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Abstract 
 
Quantum effects in accelerated frames and gravitational fields have been studied for 

decades. One of the most influential outcomes is the discovery of thermal radiation from a 

black hole by Hawking in 1975. Other important discoveries include the Unruh effect, 

dynamical Casimir effect etc.. Although these discoveries are very exciting, experimental 

verification of them is extremely challenging. Even in the theoretical aspect, not all the 

issues have been resolved, e.g., the well known black hole information paradox. Quantum 

information science was developed rapidly during the last thirty years. The well established 

concepts and tools in quantum information science have been used to explore the 

quantum effects in gravitational fields and relativistic frames, giving birth to a new research 

field named relativistic quantum information. This thesis studies quantum effects in 

accelerated frames and gravitational fields by exploiting the concepts and techniques in 

quantum information science.  

 

The Unruh effect implies that the state of the fields confined within part of the Minkowski 

spacetime can appear thermal, and entanglement exists between different spacetime 

regions. We show that the particle number distribution of the field modes confined within a 

finite diamond region is also thermal in the Minkowski vacuum, an analogue to the Unruh 

effect; and there exists entanglement between different diamonds. The vacuum 

entanglement can be extracted and utilized for some quantum information protocols, e.g., 

quantum key distribution. Furthermore, we show that the presence of a horizon and the 

Unruh thermal noise has important consequences to the quantum communication 

protocols where one of the parties is a uniformly accelerated observer.  

 

Interactions between uniformly accelerated objects and quantum fields are traditionally 

studied using perturbation theory. The quantum circuit model, a crucial tool in quantum 

communication and computation, can be exploited to calculate radiations from the 

uniformly accelerated objects non-perturbatively. By further combining field detection 

scheme in quantum optics, e.g., homodyne detection, the output field from the uniformly 

accelerated objects can be fully studied. These techniques help to study decoherence 

effect in non-inertial frames, which may provide important insights for the black hole 

information paradox.  

 



Dynamical spacetimes generally create quantum particles. Gravitational perturbations 

around a black hole oscillate and decay, due to the emission of gravitational waves to 

spatial infinity and into the black hole. We show that they play the role as a multimode 

squeezer, squeezing the state of the quantum fields and creating particles.  
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dyne detection. The mode shape of the displacement is perfectly matched to that of the

signal unitary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.8 Product of maximum and minimum quadrature variances. . . . . . . . . . . . . . . . 184

8.9 Phase space representation of quadrature in the final state. The red dashed circle represents

the vacuum shot noise, and the blue shaded ellipse represents the quadrature variance of the

output state. For fixed single-mode squeezing factor (r = 0.5), the minimum quadrature

variance is below the vacuum shot noise for small Ic, indicating the output state is a

squeezed state. While for large enough Ic, the minimum quadrature variance surpasses the

vacuum shot noise, showing that squeezing is destroyed. . . . . . . . . . . . . . . . . 185



xxvi List of Figures

8.10 Distribution of minimum quadrature variance of the output state as a function of single-

mode squeezing factor r and the central frequency ω0 in the narrow bandwidth limit. A

critical curve along which Vmin = 1.0 separates the squeezing region and no squeezing

region. In the squeezing region Vmin < 1.0, while in the no squeezing region Vmin > 1.0. . 186

9.1 The contour C and branch cut for ωR − ω − ω′ > 0. The two shaded regions are referred

to as in (close to the horizon) and out (around r =∞) regions, respectively. . . . . . . 203

9.2 The effective potential for scalar field modes. . . . . . . . . . . . . . . . . . . . . . 210

9.3 Reflection coefficient for the scalar field modes. . . . . . . . . . . . . . . . . . . . . 210

9.4 Modulus of the joint frequency distribution. QNM: ΩR = 0.7474,ΩI = 0.178, (l0,m0) =

(2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two: (l′,m′) = (2,−1). . . . . . 212

9.5 Density plot of the modulus of the joint frequency distribution. QNM: ΩR = 0.7474,ΩI =

0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two: (l′,m′) =

(2,−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.6 Modulus of the joint frequency distribution for even-parity QNMs. QNM: ΩR = 0.7474,ΩI =

0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two: (l′,m′) =

(3,−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9.7 Density plot of the modulus of the joint frequency distribution for even-parity QNMs.

QNM: ΩR = 0.7474,ΩI = 0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1);

scalar particle two: (l′,m′) = (3,−1). . . . . . . . . . . . . . . . . . . . . . . . . . 217



List of Tables

4.1 Signs of null coordinates U and V in four regions. Regions I and II are

described by the original Schwarzschild coordinates, regions III and IV are

the Kruskal extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Meaning of symbols in the Penrose diagram. . . . . . . . . . . . . . . . . . 54

9.1 Nonzero Ia4 and Ia5 for a QNM (l0,m0) = (2, 0) and a pair of scalar particles:

(l,m) = (1, 1) and (l′,−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xxvii



xxviii List of Tables



1
Introduction and Overview

Quantum effects in curved spacetimes have been studied for decades and important pro-

gresses have been made. These studies deepen our understanding of both gravity and quan-

tum mechanics. The most important new effects include the Hawking effect [Haw75], Unruh

effect [Unr76, Dav75], dynamical Casimir effect [Moo70] and particle creation from an ex-

panding universe [Par68]. However, these effects are very small and are extremely difficult

to observe directly. Particle creation by the expanding universe can be observed from as-

tronomical data. In the very early universe, the exponentially expanding universe amplified

the quantum fluctuations of curvature and produced curvature perturbations (scalar pertur-

bations and/or gravitational waves), which are subsequently responsible for the anisotropies

in the cosmic microwave background (CMB) and the formation of large scale structures.

The dynamical Casimir effect was observed in a superconducting circuit recently [WJP+11],

forty years after its theoretical prediction. The Hawking effect was discovered by Hawking in

1
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1975, which states that a black hole is not ‘black’ but instead emits thermal radiation with

temperature proportional to the surface gravity of the black hole. It can be estimated that

the Hawking temperature for a solar mass black hole is about 10−8 K, which is much lower

than the temperature of the CMB (∼ 2.7 K). If there exist primordial black holes with very

small mass [CH74], it may be possible to detect Hawking radiation from them. Recently,

Hawking radiation in some analogue systems were observed [Ste16], however they are not

the true Hawing radiation from a real black hole. Following Hawking’s discovery, Unruh

and Davies found that even in flat spacetime, a uniformly accelerated observer experiences

a thermal bath with temperature proportional to their proper acceleration. Many attempts

have been tried to detect the Unruh effect by electrons in particle detectors [BL83] and

penning traps [Rog88], atoms in microwave cavities [SKB+03, BKC+06] and by ultraintense

lasers [CT99, SSH06]. However, the Unruh temperature is so low that it is extremely difficult

to detect it. In order to observe Unruh-Davies radiation with 1 K, one needs acceleration

about 1020 m/s2, far beyond current technologies in the lab.

In the theoretical aspect, although much progress has been made, some serious issues also

arise. The most well known one is the black hole information paradox [Haw76]. As the

black hole radiates Hawking particles, its mass gradually decreases. After a sufficiently long

time, the black hole may completely evaporate. Since the Hawking radiation is thermal, the

complete evaporation of a black hole ends up with a thermal cloud of particles. This results

in a non-unitary evolution: a pure initial state (usually a vacuum) evolves into a mixed final

state. If this is true, unitary evolution of an isolated system in quantum mechanics is violated

and information is lost. In spite of many attempts [STU93, StHW94, Mat05, HPS16, BMT],

a completely satisfactory resolution of this issue has not been found.

Quantum information science was developed rapidly during the last thirty years [BB84,

Eke91, BW92, BBC+93, Sho94, Sho95, Sch95, SW97, Hol98, Llo97], where the importance

of concepts like entanglement is emphasized. A modern version of the black hole information

paradox is not only concerned with destroying the purity of the state but also destroying the

entanglement [HP07]. Quantum information theory thus can provide intuitions and tools
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that help to sharpen our understanding of the black hole information paradox. In a broader

perspective, quantum information science can also help us to understand other effects in rel-

ativistic quantum field theory. The Unruh effect can be understood in this way: the fields in

the right Rindler wedge perfectly entangle with that in the left Rindler wedge such that the

overall state is pure (vacuum), whilst uniformly accelerated observers restricted to one of the

Rindler wedges see a thermal state. This reveals an important fact that the Minkowski vac-

uum is an entangled state [Unr76, SW85b, SW87]. A large amount of work has been devoted

to study whether it is possible to extract the vacuum entanglement in Minkowski spacetime

[RRS05, LH10, OR11, SMM15], curved background spacetime [SM09, MMM12], circuit QED

[SPdRMM12] and in ion trap systems [RCR05], and utilize it for quantum information sci-

ence [RW15], e.g., quantum communication. On the other hand, the uniform motion and the

acceleration of the observer, as well as the presence of gravity, would have crucial influences

to the entanglement [AM03, FSM05, AFSMT06, Dat09, BFSS06, MMGL10, FMMMM10].

Examples like quantum teleportation [AM03, PJ08, FLT+13], quantum key distribution

[DRW13] in the accelerated frame and gravitational fields have been explored. Quantum

metrology [GLM04, GLM06], an important tool in the precise quantum limited measure-

ment, were generalized to relativistic situations [AAF10, MBF14, ABS+14, BDU+14] where

it can be utilized to measure the Unruh temperature [AAF10], parameters of gravitational

fields [KR16] etc..

In this thesis, we are going to utilize concepts and tools in quantum information and quantum

optics to explore quantum effects in accelerated frames, as well as in the presence of gravity.

We try to understand the vacuum entanglement and its potential applications in quantum

information science, to study how acceleration and gravity affects quantum communication,

to expore decoherence of radiation from a uniformly accelerated quantum source and its

possible relation to the black hole information paradox, and to investigate particle creation

by gravitational perturbations around a black hole. The main contents of this thesis are

summarized in the following.
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1.1 Quantum field theory in flat spacetime

In Chapter 2, we briefly introduce basic concepts and tools of quantum field theory in

flat spacetime. We start from the quantum theory of a simple harmonic oscillator, and

then move to discuss a discrete atomic chain, which gives us an intuition of the global

properties of quanta, vacuum state etc.. In the continuum limit, by taking into account

special relativity, we arrive at the standard relativistic quantum field theory in flat spacetime.

Without introducing complicated mathematics but being adequate to capture the essential

physics, we mainly discuss free scalar fields, in particular, the free massless scalar fields.

Important concepts like particles, vacuum state, and Wightman functions are introduced.

1.2 Basic concepts in quantum optics

In Chapter 3, we introduce some basic concepts in quantum optics and continous variable

quantum information. The first concept to introduce is the coherent state, which is a good

approximation to the light fields coming from a laser. We then discuss various squeezed

states, including single-mode, two-mode and multimode squeezed states. The squeezed states

are non-classical, containing entanglement which is very useful in quantum communication,

e.g., quantum key distribution. Finally, we consider an important field detection model,

the homodyne detection. Quantum optics is not a fully relativistic theory because although

the electromagnetic field is relativistic, the description of atoms is non-relativistic. However,

tools in quantum optics are adequate and useful to study the response of detectors in inertial

frame, accelerated frame and even in curved spacetime to the quantum fields.

1.3 Quantum field theory in curved spacetime

In Chapter 4, we generalize the quantum field theory in flat spacetime to the curved back-

ground spacetime. When considering quantum field theory in curved spacetime or acceler-

ated frame, the concept of particles, as well as the vacuum state of the field, are not unique

and are observer dependent. We first formulate a general framework to quantize the fields in
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various inequivalent ways and derive the relations between different quantizations. As one of

the most important topics of this thesis, we discuss quantum fields in uniformly accelerated

frame, and the well known Unruh effect which states that a uniformly accelerated observer

experiences a thermal radiation in the Minkowski vacuum with temperature proportional to

their acceleration. Another important topic is the thermal radiation from a static, spheri-

cally symmetric Schwarzschild back hole, discovered by Hawking forty years ago and named

Hawking radiation. The temperature of the Hawking radiation is proportional to the surface

gravity of the Schwarzschild black hole. At the end of this chapter we briefly introduce the

black hole information paradox.

1.4 Spacetime diamonds

The original research in this thesis begins in Chapter 5. In Chapter 5, we study the quan-

tization of a massless scalar field inside a spacetime diamond in Minkowski spacetime. We

show that particle number distribution of the diamond modes is thermal in the Minkowski

vacuum state. The temperature of the thermal radiation, named diamond temperature, is

inversely proportional to the size of the spacetime diamond. We then propose that a two-

level Unruh-deWitt detector with energy scaled in a particular way can detect the thermal

radiation. Finally, we show that the fields inside different diamonds are entangled.

1.5 Quantum communication with accelerated observers

In Chapter 6, we study quantum communication with a uniformly accelerated observer. The

standard quantum communication is between two inertial observers Alice and Bob. When

one of the observers uniformly accelerates, the quantum communication is affected because of

the presence of Unruh thermal noise as well as the event horizon for the accelerated observer.

We first consider a protocol where an inertial observer Alice sends a coherent state signal

and a local oscillator to a uniformly accelerated observer Rob, who then performs homodyne

detection in his own reference frame. We then consider quantum communication between

two uniformly accelerated observers: a uniformly accelerated observer sends a coherent state
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signal and a local oscillator to another uniformly accelerated observer, who then performs

homodyne detection.

1.6 Quantum circuit model for non-inertial objects:

uniformly accelerated mirror

In Chapter 7, we propose a quantum circuit model to study the interactions between a

uniformly accelerated object with the quantum fields. The idea is based on the the trans-

formation between the Rindler modes and Unruh modes, which are basically a two-mode

squeezing transformation. A uniformly accelerated object is stationary in its own reference

frame, so its interactions with the Rindler modes are easy to deal with. We thus start from

the inertial frame where the initial state is imposed, usually the Minkowski vacuum; then go

to the Rindler frame where the accelerated object couples with the Rindler modes in the cor-

responding Rindler wedge, leaving the Rindler modes in the other Rindler wedge unchanged;

after that we go back to the inertial frame because an inertial detector is used to detects

the fields radiated by the accelerated object. The Unruh modes are used as a stepping stone

between the accelerated and inertial frames. Finally, in order to model the response of an

inertial detector, we transform the Unruh modes to the Minkowski modes.

As the first application of the circuit model, we study an eternally accelerated mirror. We

find that a pulse of particles along the horizon is radiated by the mirror and the radiation

field is squeezed. The squeezing of the field is related to the fact that the mirror plays a

role as a scissor and cuts the correlations across the horizon. The issue for the eternally

accelerated mirror is that the total energy of the radiation field is divergent. This divergence

problem can be resolved by turning on and off the interactions between the mirror and the

fields.
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1.7 Quantum circuit model for non-inertial objects:

uniformly accelerated squeezer

In Chapter 8, we realized the turning on and off the interactions by making the accelerated

objects only act on a localised wave packet modes. This resolves the energy divergence

problem. As further applications of the circuit model, we focus on a uniformly accelerated

single-mode squeezer. Unexpectedly, we find that the output state, as detected by inertial

observers, from a uniformly accelerated single-mode squeezer is mixed, even if the input

state is pure. The decoherence effect we find is a previously unnoticed consequence of the

transformation from the bipartite Hilbert space of the Rindler and Unruh modes, to the

single Hilbert space of the Minkowski modes. This unexpected result may indicate new

directions in resolving inconsistencies between relativity and quantum theory.

1.8 Particle creation by gravitational perturbations around

a Schwarzschild black hole

In Chapter 9, we consider particle creation by gravitational perturbations around a Schwarzschild

black hole. Quantum particle generation is a general phenomenon in a dynamical spacetimes,

e.g., the exponentially expanding universe. However, it was shown that plane gravitational

waves can not create particles, analogous to the plane electromagnetic waves case, due to

the violation of momentum conservation. It is interesting to see whether this is also true in

the black hole background spacetimes. We study the interaction between a massless scalar

field and the gravitational quasi-normal modes of a Schwarzschild black hole, and show that

scalar particles can be created. The gravitational quasi-normal modes play the role as a

multimode squeezer and squeeze any state of the scalar field.



8 Introduction and Overview



2
Introduction to Quantum Field Theory in Flat

Spacetime

In this chapter, we review the fundamental concepts and tools of quantum field theory (QFT)

in Minkowski spacetime. For simplicity, we will mainly discuss a massless free scalar field.

We will try to develop the QFT step by step from the quantum theory of a simple harmonic

oscillator.

9
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2.1 From harmonic oscillator to atomic chain

2.1.1 Harmonic oscillator

We start from a quantum harmonic oscillator in order to introduce some basic concepts in

quantum mechanics, which are very important in quantum field theory. A classical harmonic

oscillator is a mass which is tied to a spring and oscillates with a particular frequency ω.

There are many other models, for example, it can also be considered as a mass confined

in a parabolic potential, as shown in Fig. 2.1(a). The total energy of a classical harmonic

oscillator is continuous and could be any nonnegative value. The dynamics of a quantum har-

monic oscillator is completely different. The Schrödinger equation, instead of the Newtonian

equation, needs to be solved with the Hamiltonian [Sak85]

Ĥ =
1

2
p̂2 +

1

2
ω2x̂2, (2.1.1)

where we consider an oscillator with unit mass and ω is its frequency. x̂ and p̂ are the

position and momentum operators, satisfying the commutation relation

[x̂, p̂] = i~, (2.1.2)

where ~ is the reduced Planck constant. After solving the Schrödinger equation one finds

that the energy of the quantum harmonic oscillator is discrete, as shown by Fig. 2.1(b),

a striking feature that differentiates it from a classical one. The energy eigenvalue of the

quantum harmonic oscillator is

En =

(
n+

1

2

)
~ω, n = 0, 1, 2, ... (2.1.3)

and the corresponding eigenstate is denoted by |n〉. Another important feature is that the

energy of the lowest energy state, named ground state, is nonzero, E0 = ~ω/2, which means

the oscillator cannot be static at the bottom of the potential. This is due to Heisenberg’s

uncertainty principle,

∆x∆p ≥ ~
2
, (2.1.4)

where

(∆x)2 = 〈ψ|x̂2|ψ〉 − 〈ψ|x̂|ψ〉2,

(∆p)2 = 〈ψ|p̂2|ψ〉 − 〈ψ|p̂|ψ〉2 (2.1.5)
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are the variances of the position and momentum operators for an arbitrary quantum state

|ψ〉. For the ground state |0〉, the minimum uncertainty relation is satisfied, ∆x∆p = ~/2.

Figure 2.1: (a) A classical harmonic oscillator: a mass confined in a parabolic potential. (b) A quantum
harmonic oscillator. The energy level is discrete and the lowest energy E0 is not zero, known as the ground
state energy. Jumping between different energy levels is described by the lowering and raising operators.

There exists an algebraic method to describe the quantum harmonic oscillator [Sak85]. In-

troducing operators

â =
1√
2~ω

(ωx̂+ ip̂), â† =
1√
2~ω

(ωx̂− ip̂) (2.1.6)

which satisfy commutation relation

[â, â†] = 1, (2.1.7)

the Hamiltonian Eq. (2.1.1) becomes

Ĥ =

(
â†â+

1

2

)
~ω ≡

(
N̂ +

1

2

)
~ω, (2.1.8)

where N̂ = â†â is the number operator and satisfies N̂ |n〉 = n|n〉. It can be shown that

â†|n− 1〉 =
√
n|n〉, â|n〉 =

√
n|n− 1〉, n ≥ 1. (2.1.9)

Therefore the â† is called raising operator and â is called lowering operator. The action of

the raising and lowering operators is pictorially shown in Fig. 2.1(b). In particular, the

lowering operator â annihilates the ground state,

â|0〉 = 0. (2.1.10)
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In the following we will consider this as the definition of a ground state (vacuum state).

2.1.2 Atomic chain model

We are now going to consider an one-dimension atomic chain model. The chain consists

of N unit mass atoms which are connected by springs with spring constant ks, as shown

in Fig. 2.2. The distance between neighbouring atoms is ao. Here we impose the periodic

boundary condition so that in fact it is a closed atomic chain, a ring. When suffering

from external perturbations, the atoms would deviate from their equilibrium positions. The

classical dynamical equation for these deviations is

ün = ks(un+1 + un−1 − 2un), (2.1.11)

where un(t) is the deviation from the equilibrium position for the n-th atom. At any given

Figure 2.2: One dimensional atomic chain.

time, un(t) has to satisfy the periodic boundary condition: un(t) = un+N(t). Therefore it

can be expanded in terms of a set of complete and orthonormal basis {φkn}, which also

satisfies the periodic boundary condition. In fact, this is simply a Fourier transformation.

φkn is chosen as

φkn =
1√
N
eiknao (2.1.12)

and the periodic boundary condition, φk,N+n = φkn, requires that k = 2πj
Nao

and −N/2 ≤

j ≤ N/2 (assume N is even). It is easy to show that {φkn} as chosen is orthonormal and

complete, ∑
k

φknφ
∗
kn′ = δnn′ ,

∑
n

φknφ
∗
k′n = δkk′ . (2.1.13)
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Eq. (2.1.11) admits normal modes solutions φkn(t) = e−iωktφkn. By substituting φkn(t) into

Eq. (2.1.11) we find the dispersion relation,

ω2
k = 4ks sin2(kao/2). (2.1.14)

When the wavelength of the normal modes is much longer than the distance between neigh-

bouring atoms, that is 1/k � ao,

ωk ≈ vs|k|, (2.1.15)

where vs = ao
√
ks is the velocity of sound waves. The general solutions un(t) is a linear

superposition of these normal modes,

un(t) =
∑
k

qkφkn(t), (2.1.16)

where qk is the expansion coefficients satisfying qk = q∗−k because un(t) is real. While un(t)

describe the motion of an individual atom, the normal modes φkn(t) describe the collective

wave-like excitations of the atomic chain.

Canonical quantization procedure can be used to quantize the the motion of the atomic

chain. The classical Lagrangian of the atomic chain is

Lac =
∑
n

1

2
u̇2
n −

∑
n

1

2
ks(un+1 − un)2. (2.1.17)

The canonical momentum is defined as

pn =
∂Lac

∂u̇n
= u̇n (2.1.18)

so that the classical Hamiltonian of the atomic chain is

Hac = pnu̇n − Lac =
∑
n

[
1

2
p2
n +

1

2
ks(un+1 − un)2

]
. (2.1.19)

By replacing un and pn in Eq. (2.1.19) by Hermitian operators ûn and p̂n we obtain the

quantum Hamiltonian for the atomic chain,

Ĥac =
∑
n

[
1

2
p̂2
n +

1

2
ks(ûn+1 − ûn)2

]
. (2.1.20)
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The position and momentum operators ûn and p̂n satisfy commutation relations

[ûn, p̂n′ ] = i~δnn′ , [ûn, ûn′ ] = 0, [p̂n, p̂n′ ] = 0. (2.1.21)

Fourier transform ûn and p̂n to define a new set of operators q̂k and π̂k,

ûn =
∑
k

q̂kφkn, p̂n =
∑
k

π̂kφ
∗
kn. (2.1.22)

satisfying q̂†k = q̂−k and π̂†k = π̂−k. Substituting Eq. (2.1.22) into Eq. (2.1.20) we have

Ĥac =
∑
k

(
1

2
π̂kπ̂−k +

1

2
ω2
kq̂kq̂−k

)
. (2.1.23)

We further define the lowering and raising operators as

âk =
1√

2~ωk

(
ωkq̂k + iπ̂−k

)
, â†k =

1√
2~ωk

(
ωkq̂−k − iπ̂k

)
, (2.1.24)

which satisfy commutation relations,

[âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = 0, [â†k, â

†
k′ ] = 0. (2.1.25)

The Hamiltonian now becomes

Ĥac =
∑
k

(
â†kâk +

1

2

)
~ωk. (2.1.26)

We see that the atomic chain can be considered as a collection of single harmonic oscillators,

each of which corresponds to the collective wave-like excitations of the atomic chain, with

wave number k and frequency ωk. These collective excitations are known as phonons. The

vacuum state |0〉 is defined as

âk|0〉 = 0 (2.1.27)

for all k. Therefore, the vacuum state is global in the sense that it describes the collective

motion of the atomic chain.

2.2 Relativistic quantum fields

We are now ready to introduce the QFT in flat spacetime. The field is a quantity that

distributes continuously over the space and time. A natural generalization to the atomic
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chain model discussed in Subsection 2.1.2 is to take the continuum limit, that is, ao →

0 and N → ∞. We thus obtain a non-relativistic QFT in a one-dimension ring. This

non-relativistic QFT can be generalized to higher dimensions and open regions, and has

been studied and applied extensively in the condensed matter physics [Tsv95]. However in

this thesis we are interested in relativistic QFT, which also follows the laws of the special

relativity. In a more concrete word, the equation of motion of the fields should be invariant

under the Lorentz transformation. The relativistic QFT was developed since 1920s and is

now well established, see [Wei95, PS95, IZ06] for example. Another important thing to

note is that the phonons discussed in the Subsection 2.1.2 are the excitations of some kind

of materials, so they are not fundamental. While quantum fields, e.g., Dirac fields and

electromagnetic fields, that we are going to discuss are considered to be fundamental, which

means we do not know whether there are even more fundamental “materials”, things like

ether for example. From the atomic chain model to a relativistic QFT, we need to take three

steps forwards: (1) take the continuum limit; (2) take into account the special relativity; (3)

consider the quantum fields as fundamental objects.

2.2.1 Basics of special relativity

The special relativity was originally proposed by Albert Einstein in 1905 in the paper “On

the Electrodynamics of Moving Bodies” [Ein05]. It is based on two postulates:

• The Principle of Relativity – the laws of physics are invariant in all inertial systems;

• The Principle of Invariant Light Speed – the speed of light in a vacuum is the

same for all observers, regardless of the motion of the light source.

Einstein’s special relativity has greatly changed our understanding of space and time. In

the Newtonian mechanics, the space and time are absolute and independent of the motion

of the objects. While in the special relativity, the principle of invariant light speed leads

to completely different notions like the time dilation, length contraction and relativity of

simultaneity, see Fig. 2.3.
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Figure 2.3: Relation between the principle of Invariant Light Speed and the time dilation, length
contraction, relativity of simultaneity.

In the Newtonian mechanics, coordinates in two different inertial frames are related by

the Galilean transformation [Gol65]. In the special relativity, the Galilean transformation

is replaced by the Lorentz transformation [Har03]. Suppose that xµ = (t, x, y, z) are the

coordinates of a spacetime event in an inertial frame K and x′µ = (t′, x′, y′, z′) are the

coordinates of the same event in a different inertial frame K ′. Without loss of generality, we

assume the K ′ frame moves along the x-axis with constant velocity v with respect to the

K frame. The Lorentz transformation relating the coordinates of these two inertial frame is

[Har03]

t′ = γ(t− vx)

x′ = γ(x− vt)

y′ = y

z′ = z, (2.2.1)

where γ is the Lorentz factor

γ =
1√

1− v2
. (2.2.2)

Note that we take the unit where the speed of light is unity, c = 1. The time dilation,

length contraction and relativity of simultaneity can be easily derived from the Lorentz

transformation (2.2.1). Although the coordinates are changed in different inertial frames,

there are some quantities that are invariant under the Lorentz transformation, known as

Lorentz scalar. The spacetime interval between two events is one of the Lorentz scalars. The
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spacetime interval between two very close events, with coordinates (t, x, y, z) and (t+dt, x+

dx, y + dy, z + dz) respectively, is defined as [Har03]

ds2 = −dt2 + dx2 + dy2 + dz2 = ηµνdx
µdxν , (2.2.3)

where ηµν = diag{−1,+1,+1,+1} is the Minkowski spacetime metric. One specific example

of the spacetime interval is the proper time interval of an observer. The proper time τ is

the time that measured by the clock carried by the observer itself. So in the rest frame of

the observer, dx = dy = dz = 0, one finds dτ 2 = −ds2. Therefore the proper time of any

observer is invariant under the Lorentz transformation.

There are three types of causal relations between two spacetime events: time-like, space-like

and light-like. When ds2 < 0, the two events are time-like, which means slower-than-light

signals can be transmitted from the earlier event to the later event. In addition, the temporal

order of any pair of time-like events cannot be changed by the Lorentz transformation,

implying that causality is preserved. When ds2 = 0, the two events are light-like, meaning

that these two events are connected by light signals. When ds2 > 0, the two events are

space-like and there are no signals can connect these two events.

The principle of relativity states that the laws of physics are invariant in all inertial frames,

which implies that the dynamical equations that dominate the evolution of physical systems

are the same in all inertial frames. Or equivalently, the dynamical equations should be co-

variant under the Lorentz transformation. To satisfy the above requirement, it is convenient

to represent physical quantities by tensors which transform in a particular way under the

Lorentz transformation. Here we are going to discuss some examples but not the general

case. We have mentioned that a Lorentz scalar (a rank-0 tensor) is invariant under the

Lorentz transformation. The transformation for a vector (rank-1 tensor) is the following:

V ′µ = Λµ
νV

ν , (2.2.4)

where V µ is a general vector and Λµ
ν is the general Lorentz transformation matrix which is

defined as

Λµ
ν =

∂x′µ

∂xν
. (2.2.5)
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Examples of vector include the four momentum of a particle pµ = (E,p) = (γm0, γm0v),

four current Jµ = (ρ,J) etc.. A rank-2 tensor, denoted by V µν , is transformed as

V ′µν = Λµ
αΛµ

βV
αβ. (2.2.6)

Examples of rank-2 tensor include the energy momentum tensor T µν , electromagnetic tensor

F µν etc.. The inner product of two tensors gives a tensor with a lower rank, e.g., the inner

product of two vectors is a scalar. It is easy to show that

pµp
µ = −m2

0 = −E2 + p · p, (2.2.7)

which gives the Einstein’s mass-energy relation

E2 = m2
0 + p · p. (2.2.8)

A dynamical equation represents the relation between different physical quantities. When

the physical quantities are represented by tensors that are covariant under the Lorentz

transformation, the dynamical equation is also Lorentz covariant. For example the Maxwell’s

equation can be written as a covariant form [Jac75],

∂νF
µν = 4πJµ, (2.2.9)

implying that the electromagnetic laws are invariant in all inertial frames.

2.2.2 Hermitian massless scalar fields

We introduce the quantum theory of an Hermitian massless scalar field Φ̂ in the (1 + 3)-

dimensional Minkowski spacetime. For field theory in lower dimensions, e.g., (1 + 1)-

dimensional spacetime, the quantization procedure is similar. The QFT for a massive scalar

field can be obtained by introducing a mass term in the Lagrangian density [PS95]. In this

section, canonical quantization procedure is adopted. The Lagrangian density of the scalar

field Φ̂ is

L̂ = −1

2
ηµν(∂µΦ̂)(∂νΦ̂) =

1

2
˙̂
Φ2 − 1

2
(∇Φ̂)2 (2.2.10)
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where the “·” represents derivative with respect to time t and “∇” represents the gradient.

The conjugate field of Φ̂ is defined as

Π̂ =
∂L̂

∂
˙̂
Φ

=
˙̂
Φ. (2.2.11)

The Hamiltonian density of the scalar field is

Ĥ = Π̂
˙̂
Φ− L̂ =

1

2
Π̂2 +

1

2
(∇Φ̂)2 (2.2.12)

The equation of motion for the scalar field can be derived by substituting Eq. (2.2.10) into

the Euler-Lagrange equation

∂µ

(
∂L̂

∂(∂µΦ̂)

)
− ∂L̂
∂Φ̂

= 0. (2.2.13)

We find the Klein-Gordon equation,

(∂2
t −∇2)Φ̂ = 0. (2.2.14)

In the canonical quantization, the equal-time commutation relations are imposed,

[Φ̂(t,x), Π̂(t,x′)] = iδ(3)(x− x′), [Φ̂(t,x), Φ̂(t,x′)] = [Π̂(t,x), Π̂(t,x′)] = 0. (2.2.15)

Similar to the atomic chain model, the scalar field Φ̂ can be expanded in terms of a set of

complete and orthonormal bases {φk(t,x), φ∗k(t,x)}, which is defined as

φk(t,x) =
1

(2π)3/2
√

2ωk

e−iωkt+ik·x. (2.2.16)

Substituting φk(t,x) into the Klein-Gordon equation (2.2.14) we find

ω2
k = |k|2. (2.2.17)

The bases {φk(t,x), φ∗k(t,x)} are orthonormal in terms of the Klein-Gordon inner product.

For any two solutions φ1 and φ2 of the Klein-Gordon equation, the Klein-Gordon product is

defined as [BD82, CHM08]

〈φ1, φ2〉 = i

∫
dx (φ∗1∂tφ2 − φ2∂tφ

∗
1), (2.2.18)

where the spatial integral is on any space-like hypersurface of constant t. It is straightforward

to show that

〈φk, φk′〉 = −〈φ∗k, φ∗k′〉 = δ(3)(k− k′), 〈φk, φ
∗
k′〉 = 〈φ∗k, φk′〉 = 0. (2.2.19)
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The scalar field Φ̂ is expanded as

Φ̂ =

∫
dk
(
âkφk + â†kφ

∗
k

)
, (2.2.20)

where âk and â†k are known as the annihilation and creation operators (correspond to the

lowering and raising operators of the harmonic oscillator), respectively. They satisfy the

boson commutation relations,

[âk, â
†
k′ ] = δ(3)(k− k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0. (2.2.21)

The Hamiltonian of the scalar field can be written in terms of the creation and annihilation

operators,

Ĥ =

∫
dx Ĥ =

∫
dk ωk

(
â†kâk +

1

2

)
(2.2.22)

The vacuum state is the lowest energy state and is defined as

|0〉 = |0k1〉 ⊗ |0k2〉 ⊗ |0k3〉 ⊗ · · · (2.2.23)

and satisfies

âk|0〉 = 0 (2.2.24)

for all k. It is evident that the vacuum state is global since any single-wave-number mode

is the global excitation of the field. Although the vacuum state is the lowest energy state,

the expectation value of energy is not zero,

〈0|Ĥ|0〉 =
1

2

∫
dk ωk →∞. (2.2.25)

The existence of vacuum energy is due to the uncertainty principle. In Minkowski spacetime,

the vacuum energy is not observable in most cases and can be disregarded safely. However,

it may play very important roles in some special situations, e.g., the Casimir effect [CP48],

spontaneous emission of atoms [Dir27].

2.2.3 Green’s functions

The vacuum expectation values of the products of two field operators are very important in

QFT. The most relevant one in this thesis is the positive frequency Wightman function. For
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completeness we also briefly introduce other functions, including negative Wightman func-

tion, Schwinger function, Hadamard’s elementary function, Feynman propagator, retarded

and advanced Green functions. Here I follow the definitions and notations by Birrell and

Davies [BD82].

The positive frequency Wightman function G+(t,x; t′,x′) is defined as

G+(t,x; t′,x′) = 〈0|Φ̂(t,x)Φ̂(t′,x′)|0〉 (2.2.26)

and the negative frequency Wightman function

G−(t,x; t′,x′) = 〈0|Φ̂(t′,x′)Φ̂(t,x)|0〉. (2.2.27)

The Schwinger and Hadamard functions are related to the commutator and anti-commutator

of the scalar field at two spacetime events, respectively.

iG(t,x; t′,x′) = 〈0|
[
Φ̂(t,x), Φ̂(t′,x′)

]
|0〉 = G+(t,x; t′,x′)−G−(t,x; t′,x′),(2.2.28)

G(1)(t,x; t′,x′) = 〈0|
{

Φ̂(t,x), Φ̂(t′,x′)
}
|0〉 = G+(t,x; t′,x′) +G−(t,x; t′,x′).(2.2.29)

The Feynman propagator GF is

GF (t,x; t′,x′) = −i〈0|T̂
{

Φ̂(t,x)Φ̂(t′,x′)
}
|0〉

= −iθ(t− t′)G+(t,x; t′,x′)− iθ(t′ − t)G−(t,x; t′,x′), (2.2.30)

where T̂ is the time ordering operator and θ(t) is the Heaviside step function. The retarded

and advanced Green functions are

GR(t,x; t′,x′) = −θ(t− t′)G(t,x; t′,x′), (2.2.31)

GA(t,x; t′,x′) = θ(t′ − t)G(t,x; t′,x′). (2.2.32)

We see that the positive and negative frequency Wightman functions are two fundamental

functions from which others can be derived easily.

Substituting Eq. (2.2.20) into the definition of the positive frequency Wightman function,

Eq. (2.2.26), we find

G+(t,x; t′,x′) =

∫
dk φk(t,x)φ∗k(t′,x′) =

1

2(2π)3

∫
dk

e−iωk(t−t′)+ik·(x−x′)

ωk

. (2.2.33)
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For a massless scalar field, ωk = |k|, the above integral can be calculated analytically,

G+(t,x; t′,x′) = − 1

4π2
lim
ε→0+

1

(t− t′ − iε)2 − |x− x′|2
. (2.2.34)

The limit can be taken after all other calculations have been done, or we can do it right now

and find

G+(t,x; t′,x′) =
1

8πi|x− x′|
[
δ
(
(t−t′)−|x−x′|

)
−δ
(
(t−t′)+|x−x′|

)]
− 1

4π2

1

(t− t′)2 − |x− x′|2
.

(2.2.35)

The singularity in the last term of Eq. (2.2.35) should be treated as the Cauchy princi-

pal value, same for the following equations: (2.2.36) and (2.2.40). The negative frequency

Wightman function is basically the complex conjugate of the positive frequency Wightman

function,

G−(t,x; t′,x′) = − 1

4π2
lim
ε→0+

1

(t− t′ + iε)2 − |x− x′|2

= − 1

8πi|x− x′|
[
δ
(
(t− t′)− |x− x′|

)
− δ
(
(t− t′) + |x− x′|

)]
− 1

4π2

1

(t− t′)2 − |x− x′|2
. (2.2.36)

According to the relation between Wightman functions and Schwinger function, we have

G(t,x; t′,x′) = − 1

4π|x− x′|
[
δ
(
(t− t′)− |x− x′|

)
− δ
(
(t− t′) + |x− x′|

)]
, (2.2.37)

showing that the Schwinger function is nonzero only when (t − t′) ± |x − x′| = 0: the two

events are light-like. This means there are no causal connections between space-like and

time-like events. This is reasonable because for a massless field all signals travel with the

speed of light. The retarded and advanced Green functions are

GR(t,x; t′,x′) =
1

2π
θ(t− t′)δ

(
(t− t′)2 − |x− x′|2

)
, (2.2.38)

GA(t,x; t′,x′) =
1

2π
θ(t′ − t)δ

(
(t− t′)2 − |x− x′|2

)
, (2.2.39)

which are also nonzero on the lightcone and satisfy the corresponding boundary conditions.

Finally, the Feynman propagator is

GF (t,x; t′,x′) = − 1

4π
δ
(
(t− t′)2 − |x− x′|2

)
− i

4π2

1

(t− t′)2 − |x− x′|2
. (2.2.40)
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2.3 Summary and further reading

In this section, we introduce some basic concepts and tools in QFT in flat spacetime. In

particular, we discuss the quantization of a massless Hermitian scalar and calculate various

Green’s functions.

Relativistic QFT in flat spacetime has been developed since 1920s [Dir27]. Many excellent

textbooks have been written to introduce the framework of the relativistic quantum field

theory. The textbook by Zee [Zee10] gives a very nice introduction to the basic concepts of

QFT. The textbook by Peskin and Schroeder [PS95] is more advanced and contains adequate

technical details. The one by Weinberg [Wei95] also gives a very excellent introduction and

contains technical details.
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3
Basics of Quantum Optics

In this chapter, we are going to review some basic concepts and tools in quantum optics, a

quantum theory of light. Quantum optics is a research field that studies phenomena involving

light and its interactions with matter at submicroscopic level [WM07, SZ97, BR04]. Mature

tools and techniques have been developed since 1960s to prepare, manipulate and detect

the states of light. These tools and techniques are very important in studying the quantum

effects in gravity and accelerated frames. More promisingly, they may help us to conceive

some realistic experiments in near future to test the quantum effects in the presence of

gravity.

25
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3.1 Quantum states of the electromagnetic field

The quantization of a free electromagnetic field can be found in standard quantum optics

textbooks [WM07, SZ97, BR04]. The freely propagating electromagnetic field has two po-

larizations, both of which are perpendicular to its propagation direction. For example, if the

electromagnetic wave propagates along the z-direction, the electric field vector operator can

be written as Ê = (Êx, Êy, 0), where Êx and Êy represent two independent polarizations, re-

spectively. For simplicity, we consider a single polarization electric field, namely, we assume

Ê(t, z) = Êx(t, z) without loss of generality. The electric field operator can be expressed as

[BLPS90]

Ê(t, z) = i

∫ ∞
0

dω

(
~ω

4πε0cA

)1/2[
âωe

−iω(t−z) − â†ωeiω(t−z)
]
, (3.1.1)

where ~ is the Plank’s constant, c is the speed of light in vacuum, ε0 is the free space

permittivity, A is the cross-sectional area determined by the fibre mode or the geometry

of the experiment. The creation and annihilation operators satisfy the boson commutation

relations,

[âω, â
†
ω′ ] = δ(ω − ω′), [âω, âω′ ] = [â†ω, â

†
ω′ ] = 0. (3.1.2)

3.1.1 Localized wave packet modes

When discussing quantization of the electromagnetic field in quantum optics, discrete set of

modes are usually used. On the one hand, the maths is simpler for the discrete set of modes;

on the other hand, the discrete set of modes can be realized when the fields are confined

within a finite region, e.g., a cavity. However in the open space, the frequency is continuous

and continuum frequency modes should be used, as shown by Eq. (3.1.1). In order to utilize

the simplicity and conveniences of the discrete modes, one can define a set of complete and

orthonormal discrete modes even in open space [BLPS90]. Assume that {fi(ω)} is a set of

complete and orthonormal functions, which have support only for ω > 0 and satisfy∫ ∞
0

dω fi(ω)f ∗j (ω) = δij,
∑
i

fi(ω)f ∗i (ω′) = δ(ω − ω′), (3.1.3)
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where i and j label the members of the denumerably infinite set. Correspondingly, we can

define localized wave packet mode operators,

âi =

∫ ∞
0

dω fi(ω)âω. (3.1.4)

The inverse relation is easy to obtain by using the completeness relation in Eq. (3.1.3),

âω =
∑
i

f ∗i (ω)âi (3.1.5)

The localized wave packet mode operators satisfy commutation relations

[âi, â
†
j] = δij, [âi, âj] = [â†i , â

†
j] = 0. (3.1.6)

Substituting Eq. (3.1.5) into Eq. (3.1.1), we can expand the electric field operator in terms

of the localized wave packet modes as

Ê(t, z) = i
∑
j

[
âjfj(t, z)− â†jf ∗j (t, z)

]
, (3.1.7)

where fj(t, z) is the corresponding wave packet in the time domain,

fj(t, z) =

∫ ∞
0

dω

(
~ω

4πε0cA

)1/2

f ∗j (ω)e−iω(t−z). (3.1.8)

Altought fi(ω) is arbitrary, we are mainly concerned with the narrow bandwidth wave pack-

ets: ω0 � σ, where σ is the bandwidth and ω0 is the central frequency.

3.1.2 Number states

As discussed in Chapter 2, the vacuum state |0〉 is a state that contains no excitation in any

frequency mode, âω|0〉 = 0. From the definition of the localized wave packet mode operator

(3.1.4), we have âi|0〉 = 0 for all i. In the rest of this chapter, we are mostly interested in

a particular wave packet mode f(ω) and neglect the subscript “i” without introducing any

confusion. A single photon state can be generated by acting on the vacuum state by the

creation operator â†,

|1〉 = â†|0〉 =

∫ ∞
0

dω f ∗(ω)â†ω|0〉. (3.1.9)
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This state contains only one particle with frequency distribution |f(ω)|2, and spatiotemporal

distribution |f(t, z)|2. An n-photon state is

|n〉 =
(â†)n√
n!
|0〉, n = 0, 1, 2, . . . (3.1.10)

The number states are orthogonal

〈n|m〉 = δnm (3.1.11)

and complete
∞∑
n=0

|n〉〈n| = 1. (3.1.12)

3.1.3 Coherent state

A coherent state |α〉 can be generated by displacing the the vacuum state [WM07],

|α〉 = D̂(α)|0〉, (3.1.13)

where D̂(α) is an unitary displacement operator,

D̂(α) = exp(αâ† − α∗â) (3.1.14)

and α is an arbitrary complex number, α = |α|eiθ. Using the Baker-Campbell-Hausdorff

formula [Mil72, BK72] one can show that

D̂†(α)âD̂(α) = â+ α,

D̂†(α)â†D̂(α) = â† + α∗, (3.1.15)

and

â|α〉 = α|α〉. (3.1.16)

So a coherent state |α〉 is the eigenstate of the annihilation operator â with a complex

eigenvalue α. The expectation value and variance of the photon number are

N̄ = 〈α|N̂ |α〉 = |α|2,

(∆N)2 = 〈α|N̂2|α〉 − 〈α|N̂ |α〉2 = |α|2, (3.1.17)
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where N̂ = â†â is the photon number operator. The relative fluctuation of the photon

number is ∆N/N̄ = 1/
√
N̄ . The coherent state can be written as a linear superposition of

the number states,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (3.1.18)

from which one can easily show that the probability distribution of the photon number is a

Poisson distribution,

P (n) = |〈n|α〉|2 =
|α|2ne−|α|2

n!
. (3.1.19)

We introduce the Hermitian quadrature amplitude as

X̂(φ) = âe−iφ + â†eiφ, (3.1.20)

where φ represents the quadrature phase. Two important quadrature amplitudes are the

position and momentum operators,

x̂ = X̂(φ = 0) = â+ â†, p̂ = X̂(φ = π/2) = −iâ+ iâ†. (3.1.21)

The commutator between two quadrature amplitudes with π/2 phase difference is

[
X̂(φ), X̂(φ+ π/2)

]
= 2i. (3.1.22)

According to the uncertainty principle [Sak85], the product of the uncertainties of these two

quadrature amplitudes satisfy

∆X(φ)∆X(φ+ π/2) ≥ 1, (3.1.23)

where
(
∆X(φ)

)2
= 〈X̂2(φ)〉 − 〈X̂(φ)〉2 is the quadrature variance. For a coherent state, the

expectation value of the quadrature amplitude is

〈α|X̂(φ)|α〉 = αe−iφ + α∗eiφ = 2|α| cos(θ − φ) (3.1.24)

and the variance is (
∆X(φ)

)2
= 1. (3.1.25)
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We can see that the variance of the quadrature observable is unity for all quadrature phase.

This means the coherent state satisfies the minimum uncertainty relation,

∆X(φ)∆X(φ+ π/2) = 1. (3.1.26)

Fig. 3.1 shows the phase space representation of the coherent state, as well as the vacuum

state.

Figure 3.1: Phase space representation of a coherent state with amplitude α = |α|eiθ. For comparison,
the vacuum state is also plotted. The vacuum state is centred on the origin and its noise is normalized to
one. The coherent state |α〉 is shifted 2|α| in the direction θ and its fluctuation is the same as the vacuum
state.

3.1.4 Squeezed states

In this subsection, we shall introduce two types of squeezed state: the single-mode squeezed

vacuum state and two-mode squeezed vacuum state.

Single-mode squeezed vacuum state – A single-mode squeezed vacuum state is a minimum-

uncertainty state [WM07] with its minimum uncertainty of the quadrature amplitude smaller

than unity, that is, ∆Xmin < 1. According to the uncertainty principle, the uncertainty of

its conjugate quadrature amplitude should be greater than unity. The single-mode squeezed
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vacuum state can be generated by squeezing the vacuum,

|ξ〉 = Ŝ(ξ)|0〉. (3.1.27)

The single-mode squeezing operator Ŝ(ξ) is defined as [WM07]

Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξâ†2

)
(3.1.28)

and obeys the relations

Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ). (3.1.29)

where ξ = reiθ is an arbitrary complex number. Using the Baker-Campbell-Hausdorff for-

mula [Mil72, BK72], one can show that

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r,

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r. (3.1.30)

For a single-mode squeezed vacuum state, the expectation value of any quadrature amplitude

is vanished, 〈ξ|X̂(φ)|ξ〉 = 0. The variance of the quadrature amplitude is

(
∆X(φ)

)2
= 〈ξ|X̂2(φ)|ξ〉 = cosh2 r + sinh2 r − 2 cosh r sinh r cos(2φ− θ). (3.1.31)

The minimum and maximum uncertainties are

∆X(θ/2) = e−r, ∆X(θ/2 + π/2) = er, (3.1.32)

satisfying the minimum-uncertainty relation

∆X(θ/2)∆X(θ/2 + π/2) = 1. (3.1.33)

Note that the minimum uncertainty relation is satisfied only for two conjugate quadrature

amplitudes with minimum and maximum uncertainties, respectively. Product of uncertain-

ties of other pairs of conjugate quadrature amplitudes are greater than unity. Fig. 3.2 shows

the phase space representation of a single-mode squeezed vacuum state.

Two-mode squeezed vacuum state – The two-mode squeezed vacuum state is also known

as the Einstein-Podolski-Rosen (EPR) state [WPGP+12]. Assume that âs and âi are two
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Figure 3.2: Phase space representation of a single-mode squeezed vacuum state. The dotted circle
represents the vacuum shot noise.

independent modes, which are usually referred to as signal and idler modes, respectively. The

EPR state can be generated by squeezing the vacuum state with the two-mode squeezing

operator [WM07],

|ξ〉EPR = Ŝ2(ξ)|0〉. (3.1.34)

The two-mode squeezing operator is defined as

Ŝ2(ξ) = exp
(
ξ∗âsâi − ξâ†sâ

†
i

)
, (3.1.35)

and obeys relations

Ŝ†2(ξ) = Ŝ−1
2 (ξ) = Ŝ2(−ξ), (3.1.36)

where ξ = reiθ is an arbitrary complex number. Using the Baker-Campbell-Hausdorff for-

mula [Mil72, BK72], one can show that

Ŝ†2(ξ)âsŜ2(ξ) = âs cosh r − â†ieiθ sinh r,

Ŝ†2(ξ)âiŜ2(ξ) = âi cosh r − â†se−iθ sinh r. (3.1.37)

According to the disentangling theorem [Tru85],

Ŝ2(ξ) = exp
[
− eiθ tanh r â†sâ

†
i

]
exp

[
− ln(cosh r)(â†sâs + â†i âi + 1)

]
exp

[
− eiθ tanh r âsâi

]
.

(3.1.38)
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The EPR state can be expressed in terms of the number states of the signal and idler modes

as

|ξ〉EPR =
1

cosh r

∞∑
n=0

(−1)neinθ tanhn r |n〉s|n〉i, (3.1.39)

where |n〉s and |n〉i are the number states of the signal and idler modes, respectively. Whilst

the overall state is pure, the reduced state of each mode is mixed, e.g., the state of the signal

mode is

ρ̂s = tri
(
|ξ〉EPR〈ξ|

)
=

1

cosh2 r

∞∑
n=0

tanh2n r |n〉s〈n|. (3.1.40)

The expectation value and variance of the photon number are

N̄s = 〈ξ|N̂s|ξ〉EPR = sinh2 r,(
∆Ns

)2
= 〈ξ|N̂2

s |ξ〉EPR − 〈ξ|N̂s|ξ〉2EPR = cosh2 r sinh2 r. (3.1.41)

One can directly read out the probability distribution of the photon number from Eq.

(3.1.40),

P (n) =
tanh2n r

cosh2 r
=

N̄n
s

(N̄s + 1)n+1
. (3.1.42)

Since the idler and signal modes are symmetric, the above results are also valid for the idler

mode.

From Eq. (3.1.37) one can show that the expectation value of the quadrature amplitude of

each mode is vanished,

〈ξ|X̂s(φ)|ξ〉EPR = 〈ξ|X̂i(φ)|ξ〉EPR = 0, (3.1.43)

and the variance of the quadrature amplitude is(
∆Xs(φ)

)2
=
(
∆Xi(φ)

)2
= cosh(2r). (3.1.44)

The uncertainty of the quadrature amplitude of each mode is greater than unity if r 6= 0.

This is consistent with the fact that the reduced state of each mode is mixed. In order

to characterize the entanglement between the signal and idler modes, we introduce the

correlation (“+”) and anti-correlation (“-”) operators

X̂±(φ) =
1√
2

(
X̂s(φ)± X̂i(φ)

)
. (3.1.45)
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Without loss of generality, we discuss a special case: θ = 0. It is easy to see that

〈ξ|X̂±(φ)|ξ〉EPR = 0. (3.1.46)

The variances of X̂±(φ) are(
∆X±(φ)

)2
= 〈ξ|

(
X̂±(φ)

)2|ξ〉EPR = cosh(2r)± sinh(2r) cos(2φ). (3.1.47)

The maximum and minimum uncertainties of X̂+(φ) are obtained when φ = 0 and φ = π/2,

∆X+(0) = er, ∆X+(π/2) = e−r. (3.1.48)

The maximum and minimum uncertainties of X̂−(φ) are obtained when φ = π/2 and φ = 0,

∆X−(π/2) = er, ∆X−(0) = e−r. (3.1.49)

∆X−(0)∆X+(π/2) = e−2r < 1 implies that the signal and idler modes are entangled [BR04].

Fig. 3.3 shows the phase space representation of the two-mode squeezed vacuum state.

3.1.5 Thermal state

When the electromagnetic field is in equilibrium with a heat bath environment, the field is

in a thermal state. The density operator for a thermal state with temperature T is [SZ97]

ρ̂th =
∏
k

ρ̂k =
∏
k

{[
1− exp

(
− ωk
kBT

)] ∞∑
n=0

exp

(
− nωk
kBT

)
|n〉ωk〈n|

}
, (3.1.50)

where kB is the Boltzmann constant. For the k-th mode (with frequency ωk, which we

assume to be discrete for convenience), the expectation value and variance of the photon

number are

N̄k = tr(ρ̂kN̂k) =
1

exp
(
ωk
kBT

)
− 1

,

(
∆Nk

)2
= tr(ρ̂kN̂

2
k )− N̄2

k =
exp

(
ωk
kBT

)[
exp

(
ωk
kBT

)
− 1
]2 = N̄k(N̄k + 1). (3.1.51)

The probability distribution of the photon number can be directly read out from the density

operator Eq. (3.1.50) as

Pk(n) =

[
1− exp

(
− ωk
kBT

)]
exp

(
− nωk
kBT

)
=

N̄n
k

(N̄k + 1)n+1
. (3.1.52)
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Figure 3.3: Phase space representation of an EPR state. The dotted circle represents the vacuum shot
noise. (a) and (b) show that the uncertainties of the signal and idler mode are greater than the vacuum
shot noise. (c) and (d) show that the correlation and anti-correlation operators are squeezed. The former is
squeezed in the quadrature phase φ = π

2 and the latter in φ = 0.

