I. INTRODUCTION

Modern high-energy physics (HEP) experiments integrate
diverse detector subsystems, custom front-end electronics,
and high-bandwidth readout links that must be seamlessly or-
chestrated through a data acquisition (DAQ) layer capable of
configuration management, run control, and live, accurate sta-
tus monitoring. Historically, these DAQ controls have been
exposed through bespoke software and scripts or low-level
command interfaces. These controls are efficient in expert
hands, but pose accessibility barriers for new collaborators,
operators, or visiting test-beam users. The off-the-shelf data
acquisition (otsdaq) project was developed to provide an “off-
the-shelf” alternative: A reusable DAQ control environment
with a web based, desktop-like user interface that lowers the
barrier required to initialize, operate, and debug complex sys-
tems.

The otsdaq software was designed to be as modular and
flexible as possible due to the broad experimental nature at
the Fermilab Test Beam Facility (FTBF), and is being inte-
grated with other current and future HEP applications, such as
the CMS Outer Tracker production test stand for the CMS ex-
periment at CERN [2] and the upcoming Mu2e experiment at
Fermilab [3]. The Mu2e Trigger and DAQ (TDAQ) stack de-
pends heavily on accurate monitoring of interconnected field-
programmable gate array (FPGA) hardware elements such
as Data Transfer Controllers (DTCs) and Clock and Fanout
(CFO) boards (Fig. 1). Usability flaws or misleading per-
formance readouts in the DAQ layer can directly translate to
lost beam time or compromised data quality. Consequently, as
Mu2e approaches deployment, improving stability, accuracy,

ONow at The University of Illinois at Urbana-Champaign

Command Accelerator RF
fan-Out 0-Crossing Marker

card “:l e
.. i -
P
! pata 1 g
Encoded Bl | Data Logger ; w]
System Und I : : [
ﬁ«» —f -
| ool & !
Sl Do b i DataStorage *T WiH Control Room
P H Netwark P
‘\“‘ deache +
= -(NS‘OM
t [FIFE)

h!,
Des R
: Mamgemenx

et ' Offline Data
Data Transfer H Processing

[3 73T S
: mmsund ing
\?wl i

Calorimeter D]

i Control and Data

AN | i “u
= e == | Logar contoler

_3.__

Pr u:zmng

P =g

>
FIG. 1. Complete diagram of the TDAQ sequence [4].

and the user experience in otsdaq has high operational value.

We target high priority performance-relevant bugs and
other software gaps observed in ongoing development and
test installations. Implementing visualization improvements,
correcting performance calculations, strengthening error-
navigation tooling, stabilizing user interface (UI) behavior,
and making testing results easier to share aim to reduce op-
erator friction and improve diagnostic feedback during both
commissioning and running.

Il. PURPOSE AND OBJECTIVES

The underlying goal of the otsdag software is to provide
a modular and flexible DAQ control surface that can be tai-
lored to specific experiment needs without needing to sacrifice

Advancing otsdag: Enhancements for Usability, Accuracy, and Robustness 2

ease-of-use and functionality with existing DAQ layers, or re-
engineering a custom DAQ layer. Within that broader mission,
closing usability and reliability gaps uncovered by develop-
ers, engineers, and scientists working closely with the otsdag
software was heavily exercised in preparation for Mu2e de-
ployment. This work focused on incremental, high-impact im-
provements, including the optimization of configuration data
visualization tools, validation of rate and throughput metrics
reported by FPGA-based hardware, enhancement of diagnos-
tic navigation across software versions and installations, and
reduction of interface friction that can impede typical usage.

The effort was collaborative across software developers and
experiment stakeholders. We partnered with members of the
otsdaq development team, engineers in the Computational
Science and Al Directorate (CSAID) department, and Mu2e
personnel representing varied use cases. The completed fo-
cused subprojects include bitmap rendering for configuration
data, corrected DTC metrics, source lookup for console di-
agnostics integrated with version control (VC) systems, cus-
tom hook behavior to stabilize in-app navigation, and copy-
to-clipboard support for macro execution histories.

11l. BACKGROUND AND METHODS
A. Overview of the otsdaqg Framework

otsdaq is a web-based DAQ framework that exposes hard-
ware control, configuration management, run operations, and
monitoring through a browser interface designed to decrease
the learning curve compared to highly customized DAQ stacks
[5]. The FTBF allows scientists and engineers from around
the world to work and collect data pertinent to their research,
and reducing the onboarding time by common interface con-
vention and on-screen guidance is particularly valuable as it
increases the time spent on data acquisition and analysis.

