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Introduction

Created in 1954, CERN (European Organisation for Nuclear Research) is a European
laboratory [1]. Its campus welcomes more than 10 000 scientists and students every
day. This institution aims to understand the fundamental laws of our universe, by
studying high energy physics through complexe machines.

0.1 The CERN accelerator complex

The CERN particle accelerators are linked to each other in order to achieve the same
goal: pushing higher and higher the beam energy. Presently, protons are accelerated
up to 6.5 TeV in the largest circular collider ever built: the Large Hadron Collider
(LHC).

In order to reach this energy, the LHC is preceded by an injection chain, described
in Figure 1 [1].

FIGURE 1: CERN Accelerator Complex.

Protons are indeed first accelerated up to 50 MeV in the Linac2 before entering
the PS Booster where they reach an energy of 1.4 GeV. Afterwards comes the Pro-
ton Synchrotron (PS). In this machine, protons are accelerated up to 25 GeV before
reaching 450 GeV in the Super Proton Synchrotron (SPS) and being injected in the
LHC.

In the LHC, two proton or ion beams (B1 and B2) are running in opposite direc-
tions, in two different beam pipes. The energy increases from 450 GeV at injection to
6.5 TeV at flat top and the two beams are put into collision. Particles emerging from
these collisions are recorded and analysed by four detectors, located at four so-called
interaction points (IP): ATLAS (IP1), ALICE (IP2), CMS (IP5) and LHCb (IP8). Ap-
proaching these interaction points, before colliding, the two beams share the same
vacuum chamber. From an electromagnetic point of view, they then start to see each
other and to interact. As we will see, these interactions have a detrimental effect on
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the collider performance. Consequently, one of the goals for the future upgrades of
the LHC is to avoid or limit this effect.

0.2 Motivations of this study

As we said, the goal of the LHC is to deliver collisions to the experiments, with the
best possible performance. The performance of the LHC can be quantify by two
figures of merit: the center of mass energy of collision and the luminosity. The
first one is now fixed (13 TeV), as it depends on the tunnel circumference and the
maximum field created by the dipoles in the arcs. Our parameter of interest is the
luminosity.

0.2.1 The luminosity

The luminosity corresponds to the number of events produced by the proton-proton
collisions at the IP. It can be seen as instantaneous luminosity or integrated lumi-
nosity. The instantaneous luminosity is defined as the event rate Ṅ divided by the
cross section of the proton-proton interaction σpp:

L =
Ṅ

σpp
. (1)

The integrated luminosity corresponds to the sum of all the events registered in a
time interval ∆t = t2 − t1, divided by the same cross section:∫ t2

t1

Ldt =
N(t2)−N(t1)

σpp
. (2)

As a cross section has the same unit as a surface, the integrated luminosity unit is
m−2. However, for cross sections, the barn is generally more convenient. It is defined
by:

1 b = 10−24 cm−2. (3)

The unit of the instantaneous luminosity is consequently inverse barns per second.
Figures 2 and 3 show the evolution of the integrated luminosity for each experi-

ment in 2016 and 2017.
The luminosity can be expressed in terms of machine and beam parameters by

Equation (4) [2]:

L =
N1N2frevNb

4πσxσy
· 1√

1 + ( σsσx tan θ
2)2

(4)

where N1,2 represents the number of particles per colliding bunch, frev the revolu-
tion frequency,Nb the number of colliding bunches, σx,y,s respectively the transverse
and longitudinal beam size at the IP, and θ the crossing angle which is the angle be-
tween B1 and B2 closed orbits at the IP.

The useful beam parameters to calculate the luminosity in the nominal LHC case
are summarized in Table 1 [3].
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Number of proton per bunch N1,2 / [p] 1.15 · 1015

Number of colliding bunches Nb 2808
Revolution frequency frev / [kHz] 11.245
Beta function ot the IP β? / [cm] 40

Normalized transverse emittance εn / [µm.rad] 3.75
RMS Bunch Length σs / [cm] 7.55
Relativistic Lorentz factor γ 7460

TABLE 1: Useful LHC beam parameters for luminosity calculation.

The RMS transverse size of the beam is define by Equation (5):

σx,y =

√
β?εn,(x,y)

γ
. (5)

Afterwards, using Equations (4), (5) and Table 1, we plot on Figure 4 the evolu-
tion of the instantaneous luminosity with the crossing angle.
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FIGURE 4: Evolution of the luminosity with the crossing angle.

Figure 4 shows that the smaller the crossing angle, the larger the luminosity.
However in the nominal LHC, the crossing angle remains 300 µrad. The motivation
is two-fold [4]:

• Relative to the detector - In the nominal LHC, a large number of bunches
collide (the nominal number is 2808 bunches). The separation between two
bunches is 25 ns but, approaching the IP, the separation between the two beams
decreases as they share the same vacuum chamber. In order to obtain a single
collision not to saturate the detector, the two beams need to have an angle.

• Relative to the collider - As we said, when the two beams share the same
vacuum pipe, they interact electromagnetically. This effect is called beam-beam
interaction and has to be limited. This can be done by separating the two beams
as much as possible. Then, if the two beams are travelling along two different
paths a crossing angle is necessary.

0.2.2 The Beam-Beam interactions

One can distinguish two types of beam-beam interactions [4]:

• Head-on Beam-Beam Interaction (HOBB) - This effect corresponds to the inter-
action between the two beams at the IP - which cannot be avoided, as it is the
first goal of a collider.

• Long-range Beam-Beam Interaction (LRBB) - This corresponds to the parasitic
collisions that occur when the two beams are sharing the vacuum pipe. This
effect contains a linear and a non-linear part, as we will see later.

The Figure 5 shows the crossing scheme for the nominal LHC, with head-on and
long-range interactions. This figure highlights the fact that a compromise in the
crossing angle is needed. One can notice indeed that the larger the crossing angle,
the larger the beam-beam separation and, so, the weaker the LRBB interaction.

Finally, in order to increase the luminosity, one has to reduce the crossing angle at
the IP and to provide a solution to decrease the effect of the LRBB interaction. Lumi-
nosity is indeed the most important challenge for the next upgrade of the machine:
the High-Luminosity LHC (HL-LHC).
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FIGURE 5: Crossing scheme for nominal LHC, with head-on and
long-range interaction. δt/2 represents the time interval of interac-

tion.

0.3 The HL-LHC project

During these six months spent at CERN, I worked in the Beams department (BE),
Accelerators and Beams Physics group (ABP), Hadrons Synchrotrons Incoherent effects
section (HSI). This section, led by Dr. Yannis Papaphillipou, aims to study linear
and non-linear multi-particles effects. One of the section tasks is to bring solutions
for the HL-LHC in terms of LRBB issues. My work is placed in this context.

The HL-LHC project [5] is the next upgrade of the current LHC. The main objec-
tive of this machine is to increase the actual luminosity by a factor five. One of the
challenge of this project is to change the crossing scheme. In HL-LHC, the beam-
beam separation would be larger than the present one and so the crossing angle. As
we saw, the luminosity decreases with larger crossing angle. The baseline is con-
sequently to improve the effeciency of the two bunches overlapping, the so-called
crabing scheme (cf. Chapter 1). But other solutions, as wire compensators (BBCWs)
are also under investigation. Their beneficial effect have indeed been seen in other
machines, such as DAΦNE for e+e− collisions [6].

Through this report, we will give an overview of the LRBB interaction and the
different studied solutions, in the Chapter 1. Afterwards we will focus on one of
these solutions, the BBCW, as a prototype is installed in the machine (Chapter 2).
After a theoretical study of this device, one will present the results of the tests we
made to see the impact of this device on a single beam (Chapter 3), and, finally,
the experiment we led to highlight a possible compensation of the LRBB interaction
(Chapter 4).
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Chapter 1

The Long-Range Beam-Beam
Interaction in the LHC

Before describing the BBCW, one needs to develop in details the concepts introduced
in the previous section and to quantify the LRBB interaction and the effect on the
LHC beams.

1.1 Optics considerations

The LRBB interaction is an electromagnetic interaction. It depends on the beam pa-
rameters but also on the machine configuration. Around IP1 and IP5, the optics
scheme is similar. The two beams pass through two separation and recombination
dipoles (D1 and D2) that will modify the separation between the two while they are
sharing the same vacuum chamber, and through a triplet (series of quadrupoles) that
will bring the beta function to its minimum (β?) at the IP to minimize the beam size
and therefore maximize the luminosity.

Figure 1.1 shows the evolution of the β functions for B2 in the 2017 LHC colli-
sion optics of LHC. This optics configuration is called ATS (Achromatic Telescopic
Squeezing) and β? reaches 40 cm.

150 100 50 0 50 100 150
s [m]
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4

5
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7

[k
m

]

D2

D1

TRIPLET

ATS at flat-top, Q=(.31, .32)

βX

βY

FIGURE 1.1: Optics around IP5: blue rectangles are dipoles (D1 and
D2), the red ones are quadrupoles (triplet).
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Knowing the optics around the IPs and the filling pattern (configuration of the
beam in terms of bunches and trains), the geometry of the problem determines the
number of long-range encounters as shown in Figure 1.2 [7].

FIGURE 1.2: Long-range encounters and BBLW: compensation prin-
ciple.