By comparing with Eq. (3.1.42) we see that the photon number distribution of the signal or

idler mode is the same as the thermal photon number distribution (3.1.52). This implies: on

the one hand, the reduced state of the signal or idler mode can be considered as a thermal

state with temperature

T =
ωk

2kB ln(coth r)
; (3.1.53)

on the other hand, a thermal state can be purified by entangling it with another thermal

state to form an EPR state.

3.2 Basic optical elements

In this section, we introduce two basic optical elements that we will use frequently in the

following: the phase shifter and beamsplitter.
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3.2.1 Phase shifter

A phase shifter added a phase to the field modes. This can be realized by using a delay line

or some dielectric materials. The unitary operator for a phase shifter is

Ûφ = exp
(
iφâ†â

)
, (3.2.1)

where φ is the shifted phase. It can be easily shown that

Û †φâÛφ = âeiφ. (3.2.2)

3.2.2 Beamsplitter

A beamsplitter is a partially transmitted mirror, with two input and two output modes.

Assume that the two input modes are â1 and â2, respectively. The unitary operator for the

beamsplitter is [KMN+07]

ÛBS = exp

[
− iθ

(
eiφâ†1â2 + e−iφâ1â

†
2

)]
, (3.2.3)

where θ and φ characterize the properties of the beamsplitter. The input-output relations

for the beamsplitter are

â′1 = Û †BSâ1ÛBS = â1 cos θ − iâ2e
iφ sin θ,

â′2 = Û †BSâ2ÛBS = â2 cos θ − iâ1e
−iφ sin θ. (3.2.4)

The transmission and reflection coefficients are cos2 θ and sin2 θ, respectively. The relative

phase shift φ is introduced to ensure that the transformation is unitary. Fig. 7.2.9 shows a

schematic diagram of a beamsplitter.

3.3 Homodyne detection

3.3.1 Balanced homodyne detection

Homodyne detection is a phase sensitive detection scheme that measures the variance of a

quadrature amplitude of the optical field [SZ97]. A schematic arrangement for the homodyne
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Figure 3.4: Schematic diagram of a beamsplitter.

detection is shown in Fig. 3.5. The signal mode, âS, and the local oscillator mode, âL, are

coherently combined at a lossless 50:50 beamsplitter, then the two output field modes â1

and â2 are detected by two photon detectors D1 and D2, respectively. Finally, the photon

numbers registered by these two detectors are subtracted to give the photocurrent. This

scheme is known as the balanced homodyne detection. From Eq. (3.2.4), we find

â1 =
1√
2

(âS + âL),

â2 =
1√
2

(âL − âS), (3.3.1)

where we have chosen cos2 θ = sin2 θ = 1
2

and φ = π
2
. The output signal operator is defined

as

Ô = N̂1 − N̂2 = â†1â1 − â†2â2. (3.3.2)

It can be easily shown that

Ô = âSâ
†
L + â†SâL. (3.3.3)

The local oscillator is usually prepared in a large amplitude coherent state |βL〉, with βL =

|βL|eiφL . The expectation value of the output signal operator is

〈Ô〉 ≡ 〈ψS, βL|Ô|ψS, βL〉 = |βL|〈ψS|
(
âSe
−iφL + â†Se

iφL
)
|ψS〉 = |βL|〈ψS|X̂(φL)|ψS〉, (3.3.4)
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where |ψS〉 is the state of the signal mode. We can see that the expectation value of the

output signal of the balanced homodyne detection is directly related to the expectation

value of the quadrature amplitude of the signal mode. The phase of the detected quadrature

amplitude is determined by the phase of the local oscillator. The expectation value of the

square of the output signal operator is

〈Ô2〉 = 〈
(
âSâ

†
L + â†SâL

)2〉 ≈ |βL|2〈X̂2(φL)〉, (3.3.5)

where we only keep terms in the order of |βL|2. This is a good approximation when |βL|2 � 1.

Therefore, the variance of the output signal normalized by the strength of the local oscillator

(|βL|2) is the variance of the quadrature amplitude,(
∆X(φL)

)2
=
〈Ô2〉 − 〈Ô〉2

|βL|2
. (3.3.6)

L.O.

Signal

photocurrent

Figure 3.5: Schematic diagram of homodyne detection.

3.3.2 Ordinary homodyne detection

There is another way of doing homodyne detection: use an almost transparent beamsplitter

and detect the photon number of the detector D1. This corresponds to the ordinary homo-

dyne detection [SZ97]. Assume that the reflection coefficient R = sin2 θ is very close to zero.

From Eq. (3.2.4) we find

â1 =
√

1−R âS +
√
R âL,

â2 =
√

1−R âL −
√
R âS, (3.3.7)
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again we choose the phase as φ = π
2
. The expectation value of the photon number of the

detector D1 is

〈N̂1〉 = (1−R)〈â†SâS〉+R|βL|2 +
√
R(1−R)|βL|〈X̂(φL)〉. (3.3.8)

Although R is small, the amplitude of the local oscillator is chosen to be large enough so

that the following condition applies,

R|βL|2 � (1−R)〈â†SâS〉. (3.3.9)

Therefore the particle number operator can be approximated as

N̂1 ≈ Râ†LâL +
√
R(1−R)(âSâ

†
L + â†SâL). (3.3.10)

To the order of |βL|2, the variance of the particle number normalized by the strength of the

local oscillator is (
∆N1

)2

R|βL|2
≈ R + (1−R)

(
∆X(φL)

)2
. (3.3.11)

The first term is the shot noise of the local oscillator, attenuated by a factor of R. The

second term is basically the variance of the quadrature amplitude of the signal. In ordinary

homodyne detection, the attenuated shot noise of the local oscillator should be subtracted

first. If the reflection coefficient R is much smaller than the minimum variance of the

quadrature amplitude, the first term can be neglected. The result then is similar to that of

the balanced homodyne detection.

3.3.3 Self-homodyne detection

Suppose that an arbitrary quantum state |ψ〉 (or ρ̂) is displaced by a displacement operator

D̂(αL), where αL is large, |αL| � 1. The input mode â is transformed into

â′ = â+ αL. (3.3.12)

The photon number operator

N̂ = â′†â′ = |αL|2 + |αL|X̂(φL) + â†â, (3.3.13)
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and the square of the photon number is

N̂2 ≈ |αL|4 + 2|αL|3X̂(φL) + |αL|2
(
X̂(φL)

)2
+ 2|αL|2â†â, (3.3.14)

where we only keep terms in the order of |αL|2. Therefore the variance of the photon number

normalized by |αL|2 is the variance of the quadrature amplitude of the initial state,(
∆N

)2

|αL|2
=
(
∆X(φL)

)2
, (3.3.15)

By comparing with the ordinary homodyne detection, we find that this simple scheme can

be considered as a way of homodyne detection, called self-homodyne detection. Here |αL|2

corresponds to R|βL|2 in Eq. (3.3.11).

3.4 Quantum circuit

Quantum circuit plays an important role in quantum computation, communication and

information [Pre98, NC00]. A quantum circuit consists of a collection of quantum gates

and lines. In continous variable quantum computation and quantum information, a line

represents a field mode and a quantum gate represents an unitary transformation. In this

section, we introduce the pictorial representations of several important quantum gates that

were discussed in the previous sections.

The first type of quantum gate is the single-mode quantum gate, which has one input mode

and one output mode. Examples include the displacement, single-mode squeezer, phase

shifter etc.. Fig. 3.6 show some examples of the single-mode quantum gates.

The second type of quantum gate is the two-mode quantum gate, which has two input modes

and two output modes. Examples include the two-mode squeezer, beamsplitter etc.. Fig.

3.7 shows two examples that are frequently used in this thesis.

A combination of these elementary quantum gates forms a general quantum circuit. Fig. 3.8

is a simple example of a quantum circuit which consists of three quantum gates. In principle,

any quantum circuit can be decomposed into elementary single-mode and two-mode quantum

gates.
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Figure 3.6: Single-mode quantum gates.

Figure 3.7: Two-mode quantum gates.

Figure 3.8: An example of a quantum circuit.

3.5 Summary and further reading

In this chapter, we introduce some basic concepts and tools in quantum optics: some typical

quantum states, homodyne detection and quantum circuit. In particular, the homodyne

detection is very important and can be used to detect quantum state in the relativistic

systems and in the presence of gravity.

The textbooks by Walls and Milburn [WM07], Scully and Zubairy [SZ97] give a very complete
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introduction to quantum optics. To learn more about the experimental aspects of quantum

optics, one can refer to the textbook by Bachor and Ralph [BR04]. The textbook by Nielsen

and Chuang [NC00] contains a comprehensive introduction to quantum information and

computation. For Gaussian quantum information, one can refer to the review paper by

Weedbrook et al. [WPGP+12]. For homodyne detection and homodyne tomography, one

can refer to an excellent review paper by Lvovsky and Raymer [LR09].



4
Introduction to Quantum Field Theory in

Curved Spacetime

In this chapter, we are going to briefly review quantum field theory (QFT) in curved space-

time, which is concerned with the evolution of quantum fields on classical spacetimes. We

first briefly introduce general relativity, then discuss the Rindler space and Schwarzschild

spacetime. After that QFT in a general curved spacetime is discussed. Finally, we focus

on QFT in Rindler space and Schwarzschild spacetime, in particular, the Unruh effect and

Hawking effect.

43
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4.1 General relativity in a nutshell

General relativity is a geometric theory of gravitation published by Einstein in 1915. It is

a generalization of the special relativity and Newton’s gravity theory. Let’s begin with the

Eötvös experiments [Har03] that test the equality of the gravitational and inertial mass.

The gravitational mass of an object determines the gravitational force that it experiences in

a gravitational field, and the inertial mass determines its acceleration. Eötvös experiments

show that the accelerations of two objects made of different materials agree to a very high

accuracy better than 1.5×10−13 [WND96]. This means the ratio between gravitational mass

and inertial mass is the same for all objects, or we can say the gravitational mass and inertial

mass are equal. In particular, objects with different compositions follow the same trajectory

in a gravitational field.

The equality of gravitational and inertial mass implies that the gravitational field can be

eliminated by falling freely. Imagine that there is a freely falling elevator (Einstein’s eleva-

tor) in a gravitational field and an observer inside the elevator drops some objects. These

objects are either at rest or undergo uniform motion (neglecting the resistance) with respect

to the observer. The observer inside the freely falling elevator feels no gravity. On the other

hand, the equality of gravitational and inertial mass implies that the gravity can be created

by acceleration. Imagine that there is a small, closed laboratory that stays static in a gravi-

tational field and the observers inside the laboratory can carry out experiments. Consider a

same laboratory in an empty space but instead it uniformly accelerates, and observers inside

can carry out experiments. By performing experiments in the laboratory, the observers can-

not distinguish whether they are static in a gravitational field or uniformly accelerating in

an empty space. The uniform acceleration and a uniform gravitational field are equivalent.

This can be summarized as the Einstein’s Equivalence Principle (EEP) [Car04]:

• In a small enough region of spacetime, the law of physics reduce to those of

special relativity; it is impossible to detect the existence of a gravitational

field by means of local experiments.
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The EEP implies that gravitation can be described in terms of a geometry. Suppose that a

coordinate system {xµ} is chosen to label the events in a spacetime. The metric tensor gµν

fully characterizes the properties of the spacetime. The spacetime interval between two very

close spacetime events, with coordinates xµ and xµ + dxµ, is

ds2 = gµνdx
µdxν . (4.1.1)

A freely falling body follows a geodesic in the spacetime geometry, which is determined by

the geodesic equation,

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (4.1.2)

where λ is the proper time of the massive body or an affine parameter for a massless body,

and Γµρσ is the Christoffel symbol [Car04],

Γµρσ =
1

2
gµα
(
gρα,σ + gσα,ρ − gρσ,α

)
. (4.1.3)

As emphasized by the EEP, the motion of one body cannot detect the presence of gravity. In

order to detect the presence of gravity, one has to observe the relative motion between two

bodies, which is described by the geodesic deviation equation, where the Riemann curvature

tensor Rµ
νρσ appears [Har03]. The Riemann curvature tensor Rµ

νρσ is defined as

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρβΓβσν − ΓµσβΓβρν (4.1.4)

and contains full information about the gravity.

We have discussed briefly how to describe gravity in terms of geometry and its influence on

matter. On the other hand, the matter also influences the curvature of spacetime, which is

described by the Einstein’s equation. Suppose Tµν is the energy momentum tensor of the

matter, the Einstein equation is

Gµν = 8πGTµν , (4.1.5)

where Gµν is the Einstein tensor constructed from the Riemann curvature tensor [Har03].
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4.2 Rindler space

4.2.1 Uniformly accelerated observer

A uniformly accelerated observer moves with a constant proper acceleration in the Minkowski

spacetime. Their proper acceleration is measured in their own reference frame. The worldline

of a uniformly accelerated observer who accelerates along the x-axis is [Har03]

t = a−1 sinh(aτ),

x = a−1 cosh(aτ),

y = const.,

z = const., (4.2.1)

where τ is the proper time of the accelerated observer, a is the proper acceleration. Without

loss of generality, we can set y = z = 0. The four velocity uµ of the uniformly accelerated

observer can be easily derived from Eq. (4.2.1),

ut =
dt

dτ
= cosh(aτ), ux =

dx

dτ
= sinh(aτ), uy = uz = 0, (4.2.2)

and the four acceleration aµ is

at =
dut

dτ
= a sinh(aτ), ax =

dux

dτ
= a cosh(aτ), ay = az = 0. (4.2.3)

Therefore we have

ηµνa
µaν = ηtt(a

t)2 + ηxx(a
x)2 = a2. (4.2.4)

This is consistent with the fact that the observer is uniformly accelerated. By looking

carefully at the four velocity we note that there exist horizons for uniformly accelerated

observers. When τ → −∞, uµ becomes asymptotically parallel to (−1, 1, 0, 0) but never go

beyond the light ray (−1, 1, 0, 0). When τ → +∞, uµ becomes asymptotically parallel to

(1, 1, 0, 0) but never go beyond the light ray (1, 1, 0, 0). Therefore there exist a past and a

future horizon for the accelerated observers. The horizon can be clearly illustrated in the

(1 + 1)-dimensional flat spacetime (or one can suppress the other two spatial dimensions in

the figure), see Fig. 4.1.
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Figure 4.1: A uniformly accelerated observer Rob follows a hyperbolic worldline, which is confined
within the right Rindler wedge formed by the past and future horizon.

4.2.2 Rindler coordinates

Instead of using Minkowski coordinates, accelerated observers can use a new coordinate

system to describe the spacetime events in the Rindler space. The new coordinate system is

called Rindler coordinate system, denoted as (τ, ξ, y, z). The proper time τ of a particular

accelerated observer is chosen as the global time, and ξ is a new spatial coordinate. The

coordinate transformations between the Minkowski and Rindler coordinates are

t = a−1eaξ sinh(aτ),

x = a−1eaξ cosh(aτ), (4.2.5)

and y, z are the same. The line element can be written in terms of the Rindler coordinates

as

ds2 = −e2aξ(dτ 2 − dξ2) + dy2 + dz2. (4.2.6)

There is a corresponding Rindler coordinate system (τ̄ , ξ̄, y, z) in the left Rindler wedge, as

shown in Fig. 4.2. The coordinate transformations are

t = −a−1eaξ̄ sinh(aτ̄),

x = −a−1eaξ̄ cosh(aτ̄). (4.2.7)
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Note that we have used the prescription that ∂τ̄ is past directed. The line element is

ds2 = −e2aξ̄(dτ̄ 2 − dξ̄2) + dy2 + dz2. (4.2.8)

fu
tu

re
ho

riz
on

past horizon

t

x

Rob

τ =const.

τ =const.

ξ = 0 ξ =const.

RL

F

P

Figure 4.2: Rindler coordinate system. The whole Minkowski spacetime is divided into four wedges
by the past and future horizons: right Rindler wedge (R), left Rindler wedge (L), future wedge (F) and
past wedge (P). In the right Rindler wedge, the coordinates are (τ, ξ, y, z); in the left Rindler wedge, the
coordinates are (τ̄ , ξ̄, y, z).

It is evident from Eq. (4.2.6) that the global time τ is also the proper time of the accelerated

observer with ξ = 0. Clocks of different stationary observers (with ξ = ξ0 = const.) in the

accelerated frame tick at different rate. From the line element Eq. (4.2.6) it is easy to show

that dτ0 = eaξ0dτ . So the the clock ticks slower when it is closer to the horizon (ξ0 → −∞).

In fact, a stationary observer in accelerated frame is a uniformly accelerated observer with

proper acceleration a0 = ae−aξ0 . Their acceleration is huge when they are close to the horizon

and is tiny when they are far away from the horizon.
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4.3 Schwarzschild spacetime

The Schwarzschild metric was discovered by Schwarzschild in 1916 [Sch16]. It describes an

empty, static, spherically symmetric and asymptotically flat spacetime. Examples include

the spacetime outside a static and spherical star, a Schwarzschild black hole etc.. In this

thesis we are interested in a Schwarzschild black hole, a peculiar spacetime region that one

can fall in but can never come out. The interface between this region and the outside world

is called the event horizon. An astrophysical, stellar mass black hole is believed to be formed

from the collapse of a star [Tol39, OV39].

4.3.1 Schwarzschild metric and gravitational redshift

In terms of Schwarzschild coordinates (t, r, θ, φ), the line element for the Schwarzschild space-

time is

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (4.3.1)

where M is the mass of the black hole and geometric unit has been used: G = c = 1. Static

observers in the Schwarzschild spacetime are those observers with constant r, θ and φ. We

can see from Eq. (4.3.1) that when a static observer is very far away from the black hole

(r →∞), their proper time coincides with the coordinate time t. Therefore we can consider

t as the proper time of static observers at spatial infinity. When a static observer is close

to the black hole, their clock ticks slower than that at spatial infinity. This is known as the

gravitational redshift. Suppose that a static observer is at r = r0, θ = φ = 0. From Eq.

(4.3.1) we have

dτ0 =

√
1− 2M

r0

dt, (4.3.2)

where τ0 is proper time of the static observer at r0. We note that as the static observer gets

closer and closer to 2M , their clock ticks slower and slower as compared to those at spatial

infinity.

Imagine that if a static observer close to the horizon holds a source of light and sends a light

signal radially toward spatial infinity, then the frequency of the light signal received by a
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static observer at spatial infinity would be lower than when it was initially sent. We can

verify this by a rigorous calculation. A light ray follows a null geodesic in a curved spacetime.

If K is a Killing vector of the spacetime, then its inner product with the four momentum of

the light, p ·K, is a conserved quantity [Har03]. Since the Schwarzschild spacetime is static,

it has a time-like Killing vector Kt = (1, 0, 0, 0). It can be shown that the four velocity

of a static observer is proportional to the Killing vector Kt, that is, uobs = Kt/
√

1− 2M
r

.

Therefore we have
√

1− 2M
r

p · uobs is a constant. Note that the quantity p · uobs is the

frequency of the light as measured by the static observer [Har03]. The relation between the

frequencies as measured by two static observers at r1 and r0 is

ω1 =

√
1− 2M

r0√
1− 2M

r1

ω0. (4.3.3)

This represents a gravitational redshift or blueshift, depending on the relative position of

these two observers. If r1 →∞, then we have

ω∞ =

√
1− 2M

r0

ω0. (4.3.4)

This represents the gravitational redshift we mentioned before. A particular interesting limit

is r0 → 2M . From Eq. (4.3.3), the frequency as measured by any static observer tends to

be zero (this result can be generalized to any observer outside the black hole). It seems that

the light is trapped at r = 2M and can never escape. This light-like surface is known as the

event horizon of the Schwarzschild black hole. Nothing can escape from it even for light.

4.3.2 Maximally extended Schwarzschild spacetime

If we look more closely at the metric of the Schwarzschild spacetime, Eq. (4.3.1), we would

find that the metric is divergent at r = 2M , the event horizon. However the Riemann

curvature tensor at the horizon is finite [Har03]. This suggests that the singularity at the

horizon is superficial and is due to the silliness of the Schwarzschild coordinates at the

horizon. A choice of a different coordinate system, e.g., Eddington-Finkelstein coordinate

system [Har03], can remove the coordinate singularity at the horizon. Another option is

the Kruskal-Szekeres coordinate system [Har03], which is more relevant to this thesis. The
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Kruskal-Szekeres coordinate are denoted by (T,R, θ, φ), where θ, φ coordinates are the same

as the Schwarzschild polar angles. The transformations between (T,R) and (t, r) areT =
(

r
2M
− 1
)1/2

er/4M sinh
(

t
4M

)
,

R =
(

r
2M
− 1
)1/2

er/4M cosh
(

t
4M

) (4.3.5)

for r > 2M and T =
(
1− r

2M

)1/2
er/4M cosh

(
t

4M

)
,

R =
(
1− r

2M

)1/2
er/4M sinh

(
t

4M

) (4.3.6)

for r < 2M . The line element of the Schwarzschild spacetime in terms of the new coordinates

becomes

ds2 = −32M3

r
e−r/2M(dT 2 − dR2) + r2

(
dθ2 + sin2 θdφ2

)
, (4.3.7)

where r should be considered as a function of T and R,

r = 2M

[
1 +W

(
R2 − T 2

e

)]
, (4.3.8)

where W (z) is the Lambert W function [CGH+96]. It is clear that the metric is regular at

r = 2M . It is convenient to introduce null coordinates U and V ,

U = T −R,

V = T +R. (4.3.9)

The line element in terms of U and V is

ds2 = −32M3

r
e−r/2MdUdV + r2

(
dθ2 + sin2 θdφ2

)
(4.3.10)

where r is the function of U and V ,

r = 2M
[
1 +W

(
− UV/e

)]
. (4.3.11)

We denote the region outside the event horizon, r > 2M , as region I; and the region inside

the horizon, r < 2M , as region II. In region I,
U = − exp

{
− 1

4M

[
t− r − 2M ln

(
r

2M
− 1

)]}
,

V = exp

{
1

4M

[
t+ r + 2M ln

(
r

2M
− 1

)]}
.

(4.3.12)
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Table 4.1: Signs of null coordinates U and V in four regions. Regions I and II are described
by the original Schwarzschild coordinates, regions III and IV are the Kruskal extension.

I II III IV

U − + + −

V + + − −

In region II, 
U = exp

{
− 1

4M

[
t− r − 2M ln

(
1− r

2M

)]}
,

V = exp

{
1

4M

[
t+ r + 2M ln

(
1− r

2M

)]}
.

(4.3.13)

Thus U = const. represents a radially outgoing light ray, and V = const. represents a

radially ingoing light ray. In addition, if we look at the signs of U and V , as summarized

in Table 4.1, we note that in region I and II, V is positive. Mathematically, it is possible to

extend the value of V to negative values. We thus obtain another two regions, III and IV,

as summarized in Table 4.1. This is known as the Kruskal extension of the Schwarzschild

geometry.
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=
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Figure 4.3: Kruskal diagram.
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The four regions can be nicely illustrated in the Kruskal diagram, Fig. 4.3. Region I is

the outside world (where we live) of the black hole and region II is the inside of the black

hole. The shaded part, including regions III and IV, is the Kruskal extension. In the

Kruskal diagram, the worldline of a light ray is represented by a 45◦ (U = const. or V =

const.) straight line. The future horizon is r = 2M, t = ∞ (or U = 0); the past horizon is

r = 2M, t = −∞ (or V = 0). Falling observers or ingoing light rays in region I will cross

the future horizon and eventually hit the singularity. Outgoing light rays in region I will

go to spatial infinity, while outgoing light rays in region II cannot escape and will hit the

singularity. Note that there is no way of sending signals from region I to region III, and vice

versa. So these two regions are causally disconnected.

4.3.3 Penrose diagram

By doing a conformal transformation, which preserves the angles of light rays, the Kruskal

diagram can be drawn in a compact way. This is known as the Penrose diagram of the

maximally extended Schwarzschild spacetime. The new null coordinates are (U ′, V ′) [Car04],U
′ = tan−1(U),

V ′ = tan−1(V ).

(4.3.14)

The transformation maps the infinities of U and V to finite values of U ′ and V ′. A typical

Penrose diagram of the Schwarzschild spacetime is shown in Fig. 8.6. A few symbols are

introduced in Fig. 8.6, the meanings of which are listed in Table 4.2.

4.4 Quantum field theory in curved spacetime

QFT in curved spacetime is concerned with the dynamics of quantum fields in curved back-

ground spacetimes. The background spacetime is considered to be classical and plays the

role as a stage on which the quantum fields evolve. This is obviously not a complete theory

because the back action of the quantum fields toward the spacetimes should also be taken
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Figure 4.4: Penrose diagram of the maximally extended Schwarzschild spacetime.

Table 4.2: Meaning of symbols in the Penrose diagram.

I0 spatial infinity

I+ future infinity

I− past infinity

H+ future horizon

H− past horizon

I + future null infinity

I − past null infinity

r = 0 singularity

into account consistently. In this thesis, we restrict ourselves to the regime where the back

action of the quantum fields is neglectable so that QFT in curved spacetime is applicable.

We consider a scalar field for simplicity. Generalization to higher spin fields can be found

in [BD82]. The quantization of the scalar field in a curved spacetime is analogous to that

in the Minkowski spacetime. The first step is to write down the dynamical equation for

the scalar field in curved spacetimes. The scalar field equation in the Minkowski spacetime

is invariant under the Lorentz transformation. This is the requirement of the principle of

relativity: the laws of physics are invariant in any inertial frame. In general relativity, the
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general covariance requires that the laws of physics are the same in any reference frame.

Therefore the scalar field equation in curved spacetimes should be written in a generally

covariant form. For a minimally coupled and massless scalar field Φ̂, the field equation is

assumed to be [BD82]

�Φ̂ = 0, (4.4.1)

where the d’ Alembertian � ≡ (
√
−g)−1∂µ(

√
−ggµν∂ν) and gµν is the metric of the back-

ground spacetime. This is known as the Klein-Gordon equation.

For a space-like hypersurface Σ with induced metric gΣij and unit normal vector nµ, the

Klein-Gordon inner product Eq. (2.2.18) is generalized to [BD82, CHM08]

〈φ1, φ2〉 = i

∫
Σ

(φ∗1∂µφ2 − φ2∂µφ
∗
1)nµ
√
gΣdΣ, (4.4.2)

where gΣ is the determinant of the induced metric gΣij and dΣ is the volume element of

the space-like hypersurface Σ. The Klein-Gordon product is independent of the choice of Σ

[HE73]. We can find a complete set of mode solutions φi to the Klein-Gordon Eq. (4.4.1)

that are orthonormal in terms of the Klein-Gordon product (4.4.2), namely,

〈φi, φj〉 = δij, 〈φ∗i , φ∗j〉 = −δij, 〈φi, φ∗j〉 = 0. (4.4.3)

Here i or j is to be understood as a collection of several indexes, including continuous and

discrete indexes. The scalar field Φ̂ can be expanded as

Φ̂ =
∑
i

(
âiφi + â†iφ

∗
i

)
. (4.4.4)

The annihilation and creation operators satisfy the standard boson commutation relations,

[âi, â
†
j] = δij, [âi, âj] = [â†i , â

†
j] = 0. (4.4.5)

The vacuum state |0〉a, named a-vacuum, is defined as

âi|0〉a = 0, ∀ i. (4.4.6)

All other states can be generated from the a-vacuum and the creation operators â†i .
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There is an essential difference between the QFT in the Minkowski spacetime and that in the

curved spacetime. A natural set of modes, Eq. (4.5.10), can be choosen in the Minkowski

spacetime, however the choice of modes in a general curved spacetime is ambiguous. The

Minkowski spacetime is invariant under the translations in time and space, rotations in space,

and Lorentz boosts, which consist of the elementary actions of the Poincaré group. In the

Cartesian coordinates (t, x, y, z), the Minkowski line element is invariant under the actions

of the Poincaré group. Therefore, the Cartesian coordinates are the natural coordinates

that manifest all the symmetries of the Minkowski spacetime. In particular, the vector

∂t is a time-like Killing vector of the Minkowski spacetime and the modes Eq. (4.5.10)

are the eigenfunctions of ∂t. Furthermore, the Minkowski vacuum is invariant under the

actions of the Poincaré group. In a general curved spacetime, there exist less symmetries or

even no symmetry. Therefore no coordinate system is preferred in a curved spacetime. In

addition, the principle of general covariance states that the coordinate systems are physically

irrelevant. This implies in principle we are free to choose any coordinate system, and an

arbitrary set of complete and orthonormal modes. Consequently, the definition of the vacuum

state is ambiguous.

In this thesis, we focus on spacetimes that possess time-like Killing vectors so that positive

and negative frequency modes can be defined; or spacetimes that are asymptotically flat in

the distant past and distant future, so that a natural in and out vacuum are well defined.

Suppose we have two sets of complete and othomormal modes, φi and ψi, e.g., they could be

the in and out modes, respectively. The scalar field can be expanded in terms of the second

set of modes as

Φ̂ =
∑
i

(
b̂iψi + b̂†iψ

∗
i

)
, (4.4.7)

where b̂i and b̂†i are the corresponding creation and annihilation operators. The vacuum state

|0〉b, named b-vacuum, is defined as

b̂i|0〉b = 0, ∀ i. (4.4.8)
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All other states can be generated from the b-vacuum and the creation operators b̂†i . Since

these two sets of modes are complete and orthonormal, one can expand ψi in terms of φi,

ψi =
∑
j

(αijφj + βijφ
∗
j). (4.4.9)

Conversely,

φj =
∑
i

(α∗ijψi − βijψ∗i ). (4.4.10)

These relations are known as the Bogoliubov transformations [BD82]. αij and βij are the

Bogoliubov coefficients, which can be obtained by using Eq. (4.4.3),

αij = 〈φj, ψi〉,

βij = −〈φ∗j , ψi〉. (4.4.11)

Using the two ways of expansion of the scalar field Φ̂, Eqs. (4.4.4) and (4.4.7), one can derive

the the relations between the operators âi and b̂i,

âi =
∑
j

(αjib̂j + β∗jib̂
†
j), (4.4.12)

b̂j =
∑
i

(α∗jiâi − β∗jiâ
†
i ). (4.4.13)

The Bogoliubov coefficients satisfy the following relations in order to preserve the commu-

tation relations of âi and b̂i,∑
k

(αkiα
∗
kj − β∗kiβkj) = δij,

∑
k

(αkiβ
∗
kj − β∗kiαkj) = 0, (4.4.14)∑

k

(αikα
∗
jk − βikβ∗jk) = δij,

∑
k

(αikβjk − βikαjk) = 0. (4.4.15)

If the Bogoliubov coefficients βij 6= 0, the a-vacuum and b-vacuum are not equivalent. In

particular, the a-vacuum contains b particles,

a〈0|b̂†j b̂j|0〉a =
∑
k

|βjk|2. (4.4.16)

This is the ambiguity of the vacuum state that we mentioned before. A given time-like Killing

vector field corresponds to a set of physical observers. If φi and ψi are the eigenfunctions of
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two different time-like Killing vector fields, then we can conclude that the notion of particles

and vacuum are observer dependent. In particular, if φi and ψi correspond to modes in

the distant past and the distant future of an asymptotically flat spacetime, then an initial

vacuum |0〉a contains b particles if βij 6= 0. This process can be considered as particle creation

from the evolution of the spacetime.

4.5 Quantum fields in Rindler space

In this section, we introduce QFT in Rindler space and the Unruh effect. Although Rindler

space is not a curved spacetime, the studies of QFT in it give very important insights to the

QFT in curved spacetime.

4.5.1 Rindler modes

In the Minkowski spacetime ∂t is a time-like Killing vector field, the integral curves of which

correspond to the worldlines of inertial observers. There exists another Killing vector field

in the Minkowski spacetime: x∂t + t∂x = (x, t, 0, 0). It is time-like when |x| > |t|, namely, in

the right or left Rindler wedge. It turns out that the integral curves of x∂t + t∂x in the right

or left Rindler wedge are associated with the worldlines of uniformly accelerated observers.

As we have discussed in Section 4.2, the uniformly accelerated observers are stationary and

the metric Eq. (4.2.6) is static in the Rindler coordinates. According to the general theory

we discussed in Section 4.4, there exist a natural set of complete and orthonormal modes,

and a corresponding vacuum. They are known as the Rindler modes and Rindler vacuum,

respectively.

The Unruh effect is better illustrated in the QFT in (1 + 1)-dimensional Rindler space. We

thus study an Hermitian massless scalar field Φ̂ in (1 + 1)-dimensional Rindler space in this

section. Generalization to higher dimensions can be found in [BD82, CHM08]. In the right

Rindler wedge (x > |t|), the Klein-Gordon equation in terms of the Rindler coordinates is(
− ∂

∂τ 2
+

∂

∂ξ2

)
Φ̂ = 0. (4.5.1)
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The positive frequency solutions should be proportional to e−iωτ , where ω is a postive con-

stant. The spatial part of the solutions can be a linear combination of eiωξ and e−iωξ. We

choose normalized solutions as

gR1ω(τ, ξ) =
1√
4πω

e−iω(τ+ξ) =
1√
4πω

e−iωv, (4.5.2)

gR2ω(τ, ξ) =
1√
4πω

e−iω(τ−ξ) =
1√
4πω

e−iωu, (4.5.3)

where v = τ + ξ, u = τ − ξ are null coordinates. gR1ω(v) and gR2ω(u) represent left-moving

and right-moving modes, respectively. Note that the right Rindler modes are only defined in

the right Rindler wedge, and should vanish in the left Rindler wedge if they are extended to

the whole Minkowski spacetime. Therefore a more complete definition of the right Rindler

modes is

gR1ω(v) =


1√
4πω

e−iωv, x > |t|;

0, x < −|t|.
(4.5.4)

gR2ω(u) =


1√
4πω

e−iωu, x > |t|;

0, x < −|t|.
(4.5.5)

These Rindler modes are orthonormal in terms of the Klein-Gordon inner product Eq.

(4.4.2). The left-moving and right-moving right Rindler modes are decoupled for a massless

scalar field. The Rindler modes in the left Rindler wedge can be obtained by simply replacing

v, u by v̄ = −τ̄ − ξ̄ and ū = −τ̄ + ξ̄.

gL1ω(v̄) =

0, x > |t|;

1√
4πω

e−iωv̄, , x < −|t|.
(4.5.6)

gL2ω(ū) =

0, x > |t|;

1√
4πω

e−iωū, x < −|t|.
(4.5.7)

By combining the right and left Rindler modes, we have an alternative set of complete and

orthonormal modes for a massless scalar field in the (1+1)-dimensional Minkowski spacetime.

The scalar field Φ̂ can be expanded in terms of the Rindler modes as

Φ̂ =

∫
dω
[
b̂R1ωg

R
1ω(v) + b̂R2ωg

R
2ω(u) + b̂L1ωg

L
1ω(v̄) + b̂L2ωg

L
2ω(ū) + h.c.

]
, (4.5.8)
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where h.c. represents the Hermitian conjugate. b̂Rmω and b̂Lmω (m=1, 2) are the Rindler

annihilation operators. The Rindler vacuum state |0R〉 is defined as

b̂Rmω|0R〉 = b̂Lmω|0R〉 = 0, ∀m,ω. (4.5.9)

4.5.2 Bogoliubov transformation

In (1 + 1)-dimensional Minkowski spacetime, the positive frequency eigenfunctions of the

time-like Killing vector ∂t are chosen as

u1k(V ) =
1√
4πk

e−ikV ,

u2k(U) =
1√
4πk

e−ikU , (4.5.10)

where V = t+x, U = t−x and k is a positive constant, representing the Minkowski frequency.

The scalar field Φ̂ can be expanded in the standard way,

Φ̂ =

∫
dk
(
â1ku1k + â2ku2k + h.c.

)
, (4.5.11)

where â1k, â2k, â
†
1k, â

†
2k are the Minkowski annihilation and creation operators satisfying the

boson commutation relations,

[âmk, â
†
nk′ ] = δmnδ(k − k′), [âmk, ânk′ ] = [â†mk, â

†
nk′ ] = 0,

with m,n = 1, 2. The Minkowski vacuum state |0M〉 is defined as

âmk|0M〉 = 0, ∀m, k. (4.5.12)

We are now going to derive the Bogoliubov transformations between the Minkowski modes

and the Rindler modes. Since the left-moving and right-moving modes are independent,

we first consider left-moving modes. The Rindler modes can be written in terms of the

Minkowski modes as

gR1ω(v) =

∫ ∞
0

dk
[
αR1ωku1k(V ) + βR1ωku

∗
1k(V )

]
, (4.5.13)

gL1ω(v̄) =

∫ ∞
0

dk
[
αL1ωku1k(V ) + βL1ωku

∗
1k(V )

]
. (4.5.14)
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The Bogoliubov coefficients can be calculated directly using the Klein-Gordon inner product.

However, due to the special form of the Minkowski modes, an easier way to find αR1ωk is to

multiply Eq. (4.5.13) by eikV /2π with k > 0, and integrate over V . We find

αR1ωk =
1

2π

√
k

ω

∫ ∞
0

dV (aV )−iω/aeikV . (4.5.15)

We have used the relation aV = eav, so that gR1ω(v) ∝ (aV )−iω/a. The integral Eq. (4.5.15)

is convergent if we shift the integration path from the real axis to V + iε, with ε → 0+.

Since the integrand is analytic, according to the Cauchy theorem, the contour integral along

C1 +C2 +C3, as shown in Fig. 4.5, is vanishing. Furthermore, the integrand along the path

C2 goes to zero when |V | → ∞. We thus can shift the integration path C1 to the positive

imaginary axis C3. According to the definition of Gamma’s function [AS72], we find

αR1ωk =
ieπω/2a

2π
√
ωk

(
k

a

)iω/a
Γ(1− iω/a), (4.5.16)

where Γ(z) is the Gamma function.

C1

C2

C3

|V |

Re(V )

Im(V )

O

Figure 4.5: Integration contour in the complex V plane.

The coefficient βR1ωk can be calculated in a similar way. The phase eikV in Eq. (4.5.15) is

replaced by e−ikV and the integration path should be shifted to the negative imaginary axis.

We find

βR1ωk = −ie
−πω/2a

2π
√
ωk

(
k

a

)iω/a
Γ(1− iω/a). (4.5.17)
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The derivation of αL1ωk and βL1ωk proceeds similarly. We find

αL1ωk = αR∗1ωk = − ie
πω/2a

2π
√
ωk

(
k

a

)−iω/a
Γ(1 + iω/a), (4.5.18)

βL1ωk = βR∗1ωk =
ie−πω/2a

2π
√
ωk

(
k

a

)−iω/a
Γ(1 + iω/a). (4.5.19)

The right-moving Rindler modes can be written as

gR2ω(u) =

∫ ∞
0

dk
[
αR2ωku2k(U) + βR2ωku

∗
2k(U)

]
, (4.5.20)

gL2ω(ū) =

∫ ∞
0

dk
[
αL2ωku2k(U) + βL2ωku

∗
2k(U)

]
. (4.5.21)

The Bogoliubov transformation coefficients αR2ωk, β
R
2ωk, α

L
2ωk and βL2ωk can be shown to be

αR2ωk = αL1ωk, βR2ωk = βL1ωk, (4.5.22)

αL2ωk = αR1ωk, βL2ωk = βR1ωk. (4.5.23)

4.5.3 Unruh temperature

We have shown explicitly that the Bogoliubov coefficients βR,Lmωk are not vanishing. This means

the Minkowski vacuum is inequivalent to the Rindler vacuum. The Minkowski vacuum is

empty of Minkowski particles but not Rindler particles. The expectation value of the Rindler

particle number in the Minkowski vacuum is

〈0M |b̂R†mω b̂Rmω|0M〉 = 〈0M |b̂L†mω b̂Lmω|0M〉 =
δ(0)

e2πω/a − 1
. (4.5.24)

The formally divergent quantity δ(0) appears because we consider a space with infinite

volume. We can see that the Rindler particle number distribution is a thermal distribution

with temperature TU = a/2π, which is known as the Unruh temperature [Unr76]. The

Rindler particles can be understood as particles observed by a uniformly accelerated observer.

This means a uniformly accelerated observer experiences a thermal bath with the Unruh

temperature in the Minkowski vacuum.

The Unruh temperature is proportional to the acceleration of the accelerated observer. If

we recover all the physical constants we find

TU =
~a

2πckB
, (4.5.25)
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where ~ is the reduced Plank constant, c is the speed of light in vacuum and kB is the

Boltzmann constant. In order to observe temperature TU ∼ 1K, one has to accelerate with

acceleration a ∼ 1020 kg · m/s2, a huge acceleration. It is therefore extremely difficult to

detect the Unruh effect with the state-of-art technologies.

4.5.4 Unruh modes

It is very useful to introduce Unruh modes [Unr76] that are linear combinations of only posi-

tive frequency Minkowski modes, and thus share the same vacuum state with the Minkowski

modes. In Unruh’s original paper [Unr76], the Unruh modes are defined through analytically

extending the Rindler modes to the whole spacetime region. The left-moving Rindler mode

in the right Rindler wedge, gR1ω = (4πω)−1/2(aV )−iω/a for V > 0, is extended to the negative

real axis along a small circle centred on V = 0 and in the lower-half complex plane, leading

to (4πω)−1/2e−πω/a(−aV )−iω/a = e−πω/agL∗1ω for V < 0. The corresponding normalized Unruh

mode is thus defined as

G1ω(V ) = cosh(rω)gR1ω(v) + sinh(rω)gL∗1ω (v̄), (4.5.26)

where the factor rω satisfies tanh(rω) = e−πω/a. Since G1ω(V ) is analytic and bounded in

the lower-half complex plane, it thus can be expressed purely in terms of u1k(V ), which

are also analytic and bounded in the lower-half complex plane. This means G1ω(V ) con-

tains only positive frequency Minkowski modes. The left-moving Rindler mode in the left

Rindler wedge, gL1ω = (4πω)−1/2(−aV )iω/a for V < 0, is extended to the positive real axis

along a small circle centred on V = 0 and in the lower half complex plane, leading to

(4πω)−1/2e−πω/a(aV )iω/a = e−πω/agR∗1ω for V > 0. The corresponding normalized Unruh

mode is thus defined as

Ḡ1ω(V ) = cosh(rω)gL1ω(v̄) + sinh(rω)gR∗1ω (v). (4.5.27)

The Unruh mode Ḡ1ω(V ) is also analytic in the lower-half complex plane and can be ex-

pressed purely in terms of positive Minkowski modes.



64 Introduction to Quantum Field Theory in Curved Spacetime

The above argument is from the perspective of analyticity. In fact, one can straightforwardly

show that the Unruh modes Eqs. (4.5.26) and (4.5.27) are linear combinations of positive

frequency modes e−ikV . Substituting the Bogoliubov transformations, Eqs. (4.5.13) and

(4.5.14), into the definition of G1ω, we find

G1ω =
1√

1− e−2πω/a

∫
dk
[(
αR1ωk + e−πω/aβL∗1ωk

)
u1k +

(
βR1ωk + e−πω/aαL∗1ωk

)
u∗1k
]
.

(4.5.28)

From the explicit expressions of the Bogoliubov coefficients, Eqs. (4.5.16)-(4.5.19),

αR1ωk + e−πω/aβL∗1ωk =
ieπω/2a(1− e−2πω/a)

2π
√
ωk

(
k

a

)iω/a
Γ(1− iω/a), (4.5.29)

βR1ωk + e−πω/aαL∗1ωk = 0. (4.5.30)

Therefore we have

G1ω(V ) =

∫
dkAkωu1k(V ) (4.5.31)

where

Akω =
i
√

2 sinh(πω/a)

2π
√
ωk

(
k

a

)iω/a
Γ(1− iω/a). (4.5.32)

It is clear that the Unruh mode G1ω(V ) contains purely positive frequency Minkowski modes.

Similarly, using the Bogoliubov transformations, Eqs. (4.5.13) and (4.5.14), we find

Ḡ1ω =
1√

1− e−2πω/a

∫
dk
[(
αL1ωk + e−πω/aβR∗1ωk

)
u1k +

(
βL1ωk + e−πω/aαR∗1ωk

)
u∗1k
]
.

(4.5.33)

From the explicit expressions of the Bogoliubov coefficients, Eqs. (4.5.16)-(4.5.19),

αL1ωk + e−πω/aβR∗1ωk = −ie
πω/2a(1− e−2πω/a)

2π
√
ωk

(
k

a

)−iω/a
Γ(1 + iω/a), (4.5.34)

βL1ωk + e−πω/aαR∗1ωk = 0. (4.5.35)

Therefore we have

Ḡ1ω(V ) =

∫
dkBkωu1k(V ) (4.5.36)

where

Bkω = −
i
√

2 sinh(πω/a)

2π
√
ωk

(
k

a

)−iω/a
Γ(1 + iω/a). (4.5.37)
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It is clear that the Unruh mode Ḡ1ω(V ) contains purely positive frequency Minkowski modes.

Note that Bkω = A∗kω.

Right-moving Unruh modes are defined as

G2ω(U) = cosh(rω)gR2ω(u) + sinh(rω)gL∗2ω (ū), (4.5.38)

Ḡ2ω(U) = cosh(rω)gL2ω(ū) + sinh(rω)gR∗2ω (u). (4.5.39)

It can be similarly shown that

G2ω(U) =

∫
dkBkωu2k(U), Ḡ2ω(U) =

∫
dkAkωu2k(U). (4.5.40)

Therefore the right-moving Unruh modes are linear combinations of positive frequency modes

e−ikU . The Unruh modes can be written in a compact way,

G1ω(V ) = F (ω, a)(aV )−iω/a,

Ḡ1ω(V ) = F (ω, a)(−aV )iω/a,

G2ω(U) = F (ω, a)(−aU)iω/a,

Ḡ2ω(U) = F (ω, a)(aU)−iω/a, (4.5.41)

with F (ω, a) ≡ eπω/2a√
4πω
√

2 sinh(πω/a)
. G1ω(V ), Ḡ1ω(V ), G2ω(U) and Ḡ2ω(U) are all analytic in

the lower-half complex plane.

The Unruh modes form a set of complete and orthonormal modes. The scalar field can be

expanded in terms of the Unruh modes,

Φ̂ =

∫
dω
(
ĉ1ωG1ω + d̂1ωḠ1ω + ĉ2ωG2ω + d̂2ωḠ2ω + h.c.

)
, (4.5.42)

where ĉ1ω, d̂1ω, ĉ2ω and d̂2ω are the corresponding Unruh annihilation operators. These

operators satisfy boson commutation relations,

[ĉmω, ĉ
†
nω′ ] = δmnδ(ω − ω′), [d̂mω, d̂

†
nω′ ] = δmnδ(ω − ω′), (4.5.43)
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with all others vanishing. The relations between the Unruh and Rindler operators can be

derived as

ĉmω = cosh(rω)b̂Rmω − sinh(rω)b̂L†mω,

d̂mω = cosh(rω)b̂Lmω − sinh(rω)b̂R†mω. (4.5.44)

Conversely,

b̂Rmω = cosh(rω)ĉmω + sinh(rω)d̂†mω,

b̂Lmω = cosh(rω)d̂mω + sinh(rω)ĉ†mω. (4.5.45)

We can see that the Rindler modes (b̂Rmω, b̂
L
mω) and Unruh modes (ĉmω, d̂mω) are related by a

two-mode squeezing transformation with a frequency dependent squeezing parameter rω.

The relations between Unurh modes and Minkowski modes can be derived as

â1k =

∫
dω(Akω ĉ1ω +Bkωd̂1ω), (4.5.46)

â2k =

∫
dω(Bkω ĉ2ω + Akωd̂2ω). (4.5.47)

Conversely,

ĉ1ω =

∫
dkBkωâ1k, d̂1ω =

∫
dkAkωâ1k, (4.5.48)

ĉ2ω =

∫
dkAkωâ2k, d̂2ω =

∫
dkBkωâ2k. (4.5.49)

It is thus clear that the Unruh modes and Minkowski modes share the same vacuum,

ĉmω|0M〉 = d̂mω|0M〉 = 0. (4.5.50)

4.5.5 Minkowski vacuum as an entangled state

From the transformations between Unruh modes and Rindler modes, Eq. (4.5.45), we can

see that the Minkowski vacuum is a two-mode squeezed state of the left and right Rindler

modes. In the discrete-frequency limit, the Minkowski vacuum can be written as [Unr76]

|0M〉 =
∏
i

Ci

∞∑
ni=0

e−πniωi/a

ni!

(
b̂R†1ωi

b̂L†1ωi

)ni |0R〉
=

∏
i

(
Ci

∞∑
ni=0

e−πniωi/a|ni, R〉 ⊗ |ni, L〉
)
, (4.5.51)
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where Ci =
√

1− e−2πωi/a is the normalization factor. Here |ni, R〉 and |ni, L〉 are the ni-

particle states with Rindler frequency ωi in the right and left Rindler wedge, respectively.

A similar expression to Eq. (4.5.51) also holds for the right moving modes. If one only has

access to the fields in the right Rindler wedge, then he (or she) traces out the state in the

left Rindler wedge, obtaining

ρ̂R =
∏
i

(
C2
i

∞∑
ni=0

e−πniωi/a|ni, R〉〈ni, R|
)
. (4.5.52)

This is a density matrix for the system of free bosons with Unruh temperature TU = a/2π.

Therefore the Minkowski vacuum state looks like a thermal state with Unruh temperature

TU = a/2π as viewed by a uniformly accelerated observer with acceleration a in the right

(or left) Rindler wedge.

4.5.6 Unruh-DeWitt detector

In the previous subsections, we have shown that the Minkowski vacuum looks like a thermal

state if the observer is restricted either to the right or left Rindler wedge. A uniformly

accelerated observer with acceleration a experiences a thermal bath with the Unruh temper-

ature TU = a/2π. It is thus expected that a uniformly accelerated detector would respond

to the thermal radiation, e.g., being excited from its ground state to excited states. In

this subsection, we introduce a simple particle detector model, the Unruh-DeWitt detector

[Unr76, DeW79], that responds to the quantum fields and discuss the response of a uniformly

accelerated Unruh-DeWitt detector in the Minkowski vacuum.

Assume that an Unruh-DeWitt detector moves along a world line described by xµ(τ), where

τ is the proper time of the detector. The detector couples to the scalar field Φ̂ through the

interaction Hamiltonian

ĤI = λχ(τ)m̂(τ)Φ̂(xµ(τ)), (4.5.53)

where λ is a small coupling constant, χ(τ) is the switching function that characterizes he

turning on and off of the interaction, and m̂(τ) is the monopole of the detector. Suppose
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that the initial state of the scalar field is the Minkowski vacuum |0M〉, and the initial state

for the detector is its ground state |E0〉. When the detector moves and interacts with the

scalar field, it may not remain in its ground state and could be excited to a higher energy

eigenstate |E〉. Meanwhile, the scalar field may make a transition to a new state |ψ〉. If the

coupling constant λ is sufficiently small, perturbation theory can be used to calculate the

transition probability of the detector from its ground state to a higher energy state. To first

order, the transition amplitude is

iλ〈E,ψ|
∫ +∞

−∞
dτχ(τ)m̂(τ)Φ̂(xµ(τ))|E0, 0M〉. (4.5.54)

The time evolution of the monopole is

m̂(τ) = eiĤ0τm̂(0)e−iĤ0τ , (4.5.55)

where Ĥ0 is the free Hamiltonian of the internal dynamics of the detector, Ĥ0|E〉 = E|E〉.

Substituting Eq. (4.5.55) into Eq. (4.5.54), the transition amplitude becomes

iλ〈E|m̂(0)|E0〉
∫ +∞

−∞
dτχ(τ)ei(E−E0)τ 〈ψ|Φ̂(xµ(τ))|0M〉. (4.5.56)

By squaring the modulus of the transition amplitude Eq. (4.5.56) and summing over all the

final states of the scalar field, we obtain the transition probability of the detector from its

ground state |E0〉 to an excited state |E〉,

P (E0 → E) = |λ|2|〈E|m̂(0)|E0〉|2F(E − E0), (4.5.57)

where the response function F(E), which does not depend on the internal structure of the

detector, is

F(E) =

∫ +∞

−∞
dτ

∫ +∞

−∞
dτ ′χ(τ)χ(τ ′)e−iE(τ−τ ′)G+

(
xµ(τ), xµ(τ ′)

)
, (4.5.58)

with G+
(
xµ(τ), xµ(τ ′)

)
= 〈0M |Φ̂(xµ(τ))Φ̂(xµ(τ ′))|0M〉 the positive frequency Wightman

function. If the world line of the detector is along the orbit of a time-like Killing vector

and the Minkowski vacuum |0M〉 is invariant under the isometry generated by the time-like

Killing vector, the Wightman function is invariant under the time translation along the
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world line. It is then convenient to consider the transition probability per unit proper time

(transition rate), which is proportional to [BD82]

Ḟ(E) =

∫ +∞

−∞
ds e−iEsG+

(
s
)
. (4.5.59)

Note that Ḟ(E) is basically the Fourier transform of the positive frequency Wightman func-

tion.

We discuss two examples: the responses of a static detector and a uniformly accelerated

detector interacting with a massless scalar field in the Minkowski vacuum. The Wightman

function is given by Eq. (2.2.34). For a static inertial detector, the Wightman function

becomes

G+
static

(
τ − τ ′

)
= − 1

4π2

1

(τ − τ ′ − iε)2
. (4.5.60)

The transition rate is proportional to

Ḟstatic(E) = − 1

4π2

∫ +∞

−∞
ds

e−iEs

(s− iε)2
= 0. (4.5.61)

Note that we have assumed E > 0. Therefore, if the scalar field is in the Minkowski vacuum

state, the static inertial detector cannot be excited from its ground state to a higher energy

state.