The otsdaq software is organized as a web based desktop
environment. Each window corresponds to a distinct applica-
tion, and multiple applications, including multiple instances
of the same application, can be active simultaneously (Fig.
2). The software provides a range of tools supporting both
basic and advanced usage. Core utilities include configura-
tion editing, run control, and log and console viewing. Ad-
vanced tools extend functionality with features such as macro
execution, macro building, and data visualization. The modu-
lar, application-based architecture allows experiment-specific
as well as advanced applications to be added or developed
as needed. This enables HEP experiments to create new ap-
plications for novel use cases without integrating an entirely
new DAQ framework. The otsdaqg software is currently im-
plemented at the FTBF, the CMS Outer Tracker production
test stand for the CMS experiment at CERN [2], and is under-
going extensive testing to prepare for the Mu2e experiment at
Fermilab [3]. In addition, the otsdaq software can easily be
packaged and customized for future experiments around the
world.

FIG. 2. The otsdag UI with open apps.

B. Development Environment and Workflow

The otsdaq software stack consists of a C++ backend and
an HTML/JavaScript frontend, interacting with each other
through a CGl-style interface. Development was performed
on the Fermilab correlator cluster, with builds utilizing cmake
and Spack package management. Source control and collabo-
ration were conducted on GitHub. Debugging relied on stan-
dard browser tools, console logging, and side-by-side valida-
tion with DTC hardware when validating throughput metrics.
Progress depended on regular and frequent interaction with
engineers and scientists in the CSAID department.

IV. CONTRIBUTIONS AND RESULTS
A. Bitmap Visualization for Configured Data

Configuration tables within the otsdaq software can store
bitmap-structured data types. Typical applications of these
data types include masks, threshold maps, sensor patterns,
calibration, and rapid state auditing. The original interface
rendered these data as large, scrollable numeric matrices that
took excessive display area to render and were difficult to scan
by eye.

We implemented a dynamic bitmap visualization tool that
renders table contents as images, where each matrix element is
mapped to a pixel representing its value. The feature was im-
plemented within the existing JavaScript layer and integrated
with the C++ backend so that stored configuration values re-
main definitive. We also increased and added new input vali-
dation methods and extended save and export behavior to pre-
serve bitmap states without requiring cross-checks against raw
numeric values. Performance checks showed no adverse im-
pact on load or render time compared to the prior tabular view.

By optimizing the spatial structure of the UI, the bitmap
mode improves scalability to large datasets and accelerates
quality checks. The new functionality was merged upstream
and is available for future experiment deployments.

Advancing otsdag: Enhancements for Usability, Accuracy, and Robustness 3

B. Corrected DTC Throughput Metrics

DTC modules in the DAQ chain move high-volume data
from frontends toward downstream processing. This function-
ality will be heavily utilized in the Mu2e experiment. During
testing, engineers reported that certain metrics, specifically
packet rate metrics, were not properly reporting the correct
rates, leading to misleadingly low rate estimates and halting
the debugging chain. Upon further investigation, it was found
that the rate being calculated was derived from cumulative
counters rather than differences between successive reads, and
information was being recorded although the DTC was not be-
ing sent data.

We refactored the rate calculation to use delta-based calcu-
lations. These calculations are computed between consecu-
tive sampling intervals and report a much more accurate and
instantaneous rate. In addition, the metrics output was refor-
matted for additional clarity. This refactor was implemented
within the C++ backend and kept the display format consis-
tent so as to easily reintegrate with frontend tools. The im-
plementation was checked against live DTC hardware traffic
patterns. The corrected metrics enabled collaborators to iden-
tify and tune data paths. Notably, the improved readouts were
used to optimize data flow and eliminate packet losses across
multiple DTC:s in test stands. These changes were merged up-
stream and will directly contribute to reliable data collection
in MuZ2e operations.

C. VC-Backed Source Navigation in the Console App

The otsdag console application collects and displays warn-
ings, errors, and other informational messages from various
services, and attempts to link each message to its responsi-
ble source file using a built-in code editor. In mixed deploy-
ments, particularly those built from Spack packages where not
all source trees are present locally, these links failed, affecting
debugging and confusing new users. Notably, this issue oc-
curred in the Mu2e deployment of the otsdag software.

We extended the console functionality to detect when an
error message is generated from a file not included in a
source tree, and instead construct a URL to the file’s upstream
GitHub repository, corresponding to the installed package ver-
sion. This functionality was implemented within both the C++
backend and the JavaScript frontend. Test injections of syn-
thetic warnings, errors, and messages confirmed that links re-
solve cleanly and open seamlessly. By closing the gap be-
tween diagnostics and source context, this feature decreases
troubleshooting time and improves support across sites. These
changes were merged upstream and are available for future
use.

D. Macro Output Copy-to-Clipboard

Macros in the otsdag software allow operators to automate
multi-step operations across both hardware and software com-
ponents. The macro application in the software runs macros

and records execution histories and status traces. Previously,
sharing this history required manual text selection. This led
to formatting complaints from users and occasionally led to
errors. Adding functionality to easily export macro history
would allow users to include macro logs in documentation,
issue reports, or collaborative chats.