In nominal LHC, the bunch separation is 25 ns, which corresponds, in the ul-
tra relativistic approximation, to a distance of 7.5 m. The beams then interact each
3.75 m. The beams share the same vacuum chamber for about 60 m on each side of
the IPs. Finally, taking into account IP1 and IP5, 60 encounters occur.

In Figure 1.3, one can see the physical beam-beam separation around IP5. In the
nominal LHC, the normalized emittance is 3.75 µm.rad. Given this value, one can
compute the normalized separation ∆, corresponding to the separation between the
two beams, in the region between the two D1.

∆ = θ

√
β?

εg
(1.1)

where θ is the total crossing angle and εg the geometrical emittance.
With the given parameters, the normalized separation is about 10 σ. One can

then add this normalized separation in Figure 1.3.
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FIGURE 1.3: Beam-beam separation around IP5.

The number of encounters to be compensated is now determined. One can now
study the electric field created by a beam.
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1.2 Electromagnetic field created by a beam

Let us assume a bunch in its own rest reference system. We also assume its charge
density to be a bi-Gaussian [8] given by Equation (1.2):

ρ(x, y) =
Q

2πσxσy
e
−( x

2

2σ2x
+ y2

2σ2y
)
. (1.2)

This hypothesis is usually verified in the LHC. As the bunch length is much
larger than the transverse size, one can neglect the longitudinal dependency of the
distribution.

From this distribution, it is possible to calculate the field created by a bunch. The
associated potential φ(x, y) indeed follows the Poisson equation:

∇2φ(x, y) =
ρ(x, y)

ε0
. (1.3)

In 1980, M. Bassetti and G.A. Erskine derived the closed expression for the elec-
tric field components Ex and Ey in this particular configuration, using the complex
error function and integrating in the complex plane [8]. From these expressions,
one can then obtain the formula for the Lorentz forces as functions of x and y. The
Lorentz force experienced by a particle moving with a speed ~v and passing through
an electromagnetic field ( ~E, ~B) is indeed defined by [9]:

~F = q( ~E + ~v × ~B). (1.4)

In the hypothesis of a round beam (σx = σy = σ), this expression can be simpli-
fied and one can obtain for the force created by a bunch of N protons [10]:

Fx = −Ne
2(1 + β2)

2πε0

x

r2
[1− e−

r2

2σ2 ] (1.5)

Fy = −Ne
2(1 + β2)

2πε0

y

r2
[1− e−

r2

2σ2 ] (1.6)

where r =
√
x2 + y2, e the elementary charge and β the Lorentz relativistic factor.

One can then plot the corresponding kick, still in the hypothesis of a round beam.
The result is shown in Figure 1.4.

Depending on if the interaction takes place at the interaction point or with a
transverse offset, one can again distinguish the head-on interaction to the long-range
one.

1.3 Long-range beam-beam interaction

From the previous paragraph, one can calculate the dipolar and quadrupolar ef-
fects of the LRBB interaction and give their closed expression [10] (cf. Appendix A).
From the survey of this effect, U. Dorda, in his PhD thesis [10], highlighted some
characteristics of the LRBBI. First of all, this interaction depends on the normalized
separation (with respect to σx or σy) of the two beams. Then, as the separation is
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FIGURE 1.4: Kick given by a round bi-Gaussian beam.

much larger in IP2 and IP8, the LRBB interaction is dominated by IP1 and IP5 [11].
Finally, if we consider a full train of bunches, all of them will not suffer the same
number of long-range. For instance, the bunches located at the start and the end of
trains, the so-called PACMAN bunches, will suffer a reduced number of long-range
interactions.

Regarding to the quadrupolar term, the one which induces a tune shift, one can
highlight an important result. The linear tuneshift due to LRBB interaction will in-
deed be negative in the crossing plane while positive in the orthogonal one. Al-
though as the crossing plane is not the same between the two IPs of interest (horizon-
tal crossing for IP5 and vertical for IP1), this could provide a partial compensation of
the tune shift, called passive compensation. Moreover S. Fartoukh shows [12] that
this self compensation is also valid for the 4n + 2 harmonics (cf. Chapter 2 for the
multipoles formalism): the term B2 gives the tune shift and the terms B6,B10,B14...
the tune spread. This statement stands in the case of two interactions regions with
strictly equivalent optics and same crossing angles, but rotated by π

2 . S. Fartoukh
also shows in [12] that the LRBB interaction tune spread is similar to the one in-
duced by a pure octupole.

In order to increase the luminosity for the next upgrades, several solutions have
been considered for the HL-LHC, either to compensate the LRBB interaction or to
reduce the source of this effect.

1.4 Options for the HL-LHC project

As we saw in the previous sections, the LRBB interaction is a detrimental effect
which increases the losses, decreasing the beam lifetime by reducing the dynami-
cal aperture [11]. In HL-LHC, one has to find solutions to compensate or avoid this
effect.

1.4.1 Crab Cavities

Still in the same objective to increase the luminosity, one can see that the crossing
angle tends to reduce it as the collisions are not purely head-on (cf. Figure 4). As it
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is shown in Figure 1.5 [13], the overlap between the two bunches is not perfect and,
so, not as efficient as it should be.

FIGURE 1.5: Schematic crossing bunches with inefficient overlap.

The first idea was to rotate the bunches in order to improve the efficiency of
the overlapping. To achieve this an intrabunch dipolar kick is needed. This can be
provided by a RF (Radio Frequency) device, called crab cavity. Crab cavities are
superconducting cavities. The voltage needed per IP is 6 MV [13], which could be
achieved with two cavities of 3 MV. Considering a bunch length of about 1 ns, the
frequency of these cavities should be of the order of 1 GHz. The principle of the crab
crossing is explained in Figure 1.6 [14].

FIGURE 1.6: Principle of crab crossing.

The crab cavities do not compensate the LRBB interaction but reduce the source
of this effect. This solution remains the baseline for HL-LHC project. However it rep-
resents a challenge from a technical point of view: even if these cavities are indeed
working in theory, there are still some issues that need to be solved [13]. Impedance
minimization, HOM damping and cavity noise are still under investigation, espe-
cially thanks to crab cavities test in the SPS, in order to fully validate this solution
for HL-LHC.
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1.4.2 Electron Lenses

In 1997, V. Shiltsev proposed for the first time a possible compensation of BBLR
induced tune spread using electron lenses [15]. He aimed to compensate beam-
beam effects in the Tevatron using electron beams as Tevatron is a proton-antiproton
collider. In principle as the charge is opposite, the electrons should countereact the
effect induced by a proton beam on the antiproton one. In [15], V. Shiltsev proved
that it was possible to reduce the tune variation between two bunches using time-
dependant electron currents. These beams are provided by an electron compression
device mainly consisting in a cathod, a collector and a solenoid, as it is shown in
Figure 1.7 [15]:

FIGURE 1.7: Schematic view of an electron compression device.

In the case of the Tevatron, V. Shiltsev also showed that a possible layout would
be to install two electron lenses in the ring: one in a region where βx � βy and
another one in a region where βy � βx [16].

After some years of experiments in FERMILAB, they deployed operational de-
vices [17] and demonstrated their beneficial impact of the proton beam.

1.4.3 BBCWs

In 2000, JP. Koutchouk proposed for the first time a possible compensation using
current-carrying wires [18]. This device is the one of interest of this thesis and has
been tested in the early 2000’s in the SPS [19].

From Section 1.2, one can determine the field needed to compensate the LRBB
interaction. But the calculation has been made for the effect of one bunch. That
would means that one wire should be installed for each of these encounters, which
is technically impossible. The goal is then to compensate the integrated effect.

During the last technical stop, four wires have been installed in the LHC, around
the IP5 on B2. The wire has to imitate B1 in order to compensate the long-range
beam-beam interaction, while keeping a relatively small crossing-angle.

Figure 1.8 shows the actual configuration of the wires in IP5.
The wires are embedded into the jaws of two collimators (TCTPH.4R5.B2 and

TCL.4L5.B2). In the present situation only the two inner wires - the ones who are
between the two beams - can be powered as it is shown in Figure 1.8. Figure 1.9
shows a picture of the present installation in the LHC tunnel.

The goal of these wires is to mimic a virtual B1 with opposite charge in order to
compensate all the multipoles of the LRBB interaction. The wires can be powered
up to 350 A and can be moved relatively closed to B2.

The need of two wires As we said, in the present LHC we will power two wires
around IP5. Exactly two wires are indeed needed. For the dipolar kick, assuming
a perfect vertical alignment, one wire should be enough as there is no effect on the
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BBCWI.4R5
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FIGURE 1.8: Wires configuration around IP5: the black one are pow-
ered, the grey ones are not.

vertical plan. However the issue comes with the linear tune shift. It is indeed posi-
tive in one plan while negative in the other one. Mathematically speaking, assuming
that the distance between the beam and the wires is fixed, the linear tune shift is a
two equations problem. To solve it correctly, one has to introduce two unknowns:
the current carried by the left wire and the current carried by the right one. This is
the reason why one needs exactly two wires (per IP) to compensate the LRBB inter-
action.