For a uniformly accelerated detector with acceleration a, the world line is given by Eq.

(4.2.1). The Wightman function for an accelerated trajectory can be derived as [BD82]

G+
acc

(
τ − τ ′

)
= − 1

16π2

a2

sinh2
(
a(τ − τ ′)/2− iaε

) . (4.5.62)

Using the identity

1

sinh2(πx)
=

1

π2

+∞∑
k=−∞

1

(x− k)2
, (4.5.63)

we can write the Wightman function for the accelerated trajectory as

G+
acc

(
τ − τ ′

)
= − 1

4π2

+∞∑
k=−∞

1

(τ − τ ′ − 2iε+ 2πik/a)2
. (4.5.64)
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Substituting this into Eq. (4.5.59), we find

Ḟacc(E) = − 1

4π2

+∞∑
k=−∞

∫ +∞

−∞
ds

e−iEs

(s− 2iε+ 2πik/a)2
=

E

2π

+∞∑
k=1

e−2πkE/a

=
E

2π

1

e2πE/a − 1
. (4.5.65)

We have used the residue theorem in the second equality. The appearance of the Plank

factor (e2πE/a − 1)−1 in the transition rate Eq. (4.5.65) indicates that the response of a

uniformly accelerated Unruh-DeWitt detector in the Minkowski vacuum |0M〉 is thermal.

The temperature of the thermal response is the Unruh temperature TU = a/2π. This is

consistent with the results obtained via a different way, i.e., the Bogoliubov transformation

of field modes.

4.6 Quantum fields in Schwarzschild spacetime

4.6.1 Particle creation from a collapsing star

The well known Hawking radiation from a black hole was discovered by Hawking when he

studied the quantum fields on the geometry of a collapsing star [Haw75]. Here we briefly

summarize the essential physics of particle creation from a collapsing star without going into

technical details. The details of explicit calculations can be found in [Haw75, Wal75, Par75].

At the final evolution stage of a massive star, no other forces can balance the self gravity of

the star and it collapses to form a black hole [Tol39, OV39]. We consider a simplified model

of the star collapsing: a spherically symmetric matter ball collapses to form a Schwarzschild

black hole. In the exterior of the matter ball the space is empty, so the spacetime is described

by the Schwarzschild metric Eq. (4.3.1). During the process of collapsing and even after

the formation of the event horizon, the exterior spacetime is not affected according to the

Birkhoff’s theorem [Bir23]. Here the exact metric inside the matter ball is irrelevant. The

essential point is that the quantum fields propagating through the matter ball are distorted

when the matter ball is collapsing. It is evident that the whole spacetime of the collapsing

star is dynamical (time-dependent). According to the general discussions of QFT in curved
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spacetime in Section 4.4, there exists intrinsic ambiguity in defining field modes and vacuum

state. Fortunately, there are well defined in region and out region for the spacetime of the

collapsing star. In the remote past, if the matter ball is sufficiently distended or at region

that is far away from the surface of the star, the spacetime is approximately flat, one thus

can construct the standard Minkowski space quantum vacuum. This is called the in region.

The in-vacuum is empty of particles as observed by static observers far away from the surface

of the star in the past. After the black hole was formed and at the region very far away

from the event horizon, the spacetime is also approximately flat, so that we can define a new

quantum vacuum. This is called the out region and the corresponding vacuum is known as

the Boulware vacuum [Bou75]. The Boulware vacuum (out-vacuum) is empty of particles as

observed by static observers far away from the event horizon in the future.

Consider a massless scalar field Φ̂ in the spacetime of the collapsing star. In the in-region,

the mode solutions to the Klein-Gordon equation (4.4.1) are proportional to

r−1Ylme
−iωu, (4.6.1)

and

r−1Ylme
−iωv, (4.6.2)

where Ylm(θ, φ) is the spherical harmonic, u = t − r − 2M ln(r/2M − 1), v = t + r +

2M ln(r/2M − 1). These two sets of mode solutions represent outgoing and ingoing modes

in the in-region, respectively. An ingoing mode propagates toward the star, with part of it

is reflected by the curvature around the star, and part of it propagates through the star and

becomes an outgoing mode. To simplify the analysis, we take the geometric optics approx-

imation and neglect the scattering by the curvature. When the ingoing mode propagates

from spatial infinity to the surface of the matter ball, it is blue shifted. We assume that

the ingoing quanta do not interact with the matter inside the matter ball. After passing

through the matter ball, it propagates to spatial infinity and is red shifted. If the matter

ball is static, the blueshift and redshift cancels with each other so that the ingoing mode

becomes the exact outgoing mode Eq. (4.6.1). However, if the star is collapsing, during the
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period that the mode transits through the matter ball, the radius of the matter ball has

become smaller so that the blueshift and redshift cannot cancel with each other. The net

effect is that the ingoing mode is red shifted when it emerges from the other side of the

matter ball. The redshift effect becomes more and more significant when the surface of the

matter ball is closer and closer to the gravitational radius. There is a critical moment at

which the redshift becomes infinity.

I0

I+

I−

I −

I +
H
+

singularity

r
=

0

collapsing star

black hole

γγ1

γ2

Figure 4.6: Penrose diagram of a collapsing star.

This process is depicted schematically by Fig. 4.6, which shows the matter ball collapsing

to form a black hole. The null ray γ passes through the matter ball and emerges from the

surface of the matter ball when the surface is crossing the gravitational radius. Therefore

the null ray γ stays on the event horizon. Null rays advanced to γ, for example γ1, can

escape to future null infinity I + after passing through the matter ball. However null rays

retarded to γ, for example γ2, cannot escape to future null infinity I + but instead fall into

the singularity. If one traces the propagation of an ingoing mode, Eq. (4.6.2), originated

from the past null infinity I −, one would find that the part retarded to the null ray γ falls
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into the event horizon and eventually hits the singularity, while the part advanced to the null

ray γ escapes to future null infinity and can be detected by outside observers. Therefore,

the outside observers after the black hole was formed cannot have full information about

the ingoing modes in the in region. In addition, the part that escapes to future null infinity

is red shifted. The redshift is more and more significant as closer and closer to the event

horizon.

As we have shown, the positive frequency modes as observed by static observers in the out

region are dramatically different from that as observed by static observers in the in region.

The Bogoliubov transformations between the in modes and out modes were first calculated

by Hawking [Haw75]. He showed that the in-vacuum is inequivalent to the out-vacuum. If the

initial state of the quantum field is the in-vacuum, the state as observed by static observers

in the out region is a thermal state with temperature (in the unit G = c = ~ = kB = 1)

TH =
κ

2π
, (4.6.3)

known as the Hawking temperature [Haw75]. Here κ is the surface gravity of the black hole,

e.g., κ = 1/4M for a Schwarzschild black hole. This is a rather surprising result. A classical

black hole absorbs everything and nothing can escape from it. When quantum mechanics is

considered, the black hole is not “black ” but instead radiates particles. It can be estimated

that the characteristic wavelength of the Hawking particle is at the same order of magnitude

as the size of the black hole. Therefore the Hawking radiation can be understood in terms of

the Heisenberg’s uncertainty principle: a black hole cannot trap a particle with wavelength

at the same size as the black hole. Hawking proposed a heuristic picture for the production

of Hawking particles. Vacuum fluctuations around the event horizon produce virtual particle

and antiparticle pairs. Due to the gravity around the black hole, the antiparticle falls into

the black hole while the particle escapes to spatial infinity.

The temperature of an astrophysical black hole is so low that it is extremely challenging to

directly detect the Hawking radiation. If we recover all the physical constants in Eq. (4.6.3),
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we have

TH =
~c3

8πGMkB
≈ 6.169× 10−8 ×

(
M�
M

)
K, (4.6.4)

where G is the gravitational constant, M� is the solar mass. The Hawking temperature of

a solar mass black hole is about 10−8 K, which is much lower than the temperature of the

Cosmic Microwave Background radiation (∼ 2.73 K).

4.6.2 Eternal black hole

In the previous subsection, we have introduced the Hawking radiation created by a collapsing

star. One can also obtain the Hawking radiation by studying quantum fields in an eternal

Schwarzschild black hole, the maximally extended Schwarzschild spacetime. Although it is

not clear whether an eternal black hole exists in the real world, it is instructive to study

quantum fields in it and make comparison with quantum fields in Rindler space.

Boulware vacuum–The exterior Schwarzschild spacetime is static and possesses a time-

like Killing vector ∂t = (1, 0, 0, 0). We can quantize a massless scalar field Φ̂ in terms of

the eigenfunctions of the time-like Killing vector ∂t. Since t can be considered as the proper

time of static observers at spatial infinity, the excitations of these field modes are particles

as observed by static observers at spatial infinity. We consider a Hermitian massless field Φ̂

that satisfies the Klein-Gordon equation (4.4.1). The normal-mode solutions to Eq. (4.4.1)

can be decomposed as

uωlm(t, r, θ, φ) =
1√
4πω

e−iωtYlm(θ, φ)Rωl(r)/r (4.6.5)

where ω > 0 is the frequency of the mode, Ylm(θ, φ) is the spherical harmonic that represents

the angular momentum of the mode. The radial function Rωl(r) satisfies

− d2Rωl

dr2
∗

+ V
(s)
l (r)Rωl = ω2Rωl, (4.6.6)

where V
(s)
l (r) is the effective potential

V
(s)
l (r) = f(r)

[
l(l + 1)

r2
+

2M

r3

]
, (4.6.7)
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with f(r) ≡ 1− 2M/r. Here r∗ is the tortoise coordinate,

dr∗ = dr/f(r), r∗ = r + 2M ln(r/2M − 1), (4.6.8)

and the event horizon corresponds to r∗ → −∞. An implicit relation r = r(r∗) can be

derived and substituted into the effective potential V
(s)
l , Eq. (4.6.7), so that the effective

potential can be considered as a function of r∗.

In region I (the world we live in), two types of modes form a complete and orthonormal set

of basis: the upcoming modes and ingoing modes, denoted as uup
ωlm and uin

ωlm respectively.

The asymptotic behaviour for the radial part of the upcoming mode, Rup
ωl , is

Rup
ωl ∼

B
up
ωl e

iωr∗ , r∗ → +∞;

eiωr∗ + Aup
ωl e
−iωr∗ , r∗ → −∞,

(4.6.9)

and for the radial part of the ingoing mode, Rin
ωl, is

Rin
ωl ∼

e
−iωr∗ + Ain

ωle
iωr∗ , r∗ → +∞;

Bin
ωle
−iωr∗ , r∗ → −∞.

(4.6.10)

Here Aup
ωl (Ain

ωl) and Bup
ωl (Bin

ωl) are the reflection and transmission amplitudes of the upcoming

(ingoing) modes, respectively. They satisfy the following Wronskian relations [HLO14],

|Aup
ωl |

2 = 1− |Bup
ωl |

2,

|Ain
ωl|2 = 1− |Bin

ωl|2,

|Aup
ωl | = |Ain

ωl|, Bup
ωl = Bin

ωl. (4.6.11)

The upcoming modes uup
ωlm and ingoing modes uin

ωlm are chosen to satisfy the orthonormality
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relations,

〈uup
ωlm, u

up
ω′l′m′〉 = δ(ω − ω′)δll′δmm′ ,

〈uup∗
ωlm, u

up∗
ω′l′m′〉 = −δ(ω − ω′)δll′δmm′ ,

〈uin
ωlm, u

in
ω′l′m′〉 = δ(ω − ω′)δll′δmm′ ,

〈uin∗
ωlm, u

in∗
ω′l′m′〉 = −δ(ω − ω′)δll′δmm′ .

〈φup
ωlm, φ

in
ω′l′m′〉 = 0,

〈φup∗
ωlm, φ

in∗
ω′l′m′〉 = 0. (4.6.12)

Here 〈 , 〉 represents the Klein-Gordon inner product [BD82], which is defined on a spacelike

hypersurface t = const. as

〈ϕ, χ〉 = i

∫ ∞
2M

dr
r2

f(r)

∫
4π

dΩ
(
ϕ∗∂tχ− χ∂tϕ∗

)
(4.6.13)

for any two solutions ϕ and χ of the Klein-Gordon equation (4.4.1) in the Schwarzschild

background spacetime.

A corresponding set of upcoming and ingoing modes in region III (the extended Schwarzschild

spacetime) can be similarly defined, which are denoted as vup
ωlm and vin

ωlm respectively. They

form a set of complete and orthonormal modes in the region III and are independent of those

modes in region I. The upcoming and ingoing modes in region I and III are schematically

shown in Fig. 4.7.

The scalar field operator Φ̂ can be expanded as

Φ̂ =
∑
lm

∫
dω
(
âI
ωlmu

up
ωlm + b̂I

ωlmu
in
ωlm + âIII

ωlmv
up
ωlm + b̂III

ωlmv
in
ωlm + h.c.

)
, (4.6.14)

where âI
ωlm and b̂I

ωlm are the upcoming and ingoing annihilation operators in region I, âIII
ωlm and

b̂III
ωlm are the upcoming and ingoing annihilation operators in region III. The corresponding

vacuum is known as the Boulware vacuum [Bou75],

âI
ωlm|0B〉 = b̂I

ωlm|0B〉 = âIII
ωlm|0B〉 = b̂III

ωlm|0B〉 = 0, ∀ ω, l,m. (4.6.15)
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Figure 4.7: Upcoming and ingoing modes in the maximally extended Schwarzschild spacetime.

The Boulware vacuum is empty of particles as observed by static observers at spatial infinity.

Unruh vacuum–There exists another Killing vector, ∂U , on the past horizon H−. One can

quantize the scalar field in terms of the eigenfunctions of the Killing vector ∂U [Unr76]. The

normalized positive frequency modes with respect to ∂U are defined as [CF77]

wup
ωlm =

1√
2 sinh(4πMω)

(
e2πMωuup

ωlm + e−2πMωvup∗
ωlm

)
, (4.6.16)

w̄up
ωlm =

1√
2 sinh(4πMω)

(
e2πMωvup

ωlm + e−2πMωuup∗
ωlm

)
. (4.6.17)

Note that the definitions of w and w̄ modes are very similar to the definitions of Unruh

modes from the Rindler modes, Eqs. (4.5.26) and (4.5.27). The scalar field operator Φ̂ can

be expanded as

Φ̂ =
∑
lm

∫
dω
(
ĉωlmw

up
ωlm + ˆ̄cωlmw̄

up
ωlm + b̂I

ωlmu
in
ωlm + b̂III

ωlmv
in
ωlm + h.c.

)
, (4.6.18)

where ĉωlm and ˆ̄cωlm are the upcoming Unruh annihilation operators. The corresponding

vacuum state is known as the Unruh vacuum [Unr76],

ĉωlm|0U〉 = ˆ̄cωlm|0U〉 = b̂I
ωlm|0U〉 = b̂III

ωlm|0U〉 = 0, ∀ ω, l,m. (4.6.19)
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It can be easily shown that

âI
ωlm =

1√
2 sinh(4πMω)

(
e2πMω ĉωlm + e−2πMω ˆ̄c†ωlm

)
, (4.6.20)

âIII
ωlm =

1√
2 sinh(4πMω)

(
e2πMω ˆ̄cωlm + e−2πMω ĉ†ωlm

)
. (4.6.21)

If the state of the scalar field is the Unruh vacuum |0U〉, we have

〈0U |âI†
ωlmâ

I
ωlm|0U〉 =

δ(0)

e8πMω − 1
,

〈0U |b̂I†
ωlmb̂

I
ωlm|0U〉 = 0. (4.6.22)

The formally divergent quantity δ(0) appears because we consider an infinite space outside

the black hole. This implies static observers at spatial infinity see a thermal flux coming

out from the black hole. The temperature of the thermal flux is the Hawking temperature

TH = 1/8πM . The specification of the Unruh vacuum in an external black hole reproduces

the Hawking radiation from a collapsing star at late times.

Hartle-Hawking vacuum–In addition to Eqs. (4.6.16) and (4.6.17), we further introduce

win
ωlm =

1√
2 sinh(4πMω)

(
e2πMωuin

ωlm + e−2πMωvin∗
ωlm

)
, (4.6.23)

w̄in
ωlm =

1√
2 sinh(4πMω)

(
e2πMωvin

ωlm + e−2πMωuin∗
ωlm

)
. (4.6.24)

The scalar field operator Φ̂ can be expanded as

Φ̂ =
∑
lm

∫
dω
(
ĉωlmw

up
ωlm + ˆ̄cωlmw̄

up
ωlm + d̂ωlmw

in
ωlm + ˆ̄dωlmw̄

in
ωlm + h.c.

)
, (4.6.25)

where d̂ωlm and ˆ̄dωlm are the ingoing Unruh annihilation operators. The corresponding

vacuum state is known as the Hartle-Hawking vacuum [HH76],

ĉωlm|0U〉 = ˆ̄cωlm|0U〉 = d̂ωlm|0U〉 = ˆ̄dωlm|0U〉 = 0, ∀ ω, l,m. (4.6.26)

Similarly, we have

b̂I
ωlm =

1√
2 sinh(4πMω)

(
e2πMωd̂ωlm + e−2πMω ˆ̄d†ωlm

)
, (4.6.27)

b̂III
ωlm =

1√
2 sinh(4πMω)

(
e2πMω ˆ̄dωlm + e−2πMωd̂†ωlm

)
. (4.6.28)
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If the state of the scalar field is the Hartle-Hawking vacuum |0U〉, we have

〈0U |âI†
ωlmâ

I
ωlm|0U〉 = 〈0U |b̂I†

ωlmb̂
I
ωlm|0U〉 =

δ(0)

e8πMω − 1
. (4.6.29)

This implies static observers at spatial infinity see a thermal flux coming out from the black

hole as well as a thermal flux coming into the black hole. The black hole is in equilibrium

with the environment at the Hawking temperature.

4.6.3 Black hole information paradox

It was shown by Hawking that when a star collapses to form a black hole, there is a thermal

flux coming out from the black hole. The temperature of the Hawking radiation is propor-

tional to the surface gravity of the black hole. The Hawking temperature is very low for

large black hole, e.g., about 10−8 K for a solar mass black hole. Nevertheless, the black hole

loses mass when it emits Hawking particles. The energy flux was estimated to be [Pag76]

P =
~c6

15360πG2M2
, (4.6.30)

where we have restored all the physical constants. This is known as the Stefan-Boltzmann-

Schwarzschild-Hawking power law. The power for a black hole with one solar mass is about

10−29W , which is extremely small as expected. As the black hole looses mass, it gradually

evaporates. After a sufficiently long time, the black hole could completely evaporate and

disappear. The lifetime of a black hole with initial mass M0 is about [Pag76]

tev =
5120πG2M3

0

~c4
. (4.6.31)

The lifetime for a black hole with one solar mass is about 1074s, which is much longer than

the age of the universe (∼ 1017s). However, for a Planck mass quantum black hole, the

lifetime is about 10−40s.

If a black hole evaporated completely, the leftover is a cloud of Hawking particles. Since the

Hawking radiation is thermal, there are no correlations between different Hawking particles.

The state of the Hawking particles cloud is thus mixed. Without loss of generality, the

initial state of the quantum fields can be a vacuum, which is a pure state. This implies that
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the process of formation and evaporation of a black hole is not unitary: a pure initial state

evolved into a mixed final state. This is the information paradox first proposed by Hawking

[Haw76].

4.7 Summary and further reading

In this chapter, we introduce QFT in curved spacetime. In particular, we discuss the Unruh

effect and the Hawking effect, which are the striking results of exploring QFT in Rindler

space and Schwarzschild spacetime, respectively.

There are many excellent textbooks that introduce general relativity. For a basic introduction

with more emphasis on basic concepts, one can refer to the textbook by Hartle [Har03]. For

more technical details, one can refer to the textbook by Weinberg [Wei72]. The textbook by

Carroll [Car04] tries to introduce general relativity in the language of differential geometry.

The most comprehensive textbook of general relativity would be the well known “MTW”

[MTW73]. The standard textbook for quantum field theory in curved spacetime was written

by Birrell and Davies [BD82] in 1982. A more recent one is written by Parker and Toms

[PT09]. The textbooks by Wald [Wal94], and Haag [Haa12] describe the quantum field

theory in curved spacetime using the algebraic method.



5
Spacetime Diamonds

5.1 Introduction

A key result of relativistic quantum field theory is that the restriction of observers to partial

regions of spacetime leads to the observation of particles, even if the total spacetime is in the

vacuum state (see Ref. [PT04] and references therein). Key examples are Hawking radiation

[Haw75], where the observers are cut off from the inside of a black hole by its event horizon,

and Unruh-Davies radiation [Unr76, Dav75, CHM08], where uniform acceleration of the

observer restricts them to a Rindler wedge through the formation of a virtual horizon. Both

Hawking and Unruh-Davies radiation are thermal and their temperatures are proportional to

the surface gravity of the black hole and the acceleration of a uniformly accelerated observer,

respectively. The thermal character of the radiation is closely related to entanglement of the

observed field modes with others hidden behind the horizon [BD82]. More recently, it has

81
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been predicted that particles should also be observed when a detector is restricted to the

future or past light cone [OR11].

In all these cases, the region the observer is restricted to is unbounded. A natural question

is whether an observer restricted to a bound region of spacetime can see thermal radiation.

Using the thermal time hypothesis [CR94], Martinetti and Rovelli found that an accelerated

observer with a finite lifetime can experience an effective temperature, a generalization to

the Unruh-Davies temperature [MR03]. For the special case of an inertial observer with

a finite lifetime, the temperature at the middle of their lifetime is nonzero. This so-called

“diamond temperature” is given by [MR03]

TD =
2

πT
, (5.1.1)

where T is the lifetime of the inertial observer. The diamond temperature arises because

an observer with a finite lifetime does not have access to all the degrees of freedom of

the quantum field. However, the temperature discovered by Martinetti and Rovelli is time

dependent. Also, it was unclear what type of physical system could observe the diamond

temperature. In [OR11], an Unruh-DeWitt detector [Unr76, DeW79] with an energy scaling

that effectively restricts it to the future or past light cone was shown to register a thermal

response identical to that of a uniformly accelerated Unruh-DeWitt detector. In this chapter,

we show that an Unruh-DeWitt detector with an energy scaling which effectively gives it

a finite lifetime, or equivalently, confines it within one diamond, also registers a thermal

response. The temperature that the detector sees is exactly the diamond temperature (5.1.1)

discovered by Martinetti and Rovelli. We thus find a physical meaning for the diamond

temperature: it is the temperature observed by a particular type of energy-scaled detector.

Note that a similar version of these diamonds on the static (1 + 1)-dimensional Minkowski

cylinder has been encountered in the context of the gauge-gravity correspondence, leading

to the thermal effects on the conformal boundary of the Bañados-Teitelboim-Zanelli black

hole [MS98, LM99].

This chapter is organized as follows. Section 5.2 briefly reviews the time-like entanglement.
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Section 5.3 reviews the diamond coordinates and derives the Minkowski metric in terms of the

diamond coordinates. In Section 5.4, we explicitly calculate the Bogoliubov transformation

between the diamond modes and the Minkowski modes, and show that the particle-number

distribution of the diamond modes is thermal in the Minkowski vacuum. In Section 5.5, we

calculate the response of an energy scaled Unruh-DeWitt detector in (1 + 3)-dimensional

spacetime and show that the response is thermal. Section 5.6 studies the entanglement

between different diamonds. The results in this chapter have been published as “Spacetime

diamonds” in [SR16].

5.2 Time-like entanglement

The concept of entanglement between the left and right Rindle wedge rests on the fact that

the fields within can be considered as independent systems. In particular, no signal can

be sent from the left Rindler wedge to the right Rindler wedge and vice versa. This is

evidently illustrated by the vanishing of the Pauli-Jordan function (or Schwinger function)

for space-like intervals [PS95], iG(t, r; t′, r′) = 〈0|
[
Φ̂(t, r), Φ̂(t′, r′)

]
|0〉 = 0. This is true for

both massive and massless fields. For a massless field in (3 + 1)-dimensional Minkowski

spacetime, the Pauli-Jordan function is also vanishing for time-like intervals, as can be seen

from Eq. (2.2.37). The Pauli-Jordan function for a massless scalar field is shown in Figure

5.1. Therefore, the fields in the future and past region can be considered as independent

systems. No light signal can be sent from the past region to the future region and vice

versa. However, for massless scalar fields in (1 + 1)-dimensional (and 2 + 1 and other

even+1) Minkowski spacetime, the strong Huygens principle is violated. This means the

massless scalar fields propagate not only on but also into the future lightcone [JMMK15].

Nevertheless, one can still calculate the distribution of field modes in the past or future

wedge, and the entanglement between the past and future wedges in the Minkowski vacuum.

These calculations are independent of whether the strong Huygens principle is violated or

not. In the case where the strong Huygens principle is violated, the origin of the time-like

entanglement may be different from that of the space-like entanglement which is assumed to

be preexistent.
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Figure 5.1: Pauli-Jordan function for a massless scalar field in (1 + 3)-dimensional Minkowski space-
time (the three spatial dimensions have been compacted to one). The Pauli-Jordan function is nonzero only
on the light cone.

It was shown that there exists a direct mapping between the fields in past and future wedges,

to the fields in the right and left Rindler wedges [OR11]. The mapping in (1+1)-dimensional

space-time is schematically illustrated in Figure 5.2. An inertial observer who is localized

only in the past or future, and uses appropriate energy scaling detector can detect a thermal

radiation, an analogue to the Unruh radiation. According to the dimensional analysis, the

observation of this effect is within the range of current technology [OR11]. The space-like

entanglement between the right and left Rindler wedges can be extracted by using two

detectors (D1 and D2), which detect localized wave packet modes, in the right and left

Rindler wedges, respectively [RRS05]. According to the mapping, two detectors (D3 and

D4), with appropriate scaled energy, in the past and future wedges can extract exactly the

same entanglement [OR12]. Note that the detectors D3 and D4 operate in past and future

wedges, we thus name the entanglement extracted by them as time-like entanglement.

5.3 Diamond coordinates

A static observer with a finite lifetime stays at r = 0. The overlap of the future light

cone of their birth and the past light cone of their death is called a diamond, satisfying
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t

x

RL

F

P

D1

D2

D3

D4

Figure 5.2: Schematic diagram of the mapping of left-moving modes in (1 + 1)-dimensional Minkowski
spacetime between the past and left Rindler wedges, the future and right Rindler wedges. The detectors D3

and D4 can extract the same entanglement as that extracted by the detectors D1 and D2.

|t|+ |r| < 2/a, where 2/a is the size of the diamond or T = 4/a is the lifetime of the static

observer. There exists a conformal transformation which maps the diamond (bounded) to a

Rindler wedge (unbounded) [MR03]. Assume that (t, x, y, z) are the Minkowski coordinates

and (t′, x′, y′, z′) are the conformal coordinates. The conformal transformation is defined as

at′

2
=

at

f−(t, r; a)
,
ax′

2
=

1 + (at/2)2 − (ar/2)2

f−(t, r; a)
,
ay′

2
=

ay

f−(t, r; a)
,
az′

2
=

az

f−(t, r; a)
,

(5.3.1)

and the inverse transformation is

at

2
=

at′

f+(t′, r′; a)
,
ax

2
=

1 + (at′/2)2 − (ar′/2)2

f+(t′, r′; a)
,
ay

2
=

ay′

f+(t′, r′; a)
,
az

2
=

az′

f+(t′, r′; a)
,

(5.3.2)

where f±(t, r; a) = 1− (at/2)2 + (ar/2)2 ± ax, and r =
√
x2 + y2 + z2. It can be shown by

straightforward calculation that the line element in terms of the conformal coordinates is

ds2 = −dt2 + dx2 + dy2 + dz2

=
4

f 2
+(t′, r′; a)

(−dt′2 + dx′2 + dy′2 + dz′2), (5.3.3)

which is consistent with the assumption that this is a conformal transformation. The con-

formal mapping from a diamond in Minkowski coordinates to the right Rindler wedge in the
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conformal coordinates can be clearly illustrated in (1 + 1)-dimensional spacetime, see Figure

5.3.

t′

x′

t

x

Figure 5.3: Conformal mapping in (1 + 1)-dimensional spacetime: V ′ = (1 + V )/(1− V ), U ′ = −(1−
U)/(1 +U). A diamond in Minkowski coordinates (t, x), |t|+ |x| ≤ 1, is mapped to the right Rindler wedge
in the conformal coordinates (t′, x′). The regions outside the diamond in Minkowski coordinates (t, x) are
together mapped to form the left Rindler wedge in the conformal coordinates (t′, x′).

This motivates us to introduce a new coordinate system (η, ξ, ζ, ρ), called diamond coordi-

nates, to describe spacetime events and field modes inside the diamond.

at′/2 = eaξ sinh(aη), ax′/2 = eaξ cosh(aη), ζ = y′, ρ = z′. (5.3.4)

The relationship between the diamond coordinates and Minkowski coordinates can be easily

derived by using Eq. (5.3.1),

η =
1

a
tanh−1

{
at

1 + a2t2/4− a2r2/4

}
,

ξ =
1

a
ln

{√
(1 + a2t2/4− a2r2/4)2 − a2t2

f−(t, r; a)

}
,

ζ =
2y

f−(t, r; a)
,

ρ =
2z

f−(t, r; a)
,

(5.3.5)

Inside the diamond, the line element written in terms of the diamond coordinates is

ds2 =
4(−dη2 + dξ2) + e−2aξ(dζ2 + dρ2)

[cosh(aη) + cosh(aξ) + a2

2
e−aξ(ζ2 + ρ2)]2

. (5.3.6)
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Although the x direction appears special in the coordinate transformation (5.3.5), no direc-

tion is preferred due to the rotational invariance of the diamond. In fact, the same conformal

transformation [MR03] maps the region outside the diamond to another Rindler wedge, e.g.,

see Fig 5.3. This nice property can help us to intuitively understand correlations between

field modes inside and outside the diamond.

It can be shown that ζ = ρ = 0, ξ = const. are worldlines of uniformly accelerated observers

with acceleration a
2
| sinh(aξ)| in the perspective of inertial observers. The most interesting

one is ζ = ρ = ξ = 0, which is exactly the worldline of the static observer. Along the static

worldline, t = 2
a
tanh(1

2
aη), or dt = dη/ cosh2(aη/2). That means the diamond clock ticks

at the same rate as the inertial clock at η = 0, while the former ticks much faster than the

latter when η → ±∞.

Figure 5.4: Diamonds in (1 + 1)-dimensional Minkowski spacetime. Only a chain of diamonds along
the t axis is plotted and they are labeled by integers n = 0,±1, .... The size of these diamonds are the same,
2/a.
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5.4 Thermal radiation

As a concrete example, we first consider a massless Hermitian scalar field Φ̂ in the (1 + 1)-

dimensional Minkowski spacetime and directly calculate the Bogoliubov transformation be-

tween the diamonds modes and Minkowski plane wave modes. We show that the Minkowski

vacuum looks like a thermal state in the diamond and the temperature of the thermal state

is inversely proportional to the lifetime of the static observer.

A chain of diamonds along the t axis is shown in Fig. 5.4. Other diamonds are not plotted,

but one can imagine that the (1 + 1)-dimensional Minkowski spacetime is in fact a network

of such diamonds. Without loss of generality, we first consider the zeroth diamond in Fig.

5.4. By simply setting ζ = ρ = 0 in Eq. (5.3.6), we can directly read out the metric inside

the diamond in terms of η and ξ, which turns out to be conformal to the Minkowski metric

(note that this is only true for (1 + 1)-dimensional spacetime). It is thus very easy to derive

the Klein-Gordon equation by utilizing the conformal invariance of the massless scalar field

in (1 + 1)-dimensional Minkowski spacetime.

Since the left-moving modes and right-moving modes are decoupled, we only discuss the

left-moving modes in the following. Results for the right-moving modes can be obtained

similarly. The Minkowski annihilation operators and positive frequency mode functions are

âk and uk(V ) = e−ikV /
√

4πk, with V = t + x. While in the zeroth diamond they are b̂
(0)
ω

and g
(0)
ω (v) = e−iωv/

√
4πω, with v = η + ξ. Meanwhile, g

(0)
ω (v) can be rewritten in terms of

Minkowski null coordinate V,

g(0)
ω (V ) =

1√
4πω

(
1 + aV/2

1− aV/2

)−iω/a
, (5.4.1)

where V ∈
(
− 2/a, 2/a

)
and the mode functions vanish outside the zeroth diamond.

We now have two ways to quantize the scalar field and it is straightforward to find the

Bogoliubov transformation between operators (b̂
(0)
ω , b̂

(0)†
ω ) and (âk, â

†
k),

b̂(0)
ω =

∫
dk

(
α

(0)
ωk âk + β

(0)
ωk â

†
k

)
. (5.4.2)
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Direct calculation shows that β
(0)
ωk 6= 0, which means these two ways of quantization are

inequivalent; in particular, the Minkowski vacuum is not a vacuum in the diamond and vice

versa. The Bogoliubov transformation coefficients α
(0)
ωk and β

(0)
ωk can be calculated using the

Klein-Gordon inner product [BD82]; we have

α
(0)
ωk = 〈g(0)

ω (V ), uk(V )〉 =
1

πa

√
κ

Ω

∫ +1

−1

ds

(
1 + s

1− s

)iΩ
e−2iκs

=
1

a

√
Ωκ

sinh(πΩ)
e2iκM(1 + iΩ, 2,−4iκ), (5.4.3)

β
(0)
ωk = 〈g(0)

ω (V ), u∗k(V )〉 = − 1

πa

√
κ

Ω

∫ +1

−1

ds

(
1 + s

1− s

)iΩ
e2iκs

= −1

a

√
Ωκ

sinh(πΩ)
e−2iκM(1 + iΩ, 2, 4iκ), (5.4.4)

where M(a, b, z) is the Kummer’s function [AS72] and Ω ≡ ω/a, κ ≡ k/a. In the Minkowski

vacuum state, the particle-number distribution in the diamond is

〈0M |b̂(0)†
ω b̂

(0)
ω′ |0M〉 =

∫
dkβ

(0)∗
ωk β

(0)
ω′k =

δ(ω − ω′)
e2πω/a − 1

, (5.4.5)

which is exactly a thermal distribution with temperature

TD =
a

2π
=

2

πT
. (5.4.6)

The temperature TD derived here is the same as the diamond temperature derived from

the thermal time hypothesis [MR03]. The same thermal particle-number distribution was

obtained by Ida et al. [IOS13] through a different way. However, they use it as an intermedi-

ate result to derive the time-dependent temperature as proposed by Martinetti and Rovelli

instead of interpreting it as the diamond temperature. We emphasize that TD is exactly

the diamond temperature and will show that this thermal radiation could be detected by an

energy-scaled Unruh-DeWitt detector.

In principle, the above result can be generalized to (1 + 3)-dimensional spacetime. One can

define diamond modes, calculate the Bogoliubov transformation coefficients and show that

the particle-number distribution is thermal in the Minkowski vacuum. However instead of
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doing the long mathematical calculation, we propose a detector model in (1+3)-dimensional

spacetime and show that it responds to the diamond temperature, which is more physically

relevant.

5.5 Detector response

We now turn to (1 + 3)-dimensional Minkowski spacetime. In [OR11], an inertial detector

switched on at t = 0 and sensitive to energy E with respect to conformal time is proved to

register a thermal response. We now show that a similar inertial detector, which is switched

on at t = − 2
a

and switched off at t = 2
a
, detects thermal radiation with diamond temperature

in the Minkowski vacuum. Because we require the energy difference of the two-level detector

at r = 0 to be constant with respect to diamond time η, the free Hamiltonian of the detector

in the inertial frame should be
dη

dt
H0 =

H0

1− a2t2/4
. (5.5.1)

We then take the complete Hamiltonian to be H = H0/(1 − a2t2/4) + HI , where HI is the

standard interaction term for an Unruh-DeWitt detector, λm̂Φ̂. Converting to diamond time

η, the Schrödinger equation is

i
∂Ψ

∂η
=

[
H0 +

1

cosh2(aη/2)
HI

]
Ψ, (5.5.2)

where Ψ is the wave function of the detector. In contrast to Ref. [OR11] where perturbation

theory breaks down at sufficiently late time, the perturbation theory is always valid here

provided |HI | � |H0| at η = 0.

To first order perturbation theory, the detector response function can be obtained in a

standard way,

F(E) =

∫ ∞
−∞

dη

∫ ∞
−∞

dη′
e−iE(η−η′)G+(η, η′)

cosh2(aη/2)cosh2(aη′/2)
, (5.5.3)

where G+(η, η′) = 〈0M |Φ̂(η)Φ̂(η′)|0M〉 is the positive-frequency Wightman function in the

Minkowski vacuum state. In terms of Minkowski coordinates t and r, the general expression

of the Wightman function is given by Eq. (2.2.34). Taking into account that the inertial



5.6 Correlations between different diamonds 91

detector is at r = 0, and the relation between the Minkowski time and diamond time is

t = 2
a
tanh(1

2
aη), we find

G+(η, η′)

cosh2(aη/2)cosh2(aη′/2)
= − 1

16π2

a2

sinh2(a
2
(η − η′))

. (5.5.4)

Now, consider an accelerated trajectory t = a−1 sinh(aτ), x = a−1 cosh(aτ), y = z = 0,

with a and τ the proper acceleration and proper time of the accelerated observer; in this

case, the Wightman function is given by Eq. (4.5.62). Comparing Eqs. (5.5.4) and (4.5.62),

it is clear that the response function F(E) is the same as that of a uniformly accelerated

detector, showing that an inertial Unruh-DeWitt detector with energy scaled as 1
1−a2t2/4

detects thermal radiation with temperature TD = a
2π

in the Minkowski vacuum.

Energy-scaled detectors are physically realizable; e.g., by applying a time-dependent exter-

nal electric field or magnetic field to an atom one can realize a time-dependent Stark effect

or Zeeman splitting. However, an order-of-magnitude estimate shows that for current tech-

nology the change of the electric field or the magnetic field is not large and fast enough to

detect the diamond temperature. More promising candidates might be artificial atoms such

as the superconducting qubits and quantum dots [RW15].

5.6 Correlations between different diamonds

In Minkowski vacuum state, a mode localized in the right Rindler wedge is perfectly entangled

with a corresponding mode in the left Rindler wedge [BD82]. Similarly, a mode localized in

the past light cone is perfectly entangled with a corresponding mode in the future light cone

[OR11]. As we have mentioned before, there exists a conformal transformation that maps

a diamond into a Rindler wedge, and the region outside the diamond to another Rindler

wedge [MR03]. Therefore, if the dynamics of the scalar field is conformally invariant and

also the vacuum state, then a mode inside the diamond should be perfectly entangled with

a corresponding mode outside the diamond. A pair of entangled modes inside and outside

the diamond has been calculated in the (1 + 1)-dimensional spacetime [IOS13]. Here, we

are interested in the timelike entanglement between diamonds along the t axis, which is
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now not bipartite entanglement but multipartite entanglement. In this case, it is convenient

to consider localized modes and introduce Gaussian formalism [WPGP+12] to describe the

entanglement between various diamonds.

As shown in Fig. 5.4, orthonormal mode functions in the nth diamond can be easily obtained

by shifting those of the zeroth diamond,

g(n)
ω (V ) = g(0)

ω (V − 4n/a), (5.6.1)

where V ∈
(
2(2n− 1)/a, 2(2n+ 1)/a

)
. The Bogoliubov transformation coefficients α

(n)
ωk and

β
(n)
ωk are

α
(n)
ωk = e−4inκα

(0)
ωk , β

(n)
ωk = e4inκβ

(0)
ωk . (5.6.2)

It is obvious that the temperature in every diamond is the same, owing to the translational

invariance of the Minkowski vacuum. Notice that the modes g
(n)
ω (V ) are orthonormal and

form a complete set of modes with which the scalar field Φ̂ can be expanded.

Φ̂ =
+∞∑

n=−∞

∫ ∞
0

dω
[
b̂(n)
ω g(n)

ω (V ) + b̂(n)†
ω g(n)∗

ω (V )
]
, (5.6.3)

where b̂
(n)
ω and b̂

(n)†
ω are the annihilation and creation operators in the n-th diamond. Another

orthonormal and complete set of modes was introduced in [IOS13], the modes inside the

zeroth diamond, g
(0)
ω (V ), and that outside,

g(ex)
ω (V ) =

1√
4πω

(
aV/2 + 1

aV/2− 1

)iω/a
θ(|V | − 2/a), (5.6.4)

which is perfectly correlated with g
(0)
ω (V ). One can expand the scalar field Φ̂ as

Φ̂ =

∫ ∞
0

dω
[
b̂(0)
ω g(0)

ω (V ) + b̂(ex)
ω g(ex)

ω (V ) + b̂(0)†
ω g(0)∗

ω (V ) + b̂(ex)†
ω g(ex)∗

ω (V )
]
, (5.6.5)

where b̂
(ex)
ω and b̂

(ex)†
ω are the annihilation and creation operators outside the 0-th diamond.

Similar to constructing the Unruh modes, one can construct modes that cover the whole

Minkowski spacetime from g
(0)
ω (V ) and g

(ex)
ω (V ). Define a new set of operators (ĉ

(0)
ω , ĉ

(ex)
ω ) as

ĉ(0)
ω = cosh(rω)b̂(0)

ω − sinh(rω)b̂(ex)†
ω ,

ĉ(ex)
ω = cosh(rω)b̂(ex)

ω − sinh(rω)b̂(0)†
ω . (5.6.6)
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The new operators ĉ
(0)
ω and ĉ

(ex)
ω annihilate the Minkowski vacuum,

ĉ(0)
ω |0M〉 = ĉ(ex)

ω |0M〉 = 0. (5.6.7)

The inverse transformation of Eq. (5.6.6) is

b̂(0)
ω = cosh(rω)ĉ(0)

ω + sinh(rω)ĉ(ex)†
ω ,

b̂(ex)
ω = cosh(rω)ĉ(ex)

ω + sinh(rω)ĉ(0)†
ω . (5.6.8)

Based on the inverse transformation Eq. (5.6.8), one can calculate the correlations between

b̂
(0)
ω and b̂

(ex)
ω ,

〈0M |b̂(0)
ω b̂

(ex)
ω′ |0M〉 = 〈0M |b̂(0)†

ω b̂
(ex)†
ω′ |0M〉

∗ = cosh(rω) sinh(rω)δ(ω − ω′),

〈0M |b̂(0)
ω b̂

(ex)†
ω′ |0M〉 = 〈0M |b̂(0)†

ω b̂
(ex)
ω′ |0M〉

∗ = 0. (5.6.9)

From Eqs. (5.6.3) and (5.6.5), the operator b̂
(n)
ω (n 6= 0) can be expressed in terms of b̂

(ex)
ω

and b̂
(ex)†
ω ,

b̂(n)
ω =

∫ ∞
0

dω′
[
〈g(n)
ω , g

(ex)
ω′ 〉 b̂

(ex)
ω′ + 〈g(n)

ω , g
(ex)∗
ω′ 〉 b̂

(ex)†
ω′

]
≡

∫ ∞
0

dω′
[
A

(n)
ωω′ b̂

(ex)
ω′ +B

(n)
ωω′ b̂

(ex)†
ω′

]
. (5.6.10)

By using this property and the Bogoliubov transformation between g
(ex)
ω (V ) and g

(n)
ω (V )

with n 6= 0, one can easily find

〈0M |b̂(n)
ω b̂

(0)
ω′ |0M〉 = 〈0M |b̂(n)†

ω b̂
(0)†
ω′ |0M〉

∗ =
A

(n)
ωω′

2 sinh(πΩ′)
,

〈0M |b̂(n)†
ω b̂

(0)
ω′ |0M〉 = 〈0M |b̂(n)

ω b̂
(0)†
ω′ |0M〉

∗ =
B

(n)
ωω′

2 sinh(πΩ′)
. (5.6.11)

From Eqs. (5.6.1) and (5.6.4), we can derive the integral representations of A
(n)
ωω′ and B

(n)
ωω′ ,

A
(n)
ωω′ =

1

πa

√
Ω′

Ω

∫ +1

−1

ds
1

(s+ 2n− 1)(s+ 2n+ 1)

(
1 + s

1− s

)iΩ(
s+ 2n+ 1

s+ 2n− 1

)iΩ′
,

B
(n)
ωω′ = − 1

πa

√
Ω′

Ω

∫ +1

−1

ds
1

(s+ 2n− 1)(s+ 2n+ 1)

(
1 + s

1− s

)iΩ(
s+ 2n+ 1

s+ 2n− 1

)−iΩ′
.

(5.6.12)
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For the n = 1 case (adjacent diamonds), the coefficients A
(1)
ωω′ and B

(1)
ωω′ can be calculated

analytically:

A
(1)
ωω′ =

2−i(Ω−Ω′)

2πa

√
Ω′

Ω

Γ(1− iΩ)Γ(i(Ω− Ω′))

Γ(1− iΩ′)
, (5.6.13)

B
(1)
ωω′ = −2−i(Ω+Ω′)

2πa

√
Ω′

Ω

Γ(1− iΩ)Γ(i(Ω′ + Ω))

Γ(1 + iΩ′)
. (5.6.14)

When ω = ω′, A
(1)
ωω′ is divergent, which means the correlation between same-frequency modes

is dominant. The divergence causes no problem, because it should be understood in the sense

of a distribution and disappears when a wave packet mode is considered. It is obvious that

A
(1)
ωω′ and B

(1)
ωω′ are finite and nonzero when ω 6= ω′, indicating different-frequency modes are

also correlated. For n > 1, there are no analytic expressions for A
(n)
ωω′ and B

(n)
ωω′ . However,

for large n, we can find asymptotic results:

〈0M |b̂(n)
ω b̂

(0)
ω′ |0M〉 ≈

1

4an2

√
ΩΩ′

sinh(πΩ) sinh(πΩ′)
, (5.6.15)

〈0M |b̂(n)†
ω b̂

(0)
ω′ |0M〉 ≈ − 1

4an2

√
ΩΩ′

sinh(πΩ) sinh(πΩ′)
. (5.6.16)

The correlation decays as 1
n2 for large n but does not vanish. Contrary to the adjacent

diamonds, the correlation between same-frequency modes is not dominant.

We proceed to consider localized modes instead of single-frequency modes. In each diamond,

we construct Gaussian wave packet modes,

b̂(n) =

∫ ∞
0

dω gn(ω;ωn, σn, vn)b̂(n)
ω , (5.6.17)

where gn(ω;ωn, σn, vn) is a Gaussian wave packet

gn(ω;ωn, σn, vn) =

(
1

2πσ2
n

)1/4

exp

{
− (ω − ωn)2

4σ2
n

}
e−iωvn ,

where ωn is the central frequency, σn is the bandwidth, vn is the central position of the wave

packet, and we assume ωn � σn. The quadrature observable of the Gaussian mode is defined

as

X̂(n)(φ) = b̂(n)e−iφ + b̂(n)†eiφ, (5.6.18)
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(a) (b)

Figure 5.5: Entanglement between Gaussian modes in the first and zeroth diamond. Left: quadrature
phase φ = 0, right: quadrature phase φ = 0.2π. The central frequency of the Gaussian mode in the zeroth
diamond is set to be ω0/a = 1.0, the bandwidth and central position are the same, σ1/a = σ0/a = 0.02,
av1 = av0 = 0. (a) For φ = 0, the variances of X̂10

− (0) and X̂10
+ (π/2) are approximately the same and have

a minimum which is smaller than 1 when the central frequency ω1/a = 1, while the variances of X̂10
+ (0) and

X̂10
− (π/2) have a maximum which is larger than 1 at ω1/a = 1. (b) For φ = 0.2π, the minimum variance

of X̂10
− (0.2π) is also smaller than one, however the corresponding central frequency of the Gaussian wave

packet mode in the first diamond is ω1/a < 1. The maximum variance of X̂10
+ (0.2π) is greater than one and

the corresponding central frequency of the Gaussian wave packet mode in the first diamond is ω1/a < 1.

where φ is the quadrature phase. With φ = 0 and φ = π
2
, the quadrature X̂(n) are analogous

to the position operator and momentum operator, respectively. Correlations between dia-

monds can be characterised by the variances of the correlation (“+”) and anti-correlation

(“−”) observables, X̂±nm ≡ (X̂(n) ± X̂(m))/
√

2 . For example, for two-mode squeezing,

V (X̂−nm(0)) < 1 and V (X̂+
nm(π

2
)) < 1, indicating that the correlations between the quadra-

tures of the two modes beat the quantum shot noise and are entangled.

In Minkowski vacuum state, 〈0M |b̂(n)
ω |0M〉 = 0, therefore 〈0M |X̂(n)(φ)|0M〉 = 0. The variance

of the quadrature observable is(
∆X(n)(φ)

)2
= 〈0M |

(
X̂(n)(φ)

)2|0M〉

= 1 + 2〈0M |b̂(n)†b̂(n)|0M〉+ 〈0M |b̂(n)b̂(n)|0M〉e−2iφ + 〈0M |b̂(n)†b̂(n)†|0M〉e2iφ

= 1 + 2〈0M |b̂(n)†b̂(n)|0M〉. (5.6.19)

In the last equality we used the fact that 〈0M |b̂(n)
ω b̂

(n)
ω′ |0M〉 = 0. The variance of the quadrature

observable is independent of phase and greater than unity, indicating that the state within
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a diamond appears mixed. This is consistent with previous result that the particle number

distribution of diamond modes is thermal in the Minkowski vacuum. The expectation value

of the product of two quadrature observables belonging to two different diamonds is

〈0M |X̂(n)(φ)X̂(m)(φ)|0M〉 = 〈0M |b̂(n)†b̂(m)|0M〉+ 〈0M |b̂(m)†b̂(n)|0M〉+ 〈0M |b̂(n)b̂(m)|0M〉e−2iφ

+〈0M |b̂(n)†b̂(m)†|0M〉e2iφ

= 2 Re
{
〈0M |b̂(n)†b̂(m)|0M〉

}
+ 2 Re

{
〈0M |b̂(n)b̂(m)|0M〉e−2iφ

}
,

(5.6.20)

where

〈0M |b̂(n)†b̂(m)|0M〉 =

∫
dω

∫
dω′g∗n(ω)gm(ω′)〈0M |b̂(n)†

ω b̂
(m)
ω′ |0M〉

=

∫
dω

∫
dω′g∗n(ω)gm(ω′)〈0M |b̂(n−m)†

ω b̂
(0)
ω′ |0M〉

=

∫
dω

∫
dω′

g∗n(ω)gm(ω′)B
(n−m)
ωω′

2 sinh(πω′/a)
, (5.6.21)

〈0M |b̂(n)b̂(m)|0M〉 =

∫
dω

∫
dω′gn(ω)gm(ω′)〈0M |b̂(n)

ω b̂
(m)
ω′ |0M〉

=

∫
dω

∫
dω′gn(ω)gm(ω′)〈0M |b̂(n−m)

ω b̂
(0)
ω′ |0M〉

=

∫
dω

∫
dω′

gn(ω)gm(ω′)A
(n−m)
ωω′

2 sinh(πω′/a)
. (5.6.22)

We have assumed that n 6= m and the phases of the two localized modes are the same.

Based on Eqs. (5.6.19) and (5.6.20), the variances of the correlation and anti-correlation

observables are

(
∆X±nm(φ)

)2
=

1

2

(
∆X(n)(φ)

)2
+

1

2

(
∆X(m)(φ)

)2 ± 〈0M |X̂(n)(φ)X̂(m)(φ)|0M〉

= 1 + 〈0M |b̂(n)†b̂(n)|0M〉+ 〈0M |b̂(m)†b̂(m)|0M〉 ± 〈0M |X̂(n)(φ)X̂(m)(φ)|0M〉.

(5.6.23)

For φ = 0, Fig. 5.5(a), (∆X−10)2 < 1 for two Gaussian modes in adjacent diamonds with

the same central frequency, bandwidth and central position. The correlation between the

two Gaussian modes beat the quantum shot noise, that is, they are entangled. In fact, since
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the bandwidth is so small that the mode distributes across almost the whole diamond, the

central position of the Gaussian mode is not so relevant. For nonzero φ, e.g., φ = 0.2π (Fig.

5.5(b)), correlation between two Gaussian modes with different central frequency can beat

the quantum shot noise. These properties are different from the Rindler entanglement which

only exists between same-frequency modes and is independent of the quadrature phase. In

the next nearby diamonds, correlation between Gaussian modes with much broader band-

width still can beat the quantum shot noise, although the entanglement is very small. That

implies entanglement is stored between Gaussian modes localized in position rather than in

frequency. For further away diamonds, it is hard to see entanglement. Although Eq. (5.6.15)

shows that the correlation has not vanished, it is very small.

In (1+3)-dimensional Minkowski spacetime, although we know that a mode inside a diamond

is perfectly correlated with a corresponding mode outside the diamond, explicit expressions

for these modes have not yet been found. In addition, the diamond modes are not complete

in the whole Minkowski spacetime. This can be seen by noticing that at t = 0, the diamonds

can not cover the whole space. However, if we only consider timelike entanglement between

diamonds along the t axis, the method used in this section is still valid. In realistic quantum

optics experiments, a detector often detects a localized mode, e.g., a Gaussian beam with very

narrow transverse size travelling along the x axis, then the (1 + 1)-dimensional calculation

provides a very good approximation to the (1 + 3)-dimensional case.

5.7 Summary

By directly calculating the Bogoliubov transformation between the diamond modes and

the Minkowski modes, we show that the particle-number distribution in the diamond is

thermal in the Minkowski vacuum. The temperature of the thermal distribution is identical

to the diamond temperature (that observed by an inertial observer at the middle of their

lifetime) discovered by Martinetti and Rovelli [MR03]. We interpret this temperature as the

diamond temperature and show that a particular type of energy-scaled detector responds

to the diamond temperature. The temperature is constant with respect to diamond time,
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but varies with respect to lab time. It is, therefore, clear that the diamond temperature is

real and detectable. An order-of-magnitude calculation shows that TD ∼ 1Kcorresponds to

T ∼ 10−11s , which is challenge but potentially accessible in the lab in near future. We further

study the timelike entanglement between various diamonds and show that entanglement

between adjacent diamonds is dominant.