We added a copy-to-clipboard action that exports the full
macro history in a clean and transferable format. This feature
was implemented in the HTML and JavaScript frontend. Val-
idation involved creating synthetic macro runs and comparing
the copied test against each of the expected sequences. This
enhances the user’s ability to collaborate with colleagues and
gives increased reproducibility in debugging workflows. This
functionality was merged upstream and is available for future
deployments.

E. Scroll and Navigation Stabilization

The otsdaq software presents multiple apps within framed
browser panels, and deep navigation within long configuration
pages occasionally triggers abrupt frame shifts, overscroll, or
blank whitespace when relying on native HTML anchor be-
havior. Many users reported unwanted jumps and visual arti-
facts on several pages. Reducing these visual bugs was crit-
ical, as they can not only impede workflows, but potentially
can introduce errors into any input fields.

We replaced native anchor-based navigation with a custom
JavaScript hook that computes offsets and performs bounded
scrolling. The approach was designed to be as universal as
possible, such that any future occurrence can easily be fixed
by replacing the native functionality with the custom script.
This feature was implemented in the JavaScript frontend, and
instances of problematic elements in the HTML were replaced
during testing. Additional manual testing across several repre-
sentative pages confirmed the disappearance of the whitespace
artifact and stabilized the navigation. The enhancement was
merged upstream and is available for future deployments.

V. CONCLUSION AND FUTURE WORK

The otsdaq software received a set of focused, user-driven
improvements to the otsdag DAQ framework as it advances
towards full deployment in the Mu2e experiment. Bitmap vi-
sualization, corrected DTC metrics, GitHub source linking,
macro log export, and stabilized frontend behavior each ad-
dress real user complaints surfaced directly from development
and testing. The cumulative effect is a more scalable, accu-
rate, and user-friendly control environment for DAQ opera-
tions.

Building on these improvements, future development may
include automated GUI testing to ensure interface stability,
broader visualization modes, settings, and functionalities to
accommodate varied use, and integrated dashboards that unify
metrics from multiple DAQ subsystems. These enhancements
would further support usability, debugging efficiency, and
scalability across complex detector subsystems.

Advancing otsdag: Enhancements for Usability, Accuracy, and Robustness 4

Modularity, flexibility, and scalability have increased sig-
nificantly in the application. Although the otsdag software is
designed with a HEP mindset, the software could very easily
be applied to different needs. The lightweight nature of the
application allows for use in environments where resource ef-
ficiency is critical, and the modular behavior allows for users
to pick and choose exactly what they need. The otsdag soft-
ware has potential to be used in several industries, such as
manufacturing to revolutionize process automation by provid-
ing highly adaptable and efficient monitoring and control so-
lutions.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge Ryan Rivera for his mentor-
ship and guidance throughout this project, and in addition, the
CSAID department at Fermilab. This manuscript has been au-
thored by FermiForward Discovery Group, LLC under Con-
tract No. 8§9243024CSC000002 with the U.S. Department of

Energy, Office of Science, Office of High Energy Physics.
This work was supported in part by the U.S. Department of
Energy, Office of Science, Office of Workforce Development
for Teachers and Scientists (WDTS) under the Community
College Internships Program (CCI).

Is. Hageboeck, A. R. Hall, N. Skidmore, G. A. Stewart, G. Benelli, B. Carl-
son, C. David, J. Davies, W. Deconinck, J. D. DeMuth, P. Elmer, R. B. Garg,
K. Lieret, V. Lukashenko, S. Malik, A. Morris, H. Schellman, J. Veatch,
and M. H. Villanueva, “Training and onboarding initiatives in high energy
physics experiments,” (2023), arXiv:2310.07342 [hep-ex].

2S. Chatrchyan et al. (CMS), “The CMS Experiment at the CERN LHC,”
JINST 3, S08004 (2008).

3A. Gioiosa, R. Bonventre, S. Donati, E. Flumerfelt, G. Horton-Smith,
L. Morescalchi, V. O’Dell, E. Pedreschi, G. Pezzullo, F. Spinella, L. Up-
legger, and R. A. Rivera, “Prototype data acquisition and slow control sys-
tems for the mu2e experiment,” IEEE Transactions on Nuclear Science 68,
1862-1868 (2021).

4R. Rivera, “Trigger & daq wg report,” Mu2e Collaboration Meeting (2018),
internal document.

SFermi National Accelerator Laboratory, “otsdaq: Off-the-shelf data acqui-
sition,” https://otsdaq.fnal.gov (2023), last modified Dec 12, 2023;
accessed Jul 22, 2025.