With these elements, the HL-LHC baseline reposes now on the combination of
different technical solutions. The BBCWs solution is called Plan B HL-LHC, the first
choice being the crab cavities. On the other hand, as crab cavities represent an impor-
tant technical challenge, a combination of these and BBCWs can also be considered.
Keeping a low crossing angle could indeed be beneficial as it allows to lower the
recquired voltage in the crab cavities.

As BBCW remains the solution of interest for this thesis, the next section will
study how can a wire compensate the long-range beam-beam interaction in the LHC.

1.5 The beam-wire equivalence

Before characterizing the magnetic field created by a DC wire, one has to ensure that
a beam could indeed be equivalent to a beam. In the following, we will assume a
weak-strong regime. In this approximation, B1 is supposed to have a much larger
intensity than B2 so it can be considered as invariant in time. One can therefore
study the effect of the strong beam on the weak one. In this section we will show
how B1 can be equivalent to a wire and under which hypothesis. Finally, we will see
how only two wires can compensate all the long-range encounters.

1.5.1 Comparison of the forces created by a beam and a wire

In Section 1.2, we have seen the effect on a beam on a particle. This effect is derived
from the electrostatic field created by a single bunch its own rest reference system.
Moreover, this result has been obtained under an important hypothesis: the beam is
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FIGURE 1.9: Present installation of the wires in the LHC tunnel.

supposed to be round (σx = σy = σ) and bi-Gaussian. Far enough from the strong
beam, this hypothesis is valid since we do not see the charge distribution anymore.

On the other hand, in the laboratory frame, one can compute the magnetic field
created by a wire carrying a current I . In these two different frameworks, the fields
are not the same. However, one can compute the Lorentz force and the associated
kick given to a particle traveleving far enough from the source (r >> σ). Adding
the ultrarelativistic approximation (β ∼ 1), Equation 1.5 yields to [4]:

∆x′ = −2Nrpx

γr2
= − Ne2

2πε0mc2
x

r2
(1.7)

where rp = e2

4πε0mc2
is the proton radius and γ the relativistic factor. For the wire, for

a far enough particle (comparing to the wire radius) one can obtain:

∆x′ =
qcµ0Ilwx

2πr2mc2
(1.8)

where lw is the length of the wire. The two kicks are then equivalent if the relation:

Ilw = qcN (1.9)

is verified. In the case of LHC, this relation gives the needed integrated current to
compensate one long-range encounter:

Ilw = 5.6 A.m. (1.10)

Graphically, one can add the kick given by a wire to Figure 1.4 in order to obtain
Figure 1.10 which shows the beam-wire equivalence.
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FIGURE 1.10: The forces created by a bunch or a DC wire are the same
since the observer is far enough.

We showed that a long-range encounter can be compensate with a wire. But
technically it is impossible to install one wire per encounter. The section justifies
therefore the use of two wires to compensate all the encounters present around the
IP.

1.5.2 Resonance driving terms: 30 encounters and 2 wires

A nonlinear system can generally be described by a Hamiltonian, characterized by
both the amplitude dependant tune shift and the so-called resonance driving terms
(RDT) [20]. One can show that these RDTs can be derived, for sextupoles, octupoles
or higher orders [21].

In his article [12], S. Fartoukh shows that the RDTs induced by the LRBB inter-
action can be derived from the multipolar expansion and are given by the following
expression:

cLRpq =
∑
k∈LR

β
p/2
x (sk)β

q/2
y (sk)

dp+qbb (sk)
(1.11)

where p and q are integers corresponding respectively to normal and skew reso-
nances in case of a horizontal crossing and dbb is the physical beam-beam separation.
Ideally, one should use exactly one wire per encounter, which is technically impossi-
ble for some obvious reasons. In the real case, the two wires on left and rights parts
of the IP should then compensate these RDTs. One can therefore define the RDT
induced by the wires:

 cw,Lpq ≡ Nw,L
(βw,Lx )p/2(βw,Ly )q/2

(dw,L)p+q

cw,Rpq ≡ Nw,R
(βw,Rx )p/2(βw,Ry )q/2

(dw,R)p+q

(1.12)

where dw is the physical distance between the wire and the weak beam (B2 in our
case) and Nw the integrated current in [A.m] carried by the wire. Ideally, the goal
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would therefore be to find a set of solutions (Nw,L, Nw,R, dw,L, dw,R) that minimizes
all the RDTs.

On the other hand, one very important aspect to be taken into consideration is the
aspect ratio at the wire location, rw ≡ βwx

βwy
. S. Fartoukh indeed showed numerically

that it exists an optimal aspect ratio that could minimize all the RDTs, even if no
analytical proof has been given yet. For the HL-LHC, this ratio should be either
rw ∼ 2 or rw ∼ 0.5 as the (HL-)LHC optics is antisymmetric. These ratios give a
possible location for the wires, respectively right after D1 or in the Q4/Q5 region.
Finally, numerical results have shown that in case of a nonoptimal ratio (like in the
present LHC case, where rw,L ∼ 0.6 and rw,R ∼ 1.7), it is still more efficient to correct
highest possible terms in order to minimise all the other orders.

As a conclusion, one has seen how the 30 long-range encounters of the IP can be
potentially compensated with only two wires, if their location is choosen properly.

In the next chapter, we will see more into detailed the behaviour of teh BBCWs
in terms of magnetic fields, especially from the multipoles point of view.
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Chapter 2

Characterization of the BBCW
field: the multipoles formalism

In this chapter we will give a more detailed decription of the previouly introduced
device: the BBCW. After having introduced the multipoles formalism, we will apply
it to the specific case of a DC wire.

2.1 Multipolar expansion formalism

Let us assume a current source, in free space. If we power this source, it will create
a magnetic field. In a two dimensions space, one can assume a cylindrical geometry
of the problem, the derivative of a field component along the z-axis is vanishing
by definition. Under these hypothesis, if one looks at a location far enough from
the source (in vacuum, no charges, no current), the function describing the field or
the potential created by the source respects the Cauchy-Riemann conditions and is
therefore analytic. From Fourier formalism [22], that implies that this function can
be expanded in series. In other words, one can project the field or the potential in a
cosinus-sinus orthogonal base.

Keeping the field expressed in a vector base of the plane gives us a local in-
formation about the field. This argument is the reason why we are interested into
multipoles. They indeed allow us to access global information. Once multipoles are
known, one knows the behaviour of the field in the entire region where the multipole
expansion is valid.

From a magnet point of view, that means that a magnetic field can be seen as
the sum of the (more or less important) contribution of a dipole, a quadrupole, a
sextupole, and so on. This is called multipoles formalism. Moreover, we know from
literature (for instance in [23]) that a magnet can be normal or skewed (rotated with
respect to the beam). An example is shown for the quadrupole in Figure 2.1. This
can be linked mathematically to the cosinus-sinus base: the projection on cosinus
gives the normal component of the considered pole, while the sinus component is
the skew one.

So finally, under certain hypothesis, every field can be expanded into multipoles
and seen as an infinite sum of contributions. All the mathematics and expressions
are reported in Appendix B. To study the BBCWs, one can expand the magnetic field
created by a DC wire. The following introduces the method used to achieve this
goal.
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FIGURE 2.1: Magnetic field created by two types of quadrupoles.

2.2 Analytical multipolar expansion of a DC wire

Before attacking the real BBCW case, one can develop the introduced formalism on
an analytical case. This section therefore studies the magnetic field created by an
infinite wire. In a first approach, we will determine an expansion circle along which
the azimuthal field will be calculated in order to evaluate the multipoles. In a second
approach, we will use an analytical expression of the multipoles created by a finite
wire, provided by [12].

2.2.1 Definition of the problem

To keep the two approaches coherent, we use the conventions defined in [12]. In the
weak-strong regime, the wire is supposed to imitate the strong beam. We assume
therefore an infinite wire, centred in the complex plane in z0 = x0 + iy0, with a
radius r0. Let us now consider a test particle of the weak beam (B2), located in
z = x + iy with respect to its centroid. This particle is then located in z − z0 with
respect to the wire centroid. As we are interested in evaluating the multipoles at the
test particle location, one has to define the expansion circle such as it is centred on it,
with a radius R.

We assume the expansion circle to be in free space, characterised by its perme-
ability µ0. This means that our study is only valid if the wire is not included in the
expansion circle. Mathematically, the circle has to verify the condition: R < |z − z0|.

Figure 2.2 shows an example, in which we chose to center the wire in (x0, y0) and
to align vertically the test particle and the wire.

In this situation, two different polar bases have to be considered. The first one
is linked to the wire and noted Bwire = (ρ, φ). The second one is linked to the ex-
pansion circle and is noted Bcircle = (R, θ). One can now define the points of the
expansion circle in Bcircle:

{
xc = R cos θ + x0
yc = R sin θ + y0.

(2.1)

2.2.2 Field created by an infinite wire and its multipoles

Let us assume that the wire is carrying a current I . In Bwire, the magnetic can be
expressed by:
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~B = Bφ~eφ +Bρ~eρ =
µ0I

2πρ
~eφ (2.2)

as the radial component is vanishing.
Then the azimuthal field with respect to Bcircle is given by projecting theBφ com-

ponent via the θ and φ angles:

Bθ =
µ0I

2π
√
x2c + y2c

cos (θ − φ). (2.3)

Figure 2.3 shows this field along the expansion circle. The field shown here cor-
responds to the geometrical situation presented in Figure 2.2.
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FIGURE 2.3: Azimuthal field along the expansion circle.
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Through this plot, one can note that the field is, as expected, positive and neg-
ative, but also that the minimum and the maximum do not have the same absolute
value. The Bθ field is indeed stronger in θ = 0 as the considered point is closer to
the wire.