5.8 Appendix

In this appendix, we derive in details the particle number distribution of diamond modes in

Minkowski vacuum. From Eq. (5.4.4),

Nωω′ ≡
∫ ∞

0

dk β
(0)∗
ωk β

(0)
ω′k

=
1

π2a
√

ΩΩ′

∫ +1

−1

ds

∫ +1

−1

ds′
(

1 + s

1− s

)−iΩ(
1 + s′

1− s′

)iΩ′ ∫ ∞
0

dκ κe−2iκ(s−s′)

= − 1

4π2a
√

ΩΩ′

∫ +1

−1

ds

∫ +1

−1

ds′
1

(s− s′ − iε)2

(
1 + s

1− s

)−iΩ(
1 + s′

1− s′

)iΩ′
,

where in the last equality we have used the integration
∫∞

0
dκ κe−iκz = − 1

(z−iε)2 . Define new

integration variables t and t′ as

t =
1

2
ln

(
1 + s

1− s

)
, or s = tanh t,

t′ =
1

2
ln

(
1 + s′

1− s′

)
, or s′ = tanh t′,

we have

Nωω′ = − 1

4π2a
√

ΩΩ′

∫ +∞

−∞
dt

∫ +∞

−∞
dt′

e−2i(Ωt−Ω′t′)

sinh2(t− t′ − iε)
.

By further introducing integration variables p and q,

p = t+ t′, q = t− t′,

we find

Nωω′ = − 1

8π2a
√

ΩΩ′

∫ +∞

−∞
dp e−i(Ω−Ω′)p

∫ +∞

−∞
dq

e−i(Ω+Ω′)q

sinh2(q − iε)

= − 1

4π2aΩ
δ(Ω− Ω′)

∫ +∞

−∞
dq

e−2iΩq

sinh2(q − iε)
.
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Utilizing the trick that we used to calculate the transition rate of a uniformly accelerated

Unruh-DeWitt detector in Minkowski vacuum, Eq. (4.5.65), we finally obtain

Nωω′ =
1

e2πω/a − 1
δ(ω − ω′).

Therefore the particle number distribution of diamond modes in the Minkowski vacuum is

thermal, with temperature a/2π.
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6
Quantum Communication with Uniformly

Accelerated Observers

6.1 Introduction

One important task of relativistic quantum information [PT04] is to investigate how rela-

tivistic motion and gravitational fields affect the storage, transfer and processing of quantum

information. Early works mainly studied global states of quantum fields, for example, the

effects of acceleration on the entanglement of global states [AM03, FSM05]. Recently, a

general framework for projective measurements on a localized single mode of the quantum

field was proposed [DDMMB13]. This formalism was used to study the effect of relativistic

acceleration on continuous variable quantum teleportation and dense coding [GRKD17]. In

reference [GRKD17], the authors assume that accelerated observers only have access to a

101
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single mode in the accelerated frame, which results in larger mode mismatch as the accelera-

tion increases. In this chapter, we are study mode mismatch due to the presence of a horizon,

which causes intrinsic loss of information about the state as viewed by inertial observers.

As a specific realization of localized projective measurements, homodyne detection was pro-

posed as a way to model efficient, directional quantum communication between two localized

parties in a relativistic quantum field theory scenario [DRW13]. An interesting case is the

quantum communication with a uniformly accelerated partner, in which the Unruh effect

[Unr76] is expected to play an important role.

In this chapter, we are going to discuss two quantum communication protocols with accel-

erated observers. In Section 6.2, we study the quantum communication between an inertial

observer and a uniformly accelerated observer. In Section 6.3, we investigate the quantum

communication between two uniformly accelerated observers. In particular, we are interested

in cases where the localized wave packet sent by the sender straddles the future horizon of

the receiver. The results in Section 6.2 have been published in [SR14]. The result of Section

6.3 is the joint research effort by Robert Mann, Timothy Ralph and myself.

6.2 Quantum communication between an inertial ob-

server and a uniformly accelerated observer

This section discusses the first protocol: quantum communication between an inertial ob-

server and a uniformly accelerated observer. In this protocol, an inertial sender, Alice, sends

a coherent state signal and a local oscillator to an accelerated receiver, Rob, who then per-

forms homodyne detection in his own frame. Approximate analytic solutions were obtained

in the case the wave packet sent by Alice is well localized in the right Rindler wedge. We

generalize this work to the case where the wave packet straddles the future horizon of Rob.

Similar scenario was considered to study quantum entanglement through the event hori-

zon [DDMM13]. As a result, Rob can only access part of the signal and local oscillator.
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Generally, the signal and noise received by Rob are divergent if Rob’s detector can detect

arbitrarily low frequency particles. This is because in the horizon-straddling case Rob can

still detect particles at late times when his velocity approaches the speed of light, resulting

in large redshift of the signal and local oscillator. While, under some special conditions, the

signal and local oscillator received by Rob remain finite no matter what low frequency cutoff

he chooses. In order to get finite results generally, and to correspond with physical detectors,

we introduce a low frequency cutoff. We find that there exists a low frequency cutoff that

maximizes the signal to noise ratio. Interestingly, this low frequency cutoff approximately

corresponds to the Unruh temperature, and we thus call it the Unruh frequency. In addition,

we calculate the conditional variance and find that the low frequency cutoff that minimizes

the conditional variance is also approximately equal to the Unruh frequency.

Figure 6.1: Alice (static) sends Rob (accelerated) a Gaussian wave packet which straddles Rob’s future
horizon.

6.2.1 Homodyne Detection in an accelerated frame

For simplicity, we consider the massless scalar field in (1 + 1)-dimensional Minkowski space-

time. Generalization to (3 + 1)-dimensional Minkowski spacetime is straightforward by

making the paraxial approximation and taking into account the expansion of the transverse
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shape of the wave packet during its propagation. There are two inequivalent ways to quan-

tize the massless scalar field in Minkowski spacetime [Ful73], one for inertial observers and

the other for uniformly accelerated observers.

In the inertial frame, the massless scalar field is quantized in the usual way,

Φ̂(t, x) =

∫ ∞
0

dk
[
âkuk(U) + â†ku

∗
k(U)

]
+ (left-moving parts), (6.2.1)

where uk(U) = 1√
4πk
e−ikU , with U = t − x, are positive frequency right-moving Minkowski

plane wave mode functions, u∗k are negative frequency mode functions, and âk (â†k) are

annihilation(creation) operators of single frequency Minkowski modes. In this chapter, we

only consider right-moving modes and neglect the subscript “2”, which characterizes right-

moving modes, without introducing confusions. In terms of Rindler coordinates and Rindler

modes, Φ̂(τ, ξ) can be expanded as

Φ̂(τ, ξ) =

∫ ∞
0

dΩ
[
b̂Ωg

R
Ω(u) + b̂†Ωg

R∗
Ω (u)

]
+ (left-moving parts), (6.2.2)

where gRΩ(u) = 1√
4πΩa

e−iΩau are positive frequency right-moving Rindler plane wave mode

functions, gR∗Ω (u) are negative mode functions, b̂Ω (b̂†Ω) are annihilation(creation) operators

of single frequency Rindler modes obeying boson commutation relation

[b̂Ω, b̂
†
Ω′ ] = δ(Ω− Ω′). (6.2.3)

Here Ω is defined as a dimensionless Rindler frequency, which is related to the physical

frequency ω by Ω = ω/a. The subscript “2” is also neglected for the Rindler modes. In

addition, we only consider Rindler modes in the right Rindler wedge, we thus neglect the

superscript “R” in the Rindler annihilation and creation operators.

We consider the scenario that a uniformly accelerated observer, Rob, with proper acceleration

a travels along ξ = 0 in the right Rindler wedge and an inertial observer, Alice, stays at

spatial origin x = 0, as shown in Figure 6.1. Alice sends a right-moving signal, a coherent

state with amplitude α, and a local oscillator to Rob. The local oscillator is also a coherent

state, but with very large amplitude β ∈ R, β � |α|. Rob then performs homodyne detection
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on the signal using the local oscillator as seen in his own reference frame. The homodyne

detector is formed from two identical photodetectors that detect distinct modes S and L

after they have been mixed on a beam splitter. The photocurrents from the photodetectors

are subtracted to give the output signal. As a result the output of Rob’s homodyne detector

at some time τ (as measured in Rob’s frame) is represented by the following operator [BR04]:

Ô(τ, φ) = b̂S(τ)b̂†L(τ)eiφ + b̂†S(τ)b̂L(τ)e−iφ, (6.2.4)

where b̂K (b̂†K) are boson annihilation(creation) operators with K = S, L. The subscripts S,

L refer to the signal and local oscillator modes, respectively. The relative phase φ determines

the quadrature angle detected. Here b̂K(τ) are temporally and spatially localized single mode

annihilation operators in the perspective of Rob. They can be constructed from the single

frequency Rindler annihilation operators b̂Ω,

b̂K(τ) =

∫ ∞
0

dΩfK(Ω, τ)b̂Ω, (6.2.5)

where fK(Ω, τ) is Rob’s detector mode function. In an experiment, Rob would integrate the

photocurrent from his detector over a time long compared to the inverse of the frequency

being analyzed (as will be determined by the frequency of the local detector). For later

convenience, we define the integrated output signal operator X̂(φ),

X̂(φ) ≡
∫

dτÔ(τ, φ) =

∫
dτ
[
b̂S(τ)b̂†L(τ)eiφ + b̂†S(τ)b̂L(τ)e−iφ

]
. (6.2.6)

The expectation value of the output signal received by Rob is

Xφ = 〈X̂(φ)〉, (6.2.7)

and the variance is

Vφ = 〈X̂2(φ)〉 − 〈X̂(φ)〉2. (6.2.8)

Alice prepares coherent states (signal and local oscillator) by displacing the Minkowski vac-

uum |0M〉 using the displacement operators D̂K(γ) = exp
(
γâ†K − γ∗âK

)
, with γ = α, β,

and

âK =

∫
dkfDK (k, t, x)âk, (6.2.9)



106 Quantum Communication with Uniformly Accelerated Observers

where fDK (k, t, x) is a normalized displacement mode function satisfying
∫

dk|fDK (k, t, x)|2 =

1. Therefore, âK are also temporally and spatially localized annihilation operators in the

perspective of Alice. The state that Alice prepares can be written in a compact form,

|α, β, t〉 = D̂S(α)D̂L(β)|0M〉. (6.2.10)

The expectation value of the signal becomes

Xφ = 〈0M |D̂†L(β)D̂†S(α)X̂(φ)D̂S(α)D̂L(β)|0M〉. (6.2.11)

In order to explicitly calculate the expectation value and variance of the signal, we need

to know the Bogolyubov transformation between the Rindler modes and Minkowski modes,

which are already given by [Tak86, CHM08]

b̂Ω =

∫
dk
(
αΩkâk + βΩkâ

†
k

)
, (6.2.12)

where

αΩk =
ieπΩ/2

2π
√

Ωk
Γ(1− iΩ)

(
k

a

)iΩ
,

βΩk =
ie−πΩ/2

2π
√

Ωk
Γ(1− iΩ)

(
k

a

)iΩ
(6.2.13)

are the Bogolyubov coefficients for right-moving waves. Taking into account Eq. (6.2.12),

we can find the identity

D̂†K(γ)b̂K(τ)D̂K(γ) = b̂K(τ) + γ

∫
dΩ

∫
dk fK(Ω, τ)

[
αΩkf

∗
DK

(k) + βΩkfDK (k)
]

≡ b̂K(τ) + γFK(τ). (6.2.14)

The expressions for Xφ and Vφ can be expanded via Eq.(6.2.14).

Although the amplitude of the local oscillator sent by Alice is β, it is not so when viewed by

Rob due to Doppler shift and Rob’s inability to access the whole wave packet. The latter

effect is more important in the horizon-straddling case. However, one has to bear in mind

that this does not mean the amplitude of the local oscillator must be attenuated. In fact,

it sometimes can be amplified. Homodyne detection only measures the amplitude without
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caring about the frequency of the mode. So it is possible that Rob detects a large amount

of low frequency particles but the total energy of these particles is still smaller than the

energy of the original wave packet. If Rob performs homodyne detection without knowing

the amplitude of the local oscillator sent by Alice, he has to measure the strength of the local

oscillator by adding the photocurrents of the two photodetectors. We define the strength of

the local oscillator as seen by Rob as

I ≡
∫

dτ〈b̂†Lb̂L〉 =

∫
dτ〈0M |D̂†L(β)D̂†S(α)b̂†Lb̂LD̂S(α)D̂L(β)|0M〉. (6.2.15)

Both the expectation value Xφ and variance Vφ of the signal should be normalized by the

strength of the local oscillator. Since the Bogolyubov transformation (6.2.12) is a linear

transformation, it is obvious that 〈0M |b̂K |0M〉 = 〈0M |b̂†K |0M〉 = 0. Taking into account the

fact that β � |α|, we have

Xφ ≈ βαeiφ
∫

dτFS(τ)F ∗L(τ) + βα∗e−iφ
∫
dτF ∗S(τ)FL(τ),

Vφ ≈ β2

∫
dτ

∫
dτ ′F ∗L(τ)FL(τ ′)〈0M |{b̂S(τ), b̂†S(τ ′)}|0M〉,

I ≈ β2

∫
dτFL(τ)F ∗L(τ), (6.2.16)

where {Â, B̂} = ÂB̂ + B̂Â represents anticommutation of two operators. If we further

require that the detector mode function for signal and local oscillator are the same and the

displacement mode function for signal and local oscillator are also the same, then FS(τ) =

FL(τ). The normalized output signal becomes

X̄φ =
Xφ√
I
≈

√∫
dτFL(τ)F ∗L(τ) (αeiφ + α∗e−iφ) ≈

√
I

β
(αeiφ + α∗e−iφ), (6.2.17)

and the normalized variance becomes

V̄φ =
Vφ
I
≈
∫

dτ
∫

dτ ′F ∗L(τ)FL(τ ′)〈0M |{b̂S(τ), b̂†S(τ ′)}|0M〉∫
dτFL(τ)F ∗L(τ)

. (6.2.18)

In order to proceed, we need to introduce explicit forms for Rob’s detector mode function

and Alice’s displacement mode function. The detector mode function can be written as

fK(Ω, τ) = e−iΩaτfK(Ω). (6.2.19)
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It is important that the detector mode function should be well localized spatially and tempo-

rally; otherwise, its interpretation as a detector following a particular spacetime trajectory

is compromised. Thus we consider a detector mode function that is very broad in Ω; in

particular, we take fK(Ω) ≈
√
a/2π for Ω ≥ Ωcut > 0 and zero otherwise, where Ωcut is some

low frequency cutoff. We will see that if we do not introduce a low frequency cutoff, X̄φ and

V̄φ may be divergent. That means if Rob’s detector is accurate enough so that it responds

to any low frequency particles, he will detect very large amounts of low frequency particles.

However, in practice, there is always some low frequency below which Rob’s detector cannot

detect. From Figure 6.1 we can see that, in the horizon-straddling case, the wave packet

overlaps with Rob’s whole future worldline. That is to say, Rob can detect particles even

when τ → +∞. Therefore, the integrals over τ in Eqs.(6.2.17) and (6.2.18) go from −∞ to

+∞ and we have the simplification
∫
dτ a

2π
e−i(Ω−Ω′)aτ ≈ δ(Ω− Ω′).

We assume that the displacement mode function is peaked at a large wave number ko > 0,

much larger than the bandwidth σ, although σ is also broad on the wavelength scale. Hence

we write k = ko + k̄, where ko � |k̄| for the region of wave numbers for which the mode

function is nonzero. These are typical approximations used for nonrelativistic quantum

communication systems. The displacement mode function thus can be written as

fDK (k; to, xo) = e−ikUofD(k), (6.2.20)

where Uo = to−xo reprents the central position of the wave packet. In particular, we choose

fD(k) as a Gaussian form,

fD(k) =

(
1

2πσ2

)1/4

exp

{
−(k − ko)2

4σ2

}
, (6.2.21)

satisfying ko/σ � 1. One term in Eq.(6.2.13) can be approximated as(
k

a

)iΩ
≈ eik( Ω

ko
)eiΩ[ln(ko/a)−1], (6.2.22)

and using the identity

|Γ(1− iΩ)|2 =
πΩ

sinh(πΩ)
,
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we have

αΩkα
∗
Ωk′ ≈

1

2πko(1− e−2πΩ)
eik( Ω

ko
)e−ik

′( Ω
ko

),

αΩkβ
∗
Ωk′ ≈

e−πΩ

2πko(1− e−2πΩ)
eik( Ω

ko
)e−ik

′( Ω
ko

),

βΩkα
∗
Ωk′ ≈

e−πΩ

2πko(1− e−2πΩ)
eik( Ω

ko
)e−ik

′( Ω
ko

),

βΩkβ
∗
Ωk′ ≈

e−2πΩ

2πko(1− e−2πΩ)
eik( Ω

ko
)e−ik

′( Ω
ko

). (6.2.23)

The strength of the local oscillator received by Rob can be calculated as

I ≈ β2

∫
dΩ

∫
dk

∫
dΩ′

∫
dk′
∫
dτfL(Ω, τ)f ∗L(Ω′, τ)

[
αΩkf

∗
DL

(k) + βΩkfDL(k)

]
×
[
α∗Ω′k′fDL(k′) + β∗Ω′k′f

∗
DL

(k′)

]
≈ β2

∫
dΩ

∫
dk

∫
dk′
[
αΩkα

∗
Ωk′f

∗
DL

(k)fDL(k′) + αΩkβ
∗
Ωk′f

∗
DL

(k)f ∗DL(k′)

+βΩkα
∗
Ωk′fDL(k)fDL(k′) + βΩkβ

∗
Ωk′fDL(k)f ∗DL(k′)

]
≈ β2

√
2

π

σ

ko

∫
dΩ

1

1− e−2πΩ

[
e−2σ2(Ω+koUo)2/k2

o + e−2πΩe−2σ2(Ω−koUo)2/k2
o

+2 cos(2koUo)e
−πΩe−σ

2(Ω+koUo)2/k2
oe−σ

2(Ω−koUo)2/k2
o

]
. (6.2.24)

Substituting Eq. (6.2.24) into Eq. (6.2.17), we have a general expression for the expectation

value of the signal.

If Uo < 0 and |koUo| � kso/σ, then only the first term in Eq.(6.2.24) survives. In ad-

dition, the Gaussian part of the integrand can be approximated as a delta function, that

is,
√

2
π
σ
ko
e−2σ2(Ω+koUo)2/k2

o ≈ δ(Ω + koUo). We can recover the analytic expression for the

normalized output signal found in [DRW13],

X̄φ ≈
αeiφ + α∗e−iφ√
1− e−2πko|Uo|

. (6.2.25)

In this case, Rob can access nearly the whole wave packet because |koUo| � ko/σ implies

|Uo| � 1/σ ≈ lc, where lc is the characteristic spread of the wave packet in position space.

The approximate expression of X̄φ shows that the output signal is amplified due to the
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Unruh thermalization. However, this amplification is quite small. Since we initially assume

that ko/σ � 1, so |koUo| � 1, then e−2πko|Uo| must be a very small number. This can be

verified in our numerical integration of Eq. (6.2.24) below.

Next, we would like to calculate the variance of the signal. Using Eq.(6.2.13) and the identity∫ ∞
0

dk

2πk
ki(Ω−Ω′) = δ(Ω− Ω′), (6.2.26)

we find

〈0M |b̂Ωb̂
†
Ω′ |0M〉 =

∫
dk αΩkα

∗
Ω′k =

1

1− e−2πΩ
δ(Ω− Ω′),

〈0M |b̂†Ω′ b̂Ω|0M〉 =

∫
dk βΩkβ

∗
Ω′k =

e−2πΩ

1− e−2πΩ
δ(Ω− Ω′), (6.2.27)

and therefore,

〈0M |{b̂S(τ), b̂†S(τ ′)}|0M〉 =

∫
dΩ

∫
dΩ′ fS(Ω, τ)f ∗S(Ω′, τ ′)〈0M |{b̂Ω, b̂

†
Ω′}|0M〉

=

∫
dΩ fS(Ω, τ)f ∗S(Ω, τ ′)

1 + e−2πΩ

1− e−2πΩ
. (6.2.28)

Taking into account fS(Ω, τ) = fL(Ω, τ), we have

Vφ = β2

√
2

π

σ

ko

∫
dΩ

[
e−2σ2(Ω+koUo)2/k2

o + 2 cos(2koUo)e
−πΩe−σ

2(Ω+koUo)2/k2
oe−σ

2(Ω−koUo)2/k2
o

+e−2πΩe−2σ2(Ω−koUo)2/k2
o

]
1 + e−2πΩ

(1− e−2πΩ)2
. (6.2.29)

Substituting Eq. (6.2.29) into Eq. (6.2.18), we finally get a general expression for the

normalized variance of the output signal. Again, in the case where Uo < 0 and |koUo| � ko/σ,

we can recover the analytic expression found in [DRW13],

V̄φ ≈
1 + e−2πko|Uo|

1− e−2πko|Uo|
. (6.2.30)

However, the Unruh thermalization effect is still very small because |koUo| � 1 so V̄φ ≈ 1.

6.2.2 Horizon-straddling case

We would like to explore the horizon-straddling case where Uo ≈ 0. The approximation

made in [DRW13] is no longer valid because contributions of the second and third terms
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in Eqs. (6.2.24) and (6.2.29) are significant and important. Since there is no analytic

expression for the integration, we numerically integrate Eqs. (6.2.24) and (6.2.29) for various

parameters. It turns out that in most cases I and V̄φ are divergent if we integrate over an

arbitrarily low frequency. Physically, this means if Rob’s detector is strong enough such that

it can detect arbitrarily low frequency particles, then Rob will observe a large expectation

value and fluctuation of the number of low frequency particles. This is reasonable because

when the wave packet straddles Rob’s future horizon, most of these particles are greatly

redshifted as seen by Rob, especially at late times when Rob’s velocity approaches the

speed of light. In realistic situations, Rob’s detector cannot detect arbitrarily low frequency

particles. Therefore, we introduce a low frequency cutoff Ωcut for the detector mode function.

One might expect that the low frequency cutoff depends on the specific detector Rob carries.

That is true, but we do not want to discuss specific models of Rob’s detector. We can find

a natural low frequency cutoff by other considerations.
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Figure 6.2: Strength of local oscillator for various low frequency cutoffs: Ωcut = 0.00001 (top), 0.001
(middle), 0.1 (bottom), δ = ko

σ = 10.

Figs. 6.2 and 6.3 show the strength of the local oscillator and the variance of the output
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Figure 6.3: Normalized variance for various low frequency cutoffs: Ωcut = 0.01 (top), 0.05 (middle),
0.1 (bottom), δ = ko

σ = 10.

signal received by Rob for various parameters. According to Eq. (6.2.17), the strength of the

local oscillator I/β2 also characterizes the amplitude of the expectation value of the output

signal for a given relative phase φ. Thus Fig. 6.2 also indirectly shows the amplitude of the

expectation value of the output signal. We can see that they depend on when Alice sends

the signal and local oscillator if the central wave number ko is fixed. If Alice sends the signal

and local oscillator early enough then I ≈ β2, V̄φ ≈ 1, and thus X̄φ ≈ αeiφ+α∗e−iφ. Rob sees

the original coherent state signal. The Unruh thermalization effect is not significant, as we

have argued before. If Alice sends them later so that the wave packet straddles Rob’s future

horizon, the strength of the local oscillator decreases with some characteristic oscillation,

while the variance increases with similar oscillation. The Unruh thermalization becomes

significant in this horizon-straddling case. Interestingly, if we choose lower frequency cutoff,

for some specific values of koUo the strength of the local oscillator and the variance remain

unchanged, while for other koUo they increase dramatically. These particular values of koUo

can be determined by koUo ≈ (1
2
+n)π, n = 0,±1,±2, ..., and at these points the variances are

approximately one. From Eq. (6.2.24), the local oscillator received by Rob is quite different
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from that sent by Alice in the horizon-straddling case. Since Rob still can see the wave

packet at late times when his velocity approaches the speed of light, one expects that the

wave packet is greatly redshifted as seen by Rob. Therefore, Rob’s effective local oscillator

consists of large amounts of low frequency components, resulting in large expectation value

and variance in the homodyne detection, implying an amplification of the original coherent

state. However, for some specific values of koUo, the low frequency components in the local

oscillator are strongly suppressed. This can easily be verified by substituting koUo = (1
2
+n)π

into the integrand in Eq. (6.2.24). Consequently, the strength of the local oscillator and the

variance do not significantly depend on the low frequency cutoff for these values of koUo.
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Figure 6.4: Signal to noise ratio versus low frequency cutoff for koUo = nπ, δ = ko
σ = 10. The signal

to noise ratio decreases when the low frequency cutoff become smaller and larger. The low frequency cutoff
that maximizes the signal to noise ratio is between 0.1 and 0.2.

Fig. 6.4 shows Rob’s signal to noise ratio for koUo = nπ. These values approximately

correspond to peaks of the oscillation of the expectation value and variance of the output

signal, as shown in Figs. 6.2 and 6.3. The signal to noise ratio decreases and goes to zero when

the low frequency cutoff becomes smaller. This is because the variance increases faster than

the expectation value as the low frequency cutoff approaches zero. On the other side, when

the low frequency cutoff becomes larger, the signal to noise ratio also decreases. Since the
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2 + n)π, δ = ko

σ = 10. The
signal to noise ratio first increases and then tends to be a constant when the low frequency cutoff becomes
smaller.

variance tends to one in the large low frequency cutoff limit, this means the expectation value

of the output signal decreases. There is a maximum when the low frequency cutoff is between

0.1 and 0.2. The behavior of the signal to noise implies that the signal and local oscillator

Rob receives mainly contain low frequency particles. However, when koUo = (n + 1/2)π

where troughs of the oscillation of the expectation value and variance of the signal locate,

the behaviour of the signal to noise ratio is a bit different. Instead of going to zero, it tends

to be constant when the low frequency cutoff is smaller than some particular value, which

is also between 0.1 and 0.2, as can be seen from Fig. 6.5. This is closely related to the

fact that for these values of koUo the low frequency components in the local oscillator are

strongly suppressed. For those values of koUo between peaks and troughs, the signal to noise

ratio behaves more like those at the peaks, because both the expectation value and variance

increase but the variance increases faster than the expectation value in the low frequency

limit. Therefore, we can see that there exists a low frequency cutoff Ωcm which maximizes the

signal to noise ratio for various koUo and Ωcm ≈ 0.15. An interesting observation is that the

low frequency cutoff that maximizes the signal to noise ratio is approximately corresponding



6.2 Quantum communication between an inertial observer and a uniformly
accelerated observer 115

to the Unruh temperature

ωcm = kcma ≈
a

2π
, (6.2.31)

where a is the proper acceleration of Rob. In communication of classical information using

quantum states, the best strategy is to have a maximal signal to noise ratio. Therefore,

the Unruh frequency provides a natural low frequency cutoff if Alice tries to send classical

information to Rob via her quantum states.

However, if Alice wants to send quantum information to Rob, it is also important to minimize

the amount of noise added such that the states remain close to the quantum limit. This can

be quantified via the conditional variance between the input and output [RL98], which for

this system can be defined as

VC =

(
1− SNRout

SNRin

)
Vout =

(
1− I2

β2V

)
V̄ , (6.2.32)

where SNRin represents the signal to noise ratio of input state, in our case it is the coherent

state signal |α〉 sent by Alice; while SNRout represents the signal to noise ratio of output

state, in our case it is the state received by Rob.

Fig. 6.6 shows that for a given koUo ≤ δ (horizon-straddling case), the conditional variance

has a minimum. However, the location of the minimum slightly changes for various koUo.

Comparing with Fig. 6.4 one can see that locations of the minimum of the conditional vari-

ance do not exactly coincide with locations of the maximum of the signal to noise ratio. The

former are a bit larger than the latter, approximately ranging from 0.1 to 0.4. Nevertheless,

they are still in the same order of magnitude, approximately equal to the Unruh frequency.

Therefore, we conclude that the Unruh frequency provides a natural low frequency cutoff to

optimize the communication of both classical and quantum information between an inertial

partner and uniformly accelerated partner using coherent states.
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Figure 6.6: Conditional variance versus low frequency cutoff, δ = ko
σ = 10.

6.3 Quantum communication between two accelerated

observers

In previous sections we have considered quantum communication between an inertial partner

and a uniformly accelerated partner. An inertial partner, Alice, sends a coherent state signal

|α〉 and a local oscillator |β〉 to a uniformly accelerated partner, Rob, who then performs

homodyne detection. We found some interesting results when the wave packet sent by Alice

straddles Rob’s future horizon: 1) the expectation value and variance of the signal could be

amplified; 2) the signal to noise ratio is maximized and the conditional variance is minimized

if the low frequency cut off is chosen to be the Unruh frequency. A question arises as to

whether these results are only due to the presence of a horizon. If Alice is not an inertial

observer, for example she is another uniformly accelerated observer, can we still get the same

conclusions? To answer these questions we need to study quantum communication between

two Rindler observers.
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For any uniformly accelerated observer, there exist a past horizon and a future horizon. It is

possible that one accelerated observer is beyond the horizons of another accelerated observer

so that communication between them is impossible. If a set of Rindler observers share the

same future and past horizon, those in the right Rindler wedge and those in the left Rindler

wedge are causally disconnected. For example in Fig. 6.7, observer O1 cannot send signal to

O2, and vice versa. If we shift this set of Rindler observers along the x-axis in the space-time

diagram, we get a new set of Rindler observers (red curves). For the new set of Rindler

observers, those in the right Rindler wedge and those in the left Rindler wedge are also

causally disconnected. For example, observer O3 cannot send signal to observer O4, and vice

versa. However, observer O2 and O3, O2 and O4 are causally connected so communication

between them is possible. We can propose two communication protocols in which signal

can straddle the future horizon of the receiver: 1) observer O2 sends a left-moving coherent

state signal and local oscillator to observer O3, who then performs homodyne detection; 2)

observer O2 sends a right-moving coherent state signal and local oscillator to observer O4,

who then performs homodyne detection.

t

x

Figure 6.7: Two sets of Rindler observers. World lines of the second set of Rindler observers (red)
can be obtained by shifting the world lines of the first set (black). Observer O1 and O2 (black) are causally
disconnected, as well as O3 and O4 (red). While O2 and O3, O2 and O4 are causally connected.
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We should keep in mind that quantization of fields for different observers could be very

different. One of the typical examples is the quantization of fields for inertial observers and

uniformly accelerated observers, as we have discussed in Chapter 4. Each observer prepares

and detects quantum states in accordance with their own field modes. In order to inves-

tigate quantum communication, which basically involves preparing and detecting quantum

states, between two observers, we need to know the Bogoliubov transformations between

field modes of the two observers. For example when we discuss quantum communication

between an inertial partner and a uniformly accelerated partner, we need to know the Bo-

goliubov transformations between Minkowski modes and Rindler modes. Similarly, if we

want to study quantum communication between two uniformly accelerated observers, we

have to find out Bogoliubov transformations between two sets of Rindler modes.

Due to the time translation and space translation invariance of the Minkowski space-time,

the local observations of uniformly accelerated observers whose world lines are connected

by parallel transportation are the same if the state is also translational invariant. For

example they see Unruh radiation with the same temperature in the Minkowski vacuum

state. However, the field modes they can detect are very different in the perspective of

inertial observers. We are going to derive the Bogoliubov transformations between different

Rindler modes corresponding to different uniformly accelerated observers. We do it by two

steps: 1) find the Bogoliubov transformations between Unruh modes; 2) use the relations

between Rindler modes and Unruh modes to derive the Bogoliubov transformations between

Rindler modes.

6.3.1 Bogoliubov transformations between Unruh modes

For a massless scalar field in (1 + 1)-dimensional Minkowski space-time, the left-moving

modes and right-moving modes are independent so they can be treated separately. In this

chapter we only consider left-moving modes and neglect the subscript “1”. Generalization to

right-moving modes is straightforward. To make notations clearer, we introduce Heaviside

step function θ(V ) in the definition of Rindler modes. Suppose that θ(V )gRω (v), θ(−V )gLω (v̄)
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are the Rindler modes in the right and left Rindler wedges, respectively. The left-moving

Unruh modes are defined by Eqs. (4.5.26) and (4.5.27). The inverse transformations can be

easily found to be

θ(V )gRω (v) = cosh(rω)Gω(V )− sinh(rω)Ḡ∗ω(V ),

θ(−V )gLω (v̄) = cosh(rω)Ḡω(V )− sinh(rω)G∗ω(V ). (6.3.1)

The explicit expressions for Unruh modes, Gω(V ) and Ḡω(V ), are given by Eq. (4.5.41).

When we shift the world lines of this set of Rindler observers along the x-axis in the space-

time diagram, we get world lines of another set of Rindler observers. The corresponding

Rindler modes and Unruh modes are denoted as {θ(V ± s/a)hRω (ζ), θ(−V ∓ s/a)hLω(ζ̄)} and

{Gω(V ± s/a), Ḡω(V ± s/a)}, respectively. Here s is a positive, dimensionless parameter

charactering the shift distance. From Eq. (4.5.41), it is easy to see that

Gω(V ± s/a) = F (ω, a)(aV ± s)−iω/a,

Ḡω(V ± s/a) = F (ω, a)(−aV ∓ s)iω/a, (6.3.2)

where F (ω, a) = eπω/2a√
4πω
√

2 sinh(πω/a)
.

The Unruh modes {Gω(V ), Ḡω(V )} form a set of orthonormal and complete modes, as well as

{Gω(V +s/a), Ḡω(V +s/a)} and {Gω(V −s/a), Ḡω(V −s/a)}. One can express Gω(V ±s/a)

and Ḡω(V ± s/a) in terms of the Unruh modes {Gω(V ), Ḡω(V )}.

Gω′(V ± s/a) =

∫
dω
[
Aω′ω(±s)Gω(V ) +Bω′ω(±s)Ḡω(V )

]
,

Ḡω′(V ± s/a) =

∫
dω
[
Cω′ω(±s)Gω(V ) +Dω′ω(±s)Ḡω(V )

]
, (6.3.3)

where the transformation coefficients are

Aω′ω(±s) = 〈Gω(V ), Gω′(V ± s/a)〉,

Bω′ω(±s) = 〈Ḡω(V ), Gω′(V ± s/a)〉,

Cω′ω(±s) = 〈Gω(V ), Ḡω′(V ± s/a)〉,

Dω′ω(±s) = 〈Ḡω(V ), Ḡω′(V ± s/a)〉. (6.3.4)
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Note that all these Unruh modes are positive frequency modes with respect to the Minkowski

time, so there is no mixing of negative frequency modes in the above Bogoliubov transfor-

mations. The inverse transformations can be found to be

Gω(V ) =

∫
dω′
[
A∗ω′ω(±s)Gω′(V ± s/a) + C∗ω′ω(±s)Ḡω′(V ± s/a)

]
,

Ḡω(V ) =

∫
dω′
[
B∗ω′ω(±s)Gω′(V ± s/a) +D∗ω′ω(±s)Ḡω′(V ± s/a)

]
. (6.3.5)

From the explicit expressions for the Unruh modes, Eqs. (4.5.41) and (6.3.2), we can directly

calculate the Klein-Gordon products and obtain the Bogoliubov transformation coefficients

Aω′ω(±s), Bω′ω(±s), Cω′ω(±s) and Dω′ω(±s). We find

Aω′ω(s) =
π

2
√
ωω′

e−π(Ω−Ω′)/2√
sinh(πΩ)sinh(πΩ′)

× si(Ω−Ω′)

(Ω− Ω′ + iε)sinh(π(Ω− Ω′))Γ(−iΩ)Γ(iΩ′)Γ(i(Ω− Ω′))
,

Bω′ω(s) =
π

2
√
ωω′

eπ(Ω+Ω′)/2√
sinh(πΩ)sinh(πΩ′)

× s−i(Ω+Ω′)

(Ω + Ω′)sinh(π(Ω + Ω′))Γ(iΩ)Γ(iΩ′)Γ(−i(Ω + Ω′))
,

Cω′ω(s) =
π

2
√
ωω′

e−π(Ω+Ω′)/2√
sinh(πΩ)sinh(πΩ′)

× si(Ω+Ω′)

(Ω + Ω′)sinh(π(Ω + Ω′))Γ(−iΩ)Γ(−iΩ′)Γ(i(Ω + Ω′))
,

Dω′ω(s) =
π

2
√
ωω′

eπ(Ω−Ω′)/2√
sinh(πΩ)sinh(πΩ′)

× s−i(Ω−Ω′)

(Ω− Ω′ − iε)sinh(π(Ω− Ω′))Γ(iΩ)Γ(−iΩ′)Γ(−i(Ω− Ω′))
, (6.3.6)

where Ω = ω/a and Γ(z) is the Gamma’s function. Here ε is a small positive regularization

parameter and has to be taken to be zero: ε→ 0+. It is easy to verify the following equalities,

Aω′ω(s) = e−π(Ω−Ω′)D∗ω′ω(s), Bω′ω(s) = eπ(Ω+Ω′)C∗ω′ω(s). (6.3.7)

The Klein-Gordon products between {Gω(V ), Ḡω(V )} and {Gω(V − s/a), Ḡω(V − s/a)} can

be calculated following the same procedure. By doing the explicit calculation, we find that
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the following trick applies: replace s in Eq. (6.3.6) by −s, and then let (−1)i = eπ. We have

Aω′ω(−s) = eπ(Ω−Ω′)Aω′ω(s) = D∗ω′ω(s),

Bω′ω(−s) = e−π(Ω+Ω′)Bω′ω(s) = C∗ω′ω(s),

Cω′ω(−s) = eπ(Ω+Ω′)Cω′ω(s) = B∗ω′ω(s),

Dω′ω(−s) = e−π(Ω−Ω′)Dω′ω(s) = A∗ω′ω(s). (6.3.8)

6.3.2 Bogoliubov transformations between Rindler modes

We have built up relations between the shifted Unruh modes {Gω(V ± s/a), Ḡω(V ± s/a)}

and the original Unruh modes {Gω(V ), Ḡω(V )}. The relations between the shifted Rindler

modes and the shifted Unruh modes are basically the same as that between the original

modes and the original Unruh modes, Eq. (6.3.1). Namely,

θ(V ± s/a)gRω (v) = cosh(rω)Gω(V ± s/a)− sinh(rω)Ḡ∗ω(V ± s/a),

θ(−V ∓ s/a)gLω (v̄) = cosh(rω)Ḡω(V ± s/a)− sinh(rω)G∗ω(V ± s/a). (6.3.9)

Using Eqs. (6.3.5), (4.5.26) and (4.5.27), we can relate the shifted Rindler modes and the

original Rindler modes.

θ(V + s/a)hRω′(ζ)

=

∫
dω

{√
sinh(πΩ′)

sinh(πΩ)

[
eπ(Ω−Ω′)/2Aω′ω(s)θ(V )gRω (v) + e−π(Ω+Ω′)/2Bω′ω(s)θ(V )gR∗ω (v)

]
+

1√
sinh(πΩ′)sinh(πΩ)

[
e−π(Ω+Ω′)/2sinh(π(Ω + Ω′))Bω′ω(s)θ(−V )gLω (v̄)

−eπ(Ω−Ω′)/2sinh(π(Ω− Ω′))Aω′ω(s)θ(−V )gL∗ω (v̄)

]}
. (6.3.10)

θ(−V − s/a)hLω′(ζ̄)

=

∫
dω

√
sinh(πΩ)

sinh(πΩ′)

{
e−π(Ω−Ω′)/2Dω′ω(s)θ(−V )gLω (v̄)− eπ(Ω+Ω′)/2Cω′ω(s)θ(−V )gL∗ω (v̄)

}
.

(6.3.11)
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θ(V − s/a)hRω′(ζ)

=

∫
dω

√
sinh(πΩ)

sinh(πΩ′)

{
e−π(Ω−Ω′)/2Aω′ω(−s)θ(V )gRω (v)− eπ(Ω+Ω′)/2Bω′ω(−s)θ(V )gR∗ω (v)

}
.

(6.3.12)

θ(−V + s/a)hLω′(ζ̄)

=

∫
dω

{
1√

sinh(πΩ′)sinh(πΩ)

[
e−π(Ω+Ω′)/2sinh(π(Ω + Ω′))Cω′ω(−s)θ(V )gRω (v)

−eπ(Ω−Ω′)/2sinh(π(Ω− Ω′))Dω′ω(−s)θ(V )gR∗ω (v)

]
+

√
sinh(πΩ′)

sinh(πΩ)

[
eπ(Ω−Ω′)/2Dω′ω(−s)θ(−V )gLω (v̄) + e−π(Ω+Ω′)/2Cω′ω(−s)θ(−V )gL∗ω (v̄)

]}
.

(6.3.13)

Since
{
θ(V )gRω (v), θ(−V )gLω (v̄)

}
form a set of orthonormal and complete modes, the scalar

field Φ̂ can be expanded by them and the corresponding operators
{
b̂Rω , b̂

L
ω

}
. Meanwhile,

the Rindler modes {θ(V ± s/a)hRω (ζ), θ(−V ∓ s/a)hLω(ζ̄)} also form a set of orthonormal

and complete modes, and we denote the corresponding operators as
{
b̂Rω (±s), b̂Lω(±s)

}
. The

scalar field can be expanded as

Φ̂ =

∫
dω

[
b̂Rω θ(V )gRω (v) + b̂R†ω θ(V )gR∗ω (v) + b̂Lω θ(−V )gLω (v̄) + b̂L†ω θ(−V )gL∗ω (v̄)

]
.

=

∫
dω′
[
b̂Rω′(±s) θ(V ± s/a)hRω′(ζ) + b̂R†ω′ (±s) θ(V ± s/a)hR∗ω′ (ζ)

+b̂Lω′(±s) θ(−V ∓ s/a)hLω′(ζ̄) + b̂L†ω′ (±s) θ(−V ∓ s/a)hL∗ω′ (ζ̄)

]
. (6.3.14)

The Bogoliubov transformations between the shifted and original Rindler operators are

b̂Rω′(±s) =

∫
dω

[
αRω′ω(±s) b̂Rω + βRω′ω(±s) b̂R†ω + γRω′ω(±s) b̂Lω + δRω′ω(±s) b̂L†ω

]
,

b̂Lω′(±s) =

∫
dω

[
αLω′ω(±s) b̂Rω + βLω′ω(±s) b̂R†ω + γLω′ω(±s) b̂Lω + δLω′ω(±s) b̂L†ω

]
.

(6.3.15)
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The Bogoliubov transformation coefficients can be obtained from the relations between the

shifted Rindler modes and original Rindler modes, Eqs. (6.3.10)–(6.3.13).

αRω′ω(s) = γL∗ω′ω(−s) =
〈
θ(V + s/a)hRω′(ζ), θ(V )gRω (v)

〉
=

π

2
√
ωω′

1

sinh(πΩ)

s−i(Ω−Ω′)

(Ω− Ω′ + iε)sinh(π(Ω− Ω′))Γ(iΩ)Γ(−iΩ′)Γ(−i(Ω− Ω′))
,

(6.3.16)

βRω′ω(s) = δL∗ω′ω(−s) =
〈
θ(V + s/a)hRω′(ζ), θ(V )gR∗ω (v)

〉
= − π

2
√
ωω′

1

sinh(πΩ)

si(Ω+Ω′)

(Ω + Ω′)sinh(π(Ω + Ω′))Γ(−iΩ)Γ(−iΩ′)Γ(i(Ω + Ω′))
,

(6.3.17)

γRω′ω(s) = αL∗ω′ω(−s) =
〈
θ(V + s/a)hRω′(ζ), θ(−V )gLω (v̄)

〉
=

π

2
√
ωω′

si(Ω+Ω′)

(Ω + Ω′)sinh(πΩ)sinh(πΩ′)Γ(−iΩ)Γ(−iΩ′)Γ(i(Ω + Ω′))
, (6.3.18)

δRω′ω(s) = βL∗ω′ω(−s) =
〈
θ(V + s/a)hRω′(ζ), θ(−V )gL∗ω (v̄)

〉
=

π

2
√
ωω′

s−i(Ω−Ω′)

(Ω− Ω′ + iε)sinh(πΩ)sinh(πΩ′)Γ(iΩ)Γ(−iΩ′)Γ(−i(Ω− Ω′))
.

(6.3.19)

αLω′ω(s) = γR∗ω′ω(−s) =
〈
θ(−V − s/a)hLω′(ζ), θ(V )gRω (v)

〉
= 0, (6.3.20)

βLω′ω(s) = δR∗ω′ω(−s) =
〈
θ(−V − s/a)hLω′(ζ), θ(V )gR∗ω (v)

〉
= 0, (6.3.21)

γLω′ω(s) = αR∗ω′ω(−s) =
〈
θ(−V − s/a)hLω′(ζ), θ(−V )gLω (v̄)

〉
=

π

2
√
ωω′

1

sinh(πΩ′)

si(Ω−Ω′)

(Ω− Ω′ − iε)sinh(π(Ω− Ω′))Γ(−iΩ)Γ(iΩ′)Γ(i(Ω− Ω′))
,

(6.3.22)

δLω′ω(s) = βR∗ω′ω(−s) =
〈
θ(−V − s/a)hLω′(ζ), θ(−V )gL∗ω (v̄)

〉
=

π

2
√
ωω′

1

sinh(πΩ′)

s−i(Ω+Ω′)

(Ω + Ω′)sinh(π(Ω + Ω′))Γ(iΩ)Γ(iΩ′)Γ(−i(Ω + Ω′))
.

(6.3.23)
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6.3.3 Quantum communication protocols

We restrict ourselves to quantum communication between two uniformly accelerated ob-

servers with the same proper acceleration. In this case, there are two kinds of communication

protocols between two Rindler observers. One is between two Rindler observers undergoing

anti-parallel uniform acceleration and the other is between two Rindler observers undergoing

parallel uniform acceleration. We are interested in scenarios where signal and local oscilla-

tor sent by the sender may straddle the receiver’s future horizon, for example in Fig. 6.7,

observer O2 sends signal and local oscillator to observer O3 or vice versa. For concreteness,

we first consider the case that observer O2 sends signal and local oscillator to observer O3

who then performs homodyne detection.

The following calculation is similar to the case where the sender Alice is an inertial observer.

Observer O2 prepares the signal and local oscillator in his own reference frame by displacing

the Minkowski vacuum with amplitude α and β. That is, the state prepared by observer O2

is

|α, β, τ2〉 = D̂S(α)D̂L(β)|0M〉, (6.3.24)

where |0M〉 is the Minkowski vacuum state and τ2 is the proper time of observer O2. The

displacement operator is D̂K(γ) = exp(γb̂R†K − γ∗b̂RK), with γ = α, β and K = L, S. The

spatiotemporally localized Rindler operator b̂RK is defined as

b̂RK =

∫
dωfDK (ω;ω0, σ, v0)b̂Rω , (6.3.25)

where fDK (ω) is a normalized displacement mode function satisfying
∫

dω|fDK (ω)|2 = 1.

We choose the normalized displacement mode function to be a Gaussian wave packet in the

perspective of observer O2,

fDK (ω;ω0, σ, v0) =

(
1

2πσ2

)1/4

exp

{
− (ω − ω0)2

4σ2

}
e−iωv0 , (6.3.26)

where ω0, σ are the central frequency and bandwidth of the wave packet satisfying ω0/σ � 1,

v0 = τ20 +ξ0 is the central position of the wave packet. The integrated output signal operator
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of observer O3’s homodyne detection is [SR14]

X̂(φ) =

∫
dτ3

[
b̂LS(−s, τ3)b̂L†L (−s, τ3)eiφ + b̂L†S (−s, τ3)b̂LL(−s, τ3)e−iφ

]
, (6.3.27)

where τ3 is the proper time of the observer O3. b̂LK(−s, τ3) are spatiotemporally localized

operators,

b̂LK(−s, τ3) =

∫
dωfK(ω, τ3)b̂Lω(−s), (6.3.28)

where fK(ω, τ3) is a broadband detector mode function which can be written as

fK(ω, τ3) = e−iωτ3fK(ω).

In order to have a localized detector, we take fK(ω) =
√
a/2π for ω > ωcut > 0 and zero

otherwise, where ωcut is a low frequency cut off. The expectation value of the signal is

Xφ = 〈0M |D̂†L(β)D̂†S(α)X̂(φ)D̂S(α)D̂L(β)|0M〉 (6.3.29)

and the variance is

Vφ = 〈0|D̂†L(β)D̂†S(α)X̂2(φ)D̂S(α)D̂L(β)|0M〉 −X2
φ. (6.3.30)

Using the Bogoliubov transformation (6.3.15) and (6.3.16), we can derive the identity

D̂†K(γ)b̂LK(−s, τ3)D̂K(γ) = b̂LK(−s, τ3) + γ

∫
dω′

∫
dωfK(ω′, τ3)

[
αLω′ω(−s)f ∗DK (ω, v0)

+βLω′ω(−s)fDK (ω, v0)

]
≡ b̂LK(−s, τ3) + γFK(τ3). (6.3.31)

The expressions for Xφ and Vφ can be expanded via Eq. (6.3.31). The local oscillator sent by

observer O2 will be distorted as viewed by observer O3 due to the Doppler shift and observer

O3’s inability to access the whole wave packet. If observer O3 performs homodyne detection

without knowing the amplitude of the local oscillator, he has to measure the strength of

the local oscillator by adding the photocurrents of the two photodetectors. We define the

strength of the local oscillator as seen by observer O3 as

I =

∫
dτ3 〈α, β, τ2|b̂L†K (−s, τ3)b̂LK(−s, τ3)|α, β, τ2〉

=

∫
dτ3 〈0M |D̂†L(β)D̂†S(α)b̂L†K (−s, τ3)b̂LK(−s, τ3)D̂S(α)D̂L(β)|0M〉. (6.3.32)
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Both the expectation value Xφ and variance Vφ of the signal should be normalized by the

strength of the local oscillator. Since the Bogoliubov transformation(6.3.15) is linear, it is

obvious that 〈0M |b̂LK(−s, τ3)|0M〉 = 〈0M |b̂L†K (−s, τ3)|0M〉 = 0. Taking into account the fact

that β � |α|, we have

Xφ = βαeiφ
∫
dτ3FS(τ3)F ∗L(τ3) + c.c.,

Vφ ≈ β2

∫
dτ3

∫
dτ ′3F

∗
L(τ3)FL(τ ′3)〈0M |{b̂LS(−s, τ3), b̂L†S (−s, τ ′3)}|0M〉,

I ≈ β2

∫
dτ3FL(τ3)F ∗L(τ3). (6.3.33)

If we further require that the detector mode function for signal and local oscillator are the

same and the displacement mode function for signal and local oscillator are also the same,

then FS(τ3) = FL(τ3). The normalized output signal becomes

X̄φ =
Xφ√
I
≈

√∫
dτ3FL(τ3)F ∗L(τ3)(αeiφ + α∗e−iφ) ≈

√
I

β
(αeiφ + α∗e−iφ), (6.3.34)

and the normalized variance becomes

V̄φ =
Vφ
I
≈
∫

dτ3

∫
dτ ′3F

∗
L(τ3)FL(τ ′3)〈0M |{b̂LS(−s, τ3), b̂L†S (−s, τ ′3)}|0M〉∫

dτ3FL(τ3)F ∗L(τ3)
. (6.3.35)

It is convenient to introduce two quantities Aω′ and Bω′ as

Aω′ =

∫
dω αLω′ω(−s)f ∗DK (ω, v0) =

(
1

2πσ2

)1/4
πe−iΩ

′ln(s)

2
√

Ω′sinh(πΩ′)Γ(iΩ′)
I1(Ω′; Ω0, v0, σ, s),

Bω′ =

∫
dω βLω′ω(−s)fDK (ω, v0) =

(
1

2πσ2

)1/4
πe−iΩ

′ln(s)

2
√

Ω′sinh(πΩ′)Γ(iΩ′)
I2(Ω′; Ω0, v0, σ, s),

(6.3.36)

where

I1(Ω′; Ω0, v0, σ, s) =

∫ ∞
0

dΩ√
Ω

eiΩ(av0−ln(s))

(Ω + Ω′)sinh(πΩ)Γ(iΩ)Γ(−i(Ω + Ω′))
exp

{
− (Ω− Ω0)2

4(σ/a)2

}
,

I2(Ω′; Ω0, v0, σ, s) =

∫ ∞
0

dΩ√
Ω

e−iΩ(av0−ln(s))

(Ω− Ω′ − iε)sinh(πΩ)Γ(−iΩ)Γ(i(Ω− Ω′))
exp

{
− (Ω− Ω0)2

4(σ/a)2

}
.

(6.3.37)
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Substituting Aω′ and Bω′ into (6.3.33), we find

I = β2

∫
dω

(
|Aω|2 + |Bω|2 +AωB∗ω +A∗ωBω

)
= β2 π

4
√

2π(σ/a)

∫ ∞
Ωcut

dΩ

sinh(πΩ)

[
|I1(Ω)|2 + |I2(Ω)|2 + I∗1 (Ω)I2(Ω) + I1(Ω)I∗2 (Ω)

]
,

(6.3.38)

and

Vφ = β2

∫
dω

(
|Aω|2 + |Bω|2 +AωB∗ω +A∗ωBω

)
e2πΩ + 1

e2πΩ − 1

= β2 π

4
√

2π(σ/a)

∫ ∞
Ωcut

dΩ

sinh(πΩ)

[
|I1(Ω)|2 + |I2(Ω)|2 + I∗1 (Ω)I2(Ω) + I1(Ω)I∗2 (Ω)

]
×e

2πΩ + 1

e2πΩ − 1
, (6.3.39)

where Ωcut = ωcut/a represents the low frequency cutoff.