Then, in order to obtain the multipolar expansion of this field, one has to com-
pute the Fourier transformation of it, using a Fast Fourier Transform algorithm (FFT).
The real and imaginary parts of the FFT give respectively the normal and skew com-
ponents of each multipole. Figure 2.4 shows the multipolar expansion of the field.
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FIGURE 2.4: Multipolar expansion of the analytical field created by
an infinite wire.

Several points have to be checked. First of all, the zero order term is zero, as
there is no current source in the expansion circle. Moreover, the skew components
are vanishing, as the centroid of expansion circle and the one of the wire and aligned
with respect to y-axis. Finally one can retrieve, for the dipole - which is the dominat-
ing term, a field of around 67 Gs (in Figure 2.3, all the contributions are considered,
especially the 10 Gs coming from the quadrupolar term).

2.2.3 Analytical expressions of the multipoles

In his article [12], S. Fartoukh proposed also an analytic expression for the multipolar
expansion of the field created by a wire. The wire is now supposed to have a finite
length. This length - the so-called equivalent length Leq - can be determined using
a simulated grid comparing with the infinite wire as we will see into details later.
Then, the multipoles are given by Equation (2.4):

Bk + iAk =
µ0(IL)eq

2π

1

zk0
(2.4)

where k is the pole order. From this expression, one can compute the normal (Bk)
and the skew (Ak) components. Figure 2.5 shows again the multipolar expansion.

We retrieve the 67 Gs that we found with the other method. Moreover, the skew
components are perfectly vanishing, in agreement with Figure 2.4.
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FIGURE 2.5: Multipolar expansion of the analytical field created by a
finite wire.

2.3 Multipolar expansion from a simulated 3D field map

As a second step, one can study a 3D simulated field map. In this case, the cylindrical
symmetry is indeed broken and one has to ensure that the multipolar expansion is
still valid.

2.3.1 Geometry of the problem

As said in the previous chapter, the wires are embedded into the jaws of a collimator.
Figure 2.6 shows the geometry of the system. The wire is almost one meter long and
the inner part of the collimator (black on the figure) is made of tungsten.

FIGURE 2.6: Collimator jaws with the wires.

In this framework, the point (0, 0, 0) is located at the center of the wire. From
simulations, one can therefore obtain the field map presented in Figure 2.7. The
three components of the field are also given Figure 2.8.

As expected from Maxwell’s theory, the evolution of the By component is com-
pensated by a variation of the Bx and Bz components so the relation div ~B = 0 is
verified. Moreover, Figure 2.9 shows the broken cylindrical symmetry.



22 Chapter 2. Characterization of the BBCW field: the multipoles formalism

Z [mm]

6004002000 200400600 X [m
m

]

8
6
4
2
0
2
468

Y
 [

m
m

]

8
6
4
2

0
2
4
6
8

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

F
ie

ld
 A

m
p

li
tu

d
e
 [

T
]

FIGURE 2.7: Simulated 3D field map.
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Finally, the up-down symmetry is also broken by the curvature of the wire after it
exits the collimator. This causes the non-vanishing Bx component at the wire center.
This explanation has been verified by simulated another map without this curvature.

Moreover, it is also possible to determine an equivalent length of the wire, by mak-
ing the ratio between the integrated field along the z axis and the field given by
Biot-Savart law [24]:

Leq =

∫ +∞
−∞ By(z)dz

B0
(2.5)

One can find an equivalent length of about 965 mm, to be compared to the phys-
ical length of the wire which is 984 mm. The error of about 2 % is negligible in this
problem as the intensity variation of the bunches has an accuracy of about 10 %. One
can also defined a quadrupolar equivalent length by integrating the field gradient
along the z axis and dividing by the theoretical one. This equivalent will later allow
us to forget about the grid and to work with an integrated field.



2.3. Multipolar expansion from a simulated 3D field map 23

800 600 400 200 0 200 400 600 800
z [mm], x = 0.25 mm, y = 0.25 mm

1.0

0.5

0.0

0.5

1.0

[G
s/

m
]

dBz/dz

dBy/dz

dBx/dz

FIGURE 2.9: Magnetic gradient along the wire. The cylindrical sym-
metry is broken.

Finally, before calculating multipoles from the map, one has to ensure that the
grid is dense enough to obtain a good convergence.

2.3.2 Convergence of a grid

The goal here is to highlight the fact that a grid needs to be rich enough to get the
convergence of the multipoles amplitude. In order to prove that, we created an
analytical grid with a variable size. Then, we study the evolution of the multipoles
with the grid size. Another important parameter to study the map is the number of
interpolation points. One indeed need to interpolate points to obtain a regular grid
along the expansion circle (passage from cartesian to polar base).

From the study of the 2D-map, we concluded that 1000 interpolation points along
the considered expansion circle are enough for a fast convergence. Using this value
one can now study the evolution of the multipolar expansion with the grid step. For
the normal components, the results are given in Figure 2.10.
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One can also study this problem considering the simple multipoles. Figure 2.11
then shows the evolution of each multipole with the grid size.
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FIGURE 2.11: Convergence for each single multipole.

Finally one can conclude that the convergence can be obtained for a grid with
a step size of 0.5 mm which is coherent with the grid we actually have. It is now
possible to study the multipolar expansion of the real 3D-grid.

2.3.3 Multipolar expansion of a 3D-grid

One can now study the multipolar expansion of the grid in the same way as the an-
alytical case. Since the equation ∂

∂z = 0 is not valid anymore, the result will tell us if
the multipolar expansion is still valid, by checking the dependancy on the expansion
circle radius.
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FIGURE 2.12: Multipolar expansion.

The results obtained in Figure 2.12 are coherent with the analysis of the 2D map.
Since we checked that the multipoles do not depend on the radius of the expansion
circle, this formalism is valid, even if it a 3D map with a non vanishing ∂

∂z .
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2.4 Conclusions and expectations: the beam-wire equivalence
from the multipoles

Through this chapter, we observed that the simulated map fits with the analytical
results of the multipolar expansion of a magnetic field created by a wire.

Based on these results, one can now also see the equivalence between the wire
and the beam from the multipoles.

Keeping in mind that we are in free space, and considering that a beam is not any-
more a round bi-Gaussian distribution (except very closed to the IP) but a truncated
bi-Gaussian one (elliptic or rectangular, corresponding to a beam being scraped by
the collimators), the created field can be expand into multipoles. All the multipoles
are then present. Let us consider only the four first ones. Figure 2.13 shows the su-
perposition of all the multipoles in terms of field. We assume an ideal case and an
analytic field.
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FIGURE 2.13: Superposition of the four first multipoles created by a
beam (ideal case).

There is only one point (with a 2π-periodicity) where all these fields are in phase
and then sum up as it is shown on Figure 2.14.
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FIGURE 2.14: Sum of the four first multipoles created by a beam (ideal
case).

For an infinite number of multipole, one will obtain a Dirac peak for this partic-
ular angle. And a Dirac peak in this polar base, is nothing but a wire. By summing
all the multipoles, one should tend to Figure 2.3. The field shown in this plot indeed



26 Chapter 2. Characterization of the BBCW field: the multipoles formalism

contains all the multipoles. The major difference comes from the location of the ex-
pansion. In Figure 2.14, one had implicitly assumed a non dimensional wire and an
expansion circle touching it.

Now one can expect to retrieve the same results with an experimental study of
the wire. These tests have been done, for both injection and top energy in the LHC
as we will see in the next chapter.
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Chapter 3

Highlighting the effect of the
BBCWs on the weak beam in the
LHC

In the LHC, the BBCW protoypes installed around IP5 were tested at injection (450 GeV)
and collision energy (6.5 TeV). In this chapter we report the results of these tests and
introduce the concepts that will be useful for the test of BBCWs with two colliding
beams

3.1 Test of the BBCWs at injection energy

During the night between the 14th and the 15th of May 2017, we had the opportu-
nity to test the wires at injection energy. This was the very first test of the BBCW
prototypes in the LHC in presence of beam. The goal was to power both the wires
up to 300 A and to move the jaws of the collimators, in order to see a visible effect
on the beam.

3.1.1 Experimental setup

As described previously, four wires are installed around IP5, on B2, but only two can
currently be powered (one on each side). The wires are embedded into collimators
jaws (3 mm further than the edge of the jaw) so we can move them and adjust the
beam-wire distances dR and dL respectively for the right and left collimators.

The two currents carried by the wires (IR and IL) should be positive. Two pro-
tons circulating in opposite directions are indeed repelling each other. In order to
compensate it, the wires have therefore to attract B2. B1 is circulating in opposite
direction with respect to B2 so it can be seen as a positive current of electrons, and
so the wires.

During these tests, our main variables will therefore be dR, dL, IR and IL. Figure
3.1 summarizes the experimental setup.

3.1.2 Experimental results

During 4 hours, three bunches (with reduced intensity) were circulating as B2, with-
out B1. In the mean time, we performed different tests such as moving the jaws
or powering the wires. Concerning the data acquisition, the main observables of
interest were the beam lifetime, the closed orbit and the machine tunes.
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FIGURE 3.1: Summary of the experimental set up and conventions.

About the beam lifetime Figure 3.2 shows the lifetime evolution of each bunch.
This lifetime is calculated from the Fast Beam Current Transformers (FBCT). These
devices measure the bunch-by-bunch beam intensity. From this evolution one can
obtain the bunch-by-bunch lifetime. As we will see later into details, this method
presents some inconvenients to be discussed and alternative methods will be de-
scribed in Appendix C.

These first observations lead to a couple of remarks. First of all, as expected, all
the bunches are affected by the wires. Secondly, to have a visible effect on the beam,
the wire has to be at a distance lower than 10 mm. As one can see in the time interval
from 04:00 to 06:00, the beam lifetime is affected only once the jaws has been moved
at a distance lower than 7 mm. Finally, the green area shows the time interval during
which both wires were powered. The main goal was to have an evolution of the four
variables previously described in Section 3.1.1. At collision energy, the effect of the
two wires are summing up. But at injection energy, the optics is not the same, and
so the phase advance between the two wires. The green area highlights the fact that,
for this particular optics, the effect of the two wires might compensate each other for
some resonances as a gain of 10 hours in lifetime is observed.

About the tune shift As we have seen in Section 2.4, the magnetic field created by
a DC wire in vacuum can be expanded into multipoles. The quadrupolar term will
thus be responsible for to the linear tune shift. This linear tune shift depends on
different parameters of the problem. First of all, it depends on the two quadrupolar
termsBRIGHT

2 andBLEFT
2 , that to say, I

r2
. Secondly, it depends on the two correctors

(one focusing Qfoc, the other defocusing Qdefoc) that could be used to trim the tune
to its nominal value. At injection energy in the LHC the horizontal tune isQH = 0.27
and the vertical tune is QV = 0.295. Finally, a natural drift in generally observed in
the tune. This can be modelized by a linear time dependency t. Taking all these
variables into consideration, one can assume a linear model for both the horizontal
and vertical tunes. Then the tune shift is following this equation:

∆Q = [k1 k2 k3 k4 k5] · [t BRIGHT
2 BLEFT

2 Qfoc Qdefoc]
t (3.1)

The goal is then to determine the ki coefficients from the observations. These can be
obtained by solving the linear problem using the least square method. One can then
plot the results so see how the model fits with the real experimental data. This plot
is shown on Figure 3.3.
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FIGURE 3.2: Summary of the 15th May test: the wires current, the
position of the jaws and the bunch-by-bunch lifetime are represented.
The green area shows the time interval during which both the two

wires are powered.

The first possible observation is that the wires seems indeed to have an effect on
the tune. In the horizontal plan, the tune shift is negative while it is positive in the
vertical plane. The robustness of our model will be tested in Section 3.1.3.

About the closed orbit From the BPM pick-ups reading, one can obtain the closed
orbit. About 500 BPM per beam are installed in the LHC. In our case we are inter-
ested in the local one, that is to say the ones embedded in the collimators. There
are indeed two BPMs embedded in both of collimators, positionned downstream
and uptstream with respect to B2 direction. As we are only interested in the beam
position in average in the collimator in this case, the shown values are calculated
as downstream/upstream average for each collimator. Once again one can fit the
measurement with a linear model in the same way as we did for the tune in the
previous paragraph. The linear problem can be created with similar variables: the
natural drift is taken into account as a time dependency t, the two dipolar terms
corresponding to I

r on the right DRIGHT and on the left DLEFT , and three orbit cor-
rectors that have been used during the experiment (generally the orbit correction is
made with the local correctors) which are represented by CO1, CO2 and CO3. Then
the linear problem can be presented as:
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FIGURE 3.3: Linear tune shift induced by the DC wire at injection:
comparison between experimental data and fit of the linear model.

∆x = [k1 k2 k3 k4 k5 k6] · [t Dright Dleft CO1 CO2 CO3]t (3.2)

This system can be solved with the least square method and the results are sum-
marized in Figure 3.4.

As for the tune case, the effect of both wires is clear. Moreover, if one of the
wire is powered, the effect on the closed orbit will be the same: a negative kick on
the right side of the IP, a negative one on the other side. From Figure 3.1, one can
conclude that the wires are therefore attractive as expected.

Now that we have a linear model for the tune and the closed orbit, one has to
compare this result with the theory.

3.1.3 Comparison of the results with the theory

In the previous part, we have fit a model to describe the evolution of the closed orbit
and the tune with the current carried by the wires, the distance between the wires
and the beam and the different correctors. We now have to verify the quality of this
model by checking if the metric is compatible with our expectations. In order to do
that, one needs to compare the ki coefficients obtained during the fitting with the
theoretical ones.
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FIGURE 3.4: Effect of the DC wires on the closed orbit at injection
energy: comparison between experimental data and fit of the linear

model.

Dipolar Effect Analytically, one can derive the dipolar kick given by a DC wire
from 3.3 [10]:

∆x′ =
µ0lw
2πBρ

Iw
r

(3.3)

where lw and Iw are respectively the length and the current of the wire, and r the
algebric distance between the wire and the beam. The effect of a kick given in s0 on
the closed orbit at the position s is described by Equation (3.4) [25]:

∆xs =

√
β0βs

2 sin(πQx)
cos(πQx − |µs − µ0|)∆x′ (3.4)

where β0 and µ0 represent respectively the beta function and the phase advance at
the position s0 while βs and µs are the same paramters at the location s. Locally
one can also derive the effect of a dipolar kick on the orbit. In this case the previous
formula becomes:

∆x0 =
β0

2 sin(πQx)
cos(πQx)∆x′. (3.5)
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This last formula is important in our case as we want to study the local effect of both
wires.

One has to notice that the effect on the closed orbit depends on the tune. The
survey is not detailed here but the main result of this effect is an error bar of about
2 % on the obtained coefficients.

Quadrupolar Effect One can also calculate the theoretical effect of a DC wire on
the tune. This effect can be derived from the general formula giving the tune shift
for a given quadrupolar error (∆Kl) [25]:

∆Qx,y = −β(si)

4π
(∆Kl)x,y. (3.6)

One has now to determine the quadrupolar error introduced by a DC wire. This
error corresponds to a force gradient and then varies with 1/r2. Using this informa-
tion and after some algebra one can obtain [4]:

∆Qx,y = ∓βx,yµ0lw
8π2Bρ

Iw
r2
. (3.7)

Summary Finally one can summarise the situation by ploting the comparison be-
tween the model coming form the experimental data and the theory for both the
dipolar and the quadrupolar effects. On figure 3.5 one can see the results for the
dipole, using the local BPMs included in the collimators (even if these results could
have been obtained with other BPMs), and on the figure 3.6 the results for the quadrupole.

Left W
ire

Right W
ire

0

10

20

30

40

50

60

70

[G
s.
m

]

B1 @10mm @300A

Theory

Measure (Left Tank)

Measure (Right Tank)

FIGURE 3.5: Comparison between the linear model and the theory:
dipolar component.

These results are valid for a current of 300 A carried by a wire at 10 mm from the
beam, at injection energy.

From this model, obtained and validated at 450 GeV, one can now rescale the
problem in order to implement feedforwards compensating the linear part of the
BBWC effect, as we will see in Section 3.1.4.
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3.1.4 From the model to the feed-forward implementation

The need of a feed-forward The BBCWs, as we saw in Chapter 2 are current-
carrying wires that will produce a magnetic field containing all the multipoles. How-
ever, compensating the linear part of the LRBB interaction can be done with the
dipoles and the quadrupoles present in the machine. Consequently the LHC is al-
ready optimized in this way. Adding a dipolar and a quadrupolar terms would
introduce another perturbation in the system and then has to be avoided. In other
words, one has to compensate the linear part of the BBCWs effect. This can be done
by implementing a set of values that the machine will have to apply if the wires are
powered, using the LHC feed-forward system.

About the feedbacks and the feed-forward In the LHC, several correctors are in-
stalled. This machine is indeed really sensitive and a simple ground vibration can
induce important changes in its behaviour. Consequently, if the machine detects a
change in the beams quality through all the dedicated instrumentation, the correc-
tors will automatically be trimmed to put back the beams to the nominal working
point. These corrections are called feedbacks: they act on the machine after the de-
tection of a malfunction. On the other hand, the machine could also react according
to a bunch of settings the operator implemented in. This means that the change in
the beam behaviour will be now anticipated (of course, if the source of this change
is known). This method is much faster as the machine does not have to wait to see
the change to correct it. This system is called feed-forward and will be particularly
useful in our case.