In the high central frequency and narrow bandwidth limit, namely, Ω0 � 1 and Ω0 � σ/a,

the integrals I1(Ω′; Ω0, v0, σ, s) and I2(Ω′; Ω0, v0, σ, s) can be evaluated approximately. This

is due to the fact that the Gamma’s function can be approximated as

Γ(z) ∼
√

2πzz−1/2e−z (6.3.40)

when |z| is large. The only issue here comes from Γ(i(Ω − Ω′)). When Ω′ is close to Ω,

i(Ω− Ω′) ∼ 0, the above approximation is not valid. However, numerical calculation shows

that Bω′ rapidly decays when Ω′ increases. Therefore it is reasonable to only consider small

Ω′, so that Ω− Ω′ � 1 and Eq. (6.3.40) can be applied to Γ(i(Ω− Ω′)).

We take the high central frequency and narrow bandwidth limit, evaluate the strength of

the local oscillator and the normalized variance, Eq. (6.3.35). The results are shown in Figs.

6.8 and 6.9. By comparing Figs. 6.8 and 6.2, we can see that the strengths of local oscillator

received by the accelerated observer in two different scenarios are almost the same. This is

also true for the normalized variances, if one compares Figs. 6.9 and 6.3. This implies that,

in the high central frequency and narrow bandwidth limit, the output of the homodyne

detection as performed by an accelerated observer does not depend on the motion of the

senders. Instead, it reflects the unique properties of the horizon of the receiver.
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Figure 6.8: Strength of local oscillator in the case where an accelerated observer communicates with
another accelerated observer. Three low frequency cutoffs are plotted: Ωcut = 0.00001(top), 0.001(middle),
0.1(bottom), δ = ko

σ = 10.
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Figure 6.9: Normalized variance in the case where an accelerated observer communicates with another
accelerated observer. Three low frequency cutoffs are plotted: Ωcut = 0.01(top), 0.05(middle), 0.1(bottom),
δ = ko
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6.4 Summary

In this chapter, we discuss quantum communication using coherent states and homodyne

detection with a uniformly accelerated observer in the horizon-straddling case in which the

sender sends both the signal and local oscillator. Two different protocols are studied: the

sender is either an inertial observer or a uniformly accelerated observer. In the case that the

sender is inertial, we find that under some special conditions the accelerated observer cannot

detect substantial low frequency particles regardless of his proper acceleration, in contrast

with the general viewpoint that the accelerated observer sees large amounts of low frequency

particles if their acceleration is large. We also show that the Unruh frequency provides a

natural low frequency cutoff both for quantum limited classical communication and quantum

communication between the inertial observer and uniformly accelerated observer.

In the case that the sender is another uniformly accelerated observer, we derived the general

expressions for the expectation value of the quadrature amplitude and the variance. In

the high central frequency and narrow bandwidth limit, we explicitly calculated the the

normalized output signal and the normalized variance. It is surprising that they are almost

the same as that in the case where the sender is inertial. We thus conclude that the output

of the homodyne detection as performed by an accelerated observer does not depend on the

motion of the senders. Instead, it reflects the unique properties of the horizon of the receiver.
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7
Quantum Circuit Model for Non-inertial

Objects: Accelerated Mirror

7.1 Introduction

It has been well known since the 1970s that a moving mirror can radiate particles [Moo70,

FD76]. A perfect moving mirror acts as a moving boundary and thus changes the states,

especially the vacuum, of the quantum fields. For an appropriately chosen accelerated tra-

jectory the radiation flux is thermal, and an analogy [DF77, Wal85, CW87] can be drawn

with Hawking radiation from a collapsing star [Haw75] that eventually forms a black hole.

Since the thermal fluxes are correlated with the final vacuum fluctuations, some authors

[Wil93, HSU15] have proposed that the emission of the large amounts of information left in

the black hole need not be accompanied by the eventual emission of a large amount of energy,

131
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providing a new perspective to the solution of the black hole information paradox [Haw76].

Recently, experiments have been performed to mimic the moving mirrors by changing the

properties of the materials, e.g., the inductance of a superconducting quantum interference

device [WJP+11, LPHH13].

When the mirror is uniformly accelerating, its trajectory is a hyperbola in spacetime, and

both the energy flux and particle flux are zero away from the event horizon [FD76, DF77,

BD82, Gro86]. Particles and energy are only radiated when the acceleration of the mirror

changes. In the case that the mirror eternally accelerates, the energy flux along the horizon

is divergent [FS79, FS80, FS99, Kay15, KL16]. This divergence is evidently related to the

ideal assumption that the mirror accelerates for infinitely long time. One way to get rid of

the divergence is to turn on and off the mirror so that effectively it interacts with the fields

for a finite time [OP01, OP03a, OP03b].

In this chapter, we develop a quantum circuit model to describe unitary interactions be-

tween quantum fields and a uniformly accelerated object (such as a mirror, cavity, squeezer

etc.). This allows one to straightforwardly calculate the radiation produced by such objects

as observed by a localized Minkowski (inertial) observer. We concentrate on a uniformly

accelerated object because the transformations between Minkowski modes, Rindler modes

and Unruh modes are well known [Unr76, Tak86, CHM08] and can be represented by some

simple quantum optical elements, like two-mode squeezers, beamsplitters etc. As an applica-

tion of our circuit model, we revisit the uniformly accelerated mirror problem with variable

reflection coefficient Rω in (1 + 1)-dimensional Minkowski spacetime. Our approach has a

number of advantages. It allows inclusion of general unitary interactions (including nonlinear

interactions), generalizing the formalism developed for linear scattering [MP96]. It is also

non-perturbative in the reflection coefficient Rω, unlike the self-interaction model proposed

by Obadia and Parentani [OP01], which requires a perturbative expansion in this quantity

and so is valid only for low reflection coefficients.

For the eternally accelerated mirror, the radiation flux detected in a localized Minkowski



7.1 Introduction 133

wave packet mode is divergent. We can regularize this infrared divergence by introducing

a low-frequency cutoff for the mirror, which means the mirror is transparent for the low-

frequency field modes (to some extent, this is physically equivalent to having the mirror

interact with the field for a finite period of time). After infrared regularization the particle

number in a localized wave packet mode is finite.

We further study the properties of the radiation flux and find that the radiation field is locally

squeezed. That is, the variance of the field quadrature observable at a particular angle is

lower than the quantum vacuum noise. This local squeezing effect has gone unnoticed up

to now, but in our circuit model it is a very straightforward result. We show that the

generation of local squeezing is closely related to cutting the correlations across the horizon,

somewhat reminiscent of destroying coherences by allowing an accelerated thermal bath

(or an accelerated detector) to equilibrate with the traced out Minkowski vacuum state

[Unr92]. This mechanism of transferring correlations to local squeezing may have important

implications for black hole firewalls [AMPS13, BP13], as we shall discuss. It is known

that two-mode squeezing between the outgoing left-moving and right-moving modes is also

generated by an accelerating mirror [OP03b]. This means that the correlations between

the quadratures of these field modes are below the quantum vacuum noise, and implies

the presence of bipartite entanglement [WPGP+12]. While the presence of entanglement

between left-moving and right-moving modes is obvious in our circuit model, we choose to

focus here on the properties of the left-moving modes alone. Henceforth, by ‘local squeezing’

we shall mean specifically the squeezing within the left-moving modes.

This chapter is organized as follows. Section 7.2 constructs a general circuit model for a

uniformly accelerated object with time independent interactions, and derives input-output

relations for a uniformly accelerated mirror. Section 7.3 calculates the radiation flux from

a uniformly accelerated mirror. Section 7.4 investigates local squeezing in the radiation

field. Section 7.5 discusses possible connections with black hole firewalls. The results in this

chapter have been published in [SHMR17b].
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7.2 Circuit model

7.2.1 Relations between Rindler modes and Unruh modes

In Chapter 4 we have introduced the relations between Rindler modes and Unruh modes.

These relations act as the foundation of our quantum circuit model. For simplicity, we focus

on a massless scalar field Φ̂ in (1 + 1)-dimensional Minkowski spacetime. There exists three

ways of quantizing the massless scalar field and the corresponding operators are known as

the Minkowski mode operators (âmk), Rindler mode operators (b̂Rmω, b̂
L
mω) and Unruh mode

operators (ĉmω, d̂mω). One can directly derive the Bogoliubov transformation between the

Minkowski modes and the Rindler modes to show the Unruh effect, or use the Unruh modes

as the stepping stone to link the Minkowski modes and Rindler modes. The utilization

of Unruh modes is proved to be very convenient because the relation between the Rindler

modes and Unruh modes is simply a two-mode squeezing transformation, as given by Eqs.

(4.5.44) and (4.5.45).

In terms of concepts in quantum optics, the transformation from Unruh modes to Rindler

modes, Eq. (4.5.45), can be represented by a two-mode squeezer, as shown in Fig. 7.1(a).

The two output modes of the two-mode squeezer are the right and left Rindler modes, which

are spatially separated and independent. For a uniformly accelerated object in the right

Rindler wedge, it only interacts with the right Rindler modes and leaves the left Rindler

modes unchanged. So the accelerated object can be represented by a unitary connected to

the right Rindler modes. After the interaction, Rindler modes are transformed back to the

Unruh modes, which is described by Eq. (4.5.44). This transformation can be represented

by a two-mode antisqueezer, as shown by Fig. 7.1(b).

7.2.2 General circuit for time independent interactions

How are the states of a quantum field affected by an object (such as a beamsplitter) that

is uniformly accelerated in the right Rindler wedge? This is the question of central interest

in this chapter. A straightforward way to study this problem is to work in the accelerated
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d̂mω

ĉmω

b̂Lmω

b̂Rmω

b̂Lmω

b̂Rmω

d̂mω

ĉmω

Ŝω Ŝ−1
ω

(a) (b)

Figure 7.1: (a) Two-mode squeezer: Unruh modes to Rindler modes. (b) Two-mode antisqueezer:
Rindler modes to Unruh modes.

frame in which the object is static. As we have mentioned before, the object only interacts

with Rindler modes in the right Rindler wedge and the Rindler modes in the left Rindler

wedge remain unaffected. The most general unitary interactions between the object and

the field not only couples the left-moving and right-moving Rindler modes, but also Rindler

modes with different frequencies. Together with Eqs. (4.5.44) and (4.5.45), we can construct

a quantum circuit model (or input-output formalism) for the uniformly accelerated object.

We start from the inertial frame in which Unruh modes are used instead of Minkowski modes.

This makes the model simpler although we still need to transform the Minkowski modes to

the Unruh modes and vice versa.

First, based on Eq. (4.5.45), the Unruh modes pass through a collection of two-mode squeez-

ers each of which couples a pair of Unruh modes (ĉmω, d̂mω) with frequency dependent squeez-

ing parameter rω. Second, the output right Rindler modes b̂Rmω interact with the object and

are transformed to b̂′Rmω which could be a function of other Rindler frequency modes b̂Rmω′ .

The left Rindler modes b̂Lmω remain unchanged. Finally, based on Eq. (4.5.44), the Rindler

modes pass through a collection of two-mode antisqueezers and are transformed to output

Unruh modes (ĉ′mω, d̂
′
mω). If we use an inertial detector to detect the radiation field from the

accelerated object, then the final step is to compute the response of the inertial detector,

which is most conveniently done by transforming the Unruh modes (ĉ′mω, d̂
′
mω) to Minkowski

modes.

We focus on time independent interactions in this chapter and discuss time dependent in-

teractions in the next chapter. If the interaction is time independent, the unitary does not
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couple Rindler modes with different frequencies, so that the input-output formalism is sub-

stantially simplified. Since modes with different frequencies are independent, we can draw a

quantum circuit for each single frequency. The quantum circuit is shown in Fig. 7.2. A pair

of left-moving Unruh modes (ĉ1ω, d̂1ω) and a pair of right-moving Unruh modes (ĉ2ω, d̂2ω)

pass through the two-mode squeezers Sω, from which emerge left-moving Rindler modes

(b̂R1ω, b̂
L
1ω) and right-moving Rindler modes (b̂R2ω, b̂

L
2ω), respectively. b̂R1ω and b̂R2ω interact with

each other when passing through the object (symbolized by the black dot in Fig. 7.2) and

emerge as b̂′R1ω and b̂′R2ω,

b̂′Rmω = Û †ω b̂
R
mωÛω (7.2.1)

where the operator Ûω represents a general unitary transformation which includes nonlinear

interactions. For example, Ûω = exp{iχω(b̂R†1ω b̂
R
1ω)2} describes the nonlinear Kerr effect. After

that, the Rindler modes are combined by two-mode antisqueezers S−1
ω , ending up with Unruh

modes again.

Figure 7.2: Unruh modes pass through the squeezers and then become Rindler modes. The Rindler
modes in the right Rindler wedge interact with the object (Uω) and then combine with the Rindler modes
from the left Rindler wedge in the antisqueezers, going back to Unruh modes again.
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If we restrict the unitary functions of up to quadratic power of the mode operators then a

linear input-output relation can be written. In particular,

b̂′Rmω = αm1
ωω b̂

R
1ω + βm1

ωω b̂
R†
1ω + αm2

ωω b̂
R
2ω + βm2

ωω b̂
R†
2ω . (7.2.2)

Note that this describes not only linear scattering but also active linear processes such as

squeezing (represented by the dagger terms). For computational purposes, we introduce

operator vectors ĉω, d̂ω, b̂Rω and b̂Lω , which are defined as

ĉω =

(
ĉω
ĉ†ω

)
, d̂ω =

(
d̂ω
d̂†ω

)
, b̂Rω =

(
b̂Rω
b̂R†ω

)
, b̂Lω =

(
b̂Lω
b̂L†ω

)
.

Then Eqs. (4.5.44) and (4.5.45) can be rewritten as(
ĉmω
d̂mω

)
= S−1

ω

(
b̂Rmω
b̂Lmω

)
,

(
b̂Rmω
b̂Lmω

)
= Sω

(
ĉmω
d̂mω

)
, (7.2.3)

with

Sω ≡
(
Icosh(rω)

σxsinh(rω)

σxsinh(rω)

Icosh(rω)

)
(7.2.4)

where I =
(

1
0

0
1

)
is the identity matrix and σx =

(
0
1

1
0

)
is one of the Pauli matrices. The

transformation between the input Unruh modes (ĉ1ω, d̂1ω, ĉ2ω, d̂2ω)T and the output Unruh

modes (ĉ′1ωd̂
′
1ω, ĉ

′
2ω, d̂

′
2ω)T can be represented as

ĉ′1ω

d̂′1ω

ĉ′2ω

d̂′2ω

 = S−1
ω UωSω


ĉ1ω

d̂1ω

ĉ2ω

d̂2ω

 . (7.2.5)

Sω characterizes the transformation from Unruh modes to Rindler modes

Sω =

(
Sω
0

0

Sω

)
(7.2.6)

and Uω characterizes the action of the object

Uω =


U11
ω 0 U12

ω 0

0 I 0 0

U21
ω 0 U22

ω 0

0 0 0 I

 (7.2.7)
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where

Umn
ω =

(
αmnωω
βmn∗ωω

βmnωω
αmn∗ωω

)
. (7.2.8)

We want to emphasize that the general formalism developed here is valid for a wide class

of quantum optical devices (objects), such as beamsplitters, single-mode squeezers, two-

mode squeezers and cavities. In the next chapter, we will show that it generalizes to devices

with time-dependent parameters, e.g., beamsplitters with time-dependent transmission coef-

ficients. In this chapter, we mainly apply the formalism to the simplest case, a beamsplitter.

7.2.3 Circuit model for a uniformly accelerated mirror

The perfect moving mirror problem has been extensively studied for several decades. A

perfect moving mirror provides a clear boundary for a quantum field, which vanishes along

the mirror’s trajectory. The standard method for calculating the radiation from a perfect

moving mirror is to find the Bogoliubov transformation between the input and output modes

by taking into account the Dirichlet boundary condition [BD82]. However a realistic mirror

is not perfect but usually partially transparent, for which the Dirichlet boundary condition

is not satisfied. In this chapter, we are interested in a uniformly accelerated imperfect mirror

whose motion looks nontrivial for an inertial observer. Rather than use the standard method

(which is still valid if appropriate boundary conditions are considered), we shall employ the

circuit model developed in the previous subsection, leading to a much simpler way to attack

this problem.

The idea is to work in the accelerated frame, in which the mirror is static and can be

considered as a beamsplitter. Without loss of generality, we assume that the mirror uniformly

accelerates in the right Rindler wedge. The beamsplitter transforms the right Rindler modes

as

b̂′R1ω = cos θω b̂
R
1ω − ieiφωsin θω b̂

R
2ω,

b̂′R2ω = cos θω b̂
R
2ω − ie−iφωsin θω b̂

R
1ω, (7.2.9)
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where θω an φω are frequency dependent. The relative phase shift ie±iφω ensures that the

transformation is unitary. The intensity reflection and transmission coefficients of the beam-

splitter are

Rω = sin2 θω, Tω = cos2 θω.

By comparing Eqs. (7.2.9) and (7.2.2) we have

α11
ωω = α22

ωω = cos θω,

α12
ωω = −α21∗

ωω = −ieiφω sin θω,

and all βmnωω are zero. We can therefore express the action of the beamsplitter as

Uω =


Icos θω 0 Zsin θω 0

0 I 0 0

−Z∗sin θω 0 Icos θω 0

0 0 0 I

 , (7.2.10)

where I is the 2× 2 identity matrix and

Z =

(
−ieiφω

0

0

ie−iφω

)
. (7.2.11)

The explicit expressions for the transformation Eq. (7.2.5) can be calculated straightfor-

wardly. We find

ĉ′1ω = ĉ1ω[cosh2(rω)cos θω − sinh2(rω)]− σxd̂1ωcosh(rω)sinh(rω)(1− cos θω)

+Zĉ2ωcosh2(rω)sin θω + Zσxd̂2ωcosh(rω)sinh(rω)sin θω.

= [cosh2(rω)cos θω − sinh2(rω)]

(
ĉ1ω

ĉ†1ω

)
− cosh(rω)sinh(rω)(1− cos θω)

(
d̂†1ω
d̂1ω

)
+cosh2(rω)sin θω

(
−ieiφω ĉ2ω

ie−iφω ĉ†2ω

)
+ cosh(rω)sinh(rω)sin θω

(−ieiφω d̂†2ω
ie−iφω d̂2ω

)
, (7.2.12)

d̂′1ω = σxĉ1ωcosh(rω)sinh(rω)(1− cos θω) + d̂1ω[cosh2(rω)− sinh2(rω)cos θω]

−σxZĉ2ωcosh(rω)sinh(rω)sin θω − σxZσxd̂2ωsinh2(rω)sin θω

= cosh(rω)sinh(rω)(1− cos θω)

(
ĉ†1ω
ĉ1ω

)
+ [cosh2(rω)− sinh2(rω)cos θω]

(
d̂1ω

d̂†1ω

)
−cosh(rω)sinh(rω)sin θω

(
ie−iφω ĉ†2ω
−ieiφω ĉ2ω

)
− sinh2(rω)sin θω

(
ie−iφω d̂2ω

−ieiφω d̂†2ω

)
, (7.2.13)
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ĉ′2ω = −Z∗ĉ1ωcosh2(rω)sin θω − Z∗σxd̂1ωcosh(rω)sinh(rω)sin θω

+ĉ2ω[cosh2(rω)cos θω − sinh2(rω)]− σxd̂2ωcosh(rω)sinh(rω)(1− cos θω)

= cosh2(rω)sin θω

(
−ie−iφω ĉ1ω

ieiφω ĉ†1ω

)
+ cosh(rω)sinh(rω)sin θω

(−ie−iφω d̂†1ω
ieiφω d̂1ω

)
+[cosh2(rω)cos θω − sinh2(rω)]

(
ĉ2ω

ĉ†2ω

)
− cosh(rω)sinh(rω)(1− cos θω)

(
d̂†2ω
d̂2ω

)
,

(7.2.14)

d̂′2ω = −σxZ∗ĉ1ωcosh(rω)sinh(rω)sin θω + σxZ
∗σxd̂1ωsinh2(rω)sin θω

+σxĉ2ωcosh(rω)sinh(rω)(1− cos θω) + d̂2ω[cosh2(rω)− sinh2(rω)cos θω]

= −cosh(rω)sinh(rω)sin θω

(
ieiφω ĉ†1ω
−ie−iφω ĉ1ω

)
− sinh2(rω)sin θω

(
ieiφω d̂1ω

−ie−iφω d̂†1ω

)
+cosh(rω)sinh(rω)(1− cos θω)

(
ĉ†2ω
ĉ2ω

)
+ [cosh2(rω)− sinh2(rω)cos θω]

(
d̂2ω

d̂†2ω

)
.

(7.2.15)

With these transformations, it is easy to calculate the expectation value of the particle

number of the output mode ĉ′1ω,

〈0M |ĉ′†1ω ĉ′1ω′|0M〉 = 2(1− cos θω)cosh2(rω)sinh2(rω)δ(ω − ω′)

= 2(1− cos θω)
e2πω/a

(e2πω/a − 1)2
δ(ω − ω′)

≡ n(ω)δ(ω − ω′). (7.2.16)

The corresponding expectation values for the other three outputs is the same as Eq. (7.2.16).

Hence the number of Unruh particles in every output is generally not zero. The particle-

number distribution is

n(ω) = 2(1− cos θω)
e2πω/a

(e2πω/a − 1)2
, (7.2.17)

depending on the transmission coefficient of the uniformly accelerated mirror. Note that

n(ω) = 0 only when θω = 0; in other words when the mirror is completely transparent to

the field mode with frequency ω. We also note that the distribution of the output Unruh

particles is not thermal.
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7.3 Radiation from an eternally accelerated mirror

Figure 7.3: A uniformly accelerated mirror on the right Rindler wedge. An inertial detector is placed
at an appropriate position to detect left-moving particles coming from the uniformly accelerated mirror.

7.3.1 Particle number flux

As an application of the quantum circuit model, we calculate the radiation flux from an

eternally accelerated mirror. As shown in Fig. 7.3, an inertial detector is placed at an

appropriate position to detect the left-moving particles radiated by the accelerated mirror.

In the previous section, we have shown that the accelerated mirror radiates Unruh particles.

However when considering the response of an inertial detector, it is more convenient to use

Minkowski modes. The transformation from Unruh modes to Minkowski modes is given

by Eq. (4.5.46). Since we only consider left-moving modes here, without introducing any

confusion, we omit the subscript “1”. In realistic quantum optics experiments a detector

normally detects localized wave packet modes. In order to take this into account we consider

Gaussian wave packet modes defined as

â(f) =

∫ ∞
0

dkf(k; k0, σ, V0)âk, (7.3.1)
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where

f(k; k0, σ, V0) =

(
1

2πσ2

)1/4

exp

{
− (k − k0)2

4σ2
− ikV0

}
(7.3.2)

with k0, σ and V0 the central frequency, bandwidth and central position, respectively. In the

narrow bandwidth limit (k0 � σ), the integration over k can be approximately calculated

to a very good accuracy.

When k0 � σ, the Gaussian wave packet f(k; k0, σ, V0) is significantly nonzero only for

positive k, so the range of integration of k can be extended to (−∞,∞) without introducing

large errors. Secondly, since f(k; k0, σ, V0) is well localized around k0, those values of Akω

and Bkω only near k0 are relevant. Writing [DRW13]

1√
k

(
k

a

)iω/a
≈ 1√

k0

e
i ω
k0

k
a ei

ω
a

[ln(
k0
a

)−1] (7.3.3)

and then expanding Akω and Bkω around k0 yields

Afω ≡
∫ ∞

0

dkf(k)Akω ≈ i

√
σ

πωk0

(
1

2π

)1/4√
2 sinh(πω/a)Γ(1− iω/a)ei

ω
a

ln(
k0
a

)e−ik0V0

× exp

{
− σ2(ω/a− k0V0)2

k2
0

}
, (7.3.4)

Bfω ≡
∫ ∞

0

dkf(k)Bkω ≈ −i
√

σ

πωk0

(
1

2π

)1/4√
2 sinh(πω/a)Γ(1 + iω/a)e−i

ω
a

ln(
k0
a

)e−ik0V0

× exp

{
− σ2(ω/a+ k0V0)2

k2
0

}
(7.3.5)

up to first order in k − k0. Using Eq. (7.2.16) and

|Γ(1− iω/a)|2 = |Γ(1 + iω/a)|2 =
πω/a

sinh(πω/a)
(7.3.6)
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the expectation value N(f) = 〈0M |â†(f)â(f)|0M〉 of the Gaussian mode particle number is

N(f) =

∫
dω

∫
dω′〈0M |(A∗fω ĉ′†ω +B∗fωd̂

′†
ω)(Afω′ ĉ

′
ω′ +Bfω′ d̂

′
ω′)|0M〉

= 2

∫
dω(|Afω|2 + |Bfω|2)(1− cos θω)

e2πω/a

(e2πω/a − 1)2
,

=

√
8

π

σ

k0

∫ ∞
0

dΩ

{
exp

[
− 2σ2(Ω− k0V0)2

k2
0

]
+ exp

[
− 2σ2(Ω + k0V0)2

k2
0

]}
×(1− cos θΩ)

e2πΩ

(e2πΩ − 1)2
, (7.3.7)

where Ω = ω/a is the dimensionless Rindler frequency.

Two special cases are of particular interest. Consider first that the mirror is completely

transparent for all modes, that is cos2 θω = 1. From Eq. (7.3.7), the particle number

vanishes, N(f) = 0. This is not surprising because a completely transparent mirror does

nothing to the Minkowski vacuum. The second case is that the mirror is perfect for all

modes, that is, cos2 θω = 0. When Ω → 0, (e2πΩ − 1)−2 ∼ Ω−2 and all other factors in the

integrand of Eq. (7.3.7) are finite. Therefore, the particle number N(f) is divergent.

This infrared divergence occurs because we naively assume that the mirror accelerates for

an infinitely long time, which seems physically unreasonable. In the framework of the self-

interaction model, the mirror is switched on and off so that one obtains finite particle flux

[OP01]. In our circuit model, we could also switch on and off the mirror. However instead we

shall use a simpler method of regularization. The idea is to directly introduce a low frequency

cutoff for the mirror, that is, the mirror is completely transparent for low-frequency field

modes. The mechanism for a physical mirror to reflect electromagnetic waves is that the

atoms consisting of the mirror absorb electromagnetic waves and then reemit them again.

If the wavelength of the electromagnetic wave is very long, the response time of the mirror

is very long. Hence if the mirror accelerates for a finite time, it cannot respond to Rindler

modes with characteristic oscillation period longer than the accelerating time.
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In this sense, introducing a low-frequency cutoff is equivalent to switching on and off the

mirror. In higher dimensional spacetime, e.g., (1+3)-dimensional spacetime, there is another

reason justifying a low-frequency cutoff. A physical mirror with finite size cannot reflect field

modes whose wavelengths are much larger than its size. This infrared divergence is not due to

the pathological character of a massless scalar field in (1+1)-dimensional spacetime [Col73];

it also appears in higher dimensional spacetime [FS99] if the mirror is accelerated for an

infinitely long time. If we assume that the reflectivity Rω of the mirror is a power law of ω
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Figure 7.4: Particle number versus central position of the Gaussian wave packet: k0/a = 20, ag = 10.
For larger bandwidth (narrower wave packet in time domain), the particle number distribution is narrower,
showing that particles are localized around the past event horizon.

as ω → 0 (Rω ∼ ωγ) then in order to obtain finite particle number we must have γ > 1. As

a concrete example, we choose

Rω = sin2 θω =
g2ω2

1 + g2ω2
, (7.3.8)

where g is a parameter characterizing the low-frequency cutoff. Fig. 7.4 shows the particle

number N(f) versus the central position of the Gaussian wave packet. We can see that

the particle-number distribution is symmetric with respect to V0 = 0. In addition, for larger

bandwidth (narrower wave packet in time domain), the distribution is more localized around
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Figure 7.5: Energy of the wave packets versus the central frequency: σ/a = 1.0, aV0 = 0, ag = 10. The
energy is almost constant in the high central frequency limit.

V0 = 0. These two facts indicate that the particle flux radiated by the uniformly accelerated

mirror is well localized around the past horizon V0 = 0. Since the mirror starts to accelerate

in the distant past, that means the mirror only radiates particles when it starts accelerating.

It radiates no particles when it is uniformly accelerating.

7.3.2 Total energy flux

Since we are considering a narrow bandwidth Gaussian wave packet mode with central

frequency k0, the energy of the field in this wave packet mode can be approximated as

k0N(f), which is finite. It is interesting to know how much energy was emitted by the

uniformly accelerated mirror. This can be calculated by integrating the energy in each wave

packet mode for all k0.

In the large k0 limit, we can derive an analytically approximate expression for the particle

number N(f). From Eq. (7.3.7), one expects that the term in the braces has two peaks

at k0V0 and −k0V0. If k0 is large then the peaks are far away from the origin. However,
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the factor e2πΩ

(e2πΩ−1)2 exponentially decays for large Ω so that it strongly suppresses one of

the Gaussian peaks. Therefore, the main contribution to the integration is from the low

frequency. We Taylor expand the term in the braces to second order,

exp

[
− 2σ2(Ω− k0V0)2

k2
0

]
+ exp

[
− 2σ2(Ω + k0V0)2

k2
0

]
≈ 2e−2σ2V 2

0 +
4σ2Ω2

k2
0

(4σ2V 2
0 − 1)e−2σ2V 2

0 .

In order to get an analytic expression, we introduce a sharp low frequency cutoff instead of

the smooth cutoff Eq. (7.3.8): Rω = 1 for Ω ≥ ε and zero for 0 < Ω < ε. Therefore we

have 1 − cos θΩ = 1 for Ω ≥ ε and zero for 0 < Ω < ε. The particle number N(f) can be

approximated as

N(f) ≈ 4

√
2

π

σ

k0

e−2σ2V 2
0

[ ∫ ∞
ε

dΩ
e2πΩ

(e2πΩ − 1)2
+

2σ2

k2
0

(4σ2V 2
0 − 1)

∫ ∞
ε

dΩ
Ω2e2πΩ

(e2πΩ − 1)2

]

≈
(

2

π

)3/2(
σ

k0

)
e−2σ2V 2

0

[
1

e2πε − 1
+

2σ2

k2
0

(4σ2V 2
0 − 1)

(
1

12
− ε2

2π

)]
. (7.3.9)

Comparison with direct numerical calculation shows that Eq. (7.3.9) is a very good ap-

proximation when ε is small. We can see that the particle number is dependent on the low

frequency cutoff ε. The first term of Eq. (7.3.9) is proportional to 1
e2πε−1

which is divergent

when ε → 0. Furthermore, in the high central frequency limit k0 → ∞, the leading order

term of N(f) is proportional to 1
k0

, yielding the relationship E(f) ≈ k0N(f) ∼ O(1) for the

energy of the wave packet.

A numerical result shown in Fig. 7.5 for smooth cutoff verifies the analytical result, namely,

the energy in a wave packet tends to be a constant in the large k0 limit. Therefore, adding

up the energy of all wave packets yields a divergent result. This ultraviolet divergence arises

as a consequence of the physically unrealistic assumption that the mirror is accelerated

eternally, so that it appears to any inertial observers when they cross the past horizon.

This ultraviolet divergence can be removed by smoothly switching on the mirror [OP01],

or by considering an accelerated mirror whose acceleration was slowly increased from zero.

For a switch-on timescale of ∆T , the particle number is suppressed for wave packets with

central frequency k0 >
1

∆T
while it remains the same for wave packets with central frequency

k0 <
1

∆T
. Therefore Eq. (7.3.7) is not applicable to wave packets with very high central
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frequency because it does not take into account physical initial conditions. In next chapter,

we are going to study interactions that are turned on and off, so that the energy divergence

problem can be resolved.

7.4 Squeezing from accelerated mirrors

The two-mode squeezing process is a well-known mechanism for generating particles from the

vacuum. Examples of two-mode squeezing include non-degenerate parametric amplification

[BR04] and the Unruh effect [Unr76]. In the Unruh effect only one of the modes is observed

locally. Hence, although the two output modes are entangled with each other, so that

the composite state is a pure state, the locally observed state appears thermal. Another

important mechanism is the single-mode squeezing process, for which the locally observed

state is squeezed and pure; degenerate parametric amplification is an example [BR04]. It is

possible that a particle generation process is the combination of the two, which we now show

is the case for the uniformly accelerated mirror. Using the quantum circuit model for the

uniformly accelerated mirror, it is very easy to show that the wave packet mode is locally

squeezed at some quadrature phase depending on the central frequency and central position

of the wave packet.

Using Eqs. (7.2.12)-(7.2.15), it is straightforward to calculate the expectation values of the

products of two Unruh operators in the Minkowski vacuum state.

〈0M |ĉ′mωd̂′mω′|0M〉 = 〈0M |d̂′mω ĉ′mω′|0M〉 = 〈0M |ĉ′†mωd̂
′†
mω′ |0M〉 = 〈0M |d̂′†mω ĉ

′†
mω′ |0M〉

= −(1− cos θω) cosh(rω) sinh(rω)

[
sinh2(rω) + cosh2(rω)

]
δ(ω − ω′),

(7.4.1)

〈0M |ĉ′1ωd̂′2ω′|0M〉 = 〈0M |d̂′2ω ĉ′1ω′ |0M〉 = 〈0M |ĉ′†1ωd̂
′†
2ω′|0M〉

∗ = 〈0M |d̂′†2ω ĉ
′†
1ω′ |0M〉

∗

= ieiϕω sin θω cosh(rω) sinh(rω)δ(ω − ω′), (7.4.2)
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〈0M |ĉ′2ωd̂′1ω′|0M〉 = 〈0M |d̂′1ω ĉ′2ω′ |0M〉 = 〈0M |ĉ′†2ωd̂
′†
1ω′|0M〉

∗ = 〈0M |d̂′†1ω ĉ
′†
2ω′ |0M〉

∗

= −ie−iϕω sin θω cosh(rω) sinh(rω)δ(ω − ω′), (7.4.3)

with others zero and here m = 1, 2. We can see that the left-moving Unruh c′ modes and d′

modes are correlated. This is consistent with the pair production of Unruh quanta by linear

scattering of Rindler quanta discussed in [MP96]. Furthermore, the left-moving Unruh modes

are also correlated to the right-moving Unruh modes, as shown by Eqs. (7.4.2) and (7.4.3).

From the perspective of an inertial observer, however, the Unruh modes highly oscillate

when close to the horizon, so it is not clear what kind of physical detector can respond

to the Unruh quanta and how to witness the correlations between the Unruh modes. We

thus transform the Unruh modes to localized Minkowski modes to take into account the

response of an inertial detector. While, according to Eqs. (7.4.2) and (7.4.3), it is expected

that the left-moving and right-moving Minkowski modes are correlated, we mainly focus on

left-moving Minkowski modes here.

7.4.1 Narrow bandwidth detector mode

We first consider left-moving and narrow bandwidth (k0 � σ) Gaussian wave packet modes.

using Eqs. (4.5.46), (7.3.1), (7.3.4), (7.3.5) and (7.4.1), we have

〈0M |â(f)â(f)|0M〉 =

∫
dk

∫
dk′f(k)f(k′)

∫
dω

∫
dω′
[
AkωBk′ω′〈0M |ĉ′ωd̂′ω′ |0M〉

+BkωAk′ω′〈0M |d̂′ω ĉ′ω′ |0M〉
]

= −
√

8

π

σ

k0

e−2ik0V0

∫ ∞
0

dΩ exp

[
− σ2(Ω− k0V0)2

k2
0

]
× exp

[
− σ2(Ω + k0V0)2

k2
0

]
(1− cos θΩ)eπΩ e2πΩ + 1

(e2πΩ − 1)2
. (7.4.4)

The quadrature observable of the localized wave packet mode â(f) is defined as

X̂(φ) ≡ â(f)e−iφ + â†(f)eiφ, (7.4.5)
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where φ is the quadrature phase. From Eqs. (7.3.7) and (7.4.4), we find that for a narrow

bandwidth Gaussian wave packet the variance is

(
∆X(φ)

)2

= 1 + 2〈0M |â†(f)â(f)|0M〉+ 2 Re

[
〈0M |â(f)â(f)|0M〉e−2iφ

]
= 1 + 4

√
2

π

σ

k0

∫ ∞
0

dΩ

{
exp

[
− 2σ2(Ω− k0V0)2

k2
0

]
+ exp

[
− 2σ2(Ω + k0V0)2

k2
0

]}
×(1− cos θΩ)

e2πΩ

(e2πΩ − 1)2
− 4

√
2

π

σ

k0

cos(2φ+ 2k0V0)

∫ ∞
0

dΩ exp

[
− σ2(Ω− k0V0)2

k2
0

]
× exp

[
− σ2(Ω + k0V0)2

k2
0

]
(1− cos θΩ)eπΩ e2πΩ + 1

(e2πΩ − 1)2
, (7.4.6)

where we have used the fact that in the Minkowski vacuum state, 〈0M |X̂(φ)|0M〉 = 0. The

variance of the wave packet mode could be smaller than one if the third term of Eq. (7.4.6)

is larger than the second term. In order to show that squeezing is possible, we consider a

Gaussian wave packet centered at V0 = 0. Eq. (7.4.6) considerably simplifies, yielding

(
∆Xmin

)2
= 1− 4

√
2

π

σ

k0

∫ ∞
0

dΩ exp

(
− 2σ2Ω2

k2
0

)
× (1− cos θΩ)

eπΩ

(eπΩ + 1)2
< 1 (7.4.7)

for the minimum of
(
∆X(φ)

)2
, which is at φ = 0.

The variance of the quadrature beats the quantum shot noise, showing that the Gaussian

wave packet mode is squeezed. When the center of the Gaussian wave packet is away from the

past horizon V0 = 0, the mode is squeezed at a different quadrature phase angle. According

to Eq. (7.4.6), the minimum of the variance is reached when φs + k0V0 = 0 is satisfied, that

is

φs = −k0V0. (7.4.8)

The squeezing phase angle φs depends on both the central frequency and central position

of the Gaussian wave packet. Other than the rotation of the squeezing phase angle, the

squeezing amplitude decreases when the center of the wave packet is away from the past

horizon. Fig. 7.6 shows the minimum variance of various wave packet modes (different

central position and bandwidth), where the condition (7.4.8) has been satisfied.
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Figure 7.6: Minimum variance versus central position of the Gaussian wave packet: k0/a = 20, ag = 10.
Maximum squeezing is achieved when the wave packet centres on the past horizon V0 = 0. The squeezing is
stronger for larger bandwidth wave packets.

7.4.2 Broad bandwidth detector mode

From Fig. 7.6 we see that the squeezing is stronger for a larger bandwidth Gaussian wave

packet, which implies that different single-frequency Minkowski modes are also correlated.

This can be verified if we replace f(k) in Eq. (7.4.4) by a Dirac delta function δ(k − k0).

In order to show that significant squeezing can be achieved, we consider a broad bandwidth

wave packet mode. We introduce a specific example of a broad bandwidth localized detector

mode and calculate its expectation of particle number and variance. The broad bandwidth

wave packet is defined as

g(k; k0, σ, V0) = N
√
k exp

{
− (k − k0)2

4σ2
− ikV0

}
(7.4.9)

where
√
k is introduced to kill the low frequency tail. N is the normalization factor

N =

{
σ2e−

k2
0

2σ2 +

√
π

2
k0σ

[
1 + erf

(
k0√
2σ

)]}−1/2

, (7.4.10)

where erf(z) is the Error function. When k0 � σ, g(k) reduces to the usual Gaussian wave

packet f(k). When k0 . σ, g(k) is no longer a Gaussian wave packet and generally k0 does
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not play the role as the central frequency of the wave packet. According to Eqs. (4.5.32)

and (4.5.37), we find∫ ∞
0

dk g(k)Akω =
iN
√
a
√

2 sinhπΩ

2π
√

Ω
Γ(1− iΩ)

(
2σ

a

)iΩ
e−

k2
0

4σ2 IA(Ω), (7.4.11)∫ ∞
0

dk g(k)Bkω = −iN
√
a
√

2 sinhπΩ

2π
√

Ω
Γ(1 + iΩ)

(
2σ

a

)−iΩ
e−

k2
0

4σ2 IB(Ω), (7.4.12)

where IA(Ω) and IB(Ω) are

IA ≡ 1

a

(
k0 − 2iσ2V0

)
Γ

(
1 +

iΩ

2

)
1F1

(
1 +

iΩ

2
,
3

2
,
(k0 − 2iσ2V0)2

4σ2

)
+
σ

a
Γ

(
1

2
+
iΩ

2

)
1F1

(
1

2
+
iΩ

2
,
1

2
,
(k0 − 2iσ2V0)2

4σ2

)
,

IB ≡ 1

a

(
k0 − 2iσ2V0

)
Γ

(
1− iΩ

2

)
1F1

(
1− iΩ

2
,
3

2
,
(k0 − 2iσ2V0)2

4σ2

)
+
σ

a
Γ

(
1

2
− iΩ

2

)
1F1

(
1

2
− iΩ

2
,
1

2
,
(k0 − 2iσ2V0)2

4σ2

)
,

with 1F1(b, c, z) the generalized Hypergeometric function [NIS]. The particle number in this

localized wave packet detector mode is

N(g) =
(aN )2

π
e−

k2
0

2σ2

∫
dΩ(|IA|2 + |IB|2)(1− cos θΩ)

e2πΩ

(e2πΩ − 1)2
(7.4.13)

and

〈0M |â(g)â(g)|0M〉 = −(aN )2

π
e−

k2
0

2σ2

∫
dΩ IAIB(1− cos θΩ)eπΩ e2πΩ + 1

(e2πΩ − 1)2
. (7.4.14)

Therefore the variance of the wave packet is(
∆X(φ)

)2
= 1 + 2N(g) + 2 Re

[
〈0M |â(g)â(g)|0M〉e−2iφ

]
= 1 +

2(aN )2

π
e−

k2
0

2σ2

∫
dΩ (1− cos θΩ)

e2πΩ

(e2πΩ − 1)2

[
|IA|2 + |IB|2

−2 cosh(πΩ) Re

(
IAIBe−2iφ

)]
. (7.4.15)

Fig. 7.7 shows the minimum variance of the broadband wave packet modes centred on the

past horizon. About 14% squeezing can be attained as we increase the bandwidth. For a

very large bandwidth wave packet mode (such as a broad bandwidth top-hat mode), we find

that the minimum variance approaches but never exceeds 50%. We also note that when

cos(2φ+ 2k0V0) = −1, the variance is maximal and larger than unity.
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Figure 7.7: Minimum variance of broad bandwidth wave packet modes (Eq. (7.4.9)) centred on the
past horizon: k0/a = 20, ag = 10. Stronger squeezing is achieved for larger bandwidth wave packet mode.

7.4.3 Ratio of single-mode squeezing

Both a single-mode squeezed state and one mode of a two-mode squeezed state contain

particles. However it is possible for a single-mode squeezed state to be pure (and hence

separable) whilst one mode of a two-mode squeezed state is mixed due to its entanglement

with the other mode. Thus (given the same particle number) the presence of single-mode

squeezing indicates a greater level of purity and separability from other modes than would

be the case if there were only two mode squeezing. Given this relationship it is interesting

to ask what proportion of the particle number in the detected mode is due to single-mode

squeezing and how much is due to to two-mode squeezing. The contribution by pure single-

mode squeezing to the particle number can be estimated as

Nps =
1

2

(
Vmin +

1

Vmin
− 2

)
(7.4.16)

where Vmin =
(
∆Xmin

)2
is the minimum variance. The ratio

η =
Nps

N
(7.4.17)
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characterizes how important the single-mode squeezing is as compare to correlations with

other field modes. Here N is the total particle number of the detected mode. For a pure

single-mode squeezed state one can verify that η = 1. Fig. 7.8 shows the portion of particle

number from single-mode squeezing is small (up to ∼ 3%) but not negligible. Note that for

a very large bandwidth top-hat detection mode, η can climb as high as 7%.
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Figure 7.8: Portion of particle number from single-mode squeezing for broad bandwidth wave packet
modes (Eq. (7.4.9)) centering on the past horizon: k0/a = 20, ag = 10.

7.4.4 Origin of single-mode squeezing

According to the quantum circuit model, it is easy to understand the origin of the local

squeezing. In Fig. 7.2, after passing through the mirror the left-moving Rindler mode b̂′Rω in

the right Rindler wedge is in thermal state, as well as the left-moving Rindler mode b̂Lω in

the L wedge. The entanglement between b̂′Rω and b̂Lω depends on the transmission coefficient

of the mirror. If the mirror is completely transparent, they are perfectly entangled; while if

the mirror is perfect, the entanglement is completely severed. The Rindler modes b̂′Rω and b̂Lω

further pass through a two-mode antisqueezer S−1
ω , ending up with two Unruh modes ĉ′ω and

d̂′ω, which are also entangled. The amount of entanglement between ĉ′ω and d̂′ω depends on
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the amount of entanglement between b̂′Rω and b̂Lω . If b̂′Rω and b̂Lω are perfectly entangled, there

is no entanglement between ĉ′ω and d̂′ω; otherwise, ĉ′ω and d̂′ω are partially entangled. From

Eq. (4.5.46), the Minkowski mode âk is a linear combination of the Unruh modes ĉ′ω and d̂′ω.

It is a general result in quantum optics that a linear combination of entangled modes would

produce single-mode squeezing, e.g., a 50 : 50 beamsplitter transforms a two-mode squeezed

state into single-mode squeezed sate in each output mode. Therefore, the Minkowski mode

âk is squeezed.

It is clear that the local squeezing is closely related to the correlations across the horizon.

If the mirror is transparent (cos θΩ = 1), the correlations across the horizon are preserved

and there is no local squeezing. When one uses a partially transmitting mirror (cos θΩ < 1)

to sever the correlations across the horizon, local squeezing is inevitably produced according

to Eq. (7.4.6). Furthermore, there may be other ways to sever the correlations across the

horizon, for example by using two uniformly accelerated Unruh-DeWitt detectors in left and

right Rindler wedges [MS06, SMM15].

7.5 Squeezed Firewall ?

Recently three assertions about black hole evaporation were shown to be mutually incon-

sistent [AMPS13]: (i) Hawking radiation is a unitary process, (ii) low energy effective field

theory is valid near the event horizon, and (iii) an infalling observer encounters nothing

unusual at the horizon. One of the proposed solutions to this paradox is that the infalling

observer burns up at the horizon. A black hole firewall forms at the horizon for an old black

hole and the correlations across the horizon are severed.

Recently this firewall state was modeled for a Rindler horizon in Minkowski spacetime by

severing correlations across the horizon. The correlations across the horizon are severed by

requiring the Wightman function to be zero, disregarding the underlying dynamics. Fur-

thermore, a low-frequency cutoff in the Wightman function was introduced, implying that

correlations between high-frequency modes are cut whilst correlations between low-frequency
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modes are preserved. The response of an Unruh-DeWitt detector was seen to be finite

[Lou14], leading to the author’s conclusion of a finite firewall.

We propose that a uniformly accelerated mirror is a possible mechanism for generating a

Rindler firewall. From the quantum circuit model we can see that the accelerated mirror acts

as a pair of scissors cutting the correlations across the past horizon. If the mirror is perfect,

the correlations across the horizon are completely severed and the particle flux along the

horizon is divergent. This is a hot firewall, destroying everything that crosses it. However,

if the mirror is not perfect but transparent for low-frequency modes, the high-frequency

correlations are cut while low-frequency correlations are preserved, and the particle flux in a

localized wave packet mode along the horizon is finite, similar to the warm firewall proposed

by Louko [Lou14]. In Sec. 7.4, we showed that the radiation field from the accelerated mirror

is locally squeezed, which implies that the Rindler firewall is locally squeezed. It seems that

local squeezing is a general property of a Rindler firewall because in order to form a firewall

one has to cut the correlations across the horizon, which inevitably generates local squeezing.

Is a black hole firewall locally squeezed? Black hole firewalls are introduced in order to

preserve the unitarity of black hole evolution [AMPS13, BP13]. For an old black hole, the

late time Hawking radiation should be correlated with early time Hawking radiation but not

with the degrees of freedom inside the event horizon. The correlations across the horizon are

severed during the evaporation. According to the arguments for the Rindler firewall, it is

reasonable to conjecture that the black hole firewalls are also locally squeezed. In addition,

if the local squeezing is strong enough, black hole firewalls do not have to be entangled with

other unknown systems.

7.6 Summary

We have developed a quantum circuit formalism to describe unitary interactions between

a uniformly accelerated object and the quantum fields. The key point is to work in the

accelerated frame where the object is stationary and couples only to Rindler modes in one
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of the Rindler wedges. If the initial state of the quantum fields is given in the inertial

frame and the response of inertial detectors is considered, we have to transform modes from

the inertial frame to the accelerated frame, which turns out to be a two-mode squeezing

operation if we consider Unruh modes instead of Minkowski modes in the inertial frame. We

thus can construct a quantum circuit using two-mode squeezers and devices depending on

the interaction of the object with the Rindler modes.

As an example, we studied a uniformly accelerated mirror. In the accelerated frame, the

mirror is stationary and is simply a beamsplitter with frequency dependent reflection co-

efficient. The input-output relation of a beamsplitter is well known and is widely used in

quantum optics [BR04]. The quantum circuit for the uniformly accelerated mirror is shown

in Fig. 7.2. As an application, we calculated the radiation flux from an eternally accelerat-

ing mirror in the Minkowski vacuum. We found that the particles are localized around the

horizon and the particle number in a localized wave packet mode is divergent if no low fre-

quency regularization is introduced. Our results are consistent with earlier results obtained

using different methods [FS99, OP01]. The infrared divergence occurs due to the ideal as-

sumption that the mirror accelerates for an infinitely long time. We emphasize that the

infrared divergence is not due to the particular pathological character of a massless scalar

field in (1 + 1)-dimensional spacetime [Col73] because it also appears in higher dimensional

spacetime [FS99]. We regularize the radiation flux by introducing a low-frequency cutoff

for the mirror, that is, the mirror is completely transparent for low frequency field modes.

Physically, this is equivalent to having the mirror interact with the field for a finite time.

After regularizing the infrared divergence, the particle number of a localized wave packet

mode is finite. However the energy of the wave packet mode does not decay as the central

frequency increases, in turn implying that the total energy of the radiation flux is infinite.

This ultraviolet divergence arises because of the naive assumption that the mirror is accel-

erated eternally so that it appears to inertial observers when they cross the past horizon.

If the mirror slowly increased its acceleration or was switched on smoothly, the number of

high frequency particles would be suppressed, removing this ultraviolet divergence. Using

perturbation theory it is straightforward to show that the energy flux is finite if the mirror
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is smoothly turned on and off [OP01].

A further application of our circuit model would be in the study of a uniformly accelerated

cavity. Previous work on this topic [AM03, DFR11, BFL12] studied how the quantum states

stored inside a perfect cavity are affected by uniform acceleration. While Unruh-Davies

radiation [Unr76, Dav75] cannot affect the field modes inside a perfect cavity, it can affect

field modes inside an imperfect one. Because the circuit model is designed to study an

imperfect uniformly accelerated mirror, we believe that by generalizing the model from one

mirror to two mirrors, one can study the interaction between Unruh-Davies radiation and

the field modes inside an imperfect cavity.

One limitation of our circuit model is that it is only suitable for studying hyperbolic tra-

jectories in Minkowski spacetime; more general trajectories are not straightforwardly incor-

porated. One might expect this to severely limit the utility of the circuit model because

physically it is not possible to accelerate a mirror for an infinitely long time. However our

use of the transparency term shows that we can turn on and off the mirror so that it is trans-

parent in the distant past and distant future. This could be used to model a mirror that

initially undergoes inertial motion, accelerates for a finite period of time, and then returns

to inertial motion. We will leave this topic for future work.

We find that the radiation flux from the uniformly accelerated mirror is locally squeezed. To

the best of our knowledge, the contribution of local squeezing to the generation of particles

by a moving mirror has not been discussed previously. The squeezing angle depends on the

central frequency and position of the localized detector mode function. Maximum squeezing

occurs when the detector mode function centers on the horizon. It is clear from the circuit

model that the local squeezing is related to the correlations across the horizon. When the

mirror is completely transparent, the correlations across the horizon are preserved and there

is no squeezing. When the mirror completely reflects a Rindler mode with a particular

frequency, it destroys the correlation across the horizon and generates some squeezing in the

Minkowski mode. It therefore provides a mechanism for transferring the correlations across
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the horizon to the squeezing of the radiation flux on the horizon.

Recently, Louko [Lou14] proposed a Rindler firewall state by severing the correlations across

the horizon by hand and claimed that the response of a particle detector is finite. It was sub-

sequently shown that entanglement survives this Rindler firewall [MML15]. Our calculation

suggests that one way of generating a Rindler firewall is to uniformly accelerate a mirror.

We conjecture that if the firewall is formed in an old black hole, the radiation flux at the

horizon could be locally squeezed as the price of severing the entanglement across the event

horizon. In addition, the black hole firewall may not need to be highly entangled with other

systems [Sus16] because the local squeezing may be enough to account for the particle flux

on the horizon.



8
Quantum Circuit Model for Non-inertial

Objects: Accelerated Squeezer

8.1 Introduction

In this chapter, we continue to discuss the quantum circuit model for uniformly accelerated

objects. In Chapter 7, we have introduced a general formalism to study uniformly accelerated

objects, but we have mainly focused on a special case where the interaction does not mix

different frequency Rindler modes. This means we can draw a quantum circuit for every

single frequency mode, as shown by Fig. 7.2. The decoupling of different frequency modes is

the consequence of time independent interactions: no turning on and turning off. Although

we can obtain finite particle number and energy in a localized wave packet detector mode

by introducing a low frequency cutoff for an accelerated mirror, the total energy of the

159
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radiation from the accelerated mirror is divergent. The energy divergence is due to the

unphysical initial conditions imposed on the uniformly accelerated mirror and can be resolved

by introducing turning on and off the interactions [OP01].

We are now going to generalize the circuit for time independent interactions to a circuit

for time dependent interactions. Generally, time dependent interactions will create particles

because they inevitably mix in negative frequency modes, e.g., due to suddenly changing

the reflectivity of a static mirror [BL15]. However, if the switching process is smooth and

slow enough, the particle creation effect can be neglected. In this chapter, we assume that

the turning on and off of the interactions is realized by making the objects only act on a

localized wave packet mode. The wave packet has a finite bandwidth and localized in time.