Characteristics of the feed-forward in the LHC The first results of the feed-forward
implementation in LHC are presented in [26]. In this proceeding, the authors show
how to act on the LHC Software Architecture (LSA) in order to trim the right pa-
rameters at the right time. In this paper the state of the art was still a level below
the actual one as they were only able to follow the beam during the ramp and the
squeeze. Now the LHC feed-forward is available in collisions. The main point is
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that all the trims have to be synchronised in order not to perturb the beam. Let
us take the example of the BBCW. The feed-forward system will act on different
power supplies which does not have the same evolution speed. Ramping the differ-
ent power supplies is generally done via a series of parabolas and lines, the so called
PPPL. The operator will then have to give the wanted current ramp in the wire and
the corresponding time interval as an input, and the feed-forward will optimise the
synchronisation of the different power supplies ramps. In any case, the beam is par-
ticularly sensitive to brutal variations. We will then try to be adiabatic enough not
to perturb it while ramping the wires current.

Implementation of the feed-forward In the previous section we verified a linear
model linking the closed orbit and the linear tune shift to different parameters. Now
that the model is valid, one can use the theoretical formulas to calculate the kick
given on the orbit and the tune shift induced by the BBCWs, assuming that the
model remains valid at top energy. Four values have to be given: for the orbit, two
correctors will correct the two wires, and for the tune shift, two correctors will cor-
rect the horizontal and the vertical tunes. The calculated values are variations. One
has then to add the initial values before entering them in the system as it does not
work with deltas. Finally, the values has to be given as an angle kick in radian for the
orbit and as the final value for the tune. The formulas to calculate these values are
given in Section 3.1.3. At top energy, as we are not allowed to move the collimators
jaws, the only variables in these expressions are the currents carried by the wires.

The tests at injection energy allowed us to fit a linear model which provided us
the right values to give to the machine at top energy. Before describing the exper-
iment of a possible LRBB compensation, BBCWs tests have also been done at top
energy.

3.2 Test of the BBCW at top energy

On the 12th of June, we had the opportunity to make a short test of the BBCW at top
energy. During one hour we were allowed to power both the two wires. However
because of the energy level of the machine we did not move the collimators jaws.

3.2.1 Experiment

The main difference with the previous test (energy aside) is the filling pattern. Dur-
ing this test the two beams were brought into collisions. Each beam consisted of ten
bunches.

The LHC filling pattern As the RF cavities generate an oscillating accelerating
voltage in a gap, one has to be ensure that the particles will always see this same
voltage. To do that, one has to choose the RF frequency fRF as an integer multiple
of the revolution frequency fref . This integer is called harmonic number h [27]:

fRF = h · frev. (3.8)

In LHC, the harmonic number is equal to 35640. It corresponds to the total number
of the so-called buckets. They represent a region in the longitudinal phase space
where a group of protons - a bunch - perform bounding oscillations as shown by
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FIGURE 3.7: A bucket and a bunch in phase space.

Figure 3.7 [27]. Even if the LHC could accelerate so 35640 bunches the spacing be-
tween them reduces this number to 3564 available slots and the nominal number of
bunches in the machine is currently 2808. Finally we call filling pattern the sequence
of slots occupied by the bunches. With two given filling patterns for B1 and B2 one
can obtain the crossing scheme giving the collisions between the different bunches
circulating in the machine.

The Table 3.1 gives the filling pattern used during our test.

B1 0 450 894 1200 1500 1785 2100 2450 2800 3117
B2 0 450 891 1200 1500 1785 2100 2450 2800 3117

TABLE 3.1: Filling pattern during the flat top test.

In this filling scheme one can see that only the two bunches 894 (B1) and 891 (B2)
are not colliding in IP1 and IP5. Otherwise nine pairs are colliding in both IP1 and
IP5 while 2 pairs are also colliding in IP2 and IP8. In our study of B2 the bunch 891
should be interesting as its lifetime evolution will not be affected by the burn-off -
the consumption of protons by collisions (cf. Section 4.2.1) - but mainly by the wires
effect.

3.2.2 Results

Bunch-by-bunch lifetime As in Section 3.1.2 one can study the evolution of the
bunch-by-bunch lifetime from the FBCT. The results are shown in Figure 3.8.

Several comments on these results can be made. First of all one can introduce
the fact that the lifetime of a bunch depends on its emittance. During this test the
bunches indeed had different emittances. Then one can see that the larger the emit-
tance the smaller the lifetime. Moreover one can also see that the effect of the wire
is much less visible than during the previous test. For all the colliding bunches the
lifetime is dominated by the burn-off. Finally one can also notice that the time reso-
lution is not enough to really appreciate the effect of the wires on the non-colliding
bunch lifetime (cf. Appendix C).

Total beam lifetime The total beam lifetime - without taking into account the
bunch-by-bunch deviation - can be observed through the losses thanks to the Beam
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FIGURE 3.8: Evolution of the lifetime bunch-by-bunch. The non-
colliding bunch is the red one.

Losses Monitors (BLM) (cf. Appendix C). From these losses one can compute the
beam lifetime. The results are shown in Figure 3.9.

The results of the two methods are coherent but the time resolution is much bet-
ter by using the BLMs, as the data does not need to be differencialized. The effect of
the wires is then more visible. The main issue is that to study the LRBB interaction
we are interested in the bunch-by-bunch lifetime. However, as the BLMs are long
ionisation chambers in the LHC, their time resolution is about 1 µs [28] which does
not allow to access bunch-by-bunch data.

3.2.3 Conclusions

Through these observations one has to draw conclusions for the next - more impor-
tant - experiment. The main issue seems to be our ability to access the bunch-by-
bunch lifetime with a good resolution. The FBCT gives indeed the bunch-by-bunch
intensity but to get the lifetime one has to integrate these values in long time win-
dows. To do that we need a sufficient amount of integration time otherwise the cal-
culated lifetime will be noisy and unexploitable. From that, one can select a couple
of points to keep in mind for the following:

• The wires have to be powered during a long time in stationary conditions
(same current and position) in order to get a sufficient amount of data to inte-
grate.

• Removing the proton-proton burn-off would allow to disentangle the effect of
the wires on the lifetime.

• One can also look at the other devices present in the LHC in order to get bunch-
by-bunch losses instead of bunch-by-bunch intensity: the diamond beam losses
monitors (dBLMs) could be a solution [29] (cf. Appendix C).

With all these elements in mind one can now define the procedure for the exper-
iment. In the next section we will describe this procedure, introduce the results we
obtained and give some conclusions and plans.
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Chapter 4

Testing the BBCW on two colliding
beams with long-range

In the previous part, we saw how can the BBCWs affect the weak beam, at injection
energy and at top energy, where the two beams were colliding without LRBB inter-
action. This chapter will then describe the most important experiment we led to see
a possible compensation of the LRBB interaction.

4.1 Experiment procedure

On the 1st of July, 10 hours of measurements in LHC have been dedicated to the
BBCW. The goal of this experiment was to test the BBCWs prototypes installed in
the machine in order to see their potential and their performance in the LRBB com-
pensation. Data acquired in this time interval and their study could possibly lead
to the installation of 4 additional wires around IP1 during the winter technical stop
2017/2018.

4.1.1 Filling scheme

During this experiment, we adopted a weak-strong regime, as described in Section
1.5. The filling pattern has been chosen such as we can see the difference between a
bunch suffuring the LRBB interaction and a bunch which is not. With this argument
one can construct the filling pattern. This corresponds to different types of machines,
as described in Figure 4.1.

The B1 filling scheme was:

• Slot 0: 1 nominal bunch with no HO neither LRBB

• Slot 100: 1 nominal bunch with 2 HO in IP1 and IP5 but no LRBB

• Slots 200 to 248: 1 train of 48 nominal bunches

And for B2:

• Slot 20: 1 nominal bunch with no HO neither LRBB (ideal storage ring, green
line on Figure 4.1)

• Slot 100: 1 nominal bunch with HO only (ideal collider, red line on Figure 4.1)

• Slot 224: 1 nominal bunch with HO and LRBB (real collider, blue line on Figure
4.1)
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FIGURE 4.1: Beam intensity evolution in an ideal storage ring (green),
in an ideal collider (red) and in a real collider (blue).

4.1.2 Procedures along the cycles

After injection, we started to ramp until flat top energy and then put the two beams
in collisions according to the nominal sequence for ATS (cf. Section 1.1) optics. After
the tune optimisation and the emittance measurements with the wire scanners, we
checked the vertical alignment of the jaws in order to avoid a vertical kick from the
wires.

As a first step we needed to see a clear signature of the LRBB interaction before
compensating it. This signature would be a clear difference between the lifetime of
the bunch suffering HO and LRBB and the lifetime of the one suffering HO only. As
the signature was not immediately clear we blown up the bunches until it was.

Once the signature of the LRBB interaction was found we started to power the
wires step by step up to 350 A in order to see a compensation of the LRBB interaction.
To see a clear effect of the wires on the bunch suffering HO and LRBB a lifetime
decreasing was necessary. That has been done by reducing the crossing angle from
300 µrad to 240 µrad and blowing up the emittances again.

During the experiment, the closed orbit feedback was on. Thanks to the values
calculated in the previous chapter, the feed-forward system corrected automatically
the dipolar and quadrupolar effects of the wires, trimming the current into the LHC
correctors.

4.2 Results: beneficial effect of the BBCWs

During the experiment, several observables have been monitored online, mainly
tune, closed orbit and losses (lifetime). Afterwards an important work of post pro-
cessing has been necessary to recover all the physics behind these hours of exper-
iment. In the following sections we will deal with three points of view to see the
partial compensation of the LRBB interaction and the expected beneficial effect of
the wires on the bunch suffering LRBB interaction.
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4.2.1 Total effective cross-section of the proton-proton interaction

The first way to see the effect of the wires is to compute the bunch-by-bunch proton-
proton effective cross-section. The collisions, whatever their nature, are indeed
interactions that can be associated to a cross section. For instance the proton con-
sumption by head-on collisions, the so called burn off can be represented by a cross
section σpp = 80 mb.

To see the effect of the wires on the beam one can study the effective cross section
σeff defined with the variation of the number of protons N by Equation (4.1):

dN

dt
= −σeff

∑
i

Li (4.1)

where Li is the instantaneous luminosity at IPi (IP1, IP2, IP5 and IP8). Then one can
obtain the effective cross section:

σeff = − 1∑
i Li

dN

dt
(4.2)

In our case we need to use both the luminosity from IP1 and IP5. Figure 4.2
shows the evolution of the effective cross section for the bunch suffering both LRBB
and HO interactions and for the bunch suffering only HO interaction.
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FIGURE 4.2: Effective cross section evolution in time and current car-
ried by the wires.

The bunch suffering only HO interaction tends exponentially to the burn-off
physical cross-section. For the other one the evolution is clearly influenced by the
wires activity. When both the wires are powered the effective cross section tends
to be the same as the other bunch, meaning that the cross-section associated to the
LRBB interaction decreases.

4.2.2 Beam intensity losses

The losses can also give us a representation of the effect of the wire. To see this effect
from an alternative point of view, one can plot the ratio between the losses from the
two bunches. This result is shown in Figure 4.3.
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FIGURE 4.3: Ratio between the losses coming from the bunch suffer-
ing HO only and the losses coming from the bunch suffering HO and

LRBB.

This figure does not allow us to appreciate the effect of the wires on one specific
bunch but shows how they tend to put the losses from the two different bunches at
the same level (the ratio is around 0.9 in the first step).

4.2.3 Bunch-by-bunch lifetime

Finally one can see the compensation through the bunch-by-bunch lifetime. This
lifetime is obtained from the bunch-by-bunch intensity (from the FBCT, cf. Appendix
C) after integration and differentiation. As we have seen in Section 3.2.2 and as it
will be developed in Appendix C, the need of an integration implies that the time
resolution of the bunch-by-bunch lifetime is very low (in our case, 2 minutes).

Awared of these issues, Figure 4.4 shows the evolution of the bunch-by-bunch
lifetime during the experiment time.
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FIGURE 4.4: Bunch-by-bunch lifetime obtained from the intensity
variation (FBCT).

On this plot one can observe how the wires degrade the lifetime of the bunch
suffering HO only while improving the lifetime of the one suffering HO and LRBB
interaction, as initially expected.
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4.3 Conclusions and perspectives

During this experiment, we observed the beneficial effect of the wires on the beam
lifetime, seeing for the very first time in the LHC a potential partial compensation
of the long-range beam-beam interaction using a DC wire. The results introduced
in the previous section are still preliminary results and a full investigation of the
compensation optimisation has still to be carried out.

With these results, we proved that the BBCWs have an effect on the beam life-
time. During the next experiment the goal would be to optimise the current carried
by the wires and the distance they have to be from the beam.
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Conclusion

In the Large Hadron Collider at CERN, protons collide, delivering luminosity to
four detectors present in the machine. The collisions occur in the so-called inter-
action points. By sharing the same vacuum pipe, residual collisions occur with a
longitudinal offset with respect to the Interaction Point. This effect, called Long-
Range Beam-Beam interaction has to be avoided as it degraded the beam lifetime by
creating additional losses.

In order to compensate the LRBB interaction, several options have been consid-
ered. One of these is the BBCW. It consists of a DC wire carrying a current in order
to mimic and compensate one beam. Through this report we also showed the beam-
wire equivalence and under which hypothesis this approximation is valid. This wire,
as the LRBB interaction, produces all the multipoles. The effect of the LRBB inter-
action contains a linear part that is already compensated by the current machine by
optimising dipoles and quadrupoles fields. The linear part of the effect induced by
the BBCWs would add another perturbation. We compared therefore the experi-
mental data obtained from the prototype commissioning at injection energy to the
theory. We then fit a linear model and rescaled the problem at flat-top, in order to
compensate the linear part of the wire effect.

Moreover, we participated in planning and performing an experiment to see a
possible compensation of the LRBB interaction in the LHC. From the experimental
data, we showed a beneficial effect of the wire on the beam lifetime of a bunch suf-
fering LRBB interaction, proving that a partial compensation is possible.

The goal of the next experiment would be then to quantify the effect of the wire
by optimizing the wires currents and the beam-wire distances. Other points will
also be under investigation, as the distribution of the corrections provied by the
feed-forward In a further future, this experiment could let us prove the necessity
of installing a new prototype around IP1 during the next technical stop in order to
highlight the possibility of a compensation of all the LRBB encounters in the machine
(IP1 and IP5) during the next LHC run. Finally, as the aspect ratio is now fixed in
the current LHC, simulations are ongoing in order to determine the best BBCWs
locations for the next upgrade of the machine: the HL-LHC.
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Appendix A

Closed Expression of the
Long-Range Beam-Beam
Interaction

In this appendix, we give the closed expression of the effect of the LRRB interaction
on a beam in terms of orbit deviation (dipolar kick) and tune shift (quadrupolar
kick). The higher orders are not linear and so do not have an analytical expression.
They result in a tune spread, very close to the one obtained with an octupole as it
shown by S. Fartoukh [12].

A.1 Dipolar kick

The dipolar kick from LRBB interaction can be derived from the expression of the
head-on interaction kick, by shifting from x to x − L for an encounter located at a
distance L from the IP. In the general case, the dipolar is then derive from Bassetti
and Erskine formula [8] and after some algebra, one can obtain [10]:

∆x′ = −Nprp
γ

√
2π

σ2x − σ2y
=[w(

(x− L) + iy√
2(σ2x − σ2y)

)− e
−(x−L)2

2σ2x
− y2

2σ2y · w(
(x− L)

σy
σx

+ iy σxσy√
2(σ2x − σ2y)

)

− w(
−L√

2(σ2x − σ2y)
)− e

−L2

2σ2x · w(
−Lσy

σx
+ iy σxσy√

2(σ2x − σ2y)
)]. (A.1)

And for the vertical plane:

∆y′ = −Nprp
γ

√
2π

σ2x − σ2y
<[w(

(x− L) + iy√
2(σ2x − σ2y)

)− e
−(x−L)2

2σ2x
− y2

2σ2y · w(
(x− L)

σy
σx

+ iy σxσy√
2(σ2x − σ2y)

)

− w(
L√

2(σ2x − σ2y)
)− e

−L2

2σ2x · w(
L
σy
σx

+ iy σxσy√
2(σ2x − σ2y)

)] (A.2)

where Np is the number of protons per bunch, rp the proton radius, σx,y the trans-
verse RMS beam size andw the functionw defined, for a complex number z = x+iy,
by:
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w(z) = e−z
2 · erfc(−iz). (A.3)

In the round beam approximation (σx = σy), this relation becomes:

∆x′ =
−2rpNp

γ

[
x− L
r2

(1− e
−r2
2σ2 ) +

1

L
(1− e

−L2

2σ2 )

]
. (A.4)

And for the vertical plan:

∆y′ =
−2rpNp

γ

y

r2
(1− e

−r2
2σ2 ) (A.5)

where r =
√
x2 + y2, rp is the proton radius, Np is the number of proton per bunch

and γ the relativistic Lorentz factor.

A.2 Linear Detuning

One can also obtain a closed form for the linear tune shift. In case of horizontal
crossing, one has:

∆Qx =
2Nprp

4πγεxd2

[
1− e−

d2

2 (1 + d2)

]
(A.6)

∆Qy = − 2Nprp
4πγεyd2

[
1− e−

d2

2

]
(A.7)

where d is the normalized distance and εx,y the emittance.
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Appendix B

General Multipolar Expansion
Formalism

The purpose of this Appendix is to present into details the general multipolar ex-
pansion formalism. This demonstration mainly comes from [30].

The figure B.1 [30] shows the situation we are studying. We indeed define a point
by its coordinates in the complex plane z = x+ iy.

FIGURE B.1: Example of a situation for the multipolar expansion. The
expansion is valid only inside the circle of radius rc

In this figure we assume to be in free space (no magnetic material, no source).
We assume now a two-dimensionnal magnetic field ~B. From Maxwell equations

we have:

div ~B = 0 (B.1)

which implies that the magnetic field can be defined from a vector potential ~A such
as:

~B = rot ~A. (B.2)

The important point to notice is that this vector potential only has a longitudinal
component as the field is transverse only. With a 2D assumption, one can write:

~A = As · ~es. (B.3)
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Then we assume to be in free space, for instance, in the vacuum chamber of an
accelerator. This implies that the curl of our magnetic field is nul and then that ~B
derives from a scalar potential V :

~B = − gradV. (B.4)

In our system of coordinates one can obtain the following relations:

Bx = −∂V
∂x

=
∂As
∂y

(B.5)

By = −∂V
∂y

= −∂As
∂x

(B.6)

These two relations reprensent the Chauchy-Riemann conditions. That allows
us to define a complex potential:

Ã(z) = As(z) + iV (z) (B.7)

which can consequently be written as a power series:

Ã(z) =

∞∑
n=0

(λn + iµn)zn. (B.8)

where λn and µn are real numbers.
The series converges if and only if for |z|< rc, where rc is the radius of conver-

gence. Physically this corresponds to the shortest distance between the center of our
expansion circle and a material or a current source.