We find that by making the accelerated objects act on a localized wave packet mode, the

energy divergence problem can be resolved.

Using this circuit model for time dependent interactions, we study a uniformly accelerated

single-mode squeezer. Suppose that the initial state of the field is the Minkowski vacuum. A

uniformly accelerated observer would see thermal radiation with Unruh temperature TU =

a/2π, the well known Unruh effect [Unr76]. A uniformly accelerated single-mode squeezer

in the right Rindler wedge thus squeezes the thermal state and the output is a squeezed

thermal state as observed by a uniformly accelerated observer. Unexpectedly, we find that

the output state as viewed by an inertial observer is not a pure state. We thus conclude that

the whole process can not be described by a unitary operator. Because of the equivalence

principle there is a strong relationship between gravity and acceleration [MTW73], so our

finding may have important implications for the black hole information paradox.

In this chapter, we first discuss the circuit for a uniformly accelerated object that acts on

a narrow bandwidth wave packet mode in Section 8.2. We then generalize this to a circuit

for any localized wave packet mode in Section 8.3. Finally, we study the output state from

a uniformly accelerated single-mode squeezer as viewed by inertial observers using homodye

detection in Section 8.4. The relevant manuscript is in preparation.
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8.2 Accelerated objects acting on narrow bandwidth

modes

8.2.1 Circuit for a single narrow bandwidth mode

In quantization of fields in free space, continuum frequency modes are usually used, which

are normalized to a delta function. As we have discussed in Section 3.1.1, it is possible to

introduce a set of discrete, complete and orthonormal wave packet modes, with which the

field operator can be expanded. The localized wave packet operator is defined by Eq. (3.1.4)

and the inverse relation is given by Eq. (3.1.5).

Now consider a wave packet mode in the right Rindler wedge, the localized Rindler operator

is defined as

b̂Rmg =

∫
dω g(ω)b̂Rmω, (8.2.1)

where g(ω) is a localized wave packet and m = 1, 2, represent left and right moving modes

respectively. In this section we assume that g(ω) is a narrow bandwidth wave packet with

central frequency ω0. Using the relation between the Rindler operators and Unruh operators

(4.5.45),

b̂Rmg =

∫
dω g(ω) cosh(rω)ĉmω +

∫
dω g(ω) sinh(rω)d̂†mω

≈ cosh(r0)

∫
dω g(ω)ĉmω + sinh(r0)

∫
dω g(ω)d̂†mω

≈ cosh(r0)ĉmg + sinh(r0)d̂†mg∗ , (8.2.2)

where tanh(r0) = e−πω0/a and we have defined localized Unruh operators

ĉmg ≡
∫

dω g(ω)ĉmω, d̂mg∗ ≡
∫

dω g∗(ω)d̂mω. (8.2.3)

The corresponding localized Rindler operator in the left Rindler wedge is

b̂Lmg∗ = cosh(r0)d̂mg∗ + sinh(r0)ĉ†mg. (8.2.4)
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ĉ′2g

b̂R1g

b̂L1g∗

b̂R2g

b̂L2g∗

b̂R′2gb̂R′1g

Figure 8.1: Quantum circuit for a narrow bandwidth wave packet mode.

The inverse of Eqs. (8.2.2) and (8.2.4) can be easily obtained,

ĉmg = cosh(r0)b̂Rmg − sinh(r0)b̂L†mg∗ ,

d̂mg∗ = cosh(r0)b̂Lmg∗ − sinh(r0)b̂R†mg. (8.2.5)

If the accelerated object acts only on a narrow bandwidth wave packet mode, that is, the

unitary operator Ûg representing the interaction is constructed from b̂R1g and b̂R2g, then we

can draw a circuit for the single narrow bandwidth mode, as shown in Fig. 8.1. From Eqs.

(8.2.2), (8.2.4) and (8.2.5), we can derive the input-output relation for the localized wave

packet Unruh modes,

ĉ′mg = ĉmg + cosh(r0)
(
Û †g b̂

R
mgÛg − b̂Rmg

)
,

d̂′mg∗ = d̂mg∗ − sinh(r0)
(
Û †g b̂

R†
mgÛg − b̂R†mg

)
. (8.2.6)

Note that all other wave packet modes that are orthogonal to g(ω) are not affected by the

accelerated objects. Assume that the wave packets orthogonal to g(ω) are denoted as g⊥i(ω)

with i = 1, 2, .... According to the relation between the single frequency modes and the wave
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packet modes, Eq. (3.1.5), the single frequency output Unruh operators can be written as

ĉ′mω = g∗(ω)ĉ′mg +
∑
i

g∗⊥i(ω) ĉ′mg⊥i = g∗(ω)ĉ′mg +
∑
i

g∗⊥i(ω) ĉmg⊥i ,

= ĉmω + g∗(ω)
(
ĉ′mg − ĉmg

)
= ĉmω + g∗(ω) cosh(r0)

(
Û †g b̂

R
mgÛg − b̂Rmg

)
, (8.2.7)

d̂′mω = g(ω)d̂′mg∗ +
∑
i

g⊥i(ω) d̂′mg∗⊥i = g(ω)d̂′mg∗ +
∑
i

g⊥i(ω) d̂mg∗⊥i ,

= d̂mω + g(ω)
(
d̂′mg∗ − d̂mg∗

)
= d̂mω − g(ω) sinh(r0)

(
Û †g b̂

R†
mgÛg − b̂R†mg

)
. (8.2.8)

8.2.2 Uniformly accelerated mirror

We are now going to revisit the accelerated mirror problem. We assume that the mirror

only reflects a localized wave packet mode characterized by g(ω). The unitary operator Ûg

is chosen to be

Ûg = exp

{
θ
(
b̂R†1g b̂

R
2g − b̂R1g b̂

R†
2g

)}
(8.2.9)

so that

b̂R′1g = Û †g b̂
R
1gÛg = cos θ b̂R1g + sin θ b̂R2g,

b̂R′2g = Û †g b̂
R
2gÛg = cos θ b̂R2g − sin θ b̂R1g. (8.2.10)

Substituting this unitary operator into Eq. (8.2.6), we can find the input-output relations

for the circuit Fig. 8.1.

ĉ′1g =
[
1 + (cos θ − 1) cosh2(r0)

]
ĉ1g + (cos θ − 1) cosh(r0) sinh(r0)d̂†1g∗ + sin θ cosh2(r0)ĉ2g,

+ sin θ cosh(r0) sinh(r0)d̂†2g∗ , (8.2.11)

d̂′1g∗ =
[
1− (cos θ − 1) sinh2(r0)

]
d̂1g∗ − (cos θ − 1) cosh(r0) sinh(r0)ĉ†1g − sin θ sinh2(r0)d̂2g∗

− sin θ cosh(r0) sinh(r0)ĉ†2g, (8.2.12)
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ĉ′2g =
[
1 + (cos θ − 1) cosh2(r0)

]
ĉ2g + (cos θ − 1) cosh(r0) sinh(r0)d̂†2g∗ − sin θ cosh2(r0)ĉ1g,

− sin θ cosh(r0) sinh(r0)d̂†1g∗ , (8.2.13)

d̂′2g∗ =
[
1− (cos θ − 1) sinh2(r0)

]
d̂2g∗ − (cos θ − 1) cosh(r0) sinh(r0)ĉ†2g + sin θ sinh2(r0)d̂1g∗

+ sin θ cosh(r0) sinh(r0)ĉ†1g. (8.2.14)

If the initial state is the Minkowski vacuum, we can derive the nonzero vacuum expectation

values of the products of two output Unruh operators staightforwardly,

〈0M |ĉ′†1g ĉ′1g|0M〉 = 〈0M |d̂′†1g∗ d̂′1g∗|0M〉 = 〈0M |ĉ′†2g ĉ′2g|0M〉 = 〈0M |d̂′†2g∗ d̂′2g∗|0M〉

= 2(1− cos θ) cosh2(r0) sinh2(r0), (8.2.15)

〈0M |ĉ′1gd̂′1g∗|0M〉 = 〈0M |ĉ′†1gd̂
′†
1g∗|0M〉 = 〈0M |ĉ′2gd̂′2g∗|0M〉 = 〈0M |ĉ′†2gd̂

′†
2g∗|0M〉

= −(1− cos θ) cosh(r0) sinh(r0)
[

cosh2(r0) + sinh2(r0)
]
, (8.2.16)

〈0M |ĉ′1gd̂′2g∗|0M〉 = 〈0M |ĉ′†1gd̂
′†
2g∗|0M〉 = −〈0M |ĉ′2gd̂′1g∗ |0M〉 = −〈0M |ĉ′†2gd̂

′†
1g∗|0M〉

= sin θ cosh(r0) sinh(r0). (8.2.17)

Using the relation between the single frequency modes and the localized wave packet modes,

Eq. (8.2.7), we have

〈0M |ĉ′†1ω ĉ′1ω′ |0M〉 = 〈0M |ĉ′†2ω ĉ′2ω′ |0M〉 = g(ω)g∗(ω′)〈0M |ĉ′†1g ĉ′1g|0M〉,

〈0M |d̂′†1ωd̂′1ω′|0M〉 = 〈0M |d̂′†2ωd̂′2ω′|0M〉 = g∗(ω)g(ω′)〈0M |d̂′†1g∗ d̂′1g∗|0M〉,

〈0M |ĉ′1ωd̂′1ω′|0M〉 = 〈0M |ĉ′2ωd̂′2ω′ |0M〉 = g∗(ω)g(ω′)〈0M |ĉ′1gd̂′1g∗|0M〉,

〈0M |ĉ′†1ωd̂
′†
1ω′ |0M〉 = 〈0M |ĉ′†2ωd̂

′†
2ω′|0M〉 = g(ω)g∗(ω′)〈0M |ĉ′1gd̂′1g∗|0M〉,

〈0M |ĉ′1ωd̂′2ω′ |0M〉 = −〈0M |ĉ′2ωd̂′1ω′ |0M〉 = g∗(ω)g(ω′)〈0M |ĉ′†1gd̂
′†
2g∗ |0M〉,

〈0M |ĉ′†1ωd̂
′†
2ω′ |0M〉 = −〈0M |ĉ′†2ωd̂

′†
1ω′ |0M〉 = g(ω)g∗(ω′)〈0M |ĉ′†1gd̂

′†
2g∗|0M〉. (8.2.18)

Suppose that inertial detectors detect a left-moving localized wave packet Minkowski mode

â1(f) =
∫∞

0
dkf(k)â1k, where f(k) is an arbitrary wave packet. The expectation value of
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the particle number N1(f) = 〈0M |â†1(f)â1(f)|0M〉 in the Gaussian wave packet mode is

N1(f) =

∫
dω

∫
dω′〈0M |(A∗fω ĉ

′†
1ω +B∗fωd̂

′†
1ω)(Afω′ ĉ

′
1ω′ +Bfω′ d̂

′
1ω′)|0M〉

=

∫
dω

∫
dω′
[
A∗fωAfω′g(ω)g∗(ω′) +B∗fωBfω′g

∗(ω)g(ω′)

]
〈0M |ĉ′†1g ĉ′1g|0M〉

= 2(1− cos θ) cosh2(r0) sinh2(r0)
(
|Afg|2 + |Bfg|2

)
, (8.2.19)

where the Afg and Bfg are defined as

Afg =

∫
dω Afωg

∗(ω) =

∫
dk

∫
dω f(k)Akωg

∗(ω),

Bfg =

∫
dω Bfωg(ω) =

∫
dk

∫
dω f(k)Bkωg(ω). (8.2.20)

The expectation value of the square of â1(f) is

〈0M |â1(f)â1(f)|0M〉 =

∫
dω

∫
dω′
[
AfωBfω′〈0M |ĉ′1ωd̂′1ω′|0M〉+BfωAfω′〈0M |d̂′1ω ĉ′1ω′|0M〉

]
= 2AfgBfg〈0M |ĉ′1gd̂′1g∗|0M〉

= −2(1− cos θ) cosh(r0) sinh(r0)
[

cosh2(r0) + sinh2(r0)
]
AfgBfg.

(8.2.21)

The variance of the quadrature amplitude X̂1(φ) ≡ â1(f)e−iφ + â†1(f)eiφ is

(
∆X1(φ)

)2
= 1 + 2N1(f) + 2 Re

[
〈0M |â1(f)â1(f)|0M〉e−2iφ

]
= 1− 4(1− cos θ) cosh(r0) sinh(r0)

[
cosh2(r0) + sinh2(r0)

]
Re
(
AfgBfge

−2iφ
)

+4(1− cos θ) cosh2(r0) sinh2(r0)
(
|Afg|2 + |Bfg|2

)
. (8.2.22)

We see that the particle number and quadrature variance depend on the overlap integrals Afg

and Bfg. For any give f(k) and narrow bandwidth g(ω), they can be calculated numerically.

In the case that f(k) is a very narrow bandwidth Gaussian wave packet, Afω and Bfω can be

approximated by Eqs. (7.3.4) and (7.3.5), respectively. Assume that g(ω) is also a narrow

bandwidth Gaussian wave packet

g(ω) =

(
1

2πδ2

)1/4

exp

{
− (ω − ω0)2

4δ2

}
e−iωvc (8.2.23)
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where ω0 is the central frequency, δ is the bandwidth, satisfying ω0 � δ. vc is the central

position of the Gaussian mode in the Rindler frame. Analytical approximation can be

obtained in two limiting cases: the central frequency of g(ω) is large and is small.

High central frequency limit–When the central frequency of g(ω) is large, namely, Ω0 =

ω0/a� 1, the Gamma function Γ(1 + iΩ) can be approximated as [AS72]

Γ(1 + iΩ) ≈

√
πΩ

sinh(πΩ)
eiΩ ln(Ω)−iΩ+iπ/4. (8.2.24)

Substituting the Gamma function into the overlap integrals Eq. (8.2.20), we have

Afg ≈ 2

√
σδ

ak0

e−ik0V0+iπ/4 exp

{
− iω0

a

[
ln

(
ω0

ek0

)
− avc

]}
exp

{
− σ2(ω0/a− k0V0)2

k2
0

}
× exp

{
− (δ/a)2

[
ln

(
ω0

ek0

)
− avc

]2}
,

≈ 2

√
σδ

ak0

e−ik0V0+iπ/4 exp

{
− iω0

a
ln

(
ω0

ek0aVc

)}
exp

{
− σ2(ω0/a− k0V0)2

k2
0

}
× exp

{
− (δ/a)2 ln2

(
ω0

ek0aVc

)}
, (8.2.25)

Bfg ≈ 2

√
σδ

ak0

e−ik0V0−iπ/4 exp

{
i
ω0

a

[
ln

(
ω0

ek0

)
− avc

]}
exp

{
− σ2(ω0/a+ k0V0)2

k2
0

}
× exp

{
− (δ/a)2

[
ln

(
ω0

ek0

)
− avc

]2}
,

≈ 2

√
σδ

ak0

e−ik0V0−iπ/4 exp

{
i
ω0

a
ln

(
ω0

ek0aVc

)}
exp

{
− σ2(ω0/a+ k0V0)2

k2
0

}
× exp

{
− (δ/a)2 ln2

(
ω0

ek0aVc

)}
. (8.2.26)

Here Vc is the central position of the wave packet g(ω) in terms of the Minkowski coordinates,

satisfying aVc = eavc . If we define

E− ≡ exp

[
− 2σ2(ω0/a− k0V0)2

k2
0

]
,

E+ ≡ exp

[
− 2σ2(ω0/a+ k0V0)2

k2
0

]
,

Θh ≡ 2
ω0

a
ln

(
ω0

ek0aVc

)
,
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The overlap integrals Afg and Bfg can be written in a compact way,

Afg ≈ 2

√
σδ

ak0

e−ik0V0+iπ/4e−iΘh/2
√
E−e

− δ
2Θ2
h

4ω2
0 ,

Bfg ≈ 2

√
σδ

ak0

e−ik0V0−iπ/4eiΘh/2
√
E+e

− δ
2Θ2
h

4ω2
0 . (8.2.27)

Therefore, the particle number and variance can be rewritten as

N1(f) ≈ (1− cos θ) sinh2(2r0)(E− + E+)

(
2σδ

ak0

)
exp

(
− δ2Θ2

h

2ω2
0

)
, (8.2.28)

(
∆X1(φ)

)2 ≈ 1 + (1− cos θ) sinh(2r0)

(
4σδ

ak0

)
exp

(
− δ2Θ2

h

2ω2
0

)[
(E− + E+) sinh(2r0)

−2
√
E+E− cosh(2r0) cos(2k0V0 + 2φ)

]
. (8.2.29)

Figs. 8.2 and 8.3 show the particle number and minimal quadrature variance of a Gaussian

wave packet detector mode. Note that the particle number and the amount of single-mode

squeezing is smaller than that for an accelerated mirror with time independent interactions,

see Figs. 7.4 and 7.6.

In Chapter 7, we encountered the energy divergence problem. We now show that the energy

divergence problem can be resolved by making the mirror only act on a localized wave

packet mode, namely, the interaction is turned on and off. When the central frequency

of the detector wave packet is large, k0 → ∞, E± → e−2σ2V 2
0 and Θh → −∞. From Eq.

(8.2.28) we can see that the number of high energy particles is strongly suppressed by the

factor e−δ
2Θ2

h/4ω
2
0 . Therefore we expect that the total energy radiated by the accelerated

mirror is finite. Fig. 8.4 shows the energy, k0N1(f), of the field in a detector wave packet

mode f(k). One can see that the energy decreases as the central frequency k0 increases,

contrary to Fig. 7.5.

Furthermore, the introduction of switching on and off of the interaction also suppresses the

number of low frequency particles. When k0 → 0, Θh → ∞, so that e−δ
2Θ2

h/4ω
2
0 → 0. This
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Figure 8.2: Particle number versus central position of the detector mode. Central frequency of the
detector mode is k0/a = 20. Parameters for the wave packet g(ω) are ω0/a = 8.0, δ/a = 0.2, aVc = 1.0, and
θ is chosen to be θ = π/2.
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Figure 8.3: Minimal quadrature variance versus central position of the detector mode. Central fre-
quency of the detector mode is k0/a = 20. Parameters for the wave packet g(ω) are ω0/a = 8.0, δ/a =
0.2, aVc = 1.0, and θ is chosen to be θ = π/2.

is expected because a finite duration of interaction does not produce very low frequency

particles.

Low central frequency limit – When the central frequency of g(ω) is small, namely,
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Figure 8.4: Energy of the fields versus central frequency of the detector mode. Bandwidth of the
detector mode is σ/a = 1.0. Parameters for the wave packet g(ω) are ω0/a = 8.0, δ/a = 0.2, aVc = 1.0, and
θ is chosen to be θ = π/2.

Ω0 ≡ ω0/a� 1, the Gamma function can be approximated as [AS72]

Γ(1 + iΩ) ≈ 1− iγΩ ≈ e−iγΩ, (8.2.30)

where γ is the Euler constant, γ ≈ 0.577. If we define

Θl ≡ 2Ω0 ln
(
eγk0Vc

)
, (8.2.31)

the overlap integrals Afg and Bfg can be approximated as

Afg ≈ 2

√
σδ

ak0

e−ik0V0eiΘl/2
√
E−e

− δ
2Θ2
l

4ω2
0 ,

Bfg ≈ 2

√
σδ

ak0

e−ik0V0e−iΘl/2
√
E+e

− δ
2Θ2
l

4ω2
0 . (8.2.32)

Therefore, the particle number and variance are

N1(f) ≈ (1− cos θ) sinh2(2r0)(E− + E+)

(
2σδ

ak0

)
exp

(
− δ2Θ2

l

2ω2
0

)
, (8.2.33)

(
∆X1(φ)

)2 ≈ 1 + (1− cos θ) sinh(2r0)

(
4σδ

ak0

)
exp

(
− δ2Θ2

l

2ω2
0

)[
(E− + E+) sinh(2r0)

−2
√
E+E− cosh(2r0) cos(2k0V0 + 2φ)

]
. (8.2.34)
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When the central frequency of the detector mode is large, k0 → ∞, Θl → ∞. From Eq.

(8.2.33) we see that the number of high frequency particles is suppressed by the factor

e−δ
2Θ2

l /4ω
2
0 . Therefore the total energy radiated by the mirror is finite. When k0 → 0,

Θl → −∞ so that e−δ
2Θ2

l /4ω
2
0 → 0. The number of low frequency particles is also suppressed.

8.3 Accelerated objects acting on arbitrary single mode

In the previous section, we used the narrow bandwidth approximation for the wave packet

g(ω), ω0/δ � 1, and obtained a quite simple circuit model (Fig. 8.1) for a uniformly

accelerated object that acts on a single wave packet mode. In this section, we are going

to construct a circuit that is valid for arbitrary wave packets g(ω). For an arbitrary wave

packet mode, especially a broadband mode, the action of the two-mode squeezers and two-

modes anti-squeezers cannot be described simply by a single mode. We thus need to work

out the transformation from Rindler modes to Unruh modes frequency by frequency. In

the Rindler frame, the unitary Ûg acts on a single wave packet mode. The input-output

relation for the single wave packet Rindler mode is determined by Ûg. Our first step is the

find the input-output relations from the single frequency Rindler modes. The second step is

to derive the input-output relations of the Unruh modes using the transformations between

single frequency Rindler modes and single frequency Unruh modes. For simplicity, we only

consider left-moving modes in the (1 + 1)-dimensional spacetime. The relevant circuit is

shown in Fig. 8.5.

Suppose that g(ω) is the wave packet that we are interested in and its corresponding localized

Rindler operator is b̂Rg ; g⊥i(ω) are the wave packets that are orthogonal to g(ω) and their

corresponding localized Rindler operators are b̂Rg⊥i . The uniformly accelerated unitary Ûg

only acts on b̂Rg , that is,

Û †g b̂
R
g Ûg = b̂R′g , Û †g b̂

R
g⊥i
Ûg = b̂Rg⊥i . (8.3.1)

According to the relation between the single frequency modes and the wave packet modes,



8.3 Accelerated objects acting on arbitrary single mode 171

Ug

Sω3

Sω2

Sω1

S−1
ω3

S−1
ω2

S−1
ω1

b̂Rω3

b̂Rω2

b̂Rω1

b̂R′ω3

b̂R′ω2

b̂R′ω1

b̂Lω3

b̂Lω2

b̂Lω1

d̂ω3
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Figure 8.5: Circuit for a uniformly accelerated object. Rindler modes in the right Rindler wedge
interact with the object, which is represented by the unitary operator Ûg, while Rindler modes in the left
Rindler wedge remain unaffected. The time dependent interactions mix different frequency Rindler modes.

Eq. (3.1.5), we have

b̂Rω = g∗(ω)b̂Rg +
∑
i

g⊥i(ω)b̂Rg⊥i . (8.3.2)

Therefore the action of the unitary Ûg toward the single frequency Rindler operator is

b̂R′ω = Û †g b̂
R
ω Ûg = Û †g

[
g∗(ω)b̂Rg +

∑
i

g⊥i(ω)b̂Rg⊥i

]
Ûg

= g∗(ω)Û †g b̂
R
g Ûg +

∑
i

g⊥i(ω)b̂Rg⊥i

= b̂Rω + g∗(ω)
(
Û †g b̂

R
g Ûg − b̂Rg

)
. (8.3.3)

By using the relations between the single frequency Rindler modes and Unruh modes, we

find

ĉ′ω = cosh(rω)b̂R′ω − sinh(rω)b̂L′†ω

= cosh(rω)b̂Rω − sinh(rω)b̂L†ω + g∗(ω) cosh(rω)
(
Û †g b̂

R
g Ûg − b̂Rg

)
= ĉω + g∗(ω) cosh(rω)

(
Û †g b̂

R
g Ûg − b̂Rg

)
, (8.3.4)

d̂′ω = cosh(rω)b̂L′ω − sinh(rω)b̂R′†ω

= cosh(rω)b̂Lω − sinh(rω)b̂R†ω − g(ω) sinh(rω)
(
Û †g b̂

R†
g Ûg − b̂R†g

)
= d̂ω − g(ω) sinh(rω)

(
Û †g b̂

R†
g Ûg − b̂R†g

)
. (8.3.5)
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These input-output relations are valid for any wave packet mode g(ω). In the narrow band-

width limit, cosh(rω) and sinh(rω) can be replaced by cosh(r0) and sinh(r0), so Eqs. (8.3.4)

and (8.3.5) go back to Eq. (8.2.7). To have a complete input-output relation for Unruh

modes, one has to express b̂Rg in Eqs. (8.3.4) and (8.3.5) in terms of the input Unruh opera-

tors, which is straightforward. In the following we are going to discuss three examples that

only takes into account left-moving modes. Generalization to include both left-moving and

right-moving modes is straightforward.

8.3.1 Accelerated displacement

Suppose that Ûg represents a single mode displacement operator, Ûg = D̂g(α) = exp
(
αb̂R†g −

α∗b̂Rg
)
, where α is a complex number. It is easy to show that [BR04]

D̂†g(α)b̂Rg D̂g(α) = b̂Rg + α. (8.3.6)

From Eq. (8.3.3) we get the input-output relation for single frequency Rindler modes,

b̂R′ω = b̂Rω + αg∗(ω). (8.3.7)

The input-output relations for single frequency Unruh modes can be obtained from Eqs.

(8.3.4) and (8.3.5),

ĉ′ω = ĉω + αg∗(ω) cosh(rω),

d̂′ω = d̂ω − α∗g(ω) sinh(rω). (8.3.8)

This shows that a displacement to the Rindler mode results in a displacement to the Unruh

modes. So if the initial state of the field is Minkowski vacuum, the states in the output Unruh

modes ĉ′ω and d̂′ω are coherent states, with frequency dependent displacement amplitudes.

We can further look at the input-output relation for Minkowski modes. From the relations

between the Unruh modes and Minkowski modes, Eq. (4.5.46), we have

â′k =

∫
dω
(
Akω ĉ

′
ω +Bkωd̂

′
ω

)
=

∫
dω
(
Akω ĉω +Bkωd̂ω

)
+ α

∫
dω Akωg

∗(ω) cosh(rω)− α∗
∫

dω Bkωg(ω) sinh(rω)

= âk + α

∫
dω Akωg

∗(ω) cosh(rω)− α∗
∫

dω Bkωg(ω) sinh(rω). (8.3.9)
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It is evident that the Minkowski modes are also displaced, with frequency dependent dis-

placement amplitude. If the initial state of the field is the Minkowski vacuum, the output

state as observed by inertial observers would be a coherent state. The expectation value of

the total Minkowski particle number is∫
dk〈0M |â′†k â

′
k|0M〉 = |α|2(Ic + Is), (8.3.10)

where Ic and Is are defined as

Ic =

∫
dω|g(ω)|2 cosh2(rω), Is =

∫
dω|g(ω)|2 sinh2(rω). (8.3.11)

Since both cosh2(rω) and sinh2(rω) are proportional to 1/ω when ω → 0, one has to introduce

a low frequency cutoff in g(ω) in order Ic and Is are finite, e.g., g(ω) ∼
√
ω when ω → 0.

8.3.2 Accelerated phase shifter

Suppose that Ûg represents a single mode phase shift operator, Ûg = exp
(
iφ b̂R†g b̂

R
g

)
. Sub-

stituting this unitary into Eq. (8.3.3), we get the input-output relation for the Rindler

modes,

b̂R′ω = b̂Rω + (eiφ − 1)g∗(ω)b̂Rg = b̂Rω + (eiφ − 1)g∗(ω)

∫
dω′g(ω′)b̂Rω′ . (8.3.12)

The input-output relations for single frequency Unruh modes can be obtained from Eqs.

(8.3.4) and (8.3.5),

ĉ′ω = ĉω + (eiφ − 1)g∗(ω) cosh(rω)

∫ ∞
0

dω′ g(ω′)
[

cosh(rω′)ĉω′ + sinh(rω′)d̂
†
ω′

]
,

d̂′ω = d̂ω − (e−iφ − 1)g(ω) sinh(rω)

∫ ∞
0

dω′ g∗(ω′)
[

cosh(rω′)ĉ
†
ω′ + sinh(rω′)d̂ω′

]
.

(8.3.13)

Assume that the initial state of the field is the Minkowski vacuum. The vacuum expectation

values of the products of two output Unruh operators can be calculated straightforwardly.

〈0M |ĉ′†ω ĉ′ω′|0M〉 = g(ω)g∗(ω′) cosh(rω) cosh(rω′)|eiφ − 1|2Is,

〈0M |d̂′†ω d̂′ω′|0M〉 = g∗(ω)g(ω′) sinh(rω) sinh(rω′)|eiφ − 1|2Ic,

〈0M |ĉ′ωd̂′ω′|0M〉 = −g(ω)g∗(ω′) cosh(rω) cosh(rω′)
[
(e−iφ − 1) + |eiφ − 1|2Ic

]
,

(8.3.14)
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and others are either zero or can be derived from the above results.

8.3.3 Accelerated single-mode squeezer

Suppose that Ûg represents a single-mode squeezing operator, Ûg = Ŝ1(r),

Ŝ1(r) = exp

{
r

2

(
b̂R†g
)2 − r

2

(
b̂Rg
)2
}
, (8.3.15)

where r is the squeezing factor and is assumed to be real. It can be shown that

Ŝ1(r)b̂Rg Ŝ1(r) = cosh r b̂Rg + sinh r b̂R†g . (8.3.16)

Substituting this into Eq. (8.3.3), we get the input-output relation for the Rindler modes,

b̂R′ω = b̂Rω + g∗(ω)

[(
cosh r − 1

) ∫
dω′ g(ω′)b̂Rω′ + sinh r

∫
dω′ g∗(ω′)b̂R†ω′

]
. (8.3.17)

The input-output relations for single frequency Unruh modes can be obtained from Eqs.

(8.3.4) and (8.3.5),

ĉ′ω = ĉω + g∗(ω) cosh(rω)

{
(cosh r − 1)

∫
dω′ g(ω′)

[
ĉω′ cosh(rω′) + d̂†ω′ sinh(rω′)

]
+ sinh r

∫
dω′ g∗(ω′)

[
ĉ†ω′ cosh(rω′) + d̂ω′ sinh(rω′)

]}
,

d̂′ω = d̂ω − g(ω) sinh(rω)

{
(cosh r − 1)

∫
dω′ g∗(ω′)

[
ĉ†ω′ cosh(rω′) + d̂ω′ sinh(rω′)

]
+ sinh r

∫
dω′ g(ω′)

[
ĉω′ cosh(rω′) + d̂†ω′ sinh(rω′)

]}
. (8.3.18)

The vacuum expectation values of the products of two output Unruh operators can be

calculated straightforwardly from Eq. (8.3.18).

〈0M |ĉ′†ω ĉ′ω′|0M〉 = g(ω)g∗(ω′) cosh(rω) cosh(rω′)Ec,

〈0M |d̂′†ω d̂′ω′|0M〉 = g∗(ω)g(ω′) sinh(rω) sinh(rω′)Ed,

〈0M |ĉ′ω ĉ′ω′|0M〉 = g∗(ω)g∗(ω′) cosh(rω) cosh(rω′)Ecc,

〈0M |d̂′ωd̂′ω′|0M〉 = g(ω)g(ω′) sinh(rω) sinh(rω′)Edd,

〈0M |ĉ′ωd̂′ω′|0M〉 = g∗(ω)g(ω′) cosh(rω) sinh(rω′)Ecd,

〈0M |ĉ′†ω d̂′ω′|0M〉 = g(ω)g(ω′) cosh(rω) sinh(rω′)Ēcd. (8.3.19)
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where

Ec = Is(cosh r − 1)2 + Ic sinh2 r =
[
(cosh r − 1)2 + sinh2 r

]
Ic − (cosh r − 1)2,

Ed = Ic(cosh r − 1)2 + Is sinh2 r =
[
(cosh r − 1)2 + sinh2 r

]
Ic − sinh2 r,

Ecc = sinh r
[
(Ic + Is)(cosh r − 1) + 1

]
= sinh r

[
(2Ic − 1)(cosh r − 1) + 1

]
,

Edd = sinh r
[
(Ic + Is)(cosh r − 1)− 1

]
= sinh r

[
(2Ic − 1)(cosh r − 1)− 1

]
,

Ecd = − cosh r(cosh r − 1)(Ic + Is) = − cosh r(cosh r − 1)(2Ic − 1),

Ēcd = − sinh r(cosh r − 1)(Ic + Is) = − sinh r(cosh r − 1)(2Ic − 1), (8.3.20)

8.4 Decoherence in non-inertial frames

In the above section, we have constructed a quantum circuit for a uniformly accelerated

object that acts on an arbitrary wave packet mode. The interaction is unitary in the accel-

erated frame, so it can be represented by a unitary operator Ûg. A question of particular

interest is whether this process can be described by a unitary operator in the perspective of

inertial observers. This question can be answered by checking the purity of the output state,

given that the input state is pure. In this section, we are going to investigate the purity of

the output state as observed by inertial observers by using the homodyne detection, given

that the input is the Minkowski vacuum.

Unitary evolution is one of the fundamental assumptions of quantum mechanics. An initial

pure state of an isolated quantum system always evolves into another pure state. The

situation is not as simple when we consider non-inertial, relativistic frames of reference. For

example, the transformation between the description of the quantum vacuum state as seen

by inertial observers and the description of the same state by uniformly accelerated observers

is not strictly unitary. Nevertheless it is still assumed that in transforming between reference

frames pure states will always evolve to pure states provided that the entire space-time is

included. Consider an inertial observer who constantly observes a massless field prepared

in the Minkowski vacuum state. By definition they will observe no particles. However,

according to the Unruh/Davies effect [Unr76, Dav75], a uniformly accelerating observer who
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constantly observes the same field will see thermal radiation (Unruh radiation), and hence

will count particles. The vacuum state is pure whilst a thermal state is mixed, seemingly

implying a non-unitary evolution. The resolution is that a single accelerating observer is

restricted to a section of space-time called a Rindler wedge. By introducing a second, mirror

image accelerated observer we find that the thermal state can be purified into a two-mode

squeezed state [UW84, Lee86, Tak86] and unitarity is restored.

We consider accelerated quantum systems in flat space, however we set up the problem

differently such that we explicitly start and end with global, inertial observers. In the

intermediate region we allow interactions with an accelerated system. The specific problem

we will analyse is summarized by the Penrose diagram [MTW73] in Fig. 8.6. An object

uniformly accelerates in the right Rindler wedge (black curve). Interactions with a massless

scalar field are unitarily turned on and off during its lifetime (shaded region) such that it

interacts with a single spatio-temporal mode in the accelerated (Rindler) coordinates. In the

past null infinity I −, the initial state of the field is set to be the Minkowski vacuum. For

simplicity we consider a 1+1 theory in which the right and left moving fields are decoupled.

We assume the right moving field modes are unaffected by the accelerating object. The

output state of the left moving field modes in the future null infinity I + is detected by

inertial, Minkowski detectors. Here the inertial detectors are those detectors that can detect

the overall output state of the scalar field. From Fig. 8.6 one can easily see that there

are no particles before and after the interaction, a consequence of causality. We assume

that the inertial detectors are turned on for all times (at least at the spacetime points

that are connected to the shaded interaction region by null rays) and detect particles with

all frequencies. Unexpectedly we find a decoherence effect that only affects non-classical

quantum states and cannot be removed by appealing to inaccessible regions of space-time.

8.4.1 Detection of the state

The Minkowski detectors are modelled by the Hermitian number operators, N̂k = â†kâk,

where âk (â†k) are the Minkowski field annihilation (creation) operators for wave-number k.
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Figure 8.6: Penrose diagram of Minkowski spacetime. I0 is the spatial infinity, I− and I+ are the
past and future infinities,I − and I + are the past and future null infinities. A uniformly accelerated object
follows the black worldline. Interactions between the accelerated object and the field are localized in Rindler
time, represented by the shaded region.

The frequencies |k| are with respect to the proper time of the inertial reference frame under

consideration. The excitation probability of an ideal, inertial, 2-level system of resonant

frequency |k|, coupled weakly to the field, is proportional to 〈N̂k〉 [SZ97]. We can model

a finite bandwidth detector via the operator N̂∆k =
∫ ko+∆k

ko−∆k
dk â†kâk. If the bandwidth of

the detector is much larger than that of the mode under consideration then we can extend

the limits of integration to ±∞ and so define N̂ =
∫

dk â†kâk. Note that by definition

〈0|N̂ |0〉 = 0 for the Minkowski vacuum state, |0〉.

In order to characterize the state of a particular field mode we use homodyne tomogra-

phy [LR09]. In homodyne tomography, the Wigner function of the state is reconstructed

from measurements of the moments of quadrature amplitudes via homodyne detection. For

Gaussian states it is sufficient to measure and analyse only the first and second order mo-

ments [WPGP+12]. In homodyne detection [BR04], a weak signal field and a strong local

oscillator are coherently combined and measured with broad-band detection as discussed
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above. For simplicity and to stay within the 1+1, scalar field paradigm, we specifically use

self-homodyne detection here. In self-homodyne detection, the signal field is displaced by

a strong local oscillator directly, and the output field is detected. Assume that the signal

field mode operator is â =
∫

dkf(k)âk and the local oscillator is a strong coherent state

|α〉, prepared in the same field mode (characterized by f(k)) with α a complex number,

α = |α|eiφ, and |α| � 1. The photon number operator can be shown to be

N̂(φ) ≈ |α|2 + |α|X̂(φ) (8.4.1)

where X̂(φ) = âe−iφ + â†eiφ is the quadrature amplitude of the signal field and a term

not multiplied by |α| has been neglected as small. As a reference we can also consider the

operator

N̂0 ≈ |α|2 + |α|X̂v (8.4.2)

representing the situation where the signal is not imposed and so v̂ represents the mode

when it is prepared in the vacuum state. Hence the average quadrature amplitude of the

field is given by

〈X̂(φ)〉 =
〈N̂(φ)〉 − 〈N̂0〉√

〈N̂0〉
(8.4.3)

where we have used 〈X̂v〉 = 0. Its variance is given by

(
∆X(φ)

)2
=

(
∆N(φ)

)2

〈N̂0〉
. (8.4.4)

For the Gaussian states considered here this will be sufficient to completely characterize

them.

8.4.2 Accelerated self-homodyne detection

We wish to apply this technique to the output state from the interactions between a uniformly

accelerated object and the scalar field. In order to do this we need to match the mode shape

of the local oscillator to that of the output signal field. However, the mode shape of the

signal is distorted due to the acceleration of the object. It is difficult for an inertial observer

to construct a local oscillator with this distorted mode shape. We avoid this complication
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by assuming that the local oscillator is also imposed in the accelerated frame in a matching

mode to the signal.

In Section 8.3, we have constructed a general circuit (Fig. 8.5) for a uniformly accelerated

object that acts on an arbitrary Rindler wave packet mode. The input-output relations

for Unruh modes are gievn by Eqs. (8.3.4) and (8.3.5). However, The Unruh operators

[Unr76] are only a useful mathematical stepping stone between the accelerated and inertial

reference frames. In order to represent our inertial detection scheme, we need to construct

the Minkowski modes, âk, from the output Unruh modes – this final step is not represented

by a circuit.

In the circuit 8.5, Ûg is an arbitrary unitary operator. We assume that Ûg = Ŝg creates

the quantum signal we wish to analyse, as shown in Fig. 8.7(a). To achieve self-homodyne

detection, a displacement (local oscillator) is added after the signal operator, namely, the

unitary operator Ûg = D̂g(α)Ŝg, as shown in Fig. 8.7(b). D̂g(α) = exp
(
αb̂R†g − α∗b̂Rg

)
produces the local oscillator for self-homodyne detection, where α = |α|eiφ is a complex

number. In the following, we assume that |α| � 1. Note that the mode shape of the local

oscillator should perfectly match the mode shape of the signal operator. Af first glance,

it seems problematic to use an accelerated local oscillator, because we want to know the

output state as observed by inertial observers. The use of accelerated local oscillator can

be justified by noticing that a uniformly accelerated displacement also creates a coherent

state as observed by inertial observers, as shown in Section 8.3.1. Therefore, a uniformly

accelerated local oscillator is also an inertial local oscillator.

The total Minkowski particle number operator, N̂ =
∫

dk â′†k â
′
k, is obtained by using Eq.

(4.5.46),

N̂ =

∫
dk

∫
dω1

∫
dω2(A∗kω1

ĉ′†ω1
+B∗kω1

d̂′†ω1
)(Akω2 ĉ

′
ω2

+Bkω2 d̂
′
ω2

)

=

∫
dω (ĉ′†ω ĉ

′
ω + d̂′†ω d̂

′
ω), (8.4.5)

where we have used
∫

dkAkωA
∗
kω′ = δ(ω − ω′) and

∫
dkAkωAkω′ = 0. This tells us that the
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(a) (b)

Figure 8.7: Self-homodyne detection. (a) A signal unitary Ŝg generates quantum signals that we are

going to analyze. (b) A displacement is added after the signal unitary Ŝg to realize homodyne detection.
The mode shape of the displacement is perfectly matched to that of the signal unitary.

total number of Minkowski particles is the same as the total number of Unruh particles.

The conservation of particle number is expected because the Bogoliubov transformation Eq.

(4.5.46) does not mix negative frequency modes. The square of the total particle number

operator is

N̂2 =

∫
dω1

∫
dω2

(
ĉ′†ω1
ĉ′ω1
ĉ′†ω2
ĉ′ω2

+ d̂′†ω1
d̂′ω1

d̂′†ω2
d̂′ω2

+ ĉ′†ω1
ĉ′ω1
d̂′†ω2

d̂′ω2
+ d̂′†ω1

d̂′ω1
ĉ′†ω2
ĉ′ω2

)
.

(8.4.6)

A full computation of the vacuum expectation value of N̂2 is straightforward but usually

tedious. However, when the amplitude of displacement is large (|α| � 1), it is adequate to

only keep terms of order |α|4 and |α|2 as per the approximation leading to equations (8.4.3)

and (8.4.4).

8.4.3 Classical signals

We first consider preparing a classical signal on the accelerated mode. In particular, we

generate a classical signal by displacing the Rindler mode b̂Rg with an amplitude β. This

produces a coherent state, the “most classical” quantum state. The operator that creates

this signal is Ŝg = D̂g(β), with |β| � |α|. The expectation value and variance of the

quadrature amplitudes as observed by the inertial detectors are

Xβ(φ) =
√

2Ic − 1
(
βe−iφ + β∗eiφ

)
,

Vβ(φ) = 1, (8.4.7)

where Ic =
∫

dω|g(ω)|2 cosh2 rω. Equation (8.4.7) characterises a pure coherent state. There-

fore, displacing a Rindler mode generates a coherent state with amplitude (
√

2Ic − 1)β as
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viewed by an inertial observer. This is consistent with the results obtained in Section 8.3.1..

As expected the overall evolution is from a pure state to a pure state.

8.4.4 Quantum signals

A more interesting scenario is that a uniformly accelerated single-mode squeezer squeezes

the thermal state in the right Rindler wedge. The single-mode squeezing operator Ŝ1(r) is

defined as [BR04]

Ŝ1(r) = exp

{
r

2

(
b̂R†g
)2 − r

2

(
b̂Rg
)2
}
, (8.4.8)

where r is the squeezing factor and is assumed to be real. The operator that creates quantum

signals is Ŝg = Ŝ1(r) so that the unitary Ûg = D̂g(α)Ŝ1(r).

In the perspective of an accelerated observer, the output state is basically a squeezed thermal

state. Define the quadrature amplitude of the localized Rindler wave packet mode b̂R′g as

X̂R
g (φ) = b̂R′g e

−iφ + b̂R′†g eiφ. It can be shown that 〈0|X̂R
g (φ)|0〉 = 0, and the variance of the

quadrature amplitude is(
∆XR

g (φ)
)2

= (2Ic − 1)
[

cosh(2r) + sinh(2r) cos(2φ)
]
. (8.4.9)

The maximum and minimum variances are obtained when φ = 0 and φ = π/2, respectively.

An important quantity that characterizes the purity of a state is the product of the maximum

and minimum quadrature variances. If the product is unity then the state is pure, whilst if

the product is greater than unity then the state is mixed. From Eq. (8.4.9), we find(
∆XR

g (0)∆XR
g (π/2)

)2
= (2Ic − 1)2. (8.4.10)

We see that the product of the maximum and minimum variances is always greater than

unity, implying that the state observed by an accelerated observer is mixed. This is expected

because the accelerated observer in the right Rindler wedge can not access the correlations

with the left Rindler wedge.

We are now going to find out the output state as observed by inertial observers. By sub-

stituting Ûg = D̂g(α)Ŝ1(r) into Eqs. (8.3.4) and (8.3.5) one can derive the input-output
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relations for Unruh modes,

ĉ′ω = ĉω + g∗(ω) cosh rω
[
b̂Rg (cosh r − 1) + b̂R†g sinh r + α

]
,

d̂′ω = d̂ω − g(ω) sinh rω
[
b̂R†g (cosh r − 1) + b̂Rg sinh r + α∗

]
. (8.4.11)

The localized Rindler operator b̂Rg can be expressed in terms of the input Unruh operators

by using the transformations between the Rindler and Unruh modes. Eq. (8.4.11) becomes

ĉ′ω = ĉω + g∗(ω) cosh rω

[
(cosh r − 1)

∫
dω′g(ω′)

(
ĉω′ cosh rω′ + d̂†ω′ sinh rω′

)
+ sinh r

∫
dω′g∗(ω′)

(
ĉ†ω′ cosh rω′ + d̂ω′ sinh rω′

)
+ α

]
,

d̂′ω = d̂ω − g(ω) sinh rω

[
(cosh r − 1)

∫
dω′g∗(ω′)

(
ĉ†ω′ cosh rω′ + d̂ω′ sinh rω′

)
+ sinh r

∫
dω′g(ω′)

(
ĉω′ cosh rω′ + d̂†ω′ sinh rω′

)
+ α∗

]
. (8.4.12)

It is now straightforward to calculate the vacuum expectation values of the product of two

output Unruh operators.

〈0M |ĉ′†ω ĉ′ω′ |0M〉 = g(ω)g∗(ω′) cosh rω cosh rω′(Ec + |α|2),

〈0M |d̂′†ω d̂′ω′ |0M〉 = g∗(ω)g(ω′) sinh rω sinh rω′(Ed + |α|2),

〈0M |ĉ′ω ĉ′ω′ |0M〉 = g∗(ω)g∗(ω′) cosh rω cosh rω′(Ecc + α2),

〈0M |d̂′ωd̂′ω′ |0M〉 = g(ω)g(ω′) sinh rω sinh rω′(Edd + α∗2),

〈0M |ĉ′ωd̂′ω′ |0M〉 = g∗(ω)g(ω′) cosh rω sinh rω′(Ecd − |α|2),

〈0M |ĉ′†ω d̂′ω′ |0M〉 = g(ω)g(ω′) cosh rω sinh rω′(Ēcd − α∗2), (8.4.13)

where Ec, Ed, Ecc, Edd, Ecd and Ēcd are given by Eq. (8.3.20). From equations (8.4.5) and

(8.4.6), the vacuum expectation value of the total Minkowski particle number is

〈0M |N̂ |0M〉 = |α|2(Ic + Is) + (IcEc + IsEd) (8.4.14)
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and the variance of total Minkowski particle number is

(∆N)2 = 〈0M |N̂2|0M〉 − 〈0M |N̂ |0M〉2

= |α|2(Ic + Is) + 2|α|2(I2
cEc + I2

sEd) + I2
c (α2E∗cc + α∗2Ecc) + I2

s (α2Edd + α∗2E∗dd)

−2|α|2IcIs(Ecd + E∗cd)− 2IcIs(α2Ēcd + α∗2Ē∗cd)

= |α|2
[
(Ic + Is) + 2(I2

cEc + I2
sEd) + 2I2

cEcc cos(2φ) + 2I2
sEdd cos(2φ)− 4IcIsEcd

−4IcIsĒcd cos(2φ)

]
, (8.4.15)

where φ is the displacement phase. In the homodyne detection, normalizing the variance

of the particle number using the strength of the local oscillator gives the variance of the

quadrature amplitude [BR04]. Here the strength of the local oscillator is ∼ |α|2(Ic + Is), so

the variance of quadrature amplitude is

V (φ) =
(∆N)2

|α|2(Ic + Is)
= cosh(2r) + 4Ic(Ic − 1)(cosh 2r − 2 cosh r + 1)

+2 sinh r
[
(2Ic − 1)2 cosh r − 4Ic(Ic − 1)

]
cos(2φ). (8.4.16)

The maximum and minimum variances are obtained when φ = 0 and φ = π/2, respectively.

Vmax = e2r + 4Ic(Ic − 1)(er − 1)2,

Vmin = e−2r + 4Ic(Ic − 1)(e−r − 1)2. (8.4.17)

It is evident from equations (8.4.16) and (8.4.17) that noises are added onto the variance

of the original single-mode squeezed state. The amount of additional noises depends on the

squeezing factor r and Ic. A question of particular interest is whether the final state is a pure

state or not. For Gaussian states, the criteria for purity is that the product of maximum

and minimum variances is unity [BR04]. From equation (8.4.17) we find the product of the

minimum and maximum variances is

VmaxVmin = 1 + 16Ic(Ic − 1)(cosh r − 1) cosh r + 64I2
c (Ic − 1)2(cosh r − 1)2.(8.4.18)

We can see that the product is always greater than one unless r = 0 or Ic = 1. This is our

main result. Unexpectedly, the inertial observer sees a decoherence effect that in general

takes the initial pure state to a mixed state.
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The case of r = 0 means the accelerated object does nothing so that the output state is

the Minkowski vacuum. Ic can be approximated as Ic ≈ e2πω0/a/(e2πω0/a − 1) when g(ω)

is a very narrow bandwidth wave packet with central frequency ω0. When 2πω0/a → ∞,

Ic → 1 so that Vmin → e−2r and Vmax → e2r. This corresponds to a single-mode squeezed

vacuum state, which is pure. The above limit could happen in two cases. The first is that

the central frequency ω0 is fixed while a→ 0. This means the single-mode squeezer tends to

be static in an inertial frame. It thus produces the standard single-mode squeezed vacuum

state. The second case is that a is fixed and finite, while ω0 → ∞. It is well known that a

uniformly accelerated observer experiences a thermal radiation with temperature TU = a
2π

in

the Minkowski vacuum [Unr76]. The spectral distribution of the thermal radiation follows

the Plank’s law, which exponentially decays in the high frequency limit. Or equivalently, the

high frequency tail of a thermal state looks almost like a vacuum. Therefore the single-mode

squeezer that squeezes the high frequency tail of the Unruh radiation produces a squeezed

vacuum state. Overall, when the Unruh effect is not significant, a uniformly accelerated

single-mode squeezer produces the standard single-mode squeezed vacuum state. Otherwise,

the product of the minimum and maximum variances is greater than one (see Fig. 8.8),

indicating that the output state is mixed.

Ic = 1.05

Ic = 1.03

Ic = 1.01

r

V
m

a
x
V

m
in

Figure 8.8: Product of maximum and minimum quadrature variances.
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Ic = 1.1 r = 0.5 Ic = 1.3 r = 0.5

Ic = 1.6 r = 0.5 Ic = 1.9 r = 0.5

Figure 8.9: Phase space representation of quadrature in the final state. The red dashed circle represents
the vacuum shot noise, and the blue shaded ellipse represents the quadrature variance of the output state.
For fixed single-mode squeezing factor (r = 0.5), the minimum quadrature variance is below the vacuum shot
noise for small Ic, indicating the output state is a squeezed state. While for large enough Ic, the minimum
quadrature variance surpasses the vacuum shot noise, showing that squeezing is destroyed.

As the Unruh effect in the Rindler frame becomes more pronounced, the decoherence in

the Minkowski frame becomes stronger. Eventually squeezing disappears and the final state

becomes classical in the sense that coherent state superpositions are removed and the state

becomes decomposable into a mixture of coherent states. Fig. 8.9 shows an example of the

phase space representation of the quadrature amplitude. For a given squeezing factor, the

minimal variance Vmin increases as Ic increases and eventually exceeds one, the vacuum shot

noise. When Ic < 1
2

(
1 +
√

1 + coth(r/2)
)
, the minimum quadrature variance Vmin is smaller

than one, indicating that the final state is still a squeezed state but with reduced amount

of squeezing. When Ic > 1
2

(
1 +

√
1 + coth(r/2)

)
, the squeezing disappears. In the narrow

bandwidth limit, we use the approximate relation between Ic and ω0 to find the distribution

of minimum quadrature variance in terms of r and ω0, as shown in Fig. 8.10. A critical
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curve, which is determined by

2πω0

a
= ln

(√
1 + coth(r/2) + 1√
1 + coth(r/2)− 1

)
, (8.4.19)

separates the squeezing region and no squeezing region. When r →∞, 2πω0/a→ 2 ln(
√

2 +

1) ≈ 1.763. Below this value, one can always make the output state classical by increasing

the single-mode squeezing factor r.

Vmin = 1.0
0.8

0.5

0.3
Squeezing

No Squeezing
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Figure 8.10: Distribution of minimum quadrature variance of the output state as a function of single-
mode squeezing factor r and the central frequency ω0 in the narrow bandwidth limit. A critical curve along
which Vmin = 1.0 separates the squeezing region and no squeezing region. In the squeezing region Vmin < 1.0,
while in the no squeezing region Vmin > 1.0.

8.4.5 Connetion to black hole information paradox

The decoherence effect we describe here is a previously unnoticed consequence of the trans-

formation from the bipartite Hilbert space of the Rindler and Unruh modes, to the single

Hilbert space of the Minkowski modes. Notice that in Eq. (8.4.5) any phase relationship

between the left and right Unruh modes is lost in the construction of the Minkowski num-

ber operator. This means that interactions which lead to entanglement between the left

and right Unruh modes, as occurs with the accelerated squeezer, will in general appear as

decoherence with respect to measurements by inertial observers. Nevertheless, notice that

the interaction with the accelerated squeezer is reversible in principle in the sense that the
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Rindler mode can be unsqueezed by a second accelerated squeezer, thus returning the field

to the Minkowski vacuum state. The accelerations required to generate this decoherence

effect are well beyond those that can be produced in the lab. However, such accelerations do

occur naturally in many regions of the universe. We also note that simulation of these effects

using optical squeezing is possible with current technology and could allow an experimental

investigation of the decoherence effect described here.