In our case it is more convenient to work in cylindrical coordinates. From now
we will work in the base (r, φ). We know that the magnetic field can be derived from
the scalar potential V which is the imaginary part of the complex potential Ã(z) we
have defined previously. In the polar base we obtain:

V (r, φ) =
∞∑
n=0

(µn cosnφ+ λn sinnφ)rn. (B.9)

From equation B.4 one can then obtain:

Bφ = −1

r

∂V

∂φ
= −

∞∑
n=1

n(λn cosnφ− µn sinnφ)rn−1 (B.10)

Br = −∂V
∂r

= −
∞∑
n=1

n(µn cosnφ+ λn sinnφ)rn−1. (B.11)

For convenience we can introduce a normal component coefficient bn and a
skew component coefficient an defined as:
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bn = −nλn
B0

rn−10 (B.12)

an =
nµn
B0

rn−10 (B.13)

where r0 is a reference radius and B0 the main field component.
Finally, we get the general multipolar expansion formalism in cylindrical coor-

dinates:

Bφ(r, φ) = B0

∞∑
n=1

(bn cosnφ+ an sinnφ)(
r

r0
)n−1 (B.14)

Br(r, φ) = B0

∞∑
n=1

(−an cosnφ+ bn sinnφ)(
r

r0
)n−1 (B.15)

In this description, the terms n = 1, 2, 3, 4... represent respectively the dipolar,
quadrupolar, sextupolar, octupolar terms.
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Appendix C

Beam Instrumentation: measuring
the beam lifetime

In this appendix we will bring some details about the beam lifetime, its definition,
the way we can calculate it from raw data but mainly how this raw data can be
obtained during the experiment.

C.1 The beam lifetime

This section aims to give a general definition of the beam lifetime. It is mainly in-
spired by [31]. Also the reader could find more details in this chapter.

C.1.1 General definition

In storage rings of collider, one of the main observable is the beam intensity. Its
evolution depends on the considered type of machine as it shown on figure C.1.
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FIGURE C.1: Beam intensity evolution in an ideal storage ring (green),
in an ideal collider (red) and in a real collider (blue).

The beam intensity in an ideal storage ring is, by nature, constant and the lifetime
is then infinite. In a collider, the intensity generally follows an exponential decay:

dI

dt
= I0 · e−t/τ . (C.1)
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The lifetime τ is defined as the time constant of this exponential decay.
However, different processes can be taken into consideration. If one notes each

partial effect i, the total beam lifetime is then defined by:

1

τtot
=
∑
i

1

τi
. (C.2)

There are several examples of phenomena that can be considered: beam-gas in-
teraction, intra-beam scattering, beam-beam effects... But in a collider the main cause
of the intensity decay is the proton losses by collisions, the so-called burn-off con-
tribution.

C.1.2 The burn-off contribution

The burn-off corresponds to the consumption of protons by head-on collision at the
IP. As every interaction, head-on collisions can be represented by a cross section
σpp ' 80 mb. Then the beam lifetime due to the burn-off, τIP is defined by:

1

τIP
=

1

nBNB

∑
n

σppLn (C.3)

with nB the number of colliding bunches, NB the number of proton per bunch and
Ln the instantaneous luminosity in the n IP.

As all the parameters are known, it is possible to calculate the burn-off contri-
bution to the beam lifetime thanks to the luminosity measurement in each IP. This
could be useful in order to remove this contribution. It is indeed the dominating one
and then hides the other contribution, like the LRBB one.

With these definitions in mind one can now wonder how the beam instrumenta-
tion present in LHC will allow us to measure this lifetime.

C.2 Fast Beam Current Transformers (FBCT)

C.2.1 Principle

In the LHC, current measurement can be done by using the FBCT. This device con-
sists in a transformer fast enough to be sensitive to a bunch intensity variation [32].
This device has therefore to have a bandwith compatible with the spectrum of the
beam current. This spectrum indeed corresponds to the filling pattern, and its main
component is the frequency of 40 Mhz, corresponding to the bunch separation of
25 ns. The bandwith of the signal measured by the FBCT is typically limited be-
tween 300 Hz and 1.2 GHz. There are currently four FBCTs installed in the LHC: the
two main ones (system A), and two spare one (system B). Figure C.2 [33] shows a
schematic view of a FBCT.

C.2.2 Measuring the lifetime

In Section C.1.1 we have given a definition of the beam lifetime and we have seen
how it related to beam current. From the FBCT signal, one can obtain the bunch-by-
bunch intensity Nb. Then, the bunch-by-bunch lifetime is obtain by differentiation
to appreciate the variation of intensity:
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FIGURE C.2: Principle of the FBCT.

1

τbunch
= − 1

Nb

dNb

dt
. (C.4)

In the database at CERN, data are generally given with a frequency of 1 Hz. Due
to the need of the integration, a resampling is necessary: integrating 1 Hz data leads
to really noisy results. For instance, in Section 4.2.3, the resampling time is 2 min.
This implies that we will obtain the lifetime with a very poor time resolution.

For that reasons, others options have to be considered, as the diamond Beam
Loss Monitors.

C.3 Diamond Beam Losses Monitor (dBLM)

As the Beam Loss Monitors, dBLMs are losses detectors, made of polycrystalline
diamond [34]. The signal provided by the detectors is splitted and the AC part is
amplified (40 dB, bandwidth of 2 GHz). Afterwards, this signal is sent to the ac-
quisition system. This system is able to produce two outputs: a high sampling rate
waveform, and a real-time beam loss time histogram. Figure C.3 shows the principle
of the acquisition system.

FIGURE C.3: Principle of the dBLMs acquisition system.
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For the histogram mode, the user defines a threshold. The acquisition system is
synchronised with the LHC turn clock and count one bin (width of 1.6 ns) when the
loss signal exceed the threshold. In the mean time, the waveform mode registers the
loss signal with a maximum sampling rate of 5 GS/s (gigasamples per second).

In the dBLM case, we directly access the number of protons lost in a given time
interval (here, 1.6 ns). There is therefore no need of differentiation anymore. The
lifetime can directly be obtained by taking the inverse of the losses (with a calibration
factor). As in Section 4.2.1, one can also access the total effective cross-section of the
proton-proton interaction. Figure C.4 shows the same result as in Figure 4.2 but
obtained with the dBLMs.

FIGURE C.4: Total effective cross-section obtained with the dBLMs.

In this case, the time resolution is much better as the resampling time is much
lower, without adding noise.
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Compensation of the Long-Range Beam-Beam Interaction in the LHC
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In the LHC, protons collide in four interaction points in order to deliver lumi-
nosity to detectors located there. In the next machine upgrade, the High Luminosity
LHC, the objective is to increase this luminosity by a factor five.

By sharing the same vacuum pipes, the two counter rotating beams are interact-
ing with a longitudinal offset with respect to the IP: this effect is called Long-Range
Beam-Beam interaction. In order to compensate this effect, a device is currently
studying in the LHC: the Beam-Beam Compensator Wire. It consists in a DC wire
carrying a current and imitating the strong beam, in the weak-strong approximation.
This thesis reports a study of this device. First, we show under which hypothesis the
strong beam can be equivalent to a wire. Then, we characterise the magnetic field of
this wire and its effect on the weak beam before presenting results of experiments
we led in order to demonstrate the beneficial effect of this device.

Au sein du LHC, les protons collisionnent aux points d’interaction dans le but de
délivrer de la luminosité aux détecteurs qui s’y trouvent. Pour la prochaine version
de cet accélérateur, le Haute Luminosité LHC, l’objectif est d’atteindre cinq fois la
luminosité actuelle.

Lorsqu’ils partagent la même chambre à vide, les deux faisceaux se voient, d’un
point de vue électromagnétique et interagissent, créant ainsi des collisions parasites
ailleurs qu’au point d’interaction. Cet effet est appelé interaction faisceau-faisceau
à longue échelle. Afin de compenser cet effet, un appareil est actuellement étudié
dans le LHC. Il est constitué d’un fil dans lequel circule un courant continu. Dans
l’approximation de deux faisceaux fort et faible, le fil doit donc imiter l’effet du fais-
ceau fort sur le faible. Dans ce rapport, nous donnons les résultats de l’étude de cet
outil. Dans un premier temps, nous montrons sous quelle hypothèses le faisceau fort
peut être considéré comme un fil. Ensuite, nous caractérisons le champ magnétique
créé par le fil, et son effet sur le faisceau faible avant de présenter les résultats des ex-
périences menées dans le LHC dont le but était de démontrer qu’une compensation
de l’interaction faisceau-faisceau à longue échelle avec cet outil est possible.
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