Because of the equivalence principle there is a strong relationship between gravity and accel-

eration [MTW73]. The analogous situation to Unruh radiation in curved space-time is that

of thermal radiation from black holes (Hawking radiation) [Haw75]. In this case regaining

unitarity is not straightforward because the analogue of the mirror image Rindler wedge

lies behind the black hole event horizon and so is inaccessible. Given that in the far future

the black hole is expected to completely evaporate, this leads to the black hole information

paradox [Haw76]. In spite of many attempts [STU93, StHW94, Mat05, HPS16, BMT], a

completely satisfactory resolution of this problem has not been found [AMPS13, BP13].

We believe the decoherence effect discussed in this section has significance for understanding

quantum effects in gravitational systems. For example, our system can be viewed as a

crude toy model for the creation and eventual evaporation of a black hole. We begin in

the far past in a pure Minkowski vacuum state, before the formation of the black-hole. In

the intermediate epoch accelerated observers, representing observers close to the black-hole,

interact with the field modes. Finally in the far-future the black-hole has evaporated leaving

flat space, however the field is left in a mixed state with respect to inertial observers. This

may indicate a new direction for understanding the black-hole information paradox.

8.5 Summary

In this chapter, we discuss time dependent interactions between a uniform accelerated object

and a massless quantum field. The switching on and off of the interactions is realized by

making the accelerated objects only act on a localized Rindler wave packet mode. We first
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constructed a circuit for narrow bandwidth Rindler wave packet modes and then generalized

it to arbitrary wave packet modes. One of the advantages of the this method is that it resolves

the energy divergence problem we encountered in Chapter 7. Based on this circuit model, we

focus on the problem of a uniformly accelerated single-mode squeezer. The most interesting

discovery is that the output state from a uniformly accelerated single-mode squeezer becomes

mixed as observed by inertial observers, given that the input state is pure. This decoherence

effect may have important implications for the black hole information paradox.



9
Particle Creation from Gravitational

Perturbations Around Schwarzschild Black

Holes

9.1 Introduction

Particle creation in curved spacetimes is a fundamental phenomenon and is a very important

research topic in quantum field theory in curved spacetime [BD82, Wal94, PT09]. It usually

occurs in highly dynamical spacetimes. In the very early universe, initial quantum fluctu-

ations of curvature can be amplified by the exponentially expanding universe to form tiny

perturbations on the background spacetime [MFB92], which play a crucial role in explaining

the origin of the anisotropies of the cosmic microwave background (CMB) and the formation

189
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of the large scale structure of the observed universe. Primordial gravitational waves are also

expected to be generated in the early universe and their detection is one of the main targets

of modern astrophysics. In addition to dynamical spacetimes, stationary or static space-

times can also create quantum particles. Well-known examples include superadiance from a

rotating black hole [Zel72, Mis72, Unr74], Unruh-Davies [Unr76, Dav75] radiation observed

by a uniformly accelerated observer, and Hawking radiation from a Schwarzschild black hole

[Haw75]. Although Hawking particles were observed in an analogue system recently [Ste16],

detection of Hawking radiation from a real black hole remains elusive because the temper-

ature of an astrophysical black hole ( 10−8 K) is much lower than the temperature of the

CMB (∼ 2.7 K).

One question of particular interest is whether gravitational waves (ripples of spacetime)

can create quantum particles. Generally a dynamical spacetime generates particles, how-

ever it has been shown that particle creation by plane gravitational waves is forbidden

[Gib75, Des75, GV91, Sor00]. A similar statement is applied to the electromagnetic waves:

electron-positron pairs cannot be produced by plane electromagnetic waves, no matter how

strong we make the electromagnetic field [Sch51]. If electron-positron pairs were created,

momentum conservation would be violated. Pair production of electron and positron is pos-

sible if a nucleus is introduced to balance the momentum [Hub06]. In the gravitational wave

case, one would expect that an analog to the nucleus, e.g., a black hole, has to be introduced

to allow particle creation. From the theoretical perspective, it is very important and nec-

essary to study this issue in details to determine whether and to what degree gravitational

perturbations in a black hole spacetime can create particles. Recently, gravitational waves

from the coalescence of two black holes were directly detected by the Laser Interferometer

Gravitational-Wave Observatory (LIGO) [ea16b, ea16a]. The observed gravitational waves

reveal dramatic change of spacetime when two black holes merge into one and carry away a

huge amount of energy from the binary black hole system. If the gravitational perturbations

can create particles, e.g., photons, they would travel along with the gravitational waves.

These particles could be detected if the particle creation efficiency is high enough. So from

the observational perspective, it is important to have a thorough study of this question.
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In this chapter we address this question. Instead of studying the whole process of the

coalescence of two black holes, a very complicated situation requiring numerical relativity

[Leh01], we study the final stage of merging, where the ring-down is dominant. In particular,

we are interested in the effects of the gravitational quasi-normal modes (QNMs) of a black

hole, which have been extensively studied for decades [Nol99, KS99, BCS09, KZ11] and

analytical techniques can be applied. We consider a massless Hermitian scalar field that

propagates in the Schwarzschild background spacetime with quasi-normal perturbations.

The scalar field is assumed to be minimally coupled with the spacetime. The coupling

can be divided into two parts: coupling with Schwarzschild background spacetime and the

QNMs. The former is well studied, whilst the latter is less known and is the main content

of this chapter. We derive the interaction Hamiltonian for the scalar field, which shows that

the QNMs play the role of a multimode squeezer, familiar in quantum optics. The QNMs

“squeeze” the initial state (vacuum or thermal state) of the scalar field and produce particles.

This chapter is organized as follows. In Sec. 9.2, we briefly review the quantization of a

massless scalar field in the Schwarzschild background spacetime. In Sec. 9.3, we review the

gravitational QNMs for Schwarzschild black holes and list some important results for our

calculations. In Sec. 9.4, we study the coupling between the scalar field and the gravitational

QNMs, and derive the interaction Hamiltonian for the scalar field, based on which we show

that the gravitational perturbations around a Schwarzschild black hole create particles. The

results of this chapter have been accepted for publication in [SHMR17a].

9.2 Scalar field in curved spacetimes

We consider a Hermitian massless scalar field Φ that minimally couples to the curved space-

time with metric gµν . The Lagrangian density for the scalar field is [BD82]

L =
1

2

√
−ggµν(∂µΦ)(∂νΦ), (9.2.1)
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where g is the determinant of gµν . We assume that the metric gµν can be decomposed

into the background part gBµν and the perturbation part hµν , namely, gµν = gBµν + hµν .

The background metric usually possesses some symmetries (time-translation invariance, ro-

tational invariance etc.) and the dynamics of the scalar field on the background spacetime is

well established. The perturbation hµν is assumed to be small so that perturbation theory is

applicable. Expanding the Lagrangian density Eq. (9.2.1) with respect to hµν and keeping

terms to first order, we find

L = L0 + L1, (9.2.2)

where the background part L0 and perturbed part L1 are

L0 =
1

2

√
−gBgµνB (∂µΦ)(∂νΦ),

L1 =
1

4

√
−gB

(
hααg

µν
B − 2hµν

)
(∂µΦ)(∂νΦ),

with gB the determinant of the background metric and hαα ≡ gBαβh
αβ the trace of the metric

perturbation. Note that we use the convention: hµν ≡ gµαB gνβB hαβ. In this chapter, we are

concerned with the Schwarzschild background spacetime, for which the line element in the

Schwarzschild coordinates (t, r, θ, φ) is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2), (9.2.3)

where f(r) = 1− 2M
r

and M is the mass of the Schwarzschild black hole.

The canonically conjugate field of Φ is also decomposed into background part and perturbed

part,

Π = Π0 + Π1, (9.2.4)

where

Π0 =
∂L0

∂(∂tΦ)
=
√
−gBgttB(∂tΦ),

Π1 =
∂L1

∂(∂tΦ)
= −1

2

√
−gB

[
htν(∂νΦ)− hααgttB(∂tΦ)

]
.
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The Hamiltonian density is

H = H0 +H1, (9.2.5)

where

H0 = Π0(∂tΦ)− L0 =
1

2

√
−gB

[
gttB(∂tΦ)2 − gijB(∂iΦ)(∂jΦ)

]
(9.2.6)

is the unperturbed Hamiltonian density and

H1 = Π1(∂tΦ)− L1 = −1

2

√
−gB

[
htt(∂tΦ)2 − hij(∂iΦ)(∂jΦ)

]
+

1

2
hααH0 (9.2.7)

is the perturbed Hamiltonian density. For the Schwarzschild background spacetime,
√
−gB =

r2 sin θ, so the perturbed Hamiltonian

H1 =

∫
d3xH1 =

1

2

∫ ∞
2M

dr

∫
4π

dΩ r2

{
− htt(∂tΦ)2 + hij(∂iΦ)(∂jΦ)

+
1

2
hαα
[
gttB(∂tΦ)2 − gijB(∂iΦ)(∂jΦ)

]}
(9.2.8)

where dΩ = sin θdθdφ.

The dynamics of the scalar field on the background spacetime is determined by the unper-

turbed Lagrangian density L0. The quantization of the scalar field has been discussed in

details in Section 4.6.2. The difference here is that we only consider the scalar field in region

I. The scalar field operator can be expanded as

Φ̂ =
∞∑
l=0

l∑
m=−l

∫ ∞
0

dω

(
âωlmu

up
ωlm + b̂ωlmu

in
ωlm + h.c.

)
, (9.2.9)

where the superscript “I” has been omitted for simplicity. The operators âωlm and b̂ωlm

represent upcoming and ingoing modes, respectively. They satisfy the boson commutation

relations

[âωlm, â
†
ω′l′m′ ] = δ(ω − ω′)δll′δmm′ ,

[b̂ωlm, b̂
†
ω′l′m′ ] = δ(ω − ω′)δll′δmm′ ,

[âωlm, b̂ω′l′m′ ] = [âωlm, b̂
†
ω′l′m′ ] = 0. (9.2.10)
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9.3 Gravitational quasi-normal modes

A Schwarzschild black hole is a static and spherically symmetric spacetime that is described

by the Schwarzschild metric Eq. (9.2.3). Taking this metric to be the background metric

gBµν , gravitational perturbations hµν = gµν − gBµν can arise through various physical pro-

cesses, such as a star falling into the black hole. The equations governing the evolution of

the perturbations were first derived by Regge and Wheeler [RW57], Zerilli [Zer70] in the

Regge-Wheeler-Zerilli (RWZ) gauge. Due to the time-translation and rotational invariance

of the Schwarzschild metric, the perturbations can be decomposed into eigenmodes with def-

inite frequency and angular momentum. Furthermore, they can be classified as two distinct

types: odd-parity (or magnetic-parity) and even-parity (or electric-parity) perturbations.

In the RWZ gauge, the odd-parity perturbations are characterized by two functions h̃0(r)

and h̃1(r). The nonzero components of hµν are

h
(o)
tA = h̃0(r)e−iωtX lm

A (θ, φ),

h
(o)
rA = h̃1(r)e−iωtX lm

A (θ, φ), (9.3.1)

where A = {θ, φ}. Here ω is the frequency of the perturbations, and X lm
A is the odd-parity

vector spherical harmonic on the unit two-sphere [MP05],

X lm
θ = − csc θ Y lm

,φ, X lm
φ = sin θ Y lm

,θ, (9.3.2)

where Y lm(θ, φ) are the scalar spherical harmonics. The two functions h̃0(r) and h̃1(r) are

not independent and can be expressed in terms of a single scalar function Q(r) as [RW57]

h̃0 = − f

iω

d

dr

(
rQ
)
, h̃1 =

rQ

f
. (9.3.3)

The scalar function Q(r) satisfies the equation

− d2Q

dr2
∗

+ V
(o)
l Q = ω2Q (9.3.4)

where

V
(o)
l (r) = f(r)

[
l(l + 1)

r2
− 6M

r3

]
(9.3.5)
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is the odd-parity effective potential.

In the RWZ gauge, the even-parity perturbations are characterized by three functions:

H̃0(r), H̃1(r) and K̃(r). The nonzero components of hµν are

h
(e)
tt = f(r)H̃0(r)e−iωtY lm,

h
(e)
tr = H̃1(r)e−iωtY lm,

h(e)
rr =

H̃0(r)

f(r)
e−iωtY lm,

h
(e)
AB = r2ΩABK̃(r)e−iωtY lm, (9.3.6)

where ΩAB = diag{1, sin2 θ} is the metric on the unit two-sphere. H̃0(r), H̃1(r) and K̃(r)

can be expressed in terms of the Zerilli function Z(r) as [NZC+12]

K̃ =

[
λ(λ+ 1)r2 + 3λMr + 6M2

r2(λr + 3M)

]
Z +

√
fZ,r,

H̃1 = −iω
[
λr2 − 3λMr − 3M2

(r − 2M)(λr + 3M)

]
Z − iωrZ,r,

H̃0 =

[
λr(r − 2M)− ω2r4 +M(r − 3M)

(r − 2M)(λr + 3M)

]
K̃ +

[
(λ+ 1)M − ω2r3

iωr(λr + 3M)

]
H̃1, (9.3.7)

where

λ =
1

2
(l − 1)(l + 2). (9.3.8)

The Zerilli function satisfies the equation

− d2Z

dr2
∗

+ V
(e)
l Z = ω2Z (9.3.9)

with the even-parity effective potential

V
(e)
l (r) = f(r)

[
2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2

]
. (9.3.10)

The boundary conditions for QNMs are that on the event horizon there is only ingoing mode,

Q(Z) ∼ e−iωr∗ , r∗ → −∞ (r → 2M) (9.3.11)

and at the spatial infinity there is only outgoing mode,

Q(Z) ∼ eiωr∗ , r∗ → +∞ (r → +∞). (9.3.12)
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The above boundary conditions imply that the perturbations are dissipative: waves can

escape either to infinity or into the black hole. The frequencies of the QNMs are complex,

ω = ωR − iωI (9.3.13)

where ωI is positive and characterizes the decay of the QNMs. For a Schwarzschild black

hole, there is a discrete infinity of QNMs. The QNM frequencies depend on l and also an

integer n called overtone number [SW85a, Lea85].

Based on the Newman-Penrose (NP) null-tetrad formalism [NP62], another approach has

been developed to study gravitational perturbations in a Schwarzschild background [Pri72,

BP73]. This more general method has been generalized to study neutrino, electromagnetic

and gravitational perturbations in a Kerr background spacetime [Teu72, Teu73, PT73, TP74].

In this framework, gravitational perturbations are represented by two field quantities ψs with

s = ±2, which are related to the Weyl scalars [NP62] and satisfy the Teukolsky’s master

equation [Teu72]. For the Schwarzschild case, one can take the limit a→ 0 (a is the angular

momentum per unit mass of the Kerr black hole) in the master equation to obtain the

corresponding field equation for ψs. This quantity can be decomposed as

ψs = e−iωt sYlm(θ, φ) sRωl(r) (9.3.14)

where sYlm is the spin-weighted spherical harmonic [GMN+67], sRωl(r) is the radial function

satisfying the equation [BP73]{
∆−sr

d

dr

(
∆s+1
r

d

dr

)
+

[
r4ω2 − 2isr2(r −M)ω

∆r

+ 4isωr − (l − s)(l + s+ 1)

]}
sRωl(r) = 0,

(9.3.15)

where ∆r = r(r − 2M). At large distance from the black hole, the asymptotic solutions of

sRωl are

sRωl ∼
e−iωr∗

r
, and sRωl ∼

eiωr∗

r2s+1
(9.3.16)

whereas very close to the event horizon

sRωl ∼ ∆−sr e−iωr∗ , and sRωl ∼ eiωr∗ . (9.3.17)
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For quasi-normal modes, the boundary conditions are: only outgoing modes at spatial infinity

and ingoing modes on the future horizon,

sRωl ∼

Cωl ∆−sr e−iωr∗ , r∗ → −∞;

Dωl e
iωr∗/r2s+1, r∗ → +∞.

(9.3.18)

where Cωl and Dωl are the amplitude of the QNM at the event horizon and spatial infinity,

respectively.

The explicit expressions for the components of the metric perturbation hµν are very impor-

tant when considering the coupling between the gravitational perturbations and the quantum

fields. Chrzanowski, Cohen and Kegeles (CCK) developed a procedure to reconstruct the

metric perturbation hµν in the ingoing and outgoing radiation gauges from the field quantity

ψs [Chr75, CK74, KC79]. Roughly speaking, the CCK procedure consists of two steps. The

first step is to relate the field quantity ψs to the so-called Hertz potential Ψ, which also sat-

isfies the master equation with spin weight s = −2. The second step is to find the relation

between hµν and the Hertz potential Ψ [Chr75]. The first explicit calculation of the relation

between the Hertz potential Ψ and ψs for the Schwarzschild black hole was done by Lousto

and Whiting [LW02]. Generalization to the Kerr black hole was performed by Ori [Ori03],

Yunes and Gonzalez [YG06].

In the ingoing and outgoing gauges, the trace of the metric perturbation hαα vanishes in the

whole spacetime [Chr75]. In the ingoing gauge the perturbation hµν is transverse at past null

infinity and at the future horizon. Thus it is a suitable gauge to study the gravitational effects

near the event horizon. While in the outgoing gauge, hµν is transverse in the future null

infinity and at the past horizon. It is therefore a suitable gauge for studying gravitational

effects at spatial infinity, e.g., gravitational waves emitted by a black hole. Since it is

reasonable to expect that the interaction between metric perturbations and quantum fields

is strong near the event horizon, we therefore work in the ingoing radiation gauge throughout

this chapter.
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Following the CCK procedure, Nichols et al. [NZC+12] derived explicit expressions for the

metric perturbation hµν in the Schwarzschild background spacetime in the ingoing radiation

gauge. For the odd(magnetic)-parity perturbations, the nonzero components are

h
(o)
tA = −fh(o)

rA =

√
D

2f
√

2l(l + 1)
<
{[

d

dr∗
−
(
iω +

2f

r

)]
−2Rωl

(
−1YlmmA + 1Ylmm

∗
A

)
e−iωt

}
,

h
(o)
AB =

1

f 2
<
{[

(iωr2 −M)
d

dr∗
−
(

1

2
µ2f − iω(−3r + 7M)− ω2r2

)]
−2Rωl

×
(
−2YlmmAmB − 2Ylmm

∗
Am

∗
B

)
e−iωt

}
, (9.3.19)

where D = (l+ 2)!/(l− 2)!, µ2 = (l− 1)(l+ 2), < represents the real part of some function,

and mA = 1√
2
(1, i sin θ) is a vector on the unit-sphere with its index raised by the metric

ΩAB. For even(electric)-parity perturbations,

h
(e)
tt = −fh(e)

tr = f 2h(e)
rr = −2

√
D

r2
<
{
−2Rωl Ylme

−iωt},
h

(e)
tA = −fh(e)

rA =

√
D

2f
√

2l(l + 1)
<
{[

d

dr∗
−
(
iω +

2f

r

)]
−2Rωl

(
−1YlmmA − 1Ylmm

∗
A

)
e−iωt

}
,

h
(e)
AB =

1

f 2
<
{[

(iωr2 −M)
d

dr∗
−
(

1

2
µ2f − iω(−3r + 7M)− ω2r2

)]
−2Rωl

×
(
−2YlmmAmB + 2Ylmm

∗
Am

∗
B

)
e−iωt

}
. (9.3.20)

Note that the metric perturbation in the ingoing radiation gauge is related to that in the

RWZ gauge, Eqs. (9.3.1) and (9.3.6), by a gauge transformation.

9.4 Coupling between scalar field and odd-parity QNMs

In the absence of gravitational perturbations, the scalar field Φ evolves freely on the Schwarzschild

background spacetime. Its dynamics is dominated by the unperturbed Lagrangian density

L0. If the Schwarzschild background spacetime is perturbed, the scalar field would couple

to the gravitational perturbations. The dynamics of it is governed by the interaction Hamil-

tonian H1, Eq. (9.2.8), as well. It is a general phenomenon that quantum particles are

generated in a dynamical spacetime, e.g., the exponentially expanding universe [?, MFB92].

Our particular interest is in whether or not gravitational perturbations in a Schwarzschild
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background can produce particles. It is well known that the plane gravitational waves do

not produce particles [Gib75, Des75, GV91, Sor00]; Were it otherwise, momentum conser-

vation would be violated. As we shall demonstrate, the situation is different for spherical

perturbations. We will show that gravitational perturbations in a Schwarzschild background

do generate scalar particles and that angular momentum is conserved in this process.

In order to know the state evolution of the scalar field, one needs to find the explicit ex-

pression for the interaction Hamiltonian Ĥ1 (we restore a hat from now on to indicate that

we consider a quantized scalar field) which contains first order terms of the components of

the metric perturbation hµν . An appropriate gauge can be chosen so that the interaction

Hamiltonian Ĥ1 takes a relatively simple form. Throughout this discussion we will work in

the ingoing radiation gauge. There are several advantages of choosing this gauge. First,

it is straightforward to generalize the calculations to the Kerr background case. Second,

it is expected that the coupling between gravitational perturbations and the scalar field is

strong around the event horizon so it is more convenient to use the ingoing radiation gauge.

Third, the trace of the metric perturbation vanishes in this gauge, hαα = 0. Consequently

Eq. (9.2.8) is simplified:

Ĥ1 =
1

2

∫ ∞
2M

r2dr

∫
4π

dΩ
[
− htt(∂tΦ̂)2 + hrr(∂rΦ̂)2 + 2hrA(∂rΦ̂)(∂AΦ̂) + hAB(∂AΦ̂)(∂BΦ̂)

]
.

(9.4.1)

where we have replaced xi by {r, A}, with A,B = {θ, φ}. In what follows we will consider

the effects of both odd-parity and even-parity QNMs with frequency ω0 = ωR − iωI and

angular momentum l0,m0.

9.4.1 Interaction Hamiltonian from odd-parity QNMs

For simplicity, we only consider the coupling between upcoming and upcoming modes, and

neglect the superscript “up” without introducing any confusion. Couplings between upcom-

ing and ingoing modes, ingoing and ingoing modes are also possible, which we leave for

future work. Since for odd-parity perturbations, h
(o)
tt = h

(o)
rr = 0, the relevant terms in Eq.
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(9.4.1) are (∂rΦ̂)(∂AΦ̂) and (∂AΦ̂)(∂BΦ̂). Using the expansion of the scalar field operator,

Eq. (9.2.9), and the explicit expression of the upcoming mode function, Eq. (4.6.5), we find

(∂rΦ̂)(∂AΦ̂)

=
∑
l,l′

∑
m,m′

∫
dω

∫
dω′

1

4π
√
ωω′

[
âωlmâω′l′m′e

−i(ω+ω′)t∂r

(
Rωl

r

)(
Rω′l′

r

)
Ylm(∂AYl′m′)

+âωlmâ
†
ω′l′m′e

−i(ω−ω′)t∂r

(
Rωl

r

)(
R∗ω′l′

r

)
Ylm(∂AY

∗
l′m′) + h.c.

]
. (9.4.2)

(∂AΦ̂)(∂BΦ̂)

=
∑
l,l′

∑
m,m′

∫
dω

∫
dω′

1

4π
√
ωω′

[
âωlmâω′l′m′e

−i(ω+ω′)t

(
Rωl

r

)(
Rω′l′

r

)
(∂AYlm)(∂BYl′m′)

+âωlmâ
†
ω′l′m′e

−i(ω−ω′)t
(
Rωl

r

)(
R∗ω′l′

r

)
(∂AYlm)(∂BY

∗
l′m′) + h.c.

]
. (9.4.3)

From Eq. (9.3.19) we see that h
(o)
rA and h

(o)
AB contain terms that are proportional to e−iω0t =

e−ωI te−iωRt and (e−iω0t)∗ = e−ωI teiωRt. When multiplying with (∂rΦ̂)(∂AΦ̂) and (∂AΦ̂)(∂BΦ̂)

we get terms containing factors

e±i(ωR−ω−ω
′)t, e±i(ωR+ω+ω′)t, e±i(ωR+ω−ω′)t, e±i(ωR−ω+ω′)t.

In the rotating-wave approximation, terms with the lowest frequency oscillations e±i(ωR−ω−ω
′)t

dominate over more highly oscillatory terms. This approximation ensures that the energy is

approximately conserved, ωR ≈ ω + ω′. Substituting Eqs. (9.3.19), (9.4.2) and (9.4.3) into

Eq. (9.4.1) we have in this approximation

Ĥ
(o)
1 ≈ 1

16π
e−ωI t

∑
l,l′

∑
m,m′

∫
dω

∫
dω′

1√
ωω′

[
e−i(ωR−ω−ω

′)t(Ir1Ia1 + Ir2Ia2)â†ωlmâ
†
ω′l′m′

+ei(ωR−ω−ω
′)t(I∗r1I∗a1 + I∗r2I∗a2)âωlmâω′l′m′

]
, (9.4.4)

where Ir1 and Ir2 are the radial integrals,

Ir1 = −
√
D0√

2l0(l0 + 1)

∫ ∞
2M

dr
1

f

[
d

dr∗
−2Rω0l0 −

(
iω0 +

2f

r

)
−2Rω0l0

]
∂r

(
R∗ωl
r

)(
R∗ω′l′

r

)
,

Ir2 =

∫ ∞
2M

dr
1

r2f 2

[
(iω0r

2 −M)
d

dr∗
−2Rω0l0 −

(
1

2
µ2

0f − iω0(−3r + 7M)− ω2
0r

2

)
−2Rω0l0

]
×
(
R∗ωl
r

)(
R∗ω′l′

r

)
, (9.4.5)
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Ia1 and Ia2 are the angular integrals,

Ia1(l0,m0; l,m; l′,m′) =

∫
4π

dΩ
(
−1Yl0m0m

A + 1Yl0m0m
A∗)Y ∗lm(∂AY

∗
l′m′), (9.4.6)

Ia2(l0,m0; l,m; l′,m′) =

∫
4π

dΩ
(
−2Yl0m0m

AmB − 2Yl0m0m
A∗mB∗)(∂AY ∗lm)(∂BY

∗
l′m′).

(9.4.7)

Since the Hamiltonian (9.6.3) is quadratic in creation (and annihilation) operators, it is

clear that it describes multimode squeezing. The quantity Ir1Ia1 + Ir2Ia2 plays the role of

a phase matching function, the nonzero value of which would imply that the gravitational

perturbations generate quantum particles.

9.4.2 Radial integral

It is difficult to find exactly analytic results for the radial integrals Ir1 and Ir2 because we

do not have analytic solutions for −2Rω0l0 and Rωl. One might expect they can be calculated

numerically. It turns out that the calculation of the radial integrals is not trivial because of

the peculiar property of the radial function of the QNMs. When r∗ → +∞ (spatial infinity),

the integrands of Ir1 and Ir2 are both proportional to ei(ω0−ω−ω′)r∗ according to Eqs. (9.3.18)

and (4.6.9); when r∗ → −∞ (event horizon), they are proportional to e−i(ω0−ω−ω′)r∗ . The

QNM frequency is a complex number, ω0 = ωR − iωI , so the integrands are proportional to

eωIr∗ when r∗ → +∞, and e−ωIr∗ when r∗ → −∞. Since ωI > 0, the integrands are divergent

at the spatial infinity and on the event horizon, which implies the radial integrals are not

well defined.

Leaver [Lea86] proposed a method to overcome this difficulty by exploiting the analyticity

of the integrand in r∗. A new contour is chosen such that the integral along this contour is

finite. Sun and Price [SP88] discussed in detail how to construct Leaver’s contour by analytic

continuation and restored a factor that is missed in [Lea86]. Similar techniques were also

used by Yang et al [YZL15] to define the inner product of the radial function of the QNMs.

In this thesis, we follow the method of Leaver (taking into account the missing factor) to

regularize the radial integral to obtain a finite result. By using Leaver’s method, the radial
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integral can be in principle calculated numerically. In order to obtain an approximately

analytic result, we assume that the main contribution to the integration is from the region

near the event horizon, that is, r ∼ 2M . This is because the coupling between the QNMs and

scalar field near the horizon is expected to be stronger. This assumption can be also justified

by looking at the asymptotic behaviour of the integrand along the contour at infinity, which

is exponentially suppressed. To further simplify the result, we assume that the imaginary

part of the QNM frequencies are small. This is rather a crude approximation because the

imaginary part of the QNM frequencies of a Schwarzschild black hole are not so small.

However this approximation is adequate for the purpose of this thesis.

Noting that r = 2M and r = ∞ are two branch points, the branch cut can be chosen as a

line perpendicular to the real r axis, starting at r = 2M and ending at r =∞. It lies in the

upper complex r plane if ωR − ω − ω′ > 0, as shown in Fig. 9.1, and in the lower complex

r plane if ωR − ω − ω′ < 0. When ωR − ω − ω′ > 0, the contour C begins at r = ∞, right

next to the branch cut, moves downward to r = 2M , where it wraps and, left next to the

branch cut, moves upward to r = ∞, as shown in Fig. 9.1. We refer to the region near

r = 2M as the in region and the region around r = ∞ as the out region, as schematically

represented by the shaded region in Fig. 9.1. By analytically extending the integrands to

the complex r plane we see that along the contour C the integrands exponentially decay in

the out region, which can remove the formal divergence. In addition, the exponential decay

of the integrands in the out region implies that the main contributions to the integrals are

from the in region.

We describe in detail how to find the approximately analytic result for the radial integral

Ir1; the result for Ir2 can be obtained in a similar way. At spatial infinity, by using Eqs.
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Re(r)

Im(r)

r = 2M

C

O

out region

in region

Figure 9.1: The contour C and branch cut for ωR − ω − ω′ > 0. The two shaded regions are referred
to as in (close to the horizon) and out (around r =∞) regions, respectively.

(9.3.18) and (4.6.9), the integrand of Ir1 can be approximated as

1

f

[(
d

dr∗
− iω0 −

2f

r

)
−2Rω0l0

]
d

dr

(
R∗ωl
r

)(
R∗ω′l′

r

)
≈ −B∗ωlB∗ω′l′Dω0l0

(
iω

f
+

1

r

)
ei(ω0−ω−ω′)r∗

≈ −B
∗
ωlB

∗
ω′l′Dω0l0

2M

[
iΩx(x− 1)−1+i∆ + x−1(x− 1)i∆

]
ei∆x, (9.4.8)

where we have defined dimensionless quantities x = r/2M , ∆ = 2M(ω0−ω−ω′), Ω = 2Mω,

Ω0 = 2Mω0, Ω′ = 2Mω′. Near the event horizon, according to Eqs. (9.3.18) and (4.6.9), the

integrand of Ir1 can be approximated as

1

f

[(
d

dr∗
− iω0 −

2f

r

)
−2Rω0l0

]
d

dr

(
R∗ωl
r

)(
R∗ω′l′

r

)
≈ 2A∗ωlA

∗
ω′l′Cω0l0

[
x−1(1− iΩ0x)(iΩx− 1)(x− 1)1−i∆ + iΩ(1− iΩ0x)(x− 1)−i∆

]
e−i∆x,

(9.4.9)

where we have only kept the term proportional to e−i(ω0−ω−ω′)r∗ owing to the rotating wave

approximation. As discussed before, the integration along the real axis is formally divergent.

The integrands Eqs. (9.4.8) and (9.4.9) are analytically extended to the whole complex r

plane. Along the contour C in the out region, ei∆x ∼ e−2MωI |x|, which means the integrand of

Ir1 exponentially decays. We therefore expect that the integral Ir1 is finite along the contour



204
Particle Creation from Gravitational Perturbations Around

Schwarzschild Black Holes

C. Unfortunately, we cannot find an analytic expression for the integrand on the whole

contour C. Numerical techniques need to be introduced to perform the contour integration.

However, it may be possible that an approximate result can be obtained by using only the

asymptotic behaviour of the integrand. Note that in the out region the integrand (9.4.8)

exponentially decays and contributes very little to the total integral. Introducing another

exponential decaying function in the out region would not introduce large deviation to the

integral. We therefore replace Eq. (9.4.8) by Eq. (9.4.9) with the factor e−i∆x replaced

by ei∆x. In the in region, the asymptotic expression for the integrand is Eq. (9.4.9) which

dominates the contribution to the integral. We expect that most pairs of particles that

are produced satisfy the energy conservation condition, ωR = ω + ω′, and furthermore the

imaginary part of the QNM frequency is usually small. We thus can take the limit of i∆ ∼ 0,

so that e−i∆x ≈ ei∆x. The exponential factor e−i∆x in Eq. (9.4.9) is replaced by ei∆x and

an approximate asymptotic expression is obtained. In a word, we approximate the original

integrand by

1

f

[(
d

dr∗
− iω0 −

2f

r

)
−2Rω0l0

]
d

dr

(
R∗ωl
r

)(
R∗ω′l′

r

)
≈ 2A∗ωlA

∗
ω′l′Cω0l0

[
x−1(1− iΩ0x)(iΩx− 1)(x− 1)1−i∆ + iΩ(1− iΩ0x)(x− 1)−i∆

]
ei∆x

(9.4.10)

along the whole contour C. Obviously, this is a very crude approximation since we have

ignored the behaviour of the integrand in the intermediate region. The validity of this

approximation has to be verified by numerical calculation. However, we expect that this

approximation provides a lower bound for the exact integral since near the horizon we replace

an exponentially growing function by an an exponentially decaying function. The advantage

of this approximation is that we can obtain an analytic result for the radial integral Ir1.

From Eq. (9.4.10) we see that basically we need to calculate∮
C

dx ei∆x(x− 1)n1−i∆xn2 (9.4.11)

where n1, n2 are two integers, C is the contour we introduce, as shown in Fig. 9.1. Defining
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a new variable u = i∆(x− 1), we have [MF53]∮
C

dx ei∆x(x− 1)n1−i∆xn2

= (i∆)i∆−n1−1

∮
F

du euun1−i∆
(

1 +
u

i∆

)n2

=
2πi(−1)n1+1−i∆ei∆

Γ(−n1 + i∆)
U(n1 + 1− i∆, n1 + n2 + 2− i∆,−i∆), (9.4.12)

where F is the contour illustrated by Morse and Feshbach’s Fig. 5.1.2 [MF53], Γ(z) is the

Gamma’s function and U(a, c, z) is the confluent hypergeometric function [AS72]. Therefore

the radial integral Ir1 can be approximated as

Ir1 ≈ − 8πMi
√
D0√
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]
+
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]
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Γ(i∆)
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i∆
+ 2ΩΩ0 + iΩ
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,

(9.4.13)

where we have used the fact that [NIS]

U(a, a+ n+ 1, z) =
z−a

Γ(a)

n∑
k=0

(
n

k

)
Γ(a+ k)z−k, (9.4.14)

with n = 0, 1, 2, · · · . In the limit of i∆ ∼ 0, from Eq. (9.4.13) we obtain the dominant term

Ir1 ≈ −
√
D0√

2l0(l0 + 1)

16πiMΩΩ0

(i∆)2

A∗ωlA
∗
ω′l′Cω0l0

1− e2πΩ0
. (9.4.15)

The calculation of the radial integral Ir2 is very similar and we put the details in Appendix

A (Section 9.8.1). The dominant term of Ir2 in the limit of i∆ ∼ 0 is

Ir2 ≈
16πiMΩ2

0

(i∆)2

A∗ωlA
∗
ω′l′Cω0l0

1− e2πΩ0
. (9.4.16)
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9.4.3 Angular integral

In order to calculate the the angular integrals Ia1 and Ia2, we need to know the explicit

expressions for the spin weighted spherical harmonics ±1Ylm and ±2Ylm. The spin weighted

spherical harmonics sYlm for integers s, l,m is defined from the spherical harmonics Ylm

[GMN+67],

sYlm =


√

(l−s)!
(l+s)!

ðsYlm, 0 ≤ s ≤ l;√
(l+s)!
(l−s)!(−1)s ð̄−sYlm, −l ≤ s ≤ 0,

(9.4.17)

where ð and ð̄ are the spin-raising and spin-lowering operators, respectively. Assume that η

is a quantity of spin-weight s, then ðη is a quantity of spin-weight s+ 1,

ðη ≡ −(sin θ)s
(
∂

∂θ
+

i

sin θ

∂

∂φ

)[
(sin θ)−sη

]
; (9.4.18)

and ð̄η is a quantity of spin-weight s− 1,

ð̄η ≡ −(sin θ)−s
(
∂

∂θ
− i

sin θ

∂

∂φ

)[
(sin θ)sη

]
. (9.4.19)

According to the definition (9.4.17), we derive in detail the explicit expressions for ±1Ylm and

±2Ylm in Appendix B (Section 9.8.2). In terms of associated Legendre functions Pm
l (cos θ),

we find

±1Ylm =
1

2
(−1)m

√
2l + 1

4π
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2m

sin θ
Pm
l

)
eimφ,(9.4.20)

±2Ylm =
1

4
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√
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sin2 θ
± 8m cot θ
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)
Pm
l

]
eimφ,

(9.4.21)

where clm =
√

(l +m)(l −m+ 1). Eqs. (9.8.20) and (9.8.21) can be further transformed

to eliminate the trigonometric functions by using the recurrence properties of the associated

Legendre functions [AS72]. Finally, the calculation of the angular integral is reduced to the

evaluation of the integrals of the products of three associated Legendre functions,

IP3(l1,m1; l2,m2; l3,m3) =

∫ 1

−1

dµPm1
l1

(µ)Pm2
l2

(µ)Pm3
l3

(µ). (9.4.22)
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where µ ≡ cos θ. The integral IP3 has an analytic result and is shown in Appendix C (Section

9.8.3). Therefore, the angular integrals can always be calculated although the calculation is

tedious in the general case.

For simplicity we consider a special case where the angular momentum of the QNMs along

the z direction is zero, that is, m0 = 0. This simplifies the calculation a lot and is sufficient

to demonstrate quantum particle generation by the QNMs. It is easy to show that, if we let

m = 0 in Eqs. (9.8.20) and (9.8.21),

±1Yl0 = ∓

√
2l + 1

4π

(l − 1)!

(l + 1)!
P 1
l , (9.4.23)

±2Yl0 =

√
2l + 1

4π

(l − 2)!

(l + 2)!
P 2
l . (9.4.24)

We thus immediately find

Ia1 =
√

2

∫
dΩ −1Yl00Y

∗
lm

(
i

sin θ
∂φY

∗
l′m′

)
, (9.4.25)

Ia2 =

∫
dΩ −2Yl00

[
(∂θY

∗
lm)

(
i

sin θ
∂φY

∗
l′m′

)
+

(
i

sin θ
∂φY

∗
lm

)
(∂θY

∗
l′m′)

]
. (9.4.26)

The integration over φ gives rise to a δ-function δm′,−m, which implies that the produced pair

of particles have opposite angular momentum along the z direction. This is not surprising

given that m0 = 0 and is an illustration of the angular momentum conservation in the

particle production process.

Using the recurrence properties

∂θP
m
l =

1

2

[
Pm+1
l − (l +m)(l −m+ 1)Pm−1

l

]
,

m

sin θ
Pm
l = −1

2

[
Pm+1
l−1 + (l +m)(l +m− 1)Pm−1

l−1

]
of the associated Legendre function, the angular integral Ia1 and Ia2 becomes

Ia1 = −
√

2πδm′,−m Klml
′m′

l01

∫ 1

−1

dµ P 1
l0
Pm
l

[
Pm′+1
l′−1 + (l′ +m′)(l′ +m′ − 1)Pm′−1

l′−1

]
,

(9.4.27)
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Ia2 = −π
2
δm′,−m Klml

′m′

l02

∫ 1

−1

dµ P 2
l0

{[
Pm+1
l − (l +m)(l −m+ 1)Pm−1

l

]
×
[
Pm′+1
l′−1 + (l′ +m′)(l′ +m′ − 1)Pm′−1

l′−1

]
+
[
Pm+1
l−1 + (l +m)(l +m− 1)Pm−1

l−1

][
Pm′+1
l′ − (l′ +m′)(l′ −m′ + 1)Pm′−1

l′

]}
,

(9.4.28)

where the factor Klml′m′LM is defined as

Klml′m′LM =

√
(2L+ 1)(2l + 1)(2l′ + 1)

(4π)3

(L−M)!

(L+M)!

(l −m)!

(l +m)!

(l′ −m′)!
(l′ +m′)!

. (9.4.29)

Now Ia1 and Ia2 can be explicitly calculated by using the result of IP3(l1,m1; l2,m2; l3,m3)

As an example, we calculate the angular integrals Ia1 and Ia2 for a QNM with angular

momentum (l0,m0) = (2, 0) and a pair of scalar particles, the first of which with angular

momentum (l,m) = (1, 1) and the other (l′,−1). We find that the particle (1, 1) only couples

with those particles with l′ = 2, namely, the only nonzero Ia1 and Ia2 are

Ia1(2, 0; 1, 1; 2,−1) = −1

2

√
3

π
, Ia2(2, 0; 1, 1; 2,−1) =

√
3

2π
. (9.4.30)

9.5 QNM as multimode squeezer

In the last two subsections, we have analytically calculated the angular integrals, and derived

approximately analytic expressions for the radial integrals for odd-parity QNMs. We thus

can obtain the interaction Hamiltonian Ĥ
(o)
1 , which dominates the evolution of the scalar

field. Given the approximate results we will estimate the strength of the coupling between

the QNMs and the scalar field. The time evolution operator is

Û (o) = T̂ exp

{
− i
∫ ∞

0

dt Ĥ
(o)
1 (t)

}
, (9.5.1)

where T̂ is the time ordering operator. In the weak-coupling regime [WLBR06], the time

ordering is not important so that we can approximate the time evolution operator as

Û (o) ≈ exp

{
− i
∫ ∞

0

dt Ĥ
(o)
1 (t)

}
, (9.5.2)
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and the integration over t can be directly evaluated. Using the integration∫ ∞
0

dt e−ωI te−i(ωR−ω−ω
′)t =

1

i
[
(ωR − ω − ω′)− iωI

] , (9.5.3)

we have

Û (o) =
⊗
lm

⊗
l′

Û
(o)
lml′ ,

Û
(o)
lml′ ≈ exp

{
− i
∫

dω

∫
dω′
[
F (o)
lml′(ω, ω

′)â†ωlmâ
†
ω′l′,−m + h.c.

]}
(9.5.4)

where

F (o)
lml′(ω, ω

′) =
4iM3A∗ωlA

∗
ω′l′Cω0l0√

ΩΩ′(1− e2πΩ0)

1

(i∆)3

[
Ω2

0Ia2 −
√
D0√

2l0(l0 + 1)
ΩΩ0Ia1

]
. (9.5.5)

It is evident that Eq. (9.5.4) represents a multimode squeezing operator and F (o)
lml′(ω, ω

′)

is known as the joint frequency distribution. Eq. (9.5.5) shows that the joint frequency

distribution F (o)
lml′(ω, ω

′) is not zero, indicating that there would be scalar particle creation.

If the initial state of the scalar field is a vacuum state (the Boulware vacuum), the QNMs

would squeeze the vacuum and produce a squeezed vacuum state; if the initial state is

a thermal state, e.g., Hawking thermal radiation, the QNMs would squeeze the Hawking

thermal radiation and amplify it. In a word, the presence of QNMs would squeeze any state

of the scalar field, amplify it and produce scalar particles. The energy of producing particle

is from the QNMs. This is the main conclusion of this chapter.

In Eq. (9.5.5), Aωl is the reflection amplitude (see Eq. (4.6.9)) of the upcoming scalar

field mode determined by the effective potential, Eq. (4.6.7). Fig. 9.2 shows the effective

potential of the scalar field for several low angular quantum number l. For a given l, the

effective potential peaks around r∗ = 2M with its maximum depending on l, higher for bigger

l. Unfortunately, there is no analytic expression for the reflection amplitude, however, we

can infer the qualitative behaviour of Aωl. If the frequency of the field mode is lower than

the maximum of the effective potential, most of the field mode is reflected; whilst if the

frequency is higher than the peak of the effective potential, the field mode almost penetrates

through the potential. Fig. 9.3 shows the numerical results of the reflection coefficients,

|Aωl|2.
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Figure 9.2: The effective potential for scalar field modes.
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Figure 9.3: Reflection coefficient for the scalar field modes.

After knowing the behaviour of the reflection amplitude, we can study the behaviour of the

joint frequency distribution. The factor ∆ is defined as

∆ ≡ 2M(ω0 − ω − ω′) = (ΩR − Ω− Ω′)− iΩI , (9.5.6)
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where ΩR = 2MωR, ΩI = 2MωI . Therefore we have

1

|∆|3
=

1[
(ΩR − Ω− Ω′)2 + Ω2

I

]3/2 . (9.5.7)

This is a distribution with respect to Ω and Ω′ that peaks along the line Ω + Ω′ = ΩR,

the maximum of which is 1/Ω3
I . Here ΩR − Ω − Ω′ can be considered as the frequency

detuning, and ΩI can be considered as the decay rate which also characterizes the width of

the distribution Eq. (9.5.7). If ΩI is small, the distribution Eq. (9.5.7) is nonzero only for

Ω + Ω′ ≈ ΩR. This is an indication of energy conservation: the sum of the frequencies of the

pair of scalar particles should be equal to the real part of the QNM frequency. Figs. 9.4 and

9.5 show an example of the absolute value of the joint frequency distribution, |F (o)
lml′(ω, ω

′)|.

We can see that basically |F (o)
lml′(ω, ω

′)| follows the energy-conservation line Ω + Ω′ ≈ ΩR.

The high frequency part is suppressed by the reflection amplitude Aωl; while in the low

frequency regime, |Aωl| is almost one and the factor 1/
√

ΩΩ′ dominates. The latter is

annoying because that means the joint frequency distribution is divergent at Ω = 0 or

Ω′ = 0. At the current stage, we assume that there exists a low frequency cutoff so that the

joint frequency distribution is finite. We leave this for future work and do not worry about

the low frequency behaviour here.

We can compute a crude estimate of the maximum of the joint frequency distribution.

Assume that in Eq. (9.5.5), Ω ∼ Ω′ ∼ ΩR/2, |Aωl| ∼ |Aω′l′ | ∼ 1/
√

2 and the contribution

from the angular integral part is at the order of unity, we find

|F (o)
lml′ |max ∼ 4M3

(
ΩR

ΩI

)(
1

Ω2
I

)
|Cω0l0|∣∣1− e2π(ΩR−iΩI)

∣∣ . (9.5.8)

This is an approximate relation between the squeezing amplitude (or the strength of coupling)

and various parameters of the black hole and QNM. Here ΩR is the resonance frequency of

the QNM and ΩI characterizes the decay rate. If we make an analogy with an optical cavity

[BR04], ΩR/ΩI can be considered as the quality factor of the QNM. We see that the squeezing

amplitude is proportional to the cube of the black hole mass, the amplitude of the QNM

at the event horizon, the quality factor of the QNM, and is inversely proportional to the

square of the decay rate. This means the strength of coupling is stronger for longer lasting
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Figure 9.5: Density plot of the modulus of the joint frequency distribution. QNM: ΩR = 0.7474,ΩI =
0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two: (l′,m′) = (2,−1).

QNMs, larger amplitude of QNMs and bigger black holes. However for Schwarzschild black

holes the QNMs decay very fast and the least damping QNM is the fundamental QNM for

which the overtone number is n = 0 [BCS09]. For example, for the fundamental QNM of
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(l0,m0) = (2, 0), ΩR = 0.7474 and ΩI = 0.178 [BCS09]. Substituting these into Eq. (9.5.8),

we find

|F (o)
lml′ |max ∼ 5M3|Cω0l0|. (9.5.9)

9.6 Coupling between scalar field and even-parity QNMs

The procedure to evaluate the coupling between the scalar field and the even-parity QNMs

is similar. For the even-parity perturbations, h
(e)
tt 6= 0, h

(e)
rr 6= 0, so we also need (∂tΦ̂)(∂tΦ̂)

and (∂rΦ̂)(∂rΦ̂) in Eq. (9.4.1), which is

(∂tΦ̂)(∂tΦ̂)

=
∞∑
l=0

∞∑
l′=0

l∑
m=−l

l′∑
m′=−l′

∫
dω

∫
dω′

1

4π
√
ωω′

[
− ωω′âωlmâω′l′m′e−i(ω+ω′)t

(
Rωl

r

)(
Rω′l′

r

)
YlmYl′m′

+ωω′âωlmâ
†
ω′l′m′e

−i(ω−ω′)t
(
Rωl

r

)(
R∗ω′l′

r

)
YlmY

∗
l′m′ + h.c.

]
. (9.6.1)

(∂rΦ̂)(∂rΦ̂)

=
∞∑
l=0

∞∑
l′=0

l∑
m=−l

l′∑
m′=−l′

∫
dω

∫
dω′

1

4π
√
ωω′

[
âωlmâω′l′m′e

−i(ω+ω′)t∂r

(
Rωl

r

)
∂r

(
Rω′l′

r

)
YlmYl′m′

+âωlmâ
†
ω′l′m′e

−i(ω−ω′)t∂r

(
Rωl

r

)
∂r

(
R∗ω′l′

r

)
YlmY

∗
l′m′ + h.c.

]
. (9.6.2)

Substituting Eqs. (9.3.20) and Eq. (9.2.9) into Eq. (9.4.1), and taking into account the

rotating wave approximation, we have

Ĥ
(e)
1 ≈ 1

16π
e−ωI t

∑
l,l′

∑
m,m′

∫
dω

∫
dω′

1√
ωω′

{
e−i(ωR−ω−ω

′)tâ†ωlmâ
†
ω′l′m′

[
(Ir3 + Ir4)Ia3

+Ir1Ia4 + Ir2Ia5

]
+ h.c.

}
, (9.6.3)

where the radial integrals Ir1 and Ir2 are defined in the last section, Eq. (9.4.5), Ir3 and Ir4
are

Ir3 = −ωω′
√
D0

∫ ∞
2M

dr
1

f 2−2Rω0l0

(
R∗ωl
r

)(
R∗ω′l′

r

)
, (9.6.4)

Ir4 = −
√
D0

∫ ∞
2M

dr−2Rω0l0∂r

(
R∗ωl
r

)
∂r

(
R∗ω′l′

r

)
. (9.6.5)
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The angular integrals Ia3, Ia4, Ia5 are

Ia3(l0,m0; l,m; l′,m′) =

∫
4π

dΩ Yl0m0Y
∗
lmY

∗
l′m′ , (9.6.6)

Ia4(l0,m0; l,m; l′,m′) =

∫
4π

dΩ
(
−1Yl0m0m

A − 1Yl0m0m
A∗)Y ∗lm(∂AY

∗
l′m′), (9.6.7)

Ia5(l0,m0; l,m; l′,m′) =

∫
4π

dΩ
(
−2Yl0m0m

AmB + 2Yl0m0m
A∗mB∗)(∂AY ∗lm)(∂BY

∗
l′m′).

(9.6.8)

The radial integral Ir3 and Ir4 can be calculated similarly to that for Ir1; details are in

Appendix A (Section 9.8.1). In the limit i∆ ∼ 0, we find

Ir3 ≈ −Ir4 ≈ −
8πi
√
D0MΩΩ′

(i∆)2

A∗ωlA
∗
ω′l′Cω0l0

1− e2πΩ0
. (9.6.9)

This implies Ir3 + Ir4 ≈ 0.

It turns out that Ia3 can be easily obtained and expressed in terms of the 3-j symbols,

Ia3 = (−1)m0

√
(2l0 + 1)(2l + 1)(2l′ + 1)

4π

 l l′ l0

0 0 0

 l l′ l0

−m −m′ m0

 ,(9.6.10)

which is zero when m0 6= m+m′. Taking into account the property of the 3-j symbols, Ia3

vanishes when l0 + l+ l′ is an odd integer. If we consider the special case where the angular

momentum of the quasi-normal modes along the z direction is zero, that is m0 = 0, the

calculation of the other angular integrals can be simplified. We have

Ia4 =
√

2

∫
dΩ −1Yl00Y

∗
lm

(
∂θY

∗
l′m′

)
, (9.6.11)

Ia5 =

∫
dΩ −2Yl00

[
(∂θY

∗
lm)(∂θY

∗
l′m′) +

(
i

sin θ
∂φY

∗
lm

)(
i

sin θ
∂φY

∗
l′m′

)]
. (9.6.12)

Using the recurrence properties of the associated Legendre function as before, the angular

integral Ia4 and Ia5 become

Ia4 =
√

2πδm′,−m Klml
′m′

l01

∫ 1

−1

dµ P 1
l0
Pm
l

[
Pm′+1
l′ − (l′ +m′)(l′ −m′ + 1)Pm′−1

l′

]
,

(9.6.13)
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l′ = 1 l′ = 3

Ia4(2, 0; 1, 1; l′,−1) 1
2

√
3

5π
−4
√

6
35π

Ia5(2, 0; 1, 1; l′,−1)
√

3
10π

2
√

3
35π

Table 9.1: Nonzero Ia4 and Ia5 for a QNM (l0,m0) = (2, 0) and a pair of scalar particles:
(l,m) = (1, 1) and (l′,−1).

Ia5 =
π

2
δm′,−m Klml

′m′

l02

∫ 1

−1

dµ P 2
l0

{[
Pm+1
l − (l +m)(l −m+ 1)Pm−1

l

]
×
[
Pm′+1
l′ − (l′ +m′)(l′ −m′ + 1)Pm′−1

l′

]
+
[
Pm+1
l−1 + (l +m)(l +m− 1)Pm−1

l−1

][
Pm′+1
l′−1 + (l′ +m′)(l′ +m′ − 1)Pm′−1

l′−1

]}
,

(9.6.14)

where the factor Klml′m′LM is by Eq. (9.4.29). As an example, we calculate the angular integrals

Ia4 and Ia5 for a QNM with angular momentum (l0,m0) = (2, 0) and a pair of scalar particles,

the first of which with angular momentum (l,m) = (1, 1) and the other (l′,−1). We find

that the only nonzero Ia4 and Ia5 are for l′ = 1 and l′ = 3, as shown in Table 9.1.

The time evolution operator is

Û (e) = T̂ exp

{
− i
∫ ∞

0

dt Ĥ
(e)
1 (t)

}
, (9.6.15)

where T̂ is the time ordering operator. In the low downconversion regime [WLBR06], the

time ordering is not important so that we can approximate the time evolution operator as

Û (e) ≈ exp

{
− i
∫ ∞

0

dt Ĥ
(e)
1 (t)

}
, (9.6.16)

and the integration over t can be directly evaluated. we find

Û (e) =
⊗
lm

⊗
l′

Û
(e)
lml′ ,

Û
(e)
lml′ ≈ exp

{
− i
∫

dω

∫
dω′
[
F (e)
lml′(ω, ω

′)â†ωlmâ
†
ω′l′,−m + h.c.

]}
(9.6.17)

where the joint frequency distribution is

F (e)
lml′(ω, ω

′) =
4iM3A∗ωlA

∗
ω′l′Cω0l0√

ΩΩ′(1− e2πΩ0)

1

(i∆)3

[
Ω2

0Ia5 −
√
D0√

2l0(l0 + 1)
ΩΩ0Ia4

]
. (9.6.18)
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It is evident that the joint frequency distribution F (e)
lml′(ω, ω

′) for coupling between the scalar

field and the even-parity QNM is nonzero, showing that there would be scalar particle

creation. Figs. 9.6 and 9.7 show an example of the joint frequency distribution.
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Figure 9.6: Modulus of the joint frequency distribution for even-parity QNMs. QNM: ΩR =
0.7474,ΩI = 0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two: (l′,m′) =
(3,−1).

9.7 Summary

In this chapter, we studied the coupling between the gravitational QNMs of a Schwarzschild

black hole and a massless scalar field, and showed that scalar particles can be produced

by the gravitational perturbations. This is contrary to the plane gravitational wave case

where particle creation is forbidden due to the violation of momentum conservation. In

the Schwarzschild black hole case, the total angular momentum of the QNMs and the pair

of particles is conserved. In arriving at the above conclusion, we explicitly derived the

interaction Hamiltonian for the scalar field which shows that the QNMs play the role as a

multimode squeezer. The QNMs squeeze the initial state of the scalar field and produce

particles. If the initial state of the scalar field is a vacuum state (Boulware vacuum), then



9.7 Summary 217

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 

2

4

6

8

10

12

2M
ω
′

2Mω

Figure 9.7: Density plot of the modulus of the joint frequency distribution for even-parity QNMs.
QNM: ΩR = 0.7474,ΩI = 0.178, (l0,m0) = (2, 0). Scalar particle one: (l,m) = (1, 1); scalar particle two:
(l′,m′) = (3,−1).

the final state is a squeezed vacuum state, indicating that the QNMs amplify the vacuum

fluctuations and create particles. If initially there exists Hawking radiation, a thermal state

with temperature proportional to the surface gravity of the black hole, the QNMs would

squeeze the Hawking radiation and amplify it. A recent study [AK] shows that the Unruh

radiation can be modulated by non-uniform acceleration, which implies, according to the

equivalence principle, that the Hawking radiation could be modulated by infalling matters.

In this chapter we explicitly show that the presence of gravitational perturbations results in

coupling between different Hawking particles, and therefore may build correlations between

them, modifying the thermal characteristic. In the realistic astrophysical situations, the

temperature of the CMB is higher than the Hawking temperature, so it is expected that the

amplification of the CMB around a black hole by the QNMs is more significant than the

amplification of the Hawking radiation.

How significant the amplification is depends on the squeezing amplitude. We showed that

the squeezing amplitude is proportional to the amplitude of the QNMs, which is reasonable

because larger gravitational perturbations would create more particles. In addition, the

maximal squeezing amplitude is proportional to the cube of the black hole mass and the real



218
Particle Creation from Gravitational Perturbations Around

Schwarzschild Black Holes

part of the QNMs frequency, and is inversely proportional to the cube of the imaginary part

of the QNMs frequency. This implies that for given amplitude of the QNMs a larger black

hole would create more particles. Furthermore, the particle creation efficiency is higher for

lower decaying QNMs. For Schwarzschild black holes, the damping of the QNMs is fast. The

least damping mode has 2MωI = 0.178. For extreme Kerr black holes, there exists QNMs

with very small damping rate, called Zero-Damping modes [YZZ+13]. We expect that our

result is qualitatively correct for the Kerr black holes, which implies the particle creation by

gravitational perturbations around an extreme Kerr black hole is much more efficient than

Schwarzschild black holes. We leave this topic for future work.

9.8 Appendix

9.8.1 Appendix A: Radial integrals Ir2, Ir3 and Ir4

The evaluation of Ir2 is very similar to that of Ir1. At spatial infinity (r → ∞), according

to Eqs. (9.3.18) and (4.6.9), the integrand of Ir2 can be approximated as

1

r2f 2

[
(iω0r

2 −M)
d

dr∗
−
(

1
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x−1(x− 1)−1+i∆

]
ei∆x.

(9.8.1)

The dominant term is ei∆x/x when x is large. Near the event horizon (r → 2M), according

to Eqs. (9.3.18) and (4.6.9), the integrand of Ir2 can be approximated as

1

r2f 2

[
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2 −M)
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−1(x− 1)1−i∆
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×e−i∆x. (9.8.2)
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By using the same approximation that leads to Eq. (9.4.10), we obtain an approximate

expression for the integrand of Ir2 along the whole contour C,

1
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×ei∆x. (9.8.3)

We can see that in the out region along the contour C, the dominant term in Eq. (9.8.3) is

x2ei∆x, which is greater than the dominant term in Eq. (9.8.1), ei∆x/x. However, these two

terms are both exponentially suppressed so that their contribution to the total integration is

small. We therefore expect that this approximation only introduces a small error. The main

contribution to the integration comes from the in region where x is not large. In the limit

of i∆ ∼ 0, which is the case that we are mostly interested in, e−i∆x ≈ ei∆x. We therefore

expect that Eq. (9.8.3) is a good approximation to Eq. (9.8.2) in the in region. Note that

we replace an exponential growing function by an exponentially decaying function in the in

region, the final result provides a lower bound for the exact radial integral Ir2. Using Eq.

(9.4.12) we have
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The dominant term in the limit of i∆ ∼ 0 is

Ir2 ≈
16πiMΩ2

0

(i∆)2

A∗ωlA
∗
ω′l′Cω0l0

1− e2πΩ0
. (9.8.5)
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At spatial infinity (r →∞), the integrand of Ir3 can be approximated as

1
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)
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∗
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3(x− 1)−2+i∆ei∆x. (9.8.6)

The dominant term is xei∆x when x is large. Near the event horizon (r → 2M), the the

integrand of Ir3 can be approximated as
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By using the same approximation as before, we obtain an approximate expression for the

integrand of Ir3 along the whole contour C,
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Using Eq. (9.4.12) we have
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The dominant term in the limit of i∆ ∼ 0 is

Ir3 ≈ −
8πi
√
D0MΩΩ′

(i∆)2

A∗ωlA
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ω′l′Cω0l0

1− e2πΩ0
. (9.8.10)

At spatial infinity (r →∞), the integrand of Ir4 can be approximated as
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Near the event horizon (r → 2M), the the integrand of Ir4 can be approximated as
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By analytically extending Eqs. (9.8.11) and (9.8.12) to the complex r plane and using the

same approximation as before, we obtain an approximate expression for the integrand of Ir3
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along the whole contour C,
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Using Eq. (9.4.12) we have
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The dominant term in the limit of i∆ ∼ 0 is

Ir4 ≈
8πi
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D0MΩΩ′

(i∆)2

A∗ωlA
∗
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9.8.2 Appendix B: Spin-weighted spherical harmonics

If we define two differential operators Ŝ± as

Ŝ± ≡ −
(
∂

∂θ
± i

sin θ

∂

∂φ

)
, (9.8.16)

then the action of ð (spin-raising operator) and ð̄ (spin-lowering operator) on η, which is a

quantity of spin weight s, can be written as

ðη = Ŝ+ η + s cot θ η,

ð̄η = Ŝ+ η − s cot θ η. (9.8.17)

According to the definition of the spin-weighted spherical harmonics (9.4.17), we find for

s = ±1

±1Ylm = ±

√
(l − 1)!

(l + 1)!
Ŝ±Ylm (9.8.18)
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and for s = ±2
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since Ylm is of spin-weight 0. Taking into account the definition of the spherical harmonics,

Ylm(θ, φ) = (−1)m
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and the recurrence relation for the associated Legendre function
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]
,

we obtain the explicit expressions for the s = ±1,±2 spin-weighted spherical harmonics in

terms of Legendre function,
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(9.8.21)

where clm =
√

(l +m)(l −m+ 1).

9.8.3 Appendix C: Integrals of the products of three Legendre

Functions

We need the overlap integrals of three associated Legendre functions in order to finish the

angular integrals,

IP3(l1,m1; l2,m2; l3,m3) ≡
∫ 1

−1

dµPm1
l1

(µ)Pm2
l2

(µ)Pm3
l3

(µ). (9.8.22)
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This was done by Mavromatis and Alassar [MA99], albeit with a phase error in their result.

Dong and Lemus [DL02] restudied the problem and found an expression for IP3 with positive

m1,m2 and m3. Here we correct the phase error in [MA99] and give an expression that is

valid for all values of m1,m2 and m3.

IP3(l1,m1; l2,m2; l3,m3)

=
(|∆m|)! (−1)m1+m2+min{m1+m2,m3}

2|∆m|+2 Γ(|∆m|) Kl1m1Kl2m2Kl3m3

∑
L

∑
L′

(2L+ 1)(2L′ + 1)

×

l1 l2 L

0 0 0

 l1 l2 L
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−m1 −m2 m3 −∆m


×
[
1 + (−1)L
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, (9.8.23)

where we have defined ∆m = m3−m1−m2, Klm =
√

(l −m)!/(l +m)!. min{a, b} represents

the minimal value of a and b, |l1 − l2| ≤ L ≤ l1 + l2 and |L− l3| ≤ L′ ≤ L+ l3.
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10
Conclusion and Future Outlook

10.1 Summary

In this thesis, we investigated how relativistic quantum field effects help to realize quantum

information tasks, and how concepts and techniques in quantum information science help to

deepen our understanding of quantum effects in non-inertial frames and gravitational fields.

The main results are summarized as follows.

10.1.1 Spacetime diamonds

We showed that the state of a massless field confined within a finite spacetime diamond is a

thermal state in the Minkowski vacuum, with temperature inversely proportional to the size

of the diamond. An Unruh-DeWitt detector with appropriate energy scaling responds to
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this thermal state. We further studied time-like entanglement between fields within different

diamonds. It is expected that entanglement exists between various diamonds in order that

the composite state is pure. We found that the entanglement is dominant between adjacent

diamonds and decays when two diamonds move apart.

10.1.2 Quantum communication with accelerated observers

We studied two types of quantum communication with a uniformly accelerated observer: the

sender is an inertial observer and another accelerated observer, respectively. In both cases,

the sender prepare a small coherent state as signal and a large coherent state as local oscil-

lator, the accelerated receiver performs homodyne detection using the local oscillator they

detect. In the case where the sender is inertial, we find that under some special conditions

the accelerated observer cannot detect substantial low frequency particles regardless of his

proper acceleration, in contrast with the general viewpoint that the accelerated observer sees

large amounts of low frequency particles if their acceleration is large. We also show that the

Unruh frequency provides a natural low frequency cutoff both for quantum limited classical

communication and quantum communication between the inertial observer and uniformly

accelerated observer. In the case where the sender is another uniformly accelerated observer,

we explicitly calculated the normalized output signal and the normalized variance in the high

central frequency and narrow bandwidth limit. It is surprising that they are almost the same

as in the case where the sender is inertial. We thus conclude that the output of the homodyne

detection as performed by an accelerated observer does not strongly depend on the motion

of the senders. Instead, it reflects the unique properties of the horizon of the receiver.

10.1.3 Quantum circuit model for uniformly accelerated objects

We constructed a non-perturbative quantum circuit model to describe the interactions be-

tween uniformly accelerated objects and quantum fields. We first considered time indepen-

dent interactions in the accelerated frame, for which a circuit can be drawn for every single

frequency Rindler mode. As a first application of the circuit model, the radiation flux from

an accelerated mirror was calculated. We found that a pulse of particles is located around
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the past horizon and the radiation field is locally squeezed. The local squeezing found here

is related to cutting the correlations across the past horizon.

We then generalized the circuit model for time independent interactions to a circuit model

for time dependent interactions. The time dependent interactions are realized by making

the accelerated objects only act on a localized wave packet mode. By using this more

general circuit, we studied the output field from an accelerated single-mode squeezer, given

that the initial state is the Minkowski vacuum. Unexpectedly, we found that the output

state of the field as observed by inertial observers is mixed, although the input state is

pure. The decoherence effect we describe here is a previously unnoticed consequence of the

transformation from the bipartite Hilbert space of the Rindler and Unruh modes, to the

single Hilbert space of the Minkowski modes. Because of the equivalence principle there

is a strong relationship between gravity and acceleration. Our finding may indicate a new

direction for understanding the black hole information paradox.

10.1.4 Squeezed black holes

We studied the coupling between the gravitational perturbations, QNMs, of a Schwarzschild

black hole and a massless scalar field, and showed that scalar particles can be produced by

the gravitational QNMs. The gravitational QNMs play the role as a multimode squeezer,

squeezing any initial state of the scalar field and creating scalar particles. How significant the

particle creation effect is depends on the squeezing amplitude. We showed that the squeezing

amplitude is proportional to the amplitude of the QNMs, which is reasonable because larger

gravitational perturbations would create more particles. In addition, the maximal squeezing

amplitude is proportional to the cube of the black hole mass and the real part of the QNMs

frequency, and is inversely proportional to the cube of the imaginary part of the QNMs

frequency.
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10.2 Future work and outlook

Several further studies based on works in this thesis are summarized in the following.

10.2.1 Spacetime diamonds

We have derived the Bogoliubov transformations between the diamond modes and the

Minkowski modes in (1 + 1)-dimensional spacetime. Future work would be to derive the

similar Bogoliubov transformations in (1 + 3)-dimensional spacetime, although we are confi-

dent that the result is the same by looking at the response of an energy scaled Unruh-deWitt

detector in (1 + 3)-dimensional spacetime. The more important and challenging future work

is to explore how to conceive a detector with appropriate energy scaling so that we can detect

the diamond temperature and extract the time-like or space-like entanglement. At microwave

frequencies, the artificial absorbers such as superconducting qubits [ZKSS10, ZSK+11] are

possible. At optical frequencies, standard techniques such as electro-optic or acousto-optic

modulation are also possible but could be very challenging.

10.2.2 Quantum communication with accelerated observers

For the quantum communication between two accelerated observers, we derived general ex-

pressions for the normalized output signal and the variance, and discussed a special case

where the central frequency is high and the bandwidth is narrow. A thorough numerical in-

vestigation for other cases could be useful. By comparing the results of such an investigation

with that of an inertial sender, we could have a more convincing conclusion that whether

the normalized output signal and the variance are independent of the motion of the sender.

Due to the strong relation between acceleration and gravity, it is interesting to generalize

this type of quantum communication protocols to the black hole horizon case. For example,

one can consider a scenario where a freely falling observer (inertial) sends a coherent signal

and local oscillator to a stationary observer (accelerated) outside the black hole, who then

performs homodyne detection. These kinds of studies may tell us some unique properties of
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the black hole horizon.

10.2.3 Quantum circuit model for uniformly accelerated objects

We have considered a uniformly accelerated single-mode squeezer that only acts on left-

moving modes. It is interesting to study a uniformly accelerated two-mode squeezer that

couples both the left-moving and right-moving modes. The two-mode squeezer produces

entanglement between the left-moving and right-moving Rindler modes. In the perspective

of the inertial observers, the entanglement between the left-moving and right-moving fields

may disappear. If this is the case, the accelerated motion can also induce decoherence of

entanglement.

The second future work is to generalize these calculations to the black hole case. Due to the

strong relationship between acceleration and gravity, it is expected the decoherence effect

also happens if the Hawking thermal radiation is squeezed. Results from Chapter 9 show that

the gravitational perturbations, QNMs, around a black hole play the role as a multimode

squeezer. So the presence of gravitational perturbations around a black hole would induce

decoherence of the state, as well as entanglement, as observed by a freely falling observer.

10.2.4 Squeezed black holes

A number of future directions could be explored in relation to particle production from

gravitational waves around a black hole. First could be to input some appropriate values

for various parameters to estimate how many particles can be produced by the ring down

that has been observed by LIGO. Other than the ring down stage, the inspiral and merger

stages can also produce particles although this calculation is beyond the scope of our current

work. In fact, the particle number from the ring down stage provides only a lower bound

(could be a very small fraction) for the total particle number from the coalescence of two

black holes. For the first LIGO event, the gravitational waves carried away energy of about

three solar masses. It would be interesting to see how much of this energy would have been

converted into photons (modelled by massless scalar particles) and whether these photons
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can be detected.

The second work to do is to consider QNMs of Kerr black holes. There exists very slow

damping QNMs for the extreme Kerr black holes [YZZ+13]. The nonlinear coupling between

these slow damping QNMs can produce gravitational turbulence [YZL15]. We have shown

that the squeezing amplitude is inversely proportional to the cube of the damping rate of

the QNMs of Schwarzschild black holes. It is reasonable to expect that this result may

be qualitatively correct for the QNMs of Kerr black holes. It is thus necessary to find the

exact relation between the squeezing amplitude and the damping rate of the Kerr black hole

QNMs. If our expectation is correct, we then would have a very efficient particle creation

mechanism.

The most interesting future work is to study the effects of quantized metric perturbations

on quantum fields. Effort has been expended to relate the spectrum of QNMs to the quan-

tization of the area of the black hole event horizon [Mag08]. Up to now, the QNMs are

treated classically and represent classical metric perturbations to the black holes. The met-

ric perturbations can also result in perturbations to the event horizon [ABB+95, CPS09]. We

can quantize the QNMs to obtain a quantum theory describing the interactions between the

quantum fields and the quantized metric fluctuations [TS10], or the quantized fluctuations of

event horizon. When the black hole emits a Hawking particle, the event horizon is no longer

stationary and some quantum fluctuations are induced. When quantum fluctuations of the

event horizon interact with other Hawking particles, correlations between different Hawking

particles can be built up. It is important to study this mechanism of building correlations

within Hawking particles, since it may help to understand the black hole information paradox

and ultimately provide clues for the final form of a theory of quantum gravity.



References

[AAF10] M. Aspachs, G. Adesso, and I. Fuentes. Optimal quantum estimation of the

Unruh-Hawking effect. Phys. Rev. Lett., 105:151301, 2010.

[ABB+95] P. Anninos, D. Bernstein, S. Brandt, J. Libson, J. Masso, E. Seidel, L. Smarr,

W. Suen, and P. Walker. Dynamics of apparent and event horiozn. Phys.

Rev. Lett., 74:630, 1995.

[ABS+14] M. Ahmadi, D. E. Bruschi, C. Sabin, G. Adesso, and I. Fuentes. Relativistic

quantum metrology: Exploiting relativity to improve quantum measurement

technologies. Sci. Rep., 4(4996), 2014.

[AFSMT06] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier. Entangle-

ment of Dirac fields in noninertial frames. Phys. Rev. A, 74:032326, 2006.

[AK] A. Ahmadzadegan and A. Kempf. Strong Transient Modulation of Horizon

Radiation. arXiv:1702.00472.

[AM03] P. M. Alsing and G. J. Milburn. Teleportation with a uniformly accelerated

partner. Phys. Rev. Lett., 91:180404, 2003.

[AMPS13] A. Almheiri, D. Marolf, J. Polchinski, and J. Scully. Black holes: complemen-

tarity or firewalls? J. High Energy Phys., 02:062, 2013.

[AS72] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables. Dover, New York, 1972.

231



232 References

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: public key distri-

bution and coin tossing. Proceeding of IEEE International Conference on

Computers Systems and Signal Processing, 1984.

[BBC+93] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Woot-

ters. Teleporting an unkown quantum state via dual classical and Einstein-

Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895, 1993.

[BCS09] E. Berti, V. Cardoso, and A. O. Starinets. Quasinormal modes of black holes

and black branes. Class. Quantum Grav., 26:163001, 2009.

[BD82] N. D. Birrell and P. C. W. Davies. Quantum fields in curved space. Cambride

University Press, 1982.

[BDU+14] D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I. Fuentes. Quantum

estimation of the Schwarzschild spacetime parameters of the earth. Phys. Rev.

D, 90:124001, 2014.

[BFL12] D. E. Bruschi, I. Fuentes, and J. Louko. Voyage to alpha centauri: Entangle-

ment degradation of cavity modes due to motion. Phys. Rev. D, 85:061701(R),

2012.

[BFSS06] J. L. Ball, I. Fuentes-Schuller, and F. P. Schuller. Entanglement in an ex-

panding spacetime. Phys. Lett. A, 359:550, 2006.

[Bir23] G. D. Birkhoff. Relativity and Modern Physics. Cambridge, Massachusetts:

Harvard University Press, 1923.

[BK72] G. F. Belinfante and B. Kolman. A Survey of Lie Groups and Lie Algebras

with Applications and Computational Methods. SIAM, Philadelphia, 1972.

[BKC+06] A. Belyanin, V. V. Kocharovsky, F. Capasso, E. Fry, M. S. Zubairy, and M. O.

Scully. Quantum Electrodynamics of accelerated atoms in free space and in

cavities. Phys. Rev. A, 74:023807, 2006.



References 233

[BL83] J. S. Bell and J. M. Leinaas. Electrons as accelerated thermometers. Nucl.

Phys. B, 212:131, 1983.

[BL15] E. Brown and J. Louko. Smooth and sharp creation of a Dirichlet wall in

1+1 quantum field theory: how singular is the sharp creation limit? J. High

Energy Phys., 08:061, 2015.

[BLPS90] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd. Continuum

fields in quantum optics. Phys. Rev. A, 42:4102, 1990.

[BMT] V. Baccetti, R. B. Mann, and D. R. Terno. Role of evaporation in gravitational

collapse. arXiv:1610.07839.

[Bou75] D. G. Boulware. Quantum field theory in Schwarzschild and Rindler space.

Phys. Rev. D, 11:1404, 1975.

[BP73] J. M. Bardeen and W. H. Press. Radiation fields in the Schwarzschild back-

ground. J. Math. Phys., 14:7, 1973.

[BP13] S. L. Braunstein and S. Pirandola. Better late than never: Information re-

trieval from black holes. Phys. Rev. Lett., 110:101301, 2013.

[BR04] H. A. Bachor and T. C. Ralph. A Guide to Experiments in Quantum Optics.

Wiley-VCH, Weinheim, 2004.

[BW92] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle

operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.

[Car04] S. M. Carroll. Spacetime and Geometry: An introduction to general relativity.

Addison Wesley, 2004.

[CF77] S. M. Christensen and S. A. Fulling. Trace anomalies and the Hawking effect.

Phys. Rev. D, 15:2088, 1977.

[CGH+96] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth.

On the Lambert W function. Advances in Computational Mathematics, 5:329–

359, 1996.



234 References

[CH74] B. J. Carr and S. W. Hawking. Black holes in the early universe. Mon. Not.

Roy. Astro. Soc., 168:399, 1974.

[CHM08] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas. The Unruh effect and

its application. Rev. Mod. Phys., 80:787, 2008.

[Chr75] P. L. Chrzanowski. Vector potential and metric perturbations of a rotating

black hole. Phys. Rev. D, 11:2042, 1975.

[CK74] J. M. Cohen and L. S. Kegeles. Electromagnetic fields in curved spaces: A

constructive procedure. Phys. Rev. D, 10:1070, 1974.

[Col73] S. R. Coleman. There are no Goldstone bosons in two dimensions. Commun.

Math. Phys., 31:259–264, 1973.

[CP48] H. B. G. Casimir and D. Polder. The influence of retardation on the London-

van der Waals forces. Phys. Rev., 73:360, 1948.

[CPS09] M. I. Cohen, H. P. Pfeiffer, and M. A. Scheel. Revisting event horizon finders.

Class. Quantum Grav., 26:035005, 2009.

[CR94] A. Connes and C. Rovelli. Von Neumann algebra automorphisms and time-

thermodynamics relation in generally covariant quantum theories. Class.

Quantum Grav., 11:2899–2917, 1994.

[CT99] P. Chen and T. Tajima. Testing Unruh radiation with ultraintense lasers.

Phys. Rev. Lett., 83:256, 1999.

[CW87] R. D. Carlitz and R. S. Willey. Reflections on moving mirrors. Phys. Rev. D,

36:2327, 1987.

[Dat09] A. Datta. Quantum discord between relatively accelerated observers. Phys.

Rev. A, 80:052304, 2009.

[Dav75] P. C. W. Davies. Scalar production in Schwarzschild and Rindler metrics. J.

Phys. A, 8:609, 1975.



References 235

[DDMM13] A. Dragan, J. Doukas, and E. Martin-Martinez. Localized detection of quan-

tum entanglement through the event horizon. Phys. Rev. A, 87:052326, 2013.

[DDMMB13] A. Dragan, J. Doukas, E. Martin-Martinez, and D. E. Bruschi. Localized

projective measurement of a quantum field in non-inertial frames. Class.

Quantum Grav., 30:235006, 2013.

[Des75] S. Deser. Plane waves do not polarize the vacuum. J. Phys. A: Math. Gen.,

8:1972, 1975.

[DeW79] B. S. DeWitt. General Relativity: An Einstein Centenary Survey. Cambride

University Press, Cambridge, England, 1979.

[DF77] P. C. W. Davies and S. A. Fulling. Radiation from moving mirrors and from

black holes. Proc. R. Soc. Lond. A, 356:237–257, 1977.

[DFR11] T. G. Downes, I. Fuentes, and T. C. Ralph. Entangling moving cavities in

noninertial frames. Phys. Rev. Lett., 106:210502, 2011.

[Dir27] P. A. Dirac. The quantum theory of the emission and absorption of radiation.

Proc. R. Soc. London, Ser. A, 114:243, 1927.

[DL02] S. Dong and R. Lemus. The overlap integral of three associated Legendre

polynomials. Appl. Math. Lett., 15:541, 2002.

[DRW13] T. G. Downes, T. C. Ralph, and N. Walk. Quantum communication with an

accelerated partner. Phys. Rev. A, 87:012327, 2013.

[ea16a] B. P. Abbott et al. Gw151226: Observation of gravitational waves from a

22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116:241103,

2016.

[ea16b] B. P. Abbott et al. Observation of gravitational waves from a binary black

hole merger. Phys. Rev. Lett., 116:061102, 2016.



236 References

[Ein05] A. Einstein. On the electrodynamics of moving bodies. Ann. Phys. Leipz.,

17:891, 1905.

[Eke91] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev.

Lett., 67:661, 1991.

[FD76] S. A. Fulling and P. C. W. Davies. Radiation from a moving mirror in two

dimensional space-time: conformal anomaly. Proc. R. Soc. Lond. A, 348:393–

414, 1976.

[FLT+13] N. Friis, A. R. Lee, K. Troung, C. Sabin, E. Solano, G. Johansson, and

I. Fuentes. Relativistic quantum teleportation with superconducting circuits.

Phys. Rev. Lett., 110:113602, 2013.

[FMMMM10] I. Fuentes, R. B. Mann, E. Martin-Martinez, and S. Moradi. Entanglement

of Dirac fields in an expanding spacetime. Phys. Rev. D, 82:045030, 2010.

[FS79] V. P. Frolov and E. M. Serebriany. Quantum effects in systems with acceler-

ated mirrors. J. Phys. A: Math. Gen., 12:3205, 1979.

[FS80] V. P. Frolov and E. M. Serebriany. Quantum effects in systems with accel-

erated mirrors. II. electromagnetic field. J. Phys. A: Math. Gen., 13:3205,

1980.

[FS99] V. P. Frolov and D. Singh. Quantum effects in the presence of expanding

semi-transparent spherical mirrors. Class. Quantum Grav., 16:3693, 1999.

[FSM05] I. Fuentes-Schuller and R. B. Mann. Alice falls into a black hole: entanglement

in noninertial frames. Phys. Rev. Lett., 95:120404, 2005.

[Ful73] S. A. Fulling. Nonuniqueness of canonical field quantization in Riemannian

space-time. Phys. Rev. D, 7:2850, 1973.

[Gib75] G. W. Gibbons. Quantized field propagating in plane-wave spacetimes. Com-

mun. Math. Phys., 45:191, 1975.



References 237

[GLM04] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum-enhanced measurements:

Beating the standard quantum limit. Science, 306:1330, 2004.

[GLM06] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum metrology. Phys. Rev.

Lett., 96:010401, 2006.

[GMN+67] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and E. C. G.

Sudarshan. Spin-s Spherical Harmonics and ð. J. Math. Phys., 8:2155, 1967.

[Gol65] H. Goldstein. Classical Mechanics. Pearson Education India, 1965.

[GRKD17] P. T. Grochowski, G. Rajchel, F. Kialka, and A. Dragan. Effect of relativistic

acceleration on contiuous variable quantum teleportation and dense coding.

Phys. Rev. D, 95:105005, 2017.

[Gro86] P. G. Grove. On the detection of particle and energy fluxes in two dimensions.

Class. Quantum Grav., 3:793, 1986.

[GV91] J. Garriga and E. Verdaguer. Scattering of quantum particles by gravitational

plane waves. Phys. Rev. D, 43:391, 1991.

[Haa12] R. Haag. Local quatnum physics: Fields, particles, algebras. Springer Science

and Business Media, 2012.

[Har03] J. B. Hartle. Gravity: An Introduction to Einstein’s General Relativity. San

Francisco: Addison-Wesley, 2003.

[Haw75] S. W. Hawking. Particle creation by black holes. J. Math. Phys., 43:199,

1975.

[Haw76] S. W. Hawking. Breakdown of predictability in gravitational collapse. Phys.

Rev. D, 14:2460, 1976.

[HE73] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time.

Cambridge: Cambride University Press, 1973.



238 References

[HH76] J. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radi-

ance. Phys. Rev. D, 13:2188, 1976.

[HLO14] L. Hodgkinson, J. Louko, and A. C. Ottewill. Static detectors and circular-

geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 89:104002,

2014.

[Hol98] A. S. Holevo. The capacity of the quantum channel with general signal states.

IEEE Transactions on Information Theory, 44:269–273, 1998.

[HP07] P. Hayden and J. Preskill. Black holes as mirrors: quantum information in

random subsystems. J. High Energy Phys., 09:120, 2007.

[HPS16] S. W. Hawking, M. J. Perry, and A. Strominger. Soft hair on black holes.

Phys. Rev. Lett., 116:231301, 2016.

[HSU15] M. Hotta, R. Schutzhold, and W. G. Unruh. Partner particles for moving

mirror radiation and black hole evaporation. Phys. Rev. D, 91:124060, 2015.

[Hub06] J. H. Hubbell. Electron-positron pair production by photons: a historical

overview. Radiation Physics and Chemistry, 75:614, 2006.

[IOS13] D. Ida, T. Okamoto, and M. Saito. Modular theory for operator algebra in a

bounded region of space-time and quantum entanglement. Prog. Theor. Exp.

Phys., 083E03, 2013.

[IZ06] C. Itzykson and J. B. Zuber. Quantum field theory. Courier Corporation,

2006.

[Jac75] J. D. Jackson. Electrodynamics. Wiley-VCH Verlag GmbH and Co. KGaA,

1975.

[JMMK15] R. H. Jonsson, E. Martin-Martinez, and A. Kempf. Information transmission

without energy exchange. Phys. Rev. Lett., 114:110505, 2015.

[Kay15] B. S. Kay. Instability of enclosed horizons. Gen. Relativ. Gravit., 47:31, 2015.



References 239

[KC79] L. S. Kegeles and J. M. Cohen. Constructive procedure for perturbations of

spacetimes. Phys. Rev. D, 19:1641, 1979.

[KL16] B. S. Kay and U. Lupo. Non-existence of isometry-invariant Hadamard

states for a Kruskal black hole in a box and for massless fields on 1 + 1

Minkowski spacetime with a uniformly acclerating mirror. Class. Quantum

Grav., 33:215001, 2016.

[KMN+07] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J.

Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod.

Phys., 79:135, 2007.

[KR16] S. P. Kish and T. C. Ralph. Estimating spacetime parameters with a quantum

probe in a lossy environment. Phys. Rev. D, 93:105013, 2016.

[KS99] K. D. Kokkotas and B. G. Schmidt. Quasi-normal modes of stars and black

holes. Living Review in Relativity, 2:2, 1999.

[KZ11] R. A. Konoplya and A. Zhidenko. Quasinormal modes of black holes: From

astrophysics to string theory. Rev. Mod. Phys., 83:793, 2011.

[Lea85] E. W. Leaver. An analytic representation for the quasinormal modes of Kerr

black holes. Proc. R. Soc. Lond. A, 402:285, 1985.

[Lea86] E. W. Leaver. Spectral decomposition of the perturbation response of the

Schwarzschild geometry. Phys. Rev. D, 34:384, 1986.

[Lee86] T. D. Lee. Are black holes black bodies? Nucl. Phys., B264:437, 1986.

[Leh01] L. Lehner. Numerical relativity: a review. Class. Quantum Grav., 18:R25,

2001.

[LH10] S. Y. Lin and B. L. Hu. Entanglement creation between two causally discon-

nected objects. Phys. Rev. D, 81:045019, 2010.



240 References

[Llo97] S. Lloyd. Capacity of the noisy quantum channel. Phys. Rev. A, 55:1613,

1997.

[LM99] J. Louko and D. Marolf. Single-exterior black holes and the ADS-CFT con-

jecture. Phys. Rev. D, 59:066002, 1999.

[Lou14] J. Louko. Unruh-DeWitt detector response across a Rindler firewall is finite.

J. High Energy Phys., 09:141, 2014.

[LPHH13] P. Lahteenmaki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen. Dynamical

Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. U.S.A.,

110:4234, 2013.

[LR09] A. I. Lvovsky and M. G. Raymer. Continuous-variable optical quantum-state

tomography. Rev. Mod. Phys., 81:299, 2009.

[LW02] C. O. Lousto and B. F. Whiting. Reconstruction of black hole metric pertur-

bations from the Weyl curvature. Phys. Rev. D, 66:024026, 2002.

[MA99] H. A. Mavromatis and R. S. Alassar. A generalized formula for the integral

of three associated Legendre polynomials. Appl. Math. Lett., 12:101, 1999.

[Mag08] M. Maggiore. Physical interpretation of the spectrum of black hole quasi-

normal modes. Phys. Rev. Lett., 100:141301, 2008.

[Mat05] S. D. Mathur. The fuzzball proposal for black holes: an elementary review.

Fortschr. Phys., 53:793, 2005.

[MBF14] M.Ahmadi, D. E. Bruschi, and I. Fuentes. Quantum metrology for relativistic

quantum fields. Phys. Rev. D, 89:065028, 2014.

[MF53] P. M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill,

New York, 1953.

[MFB92] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger. Theory of cos-

mological perturbations. Phys. Rep., 215:203, 1992.



References 241

[Mil72] W. Miller. Symmetry Groups and Their Applications. Academic, New York,

1972.

[Mis72] C. W. Misner. Interpretation of gravitational-wave observations. Phys. Rev.

Lett., 28:994, 1972.

[MMGL10] E. Martin-Martinez, L. J. Garay, and J. Leon. Unveiling quantum entangle-

ment degradation near a Schwarzschild black hole. Phys. Rev. D, 82:064006,

2010.

[MML15] E. Martin-Martinez and J. Louko. (1+1) D calculation provides evidence that

quantum entanglement survives a firewall. Phys. Rev. Lett., 115:031301, 2015.

[MMM12] E. Martin-Martinez and N. C. Menicucci. Cosmological quantum entangle-

ment. Class. Quantum Grav., 29:224003, 2012.

[Moo70] G. T. Moore. Quantum theory of the electromagnetic field in a variable-length

one-dimensional cavity. J. Math. Phys., 11:2679, 1970.

[MP96] S. Massar and R. Parentani. From vacuum fluctuations to radiation. I. accel-

erated detectors. Phys. Rev. D, 54:7426, 1996.

[MP05] K. Martel and E. Poisson. Gravitational perturbations of the Schwarzschild

spacetime: A practical covariant and gauge-invariant formalism. Phys. Rev.

D, 71:104003, 2005.

[MR03] P. Martinetti and C. Rovelli. Diamond’s temperature: Unruh effect for

bounded trajectories and thermal time hypothesis. Class. Quantum Grav.,

20(4919-4931), 2003.

[MS98] J. Maldacena and A. Strominger. ADS3 black holes and a stringy exclusion

principle. J. High Energy Phys., 9812:005, 1998.

[MS06] S. Massar and P. Spindel. Einstein-Podolsky-Rosen correlations between two

uniformly accelerated oscillators. Phys. Rev. D, 74:085031, 2006.



242 References

[MTW73] C. W. Misner, K. Thorne, and J. A. Wheeler. Gravitation. Freeman, San

Francisco, 1973.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-

mation. Cambride University Press India, 2000.

[NIS] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov.

[Nol99] H. P. Nollert. Quasinormal modes: the characteristic ’sound’ of black holes

and neutron stars. Class. Quantum Grav., 16:R159, 1999.

[NP62] E. Newman and R. Penrose. An approach to gravitational radiation by a

method of spin coefficients. J. Math. Phys., 3:566, 1962.

[NZC+12] D. A. Nichols, A. Zimmerman, Y. Chen, G. Lovelace, K. D. Matthews,

R. Owen, F. Zhang, and K. S. Thorne. Visualizing spacetime curvature

via frame-drag vortexes and tidal tendexes. III. quasinormal pulsations of

Schwarzschild and Kerr black holes. Phys. Rev. D, 86:104028, 2012.

[OP01] N. Obadia and R. Parentani. Notes on moving mirrors. Phys. Rev. D,

64:044019, 2001.

[OP03a] N. Obadia and R. Parentani. Uniformly accelerated mirrors. I. mean fluxes.

Phys. Rev. D, 67:024021, 2003.

[OP03b] N. Obadia and R. Parentani. Uniformly accelerated mirrors. II. quantum

correlations. Phys. Rev. D, 67:024022, 2003.

[OR11] S. J. Olson and Timothy C. Ralph. Entanglement between the future and he

past in the quantum vacuum. Phys. Rev. Lett., 106:110404, 2011.

[OR12] S. J. Olson and T. C. Ralph. Extraction of timelike entanglement from the

quantum vacuum. Phys. Rev. A, 85:012306, 2012.

[Ori03] A. Ori. Reconstruction of inhomogeneous metric perturbations and electro-

magnetic four-potential in Kerr spacetime. Phys. Rev. D, 67:124010, 2003.



References 243

[OV39] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys. Rev.,

55:374, 1939.

[Pag76] D. N. Page. Particle emission rates from a black hole: Massless particles from

an uncharged, nonrotating hole. Phys. Rev. D, 13:198, 1976.

[Par68] L. Parker. Particle creation in expanding universes. Phys. Rev. Lett., 21:562,

1968.

[Par75] L. Parker. Probability distribution of particles created by a black hole. Phys.

Rev. D, 12:1519, 1975.

[PJ08] Q. Pan and J. Jing. Hawking radiation, entanglement, and teleportation in

the background of an asymptotically flat static black hole. Phys. Rev. D,

78:065015, 2008.

[Pre98] J. Preskill. Lecture notes for physics 229: Quantum information and compu-

tation. California Institute of Technology, 1998.

[Pri72] R. H. Price. Nonspherical perturbations of relativistic gravitational collapse.

II. integer-spin, zero-rest-mass fields. Phys. Rev. D, 5:2439, 1972.

[PS95] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory.

Addison-Wesley, New York, 1995.

[PT73] W. H. Press and S. A. Teukolsky. Perturbations of a rotating black hole. II.

dynamical stability of the Kerr metric. Astrophys. J., 185:649, 1973.

[PT04] A. Peres and D. R. Terno. Quantum information and relativity. Rev. Mod.

Phys., 76:93, 2004.

[PT09] L. Parker and D. Toms. Quantum field theory in curved spacetime: quantized

fields and gravity. Cambride University Press, 2009.

[RCR05] A. Retzker, J. I. Cirac, and B. Reznik. Detecting vacuum entanglement in a

linear ion trap. Phys. Rev. Lett., 94:050504, 2005.



244 References

[RL98] T. C. Ralph and P. K. Lam. Teleportation with bright squeezed light. Phys.

Rev. Lett., 81:5668, 1998.

[Rog88] J. Rogers. Detector for the temperaturelike effect of acceleration. Phys. Rev.

Lett., 61:2113, 1988.

[RRS05] B. Reznik, A. Retzker, and J. Silman. Violating Bell’s inequalities in vacuum.

Phys. Rev. A, 71:042104, 2005.

[RW57] T. Regge and J. A. Wheeler. Stability of a Schwarzschild singularity. Phys.

Rev., 108:1063, 1957.

[RW15] T. C. Ralph and N. Walk. Quantum key distribution without sending a

quantum signal. New Journal of Physics, 17:063008, 2015.

[Sak85] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, Redwood City,

CA, 1985.

[Sch16] K. Schwarzschild. On the gravitational field of a mass point according to

Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.),

7:189 –196, 1916.

[Sch51] J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev.,

82:664, 1951.

[Sch95] B. Schumacher. Quantum coding. Phys. Rev. A, 51:2738, 1995.

[SHMR17a] D. Su, C. T. M. Ho, R. B. Mann, and T. C. Ralph. Black hole squeezers.

Phys. Rev. D, accepted for publication, 2017.

[SHMR17b] D. Su, C. T. M. Ho, R. B. Mann, and T. C. Ralph. Quantum circuit model for

non-inertial objects: a uniformly accelerated mirror. New Journal of Physics,

19:063017, 2017.

[Sho94] P. W. Shor. Algorithms for quantum computations: discrete logarithms and

factoring. Proceedings of the 35th Annual Symposium on Foundations of Com-

puter Science, pages 124–134, 1994.



References 245

[Sho95] P. W. Shor. Scheme for reducing decoherence in quantum computer memory.

Phys. Rev. A, 52:R2493(R), 1995.

[SKB+03] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F. Capasso. En-

hancing acceleration radiation from ground-state atoms via cavity quantum

Electrodynamics. Phys. Rev. Lett., 91:243004, 2003.

[SM09] G. V. Steeg and N. C. Menicucci. Entangling power of an expanding universe.

Phys. Rev. D, 79:044027, 2009.

[SMM15] G. Salton, R. B. Mann, and N. Menicucci. Acceleration-assisted entanglement

harvesting and rangefinding. New Journal of Physics, 17:035001, 2015.

[Sor00] F. Sorge. Do gravitational waves create particles? Class. Quantum Grav.,

17:4655, 2000.

[SP88] Yonghe Sun and Richard H. Price. Excitation of quasinormal ringing of a

Schwarzschild black hole. Phys. Rev. D, 38:1040, 1988.

[SPdRMM12] C. Sabin, B. Peropadre, M. del Rey, and E. Martin-Martinez. Extracting past-

future vacuum correlations using circuit QED. Phys. Rev. Lett., 109:033602,

2012.

[SR14] D. Su and T. C. Ralph. Quantum communication in the presence of a horizon.

Phys. Rev. D, 90:084022, 2014.

[SR16] D. Su and T. C. Ralph. Spacetime diamonds. Phys. Rev. D, 93:044023, 2016.

[SSH06] R. Schutzhold, G. Schaller, and D. Habs. Signatures of the Unruh effect from

electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett., 97:121302,

2006.

[Ste16] J. Steinhauer. Observation of quantum Hawking radiation and its entangle-

ment in an analogue black hole. Nat. Phys., 12:959, 2016.



246 References

[StHW94] C. R. Stephens, G. t’ Hooft, and B. F. Whiting. Black hole evaporation

without information loss. Class. Quantum Grav., 11:621, 1994.

[STU93] L. Susskind, L. Thorlacius, and J. Uglum. The stretched horizon and black

hole complementarity. Phys. Rev. D, 48:3743, 1993.

[Sus16] L. Susskind. ER = EPR, GHZ, and the consistency of quantum measurements.

Fortschr. Phys., 64:72–83, 2016.

[SW85a] B. F. Schutz and C. M. Will. Black hole normal modes: a semianalytic

approach. Astrophys. J. Lett., 291:L33, 1985.

[SW85b] S. J. Summers and R. Werner. The vacuum violates Bell’s inequalities. Phys.

Lett. A, 110:257, 1985.

[SW87] S. J. Summers and R. Werner. Bell’s inequalities and quantum field theory.

II. Bell’s inequalities are maximally violated in the vacuum. J. Math. Phys.,

28:2448, 1987.

[SW97] B. Schumacher and M. D. Westmoreland. Sending classical information via

noisy quantum channels. Phys. Rev. A, 56:131, 1997.

[SZ97] M. O. Scully and M. S. Zubairy. Quantum Optics. Cambride University Press,

1997.

[Tak86] S. Takagi. Vacuum noise and stress induced by uniform acceleration:

Hawking-Unruh effect in Rindler manifold of arbitrary dimension. Prog.

Theor. Phys., 88:1–142, 1986.

[Teu72] S. A. Teukolsky. Rotating black holes: Separable wave equations for gravita-

tional and electromagnetic perturbations. Phys. Rev. Lett., 29:1114, 1972.

[Teu73] S. A. Teukolsky. Perturbations of a rotating black hole. I. fundamental equa-

tions for gravitational, electromagnetic, and neutrino-field perturbations. As-

trophys. J., 185:635, 1973.



References 247

[Tol39] R. C. Tolman. Static solution of Einstein’s field equations for spheres of fluid.

Phys. Rev., 55:364, 1939.

[TP74] S. A. Teukolsky and W. H. Press. Perturbations of a rotating black hole.

III - interaction of the hole with gravitational and electromagnetic radiation.

Astrophys. J., 193:443, 1974.

[Tru85] D. R. Truax. Baker-Cambell-Hausdorff relations and unitary of SU(2) and

SU(1,1) squeeze operator. Phys. Rev. D, 31:1988, 1985.

[TS10] T. Takahashi and J. Soda. Hawking radiation from fluctuating black holes.

Class. Quantum Grav., 27:175008, 2010.

[Tsv95] A. M. Tsvelik. Quantum Field Theory in Condensed Matter Physics. Cam-

bride University Press, 1995.

[Unr74] W. G. Unruh. Second quantization in the Kerr metric. Phys. Rev. D, 10:3194,

1974.

[Unr76] W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14:870, 1976.

[Unr92] W. G. Unruh. Thermal bath and decoherence of Rindler spacetimes. Phys.

Rev. D, 46:3271, 1992.

[UW84] W. G. Unruh and R. M. Wald. What happens when an accelerating observer

detects a Rindler particle. Phys. Rev. D, 29:1047, 1984.

[Wal75] R. M. Wald. On particle creation by black holes. Commun. Math. Phys.,

45:9–34, 1975.

[Wal85] W. R. Walker. Particle and energy creation by moving mirrors. Phys. Rev.

D, 31:767, 1985.

[Wal94] R. M. Wald. Quantum field theory in curved spacetime and black hole ther-

modynamics. University of Chicago Press, 1994.



248 References

[Wei72] S. Weinberg. Gravitation and Cosmology: principles and applications of the

general theory of relativity. New York: Willy, 1972.

[Wei95] S. Weinberg. The quantum theory of fields. Cambride University Press, 1995.

[Wil93] F. Wilczek. Quantum purity at a small price: Easing a black hole paradox.

arXiv:hep-th/9302096, 1993.

[WJP+11] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson,

T. Duty, F. Nori, and P. Delsing. Observation of the dynamical Casimir effect

in a superconducting circuit. Nature (London), 479:376, 2011.

[WLBR06] W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz. Pulsed

squeezed light: Simultaneous squeezing of multiple modes. Phys. Rev. A,

73:063819, 2006.

[WM07] D. F. Walls and G. J. Milburn. Quantum Optics. Springer Science and

Business Media, 2007.

[WND96] J. G. Williams, X. X. Newhall, and J. O. Dickey. Relativity parameters

determined from lunar laser ranging. Phys. Rev. D, 53:6730, 1996.

[WPGP+12] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H.

Shapiro, and S. Lloyd. Gaussian quantum information. Rev. Mod. Phys.,

84:621, 2012.

[YG06] N. Yunes and J. Gonzalez. Metric of a tidally perturbed spinning black hole.

Phys. Rev. D, 73:024010, 2006.

[YZL15] H. Yang, A. Zimmerman, and L. Lehner. Turbulent black holes. Phys. Rev.

Lett., 114:081101, 2015.

[YZZ+13] H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti, and Y. Chen.

Quasinormal modes of nearly extremal Kerr spacetimes: Spectrum bifurcation

and power-law ringdown. Phys. Rev. D, 88:044047, 2013.



References 249

[Zee10] A. Zee. Quantum field theory in a nutshell. Princeton university press, 2010.

[Zel72] I. A. B. Zel’dovich. Amplification of cylindrical electromagnetic waves re-

flected from a rotating body. Soviet Physics-JETP, 35:1085, 1972.

[Zer70] F. J. Zerilli. Gravitational field of a particle falling in a Schwarzschild geom-

etry analyzed in tensor harmonics. Phys. Rev. D, 2:2141, 1970.

[ZKSS10] X. Zhu, A. Kemp, S. Saito, and K. Semba. Coherent operation of a gap-

tunable flux qubit. Appl. Phys. Lett., 97:102503, 2010.

[ZSK+11] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J.

Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and

K. Semba. Coherent coupling of a superconducting flux qubit to an electron

spin ensemble in diamond. Nature, 478:221, 2011.


	List of Figures
	List of Tables
	Introduction and Overview
	Quantum field theory in flat spacetime
	Basic concepts in quantum optics
	Quantum field theory in curved spacetime
	Spacetime diamonds
	Quantum communication with accelerated observers
	Quantum circuit model for non-inertial objects: uniformly accelerated mirror
	Quantum circuit model for non-inertial objects: uniformly accelerated squeezer
	Particle creation by gravitational perturbations around a Schwarzschild black hole

	Introduction to Quantum Field Theory in Flat Spacetime
	From harmonic oscillator to atomic chain
	Harmonic oscillator
	Atomic chain model

	Relativistic quantum fields
	Basics of special relativity
	Hermitian massless scalar fields
	Green's functions

	Summary and further reading

	Basics of Quantum Optics
	Quantum states of the electromagnetic field
	Localized wave packet modes
	Number states
	Coherent state
	Squeezed states
	Thermal state

	Basic optical elements
	Phase shifter
	Beamsplitter

	Homodyne detection
	Balanced homodyne detection
	Ordinary homodyne detection
	Self-homodyne detection

	Quantum circuit
	Summary and further reading

	Introduction to Quantum Field Theory in Curved Spacetime
	General relativity in a nutshell
	Rindler space
	Uniformly accelerated observer
	Rindler coordinates

	Schwarzschild spacetime
	Schwarzschild metric and gravitational redshift
	Maximally extended Schwarzschild spacetime
	Penrose diagram

	Quantum field theory in curved spacetime
	Quantum fields in Rindler space
	Rindler modes
	Bogoliubov transformation
	Unruh temperature
	Unruh modes
	Minkowski vacuum as an entangled state
	Unruh-DeWitt detector

	Quantum fields in Schwarzschild spacetime
	Particle creation from a collapsing star
	Eternal black hole
	Black hole information paradox

	Summary and further reading

	Spacetime Diamonds
	Introduction
	Time-like entanglement
	Diamond coordinates
	Thermal radiation
	Detector response
	Correlations between different diamonds
	Summary
	Appendix

	Quantum Communication with Uniformly Accelerated Observers
	Introduction
	Quantum communication between an inertial observer and a uniformly accelerated observer
	Homodyne Detection in an accelerated frame
	Horizon-straddling case

	Quantum communication between two accelerated observers
	Bogoliubov transformations between Unruh modes
	Bogoliubov transformations between Rindler modes
	Quantum communication protocols

	Summary

	Quantum Circuit Model for Non-inertial Objects: Accelerated Mirror
	Introduction
	Circuit model
	Relations between Rindler modes and Unruh modes
	General circuit for time independent interactions
	Circuit model for a uniformly accelerated mirror

	Radiation from an eternally accelerated mirror
	Particle number flux
	Total energy flux

	Squeezing from accelerated mirrors
	Narrow bandwidth detector mode
	Broad bandwidth detector mode
	Ratio of single-mode squeezing
	Origin of single-mode squeezing

	Squeezed Firewall ?
	Summary

	Quantum Circuit Model for Non-inertial Objects: Accelerated Squeezer
	Introduction
	Accelerated objects acting on narrow bandwidth modes
	Circuit for a single narrow bandwidth mode
	Uniformly accelerated mirror

	Accelerated objects acting on arbitrary single mode
	Accelerated displacement
	Accelerated phase shifter
	Accelerated single-mode squeezer

	Decoherence in non-inertial frames
	Detection of the state
	Accelerated self-homodyne detection
	Classical signals
	Quantum signals
	Connetion to black hole information paradox

	Summary

	Particle Creation from Gravitational Perturbations Around Schwarzschild Black Holes
	Introduction
	Scalar field in curved spacetimes
	Gravitational quasi-normal modes
	Coupling between scalar field and odd-parity QNMs
	Interaction Hamiltonian from odd-parity QNMs
	Radial integral
	Angular integral

	QNM as multimode squeezer
	Coupling between scalar field and even-parity QNMs
	Summary
	Appendix
	Appendix A: Radial integrals Ir2, Ir3 and Ir4 
	Appendix B: Spin-weighted spherical harmonics 
	Appendix C: Integrals of the products of three Legendre Functions 


	Conclusion and Future Outlook
	Summary
	Spacetime diamonds
	Quantum communication with accelerated observers
	Quantum circuit model for uniformly accelerated objects
	Squeezed black holes

	Future work and outlook
	Spacetime diamonds
	Quantum communication with accelerated observers
	Quantum circuit model for uniformly accelerated objects
	Squeezed black holes


	References
	thesis-preliminary-pages - revision.pdf
	Quantum effects in non-inertial frames and curved spacetimes
	Daiqin Su
	M. S. (Astrophysics), University of Science and Technology of China


